WorldWideScience

Sample records for included cell dedifferentiation

  1. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  2. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2014-03-01

    Full Text Available Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric, we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions, we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis.

  3. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    Science.gov (United States)

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  4. Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model.

    Science.gov (United States)

    Matsumine, Hajime; Takeuchi, Yuichi; Sasaki, Ryo; Kazama, Tomohiko; Kano, Koichiro; Matsumoto, Taro; Sakurai, Hiroyuki; Miyata, Mariko; Yamato, Masayuki

    2014-10-01

    Dedifferentiated fat cells, obtained from the ex vivo ceiling culture of mature adipocytes of mammals, have a high proliferative potential and pluripotency. The authors transplanted dedifferentiated fat cells into a nerve defect created in rat facial nerve and evaluated nerve regeneration ability. The buccal branch of the facial nerve of rats was exposed, and a 7-mm nerve defect was created. Green fluorescent protein-positive dedifferentiated fat cells prepared from adipocytes were mixed with type 1 collagen scaffold and infused into a silicone tube, which was then transplanted into the nerve defect in a green fluorescent protein-negative rat (the dedifferentiated fat group). Regenerated nerves were excised at 13 weeks after transplantation and examined histologically and physiologically. The findings were compared with those of autografts and silicone tubes loaded with collagen gel alone (the control group) transplanted similarly. Axon diameter of regenerated nerve increased significantly in the dedifferentiated fat group compared with the control group, whereas no significant difference was found between the dedifferentiated fat and autograft groups. Myelin thickness was found to be largest in the autograft group, followed by the dedifferentiated fat and the control groups, showing significant differences between all pairs of groups. Evaluation of physiologic function of nerves by compound muscle action potential revealed a significantly better result in the dedifferentiated fat group than in the control group. The regenerated nerves in the dedifferentiated fat group had S100 and green fluorescent protein-double-positive Schwann-like supportive cells. After being transplanted into a facial nerve defect, dedifferentiated fat cells promoted the maturation of the regenerated nerve.

  5. Adult renal cell carcinoma with rhabdoid morphology represents a neoplastic dedifferentiation analogous to sarcomatoid carcinoma.

    Science.gov (United States)

    Chapman-Fredricks, Jennifer R; Herrera, Loren; Bracho, Jorge; Gomez-Fernandez, Carmen; Leveillee, Raymond; Rey, Luis; Jorda, Merce

    2011-10-01

    Renal cell carcinoma (RCC) with rhabdoid morphology (RCC-RM) is a recently described variant of RCC, which has an aggressive biologic behavior and poor prognosis, akin to sarcomatoid RCC. The current World Health Organization classification of RCC does not include the rhabdoid phenotype as a distinct histologic entity. The aim of this study is to investigate whether RCC-RM represents a dedifferentiation of a classifiable-type World Health Organization RCC or a carcinosarcoma with muscle differentiation. We reviewed 168 cases of RCC obtained between 2003 and 2008. From these cases, 10 (6%) were found to have areas of classic rhabdoid morphology. Immunohistochemistry for cytokeratin, epithelial membrane antigen, desmin, CD10, and CD117 was performed in each case using the labeled streptavidin-biotin method. Rhabdoid differentiation was identified in association with conventional-type RCC (9) and with unclassifiable-type RCC with spindle cell morphology (1). In all cases, both the rhabdoid and nonrhabdoid tumoral areas were positive for cytokeratin and epithelial membrane antigen and negative for desmin. Cytokeratin positivity in the rhabdoid areas was focal. In cases associated with conventional-type RCC, CD10 was positive in both the rhabdoid and nonrhabdoid foci. CD117 was negative in these tumors. The unclassifiable-type RCC with spindle cell morphology was negative for both CD10 and CD117. The similar immunophenotype between the rhabdoid and nonrhabdoid tumoral foci supports the origin of the rhabdoid cells from the classifiable-type RCC. Areas of rhabdoid morphology do not represent muscle metaplastic differentiation. Renal cell carcinoma with rhabdoid morphology may represent a dedifferentiation of a classifiable-type RCC, similar to that of sarcomatoid differentiation. The recognition of RCC-RM is important as it allows for the inclusion of these high-grade malignancies into a category associated with poor prognosis despite lacking the spindle cell component

  6. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation.

    Science.gov (United States)

    Li, Shujue; Wu, Wenqi; Wu, Wenzheng; Duan, Xiaolu; Kong, Zhenzhen; Zeng, Guohua

    2016-01-01

    The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-488-tagged COM crystals were used in crystals adhesion experiment to distinguish from the previous COM attachment, and adhesive crystals were counted under fluorescence microscope, which were also dissolved and the calcium concentration was assessed by flame atomic absorption spectrophotometry. Dedifferentiated MDCK cells induced by transforming growth factor β1 (TGF-β1) shown higher affinity to COM crystals. After exposure to COM for 48 hours, cell dedifferentiation were observed and more subsequent COM crystals could bind onto, mediated by Akt/GSK-3β/Snail signaling. L-carnitine attenuated this signaling, resulted in inhibition of cell dedifferentiation and reduction of subsequent COM crystals adhesion. COM attachment promotes subsequent COM crystals adhesion, by inducing cell dedifferentiation via Akt/GSK-3β/Snail signaling. L-carnitine partially abolishes cell dedifferentiation and resists COM crystals adhesion. L-carnitine, may be used as a potential therapeutic strategy against recurrence of urolithiasis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    Energy Technology Data Exchange (ETDEWEB)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Chen, Allen M.; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Hess, Clayton B. [Department of Radiation Oncology, University of California Davis, Sacramento, California (United States); Pajonk, Frank [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2016-04-01

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.

  8. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration

    NARCIS (Netherlands)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M.; Straube, Werner L.; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, Andras; Drechsel, David N.; Tanaka, Elly M.

    2017-01-01

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell

  9. Using Tissue Culture To Investigate Plant Cell Differentiation and Dedifferentiation.

    Science.gov (United States)

    Bozzone, Donna M.

    1997-01-01

    Describes an experimental project that uses plant tissue culture techniques to examine cell differentiation in the carrot. Allows students to gain experience in some important techniques and to explore fundamental questions about cell differentiation. (DDR)

  10. Dedifferentiated Fat (DFAT) Cells: a cell source for oral and maxillofacial tissue engineering.

    Science.gov (United States)

    Kishimoto, Naotaka; Honda, Yoshitomo; Momota, Yoshihiro; Tran, Simon D

    2018-01-21

    Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of Dedifferentiated Fat (DFAT) cells as a cell source for tissue engineering. DFAT cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration were reported. DFAT cells obtained from the human buccal fat pad (BFP) is a minimally invasive procedure with limited aesthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Directory of Open Access Journals (Sweden)

    Carlos Díaz-Castillo

    2017-11-01

    Full Text Available Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications.

  12. Myc regulates programmed cell death and radial glia dedifferentiation after neural injury in an echinoderm.

    Science.gov (United States)

    Mashanov, Vladimir S; Zueva, Olga R; García-Arrarás, José E

    2015-05-30

    Adult echinoderms can completely regenerate major parts of their central nervous system even after severe injuries. Even though this capacity has long been known, the molecular mechanisms that drive fast and complete regeneration in these animals have remained uninvestigated. The major obstacle for understanding these molecular pathways has been the lack of functional genomic studies on regenerating adult echinoderms. Here, we employ RNA interference-mediated gene knockdown to characterize the role of Myc during the early (first 48 hours) post-injury response in the radial nerve cord of the sea cucumber Holothuria glaberrima. Our previous experiments identified Myc as the only pluripotency-associated factor, whose expression significantly increased in the wounded CNS. The specific function(s) of this gene, however, remained unknown. Here we demonstrate that knockdown of Myc inhibits dedifferentiation of radial glia and programmed cell death, the two most prominent cellular events that take place in the regenerating sea cucumber nervous system shortly after injury. In this study, we show that Myc overexpression is required for proper dedifferentiation of radial glial cells and for triggering the programmed cell death in the vicinity of the injury. Myc is thus the first transcription factor, whose functional role has been experimentally established in echinoderm regeneration.

  13. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Dedifferentiated fat cells: Potential and perspectives for their use in clinical and animal science purpose.

    Science.gov (United States)

    Duarte, M S; Bueno, R; Silva, W; Campos, C F; Gionbelli, M P; Guimarães, S E F; Silva, F F; Lopes, P S; Hausman, G J; Dodson, M V

    2017-05-01

    An increasing body of evidences has demonstrated the ability of the mature adipocyte to dedifferentiate into a population of proliferative-competent cells known as dedifferentiated fat (DFAT) cells. As early as the 1970s, in vitro studies showed that DFAT cells may be obtained by ceiling culture, which takes advantage of the buoyancy property of lipid-filled cells. It was documented that DFAT cells may acquire a phenotype similar to mesenchymal stem cells and yet may differentiate into multiple cell lineages, such as skeletal and smooth muscle cells, cardiomyocytes, osteoblasts, and adipocytes. Additionally, recent studies showed the ability of isolated mature adipocytes to dedifferentiate in vivo and the capacity of the progeny cells to redifferentiate into mature adipocytes, contributing to the increase of body fatness. These findings shed light on the potential for use of DFAT cells, not only for clinical purposes but also within the animal science field, because increasing intramuscular fat without excessive increase in other fat depots is a challenge in livestock production. Knowledge of the mechanisms underlying the dedifferentiation and redifferentiation of DFAT cells will allow the development of strategies for their use for clinical and animal science purposes. In this review, we highlight several aspects of DFAT cells, their potential for clinical purposes, and their contribution to adipose tissue mass in livestock.

  14. Senescence Meets Dedifferentiation

    Directory of Open Access Journals (Sweden)

    Yemima Givaty Rapp

    2015-06-01

    Full Text Available Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation.

  15. Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation.

    Science.gov (United States)

    Scatena, Roberto

    2012-01-01

    At the beginning of the twentieth century, Otto Warburg demonstrated that cancer cells have a peculiar metabolism. These cells preferentially utilise glycolysis for energetic and anabolic purposes, producing large quantities of lactic acid. He defined this unusual metabolism "aerobic glycolysis". At the same time, Warburg hypothesised that a disruption of mitochondrial activities played a precise pathogenic role in cancer. Because of this so-called "Warburg effect", mitochondrial physiology and cellular respiration in particular have been overlooked in pathophysiological studies of cancer. Over time, however, many studies have shown that mitochondria play a fundamental role in cell death by apoptosis or necrosis. Moreover, metabolic enzymes of the Krebs cycle have also recently been recognised as oncosuppressors. Recently, a series of studies were undertaken to re-evaluate the role of oxidative mitochondrial metabolism in cancer cell growth and progression. Some of these data indicate that modulation of mitochondrial respiration may induce an arrest of cancer cell proliferation and differentiation (pseudodifferentiation) and/or or death, suggesting that iatrogenic manipulation of some mitochondrial activities may induce anticancer effects. Moreover, studying the role of mitochondria in cancer cell dedifferentiation/differentiation processes may allow further insight into the pathophysiology and therapy of so-called cancer stem cells.

  16. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation.

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    Full Text Available Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3 ∶ 1 are up-regulated following vascular injury, 2 together drive smooth muscle cell (SMC proliferation and migration and 3 enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05 in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively. In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF. Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.

  18. β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats.

    Science.gov (United States)

    Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard

    2016-09-01

    Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.

  19. Transplantation of dedifferentiation fat cells promotes intervertebral disc regeneration in a rat intervertebral disc degeneration model.

    Science.gov (United States)

    Nakayama, Enshi; Matsumoto, Taro; Kazama, Tomohiko; Kano, Koichiro; Tokuhashi, Yasuaki

    2017-11-18

    Our group has reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. In the present study, we examined whether DFAT cell transplantation could contribute to intervertebral disc regeneration using a rat intervertebral disc degeneration (IDD) model. The IDD was created in Sprague-Dawley rats by puncturing at level of caudal intervertebral disc under fluoroscopy. One week after injury, rat DFAT cells (5 × 10 4 , DFAT group, n = 13) or phosphate-buffered saline (PBS, control group, n = 13) were injected into the intervertebral disc. Percent disc height index (%DHI) was measured every week and histology of injured disc was evaluated at 8 weeks after transplantation. Radiographic analysis revealed that the %DHI in the DFAT group significantly higher than that in the control group at 2-3 weeks after transplantation. Histological analysis revealed that ectopic formation of nucleus pulposus (NP)-like tissue at the outer layer of annulus fibrosus was frequently observed in the DFAT group but not in the control group. Transplantation experiments using green fluorescent protein (GFP)-labeled DFAT cells revealed that the ectopic NP-like tissue was positive for GFP, suggesting direct differentiation of DFAT cells into NP-like cells. In conclusion, DFAT cell transplantation promoted the regeneration of intervertebral disc and improved intervertebral disc height in the rat IDD model. Because adipose tissue is abundant and easily accessible, DFAT cell transplantation may be an attractive therapeutic strategy against IDD. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma.

    Science.gov (United States)

    Bruna, Flavia; Arango-Rodríguez, Martha; Plaza, Anita; Espinoza, Iris; Conget, Paulette

    2017-01-01

    Multipotent stromal cells (MSCs) are envisioned as a powerful therapeutic tool. As they home into tumors, secrete trophic and vasculogenic factors, and suppress immune response their role in carcinogenesis is a matter of controversy. Worldwide oral squamous cell carcinoma (OSCC) is the fifth most common epithelial cancer. Our aim was to determine whether MSC administration at precancerous stage modifies the natural progression of OSCC. OSCC was induced in Syrian hamsters by topical application of DMBA in the buccal pouch. At papilloma stage, the vehicle or 3×10 6 allogenic bone marrow-derived MSCs were locally administered. Four weeks later, the lesions were studied according to: volume, stratification (histology), proliferation (Ki-67), apoptosis (Caspase 3 cleaved), vasculature (ASMA), inflammation (Leukocyte infiltrate), differentiation (CK1 and CK4) and gene expression profile (mRNA). Tumors found in individuals that received MSCs were smaller than those presented in the vehicle group (87±80 versus 54±62mm 3 , p<0.05). The rate of proliferation was two times lower and the apoptosis was 2.5 times higher in lesions treated with MSCs than in untreated ones. While the laters presented dedifferentiated cells, the former maintained differentiated cells (cytokeratin and gene expression profile similar to normal tissue). Thus, MSC administration at papilloma stage precludes tumor growth and epithelial dedifferentiation of OSCC. Copyright © 2016. Published by Elsevier B.V.

  1. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration

    Science.gov (United States)

    Akita, Daisuke; Kano, Koichiro; Saito-Tamura, Yoko; Mashimo, Takayuki; Sato-Shionome, Momoko; Tsurumachi, Niina; Yamanaka, Katsuyuki; Kaneko, Tadashi; Toriumi, Taku; Arai, Yoshinori; Tsukimura, Naoki; Matsumoto, Taro; Ishigami, Tomohiko; Isokawa, Keitaro; Honda, Masaki

    2016-01-01

    Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration. PMID:26941649

  2. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  3. Dedifferentiated Fat Cells as a Novel Source for Cell Therapy to Target Neonatal Hypoxic-Ischemic Encephalopathy.

    Science.gov (United States)

    Mikrogeorgiou, Alkisti; Sato, Yoshiaki; Kondo, Taiki; Hattori, Tetsuo; Sugiyama, Yuichiro; Ito, Miharu; Saito, Akiko; Nakanishi, Keiko; Tsuji, Masahiro; Kazama, Tomohiko; Kano, Koichiro; Matsumoto, Taro; Hayakawa, Masahiro

    2017-01-01

    Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) remains a major cause of mortality and persistent neurological disabilities in affected individuals. At present, hypothermia is considered to be the only applicable treatment option, although growing evidence suggests that cell-based therapy might achieve better outcomes. Dedifferentiated fat (DFAT) cells are derived from mature adipocytes via a dedifferentiation strategy called ceiling culture. Their abundance and ready availability might make them an ideal therapeutic tool for the treatment of HIE. In the present study, we aimed to determine whether the outcome of HIE can be improved by DFAT cell treatment. HI injury was achieved by ligating the left common carotid artery in 7-day-old rat pups, followed by 1-h exposure to 8% O2. Subsequently, the severity of damage was assessed by diffusion-weighted magnetic resonance imaging to assign animals to equivalent groups. 24 h after hypoxia, DFAT cells were injected at 105 cells/pup into the right external jugular vein. To evaluate brain damage in the acute phase, a group of animals was sacrificed 48 h after the insult, and paraffin sections of the brain were stained to assess several acute injury markers. In the chronic phase, the behavioral outcome was measured by performing a series of behavioral tests. From the 24th day of age, the sensorimotor function was examined by evaluating the initial forepaw placement on a cylinder wall and the latency to falling from a rotarod treadmill. The cognitive function was tested with the novel object recognition (NOR) test. In vitro conditioned medium (CM) prepared from cultured DFAT cells was added at various concentrations to neuronal cell cultures, which were then exposed to oxygen-glucose deprivation (OGD). The number of cells that stained positive for the apoptosis marker active caspase-3 decreased by 73 and 52% in the hippocampus and temporal cortex areas of the brain, respectively, in the DFAT-treated pups. Similarly, the

  4. Folic acid inhibits dedifferentiation of PDGF-BB-induced vascular smooth muscle cells by suppressing mTOR/P70S6K signaling.

    Science.gov (United States)

    Pan, Sunlei; Lin, Hui; Luo, Hangqi; Gao, Feidan; Meng, Liping; Zhou, Changzuan; Jiang, Chengjian; Guo, Yan; Ji, Zheng; Chi, Jufang; Guo, Hangyuan

    2017-01-01

    Folic acid (FA) supplementation reduces the risk of atherosclerosis and stroke. Phenotypic change from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays an important role in atherosclerosis development; however, the exact mechanisms remain unknown. This study aimed to assess whether FA through mammalian target of rapamycin (mTOR)/P70S6K signaling inhibits platelet derived growth factor (PDGF-BB) induced VSMC dedifferentiation. VSMCs from primary cultures were identified by morphological observation and α-smooth muscle actin (α-SM-actin, α-SMA) immunocytochemistry. Then, VSMCs were induced by PDGF-BB and treated with varying FA concentrations. Rapamycin and MHY-1485 were used to inhibit or activate the mTOR/P70S6K pathway, respectively. Next, MTT, Transwell, and wound healing assays were employed to assess proliferation and migration of VSMCs. In addition, Western blotting was used to evaluate protein levels of α-SMA, calponin, osteopontin, mTOR, p-mTOR, P70S6K and p-P70S6K in VSMCs. VSMCs showed phenotypic alteration from differentiated to dedifferentiated cells in response to PDGF-BB. MTT, Transwell and wound healing assays showed that FA markedly inhibited proliferation and migration in PDGF-BB-induced VSMCs, in a time and concentration-dependent manner. FA treatment increased the expression levels of the contractile phenotype marker proteins α-SMA and calponin compared with VSMCs stimulated by PDGF-BB alone. Furthermore, FA significantly suppressed mTOR and P70S6K phosphorylation compared with PDGF-BB alone. Similar to FA, downregulation of mTOR signaling by rapamycin inhibited VSMC dedifferentiation. In contrast, upregulation of mTOR signaling by MHY-1485 reversed the FA-induced inhibition of VSMC dedifferentiation. Folic acid inhibits dedifferentiation of PDGF-BB-induced VSMCs by suppressing mTOR/P70S6K signaling.

  5. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFβ as potential targets

    DEFF Research Database (Denmark)

    van Oosterwijk, Jolieke G; Meijer, Danielle; van Ruler, Maayke A J H

    2013-01-01

    The mesenchymal, clear cell, and dedifferentiated chondrosarcoma subtypes are extremely rare, together constituting 10% to 15% of all chondrosarcomas. Their poor prognosis and lack of efficacious treatment emphasizes the need to elucidate the pathways playing a pivotal role in these tumors. We co...

  6. The Effect of Mature Adipocyte-Derived Dedifferentiated Fat (DFAT) Cells on a Dorsal Skin Flap Model.

    Science.gov (United States)

    Kashimura, Tsutomu; Soejima, Kazutaka; Asami, Takashi; Kazama, Tomohiko; Matsumoto, Taro; Nakazawa, Hiroaki

    2016-01-01

    Dedifferentiated fat (DFAT) cells, isolated from mature adipose cell, have high proliferative potential and pluripotency. We report on the expansion of flap survival areas on the back of rats administrating DFAT cells. Intraperitoneal adipose tissue was collected from a male Sprague-Dawley (SD) rat. The mature fat cells were cultured on the ceiling surface of culture flask to isolate DFAT cells. On day 7 of the culture, the flask was inverted to allow normal adherent culture. A dorsal caudal-based random pattern flap measuring 2 × 9 cm was raised on each SD rat. We prepared a control group (n = 10) and a flap base injection group in which DFAT cells were injected 2 cm from the flap base (n = 10) and a flap center DFAT injection group (n = 10). In which DFAT cells at 1 × 106 cells/0.1 ml were injected beneath the skin muscle layers of the flap. The flap survival areas were assessed on day 14 after surgery. The mean flap survival rates of the control group, flap center injection group and flap base injection group were 53.6 ± 6.1%, 50.6 ± 6.4% and 65.8 ± 2.4%, respectively. The flap survival areas significantly expanded in the flap base injection group (p cells into the flap base promoted the expansion of survival areas.

  7. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model

  8. C5b-9-activated, Kv1.3 channels mediate oligodendrocyte cell cycle activation and dedifferentiation

    Science.gov (United States)

    Tegla, Cosmin A.; Cudrici, Cornelia; Rozycka, Monika; Soloviova, Katerina; Ito, Takahiro; Singh, Anil K.; Khan, Aamer; Azimzadeh, Philippe; Andrian-Albescu, Maria; Khan, Anver; Niculescu, Florin; Rus, Violeta; Judge, Susan I. V.; Rus, Horea

    2011-01-01

    Voltage-gated potassium (Kv) channels play an important role in the regulation of growth factor-induced cell proliferation. We have previously shown that cell cycle activation is induced in oligodendrocytes (OLGs) by complement C5b-9, but the role of Kv channels in these cells had not been investigated. Differentiated OLGs were found to express Kv1.4 channels, but little Kv1.3. Exposure of OLGs to C5b-9 modulated Kv1.3 functional channels and increased protein expression, whereas C5b6 had no effect. Pretreatment with the recombinant scorpion toxin rOsK-1, a specific Kv1.3 inhibitor, blocked the expression of Kv1.3 induced by C5b-9. rOsK-1 inhibited Akt phosphorylation and activation by C5b-9 but had no effect on ERK1 activation. These data strongly suggest a role for Kv1.3 in controlling the Akt activation induced by C5b-9. Since Akt plays a major role in C5b-9-induced cell cycle activation, we also investigated the effect of inhibiting Kv1.3 channels on DNA synthesis. rOsK-1 significantly inhibited the DNA synthesis induced by C5b-9 in OLG, indicating that Kv1.3 plays an important role in the C5b-9-induced cell cycle. In addition, C5b-9-mediated myelin basic protein and proteolipid protein mRNA decay was completely abrogated by inhibition of Kv1.3 expression. In the brains of multiple sclerosis patients, C5b-9 co-localized with NG2+ OLG progenitor cells that expressed Kv1.3 channels. Taken together, these data suggest that Kv1.3 channels play an important role in controlling C5b-9-induced cell cycle activation and OLG dedifferentiation, both in vitro and in vivo. PMID:21540025

  9. Ezh2 Expression in Astrocytes Induces Their Dedifferentiation Toward Neural Stem Cells

    NARCIS (Netherlands)

    Sher, Falak; Boddeke, Erik; Copray, Sjef

    Recently, we have demonstrated the expression of the polycomb group protein Ezh2 in embryonic and adult neural stem cells. Although Ezh2 remained highly expressed when neural stem cells differentiate into oligodendrocyte precursor cells, it is downregulated during the differentiation into neurons or

  10. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    Science.gov (United States)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  11. Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine.

    Directory of Open Access Journals (Sweden)

    Atsuko Ishizuya-Oka

    Full Text Available Amphibian intestinal remodeling, where thyroid hormone (T3 induces some larval epithelial cells to become adult stem cells analogous to the mammalian intestinal ones, serves as a unique model for studying how the adult stem cells are formed. To clarify its molecular mechanisms, we here investigated roles of non-canonical Wnt signaling in the larval-to-adult intestinal remodeling during Xenopus laevis metamorphosis.Our quantitative RT-PCR (qRT-PCR and immunohistochemical analyses indicated that the expressions of Wnt5a and its receptors, frizzled 2 (Fzd2 and receptor tyrosine kinase-like orphan receptor 2 (Ror2 are up-regulated by T3 and are spatiotemporally correlated with adult epithelial development in the X. laevis intestine. Notably, changes in morphology of larval absorptive epithelial cells expressing Ror2 coincide well with formation of the adult stem cells during metamorphosis. In addition, by using organ cultures of the tadpole intestine, we have experimentally shown that addition of exogenous Wnt5a protein to the culture medium causes morphological changes in the larval epithelium expressing Ror2 even in the absence of T3. In contrast, in the presence of T3 where the adult stem cells are formed in vitro, inhibition of endogenous Wnt5a by an anti-Wnt5a antibody suppressed the epithelial morphological changes, leading to the failure of stem cell formation.Our findings strongly suggest that the adult stem cells originate from the larval absorptive cells expressing Ror2, which require Wnt5a/Ror2 signaling for their dedifferentiation accompanied by changes in cell morphology.

  12. L-Carnitine Protects Renal Tubular Cells Against Calcium Oxalate Monohydrate Crystals Adhesion Through Preventing Cells From Dedifferentiation

    OpenAIRE

    Shujue Li; Wenqi Wu; Wenzheng Wu; Xiaolu Duan; Zhenzhen Kong; Guohua Zeng

    2016-01-01

    Background/Aims: The interactions between calcium oxalate monohydrate (COM) crystals and renal tubular epithelial cells are important for renal stone formation but still unclear. This study aimed to investigate changes of epithelial cell phenotype after COM attachment and whether L-carnitine could protect cells against subsequent COM crystals adhesion. Methods: Cultured MDCK cells were employed and E-cadherin and Vimentin were used as markers to estimate the differentiate state. AlexaFluor-48...

  13. Expression of a novel-type small proline-rich protein gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells.

    Science.gov (United States)

    Györgyey, J; Németh, K; Magyar, Z; Kelemen, Z; Alliotte, T; Inzé, D; Dudits, D

    1997-07-01

    Differential screening of a cDNA library of 2,4-dichlorophenoxiacetic acid (2,4-D)-treated alfalfa (Medicago sativa) callus tissues resulted in the isolation of a 571 bp cDNA clone (MsPRP5) encoding for a proline-rich protein (84 amino acids) with a specific repeat unit of TPVLPPRK/RGRPPPVPP. In addition, a characteristic amino acid block (PPVYK) previously found in other proline-rich proteins also occurs in the C-terminal region of MsPRP5. At the N-terminal, a signal peptide similar to leader sequences of extracellular proteins can be predicted. According to the northern analysis, the corresponding gene is not expressed or is weakly expressed in differentiated vegetative organs and somatic embryos. However the accumulation of MsPRP5 mRNA is auxin concentration-dependent in dedifferentiated callus tissue. An increase in the amount of steady-state mRNA was detected already 20 min after auxin shock (100 microM 2,4-D). Maximum expression was observed at 24-48 h in the presence of 2,4-D. Elevated expression was also found in cells recovering after heat shock and wounding stress. In synchronized alfalfa cells, the transcript level of MsPRP5 gene fluctuated during cell cycle progression with peaks in G1/S phase cells. Considering the structural features and expression properties of MsPRP5, this clone may represents a new type of proline-rich protein gene which responds to hormonal shock and some other stresses as well.

  14. Loss of heterozygosity and microsatellite instability are rare in sporadic dedifferentiated liposarcoma: a study of 43 well-characterized cases.

    Science.gov (United States)

    Davis, Jessica L; Grenert, James P; Horvai, Andrew E

    2014-06-01

    Defects in mismatch repair proteins have been identified in Lynch syndrome-associated liposarcomas, as well as in rare sporadic sarcomas. However, it is unclear if mismatch repair defects have a role in sarcoma tumorigenesis. Microsatellite instability is a surrogate marker of mismatch repair defects. To determine whether sporadic dedifferentiated liposarcomas display microsatellite instability and, if so, to evaluate whether such instability differs between the lipogenic and nonlipogenic components of these tumors. The diagnoses of conventional dedifferentiated liposarcoma were confirmed by a combination of morphologic, immunophenotypic, and molecular studies. Standard fluorescence-based polymerase chain reaction, including 5 mononucleotide microsatellite markers (BAT25, BAT26, NR21, NR24, and MONO27), as well as 2 pentanucleotide repeat markers (Penta C and Penta D), was used to test for instability and loss of heterozygosity. We demonstrated only a single case (1 of 43) with microsatellite instability at one mononucleotide marker. No sarcomas showed high-level microsatellite instability. However, loss of heterozygosity at the pentanucleotide markers was observed in 8 of 43 cases. The presence of loss of heterozygosity was overrepresented in the nonlipogenic (dedifferentiated) components compared with the paired lipogenic (well differentiated) components. Mismatch repair defects do not contribute to sporadic dedifferentiated liposarcoma tumorigenesis. Whether the observed loss of heterozygosity drives tumorigenesis in liposarcoma, for example by affecting tumor suppressor or cell cycle regulator genes, remains to be determined.

  15. Dedifferentiation of neurons precedes tumor formation in Lola mutants.

    Science.gov (United States)

    Southall, Tony D; Davidson, Catherine M; Miller, Claire; Carr, Adrian; Brand, Andrea H

    2014-03-31

    The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Dedifferentiated Liposarcoma With Rhabdomyosarcomatous Differentiation Producing HCG: A Case Report of a Diagnostic Pitfall.

    Science.gov (United States)

    Maryamchik, Elena; Lyapichev, Kirill A; Halliday, Bradford; Rosenberg, Andrew E

    2018-03-01

    We report a first case of paraneoplastic human chorionic gonadotropin (HCG) production in a dedifferentiated liposarcoma with rhabdosarcomatous differentiation in an 83-year-old man with a retroperitoneal mass, unilateral scrotal enlargement, and a serum HCG level of 843 IU/L. Core biopsy of the retroperitoneal mass revealed rhabdomyosarcoma. Orchiectomy revealed a paratesticular dedifferentiated liposarcoma with rhabdosarcomatous differentiation. Fluorescence in situ hybridization analysis performed on both the retroperitoneal and paratesticular masses revealed amplification of MDM2. The retroperitoneal tumor was interpreted as metastatic dedifferentiated liposarcoma with the dedifferentiated component represented by rhabdomyosarcoma. HCG production is a common feature of testicular germ cell tumors, less common in carcinomas, and extremely rare in sarcomas. Accordingly, sarcomas secreting HCG are a potential diagnostic pitfall, and raise the differential diagnosis of germ cell tumors and a variety of carcinomas. HCG production by carcinomas is a known poor prognostic finding, however the significance of its production in sarcomas is unknown.

  17. Intrascrotal Dedifferentiated Leiomyosarcoma Originating from Dartos Muscle

    Directory of Open Access Journals (Sweden)

    Taro Teshima

    2014-01-01

    Full Text Available A 46-year-old man, who had visited our hospital complaining of a small intrascrotal nodule ten years ago, returned to us because of the rapid growth of the nodule. Computed tomography revealed a heterogeneously enhanced intrascrotal tumor of approximately 4×3 cm. The tumor and the right testis were excised with the adhered right scrotal skin. The pathological diagnosis was pleomorphic leiomyosarcoma with dedifferentiation originating from the dartos muscle. Urological dedifferentiated leiomyosarcomas are rarely reported and the clinical features are mostly unknown. This is the first report to describe the dedifferentiated leiomyosarcoma of the dartos muscle.

  18. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.

    Science.gov (United States)

    Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J; Burzykowski, Tomasz; Poisson, Laila; Weinstein, John N; Kamińska, Bożena; Huelsken, Joerg; Omberg, Larsson; Gevaert, Olivier; Colaprico, Antonio; Czerwińska, Patrycja; Mazurek, Sylwia; Mishra, Lopa; Heyn, Holger; Krasnitz, Alex; Godwin, Andrew K; Lazar, Alexander J; Stuart, Joshua M; Hoadley, Katherine A; Laird, Peter W; Noushmehr, Houtan; Wiznerowicz, Maciej

    2018-04-05

    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Dedifferentiated liposarcoma of the anterior mediastinum. A rare case

    Energy Technology Data Exchange (ETDEWEB)

    Harth, S.; Litzlbauer, H.D.; Behrens, C.B.; Roller, F.C.; Gamerdinger, U.; Burchert, D.; Krombach, G.A.

    2016-01-15

    Liposarcoma accounts for approximately 14 % of all malignant soft-tissue tumors, regardless of anatomical location (Kransdorf MJ et al. Imaging of soft tissue tumors. Philadelphia: Lippincott Williams and Wilkins, 2014). Primary mediastinal liposarcomas are rare. Liposarcoma is classified into four histologic subtypes: Myxoid/round cell, pleomorphic, atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma. Dedifferentiated liposarcoma occurs most commonly in the retroperitoneum and in the soft tissues of the extremities. Like atypical lipomatous tumor/well-differentiated liposarcoma, it is characterized by amplification of MDM2 and CDK4 genes on chromosome 12 (Crago AM et al. Curr Opin Oncol 2011; 23: 373 - 378). Possible symptoms of mediastinal liposarcoma are dyspnea, wheezing, chest pain, cough, superior vena cava syndrome, and weight loss (Macchiarini P et al. Lancet Oncol 2004; 5: 107 - 118).

  20. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  1. Human Schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium.

    Science.gov (United States)

    Faroni, Alessandro; Smith, Richard J P; Lu, Li; Reid, Adam J

    2016-02-01

    Finding a viable cell-based therapy to address peripheral nerve injury holds promise for enhancing the currently suboptimal microsurgical approaches to peripheral nerve repair. Autologous nerve grafting is the current gold standard for surgical repair of nerve gaps; however, this causes donor nerve morbidity in the patient, and the results remain unsatisfactory. Transplanting autologous Schwann cells (SCs) results in similar morbidity, as well as limited cell numbers and restricted potential for expansion in vitro. Adipose-derived stem cells (ASCs), 'differentiated' towards an SC-like phenotype in vitro (dASCs), have been presented as an alternative to SC therapies. The differentiation protocol stimulates ASCs to mimic the SC phenotype; however, the efficacy of dASCs in nerve repair is not yet convincing, and the practicality of the SC-like phenotype is unproven. Here, we examined the stability of dASCs by withdrawing differentiation medium for 72 h after the full 18-day differentiation protocol, and measuring changes in morphology, gene expression, and protein levels. Withdrawal of differentiation medium from dASCs resulted in a rapid reversion to stem cell-like characteristics. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay analyses demonstrated a significant reduction in gene and protein expression of growth factors that were expressed at high levels following 'differentiation'. Therefore, we question the relevance of differentiation to an SC-like phenotype, as withdrawal of differentiation medium, a model of transplantation into an injured nerve, results in rapid reversion of the dASC phenotype to stem cell-like characteristics. Further investigation into the differentiation process and the response of dASCs to an injured environment must be undertaken prior to the use of dASCs in peripheral nerve repair therapies. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience

  2. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  3. Intensified Religious Pluralism and De-differentiation: the British Example.

    Science.gov (United States)

    Woodhead, Linda

    Drawing on surveys of religion and values in Great Britain, this paper suggests that Peter Berger's paradigm of two pluralisms can be usefully supplemented by taking account of a third kind of intensified pluralism. This involves the breakdown of the boundaries between religions, and between the religious and the secular, and is therefore a pluralism of de-differentiation. It helps explain many features of contemporary religion and identity, including the rise of the "nones" and the increasing reluctance of each new generation to identify with religious (and secular) labels and packages.

  4. Dedifferentiated chondrosarcoma with leukocytosis and elevation of serum G-CSF. A case report

    Directory of Open Access Journals (Sweden)

    Oda Yoshinao

    2006-07-01

    Full Text Available Abstract Background G-CSF is known to function as a hematopoietic growth factor and it is known to be responsible for leukocytosis. G-CSF-producing tumors associated with leukocytosis include various types of malignancies. Case presentation We report the case of a 72-year-old man with dedifferentiated chondrosarcoma characterized by dedifferentiated components of malignant fibrous histiocytoma- or osteosarcoma-like features in addition to conventional chondrosarcoma, arising from his pelvic bone. After hemipelvectomy, when local recurrence and metastasis were identified, leukocytosis appeared and an elevated level of serum granulocyte-colony-stimulating factor (G-CSF was also recognized. The patient died of multiple organ failure 2 months after surgery. Autopsy specimens showed that the histological specimens of the recurrence and metastasis were dedifferentiated components, without any conventional chondrosarcoma components. G-CSF was expressed only in the dedifferentiated components, not in the chondrosarcoma components, immunohistochemically. Conclusion This is the first report of chondrosarcoma, or any other primary bone tumor, with leukocytosis, probably stimulated by tumor-produced G-CSF from the dedifferentiated components.

  5. A micromanipulation cell including a tool changer

    Science.gov (United States)

    Clévy, Cédric; Hubert, Arnaud; Agnus, Joël; Chaillet, Nicolas

    2005-10-01

    This paper deals with the design, fabrication and characterization of a tool changer for micromanipulation cells. This tool changer is part of a manipulation cell including a three linear axes robot and a piezoelectric microgripper. All these parts are designed to perform micromanipulation tasks in confined spaces such as a microfactory or in the chamber of a scanning electron microscope (SEM). The tool changer principle is to fix a pair of tools (i.e. the gripper tips) either on the tips of the microgripper actuator (piezoceramic bulk) or on a tool magazine. The temperature control of a thermal glue enables one to fix or release this pair of tools. Liquefaction and solidification are generated by surface mounted device (SMD) resistances fixed on the surface of the actuator or magazine. Based on this principle, the tool changer can be adapted to other kinds of micromanipulation cells. Hundreds of automatic tool exchanges were performed with a maximum positioning error between two consecutive tool exchanges of 3.2 µm, 2.3 µm and 2.8 µm on the X, Y and Z axes respectively (Z refers to the vertical axis). Finally, temperature measurements achieved under atmospheric pressure and in a vacuum environment and pressure measurements confirm the possibility of using this device in the air as well as in a SEM.

  6. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull

    NARCIS (Netherlands)

    Geurtzen, Karina; Knopf, Franziska; Wehner, Daniel; Huitema, Leonie F A; Schulte-Merker, Stefan; Weidinger, Gilbert

    Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair

  7. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull

    NARCIS (Netherlands)

    Geurtzen, K.; Knopf, F.; Wehner, D.; Huitema, L.F.A.; Schulte-Merker, S.; Weidinger, G.

    2014-01-01

    Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair

  8. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish.

    Science.gov (United States)

    Saera-Vila, Alfonso; Kasprick, Daniel S; Junttila, Tyler L; Grzegorski, Steven J; Louie, Ke'ale W; Chiari, Estelle F; Kish, Phillip E; Kahana, Alon

    2015-07-01

    The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2'-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular tools for targeted therapeutic

  9. Outcomes of Patients with Renal Cell Carcinoma and Sarcomatoid Dedifferentiation Treated with Nephrectomy and Systemic Therapies: Comparison between the Cytokine and Targeted Therapy Eras.

    Science.gov (United States)

    Keskin, Sarp K; Msaouel, Pavlos; Hess, Kenneth R; Yu, Kai-Jie; Matin, Surena F; Sircar, Kanishka; Tamboli, Pheroze; Jonasch, Eric; Wood, Christopher G; Karam, Jose A; Tannir, Nizar M

    2017-09-01

    We studied overall survival and prognostic factors in patients with sarcomatoid renal cell carcinoma treated with nephrectomy and systemic therapy in the cytokine and targeted therapy eras. This is a retrospective study of patients with sarcomatoid renal cell carcinoma who underwent nephrectomy and received systemic therapy at our center in the cytokine era (1987 to 2005) or the targeted therapy era (2006 to 2015). Multivariate regression models were used to determine the association of covariables with survival. Of the 199 patients with sarcomatoid renal cell carcinoma 167 (83.9%) died (median overall survival 16.5 months, 95% CI 15.2-20.9). Survival of patients with clear cell histology was significantly longer vs those with nonclear cell histology (p = 0.034). Patients with synchronous metastatic disease had significantly shorter survival than patients with metachronous metastatic disease (median 12.1 vs 23.3 months, p = 0.0064). Biopsy of the primary tumor or a metastatic site could detect the presence of sarcomatoid features in only 7.5% of cases. Although a significant improvement in survival rate was observed in the first year in patients treated in the targeted therapy era (p = 0.011), this effect was attenuated at year 2, disappeared at years 3 to 5 after diagnosis and was not evident in patients with poor risk features. Patients with sarcomatoid renal cell carcinoma still have poor prognosis with no clear long-term benefit of targeted therapy. This underscores the need to develop more effective systemic therapies for these patients. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates.

    Science.gov (United States)

    Kawamura, Kaz; Yoshida, Takuto; Sekida, Satoko

    2018-01-15

    Asexual bud development in the budding tunicate Polyandrocarpa misakiensis involves transdifferentiation of multipotent epithelial cells, which is triggered by retinoic acid (RA), and thrives under starvation after bud isolation from the parent. This study aimed to determine cell and molecular mechanisms of dedifferentiation that occur during the early stage of transdifferentiation. During dedifferentiation, the numbers of autophagosomes, lysosomes, and secondary lysosomes increased remarkably. Mitochondrial degradation and exosome discharge also occurred in the atrial epithelium. Autophagy-related gene 7 (Atg7) and lysosomal proton pump A gene (PumpA) were activated during the dedifferentiation stage. When target of rapamycin (TOR) inhibitor was administered to growing buds without isolating them from the parent, phagosomes and secondary lysosomes became prominent. TOR inhibitor induced Atg7 only in the presence of RA. In contrast, when growing buds were treated with RA, lysosomes, secondary lysosomes, and mitochondrial degradation were prematurely induced. RA significantly activated PumpA in a retinoid X receptor-dependent manner. Our results indicate that in P. misakiensis, TOR inhibition and RA signals act in synergy to accomplish cytoplasmic clearance for dedifferentiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dedifferentiated parosteal osteosarcoma with well-differentiated metastases

    International Nuclear Information System (INIS)

    Takeuchi, Katsuhito; Morii, Takeshi; Yabe, Hiroo; Morioka, Hideo; Toyama, Yoshiaki; Mukai, Makio

    2006-01-01

    Metastases of dedifferentiated sarcoma usually contain a dedifferentiated component. We report a rare case of dedifferentiated parosteal osteosarcoma (dd-POS) with well-differentiated multiple metastases in a 65-year-old woman with a painful firm mass on her thigh. Radiological examination revealed that the mass arose from the surface of her femur without medullary involvement. Multiple intramuscular metastases were detected in her lower leg on MR imaging. Small subcutaneous palpable masses were identified on her left lower leg, buttock, chest wall and head. An open biopsy and above-the-knee amputation were performed, and the mass on her femur was diagnosed as a dd-POS. However, histological examination on the subcutaneous lesions in her lower leg, buttock and head showed low-grade conventional POS without dedifferentiated components. To the best of our knowledge, this is the first report of a dd-POS with multiple metastases that do not contain any dedifferentiated components. (orig.)

  12. Dedifferentiated parosteal osteosarcoma with well-differentiated metastases

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Katsuhito; Morii, Takeshi; Yabe, Hiroo; Morioka, Hideo; Toyama, Yoshiaki [Keio University, School of Medicine, Department of Orthopaedic Surgery, Shinjuku-ku, Tokyo (Japan); Mukai, Makio [Keio University, School of Medicine, Division of Diagnostic Pathology, Shinjuku-ku, Tokyo (Japan)

    2006-10-15

    Metastases of dedifferentiated sarcoma usually contain a dedifferentiated component. We report a rare case of dedifferentiated parosteal osteosarcoma (dd-POS) with well-differentiated multiple metastases in a 65-year-old woman with a painful firm mass on her thigh. Radiological examination revealed that the mass arose from the surface of her femur without medullary involvement. Multiple intramuscular metastases were detected in her lower leg on MR imaging. Small subcutaneous palpable masses were identified on her left lower leg, buttock, chest wall and head. An open biopsy and above-the-knee amputation were performed, and the mass on her femur was diagnosed as a dd-POS. However, histological examination on the subcutaneous lesions in her lower leg, buttock and head showed low-grade conventional POS without dedifferentiated components. To the best of our knowledge, this is the first report of a dd-POS with multiple metastases that do not contain any dedifferentiated components. (orig.)

  13. Fine needle aspiration biopsy diagnosis of dedifferentiated liposarcoma: Cytomorphology and MDM2 amplification by FISH

    Directory of Open Access Journals (Sweden)

    Al-Maghraby Hatem

    2010-01-01

    Full Text Available Lipomatous mesenchymal tumors constitute the most common type of soft tissue tumors. Well-differentiated liposarcoma (WDLS can undergo dedifferentiation to a nonlipogenic sarcoma of variable histologic grade. In the recent literature, amplification of the murine double minute 2 (MDM2 oncogene, which has a role in cell cycle control, has been successful in distinguishing WDLS from benign lesions. We present a case of dedifferentiated liposarcoma diagnosed by fine-needle aspiration (FNA, using cytomorphology and ancillary studies (immunocytochemistry and fluorescent in-situ hybridization. An 85-year old female presented to our institution with a firm soft tissue mass of the right buttock. The FNA showed atypical spindle cells, osteoclast-like giant cells and extracellular dense matrix material. The cell block showed cellular groups of highly atypical spindle cells with osteoid and adipose tissue. Fluorescence in situ hybridization (FISH studies performed on the cell block demonstrated amplification of the MDM2 gene. In addition, the findings were morphologically compatible with the previously resected retroperitoneal dedifferentiated liposarcoma with areas of osteosarcoma. This rare case illustrates the usefulness of FNA and ancillary studies in the diagnosis and subclassification of soft tissue tumors. To the best of our knowledge, this is the first report of MDM2 FISH positivity in a liposarcoma diagnosed by FNA.

  14. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury

    OpenAIRE

    Bernier, Rachel Anne; Roy, Arnab; Venkatesan, Umesh Meyyappan; Grossner, Emily C.; Brenner, Einat K.; Hillary, Frank Gerard

    2017-01-01

    Objective Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferenti...

  15. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... Treatment Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key ...

  16. Identification of key genes and molecular mechanisms associated with dedifferentiated liposarcoma based on bioinformatic methods

    Directory of Open Access Journals (Sweden)

    Yu H

    2017-06-01

    Full Text Available Hongliang Yu,1 Dong Pei,2 Longyun Chen,2 Xiaoxiang Zhou,2 Haiwen Zhu2 1Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 2Department of Radiation Oncology, Yancheng Third People’s Hospital, Yancheng, Jiangsu, People’s Republic of China Background: Dedifferentiated liposarcoma (DDLPS is one of the most deadly types of soft tissue sarcoma. To date, there have been few studies dedicated to elucidating the molecular mechanisms behind the disease; therefore, the molecular mechanisms behind this malignancy remain largely unknown.Materials and methods: Microarray profiles of 46 DDLPS samples and nine normal fat controls were extracted from Gene Expression Omnibus (GEO. Quality control for these microarray profiles was performed before analysis. Hierarchical clustering and principal component analysis were used to distinguish the general differences in gene expression between DDLPS samples and the normal fat controls. Differentially expressed genes (DEGs were identified using the Limma package in R. Next, the enriched Gene Ontology (GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were obtained using the online tool DAVID (http://david.abcc.ncifcrf.gov/. A protein–protein interaction (PPI network was constructed using the STRING database and Cytoscape software. Furthermore, the hub genes within the PPI network were identified.Results: All 55 microarray profiles were confirmed to be of high quality. The gene expression pattern of DDLPS samples was significantly different from that of normal fat controls. In total, 700 DEGs were identified, and 83 enriched GO terms and three KEGG pathways were obtained. Specifically, within the DEGs of DDLPS samples, several pathways were identified as being significantly enriched, including the PPAR signaling pathway, cell cycle pathway, and pyruvate metabolism pathway

  17. Hyperexpression of HOXC13, located in the 12q13 chromosomal region, in well-differentiated and dedifferentiated human liposarcomas

    Science.gov (United States)

    CANTILE, MONICA; GALLETTA, FRANCESCA; FRANCO, RENATO; AQUINO, GABRIELLA; SCOGNAMIGLIO, GIOSUÈ; MARRA, LAURA; CERRONE, MARGHERITA; MALZONE, GABRIELLA; MANNA, ANGELA; APICE, GAETANO; FAZIOLI, FLAVIO; BOTTI, GERARDO; DE CHIARA, ANNAROSARIA

    2013-01-01

    Liposarcoma (LPS) is the most common soft tissue neoplasm in adults and is characterized by neoplastic adipocyte proliferation. Some subtypes of LPSs show aberrations involving the chromosome 12. The most frequent are t(12;16) (q13;p11) present in more than 90% of myxoid LPSs and 12q13-15 amplification in well-differentiated and dedifferentiated LPSs. In this region, there are important oncogenes such as CHOP (DDIT3), GLI, MDM2, CDK4, SAS, HMGA2, but also the HOXC locus, involved in development and tumor progression. In this study, we evaluated the expression of HOXC13, included in this chromosomal region, in a series of adipocytic tumors. We included 18 well-differentiated, 4 dedifferentiated, 11 myxoid and 6 pleomorphic LPSs as well as 13 lipomas in a tissue microarray. We evaluated the HOXC13 protein and gene expression by immunohistochemistry and quantitative PCR. Amplification/translocation of the 12q13-15 region was verified by FISH. Immunohistochemical HOXC13 overexpression was observed in all well-differentiated and dedifferentiated LPSs, all characterized by the chromosome 12q13-15 amplification, and confirmed by quantitative PCR analysis. In conclusion, our data show a deregulation of the HOXC13 marker in well-differentiated and dedifferentiated LPSs, possibly related to 12q13-15 chromosomal amplification. PMID:24085196

  18. Hyperexpression of HOXC13, located in the 12q13 chromosomal region, in well‑differentiated and dedifferentiated human liposarcomas.

    Science.gov (United States)

    Cantile, Monica; Galletta, Francesca; Franco, Renato; Aquino, Gabriella; Scognamiglio, Giosuè; Marra, Laura; Cerrone, Margherita; Malzone, Gabriella; Manna, Angela; Apice, Gaetano; Fazioli, Flavio; Botti, Gerardo; De Chiara, Annarosaria

    2013-12-01

    Liposarcoma (LPS) is the most common soft tissue neoplasm in adults and is characterized by neoplastic adipocyte proliferation. Some subtypes of LPSs show aberrations involving the chromosome 12. The most frequent are t(12;16) (q13;p11) present in more than 90% of myxoid LPSs and 12q13-15 amplification in well-differentiated and dedifferentiated LPSs. In this region, there are important oncogenes such as CHOP (DDIT3), GLI, MDM2, CDK4, SAS, HMGA2, but also the HOXC locus, involved in development and tumor progression. In this study, we evaluated the expression of HOXC13, included in this chromosomal region, in a series of adipocytic tumors. We included 18 well-differentiated, 4 dedifferentiated, 11 myxoid and 6 pleomorphic LPSs as well as 13 lipomas in a tissue microarray. We evaluated the HOXC13 protein and gene expression by immunohistochemistry and quantitative PCR. Amplification/translocation of the 12q13-15 region was verified by FISH. Immunohistochemical HOXC13 overexpression was observed in all well-differentiated and dedifferentiated LPSs, all characterized by the chromosome 12q13-15 amplification, and confirmed by quantitative PCR analysis. In conclusion, our data show a deregulation of the HOXC13 marker in well‑differentiated and dedifferentiated LPSs, possibly related to 12q13-15 chromosomal amplification.

  19. Reprogramming primordial germ cells into pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Gabriela Durcova-Hills

    Full Text Available Specification of primordial germ cells (PGCs results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.Here we show that Trichostatin A (TSA, an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.

  20. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  1. Immunophenotypic features of dedifferentiated skull base chordoma: An insight into the intratumoural heterogeneity

    Directory of Open Access Journals (Sweden)

    Kelvin Manuel Pińa Batista

    2017-12-01

    Full Text Available Chordomas are rare and low-grade malignant solid tumours, despite their histologically benign appearance, that arise in the bone from embryonic notochordal vestiges of the axial skeleton, a mesoderm-derived structure that is involved in the process of neurulation and embryonic development. Chordomas occurring in the skull base tend to arise in the basiocciput along the clivus. Three major morphological variants have been described (classical, chondroid, and atypical/dedifferentiated. The pathogenesis and molecular mechanisms involved in chordoma development remain uncertain. From a pathological standpoint, the microenvironment of a chordoma is heterogeneous, showing a dual epithelial-mesenchymal differentiation. These tumours are characterised by slow modality of biologic growth, local recurrence, low incidence of metastasis rates, and cancer stem cell (CSC phenotype. The main molecular findings are connected with brachyury immunoexpression and activation of the downstream Akt and mTOR signalling pathways. The differentiation between typical and atypical chordomas is relevant because the tumoural microenvironment and prognosis are partially different. This review provides an insight into the recent and relevant concepts and histochemical markers expressed in chordomas, with special emphasis on dedifferentiated chordomas and their prognostic implications.

  2. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  3. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury.

    Science.gov (United States)

    Bernier, Rachel Anne; Roy, Arnab; Venkatesan, Umesh Meyyappan; Grossner, Emily C; Brenner, Einat K; Hillary, Frank Gerard

    2017-01-01

    Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferentiation of networks (as noted in other clinical populations) and these effects would be associated with cognitive dysfunction. Graph theory was implemented to examine functional connectivity during periods of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs). Using a functional brain atlas derived from 83 functional imaging studies, graph theory was used to examine network dynamics and determine whether dedifferentiation accounts for changes in connectivity. Regions of interest were assigned to one of three groups: task-positive, default mode, or other networks. Relationships between these metrics were then compared with performance on neuropsychological tests. Hyperconnectivity in TBI was most commonly observed as increased within-network connectivity. Network strengths within networks that showed differences between TBI and HCs were correlated with performance on five neuropsychological tests typically sensitive to deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN) during task was associated with better performance on Digit Span Backward, a measure of working memory [ R 2 (18) = 0.28, p  = 0.02]. In other words, increased differentiation of networks during task was associated with better working memory. Hyperconnectivity within the task-positive network during rest was not associated with behavior. Negative correlation weights were not associated with behavior. The primary hypothesis that hyperconnectivity

  4. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Rachel Anne Bernier

    2017-07-01

    Full Text Available ObjectiveChanges in functional network connectivity following traumatic brain injury (TBI have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferentiation of networks (as noted in other clinical populations and these effects would be associated with cognitive dysfunction.MethodsGraph theory was implemented to examine functional connectivity during periods of task and rest in 19 individuals with moderate/severe TBI and 14 healthy controls (HCs. Using a functional brain atlas derived from 83 functional imaging studies, graph theory was used to examine network dynamics and determine whether dedifferentiation accounts for changes in connectivity. Regions of interest were assigned to one of three groups: task-positive, default mode, or other networks. Relationships between these metrics were then compared with performance on neuropsychological tests.ResultsHyperconnectivity in TBI was most commonly observed as increased within-network connectivity. Network strengths within networks that showed differences between TBI and HCs were correlated with performance on five neuropsychological tests typically sensitive to deficits commonly reported in TBI. Hyperconnectivity within the default mode network (DMN during task was associated with better performance on Digit Span Backward, a measure of working memory [R2(18 = 0.28, p = 0.02]. In other words, increased differentiation of networks during task was associated with better working memory. Hyperconnectivity within the task-positive network during rest was not associated with behavior. Negative correlation weights were not associated with behavior

  5. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  6. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    International Nuclear Information System (INIS)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S.

    2014-01-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC 20 ) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC 20 phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation

  7. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

    Science.gov (United States)

    Clements, Melanie P; Byrne, Elizabeth; Camarillo Guerrero, Luis F; Cattin, Anne-Laure; Zakka, Leila; Ashraf, Azhaar; Burden, Jemima J; Khadayate, Sanjay; Lloyd, Alison C; Marguerat, Samuel; Parrinello, Simona

    2017-09-27

    Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Treatment Option Overview (Plasma Cell Neoplasms Including Multiple Myeloma)

    Science.gov (United States)

    ... blood cells) are removed from the blood or bone marrow of the patient ( autologous transplant) or a donor ( allogeneic transplant) and are ... the patient's stem cells from the blood or bone marrow are used; or two autologous stem cell transplants followed by an autologous or ...

  9. Treatment Options for Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... blood cells) are removed from the blood or bone marrow of the patient ( autologous transplant) or a donor ( allogeneic transplant) and are ... the patient's stem cells from the blood or bone marrow are used; or two autologous stem cell transplants followed by an autologous or ...

  10. Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r

    Science.gov (United States)

    Le Pape, Elodie; Passeron, Thierry; Giubellino, Alessio; Valencia, Julio C.; Wolber, Rainer; Hearing, Vincent J.

    2009-01-01

    The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by α-melanocyte stimulating hormone (αMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or αMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by αMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk. PMID:19174519

  11. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. © 2013. Published by Elsevier SAS.

  12. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photol......-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  13. Targeted next-generation sequencing of dedifferentiated chondrosarcoma in the skull base reveals combined TP53 and PTEN mutations with increased proliferation index, an implication for pathogenesis

    OpenAIRE

    Gao, Lu; Hong, Xiafei; Guo, Xiaopeng; Cao, Dengfeng; Gao, Xiaohuan; DeLaney, Thomas F.; Gong, Xinqi; Chen, Rongrong; Ni, Jianjiao; Yao, Yong; Wang, Renzhi; Chen, Xi; Tian, Pangzehuan; Xing, Bing

    2016-01-01

    Dedifferentiated chondrosarcoma (DDCS) is a rare disease with a dismal prognosis. DDCS consists of two morphologically distinct components: the cartilaginous and noncartilaginous components. Whether the two components originate from the same progenitor cells has been controversial. Recurrent DDCS commonly displays increased proliferation compared with the primary tumor. However, there is no conclusive explanation for this mechanism. In this paper, we present two DDCSs in the sellar region. Pa...

  14. Cell dedifferentiation, callus induction and somatic embryogenesis in Crataegus spp.

    Science.gov (United States)

    Taimori, N; Kahrizi, D; Abdossi, V; Papzan, A H

    2016-09-30

    The present study describes the effects of light conditions, different kinds and concentrations of auxins [Naphthylacetic acid (NAA) and dichlorophenoxyacetic acid (2,4-D)] with cytokinin (Kin) in MS medium on callus induction and embryogenesis in Crataegus pseudoheterophylla, C. aronia and C.meyeri. At first leave explants sections were cultured on different combinations of plant growth regulators in dark and light for callus initiation and light conditions to evaluation the percentage and duration of survival, callus diameter, callus fresh weight and dry. Results of effects of plant growth regulators and light conditions on callus initiation revealed that highest percentage of callus initiation leaves in treatment (0.5 mg/l 2.4-D+0.5 mg/l KIN) for species C.pseudoheterophylla in dark conditions (100%). Dark conditions (100%) were more effective on callogenesis than light conditions (Photoperiodicity of 16-h and at light intensity of 40 µmol m-2 s-1). The callus induction of in vitro (64-100%) leaves was better than the ex vitro ones (0-100%). The combination of 2,4-D and Kin of in vitro leaves callogenesis has been indicated faster (one weeks) than the other combinations. The results also showed that the highest percentage (100%) and survival duration (6 months) was found in species C. pseudoheterophylla and C. meyeri in 0.1 mg/l 2,4.D + 0.5 mg/l KIN and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The minimum survival (0%) was absorbed in species C. aronia in 1 mg/l NAA. Maximum callus (10.63 and 10.00 mm respectively) was shown in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin and was not significant differences after five week among species. The results showed that the highest fresh (1081.49 mg) and dry weight (506.88 and 506.98 mg respectively) was absorbed in species C. pseudoheterophylla in 0.1 mg/l 2,4.D + 0.5 mg/l Kin and 0.5 mg/l 2,4.D + 0.5 mg/l Kin. The embryogenesis was not occurred in any plant growth regulator combinations and species. The results of this study suggested that using 2,4-D with cytokinin (Kin) would be more beneficial for callogenesis.

  15. Extracellular matrix domain formation as an indicator of chondrocyte dedifferentiation and hypertrophy

    NARCIS (Netherlands)

    Wu, Ling; Gonzalez, Stephanie; Shah, Saumya; Kyupelyan, Levon; Petrigliano, Frank A.; McAllister, David R.; Adams, John S.; Karperien, Hermanus Bernardus Johannes; Tuan, Tai-Lan; Benya, Paul D.; Evseenko, Denis

    2014-01-01

    Cartilage injury represents one of the most significant clinical conditions. Implantation of expanded autologous chondrocytes from noninjured compartments of the joint is a typical strategy for repairing cartilage. However, two-dimensional culture causes dedifferentiation of chondrocytes, making

  16. Two uncommon cases of uterine leiomyosarcomas displaying heterologous osteosarcomatous de-differentiation

    Directory of Open Access Journals (Sweden)

    Pinki Parikh

    2015-01-01

    Full Text Available Uterine leiomyosarcomas uncommonly arise on a background of leiomyomas. Still rare is osteosarcomatous dedifferentiation in such tumors. A 60-year-old female presented with abdominal pain and underwent radiological imaging that disclosed a large, well-defined, heterogeneously enhancing uterine tumor. She underwent total abdominal hysterectomy with bilateral salpingectomy. Another, 38-year-old female with the complaints of infertility underwent myomectomy for multiple fibroids. Multiple tumor sections from both the cases showed leiomyomas along with leiomyosarcomas and osteosarcomatous dedifferentiation. Immunohistochemically, both the tumors displayed diffuse expression of smooth muscle markers in areas of leiomyomas, reduced expression of the same in areas of leiomyosarcoma and absent expression in areas of osteosarcomatous dedifferentiation. Unfortunately, both the cases were lost to follow-up. Present cases constitute as rare documentations of uterine leiomyosarcomas, arising on a background of leiomyomas and exhibiting osteosarcomatous dedifferentiation. The value of identifying these tumor components, with extensive tumor sampling relates to their relatively aggressive clinical course.

  17. COMT polymorphism and memory dedifferentiation in old age.

    Science.gov (United States)

    Papenberg, Goran; Bäckman, Lars; Nagel, Irene E; Nietfeld, Wilfried; Schröder, Julia; Bertram, Lars; Heekeren, Hauke R; Lindenberger, Ulman; Li, Shu-Chen

    2014-06-01

    According to a neurocomputational theory of cognitive aging, senescent changes in dopaminergic modulation lead to noisier and less differentiated processing. The authors tested a corollary hypothesis of this theory, according to which genetic predispositions of individual differences in prefrontal dopamine (DA) signaling may affect associations between memory functions, particularly in old age. Latent correlations between factors of verbal episodic memory and spatial working memory were compared between individuals carrying different allelic variants of the Catechol-O-Methyltransferase (COMT) Val158Met polymorphism, which influences DA availability in prefrontal cortex. In younger adults (n = 973), correlations between memory functions did not differ significantly among the 3 COMT genotypes (r = .35); in older adults (n = 1333), however, the correlation was significantly higher in Val homozygotes (r = .70), whose prefrontal DA availability is supposedly the lowest of all groups examined, than in heterozygotes and Met homozygotes (both rs = .29). Latent means of the episodic memory and working memory factors did not differ by COMT status within age groups. However, when restricting the analysis to the low-performing tertile of older adults (n = 443), we found that Val homozygotes showed lower levels of performance in both episodic memory and working memory than heterozygotes and Met homozygotes. In line with the neurocomputational theory, the observed dedifferentiation of memory functions in older Val homozygotes suggests that suboptimal dopaminergic modulation may underlie multiple facets of memory declines during aging. Future longitudinal work needs to test this conjecture more directly. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Engraftment of donor mesenchymal stem cells in chimeric BXSB includes vascular endothelial cells and hepatocytes

    Directory of Open Access Journals (Sweden)

    Jones OY

    2011-12-01

    Full Text Available Olcay Y Jones1, Faysal Gok2, Elisabeth J Rushing3, Iren Horkayne-Szakaly4, Atif A Ahmed51Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, USA; 2Department of Pediatrics, Gulhane Military Medical Academy, Ankara, Turkey; 3Institut für Neuropathologie, Universitäts Spital Zürich, Zürich, Switzerland; 4Department of Neuropathology, Armed Forces Institute of Pathology, Washington, DC, USA; 5Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, MO, USAAbstract: Somatic tissue engraftment was studied in BXSB mice treated with mesenchymal stem cell transplantation. Hosts were conditioned with nonlethal radiation prior to introducing donor cells from major histocompatibility complex-matched green fluorescent protein transgenic mice. Transplant protocols differed for route of injection, ie, intravenous (i.v. versus intraperitoneal (i.p., and source of mesenchymal stem cells, ie, unfractionated bone marrow cells, ex vivo expanded mesenchymal stem cells, or bone chips. Tissue chimerism was determined after short (10–12 weeks or long (62 weeks posttransplant follow-up by immunohistochemistry for green fluorescent protein. Engraftment of endothelial cells was seen in several organs including liver sinusoidal cells in i.v. treated mice with ex vivo expanded mesenchymal stem cells or with unfractionated bone marrow cells. Periportal engraftment of liver hepatocytes, but not engraftment of endothelial cells, was found in mice injected i.p. with bone chips. Engraftment of adipocytes was a common denominator in both i.v. and i.p. routes and occurred during early phases post-transplant. Disease control was more robust in mice that received both i.v. bone marrow and i.p. bone chips compared to mice that received i.v. bone marrow alone. Thus, the data support potential use of mesenchymal stem cell transplant for treatment of severe lupus. Future studies are needed to optimize

  19. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  20. Gray Matter-White Matter De-Differentiation on Brain Computed Tomography Predicts Brain Death Occurrence.

    Science.gov (United States)

    Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F

    2016-01-01

    Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Primary Diaphragmatic Dedifferentiated Liposarcoma in a Young Female Patient after Delivery

    Directory of Open Access Journals (Sweden)

    Shinya Sakata

    2016-01-01

    Full Text Available A 26-year-old woman was admitted with the chief complaint of chest pain. She had delivered her first child 9 months before admission. Computed tomography showed a bulky mass in her left chest, and histopathological analysis revealed it to be dedifferentiated liposarcoma. We initiated doxorubicin chemotherapy, and the tumor mass reduced. After that, we performed vascular embolization along with chemotherapy, but tumor size did not reduce. On the 160th day of illness, the patient died. This is the first report of a primary diaphragmatic dedifferentiated liposarcoma diagnosed after delivery. Establishment of a regimen of chemotherapy for bulky unresectable liposarcoma is necessary.

  2. LLC-PK(1) cells maintained in a new perfusion cell culture system exhibit an improved oxidative metabolism

    NARCIS (Netherlands)

    Felder, Edward; Jennings, Paul; Seppi, Thomas; Pfaller, Walter

    2002-01-01

    Cultured renal proximal tubule cells dedifferentiate from an oxidative metabolism to high rates of glycolysis over time. There are many reasons why cells in culture dedifferentiate, not least being a lack of homogenous nutrient supply and poor oxygenation. To this end we have developed a new cell

  3. Time course of programmed cell death, which included autophagic features, in hybrid tobacco cells expressing hybrid lethality.

    Science.gov (United States)

    Ueno, Naoya; Nihei, Saori; Miyakawa, Naoto; Hirasawa, Tadashi; Kanekatsu, Motoki; Marubashi, Wataru; van Doorn, Wouter G; Yamada, Tetsuya

    2016-12-01

    PCD with features of vacuolar cell death including autophagy-related features were detected in hybrid tobacco cells, and detailed time course of features of vacuolar cell death were established. A type of interspecific Nicotiana hybrid, Nicotiana suaveolens × N. tabacum exhibits temperature-sensitive lethality. This lethality results from programmed cell death (PCD) in hybrid seedlings, but this PCD occurs only in seedlings and suspension-cultured cells grown at 28 °C, not those grown at 36 °C. Plant PCD can be classified as vacuolar cell death or necrotic cell death. Induction of autophagy, vacuolar membrane collapse and actin disorganization are each known features of vacuolar cell death, but observed cases of PCD showing all these features simultaneously are rare. In this study, these features of vacuolar cell death were evident in hybrid tobacco cells expressing hybrid lethality. Ion leakage, plasma membrane disruption, increased activity of vacuolar processing enzyme, vacuolar membrane collapse, and formation of punctate F-actin foci were each evident in these cells. Transmission electron microscopy revealed that macroautophagic structures formed and tonoplasts ruptured in these cells. The number of cells that contained monodansylcadaverine (MDC)-stained structures and the abundance of nine autophagy-related gene transcripts increased just before cell death at 28 °C; these features were not evident at 36 °C. We assessed whether an autophagic inhibitor, wortmannin (WM), influenced lethality in hybrid cells. After the hybrid cell began to die, WM suppressed increases in ion leakage and cell deaths, and it decreased the number of cells containing MDC-stained structures. These results showed that several features indicative of autophagy and vacuolar cell death were evident in the hybrid tobacco cells subject to lethality. In addition, we documented a detailed time course of these vacuolar cell death features.

  4. Dedifferentiated chondrosarcoma in patients with multiple osteochondromatosis: report of a case and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, S.E. [Department of Pathology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Pike, E.J. [Department of Radiology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Ward, W.G. [Department of Orthopaedics, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Pope, T.L. [Department of Radiology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States)

    1997-06-01

    Multiple osteochondromatosis (MOS) is a familial disorder of autosomal dominant transmission characterized by the development of multiple exostoses and often derangements of epiphyseal cartilage, sometimes resulting in long bone growth retardation. Patients with the disorder appear to be at increased risk for developing secondary chondrosarcomas. Rarely, dedifferentiated chondrosarcomas may also occur. We report a single case of a 27-year-old man with multiple osteochondromatosis who developed a fatal dedifferentiated chondrosarcoma. Radiographically, the neoplasm arose from the pelvis completely destroying the left pubic ramus. Subsequently, the patient underwent preoperative chemotherapy followed by a left external hemipelvectomy. On pathologic examination, the tumor was characterized by high-grade pleomorphic sarcoma sharply juxtaposed to a low-grade chondrosarcoma. The patient ultimately died of widespread metastatic sarcoma. (orig.). With 7 figs.

  5. Rare aggressive behavior of MDM2-amplified retroperitoneal dedifferentiated liposarcoma, with brain, lung and subcutaneous metastases

    Directory of Open Access Journals (Sweden)

    Imen Ben Salha

    2016-10-01

    Full Text Available Dedifferentiated liposarcoma (DDL is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, nonlipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma.

  6. Fluorescence In Situ Hybridization for MDM2 Amplification as a Routine Ancillary Diagnostic Tool for Suspected Well-Differentiated and Dedifferentiated Liposarcomas: Experience at a Tertiary Center

    Directory of Open Access Journals (Sweden)

    Khin Thway

    2015-01-01

    Full Text Available Background. The assessment of MDM2 gene amplification by fluorescence in situ hybridization (FISH has become a routine ancillary tool for diagnosing atypical lipomatous tumor (ALT/well-differentiated liposarcoma and dedifferentiated liposarcoma (WDL/DDL in specialist sarcoma units. We describe our experience of its utility at our tertiary institute. Methods. All routine histology samples in which MDM2 amplification was assessed with FISH over a 2-year period were included, and FISH results were correlated with clinical and histologic findings. Results. 365 samples from 347 patients had FISH for MDM2 gene amplification. 170 were positive (i.e., showed MDM2 gene amplification, 192 were negative, and 3 were technically unsatisfactory. There were 122 histologically benign cases showing a histology:FISH concordance rate of 92.6%, 142 WDL/DDL (concordance 96.5%, and 34 cases histologically equivocal for WDL (concordance 50%. Of 64 spindle cell/pleomorphic neoplasms (in which DDL was a differential diagnosis, 21.9% showed MDM2 amplification. Of the cases with discrepant histology and FISH, all but 3 had diagnoses amended following FISH results. For discrepancies of benign histology but positive FISH, lesions were on average larger, more frequently in “classical” (intra-abdominal or inguinal sites for WDL/DDL and more frequently core biopsies. Discrepancies of malignant histology but negative FISH were smaller, less frequently in “classical” sites but again more frequently core biopsies. Conclusions. FISH has a high correlation rate with histology for cases with firm histologic diagnoses of lipoma or WDL/DDL. It is a useful ancillary diagnostic tool in histologically equivocal cases, particularly in WDL lacking significant histologic atypia or DDL without corresponding WDL component, especially in larger tumors, those from intra-abdominal or inguinal sites or core biopsies. There is a significant group of well-differentiated adipocytic neoplasms

  7. Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin

    NARCIS (Netherlands)

    Knopf, F.; Hammond, C.J.; Chekuru, A.; Kurth, T.; Hans, S.; Weber, C.W.; Mahatma, G.; Fisher, S.; Brand, M.; Schulte-Merker, S.; Weidinger, G.

    2011-01-01

    While mammals have a limited capacity to repair bone defects, zebrafish can completely regenerate amputated bony structures of their fins. Fin regeneration is dependent on formation of a blastema, a progenitor cell pool accumulating at the amputation plane. It is unclear which cells the blastema is

  8. Dedifferentiated retroperitoneal liposarcoma presenting as right inguinal hernia: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Myung; Lee, Su Lim; Ku, Young Mi [Dept. of Radiology, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu (Korea, Republic of); Choi, Moon Hyung [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-01-15

    Retroperitoneal liposarcomas usually present as painless, slow-growing abdominal masses. When masses grow large enough to compress surrounding structures, symptoms may occur. Retroperitoneal liposarcoma clinically manifesting as inguinal hernia is a very rare entity; only 11 cases have been reported. Herein, we present radiographic features of a 37-year-old male with a painless palpable mass in the right groin that was identified as dedifferentiated retroperitoneal liposarcoma herniated through the right inguinal canal.

  9. If waking and dreaming consciousness became de-differentiated, would schizophrenia result?

    Science.gov (United States)

    Llewellyn, Sue

    2011-12-01

    If both waking and dreaming consciousness are functional, their de-differentiation would be doubly detrimental. Differentiation between waking and dreaming is achieved through neuromodulation. During dreaming, without external sensory data and with mesolimbic dopaminergic input, hyper-cholinergic input almost totally suppresses the aminergic system. During waking, with sensory gates open, aminergic modulation inhibits cholinergic and mesocortical dopaminergic suppresses mesolimbic. These neuromodulatory systems are reciprocally interactive and self-organizing. As a consequence of neuromodulatory reciprocity, phenomenologically, the self and the world that appear during dreaming differ from those that emerge during waking. As a result of self-organizing, the self and the world in both states are integrated. Some loss of self-organization would precipitate a degree of de-differentiation between waking and dreaming, resulting in a hybrid state which would be expressed heterogeneously, both neurobiologically and phenomenologically. As a consequence of progressive de-differentiation, certain identifiable psychiatric disorders may emerge. Ultimately, schizophrenia, a disorganized-fragmented self, may result. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Photoelectrochemical cell including Ga(Sb.sub.x)N.sub.1-x semiconductor electrode

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Madhu; Sheetz, Michael; Sunkara, Mahendra Kumar; Pendyala, Chandrashekhar; Sunkara, Swathi; Jasinski, Jacek B.

    2017-09-05

    The composition of matter comprising Ga(Sb.sub.x)N.sub.1-x where x=0.01 to 0.06 is characterized by a band gap between 2.4 and 1.7 eV. A semiconductor device includes a semiconductor layer of that composition. A photoelectric cell includes that semiconductor device.

  11. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  12. Fabrication of contacts for silicon solar cells including printing burn through layers

    Science.gov (United States)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  13. Pancreatic-type Acinar Cell Carcinoma of the Stomach Included in Multiple Primary Carcinomas.

    Science.gov (United States)

    Yonenaga, Yoshikuni; Kurosawa, Manabu; Mise, Masahiro; Yamagishi, Miki; Higashide, Shunichi

    2016-06-01

    Pancreatic-type acinar cell carcinoma (ACC) in the stomach is extraordinarily rare. We pathologically examined two cases with multiple primary carcinomas, including gastric tumors. Gastric cancer specimens were examined by immunostaining and electron microscopy. Both cases had cancer cells with acinar patterns, resembling pancreatic ACC. The cancer cells in the first case were positive for exocrine markers, including chymotrypsin, lipase and alpha-1 antichymotrypsin (ACT), as well as neuroendocrine markers, including chromogranin A and synaptophysin. The cancer cells in the second case were positive for chymotrypsin and alpha-1 ACT, while being slightly positive for chromogranin A and synaptophysin. Ultrastructurally, cancer cells contained zymogen granules in both cases. The final diagnosis was pancreatic mixed acinar-neuroendocrine carcinoma and pure pancreatic ACC, respectively. We confirmed two cases with gastric pancreatic-type ACC included in multiple primary carcinomas. This type of double cancer has not been reported previously. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Dedifferentiation of leaf explants and antileukemia activity of an ...

    African Journals Online (AJOL)

    The present study was aimed at developing an efficient protocol for callus induction from the leaves of Moringa oleifera and to investigate its crude extract antileukemia activity on leukemia cells. Several secondary metabolites are present in M. oleifera as the plant serves as reservoirs for various bioactive compounds.

  15. A multiscale model for glioma spread including cell-tissue interactions and proliferation.

    Science.gov (United States)

    Engwer, Christian; Knappitsch, Markus; Surulescu, Christina

    2016-04-01

    Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms. They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult. The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment. In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissue network, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomoty is an extension of the setting in [16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individual structure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide such information, thus opening the way for patient specific modeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale) cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on the macroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess the performance of our modeling approach.

  16. Universal cell frame for high-pressure water electrolyzer and electrolyzer including the same

    Science.gov (United States)

    Schmitt, Edwin W.; Norman, Timothy J.

    2013-01-08

    Universal cell frame generic for use as an anode frame and as a cathode frame in a water electrolyzer. According to one embodiment, the universal cell frame includes a unitary annular member having a central opening. Four trios of transverse openings are provided in the annular member, each trio being spaced apart by about 90 degrees. A plurality of internal radial passageways fluidly interconnect the central opening and each of the transverse openings of two diametrically-opposed trios of openings, the other two trios of openings lacking corresponding radial passageways. Sealing ribs are provided on the top and bottom surfaces of the annular member. The present invention is also directed at a water electrolyzer that includes two such cell frames, one being used as the anode frame and the other being used as the cathode frame, the cathode frame being rotated 90 degrees relative to the anode frame.

  17. The ROSA26-iPSC Mouse: A Conditional, Inducible, and Exchangeable Resource for Studying Cellular (DeDifferentiation

    Directory of Open Access Journals (Sweden)

    Lieven Haenebalcke

    2013-02-01

    Full Text Available Control of cellular (dedifferentiation in a temporal, cell-specific, and exchangeable manner is of paramount importance in the field of reprogramming. Here, we have generated and characterized a mouse strain that allows iPSC generation through the Cre/loxP conditional and doxycycline/rtTA-controlled inducible expression of the OSKM reprogramming factors entirely from within the ROSA26 locus. After reprogramming, these factors can be replaced by genes of interest—for example, to enhance lineage-directed differentiation—with the use of a trap-coupled RMCE reaction. We show that, similar to ESCs, Dox-controlled expression of the cardiac transcriptional regulator Mesp1 together with Wnt inhibition enhances the generation of functional cardiomyocytes upon in vitro differentiation of such RMCE-retargeted iPSCs. This ROSA26-iPSC mouse model is therefore an excellent tool for studying both cellular reprogramming and lineage-directed differentiation factors from the same locus and will greatly facilitate the identification and ease of functional characterization of the genetic/epigenetic determinants involved in these complex processes.

  18. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Science.gov (United States)

    Lee, Hye-Rim; Shon, Oog-Jin; Park, Se-Il; Kim, Han-Jun; Kim, Sukyoung; Ahn, Myun-Whan; Do, Sun Hee

    2016-01-01

    Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP), containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW) rabbits were incubated for 3, 10, 14 and 21 days with PRP(−), 10% PRP (PRP(+)), IL(+) or IL(+)PRP(+). The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR). Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP) catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+) and in IL(+)PRP(+). In PRP(+), the aggrecan expression levels were lower than in the PRP(−) until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+) and IL(+)PRP(+), at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control) or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage. PMID:26784189

  19. Crossing the invisible line: De-differentiation of wake, sleep and dreaming may engender both creative insight and psychopathology.

    Science.gov (United States)

    Llewellyn, Sue

    2016-11-01

    Writing about dreaming, the poet Raymond Carver said "I feel as if I've crossed some kind of invisible line". In creative people, the "line" between wake, dreaming and psychopathology may be porous, engendering a de-differentiated, super-critical, hybrid state. Evidence exists for a relationship between creativity and psychopathology but its nature has been elusive. De-differentiation between wake, sleep and dreaming may be the common substrate, as dream-like cognition pervades wake and wake-like neurophysiology suffuses sleep. Chaos theory posits brain states as inherently labile, transient and dynamically unstable. Over and above transient dissociations, an enduring and, sometimes, progressive, de-differentiation may be possible. Evidence indicates that sleep and dreaming facilitate creative insight. In consequence, a mild to moderate form of de-differentiation may enhance creativity but if wake-like neurobiology permeates sleep this may disrupt sleep-dependent memory processing and emotional regulation. If de-differentiation is progressive and enduring, various forms of psychopathology may result. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ectopic Phosphorylated Creb Marks Dedifferentiated Proximal Tubules in Cystic Kidney Disease.

    Science.gov (United States)

    Puri, Pawan; Schaefer, Caitlin M; Bushnell, Daniel; Taglienti, Mary E; Kreidberg, Jordan A; Yoder, Bradley K; Bates, Carlton M

    2018-01-01

    Ectopic cAMP signaling is pathologic in polycystic kidney disease; however, its spatiotemporal actions are unclear. We characterized the expression of phosphorylated Creb (p-Creb), a target and mediator of cAMP signaling, in developing and cystic kidney models. We also examined tubule-specific effects of cAMP analogs in cystogenesis in embryonic kidney explants. In wild-type mice, p-Creb marked nephron progenitors (NP), early epithelial NP derivatives, ureteric bud, and cortical stroma; p-Creb was present in differentiated thick ascending limb of Henle, collecting duct, and stroma; however, it disappeared in mature NP-derived proximal tubules. In Six2cre;Frs2α Fl/Fl mice, a renal cystic model, ectopic p-Creb stained proximal tubule-derived cystic segments that lost the differentiation marker lotus tetragonolobus lectin. Furthermore, lotus tetragonolobus lectin-negative/p-Creb-positive cyst segments (re)-expressed Ncam1, Pax2, and Sox9 markers of immature nephron structures and dedifferentiated proximal tubules after acute kidney injury. These dedifferentiation markers were co-expressed with p-Creb in renal cysts in Itf88 knockout mice subjected to ischemia and Six2cre;Pkd1 Fl/Fl mice, other renal cystogenesis models. 8-Br-cAMP addition to wild-type embryonic kidney explants induced proximal tubular cystogenesis and p-Creb expression; these effects were blocked by co-addition of protein kinase A inhibitor. Thus p-Creb/cAMP signaling is appropriate in NP and early nephron derivatives, but disappears in mature proximal tubules. Moreover, ectopic p-Creb expression/cAMP signaling marks dedifferentiated proximal tubular cystic segments. Furthermore, proximal tubules are predisposed to become cystic after cAMP stimulation. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration

    Science.gov (United States)

    Wan, Jin; Ramachandran, Rajesh; Goldman, Daniel

    2011-01-01

    Summary Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that proHB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6b. We also uncover an HB-EGF/Ascl1a/Notch/hb-egfa signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals. PMID:22340497

  2. [Ultrastructural study of TNT effect on the callus cells and the cells of intact plants of Yucca gloriosa L].

    Science.gov (United States)

    Gogoberidze, M; Zaalishvili, G; Ramishvili, M; Gogava, M; Chelidze, N

    2009-01-01

    Intracellular distribution of assimilated 2,4,6-trinitrotoluene (TNT) in callus cells, flower buds and leaves of intact Yucca gloriosa L. plants using electron microscope radioautography. The radiotracer was detected in vacuoles, plastids, mitochondrion, endoplasmic reticulum and cytoplasm. It was found that in dedifferentiated callus cells TNT was incorporated in the vacuoles in greater quantities in comparison with the cells of intact plant. Correspondingly the ultrastructural integrity of the dedifferentiated cells is less damaged.

  3. Photovoltaic cell electrical heating system for removing snow on panel including verification.

    Science.gov (United States)

    Weiss, Agnes; Weiss, Helmut

    2017-11-16

    Small photovoltaic plants in private ownership are typically rated at 5 kW (peak). The panels are mounted on roofs at a decline angle of 20° to 45°. In winter time, a dense layer of snow at a width of e.g., 10 cm keeps off solar radiation from the photovoltaic cells for weeks under continental climate conditions. Practically, no energy is produced over the time of snow coverage. Only until outside air temperature has risen high enough for a rather long-time interval to allow partial melting of snow; the snow layer rushes down in an avalanche. Following this proposal, snow removal can be arranged electrically at an extremely positive energy balance in a fast way. A photovoltaic cell is a large junction area diode inside with a threshold voltage of about 0.6 to 0.7 V (depending on temperature). This forward voltage drop created by an externally driven current through the modules can be efficiently used to provide well-distributed heat dissipation at the cell and further on at the glass surface of the whole panel. The adhesion of snow on glass is widely reduced through this heating in case a thin water film can be produced by this external short time heating. Laboratory experiments provided a temperature increase through rated panel current of more than 10 °C within about 10 min. This heating can initiate the avalanche for snow removal on intention as described before provided the clamping effect on snow at the edge of the panel frame is overcome by an additional heating foil. Basics of internal cell heat production, heating thermal effects in time course, thermographic measurements on temperature distribution, power circuit opportunities including battery storage elements and snow-removal under practical conditions are described.

  4. Dedifferentiated Liposarcoma of the Retroperitoneum with Heterologous Osteosarcomatous Differentiation and a Striking Aneurysmal Bone Cyst-Like Morphology

    NARCIS (Netherlands)

    Van Haverbeke, Carole; Van Dorpe, Jo; Lecoutere, Evelyne; Flucke, Uta; Ferdinande, Liesbeth; Creytens, David

    2017-01-01

    A 69-year-old woman with a 10-year medical history of recurrent retroperitoneal dedifferentiated liposarcoma presented with a 3-cm large hemorrhagic and multicystic left-sided retroperitoneal mass. Histopathological examination of the resected specimen showed a heterogeneous, high-grade mesenchymal

  5. Dedifferentiated Liposarcoma in the Spermatic Cord Finally Diagnosed at 7th Resection of Recurrence: A Case Report and Bibliographic Consideration

    Directory of Open Access Journals (Sweden)

    Kento Morozumi

    2017-08-01

    Full Text Available Liposarcoma in the spermatic cord is infrequent, and accurate diagnosis of histopathological subtype is often difficult in spite of the importance of differential diagnosis for adequate treatment. A 54-year-old man underwent left-sided high orchiectomy with inguinal lymphadenectomy for a spermatic cord tumor in July 2006. The initial histopathological report diagnosed leiomyosarcoma in the spermatic cord. He then underwent surgeries for repeated recurrences a further 6 times between July 2008 and May 2014. Pathological finding at the 7th resection of the recurrent tumor was osteosarcoma, which was uncommon in the spermatic cord. With a thorough overview of all specimens, the histopathological diagnosis was finally confirmed as dedifferentiated liposarcoma because of a biphasic pattern in the specimen of high orchiectomy at the first resection. A biphasic pattern represents high-grade sarcoma like osteosarcoma and well-differentiated liposarcoma, and is characteristic of dedifferentiated liposarcoma. Although the dedifferentiated type is one of poor prognosis, the diagnosing of liposarcoma histopathologically was found to be difficult throughout this case. In this report we discuss the accurate histopathological diagnosis of liposarcoma in the spermatic cord in order to prevent repeated recurrences based on a review of the literature, as well as the difficulty in recognizing dedifferentiated liposarcoma macroscopically and morphologically. Our experience suggests that, after much difficulty, accurate histopathological diagnosis of liposarcoma in the spermatic cord is still clinically challenging.

  6. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  7. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  8. Squamous cell carcinoma with osteoclast-like giant cells: a morphologically heterologous group including carcinosarcoma and squamous cell carcinoma with stromal changes.

    Science.gov (United States)

    Chung, Hye Jin; Wolpowitz, Deon; Scott, Glynis; Gilmore, Elaine; Bhawan, Jag

    2016-02-01

    Cutaneous squamous cell carcinoma (SCC) with osteoclast-like giant cells (hereafter, osteoclastic cells) is very rare; eight cases have been reported since 2006. Whether the osteoclastic cells represents a reactive or neoplastic change remains a matter of debate. Osteoclastic cells are often observed in the sarcomatous component of cutaneous carcinosarcoma. SCC with osteoclastic cells is a heterogeneous condition that includes SCC with stromal changes containing osteoclastic cells (also known as osteoclast-like giant cell reaction) and carcinosarcoma. In some cases, SCC with an associated osteoclast-like giant cell reaction has been differentiated from carcinosarcoma based on the degree of cytologic atypia in non-epithelial components. We summarized the clinical and histopathologic characteristics of 11 patients of SCC with osteoclastic cells, including our two cases of SCC with an osteoclast-like giant cell reaction and one case of carcinosarcoma. The affected patients were old and more likely to be male (64%). Seven cases (64%) were in the head and neck. Moreover, multiple features of high risk SCC were observed, such as a tumor size greater than 2 cm (56%), moderate or poor differentiation (100%), recurrence (33%) and nodal metastasis (17%) after excision and immunosuppression (27%). Interestingly, half of the previously reported cases of SCC with osteoclastic giant cell reaction had histopathologic findings that were overlapping with those of carcinosarcoma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Optimized Size and Tab Width in Partial Solar Cell Modules including Shingled Designs

    Directory of Open Access Journals (Sweden)

    Julius Roeth

    2017-01-01

    Full Text Available Cell-to-module loss (CTM loss is defined by optical and electrical losses. Using partial solar cells can reduce ohmic losses. Today, some manufactures use halved cells even if they have to employ extra effort for sorting, placing, and soldering the solar cells. In this work, the advantage of partial solar cells is described. An LTSpice simulation is used to quantify the reduced ohmic loss and the resulting efficiency gain for differently separated solar cells. This efficiency gain is compared with the whole module area caused by the tab and cell areas. The additional gain due to the backsheet reflection is added afterwards. It can be pointed out that the use of half cells is a technical optimal application while not using shingled modules.

  10. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    Science.gov (United States)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment. PMID:26728251

  11. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  12. Complete androgen insensitivity syndrome: factors influencing gonadal histology including germ cell pathology.

    Science.gov (United States)

    Kaprova-Pleskacova, Jana; Stoop, Hans; Brüggenwirth, Hennie; Cools, Martine; Wolffenbuttel, Katja P; Drop, Stenvert L S; Snajderova, Marta; Lebl, Jan; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2014-05-01

    Patients with complete androgen insensitivity syndrome are at an increased risk for the development of gonadal germ cell cancer. Residual androgen receptor (AR) activity and abnormal gonadal location may influence the survival of atypical germ cells and the development of other histopathological features. To assess this, we evaluated 37 gonads from 19 patients with complete androgen insensitivity (ranging in age from 3 months to 18 years). Histological abnormalities were examined using hematoxylin and eosin-stained sections and sections stained for POU5F1 and KITLG, markers of early changes in germ cells at risk for malignant transformation. Hamartomatous nodules (HNs), Leydig cell hyperplasia (LCH), decreased germ cells, tubular atrophy and stromal fibrosis were more pronounced as age increased (Peffect of inguinal versus abdominal position of the gonads was difficult to assess because inguinal gonads were present primarily in the youngest individuals. In conclusion, many histological changes occur increasingly with age. Expected residual AR activity contributes to better survival of the general germ cell population in (post)pubertal age; however, it did not seem to have an important role in the survival of the germ cells at risk for malignant transformation (defined by POU5F1 positivity and KITLG overexpression) in complete androgen insensitivity. Comparison of the high percentage of patients in our study that were carrying germ cells with delayed maturation or pre-intratubular germ cell neoplasia with previously reported cumulative risk of tumor development in adult patients indicates that not all such precursor lesions in complete androgen insensitivity will progress to invasive germ cell cancer.

  13. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    NARCIS (Netherlands)

    Ebeling, Saskia B.; Ivanov, Roman; Hol, Samantha; Aarts, Tineke I.; Hagenbeek, Anton; Verdonck, Leo F.; Petersen, Eefke J.

    2003-01-01

    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML)

  14. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  15. Blastoid Variant Mantle Cell Lymphoma with Complex Karyotype Including 11q Duplication

    Directory of Open Access Journals (Sweden)

    Özge Özer

    2014-09-01

    Full Text Available We describe a case of blastoid mantle cell lymphoma with a complex karyotype. The blastoid variant is a rare type of non-Hodgkin lymphoma exhibiting an aggressive clinical course. Mantle cell lymphoma is a distinct entity of mature B-cell neoplasms genetically characterized by the presence of t(11;14. In the present case, conventional analysis revealed structural abnormalities of chromosomes 2, 4, 6, 10, 13, and 19, along with 3 additional marker chromosomes. The derivative 1 chromosome determined in the case was a result of t(1p;11q. Our interesting finding was the presence of a different translocation between 11q and chromosome 1 in addition to t(11;14. Thus, the resulting 11q duplication was believed to additionally increase the enhanced expression of cyclin D1 gene, which is responsible in the pathogenesis of the disease. Fluorescence in situ hybridization method by the t(11;14 probe revealed clonal numerical abnormalities of chromosomes 11 and 14 in some cells. The detection of multiple abnormalities explains the bad prognosis in the present case. On the basis of our findings, we can easily conclude that results of cytogenetic analyses of similar mantle cell lymphoma patients would provide clues about new responsible gene regions and disease prognosis. In conclusion, it has been suggested that the presence of multiple chromosomal aberrations in addition to the specific t(11;14 may have a negative impact on clinical course and survival rate.

  16. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence

    Directory of Open Access Journals (Sweden)

    M Lehnert

    2009-08-01

    Full Text Available Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL is comprised only of two fiber types after birth, type slow-oxidative (SO and type SDH-intermediate (SDHINT, the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing crosssectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05. At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05. These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  17. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence.

    Science.gov (United States)

    Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A

    2007-01-01

    Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  18. Trisomy 19 ependymoma, a newly recognized genetico-histological association, including clear cell ependymoma

    Directory of Open Access Journals (Sweden)

    Lacroix Catherine

    2007-07-01

    Full Text Available Abstract Ependymal tumors constitute a clinicopathologically heterogeneous group of brain tumors. They vary in regard to their age at first symptom, localization, morphology and prognosis. Genetic data also suggests heterogeneity. We define a newly recognized subset of ependymal tumors, the trisomy 19 ependymoma. Histologically, they are compact lesions characterized by a rich branched capillary network amongst which tumoral cells are regularly distributed. When containing clear cells they are called clear cell ependymoma. Most trisomy 19 ependymomas are supratentorial WHO grade III tumors of the young. Genetically, they are associated with trisomy 19, and frequently with a deletion of 13q21.31-31.2, three copies of 11q13.3-13.4, and/or deletions on chromosome 9. These altered chromosomal regions are indicative of genes and pathways involved in trisomy 19 ependymoma tumorigenesis. Recognition of this genetico-histological entity allows better understanding and dissection of ependymal tumors.

  19. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells.

    Science.gov (United States)

    Iwasaki, Masae; Zhao, Hailin; Jaffer, Tanweer; Unwith, Sandeep; Benzonana, Laura; Lian, Qingquan; Sakamoto, Atsuhiro; Ma, Daqing

    2016-05-03

    The majority of ovarian cancer patients relapse after surgical resection. Evidence is accumulating regarding the role of surgery in disseminating cancer cells; in particular anaesthesia may have an impact on cancer re-occurrence. Here, we have investigated the metastatic potential of volatile anaesthetics isoflurane, sevoflurane and desflurane on ovarian cancer cells. Human ovarian carcinoma cells (SKOV3) were exposed to isoflurane (2%), sevoflurane (3.6%) or desflurane (10.3%) for 2 hours. Metastatic related gene expression profiles were measured using the Tumour Metastasis PCR Array and qRT-PCR. Subsequently vascular endothelial growth factor A (VEGF-A), matrix metalloproteinase 11 (MMP11), transforming growth factor beta-1 (TGF-β1) and chemokine (C-X-C motif) receptor 2 (CXCR2) proteins expression were determined using immunofluorescent staining. The migratory capacities of SK-OV3 cells were assessed with a scratch assay and the potential role of CXCR2 in mediating the effects of volatile anaesthetics on cancer cell biology were further investigated with CXCR2 knockdown by siRNA. All three volatile anaesthetics altered expression of 70 out of 81 metastasic related genes with significant increases in VEGF-A, MMP-11, CXCR2 and TGF-β genes and protein expression with a magnitude order of desflurane (greatest), sevoflurane and isoflurane. Scratch analysis revealed that exposure to these anesthetics increased migration, which was abolished by CXCR2 knockdown. Volatile anaesthetics at clinically relevant concentrations have strong effects on cancer cell biology which in turn could enhance ovarian cancer metastatic potential. This work raises the urgency for further in vivo studies and clinical trials before any conclusions can be made in term of the alteration of clinical practice.

  20. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent ...... (water). The photograph here was taken just before screen printing of the aqueous silver ink.......The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  1. Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels.

    Science.gov (United States)

    Sleimen-Malkoun, Rita; Temprado, Jean-Jacques; Hong, S Lee

    2014-01-01

    Growing evidence demonstrates that aging not only leads to structural and functional alterations of individual components of the neuro-musculo-skeletal system (NMSS) but also results in a systemic re-organization of interactions within and between the different levels and functional domains. Understanding the principles that drive the dynamics of these re-organizations is an important challenge for aging research. The present Hypothesis and Theory paper is a contribution in this direction. We propose that age-related declines in brain and behavior that have been characterized in the literature as dedifferentiation and the loss of complexity (LOC) are: (i) synonymous; and (ii) integrated. We argue that a causal link between the aforementioned phenomena exists, evident in the dynamic changes occurring in the aging NMSS. Through models and methods provided by a dynamical systems approach to coordination processes in complex living systems, we: (i) formalize operational hypotheses about the general principles of changes in cross-level and cross-domain interactions during aging; and (ii) develop a theory of the aging NMSS based on the combination of the frameworks of coordination dynamics (CD), dedifferentiation, and LOC. Finally, we provide operational predictions in the study of aging at neural, muscular, and behavioral levels, which lead to testable hypotheses and an experimental agenda to explore the link between CD, LOC and dedifferentiation within and between these different levels.

  2. A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Andersson, M.; Beale, S.B.; Espinoza, M.; Wu, Z.; Lehnert, W.

    2016-01-01

    on the transport processes inside the porous GDL are extensively discussed. The selection of a computational approach, for the two-phase flow within a GDL or GC, for example, should be based on the computational resources available, concerns about time and scale (microscale, cell scale, stack scale or system scale), as well as accuracy requirements. One important feature, included in some computational approaches, is the possibility to track the front between the liquid and the gas phases. To build a PEFC model, one must make a large number of assumptions. Some assumptions have a negligible effect on the results and reliability of the model. However, other assumptions may significantly affect the result. It is strongly recommended in any modeling paper to clearly state the assumptions being implemented, for others to be able to judge the work. It is important to note that a large fraction of the expressions that presently are used to describe the transport processes inside PEFC GDLs were originally developed to describe significantly different systems, such as sand or rocks. Moreover, the flow pattern maps and pressure drop correlations of two phase flow in micro channels may not be applicable for GCs due to one side wall being porous, with the resulting interaction between the GDL and GC.

  3. Age-related differences in corticomotor facilitation indicate dedifferentiation in motor planning.

    Science.gov (United States)

    Reuter, Eva-Maria; Behrens, Martin; Zschorlich, Volker R

    2015-05-01

    Efficient motor control requires motor planning. Age-related changes in motor control are well described, e.g. increased movement variability and greater antagonistic muscle co-activation, as well as less functional and less regional specific brain activation. However, less is known about age-related changes in motor planning. By use of transcranial magnetic stimulation we investigated differences in corticomotor facilitation during motor planning in 17 young (25±3years) and 17 older healthy adults (70±13years) in a delayed movement paradigm for wrist movements. Motor evoked potentials (MEPs) were recorded for the flexor and extensor carpi radialis during movement preparation of wrist flexion and extension as well as during rest. We found that MEPs were less specifically facilitated during planning in older as compared to younger adults, as indicated by an Age×Condition×Muscle interaction. Young participants showed significantly facilitated MEPs in the respective muscle needed for wrist flexion or extension. By contrast MEPs in older participants were less specifically modulated. We conclude that age relates to dedifferentiated activation of the primary motor cortex already during preparation of distinct movements which might contribute to less efficient motor control in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures.

    Science.gov (United States)

    Ferraro, Silene; Gomez-Montalvo, Ana I; Olmos, Ruth; Ramirez, Monica; Lamas, Monica

    2015-05-01

    Primary cilia are specialized organelles that extend from the cell surface and concentrate signal transduction components. In the nervous system, primary cilia-associated signals, such as sonic hedgehog (Shh), regulate cell proliferation and neuronal fate. Primary cilia assembly and maintenance require a multi-subunit intraflagellar transport (IFT) protein complex. Defects in primary cilia and IFT proteins are associated to severe pathological phenotypes. In the retina, the study of primary cilia has been mainly restricted to the specialized photoreceptor outer segment. The presence and physiological role of primary cilia in other retinal cells have not been clearly elucidated. Müller cells are the main glia of the retina where they exert distinct functions to maintain homeostasis. In pathological conditions, Müller cells mount a unique regenerative response through the processes of dedifferentiation, proliferation, and differentiation into neuronal lineages. The involvement of IFT proteins or a primary cilium in these processes has not been explored. In this study, we used mature Müller glia primary cultures to reveal the presence of the primary cilia by immunoreactivity to acetylated α-tubulin and γ-tubulin, which localize to the axoneme and ciliar basal body, respectively. We demonstrate that si-RNA-mediated downregulation of IFT20 gene expression, a main component of the IFT machinery, blocks Shh-induced Müller cell proliferation. We present evidence that IFT20 ablation impairs the dedifferentiation capacity of Müller cells induced by Shh and by glutamate. Our demonstration that Müller glia expresses IFT20 and harbors primary cilia, and opens new venues of research on the role of primary cilia in the retina.

  5. Reduced Toxicity Fuel Satellite Propulsion System Including Fuel Cell Reformer with Alcohols Such as Methanol

    Science.gov (United States)

    Schneider, Steven J. (Inventor)

    2001-01-01

    A reduced toxicity fuel satellite propulsion system including a reduced toxicity propellant supply for consumption in an axial class thruster and an ACS class thruster. The system includes suitable valves and conduits for supplying the reduced toxicity propellant to the ACS decomposing element of an ACS thruster. The ACS decomposing element is operative to decompose the reduced toxicity propellant into hot propulsive gases. In addition the system includes suitable valves and conduits for supplying the reduced toxicity propellant to an axial decomposing element of the axial thruster. The axial decomposing element is operative to decompose the reduced toxicity propellant into hot gases. The system further includes suitable valves and conduits for supplying a second propellant to a combustion chamber of the axial thruster, whereby the hot gases and the second propellant auto-ignite and begin the combustion process for producing thrust.

  6. Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methods.

    Science.gov (United States)

    Kauvar, Arielle N B; Cronin, Terrence; Roenigk, Randall; Hruza, George; Bennett, Richard

    2015-05-01

    Basal cell carcinoma (BCC) is the most common cancer in the US population affecting approximately 2.8 million people per year. Basal cell carcinomas are usually slow-growing and rarely metastasize, but they do cause localized tissue destruction, compromised function, and cosmetic disfigurement. To provide clinicians with guidelines for the management of BCC based on evidence from a comprehensive literature review, and consensus among the authors. An extensive review of the medical literature was conducted to evaluate the optimal treatment methods for cutaneous BCC, taking into consideration cure rates, recurrence rates, aesthetic and functional outcomes, and cost-effectiveness of the procedures. Surgical approaches provide the best outcomes for BCCs. Mohs micrographic surgery provides the highest cure rates while maximizing tissue preservation, maintenance of function, and cosmesis. Mohs micrographic surgery is an efficient and cost-effective procedure and remains the treatment of choice for high-risk BCCs and for those in cosmetically sensitive locations. Nonsurgical modalities may be used for low-risk BCCs when surgery is contraindicated or impractical, but the cure rates are lower.

  7. Hematopoietic growth factors including keratinocyte growth factor in allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Seggewiss, Ruth; Einsele, Hermann

    2007-07-01

    The aim of hematopoietic stem cell transplantation (HSCT) is to cure patients of malignancies, autoimmune diseases, and immunodeficiency disorders by redirecting the immune system: the often described graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Unfortunately, fulfillment of this goal is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections, which account for the majority of post-transplantation deaths. Moreover, studies of long-term survivors of transplantation indicate an accelerated immune aging due to the transplantation procedure itself, preceding chemo- or radiotherapy, and acute and chronic GVHD. Significant advances have been made towards overcoming these obstacles by enhancing immune reconstitution with hematopoietic growth factors (HGFs) such as granulocyte colony-stimulating factor (G-CSF) or erythropoietin (EPO) or through the application of cytokines. In addition, there are approaches to promote the thymic-dependent development of naive T cells, which are prepared for the interaction with a multitude of pathogens. Examples are the application of keratinocyte growth factor (KGF), neuroendocrine hormones such as growth hormone or prolactin, sex hormone ablation, or the invention of a three-dimensional artificial thymus based on a cytomatrix. Might these measures result in a higher rate of healthy and fully recovered patients? Here we review progress in each of these areas.

  8. SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells.

    Science.gov (United States)

    Hwang, Wei-Lun; Yang, Muh-Hwa; Tsai, Ming-Long; Lan, Hsin-Yi; Su, Shu-Han; Chang, Shih-Ching; Teng, Hao-Wei; Yang, Shung-Haur; Lan, Yuan-Tzu; Chiou, Shih-Hwa; Wang, Hsei-Wei

    2011-07-01

    Some cancer cells have activities that are similar to those of stem cells from normal tissues, and cell dedifferentiation correlates with poor prognosis. Little is known about the mechanisms that regulate the stem cell-like features of cancer cells; we investigated genes associated with stem cell-like features of colorectal cancer (CRC) cells. We isolated colonospheres from primary CRC tissues and cell lines and characterized their gene expression patterns by microarray analysis. We also investigated the biological features of the colonosphere cells. Expanded CRC colonospheres contained cells that expressed high levels of CD44 and CD166, which are markers of colon cancer stem cells, and had many features of cancer stem cells, including chemoresistance and radioresistance, the ability to initiate tumor formation, and activation of epithelial-mesenchymal transition (EMT). SNAIL, an activator of EMT, was expressed at high levels by CRC colonospheres. Overexpression of Snail in CRC cells induced most properties of colonospheres, including cell dedifferentiation. Two hundred twenty-seven SNAIL-activated genes were up-regulated in colonospheres; gene regulatory networks centered around interleukin (IL)-8 and JUN. Blocking IL-8 expression or activity disrupted SNAIL-induced stem cell-like features of colonospheres. We observed that SNAIL activated the expression of IL8 by direct binding to its E3/E4 E-boxes. In CRC tissues, SNAIL and IL-8 were coexpressed with the stem cell marker CD44 but not with CD133 or CD24. In human CRC tissues, SNAIL regulates expression of IL-8 and other genes to induce cancer stem cell activities. Strategies that disrupt this pathway might be developed to block tumor formation by cancer stem cells. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    Science.gov (United States)

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  10. Early lymphocyte recovery as a predictor of outcome, including relapse, after hematopoieticstem cell transplantation

    Directory of Open Access Journals (Sweden)

    Juliane Morando

    2012-01-01

    Full Text Available BACKGROUND: Despite advances in the treatment of acute leukemia, many patients need to undergo hematopoietic stem cell transplantation. Recent studies show that early lymphocyte recovery may be a predictor of relapse and survival in these patients. OBJECTIVE: To analyze the influence of lymphocyte recovery on Days +30 and +100 post-transplant on the occurrence of relapse and survival. METHODS: A descriptive, retrospective study was performed of 137 under 21-year-old patients who were submitted to hematopoietic stem cell transplantation for acute leukemia between 1995 and 2008. A lymphocyte count 0.3 x 10(9/L were considered adequate. Lymphocyte recovery was also analyzed on Day +100 with < 0.75 x 10(9/Land < 0.75 x 10(9/L being considered inadequate and adequate lymphocyte recovery, respectively. RESULTS: There was no significant difference in the occurrence of relapse between patients with inadequate and adequate lymphocyte recovery on Day +30 post-transplant. However, the transplant-related mortality was significantly higher in patients with inadequate recovery on Day +30. Patients with inadequate lymphocyte recovery on Day +30 had worse overall survival and relapse-free survival than patients with adequate recovery. There was no significant difference in the occurrence of infections and acute or chronic graft-versus-host disease. Patients with inadequate lymphocyte recovery on Day +100 had worse overall survival and relapse-free survival and a higher cumulative incidence of relapse. CONCLUSION: The evaluation of lymphocyte recovery on Day +30 is not a good predictor of relapse after transplant however patients with inadequate lymphocyte recovery had worse overall survival and relapse-free survival. Inadequate lymphocyte recovery on Day +100 is correlated with higher cumulative relapse as well as lower overall survival and relapse-free survival.

  11. Memory reactivation in healthy aging: evidence of stimulus-specific dedifferentiation.

    Science.gov (United States)

    St-Laurent, Marie; Abdi, Hervé; Bondad, Ashley; Buchsbaum, Bradley R

    2014-03-19

    We investigated how aging affects the neural specificity of mental replay, the act of conjuring up past experiences in one's mind. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to quantify the similarity between brain activity elicited by the perception and memory of complex multimodal stimuli. Young and older human adults viewed and mentally replayed short videos from long-term memory while undergoing fMRI. We identified a wide array of cortical regions involved in visual, auditory, and spatial processing that supported stimulus-specific representation at perception as well as during mental replay. Evidence of age-related dedifferentiation was subtle at perception but more salient during mental replay, and age differences at perception could not account for older adults' reduced neural reactivation specificity. Performance on a post-scan recognition task for video details correlated with neural reactivation in young but not in older adults, indicating that in-scan reactivation benefited post-scan recognition in young adults, but that some older adults may have benefited from alternative rehearsal strategies. Although young adults recalled more details about the video stimuli than older adults on a post-scan recall task, patterns of neural reactivation correlated with post-scan recall in both age groups. These results demonstrate that the mechanisms supporting recall and recollection are linked to accurate neural reactivation in both young and older adults, but that age affects how efficiently these mechanisms can support memory's representational specificity in a way that cannot simply be accounted for by degraded sensory processes.

  12. Changes in tumor vascularity precede microbubble contrast accumulation deficit in the process of dedifferentiation of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Maruyama, Hitoshi; Takahashi, Masanori; Ishibashi, Hiroyuki; Okabe, Shinichiro; Yoshikawa, Masaharu; Yokosuka, Osamu

    2010-01-01

    Purpose: To elucidate the changes in tumor vascularity and microbubble accumulation on contrast-enhanced sonograms, in relation to the dedifferentiation of hepatocellular carcinoma (HCC). Materials and methods: This prospective study enrolled 10 patients with histologically proven HCC (14.4-39.0 mm, 26.1 ± 7.4) showing nodule-in-nodule appearance upon contrast-enhanced computed tomography. Contrast-enhanced ultrasound was performed by harmonic imaging under a low mechanical index (0.22-0.25) during the vascular phase (agent injection to 1 min) and late phase (15 min) following the injection of Sonazoid TM (0.0075 ml/kg). Contrast enhancement in the inner and outer nodules was assessed in comparison with that in adjacent liver parenchyma as hyper-, iso-, or hypo-enhanced. Results: Vascular-phase enhancement of all 10 inner nodules was hyper-enhanced, and that of outer nodules was hyper-enhanced in 3, iso-enhanced in 2, and hypo-enhanced in 5. Late-phase enhancement of inner nodules was hypo-enhanced in 8 and iso-enhanced in 2. Furthermore, late-phase enhancement of outer nodules was iso-enhanced in the 7 lesions that showed iso- or hypo-enhancement in the vascular phase, and hypo-enhanced in the 3 with hyper-enhancement in the vascular phase. Late-phase hypo-enhancement was significantly more frequent in the nodules showing early-phase hyper-enhancement (11/13) than in the nodules showing early-phase iso- or hypo-enhancement (0/7) in both the inner and outer nodules. Conclusion: Dedifferentiation of HCC may be accompanied by changes in tumor vascularity prior to a reduction in microbubble accumulation. Observation of the vascular phase may be more useful than late-phase imaging for the early recognition of HCC dedifferentiation when using contrast-enhanced ultrasound with Sonazoid.

  13. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  14. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  15. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis.

    Science.gov (United States)

    Heidegger, Isabel; Kern, Johann; Ofer, Philipp; Klocker, Helmut; Massoner, Petra

    2014-05-15

    We scrutinized the effect of insulin receptor (INSR) in addition to IGF1R in PCa using in vitro and in vivo models. In-vitro overexpression of IGF1R and INSRA, but not INSRB increased cell proliferation, colony formation, migration, invasion and resistance to apoptosis in prostate cancer cells (DU145, LNCaP, PC3). Opposite effects were induced by downregulation of IGF1R and total INSR, but not INSRB. In contrast to tumor cells, non-cancerous epithelial cells of the prostate (EP156T, RWPE-1) were inhibited on overexpression and stimulated by knockdown of receptors. In-vivo analyses using the chicken allantoic membrane assay confirmed the tumorigenic effects of IGF1R and INSR. Apart of promoting tumor growth, IGF1R and INSR overexpression also enhanced angiogenesis indicated by higher vessel density and increased number of desmin-immunoreactive pericytes. Our study underscores the oncogenic impact of IGF1R including significant effects on tumor growth, cell migration, sensitivity to apoptotic/chemotherapeutic agents and angiogenesis, and characterizes the INSR, in particular the isoform INSRA, as additional cancer-promoting receptor in prostate cancer. Both, the insulin-like growth factor receptor 1 and the insulin receptor exert oncogenic functions, thus proposing that both receptors need to be considered in therapeutic settings.

  16. The Urodele Limb Regeneration Blastema: The Cell Potential

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2010-01-01

    Full Text Available The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  17. NIAM-deficient mice are predisposed to the development of proliferative lesions including B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Sara M Reed

    Full Text Available Nuclear Interactor of ARF and Mdm2 (NIAM, gene designation Tbrg1 is a largely unstudied inhibitor of cell proliferation that helps maintain chromosomal stability. It is a novel activator of the ARF-Mdm2-Tip60-p53 tumor suppressor pathway as well as other undefined pathways important for genome maintenance. To examine its predicted role as a tumor suppressor, we generated NIAM mutant (NIAM(m/m mice homozygous for a β-galactosidase expressing gene-trap cassette in the endogenous gene. The mutant mice expressed significantly lower levels of NIAM protein in tissues compared to wild-type animals. Fifty percent of aged NIAM deficient mice (14 to 21 months developed proliferative lesions, including a uterine hemangioma, pulmonary papillary adenoma, and a Harderian gland adenoma. No age-matched wild-type or NIAM(+/m heterozygous animals developed lesions. In the spleen, NIAM(m/m mice had prominent white pulp expansion which correlated with enhanced increased reactive lymphoid hyperplasia and evidence of systemic inflammation. Notably, 17% of NIAM mutant mice had splenic white pulp features indicating early B-cell lymphoma. This correlated with selective expansion of marginal zone B cells in the spleens of younger, tumor-free NIAM-deficient mice. Unexpectedly, basal p53 expression and activity was largely unaffected by NIAM loss in isolated splenic B cells. In sum, NIAM down-regulation in vivo results in a significant predisposition to developing benign tumors or early stage cancers. These mice represent an outstanding platform for dissecting NIAM's role in tumorigenesis and various anti-cancer pathways, including p53 signaling.

  18. A multiplex immunoassay using the Guthrie specimen to detect T-cell deficiencies including severe combined immunodeficiency disease.

    Science.gov (United States)

    Janik, David K; Lindau-Shepard, Barbara; Comeau, Anne Marie; Pass, Kenneth A

    2010-09-01

    Severe combined immunodeficiency (SCID) fulfills many of the requirements for addition to a newborn screening panel. Two newborn screening SCID pilot studies are now underway using the T-cell receptor excision circle (TREC) assay, a molecular technique. Here we describe an immunoassay with CD3 as a marker for T cells and CD45 as a marker for total leukocytes that can be used with the Guthrie specimen. The multiplexing capabilities of the Luminex platform were used. Antibody pairs were used to capture and detect CD3 and CD45 from a single 3-mm punch of the Guthrie specimen. The assay for each biomarker was developed separately in identical buffers and then combined to create a multiplex assay. Using calibrators made from known amounts of leukocytes, a detection limit of 0.25 x 10(6) cells/mL for CD3 and 0.125 x 10(6) cells/mL for CD45 was obtained. Affinity tests showed no cross-reactivity between the antibodies to CD3 and CD45. The multiplex assay was validated against 8 coded specimens of known clinical status and linked to results from the TREC assay that had identified them. All were correctly identified by the CD345 assay. The performance parameters of the CD345 assay met the performance characteristics generally accepted for immunoassays. Our assay classifications of positive specimens concur with previous TREC results. This CD345 assay warrants evaluation as a viable alternative or complement to the TREC assay as a primary screening tool for detecting T-cell immunodeficiencies, including SCID, in Guthrie specimens.

  19. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy.

    Science.gov (United States)

    Fliniaux, Ophélie; Mesnard, François; Raynaud-Le Grandic, Sophie; Baltora-Rosset, Sylvie; Bienaimé, Christophe; Robins, Richard J; Fliniaux, Marc-André

    2004-05-01

    De-differentiation of transformed root cultures of Datura stramonium has previously been shown to cause a loss of tropane alkaloid synthetic capacity. This indicates a marked shift in physiological status, notably in the flux of primary metabolites into tropane alkaloids. Nitrogen metabolism in transformed root cultures of D. stramonium (an alkaloid-producing system) and de-differentiated suspension cultures derived therefrom (a non-producing system) has been compared using Nuclear Magnetic Resonance (NMR) spectroscopy. (15)N-Labelled precursors [((15)NH(4))(2)SO(4) and K(15)NO(3)] were fed and their incorporation into nitrogenous metabolites studied using Heteronuclear Multiple Bond Coherence (HMBC) NMR spectroscopy. In both cultures, the same amino acids were resolved in the HMBC spectra. However, marked differences were found in the intensity of labelling of a range of nitrogenous compounds. In differentiated root cultures, cross-peaks corresponding to secondary metabolites, such as tropine, were observed, whereas these were absent in the de-differentiated cultures. By contrast, N- acetylputrescine and gamma-aminobutyric acid (GABA) accumulated in the de-differentiated cultures to a much larger extent than in the root cultures. It can therefore be suggested that the loss of alkaloid biosynthesis was compensated by the diversion of putrescine metabolism away from the tropane pathway and toward the synthesis of GABA via N-acetylputrescine.

  20. THE ASSOCIATION OF WELL-DIFFERENTIATED THYROID-CARCINOMA WITH INSULAR OR ANAPLASTIC THYROID-CARCINOMA - EVIDENCE FOR DEDIFFERENTIATION IN TUMOR PROGRESSION

    NARCIS (Netherlands)

    van der Laan, Bernard F.A.M.; FREEMAN, JL; TSANG, RW; ASA, SL

    1993-01-01

    The sequence of tumorigenesis in the thyroid is unclear. It has been proposed that anaplastic carcinomas of the thyroid develop by dedifferentiation in pre-existing differentiated carcinomas. We reviewed all anaplastic and insular (poorly differentiated) thyroid carcinomas in a consultation practice

  1. Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival.

    Science.gov (United States)

    Pollock, Kathryn; Yu, Guanglin; Moller-Trane, Ralph; Koran, Marissa; Dosa, Peter I; McKenna, David H; Hubel, Allison

    2016-11-01

    There is demand for non-dimethyl sulfoxide (DMSO) cryoprotective agents that maintain cell viability without causing poor postthaw function or systemic toxicity. The focus of this investigation involves expanding our understanding of multicomponent osmolyte solutions and their ability to preserve cell viability during freezing. Controlled cooling rate freezing, Raman microscopy, and differential scanning calorimetry (DSC) were utilized to evaluate the differences in recovery and ice crystal formation behavior for solutions containing multiple cryoprotectants, including sugars, sugar alcohols, and small molecule additives. Postthaw recovery of mesenchymal stem cells (MSCs) in solutions containing multiple osmolytes have been shown to be comparable or better than that of MSCs frozen in 10% DMSO at 1°C/min when the solution composition is optimized. Maximum postthaw recovery was observed in these multiple osmolyte solutions with incubation times of up to 2 h before freezing. Raman images demonstrate large ice crystal formation in cryopreserved cells incubated for shorter periods of time (∼30 min), suggesting that longer permeation times are needed for these solutions. Recovery was dependent upon the concentration of each component in solution, and was not strongly correlated with osmolarity. It is noteworthy that the postthaw recovery varied significantly with the composition of solutions containing the same three components and this variation exhibited an inverted U-shape behavior, indicating that there may be a "sweet spot" for different combinations of osmolytes. Raman images of freezing behavior in different solution compositions were consistent with the observed postthaw recovery. Phase change behavior (solidification patterns and glass-forming tendency) did not differ for solutions with similar osmolarity, but differences in postthaw recovery suggest that biological, not physical, methods of protection are at play. Lastly, molecular substitution of

  2. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Moon, Jai-Hee; Yoon, Byung Sun; Kim, Bona; Park, Gyuman; Jung, Hye-Youn; Maeng, Isaac; Jun, Eun Kyoung; Yoo, Seung Jun; Kim, Aeree; Oh, Sejong; Whang, Kwang Youn; Kim, Hyunggee; Kim, Dong-Wook; Kim, Ki Dong; You, Seungkwon

    2008-01-01

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  3. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β.

    Science.gov (United States)

    Rastad, Jessica L; Green, William R

    2016-12-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Science.gov (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  5. Novel protocol including liver biopsy to identify and treat CD8+ T-cell predominant acute hepatitis and liver failure.

    Science.gov (United States)

    McKenzie, Rebecca B; Berquist, William E; Nadeau, Kari C; Louie, Christine Y; Chen, Sharon F; Sibley, Richard K; Glader, Bertil E; Wong, Wendy B; Hofmann, Lawrence V; Esquivel, Carlos O; Cox, Kenneth L

    2014-08-01

    In the majority of children with ALF, the etiology is unknown and liver transplantation is often needed for survival. A patient case prompted us to consider that immune dysregulation may be the cause of indeterminate acute hepatitis and liver failure in children. Our study includes nine pediatric patients treated under a multidisciplinary clinical protocol to identify and treat immune-mediated acute liver injury. Patients with evidence of inflammation and no active infection on biopsy received treatment with intravenous immune globulin and methylprednisolone. Seven patients had at least one positive immune marker before or after treatment. All patients had a CD8+ T-cell predominant liver injury that completely or partially responded to immune therapy. Five of the nine patients recovered liver function and did not require liver transplantation. Three of these patients subsequently developed bone marrow failure and were treated with either immunosuppression or stem cell transplant. This series highlights the importance of this tissue-based approach to diagnosis and treatment that may improve transplant-free survival. Further research is necessary to better characterize the immune injury and to predict the subset of patients at risk for bone marrow failure who may benefit from earlier and stronger immunosuppressive therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  7. Fabrication of Mediatorless/Membraneless Glucose/Oxygen Based Biofuel Cell using Biocatalysts Including Glucose Oxidase and Laccase Enzymes

    Science.gov (United States)

    Christwardana, Marcelinus; Kim, Ki Jae; Kwon, Yongchai

    2016-07-01

    Mediatorless and membraneless enzymatic biofuel cells (EBCs) employing new catalytic structure are fabricated. Regarding anodic catalyst, structure consisting of glucose oxidase (GOx), poly(ethylenimine) (PEI) and carbon nanotube (CNT) is considered, while three cathodic catalysts consist of glutaraldehyde (GA), laccase (Lac), PEI and CNT that are stacked together in different ways. Catalytic activities of the catalysts for glucose oxidation and oxygen reduction reactions (GOR and ORR) are evaluated. As a result, it is confirmed that the catalysts work well for promotion of GOR and ORR. In EBC tests, performances of EBCs including 150 μm-thick membrane are measured as references, while those of membraneless EBCs are measured depending on parameters like glucose flow rate, glucose concentration, distance between two electrodes and electrolyte pH. With the measurements, how the parameters affect EBC performance and their optimal conditions are determined. Based on that, best maximum power density (MPD) of membraneless EBC is 102 ± 5.1 μW · cm-2 with values of 0.5 cc · min-1 (glucose flow rate), 40 mM (glucose concentration), 1 mm (distance between electrodes) and pH 3. When membrane and membraneless EBCs are compared, MPD of the membraneless EBC that is run at the similar operating condition to EBC including membrane is speculated as about 134 μW · cm-2.

  8. Optimizing Staining Protocols for Laser Microdissection of Specific Cell Types from the Testis Including Carcinoma In Situ

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Dalgaard, Marlene D; Nielsen, John Erik

    2009-01-01

    Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser microdis......Microarray and RT-PCR based methods are important tools for analysis of gene expression; however, in tissues containing many different cells types, such as the testis, characterization of gene expression in specific cell types can be severely hampered by noise from other cells. The laser......-containing cells, which is useful for isolation of the androgen-producing Leydig cells. Both protocols retain a morphology that is compatible with laser microdissection and yield RNA of a quality suitable for PCR and microarray analysis....

  9. Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-κB activation.

    Science.gov (United States)

    Gottardo, María Florencia; Moreno Ayala, Mariela; Ferraris, Jimena; Zárate, Sandra; Pisera, Daniel; Candolfi, Marianela; Jaita, Gabriela; Seilicovich, Adriana

    2017-12-01

    Humanin (HN) and Rattin (HNr), its homologous in the rat, are peptides with cytoprotective action in several cell types such as neurons, lymphocytes and testicular germ cells. Previously, we have shown that HNr is expressed in pituitary cells and that HN inhibited the apoptotic effect of TNF-α in both normal and tumor pituitary cells. The aim of the present study was to identify signaling pathways that mediate the antiapoptotic effect of HN in anterior pituitary cells from ovariectomized rats and in GH3 cells, a somatolactotrope cell line. We assessed the role of STAT3, JNK, Akt and MAPKs as well as proteins of the Bcl-2 family, previously implicated in the antiapoptotic effect of HN. We also evaluated the participation of NF-κB in the antiapoptotic action of HN. STAT3 inhibition reversed the inhibitory effect of HN on TNF-α-induced apoptosis in normal and pituitary tumor cells, indicating that STAT3 signaling pathway mediates the antiapoptotic effect of HN on pituitary cells. Inhibition of NF-κB pathway did not affect action of HN on normal anterior pituitary cells but blocked the cytoprotective effect of HN on TNF-α-induced apoptosis of GH3 cells, suggesting that the NF-κB pathway is involved in HN action in tumor pituitary cells. HN also induced NF-κB-p65 nuclear translocation in these cells. In pituitary tumor cells, JNK and MEK inhibitors also impaired HN cytoprotective action. In addition, HN increased Bcl-2 expression and decreased Bax mitochondrial translocation. Since HN expression in GH3 cells is higher than in normal pituitary cells, we may suggest that through multiple pathways HN could be involved in pituitary tumorigenesis.

  10. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma

    OpenAIRE

    Terada, Satoshi; Nishimura, Taeko; Sasaki, Masahiro; Yamada, Hideyuki; Miki, Masao

    2002-01-01

    Sericin, a constituent of the silkworm cocoon, was added to the culture of four mammalian cell lines: murine hybridoma 2E3-O,human hepatoblastoma HepG2, human epithelial HeLa and human embryonal kidney 293 cells. The proliferation of all cell lineswas accelerated in the presence of sericin. The hybridoma cellline was further studied. The 2E3-O cell line was so well adapted to serum-free medium that both the proliferation rate and maximum cell density in serum-free ASF103 medium were higher th...

  11. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  12. A gene panel, including LRP12, is frequently hypermethylated in major types of B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Nicole Bethge

    Full Text Available Epigenetic modifications and DNA methylation in particular, have been recognized as important mechanisms to alter gene expression in malignant cells. Here, we identified candidate genes which were upregulated after an epigenetic treatment of B-cell lymphoma cell lines (Burkitt's lymphoma, BL; Follicular lymphoma, FL; Diffuse large B-cell lymphoma, DLBCL activated B-cell like, ABC; and germinal center like, GCB and simultaneously expressed at low levels in samples from lymphoma patients. Qualitative methylation analysis of 24 candidate genes in cell lines revealed five methylated genes (BMP7, BMPER, CDH1, DUSP4 and LRP12, which were further subjected to quantitative methylation analysis in clinical samples from 59 lymphoma patients (BL, FL, DLBCL ABC and GCB; and primary mediastinal B-cell lymphoma, PMBL. The genes LRP12 and CDH1 showed the highest methylation frequencies (94% and 92%, respectively. BMPER (58%, DUSP4 (32% and BMP7 (22%, were also frequently methylated in patient samples. Importantly, all gene promoters were unmethylated in various control samples (CD19+ peripheral blood B cells, peripheral blood mononuclear cells and tonsils as well as in follicular hyperplasia samples, underscoring a high specificity. The combination of LRP12 and CDH1 methylation could successfully discriminate between the vast majority of the lymphoma and control samples, emphasized by receiver operating characteristic analysis with a c-statistic of 0.999. These two genes represent promising epigenetic markers which may be suitable for monitoring of B-cell lymphoma.

  13. A Novel Technique to Follow Consequences of Exogenous Factors, Including Therapeutic Drugs, on Living Human Breast Epithelial Cells

    Science.gov (United States)

    1999-07-01

    and lipid vectors, are being tested. Concurrent with the development of procedures for live - cell imaging , we are examining the distribution of proteins...dimensional matrix. These studies have not yet begun. There are a number of procedures that must be developed and perfected in the live - cell imaging , as...components of the Wnt signaling pathway are too preliminary and require additional research prior to publication. (9) CONCLUSIONS Live cell imaging of

  14. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells.

    Science.gov (United States)

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny; Dalod, Marc

    2014-08-15

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1(+) DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1(+) human DC. Assessment of the immunoactivation potential of XCR1(+) human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1(+) and XCR1(-) human DC in CD34(+) progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1(-) CD34-DC are similar to canonical MoDC, whereas XCR1(+) CD34-DC resemble XCR1(+) blood DC (bDC). XCR1(+) DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1(+) DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1(+) CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1(+) bDC. Hence, it is feasible to generate high numbers of bona fide XCR1(+) human DC in vitro as a model to decipher the functions of XCR1(+) bDC and as a potential source of XCR1(+) DC for clinical use. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. Expression of stem cell pluripotency factors during regeneration in the earthworm Eisenia foetida.

    Science.gov (United States)

    Zheng, Pengfei; Shao, Qiang; Diao, Xiaoping; Li, Zandong; Han, Qian

    2016-01-01

    Stem cell pluripotency factors can induce somatic cells to form induced pluripotent stem cells, which are involved in cell reprogramming and dedifferentiation. The tissue regeneration in the earthworm Eisenia foetida may involve cell dedifferentiation. There is limited information about associations between pluripotency factors and the regeneration. In this report, cDNA sequences of pluripotency factors, oct4, nanog, sox2, c-myc and lin28 genes from the earthworm E. foetida were cloned, and quantitative PCR analysis was performed for their mRNA expressions in the head, clitellum and tail. The maximum up-regulation of oct4, nanog, sox2, c-myc and lin28 occurred at 12h, 4 days, 12h, 2 days, and 24h after amputation for 110, 178, 21, 251 and 325-fold, respectively, in comparison with the controls. The results suggest that the tissues are regenerated via cellular dedifferentiation and reprogramming. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Model of Organic Solar Cell Photocurrent Including the Effect of Charge Accumulation at Interfaces and Non-Uniform Carrier Generation

    DEFF Research Database (Denmark)

    Torto, Lorenzo; Cester, Andrea; Rizzo, Antonio

    2017-01-01

    We developed an improved model to fit the photocurrent density versus voltage in organic solar cells. The model has been validated by fitting data from P3HT:PCBM solar cells. Our model quantitatively accounts for the band bending near the electrodes caused by charge accumulation in the active layer...

  17. Slit-scanning technique using standard cell sorter instruments for analyzing and sorting nonacrocentric human chromosomes, including small ones

    NARCIS (Netherlands)

    Rens, W.; van Oven, C. H.; Stap, J.; Jakobs, M. E.; Aten, J. A.

    1994-01-01

    We have investigated the performance of two types of standard flow cell sorter instruments, a System 50 Cytofluorograph and a FACSTar PLUS cell sorter, for the on-line centromeric index (CI) analysis of human chromosomes. To optimize the results, we improved the detection efficiency for centromeres

  18. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  19. Degeneration of retinal on bipolar cells induced by serum including autoantibody against TRPM1 in mouse model of paraneoplastic retinopathy.

    Directory of Open Access Journals (Sweden)

    Shinji Ueno

    Full Text Available The paraneoplastic retinopathies (PRs are a group of eye diseases characterized by a sudden and progressive dysfunction of the retina caused by an antibody against a protein in a neoplasm. Evidence has been obtained that the transient receptor potential melastatin 1 (TRPM1 protein was one of the antigens for the autoantibody against the ON bipolar cells in PR patients. However, it has not been determined how the autoantibody causes the dysfunction of the ON bipolar cells. We hypothesized that the antibody against TRPM1 in the serum of patients with PR causes a degeneration of retinal ON bipolar cells. To test this hypothesis, we injected the serum from the PR patient, previously shown to contain anti-TRPM1 antibodies by westerblot, intravitreally into mice and examined the effects on the retina. We found that the electroretinograms (ERGs of the mice were altered acutely after the injection, and the shape of the ERGs resembled that of the patient with PR. Immunohistochemical analysis of the eyes injected with the serum showed immunoreactivity against bipolar cells only in wild-type animals and not in TRPM1 knockout mice,consistent with the serum containing anti-TRPM1 antibodies. Histology also showed that some of the bipolar cells were apoptotic by 5 hours after the injection in wild type mice, but no bipolar cell death was found in TRPM1 knockout mice, . At 3 months, the inner nuclear layer was thinner and the amplitudes of the ERGs were still reduced. These results indicate that the serum of a patient with PR contained an antibody against TRPM1 caused an acute death of retinal ON bipolar cells of mice.

  20. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    Science.gov (United States)

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  1. A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma

    DEFF Research Database (Denmark)

    Wadt, K A W; Aoude, L G; Johansson, P

    2015-01-01

    ) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported...

  2. Evaluation of the anti-inflammatory actions of various functional food materials including glucosamine on synovial cells.

    Science.gov (United States)

    Yamagishi, Yoshie; Someya, Akimasa; Imai, Kensuke; Nagao, Junji; Nagaoka, Isao

    2017-08-01

    The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).

  3. Stem Cells in Pulmonary Disease and Regeneration.

    Science.gov (United States)

    Nadkarni, Rohan R; Abed, Soumeya; Draper, Jonathan S

    2017-08-02

    The epithelial cells lining the mammalian lung are subjected to constant interaction with the external environment, necessitating robust regeneration strategies to deal with cell loss due to natural turnover or damage arising from inhaled agents or disease. Since lung epithelial function extends beyond respiratory gas exchange to include roles such as immune defense and mucociliary clearance, a diverse complement of epithelial cell types exists that are regionally distributed along the respiratory tree and extensive surface area of the alveolar interface. Although steady-state turnover of the epithelium appears to be relatively low in ideal situations, the vital role of the lung requires stem and progenitor cell populations that can promptly respond to the loss or damage of epithelial tissues. The identity and role of stem cell populations that carry out repair and replacement in the lung has begun to be clarified in recent years, led by cell lineage tracking experiments in the mouse lung, which have revealed a complex interplay of differentiation, transdifferentiation, and dedifferentiation between lung stem cells and functional respiratory cell populations. In this review article, we present the current understanding of the stem cell populations within the pulmonary epithelium and describe ongoing efforts to use these stem cell populations to generate models for exploring lung function and disease. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  4. Case report 679: Central low-grade osteosarcoma with foci of dedifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Iemoto, Yoichi; Ushigome, Shinichiro; Fukunaga, Masaharu; Nikaido, Takashi (Jikei Univ., Tokyo (Japan). Dept. of Pathology); Asanuma, Kazuo (Jikei Univ., Tokyo (Japan). Dept. of Orthopaedics)

    1991-07-01

    Radiological Studis and histological examination of the tenosynovium and joint capsule revealed chronic inflammation and proliferative synovitis. Multiple specimens yielded positive cultures of Sporothrix schenkii. Other organismus, including bacterial, mycobacterial, and Candida species, did not grow. (orig./GDG).

  5. Simulation study of GaAsP/Si tandem cells including the impact of threading dislocations on the luminescent coupling between the cells

    Science.gov (United States)

    Onno, Arthur; Harder, Nils-Peter; Oberbeck, Lars; Liu, Huiyun

    2016-03-01

    A model, derived from the detailed balance model from Shockley and Queisser, has been adapted to monolithically grown GaAsP/Si tandem dual junction solar cells. In this architecture, due to the difference of lattice parameters between the silicon bottom cell - acting as the substrate - and the GaAsP top cell, threading dislocations (TDs) arise at the IIIV/ Si interface and propagate in the top cell. These TDs act as non-radiative recombination centers, degrading the performances of the tandem cell. Our model takes into account the impact of TDs by integrating the NTT model developed by Yamaguchi et. al.. Two surface geometries have been investigated: flat and ideally textured. Finally the model considers the luminescent coupling (LC) between the cells due to reemitted photons from the top cell cascading to the bottom cell. Without dislocations, LC allows a greater flexibility in the cell design by rebalancing the currents between the two cells when the top cell presents a higher short-circuit current. However we show that, as the TD density (TDD) increases, nonradiative recombinations take over radiative recombinations in the top cell and the LC is quenched. As a result, nonoptimized tandem cells with higher short-circuit current in the top cell experience a very fast degradation of efficiency for TDDs over 104cm-2. On the other hand optimized cells with matching currents only experience a small efficiency drop for TDDs up to 105cm-2. High TDD cells therefore need to be current-matched for optimal performances as the flexibility due to LC is lost.

  6. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Increased frequency of CCR4+ and CCR6+ memory T-cells including CCR7+CD45RAmed very early memory cells in granulomatosis with polyangiitis (Wegener's)

    OpenAIRE

    Fagin, Ursula; Pitann, Silke; Gross, Wolfgang L; Lamprecht, Peter

    2012-01-01

    Introduction Chemokine receptors play an important role in mediating the recruitment of T cells to inflammatory sites. Previously, small proportions of circulating Th1-type CCR5+ and Th2-type CCR3+ cells have been shown in granulomatosis with polyangiitis (GPA). Wondering to what extent CCR4 and CCR6 expression could also be implicated in T cell recruitment to inflamed sites in GPA, we investigated the expression of CCR4 and CCR6 on T cells and its association with T cell diversity and polari...

  8. MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    David Moulin

    2017-01-01

    Full Text Available Objective. Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA cartilage. MicroRNA- (miR- 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype. Methods. After preliminary microarrays screening, miR-29b levels were measured by RT- quantitative PCR in in vitro models of chondrocyte phenotype changes (IL-1β challenge or serial subculturing and in chondrocytes from OA and non-OA patients. Potential miR-29b targets identified in silico in 3′-UTRs of collagens mRNAs were tested with luciferase reporter assays. The impact of premiR-29b overexpression in ATDC5 cells was studied on collagen mRNA levels and synthesis (Sirius red staining during chondrogenesis. Results. MiR-29b level increased significantly in IL-1β-stimulated and weakly in subcultured chondrocytes. A 5.8-fold increase was observed in chondrocytes from OA versus non-OA patients. Reporter assays showed that miR-29b targeted COL2A1 and COL1A2 3′-UTRs although with a variable recovery upon mutation. In ATDC5 cells overexpressing premiR-29b, collagen production was reduced while mRNA levels increased. Conclusions. By acting probably as a posttranscriptional regulator with a different efficacy on COL2A1 and COL1A2 expression, miR-29b can contribute to the collagens imbalance associated with an abnormal chondrocyte phenotype.

  9. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  10. Managing misaligned paternity findings in research including sickle cell disease screening in Kenya: 'consulting communities' to inform policy.

    Science.gov (United States)

    Marsh, Vicki; Kombe, Francis; Fitzpatrick, Ray; Molyneux, Sassy; Parker, Michael

    2013-11-01

    The management of misaligned paternity findings raises important controversy worldwide. It has mainly, however, been discussed in the context of high-income countries. Genetic and genomics research, with the potential to show misaligned paternity, are becoming increasingly common in Africa. During a genomics study in Kenya, a dilemma arose over testing and sharing information on paternal sickle cell disease status. This dilemma may be paradigmatic of challenges in sharing misaligned paternity findings in many research and health care settings. Using a deliberative approach to community consultation to inform research practice, we explored residents' views on paternal testing and sharing misaligned paternity information. Between December 2009 and November 2010, 63 residents in Kilifi County were engaged in informed deliberative small group discussions, structured to support normative reflection within the groups, with purposive selection to explore diversity. Analysis was based on a modified framework analysis approach, drawing on relevant social science and bioethics literature. The methods generated in-depth individual and group reflection on morally important issues and uncovered wide diversity in views and values. Fundamental and conflicting values emerged around the importance of family interests and openness, underpinned by disagreement on the moral implications of marital infidelity and withholding truth. Wider consideration of ethical issues emerging in these debates supports locally-held reasoning that paternal sickle cell testing should not be undertaken in this context, in contrast to views that testing should be done with or without the disclosure of misaligned paternity information. The findings highlight the importance of facilitating wider testing of family members of affected children, contingent on the development and implementation of national policies for the management of this inherited disorder. Their richness also illustrates the potential for

  11. Managing misaligned paternity findings in research including sickle cell disease screening in Kenya: ‘Consulting communities’ to inform policy☆

    Science.gov (United States)

    Marsh, Vicki; Kombe, Francis; Fitzpatrick, Ray; Molyneux, Sassy; Parker, Michael

    2013-01-01

    The management of misaligned paternity findings raises important controversy worldwide. It has mainly, however, been discussed in the context of high-income countries. Genetic and genomics research, with the potential to show misaligned paternity, are becoming increasingly common in Africa. During a genomics study in Kenya, a dilemma arose over testing and sharing information on paternal sickle cell disease status. This dilemma may be paradigmatic of challenges in sharing misaligned paternity findings in many research and health care settings. Using a deliberative approach to community consultation to inform research practice, we explored residents' views on paternal testing and sharing misaligned paternity information. Between December 2009 and November 2010, 63 residents in Kilifi County were engaged in informed deliberative small group discussions, structured to support normative reflection within the groups, with purposive selection to explore diversity. Analysis was based on a modified framework analysis approach, drawing on relevant social science and bioethics literature. The methods generated in-depth individual and group reflection on morally important issues and uncovered wide diversity in views and values. Fundamental and conflicting values emerged around the importance of family interests and openness, underpinned by disagreement on the moral implications of marital infidelity and withholding truth. Wider consideration of ethical issues emerging in these debates supports locally-held reasoning that paternal sickle cell testing should not be undertaken in this context, in contrast to views that testing should be done with or without the disclosure of misaligned paternity information. The findings highlight the importance of facilitating wider testing of family members of affected children, contingent on the development and implementation of national policies for the management of this inherited disorder. Their richness also illustrates the potential for

  12. Cost-effectiveness of hematopoietic stem cell mobilization strategies including plerixafor in multiple myeloma and lymphoma patients.

    Science.gov (United States)

    Tichopád, Aleš; Vítová, Veronika; Kořístek, Zdeněk; Lysák, Daniel

    2013-12-01

    Peripheral blood stem cells (PBSCs) are preferred source of hematopoietic stem cells for autologous transplantation. Mobilization of PBSCs using chemotherapy and/or granulocyte colony-stimulating factor (G-CSF) however fails in around 20%. Combining G-CSF with plerixafor increases the mobilizations success. We compared cost-effectiveness of following schemes: the use of plerixafor "on demand" (POD) during the first mobilization in all patients with inadequate response, the remobilization with plerixafor following failure of the first standard mobilization (SSP), and the standard (re)mobilization scheme without plerixafor (SSNP). Decision tree models populated with data from a first-of-a-kind patient registry in six Czech centers (n = 93) were built to compare clinical benefits and direct costs from the payer's perspective. The success rates and costs for POD, SSP and SSNP mobilizations were; 94.9%, $7,197; 94.7%, $8,049; 84.7%, $5,991, respectively. The direct cost per successfully treated patient was $7,586, $8,501, and $7,077, respectively. The cost of re-mobilization of a poor mobilizer was $5,808 with G-CSF only and $16,755 if plerixafor was added. The total cost of plerixafor "on-demand" in the sub-cohort of poor mobilizers was $17,120. Generally, plerixafor improves the mobilization success by 10% and allows an additional patient to be successfully mobilized for incremental $11,803. Plerixafor is better and cheaper if used "on demand" than within a subsequent remobilization. Copyright © 2013 Wiley Periodicals, Inc.

  13. Multidisciplinary therapy including high-dose chemotherapy followed by peripheral blood stem cell transplantation for invasive thymoma.

    Science.gov (United States)

    Iwasaki, Yoshinobu; Ohsugi, Shuji; Takemura, Yoshizumi; Nagata, Kazuhiro; Harada, Hidehiko; Nakagawa, Masao

    2002-12-01

    We describe two patients with invasive thymomas who responded to high-dose chemotherapy followed by peripheral blood stem cell transplantation (PBSCT) combined with surgery and radiotherapy. The first patient was a 42-year-old man admitted to the hospital with chest pain, and the second patient was a 45-year-old man admitted with myasthenia gravis. Both patients had nonresectable thymomas (stage IVa) because of invasion of the aorta, pulmonary artery, or both, and dissemination to the pericardium. They initially received two cycles of chemotherapy consisting of adriamycin (40 mg/m(2), day 1), cisplatin (50 mg/m(2), day 1), vincristine (0.6 mg/m(2), day 3), and cyclophosphamide (700 mg/m(2), day 4) at 3-week intervals. Four weeks later, they were administered high-dose etoposide (300 mg/m(2), days 1 to 5) followed by granulocyte colony-stimulating factor (G-CSF) [50 micro g/m(2)/d] subcutaneously to mobilize stem cells into the blood. After two additional cycles of adriamycin, cisplatin, vincristine, and cyclophosphamide (ADOC), the patients received high-dose ifosfamide (1.5 g/m(2), days 1 to 4), carboplatin (400 mg/m(2), days 3 to 5), and etoposide (200 mg/m(2), days 1 to 5) followed by PBSCT. They were administered G-CSF (50 micro g/m(2)/d) after PBSCT, with subsequent rapid recovery of neutrophil and platelet level. The tumors shrank remarkably, and could be excised completely in both patients. Postoperatively, 50 Gy of irradiation was administered. Disease-free status has been maintained for 5 years in the first patient and 2 years in the second patient. Our findings suggest that high-dose ifosfamide, carboplatin, and etoposide followed by PBSCT in combination with an ADOC regimen, surgery, and radiotherapy is very effective and well tolerated in patients with advanced nonresectable thymoma.

  14. PREFACE: 9th International Fröhlich's Symposium: Electrodynamic Activity of Living Cells (Including Microtubule Coherent Modes and Cancer Cell Physics)

    Science.gov (United States)

    Cifra, Michal; Pokorný, Jirí; Kucera, Ondrej

    2011-12-01

    This volume contains papers presented at the International Fröhlich's Symposium entitled 'Electrodynamic Activity of Living Cells' (1-3 July 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. The hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic-polarization interactions should be connected in a unified theory and the solution based on comprehensive non-linear characteristics. Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences - including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg's discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on the study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity-oxidative energy production is connected with the formation of a strong static electric field around them, water ordering, and liberation of non

  15. R5-SHIV induces multiple defects in T cell function during early infection of rhesus macaques including accumulation of T reg cells in lymph nodes.

    Directory of Open Access Journals (Sweden)

    Michael Santosuosso

    2011-04-01

    Full Text Available HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues.Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation.We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.

  16. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  17. Biocatalyst including porous enzyme cluster composite immobilized by two-step crosslinking and its utilization as enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Christwardana, Marcelinus; Tannia, Daniel Chris; Kim, Ki Jae; Kwon, Yongchai

    2017-08-01

    An enzyme cluster composite (TPA/GOx) formed from glucose oxidase (GOx) and terephthalaldehyde (TPA) that is coated onto polyethyleneimine (PEI) and carbon nanotubes (CNTs) is suggested as a new catalyst ([(TPA/GOx)/PEI]/CNT). In this catalyst, TPA promotes inter-GOx links by crosslinking to form a large and porous structure, and the TPA/GOx composite is again crosslinked with PEI/CNT to increase the amount of immobilized GOx. Such a two-step crosslinking (i) increases electron transfer because of electron delocalization by π conjugation and (ii) reduces GOx denaturation because of the formation of strong chemical bonds while its porosity facilitates mass transfer. With these features, an enzymatic biofuel cell (EBC) employing the new catalyst is fabricated and induces an excellent maximum power density (1.62 ± 0.08 mW cm-2), while the catalytic activity of the [(TPA/GOx)/PEI]/CNT catalyst is outstanding. This is clear evidence that the two-step crosslinking and porous structure caused by adoption of the TPA/GOx composite affect the performance enhancement of EBC.

  18. Propagation and titration of infectious bursal disease virus, including non-cell-culture-adapted strains, using ex vivo-stimulated chicken bursal cells.

    Science.gov (United States)

    Soubies, Sébastien Mathieu; Courtillon, Céline; Abed, Mouna; Amelot, Michel; Keita, Alassane; Broadbent, Andrew; Härtle, Sonja; Kaspers, Bernd; Eterradossi, Nicolas

    2018-04-01

    Infectious bursal disease virus (IBDV) is a Birnaviridae family member of economic importance for poultry. This virus infects and destroys developing B lymphocytes in the cloacal bursa, resulting in a potentially fatal or immunosuppressive disease in chickens. Naturally occurring viruses and many vaccine strains are not able to grow in in vitro systems without prior adaptation, which often affects viral properties such as virulence. Primary bursal cells, which are the main target cells of lymphotropic IBDV in vivo, may represent an attractive system for the study of IBDV. Unfortunately, bursal cells isolated from bursal follicles undergo apoptosis within hours following their isolation. Here, we demonstrate that ex vivo stimulation of bursal cells with phorbol 12-myristate 13-acetate maintains their viability long enough to allow IBDV replication to high titres. A wide range of field-derived or vaccine serotype 1 IBDV strains could be titrated in these phorbol 12-myristate 13-acetate -stimulated bursal cells and furthermore were permissive for replication of non-cell-culture-adapted viruses. These cells also supported multistep replication experiments and flow cytometry analysis of infection. Ex vivo-stimulated bursal cells therefore offer a promising tool in the study of IBDV.

  19. Andrographolide Enhances Proliferation and Prevents Dedifferentiation of Rabbit Articular Chondrocytes: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Li-ke Luo

    2015-01-01

    Full Text Available As the main active constituent of Andrographis paniculata that was applied in treatment of many diseases including inflammation in ancient China, andrographolide (ANDRO was found to facilitate reduction of edema and analgesia in arthritis. This suggested that ANDRO may be promising anti-inflammatory agent to relieve destruction and degeneration of cartilage after inflammation. In this study, the effect of ANDRO on rabbit articular chondrocytes in vitro was investigated. Results showed that not more than 8 μM ANDRO did no harm to chondrocytes (P0.05. The viability assay, hematoxylin-eosin, safranin O, and immunohistochemical staining also showed better performances in ANDRO groups. As to the doses, 3 μM ANDRO showed the best performance. The results indicate that ANDRO can accelerate proliferation of rabbit articular chondrocytes in vitro and meanwhile maintain the phenotype, which may provide valuable references for further exploration on arthritis.

  20. Cold Response of Dedifferentiated Barley Cells at the Gene Expression, Hormone Composition, and Freezing Tolerance Levels: Studies on Callus Cultures

    Czech Academy of Sciences Publication Activity Database

    Vashegyi, I.; Marozsan-Toth, Z.; Galiba, G.; Dobrev, Petre; Vaňková, Radomíra; Toth, B.

    2013-01-01

    Roč. 54, č. 2 (2013), s. 337-349 ISSN 1073-6085 R&D Projects: GA ČR GA522/09/2058 Institutional research plan: CEZ:AV0Z50380511 Keywords : ABA * Barley * Callus Subject RIV: ED - Physiology Impact factor: 2.275, year: 2013

  1. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents.

    Directory of Open Access Journals (Sweden)

    Richard C Wang

    Full Text Available One of the main reasons for disease recurrence in the curative breast cancer treatment setting is the development of drug resistance. Microtubule targeted agents (MTAs are among the most commonly used drugs for the treatment of breaset cancer and therefore overcoming taxane resistance is of primary clinical importance. Our group has previously demonstrated that the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitivity to docetaxel due to the distinct expression profiles of β-tubulin isotypes in addition to the high expression of p-glycoprotein (ABCB1. In the present investigation we examined whether taxane-resistant breast cancer cells are more sensitive to microtubule destabilizing agents including vinca alkaloids and colchicine-site binding agents (CSBAs than the non-resistant cells.Two isogenic MCF-7 breast cancer cell lines were selected for resistance to docetaxel (MCF-7TXT and the wild type parental cell line (MCF-7CC to examine if taxane-resistant breast cancer cells are sensitive to microtubule-destabilizing agents including vinca alkaloids and CSBAs. Cytotoxicity assays, immunoblotting, indirect immunofluorescence and live imaging were used to study drug resistance, apoptosis, mitotic arrest, microtubule formation, and microtubule dynamics.MCF-7TXT cells were demonstrated to be cross resistant to vinca alkaloids, but were more sensitive to treatment with colchicine compared to parental non-resistant MCF-7CC cells. Cytotoxicity assays indicated that the IC50 of MCF-7TXT cell to vinorelbine and vinblastine was more than 6 and 3 times higher, respectively, than that of MCF-7CC cells. By contrast, the IC50 of MCF-7TXT cell for colchincine was 4 times lower than that of MCF-7CC cells. Indirect immunofluorescence showed that all MTAs induced the disorganization of microtubules and the chromatin morphology and interestingly each with a unique pattern. In terms of microtubule and chromain morphology, MCF-7TXT cells were

  2. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells

    International Nuclear Information System (INIS)

    Gao Jiayu; Morgan, Winston A.; Sanchez-Medina, Alberto; Corcoran, Olivia

    2011-01-01

    Despite a lack of scientific authentication, Scutellaria baicalensis is clinically used in Chinese medicine as a traditional adjuvant to chemotherapy of lung cancer. In this study, cytotoxicity assays demonstrated that crude ethanolic extracts of S. baicalensis were selectively toxic to human lung cancer cell lines A549, SK-LU-1 and SK-MES-1 compared with normal human lung fibroblasts. The active compounds baicalin, baicalein and wogonin did not exhibit such selectivity. Following exposure to the crude extracts, cellular protein expression in the cancer cell lines was assessed using 2D gel electrophoresis coupled with MALDI-TOF-MS/Protein Fingerprinting. The altered protein expression indicated that cell growth arrest and apoptosis were potential mechanisms of cytotoxicity. These observations were supported by PI staining cell cycle analysis using flow cytometry and Annexin-V apoptotic analysis by fluorescence microscopy of cancer cells treated with the crude extract and pure active compounds. Moreover, specific immunoblotting identification showed the decreased expression of cyclin A results in the S phase arrest of A549 whereas the G 0 /G 1 phase arrest in SK-MES-1 cells results from the decreased expression of cyclin D1. Following treatment, increased expression in the cancer cells of key proteins related to the enhancement of apoptosis was observed for p53 and Bax. These results provide further insight into the molecular mechanisms underlying the clinical use of this herb as an adjuvant to lung cancer therapy. - Research highlights: → Scutellaria baicalensis is a clinical adjuvant to lung cancer chemotherapy in China. → Scutellaria ethanol extracts selectively toxic to A549, SK-LU-1 and SK-MES-1. → Baicalin, baicalein and wogonin were toxic to all lung cancer cell lines. → Proteomics identified increased p53 and BAX in response to Scutellaria extracts.

  3. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  4. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses.

    Science.gov (United States)

    Friedman, Gregory K; Moore, Blake P; Nan, Li; Kelly, Virginia M; Etminan, Tina; Langford, Catherine P; Xu, Hui; Han, Xiaosi; Markert, James M; Beierle, Elizabeth A; Gillespie, G Yancey

    2016-02-01

    Childhood medulloblastoma is associated with significant morbidity and mortality that is compounded by neurotoxicity for the developing brain caused by current therapies, including surgery, craniospinal radiation, and chemotherapy. Innate therapeutic resistance of some aggressive pediatric medulloblastoma has been attributed to a subpopulation of cells, termed cancer-initiating cells or cancer stemlike cells (CSCs), marked by the surface protein CD133 or CD15. Brain tumors characteristically contain areas of pathophysiologic hypoxia, which has been shown to drive the CSC phenotype leading to heightened invasiveness, angiogenesis, and metastasis. Novel therapies that target medulloblastoma CSCs are needed to improve outcomes and decrease toxicity. We hypothesized that oncolytic engineered herpes simplex virus (oHSV) therapy could effectively infect and kill pediatric medulloblastoma cells, including CSCs marked by CD133 or CD15. Using 4 human pediatric medulloblastoma xenografts, including 3 molecular subgroup 3 tumors, which portend worse patient outcomes, we determined the expression of CD133, CD15, and the primary HSV-1 entry molecule nectin-1 (CD111) by fluorescence activated cell sorting (FACS) analysis. Infectability and cytotoxicity of clinically relevant oHSVs (G207 and M002) were determined in vitro and in vivo by FACS, immunofluorescent staining, cytotoxicity assays, and murine survival studies. We demonstrate that hypoxia increased the CD133+ cell fraction, while having the opposite effect on CD15 expression. We established that all 4 xenografts, including the CSCs, expressed CD111 and were highly sensitive to killing by G207 or M002. Pediatric medulloblastoma, including Group 3 tumors, may be an excellent target for oHSV virotherapy, and a clinical trial in medulloblastoma is warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mitochondrial Iron Accumulation in Parietal and Chief Cells in Iron Pill Gastritis Following Billroth II Gastrectomy: Case Report Including Electron Microscopic Examination.

    Science.gov (United States)

    Shafique, Khurram; Araujo, James L; Veluvolu, Rajesh; Cassai, Nicholas; Desoto-Lapaix, Fidelina; Pincus, Matthew R; Wieczorek, Rosemary L

    2017-05-01

    Iron pill gastritis has been shown to be associated with superficial gastric erosion and deposition of iron in lamina propria and gastric antral glands. However, iron absorption in gastric parietal and chief cells is rare. We present a case of a 62-year-old man with iron deficiency anemia. His past medical history is significant for Billroth II surgery. His medications include ferrous sulphate 325mg. Esophagogastroduodenoscopy showed diffuse circumferential abnormal mucosa at the gastro-jejunal anastomosis. The mucosa was erythematous and violaceous. Biopsy showed reactive gastropathy with iron deposits predominantly in macrophages, parietal cells, and chief cells. These findings were confirmed by iron stain and later by electron micrography of the gastric mucosa that showed iron deposits in mitochondria and cytoplasm of the parietal and chief cells. © 2017 by the Association of Clinical Scientists, Inc.

  6. Characterization of AgMaT2, a plasma membrane mannitol transporter from celery, expressed in phloem cells, including phloem parenchyma cells.

    Science.gov (United States)

    Juchaux-Cachau, Marjorie; Landouar-Arsivaud, Lucie; Pichaut, Jean-Philippe; Campion, Claire; Porcheron, Benoit; Jeauffre, Julien; Noiraud-Romy, Nathalie; Simoneau, Philippe; Maurousset, Laurence; Lemoine, Rémi

    2007-09-01

    A second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol. This transporter was successfully expressed in two different heterologous expression systems: baker's yeast (Saccharomyces cerevisiae) cells and tobacco (Nicotiana tabacum) plants (a non-mannitol-producing species). Data indicated that AgMaT2 works as an H(+)/mannitol cotransporter with a weak selectivity toward other polyol molecules. When expressed in tobacco, AgMaT2 decreased the sensitivity to the mannitol-secreting pathogenic fungi Alternaria longipes, suggesting a role for polyol transporters in defense mechanisms. In celery, in situ hybridization showed that AgMaT2 was expressed in the phloem of leaflets, petioles from young and mature leaves, floral stems, and roots. In the phloem of petioles and leaflets, AgMaT2, as localized with specific antibodies, was present in the plasma membrane of three ontologically related cell types: sieve elements, companion cells, and phloem parenchyma cells. These new data are discussed in relation to the physiological role of AgMaT2 in regulating mannitol fluxes in celery petioles.

  7. DHP-derivative and low oxygen tension effectively induces human adipose stromal cell reprogramming.

    Directory of Open Access Journals (Sweden)

    Min Ki Jee

    Full Text Available BACKGROUND AND METHODS: In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl-derivative (DHP-d to directly induce adipose tissue stromal cells (ATSC to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1alpha and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC. Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions. CONCLUSIONS/SIGNIFICANCE: Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.

  8. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  9. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  10. Linking chromatin dynamics, cell fate plasticity, and tissue homeostasis in adult mouse hair follicle stem cells.

    Science.gov (United States)

    Lee, Jayhun; Tumbar, Tudorita

    2017-07-01

    Cellular plasticity for fate acquisition is associated with distinct chromatin states, which include histone modifications, dynamic association of chromatin factors with the DNA, and global chromatin compaction and nuclear organization. While embryonic stem cell (ESC) plasticity in vitro and its link with chromatin states have been characterized in depth, little is known about tissue stem cell plasticity in vivo , during adult tissue homeostasis. Recently, we reported a distinct globally low level of histone H3 K4/9/27me3 in mouse hair follicle stem cells (HFSCs) during quiescence. This occurred at the stage preceding fate acquisition, when HFSC fate plasticity must be at its highest. This hypomethylated state was required for proper skin homeostasis and timely hair cycle. Here, we show both in the live tissue and in cell culture that at quiescence HFSCs have higher exchange rates for core histone H2B when compared with proliferative or differentiated cells. This denoted a hyperdynamic chromatin state, which was previously associated with high cell fate plasticity in ESCs. Moreover, we find that quiescent HFSCs display a higher propensity for de-differentiation in response to Yamanaka's reprogramming factors in vivo . These results further support our recent model in which HFSCs render their chromatin into a specific state at quiescence, which is attuned to higher cell fate plasticity.

  11. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    International Nuclear Information System (INIS)

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-01

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  12. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  13. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3.

    Directory of Open Access Journals (Sweden)

    Noelia Sanchez

    Full Text Available MiR-7 acts as a tumour suppressor in many cancers and abrogates proliferation of CHO cells in culture. In this study we demonstrate that miR-7 targets key regulators of the G1 to S phase transition, including Skp2 and Psme3, to promote increased levels of p27(KIP and temporary growth arrest of CHO cells in the G1 phase. Simultaneously, the down-regulation of DNA repair-specific proteins via miR-7 including Rad54L, and pro-apoptotic regulators such as p53, combined with the up-regulation of anti-apoptotic factors like p-Akt, promoted cell survival while arrested in G1. Thus miR-7 can co-ordinate the levels of multiple genes and proteins to influence G1 to S phase transition and the apoptotic response in order to maintain cellular homeostasis. This work provides further mechanistic insight into the role of miR-7 as a regulator of cell growth in times of cellular stress.

  14. In a patient with biclonal Waldenstrom macroglobulinemia only one clone expands in three-dimensional culture and includes putative cancer stem cells.

    Science.gov (United States)

    Kirshner, Julia; Thulien, Kyle J; Kriangkum, Jitra; Motz, Sarah; Belch, Andrew R; Pilarski, Linda M

    2011-02-01

    A small percentage of cases of Waldenstrom macroglobulinemia (WM) present with biclonality, defined here as the rearrangement of two distinct VDJ gene segments. Here we investigated the expansion of two clones from a patient with WM expressing molecularly detectable clonotypic gene rearrangements, one V(H)3 and one V(H)4. Biclonality was determined in blood and bone marrow mononuclear cells using real-time quantitative PCR (RQ-PCR). V(H)4 expressing cells but not V(H)3 expressing cells underwent clonal expansion in 3-D culture of reconstructed WM bone marrow. After 3-D culture, secondary culture in a colony forming unit assay, and RQ-PCR, only the V(H)4 clone was shown to harbor a subpopulation with characteristics of cancer stem cells, including proliferative quiescence, self-regeneration, and the ability to generate clonotypic progeny, suggesting that the V(H)4, but not the V(H)3, clone is clinically significant. Enrichment of potential WM stem cells in 3-D cultures holds promise for monitoring their response to treatment and for testing new therapies.

  15. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  16. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B.; Pirollo, Kathleen F.; Chang, Esther H.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood–brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. PMID:26116770

  17. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B; Pirollo, Kathleen F; Chang, Esther H

    2015-12-18

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A preclinical evaluation of the MEK inhibitor refametinib in HER2-positive breast cancer cell lines including those with acquired resistance to trastuzumab or lapatinib

    Science.gov (United States)

    O’Shea, John; Cremona, Mattia; Morgan, Clare; Milewska, Malgorzata; Holmes, Frankie; Espina, Virginia; Liotta, Lance; O’Shaughnessy, Joyce; Toomey, Sinead; Madden, Stephen F.; Carr, Aoife; Elster, Naomi; Hennessy, Bryan T.; Eustace, Alex J.

    2017-01-01

    Purpose The MEK/MAPK pathway is commonly activated in HER2-positive breast cancer, but little investigation of targeting this pathway has been undertaken. Here we present the results of an in vitro preclinical evaluation of refametinib, an allosteric MEK1/2 inhibitor, in HER2-positive breast cancer cell lines including models of acquired resistance to trastuzumab or lapatinib. Methods A panel of HER2-positive breast cancer cells were profiled for mutational status and also for anti-proliferative response to refametinib alone and in combination with the PI3K inhibitor (PI3Ki) copanlisib and the HER2-targeted therapies trastuzumab and lapatinib. Reverse phase protein array (RPPA) was used to determine the effect of refametinib alone and in combination with PI3Ki and HER2-inhibitors on expression and phosphorylation of proteins in the PI3K/AKT and MEK/MAPK pathways. We validated our proteomic in vitro findings by utilising RPPA analysis of patients who received either trastuzumab, lapatinib or the combination of both drugs in the NCT00524303/LPT109096 clinical trial. Results Refametinib has anti-proliferative effects when used alone in 2/3 parental HER2-positive breast cancer cell lines (HCC1954, BT474), along with 3 models of these 2 cell lines with acquired trastuzumab or lapatinib resistance (6 cell lines tested). Refametinib treatment led to complete inhibition of MAPK signalling. In HCC1954, the most refametinib-sensitive cell line (IC50 = 397 nM), lapatinib treatment inhibits phosphorylation of MEK and MAPK but activates AKT phosphorylation, in contrast to the other 2 parental cell lines tested (BT474-P, SKBR3-P), suggesting that HER2 may directly activate MEK/MAPK and not PI3K/AKT in HCC1954 cells but not in the other 2 cell lines, perhaps explaining the refametinib-sensitivity of this cell line. Using RPPA data from patients who received either trastuzumab, lapatinib or the combination of both drugs together with chemotherapy in the NCT00524303 clinical trial

  19. A preclinical evaluation of the MEK inhibitor refametinib in HER2-positive breast cancer cell lines including those with acquired resistance to trastuzumab or lapatinib.

    Science.gov (United States)

    O'Shea, John; Cremona, Mattia; Morgan, Clare; Milewska, Malgorzata; Holmes, Frankie; Espina, Virginia; Liotta, Lance; O'Shaughnessy, Joyce; Toomey, Sinead; Madden, Stephen F; Carr, Aoife; Elster, Naomi; Hennessy, Bryan T; Eustace, Alex J

    2017-10-17

    The MEK/MAPK pathway is commonly activated in HER2-positive breast cancer, but little investigation of targeting this pathway has been undertaken. Here we present the results of an in vitro preclinical evaluation of refametinib, an allosteric MEK1/2 inhibitor, in HER2-positive breast cancer cell lines including models of acquired resistance to trastuzumab or lapatinib. A panel of HER2-positive breast cancer cells were profiled for mutational status and also for anti-proliferative response to refametinib alone and in combination with the PI3K inhibitor (PI3Ki) copanlisib and the HER2-targeted therapies trastuzumab and lapatinib. Reverse phase protein array (RPPA) was used to determine the effect of refametinib alone and in combination with PI3Ki and HER2-inhibitors on expression and phosphorylation of proteins in the PI3K/AKT and MEK/MAPK pathways. We validated our proteomic in vitro findings by utilising RPPA analysis of patients who received either trastuzumab, lapatinib or the combination of both drugs in the NCT00524303/LPT109096 clinical trial. Refametinib has anti-proliferative effects when used alone in 2/3 parental HER2-positive breast cancer cell lines (HCC1954, BT474), along with 3 models of these 2 cell lines with acquired trastuzumab or lapatinib resistance (6 cell lines tested). Refametinib treatment led to complete inhibition of MAPK signalling. In HCC1954, the most refametinib-sensitive cell line (IC 50 = 397 nM), lapatinib treatment inhibits phosphorylation of MEK and MAPK but activates AKT phosphorylation, in contrast to the other 2 parental cell lines tested (BT474-P, SKBR3-P), suggesting that HER2 may directly activate MEK/MAPK and not PI3K/AKT in HCC1954 cells but not in the other 2 cell lines, perhaps explaining the refametinib-sensitivity of this cell line. Using RPPA data from patients who received either trastuzumab, lapatinib or the combination of both drugs together with chemotherapy in the NCT00524303 clinical trial, we found that 18% (n

  20. Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC project.

    Directory of Open Access Journals (Sweden)

    Christopher J Ricketts

    Full Text Available The recent publication of the TCGA Kidney Renal Clear Cell Carcinoma (KIRC project has provided an immense wealth and breadth of data providing an invaluable tool for confirmation and expansion upon previous observations in a large data set containing multiple data types including DNA methylation, somatic mutation, and clinical information. In clear cell renal cell carcinoma (CCRCC many genes have been demonstrated to be epigenetically inactivated by promoter hypermethylated and in a small number of cases to be associated with clinical outcome. This study created two cohorts based on the Illumina BeadChip array used to confirm the frequency of tumor-specific hypermethylation of these published hypermethylated genes, assess the impact of somatic mutation or chromosomal loss and provide the most comprehensive assessment to date of the association of this hypermethylation with patient survival. Hypermethylation of the Fibrillin 2 (FBN2 gene was the most consistent epigenetic biomarker for CCRCC across both cohorts in 40.2% or 52.5% of tumors respectively. Hypermethylation of the secreted frizzled-related protein 1 (SFRP1 gene and the basonuclin 1 (BNC1 gene were both statistically associated with poorer survival in both cohorts (SFRP1 - p = <0.0001 or 0.0010 and BNC1 - p = <0.0001 or 0.0380 and represented better independent markers of survival than tumor stage, grade or dimension in one cohort and tumor stage or dimension in the other cohort. Loss of the SFRP1 protein can potentially activate the WNT pathway and this analysis highlighted hypermethylation of several other WNT pathway regulating genes and demonstrated a poorer survival outcome for patients with somatic mutation of these genes. The success of demethylating drugs in hematological malignances and the current trials in solid tumors suggest that the identification of clinically relevant hypermethylated genes combined with therapeutic advances may improve the effectiveness and

  1. Insulin-like growth factor-1 signaling in renal cell carcinoma

    International Nuclear Information System (INIS)

    Tracz, Adam F.; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M.

    2016-01-01

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells

  2. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  3. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  4. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  5. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line.

    Science.gov (United States)

    Jackson, Petra; Kling, Kirsten; Jensen, Keld Alstrup; Clausen, Per Axel; Madsen, Anne Mette; Wallin, Håkan; Vogel, Ulla

    2015-03-01

    Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured Nanomaterials (WPMN) (NM-401, NM-402, and NM-403), materials (NRCWE-026 and MWCNT-XNRI-7), and three sets of surface-modified MWCNT grouped by physical characteristics (thin, thick, and short I-III, respectively). Each Groups I-III included pristine, hydroxylated and carboxylated MWCNT. Group III also included an amino-functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by <2% of the weight, with exceptions. Based on dynamic light scattering data, the MWCNT were well-dispersed in stock dispersion of nanopure water with 2% serum, but agglomerated and sedimented during exposure. FE1-Muta(TM) Mouse lung epithelial cells were exposed for 24 hr. The levels of DNA strand breaks (SB) were evaluated using the comet assay, a screening assay suitable for genotoxicity testing of nanomaterials. Exposure to MWCNT (12.5-200 µg/ml) did not induce significant cytotoxicity (viability above 92%). Cell proliferation was reduced in highest doses of some MWCNT after 24 hr, and was associated with generation of reactive oxygen species and high surface area. Increased levels of DNA SB were only observed for Group II consisting of MWCNT with large diameters and high Fe2 O3 and Ni content. Significantly, increased levels of SB were only observed at 200 µg/ml of MWCNT-042. Overall, the MWCNT were not cytotoxic and weakly genotoxic after 24 hr exposure to doses up to 200 µg/ml. © 2014 Wiley Periodicals, Inc.

  6. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  7. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  8. Report of two cases of pseudoprogression in patients with non-small cell lung cancer treated with nivolumab-including histological analysis of one case after tumor regression.

    Science.gov (United States)

    Tanizaki, Junko; Hayashi, Hidetoshi; Kimura, Masatomo; Tanaka, Kaoru; Takeda, Masayuki; Shimizu, Shigeki; Ito, Akihiko; Nakagawa, Kazuhiko

    2016-12-01

    The recent approval of nivolumab and other immune-checkpoint inhibitors for the treatment of certain solid tumors including non-small cell lung cancer (NSCLC) has transformed cancer therapy. However, it will be important to characterize effects of such agents not seen with classical cytotoxic drugs or other targeted therapeutics. We here report two cases of NSCLC showing so-called pseudoprogression during nivolumab treatment. In both cases, imaging assessment revealed that liver metastatic lesions initially progressed but subsequently shrank during continuous nivolumab administration, with treatment also resulting in a decline in serum levels of carcinoembryonic antigen. Histological evaluation of the liver metastatic lesion of one case after regression revealed fibrotic tissue containing infiltrated lymphocytes positive for CD3, CD4, or CD8 but no viable tumor cells, suggestive of a durable immune reaction even after a pathological complete response. Given the increasing use of immune-checkpoint inhibitors in patients with NSCLC or other solid tumors, further clinical evaluation and pathological assessment are warranted to provide a better understanding of such pseudoprogression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  10. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells

    OpenAIRE

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L.; Liao, Gongxian; Hoffman, Brad E.; Leong, Kam W.; Terhorst, Cox; Daniell, Henry; Herzog, Roland W.

    2015-01-01

    Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets.Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.

  11. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming

    Directory of Open Access Journals (Sweden)

    Pengfei Ji

    2016-01-01

    Full Text Available Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC, have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (dedifferentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs, generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  12. Redifferentiation of adult human β cells expanded in vitro by inhibition of the WNT pathway.

    Directory of Open Access Journals (Sweden)

    Ayelet Lenz

    Full Text Available In vitro expansion of adult human islet β cells is an attractive solution for the shortage of tissue for cell replacement therapy of type 1 diabetes. Using a lineage tracing approach we have demonstrated that β-cell-derived (BCD cells rapidly dedifferentiate in culture and can proliferate for up to 16 population doublings. Dedifferentiation is associated with changes resembling epithelial-mesenchymal transition (EMT. The WNT pathway has been shown to induce EMT and plays key roles in regulating replication and differentiation in many cell types. Here we show that BCD cell dedifferentiation is associated with β-catenin translocation into the nucleus and activation of the WNT pathway. Inhibition of β-catenin expression in expanded BCD cells using short hairpin RNA resulted in growth arrest, mesenchymal-epithelial transition, and redifferentiation, as judged by activation of β-cell gene expression. Furthermore, inhibition of β-catenin expression synergized with redifferentiation induced by a combination of soluble factors, as judged by an increase in the number of C-peptide-positive cells. Simultaneous inhibition of the WNT and NOTCH pathways also resulted in a synergistic effect on redifferentiation. These findings, which were reproducible in cells derived from multiple human donors, suggest that inhibition of the WNT pathway may contribute to a therapeutically applicable way for generation of functional insulin-producing cells following ex-vivo expansion.

  13. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro – evaluation towards understanding breast cancer cell bone metastasis

    Directory of Open Access Journals (Sweden)

    Du William

    2012-08-01

    Full Text Available Abstract Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14, and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling

  14. Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Noij, Daniel P., E-mail: d.noij@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Pouwels, Petra J.W., E-mail: pjw.pouwels@vumc.nl [Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Ljumanovic, Redina, E-mail: rljumanovic@adventh.org [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Knol, Dirk L., E-mail: dirklknol@gmail.com [Department of Epidemiology and Biostatistics, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Doornaert, Patricia, E-mail: p.doornaert@vumc.nl [Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Bree, Remco de, E-mail: r.debree@vumc.nl [Department of Otolaryngology – Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Castelijns, Jonas A., E-mail: j.castelijns@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Graaf, Pim de, E-mail: p.degraaf@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands)

    2015-01-15

    Highlights: • Primary tumor volume and lymph node ADC1000 are predictors of survival. • CE-T1WI does not improve the prognostic capacity of DWI. • Using CE-T1WI for ROI placement results in lower interobserver agreement. - Abstract: Objectives: To assess disease-free survival (DFS) in head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy ([C]RT). Methods: Pretreatment MR-images of 78 patients were retrospectively studied. Apparent diffusion coefficients (ADC) were calculated with two sets of two b-values: 0–750 s/mm{sup 2} (ADC{sub 750}) and 0–1000 s/mm{sup 2} (ADC{sub 1000}). One observer assessed tumor volume on T1-WI. Two independent observers assessed ADC-values of primary tumor and largest lymph node in two sessions (i.e. without and with including CE-T1WI in image analysis). Interobserver and intersession agreement were assessed with intraclass correlation coefficients (ICC) separately for ADC{sub 750} and ADC{sub 1000}. Lesion volumes and ADC-values were related to DFS using Cox regression analysis. Results: Median follow-up was 18 months. Interobserver ICC was better without than with CE-T1WI (primary tumor: 0.92 and 0.75–0.83, respectively; lymph node: 0.81–0.83 and 0.61–0.64, respectively). Intersession ICC ranged from 0.84 to 0.89. With CE-T1WI, mean ADC-values of primary tumor and lymph node were higher at both b-values than without CE-T1WI (P < 0.001). Tumor volume (sensitivity: 73%; specificity: 57%) and lymph node ADC{sub 1000} (sensitivity: 71–79%; specificity: 77–79%) were independent significant predictors of DFS without and with including CE-T1WI (P < 0.05). Conclusions: Pretreatment primary tumor volume and lymph node ADC{sub 1000} were significant independent predictors of DFS in HNSCC treated with (C)RT. DFS could be predicted from ADC-values acquired without and with including CE-T1WI in image analysis. The inclusion of CE-T1WI did not result in significant improvements in the predictive value of

  15. Efficacy and safety of deferasirox compared with deferoxamine in sickle cell disease: two-year results including pharmacokinetics and concomitant hydroxyurea.

    Science.gov (United States)

    Vichinsky, Elliott; Torres, Marcela; Minniti, Caterina P; Barrette, Stephane; Habr, Dany; Zhang, Yiyun; Files, Beatrice

    2013-12-01

    We report a prospective, randomized, Phase II study of deferasirox and deferoxamine (DFO) in sickle cell disease patients with transfusional iron overload, with all patients continuing on deferasirox after 24 weeks, for up to 2 years. The primary objective was to evaluate deferasirox safety compared with DFO; long-term efficacy and safety of deferasirox was also assessed. We also report, for the first time, the safety and pharmacokinetics of deferasirox in patients concomitantly receiving hydroxyurea. Deferasirox (n = 135) and DFO (n = 68) had comparable safety profiles over 24 weeks. Adverse events (AEs) secondary to drug administration were reported in 26.7% of patients in the deferasirox cohort and 28.6% in the DFO cohort. Gastrointestinal disorders were more common with deferasirox, including diarrhea (10.4% versus 3.6%) and nausea (5.2% versus 3.6%). The most common AE in the DFO group was injection-site pain irritation, which occurred in 7% of patients. Acute renal failure occurred in one patient on deferasirox who was continued on medication despite progressive impairment of renal function parameters. Serum ferritin levels were reduced in both treatment groups. Patients continuing on deferasirox for up to 2 years demonstrated an absolute median serum ferritin decrease of -614 ng/mL (n = 96). Increasing deferasirox dose was associated with improved response and a continued manageable safety profile. Concomitant hydroxyurea administration (n = 28) did not appear to influence the efficacy, safety (including liver and kidney function), and pharmacokinetic parameters of deferasirox. Copyright © 2013 Wiley Periodicals, Inc.

  16. Whole-body-MR imaging including DWIBS in the work-up of patients with head and neck squamous cell carcinoma: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Noij, Daniel P., E-mail: d.noij@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Boerhout, Els J., E-mail: e.boerhout@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Pieters-van den Bos, Indra C., E-mail: i.pieters@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Comans, Emile F., E-mail: efi.comans@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Oprea-Lager, Daniela, E-mail: d.oprea-lager@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Reinhard, Rinze, E-mail: r.reinhard@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Hoekstra, Otto S., E-mail: os.hoekstra@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Bree, Remco de, E-mail: r.debree@vumc.nl [Department Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Graaf, Pim de, E-mail: p.degraaf@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands); Castelijns, Jonas A., E-mail: j.castelijns@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, PO Box 7057, 1007 MB Amsterdam (Netherlands)

    2014-07-15

    Objectives: To assess the feasibility of whole-body magnetic resonance imaging (WB-MRI) including diffusion-weighted whole-body imaging with background-body-signal-suppression (DWIBS) for the evaluation of distant malignancies in head and neck squamous cell carcinoma (HNSCC); and to compare WB-MRI findings with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG-PET/CT) and chest-CT. Methods: Thirty-three patients with high risk for metastatic spread (26 males; range 48–79 years, mean age 63 ± 7.9 years (mean ± standard deviation) years) were prospectively included with a follow-up of six months. WB-MRI protocol included short-TI inversion recovery and T1-weighted sequences in the coronal plane and half-fourier acquisition single-shot turbo spin-echo T2 and contrast-enhanced-T1-weighted sequences in the axial plane. Axial DWIBS was reformatted in the coronal plane. Interobserver variability was assessed using weighted kappa and the proportion specific agreement (PA). Results: Two second primary tumors and one metastasis were detected on WB-MRI. WB-MRI yielded seven clinically indeterminate lesions which did not progress at follow-up. The metastasis and one second primary tumor were found when combining {sup 18}F-FDG-PET/CT and chest-CT findings. Interobserver variability for WB-MRI was κ = 0.91 with PA ranging from 0.82 to 1.00. For {sup 18}F-FDG-PET/CT κ could not be calculated due to a constant variable in the table and PA ranged from 0.40 to 0.99. Conclusions: Our WB-MRI protocol with DWIBS is feasible in the work-up of HNSCC patients for detection and characterization of distant pathology. WB-MRI can be complementary to {sup 18}F-FDG-PET/CT, especially in the detection of non {sup 18}F-FDG avid second primary tumors.

  17. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  18. Cost-effective and rapid lysis of Saccharomyces cerevisiae cells for quantitative western blot analysis of proteins, including phosphorylated eIF2α.

    Science.gov (United States)

    Lee, Su Jung; Ramesh, Rashmi; de Boor, Valerie; Gebler, Jan M; Silva, Richard C; Sattlegger, Evelyn

    2017-09-01

    The common method for liberating proteins from Saccharomyces cerevisiae cells involves mechanical cell disruption using glass beads and buffer containing inhibitors (protease, phosphatase and/or kinase inhibitors), followed by centrifugation to remove cell debris. This procedure requires the use of costly inhibitors and is laborious, in particular when many samples need to be processed. Also, enzymatic reactions can still occur during harvesting and cell breakage. As a result low-abundance and labile proteins may be degraded, and enzymes such as kinases and phosphatases may still modify proteins during and after cell lysis. We believe that our rapid sample preparation method helps overcome the above issues and offers the following advantages: (a) it is cost-effective, as no inhibitors and breaking buffer are needed; (b) cell breakage is fast (about 15 min) since it only involves a few steps; (c) the use of formaldehyde inactivates endogenous proteases prior to cell lysis, dramatically reducing the risk of protein degradation; (d) centrifugation steps only occur prior to cell lysis, circumventing the problem of losing protein complexes, in particular if cells were treated with formaldehyde intended to stabilize and capture large protein complexes; and (e) since formaldehyde has the potential to instantly terminate protein activity, this method also allows the study of enzymes in live cells, i.e. in their true physiological environment, such as the short-term effect of a drug on enzyme activity. Taken together, the rapid sample preparation procedure provides a more accurate snapshot of the cell's protein content at the time of harvesting. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Control of Multidrug-Resistant Pseudomonas aeruginosa in Allogeneic Hematopoietic Stem Cell Transplant Recipients by a Novel Bundle Including Remodeling of Sanitary and Water Supply Systems.

    Science.gov (United States)

    Kossow, Annelene; Kampmeier, Stefanie; Willems, Stefanie; Berdel, Wolfgang E; Groll, Andreas H; Burckhardt, Birgit; Rossig, Claudia; Groth, Christoph; Idelevich, Evgeny A; Kipp, Frank; Mellmann, Alexander; Stelljes, Matthias

    2017-09-15

    Infections by multidrug-resistant Pseudomonas aeruginosa (MDRPa) are an important cause of morbidity and mortality in patients after allogeneic hematopoietic stem cell transplantation (HSCT). Humid environments can serve as a reservoir and source of infection by this pathogen. To minimize the risk of infection from these reservoirs, we performed extensive remodeling of sanitation and water installations as the focus of our hygiene bundle. During the reconstruction of our transplantation unit (April 2011-April 2014) we implemented several technical modifications to reduce environmental contamination by and subsequent spreading of MDRPa, including a newly designed shower drain, disinfecting siphons underneath the sinks, and rimless toilets. During a 3-year study period (2012-2014), we tracked the number of patients affected by MDRPa (colonized and/or infected) and the outcome of infected patients, and monitored the environmental occurrence of this pathogen. We further performed whole-genome sequencing of nosocomial MDRPa strains to evaluate genotypic relationships between isolates. Whereas 31 (9.2%; 18 colonized, 13 infected) patients were affected in 2012 and 2013, the number decreased to 3 in 2014 (17%; 3 colonized, 0 infected). Lethality by MDRPa similarly decreased from 3.6% to 0%. Environmental detection of MDRPa decreased in toilets from 18.9% in 2012-2013 to 6.1% in the following year and from 8.1% to 3.0%, respectively, in shower outlets. Whole-genome sequencing showed close relationships between environmental and patient-derived isolates. Hospital construction measures aimed at controlling environmental contamination by and spread of MDRPa are effective at minimizing the risk of highly lethal MDRPa infections. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome

    DEFF Research Database (Denmark)

    Lottrup, G; Nielsen, J E; Maroun, L L

    2014-01-01

    STUDY QUESTION: What is the differentiation stage of human testicular interstitial cells, in particular Leydig cells (LC), within micronodules found in patients with infertility, testicular cancer and Klinefelter syndrome? SUMMARY ANSWER: The Leydig- and peritubular-cell populations in testes....... MAIN RESULTS AND THE ROLE OF CHANCE: DLK1, INSL3 and COUP-TFII expression changed during normal development and was linked to different stages of LC differentiation: DLK1 was expressed in all fetal LCs, but only in spindle-shaped progenitor cells and in a small subset of polygonal LCs in the normal...... adult testis; INSL3 was expressed in a subset of fetal LCs, but in the majority of adult LCs; and COUP-TFII was expressed in peritubular and mesenchymal stroma cells at all ages, in fetal LCs early in gestation and in a subset of adult LCs. CYP11A1 was expressed in the majority of LCs regardless of age...

  1. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  2. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells.

    Science.gov (United States)

    Wang, Xiaomei; Su, Jin; Sherman, Alexandra; Rogers, Geoffrey L; Liao, Gongxian; Hoffman, Brad E; Leong, Kam W; Terhorst, Cox; Daniell, Henry; Herzog, Roland W

    2015-04-09

    Coagulation factor replacement therapy for the X-linked bleeding disorder hemophilia is severely complicated by antibody ("inhibitor") formation. We previously found that oral delivery to hemophilic mice of cholera toxin B subunit-coagulation factor fusion proteins expressed in chloroplasts of transgenic plants suppressed inhibitor formation directed against factors VIII and IX and anaphylaxis against factor IX (FIX). This observation and the relatively high concentration of antigen in the chloroplasts prompted us to evaluate the underlying tolerance mechanisms. The combination of oral delivery of bioencapsulated FIX and intravenous replacement therapy induced a complex, interleukin-10 (IL-10)-dependent, antigen-specific systemic immune suppression of pathogenic antibody formation (immunoglobulin [Ig] 1/inhibitors, IgE) in hemophilia B mice. Tolerance induction was also successful in preimmune mice but required prolonged oral delivery once replacement therapy was resumed. Orally delivered antigen, initially targeted to epithelial cells, was taken up by dendritic cells throughout the small intestine and additionally by F4/80(+) cells in the duodenum. Consistent with the immunomodulatory responses, frequencies of tolerogenic CD103(+) and plasmacytoid dendritic cells were increased. Ultimately, latency-associated peptide expressing CD4(+) regulatory T cells (CD4(+)CD25(-)LAP(+) cells with upregulated IL-10 and transforming growth factor-β (TGF-β) expression) as well as conventional CD4(+)CD25(+) regulatory T cells systemically suppressed anti-FIX responses. © 2015 by The American Society of Hematology.

  3. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Roccella, R.

    2007-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium Cooled Pebble Bed Test Blanket Module- (HCPB-TBM) System is developed. The TBM test schedule foresees four different campaigns for simulation of DEMO relevant conditions, campaign requires a dedicate TBM. Therefore a concept for TBM integration into ITER is designed with attention to simplify the mounting/dismounting operations. This paper presents the status of this concept with regard to the operations in hot cell required to install a new TBM into an equatorial TBM Port Plug (PP). This includes the establishment of the connection for the attachment, supply- and diagnostic lines in the environment of the interface (IF 1) between the TBM rear part and the PP backside shield. The connection of IF 1 has to be designed to cope with a temperature difference between TBM and PP (∝200 K) and the EM-loads during normal operation and disruption scenarios. The reference attachment concept based on shear keys and flexible cartridges is revised to cope with new conditions on the load and at the interface to the PP. According to the latest results of EM analysis, a radial component of the Maxwell forces (due to the ferromagnetic structural material) has been identified as an additional challenging load for the attachment. Furthermore, the replacing operations at IF 1 are influenced by the design of the PP; the recent ITER proposal based on a removable back side shield allows access to the IF 1 from the periphery after the frame of the PP surrounding the TBM is removed. As for the mechanical attachment, the tools and operations for connection of the TBM supply lines (Helium-, Purge- and measurement lines for different purpose depending on the test schedule) are strongly influenced by the restrictions to access IF 1, too. Dismantling of the frame would allow direct access to the interface by e.g. orbital welding tools. The concept for connection of the TBM

  4. Oocyte-like cells induced from mouse spermatogonial stem cells.

    Science.gov (United States)

    Wang, Lu; Cao, Jinping; Ji, Ping; Zhang, Di; Ma, Lianghong; Dym, Martin; Yu, Zhuo; Feng, Lixin

    2012-08-06

    During normal development primordial germ cells (PGCs) derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG) cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs) can also revert back to pluripotency as embryonic stem (ES)-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs) were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  5. Oocyte-like cells induced from mouse spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2012-08-01

    Full Text Available Abstract Background During normal development primordial germ cells (PGCs derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs can also revert back to pluripotency as embryonic stem (ES-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. Results We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Conclusions Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  6. Autologous fat injection therapy including a high concentration of adipose-derived regenerative cells in a vocal fold paralysis model: animal pilot study.

    Science.gov (United States)

    Nishio, N; Fujimoto, Y; Suga, K; Iwata, Y; Toriyama, K; Takanari, K; Kamei, Y; Yamamoto, T; Gotoh, M

    2016-10-01

    To verify the effectiveness and safety of the addition of adipose-derived regenerative cells to autologous fat injection therapy. Unilateral vocal fold paralysis models were made by cutting the right recurrent laryngeal nerve in two pigs. At day 30, 0.5 ml adipose-derived regenerative cells mixed with 1 ml autologous fat was injected into the right vocal fold of one pig, with the other receiving 0.5 ml Ringer's solution mixed with 1 ml autologous fat. At day 120, fibrescopy, laser Doppler flowmeter, computed tomography, vocal function evaluation and histological assessment were conducted. Although histological assessment revealed atrophy of the thyroarytenoid muscle fibre in both pigs, there was remarkable hypertrophy of the thyroarytenoid muscle fibre in the area surrounding the adipose-derived regenerative cells injection site. The addition of a high concentration of adipose-derived regenerative cells to autologous fat injection therapy has the potential to improve the treatment outcome for unilateral vocal fold paralysis.

  7. The T Cell Response to Major Grass Allergens Is Regulated and Includes IL-10 Production in Atopic but Not in Non-Atopic Subjects

    DEFF Research Database (Denmark)

    Domdey, A.; Liu, A.; Millner, A.

    2010-01-01

    from healthy and grass-allergic donors and stimulated with the major grass allergens Phl p 1 or Phl p 5. The effects of endogenous IL-10 and/or TGF-beta on proliferation and cytokine production were determined by use of blocking antibodies. In addition, the number of CD4(+)CD25(+) T cells...... and their expression of chemokine receptors were investigated by flow cytometry. Results: Phl p 1 and Phl p 5 induced IL-10 production, which down-regulated proliferation and cytokine production, in PBMC cultures from atopic but not from non-atopic donors. Comparable frequencies of CD4(+)CD25(+) T cells were present...

  8. Understanding Romanowsky staining. 2. The staining mechanism of suspension-fixed cells, including influences of specimen morphology on the Romanowsky-Giemsa effect.

    Science.gov (United States)

    Horobin, R W; Curtis, D; Pindar, L

    1989-01-01

    Romanowsky staining of suspension-fixed lymphocytes and fibroblasts, deposited as monolayers on slides, involves an initial basic dyeing process followed by formation of a hydrophobic Azur B/Eosin Y complex at the more permeable and so faster staining cellular sites. This mechanism is shared with blood and marrow smears. However certain morphological features peculiar to suspension-fixed, cell culture-derived preparations also influence the staining pattern via rate control: namely the irregular and bulky profiles of fibroblasts, compared to the smoother and thinner lymphocytes; and the occasional superficial occlusion of cells by culture medium.

  9. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways

    DEFF Research Database (Denmark)

    Vestergaard, Maj Linea; Awan, Aashir; Warzecha, Caroline Becker

    2016-01-01

    onto 16-well glass chambers, and continuing with the general IFM and qPCR anlysis. The techniques are illustrated with results on cellular localization of transcriptional factors and components of the Hedgehog, Wnt, PDGF, and TGFβ signaling pathways to primary cilia in stem cell maintenance...

  10. Granular cell tumor of the oral cavity; a case series including a case of metachronous occurrence in the tongue and the lung

    NARCIS (Netherlands)

    van de Loo, S.; Thunissen, E.; Postmus, P.; van der Waal, I.

    2015-01-01

    The granular cell tumor (GCT) is a rare, benign tumor that most commonly occurs in the oral cavity, particularly in the anterior part of the tongue. In this study the experience with 16 patients with a GCT observed in a single Institution will be discussed. Although no radicality has been obtained

  11. The T cell response to major grass allergens is regulated and includes IL-10 production in atopic but not in non-atopic subjects

    DEFF Research Database (Denmark)

    Domdey, A; Liu, A; Millner, A

    2010-01-01

    The incidence of allergic diseases is increasing in industrialized countries and the immunological mechanisms leading to tolerance or allergy are poorly understood. Cytokines with suppressive abilities and CD4(+)CD25(+) regulatory T cells have been suggested to play a central role in allergen-spe...

  12. Excellent scalability including self-heating phenomena of vertical-channel field-effect-diode type capacitor-less one transistor dynamic random access memory cell

    Science.gov (United States)

    Imamoto, Takuya; Endoh, Tetsuo

    2014-01-01

    The scalability study and the impact of the self-heating effect (SHE) on memory operation of the bulk vertical-channel field effect diode (FED) type capacitorless one transistor (1T) dynamic random access memory (DRAM) cell are investigated via device simulator for the first time. The vertical-channel FED type 1T-DRAM cell shows the excellent hold characteristics (100 ms at 358 K of ambient temperature) with large enough read current margin (1 µA/cell) even when silicon pillar diameter (D) is scaled down from 20 to 12 nm. It is also shown that by employing the vertical-channel FED type, maximum lattice temperature in the memory cell due to SHE (T_{\\text{L}}^{\\text{Max}}) can be suppressed to a negligible small value and only reach 300.6 from 300 K ambient temperature due to the low lateral electric field, while the vertical-channel bipolar junction transistor (BJT) type 1T-DRAM shows significant SHE (T_{\\text{L}}^{\\text{Max}} = 330.6 K). Moreover, this excellent thermal characteristic can be maintained even when D is scaled down from 20 to 12 nm.

  13. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro

    Science.gov (United States)

    Kasper, Jennifer Y; Hermanns, Maria Iris; Cavelius, Christian; Kraegeloh, Annette; Jung, Thomas; Danzebrink, Rolf; Unger, Ronald E; Kirkpatrick, Charles James

    2016-01-01

    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells

  14. Cellular Phone Towers, Cell tower locations as derived from various sources including the Department of Licenses and Inspections and the Department of Planning and Zoning., Published in 2010, 1:2400 (1in=200ft) scale, Howard County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Cellular Phone Towers dataset current as of 2010. Cell tower locations as derived from various sources including the Department of Licenses and Inspections and the...

  15. Basic fibroblast growth factor is critical to reprogramming buffalo (Bubalus bubalis) primordial germ cells into embryonic germ stem cell-like cells.

    Science.gov (United States)

    Wang, Caizhu; Deng, Yanfei; Chen, Feng; Zhu, Peng; Wei, Jingwei; Luo, Chan; Lu, Fenghua; Yang, Sufang; Shi, Deshun

    2017-03-15

    Primordial germ cells (PGCs) are destined to form gametes in vivo, and they can be reprogrammed into pluripotent embryonic germ (EG) cells in vitro. Buffalo PGC have been reported to be reprogrammed into EG-like cells, but the identities of the major signaling pathways and culture media involved in this derivation remain unclear. Here, the effects of basic fibroblast growth factor (bFGF) and downstream signaling pathways on the reprogramming of buffalo PGCs into EG-like cells were investigated. Results showed bFGF to be critical to buffalo PGCs to dedifferentiate into EG-like cells (20 ng/mL is optimal) with many characteristics of pluripotent stem cells, including alkaline phosphatase (AP) activity, expression of pluripotency marker genes such as OCT4, NANOG, SOX2, SSEA-1, CDH1, and TRA-1-81, and the capacity to differentiate into all three embryonic germ layers. After chemically inhibiting pathways or components downstream of bFGF, data showed that inhibition of the PI3K/AKT pathway led to significantly lower EG cell derivation, while inhibition of P53 activity resulted in an efficiency of EG cell derivation comparable to that in the presence of bFGF. These results suggest that the role of bFGF in PGC-derived EG-like cell generation is mainly due to the activation of the PI3K/AKT/P53 pathway, in particular, the inhibition of P53 function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.; Madsen, Henrik

    2014-01-01

    The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is dened as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price....... In the proposed setup, heat is provided by conventional electric radiators and a combined heat and power generation system, composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model predictive control and mathematical models of the components involved. Simulations show...... that the predictive energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel cell suitable for micro-grid applications. The model is realized applying a grey...

  17. Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Bell, Andrew M; Marin, Alina; Taylor, Rebecca; Boyle, Kieran A; Furuta, Takahiro; Watanabe, Masahiko; Polgár, Erika; Todd, Andrew J

    2017-03-01

    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ∼14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ∼15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

  18. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Ayoung Lee

    2017-05-01

    Full Text Available The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei, Bifidobacterium animalis ssp. lactis (B. lactis and heat-treated Lactobacillus plantarum (L. plantarum on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK cell activity, interleukin (IL-12 and immunoglobulin (Ig G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425.

  19. Dynamic Regulation of a Cell Adhesion Protein Complex Including CADM1 by Combinatorial Analysis of FRAP with Exponential Curve-Fitting

    Science.gov (United States)

    Sakurai-Yageta, Mika; Maruyama, Tomoko; Suzuki, Takashi; Ichikawa, Kazuhisa; Murakami, Yoshinori

    2015-01-01

    Protein components of cell adhesion machinery show continuous renewal even in the static state of epithelial cells and participate in the formation and maintenance of normal epithelial architecture and tumor suppression. CADM1 is a tumor suppressor belonging to the immunoglobulin superfamily of cell adhesion molecule and forms a cell adhesion complex with an actin-binding protein, 4.1B, and a scaffold protein, MPP3, in the cytoplasm. Here, we investigate dynamic regulation of the CADM1-4.1B-MPP3 complex in mature cell adhesion by fluorescence recovery after photobleaching (FRAP) analysis. Traditional FRAP analysis were performed for relatively short period of around 10min. Here, thanks to recent advances in the sensitive laser detector systems, we examine FRAP of CADM1 complex for longer period of 60 min and analyze the recovery with exponential curve-fitting to distinguish the fractions with different diffusion constants. This approach reveals that the fluorescence recovery of CADM1 is fitted to a single exponential function with a time constant (τ) of approximately 16 min, whereas 4.1B and MPP3 are fitted to a double exponential function with two τs of approximately 40-60 sec and 16 min. The longer τ is similar to that of CADM1, suggesting that 4.1B and MPP3 have two distinct fractions, one forming a complex with CADM1 and the other present as a free pool. Fluorescence loss in photobleaching analysis supports the presence of a free pool of these proteins near the plasma membrane. Furthermore, double exponential fitting makes it possible to estimate the ratio of 4.1B and MPP3 present as a free pool and as a complex with CADM1 as approximately 3:2 and 3:1, respectively. Our analyses reveal a central role of CADM1 in stabilizing the complex with 4.1B and MPP3 and provide insight in the dynamics of adhesion complex formation. PMID:25780926

  20. Dynamic regulation of a cell adhesion protein complex including CADM1 by combinatorial analysis of FRAP with exponential curve-fitting.

    Science.gov (United States)

    Sakurai-Yageta, Mika; Maruyama, Tomoko; Suzuki, Takashi; Ichikawa, Kazuhisa; Murakami, Yoshinori

    2015-01-01

    Protein components of cell adhesion machinery show continuous renewal even in the static state of epithelial cells and participate in the formation and maintenance of normal epithelial architecture and tumor suppression. CADM1 is a tumor suppressor belonging to the immunoglobulin superfamily of cell adhesion molecule and forms a cell adhesion complex with an actin-binding protein, 4.1B, and a scaffold protein, MPP3, in the cytoplasm. Here, we investigate dynamic regulation of the CADM1-4.1B-MPP3 complex in mature cell adhesion by fluorescence recovery after photobleaching (FRAP) analysis. Traditional FRAP analysis were performed for relatively short period of around 10 min. Here, thanks to recent advances in the sensitive laser detector systems, we examine FRAP of CADM1 complex for longer period of 60 min and analyze the recovery with exponential curve-fitting to distinguish the fractions with different diffusion constants. This approach reveals that the fluorescence recovery of CADM1 is fitted to a single exponential function with a time constant (τ) of approximately 16 min, whereas 4.1B and MPP3 are fitted to a double exponential function with two τs of approximately 40-60 sec and 16 min. The longer τ is similar to that of CADM1, suggesting that 4.1B and MPP3 have two distinct fractions, one forming a complex with CADM1 and the other present as a free pool. Fluorescence loss in photobleaching analysis supports the presence of a free pool of these proteins near the plasma membrane. Furthermore, double exponential fitting makes it possible to estimate the ratio of 4.1B and MPP3 present as a free pool and as a complex with CADM1 as approximately 3:2 and 3:1, respectively. Our analyses reveal a central role of CADM1 in stabilizing the complex with 4.1B and MPP3 and provide insight in the dynamics of adhesion complex formation.

  1. Embryonic Stem Cell-Derived Microvesicles: Could They be Used for Retinal Regeneration?

    Science.gov (United States)

    Farber, Debora B; Katsman, Diana

    2016-01-01

    Mouse embryonic stem cells (mESCs) release into the medium in which they are cultured heterogeneous populations of microvesicles (mESMVs), important components of cell-cell communication, that transfer their contents not only to other stem cells but also to cells of other origins. The purpose of these studies was to demonstrate that ESMVs could be the signals that lead the retinal progenitor Müller cells to de-differentiate and re-entry the cell cycle, followed by differentiation along retinal lineages. Indeed, we found that ESMVs induce these processes and change Müller cells' microenvironment towards a more permissive state for tissue regeneration.

  2. Characterization of Genotoxic Response to 15 Multiwalled Carbon Nanotubes with Variable Physicochemical Properties Including Surface Functionalizations in the FE1-Muta(TM) Mouse Lung Epithelial Cell Line

    DEFF Research Database (Denmark)

    Jackson, Petra; Kling, Kirsten; Jensen, Keld Alstrup

    2015-01-01

    Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured Nanoma...

  3. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene.

    Science.gov (United States)

    Oka, Tomoichiro; Saif, Linda J; Marthaler, Douglas; Esseili, Malak A; Meulia, Tea; Lin, Chun-Ming; Vlasova, Anastasia N; Jung, Kwonil; Zhang, Yan; Wang, Qiuhong

    2014-10-10

    The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (n=7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5-6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Endothelin-2/Vasoactive Intestinal Contractor: Regulation of Expression via Reactive Oxygen Species Induced by CoCl22, and Biological Activities Including Neurite Outgrowth in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Eiichi Kotake-Nara

    2006-01-01

    Full Text Available This paper reviews the local hormone endothelin-2 (ET-2, or vasoactive intestinal contractor (VIC, a member of the vasoconstrictor ET peptide family, where ET-2 is the human orthologous peptide of the murine VIC. While ET-2/VIC gene expression has been observed in some normal tissues, ET-2 recently has been reported to act as a tumor marker and as a hypoxia-induced autocrine survival factor in tumor cells. A recently published study reported that the hypoxic mimetic agent CoCl2 at 200 µM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced intracellular reactive oxygen species (ROS increase and neurite outgrowth in neuronal model PC12 cells. The ROS was generated by addition of CoCl2 to the culture medium, and the CoCl2-induced effects were completely inhibited by the antioxidant N-acetyl cysteine. Furthermore, interleukin-6 (IL-6 gene expression was up-regulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by CoCl2-induced ROS may be associated with neuronal differentiation through the regulation of IL-6 expression. CoCl2 acts as a pro-oxidant, as do Fe(II, III and Cu(II. However, some biological activities have been reported for CoCl2 that have not been observed for other metal salts such as FeCl3, CuSO4, and NiCl2. The characteristic actions of CoCl2 may be associated with the differentiation of PC12 cells. Further elucidation of the mechanism of neurite outgrowth and regulation of ET-2/VIC expression by CoCl2 may lead to the development of treatments for neuronal disorders.

  5. Pregnancy and live birth after follicle-stimulating hormone treatment for an infertile couple including a male affected by Sertoli cell-only syndrome

    Directory of Open Access Journals (Sweden)

    Paulis G

    2017-10-01

    Full Text Available Gianni Paulis,1,2 Luca Paulis,3 Gennaro Romano,4 Carmen Concas,5 Marika Di Sarno,5 Renata Pagano,5 Antonio Di Filippo,5 Maria Luisa Di Petrillo5 1Andrology Center, Regina Apostolorum Hospital, Rome, Italy; 2Department of Uro-Andrology, Castelfidardo Medical Team, Peyronie’s Disease Care Center, Rome, Italy; 3Section of Pharmacology and Research, Department of Uro-Andrology, Castelfidardo Medical Team, Peyronie’s Disease Care Center, Rome, Italy; 4Department of Urologic Oncology, Italian League Against Cancer, Avellino, Italy; 5Department of Reproductive Medicine and Biology, Caran Center, Caserta, Italy Abstract: In males with nonobstructive azoospermia, one of the main histopathologic patterns of the testis is Sertoli cell-only syndrome (SCOS, in which no germ cells are present and only Sertoli cells are contained in the seminiferous tubules. There is not any formal treatment for this pathological condition. However, several studies reported the possibility to perform testicular sperm extraction in patients with SCOS, although, according to some authors, sperm retrieval is possible only in the presence of focal spermatogenesis. We report the case of an infertile couple in whom the 30-year-old male was azoospermic. After the diagnosis, the patient underwent multiple bilateral testicular biopsies, which showed a histological pattern corresponding to SCOS. We administered a cycle of hormone stimulation followed by medically assisted procreation procedures to the male patient. Therefore, the male patient was treated with follicle-stimulating hormone gonadotropin for a total of 7 months (150 IU recombinant human follicle stimulating hormone three times per week. After carrying out a new multiple testicular sperm extraction, several spermatozoa were microscopically observed, and it was then possible to perform an intracytoplasmic sperm injection with subsequent embryo transfer of the blastocyst into the wife’s uterus, and so pregnancy was

  6. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z; Boman, Bruce M

    2014-01-15

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region--the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other crypt subsections (middle or top). Array results were validated by PCR and immunostaining. About 25% of genes analyzed were expressed in crypts: 88 preferentially in the bottom, 68 in the middle, and 131 in the top. Among genes upregulated in the bottom, ∼30% were classified as growth and/or developmental genes including several in the PI3 kinase pathway, a six-transmembrane protein STAMP1, and two homeobox (HOXA4, HOXD10) genes. qPCR and immunostaining validated that HOXA4 and HOXD10 are selectively expressed in the normal crypt bottom and are overexpressed in colon carcinomas (CRCs). Immunostaining showed that HOXA4 and HOXD10 are co-expressed with the SC markers CD166 and ALDH1 in cells at the normal crypt bottom, and the number of these co-expressing cells is increased in CRCs. Thus, our findings show that these two HOX genes are selectively expressed in colonic SCs and that HOX overexpression in CRCs parallels the SC overpopulation that occurs during CRC development. Our study suggests that developmental genes play key roles in the maintenance of normal SCs and crypt renewal, and contribute to the SC overpopulation that drives colon tumorigenesis.

  7. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hematopoietic stem cell transplantation activity worldwide in 2012 and a SWOT analysis of the Worldwide Network for Blood and Marrow Transplantation Group including the global survey.

    Science.gov (United States)

    Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A

    2016-06-01

    Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.

  9. Hematopoietic Stem Cell Transplantation Activity Worldwide in 2012 and a SWOT Analysis of the Worldwide Network for Blood and Marrow Transplantation Group (WBMT) including the global survey

    Science.gov (United States)

    Niederwieser, Dietger; Baldomero, Helen; Szer, Jeff; Gratwohl, Michael; Aljurf, Mahmoud; Atsuta, Yoshiko; Bouzas, Luis Fernando; Confer, Dennis; Greinix, Hildegard; Horowitz, Mary; Iida, Minako; Lipton, Jeff; Mohty, Mohamad; Novitzky, Nicolas; Nunez, José; Passweg, Jakob; Pasquini, Marcelo C.; Kodera, Yoshihisa; Apperley, Jane; Seber, Adriana; Gratwohl, Alois

    2016-01-01

    Data on 68,146 hematopoietic stem cell transplants (HSCT) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCT were registered from unrelated 16,433 than related 15,493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared to 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCT/team). An increase of 67% was noted in mismatched/haploidentical family HSCT. A SWOT analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four WHO regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood. PMID:26901703

  10. Transfection of an expressive construct including IgG1 and Fv1 genes in ovary cell line for infliximab expression

    Directory of Open Access Journals (Sweden)

    Zohreh Sarabinejad

    2016-04-01

    Full Text Available Background: Infeliximab is a form of chimeric antibody which neutralizes the most important inflammatory cytokine, TNF-a, in inflammatory disorders. The aim of current study was to pilot expression of chimeric infliximab in Chinese Hamster ovary (CHO cells. Methods: In this research study, pVITRO2-neo-mcs vector that consist of infliximab light chain and heavy chain was used to transform into the E.coli by CaCl2 method. The plasmid was then purified and transfected to cultured CHO cells by Lipofectamine 2000® (Invitrogen GmbH, Germany. Transfected cells were selected upon G-418 treatment after 2 weeks and the level of expression, based on standard curve, was measured using IgG ELISA kit after 48 hours for each clone. High level expressed clone was then cultured in roller bottles and recombinant chimeric product was purified by protein A affinity chromatography. The purity of the product was analyzed by 10% gel SDS-PAGE from eluted samples. The efficacy of the purification was analyzed by ELISA before and after purification step. This article is a master's student thesis from February 2015 to August 2016 in pharmaceutical technology development center, Tehran University of Medical Sciences, Tehran, Iran. Results: The purified plasmid was analyzed on 2% agarose gel. After selective pressure of G-418, 10 stable transfect clones were assessed for infliximab secretion by IgG ELISA kit at 450 nm. The maximum and minimum expression which detected by ELISA were 23 ng/ml and 6 ng/ml, respectively. The band width of infliximab fraction during purification procedure was observed at 0.7-0.8 min. The efficiency of the purification by ELISA was 70%. On SDS-PAGE analysis, two bands, 25 and 50 kDa, respect to light and heavy chains of Infliximab, was confirmed the expression of recombinant protein. Conclusion: In the current study, the construct for infliximab monoclonal antibody production was designed using genetic engineering techniques and the expression

  11. Leydig cell clustering and Reinke crystal distribution in relation to hormonal function in adult patients with testicular dysgenesis syndrome (TDS) including cryptorchidism

    DEFF Research Database (Denmark)

    Soerensen, Rikke R; Johannsen, Trine H; Skakkebaek, Niels E

    2016-01-01

    (micronodules) are frequently present. This study aimed to investigate possible associations of LC micronodules with the presence of Reinke crystals and hormonal function of LCs, the latter primarily reflected by serum concentrations of luteinising hormone (LH) and testosterone, in patients with TDS. DESIGN......: A retrospective study of 101 andrological patients with TDS (infertility with and without a history of cryptorchidism or presence of germ cell neoplasia in situ) and 20 controls with normal testis histology and LC-function. Archived testicular biopsies were re-evaluated for the presence of LC micronodules...... and Reinke crystals and the findings were correlated with testis size and serum concentrations of LH, follicle-stimulating hormone (FSH), testosterone, inhibin B, estradiol and sex hormone binding globulin (SHBG). RESULTS: TDS patients with bilateral LC micronodules had significantly lower concentrations...

  12. NMR measurement system including two synchronized ring buffers, with 128 rf coils for in situ water monitoring in a polymer electrolyte fuel cell

    Science.gov (United States)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro

    2017-01-01

    A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.

  13. A risk score including microdeletions improves relapse prediction for standard and medium risk precursor B-cell acute lymphoblastic leukaemia in children.

    Science.gov (United States)

    Sutton, Rosemary; Venn, Nicola C; Law, Tamara; Boer, Judith M; Trahair, Toby N; Ng, Anthea; Den Boer, Monique L; Dissanayake, Anuruddhika; Giles, Jodie E; Dalzell, Pauline; Mayoh, Chelsea; Barbaric, Draga; Revesz, Tamas; Alvaro, Frank; Pieters, Rob; Haber, Michelle; Norris, Murray D; Schrappe, Martin; Dalla Pozza, Luciano; Marshall, Glenn M

    2018-02-01

    To prevent relapse, high risk paediatric acute lymphoblastic leukaemia (ALL) is treated very intensively. However, most patients who eventually relapse have standard or medium risk ALL with low minimal residual disease (MRD) levels. We analysed recurrent microdeletions and other clinical prognostic factors in a cohort of 475 uniformly treated non-high risk precursor B-cell ALL patients with the aim of better predicting relapse and refining risk stratification. Lower relapse-free survival at 7 years (RFS) was associated with IKZF1 intragenic deletions (P 5 × 10 -5 (P < 0·0001) and High National Cancer Institute (NCI) risk (P < 0·0001). We created a predictive model based on a risk score (RS) for deletions, MRD and NCI risk, extending from an RS of 0 (RS0) for patients with no unfavourable factors to RS2 +  for patients with 2 or 3 high risk factors. RS0, RS1, and RS2 +  groups had RFS of 93%, 78% and 49%, respectively, and overall survival (OS) of 99%, 91% and 71%. The RS provided greater discrimination than MRD-based risk stratification into standard (89% RFS, 96% OS) and medium risk groups (79% RFS, 91% OS). We conclude that this RS may enable better early therapeutic stratification and thus improve cure rates for childhood ALL. © 2017 John Wiley & Sons Ltd.

  14. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes

    Science.gov (United States)

    Tersey, Sarah A.; Bolanis, Esther; Holman, Theodore R.; Maloney, David J.; Nadler, Jerry L.

    2015-01-01

    The insulin producing islet β-cells have increasingly gained attention for their role in the pathogeneses of virtually all forms of diabetes. Dysfunction, de-differentiation, and/or death of β-cells are pivotal features in the transition from normoglycemia to hyperglycemia in both animal models of metabolic disease and humans. In both type 1 and type 2 diabetes, inflammation appears to be a central cause of β-cell derangements, and molecular pathways that modulate inflammation or the inflammatory response are felt to be prime targets of future diabetes therapy. The lipoxygenases (LOs) represent a class of enzymes that oxygenate cellular polyunsaturated fatty acids to produce inflammatory lipid intermediates that directly and indirectly affect cellular function and survival. The enzyme 12-LO is expressed in all metabolically active tissues, including pancreatic islets, and has received increasing attention for its role in promoting cellular inflammation in the setting of diabetes. Genetic deletion models of 12-LO in mice reveal striking protection from metabolic disease and its complications and an emerging body of literature has implicated its role in human disease. This review focuses on the evidence supporting the proinflammatory role of 12-LO as it relates to islet β-cells, and the potential for 12-LO inhibition as a future avenue for the prevention and treatment of metabolic disease. PMID:25803446

  15. Radiochemotherapy including cisplatin alone versus cisplatin + 5-fluorouracil for locally advanced unresectable stage IV squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Tribius, Silke; Kilic, Yasemin; Kronemann, Stefanie; Schroeder, Ursula; Hakim, Samer; Schild, Steven E.; Rades, Dirk

    2009-01-01

    Background and purpose: the optimal radiochemotherapy regimen for advanced head-and-neck cancer is still debated. This nonrandomized study compares two cisplatin-based radiochemotherapy regimens in 128 patients with locally advanced unresectable stage IV squamous cell carcinoma of the head and neck (SCCHN). Patients and methods: concurrent chemotherapy consisted of either two courses cisplatin (20 mg/m 2 /d1-5 + 29-33; n = 54) or two courses cisplatin (20 mg/m 2 /d1-5 + 29-33) + 5-fluorouracil (5-FU; 600 mg/m 2 /d1-5 + 29-33; n = 74). Results: at least one grade 3 toxicity occurred in 25 of 54 patients (46%) receiving cisplatin alone and in 52 of 74 patients (70%) receiving cisplatin + 5-FU. The latter regimen was particularly associated with increased rates of mucositis (p = 0.027) and acute skin toxicity (p = 0.001). Seven of 54 (13%) and 20 of 74 patients (27%) received only one chemotherapy course due to treatment-related acute toxicity. Late toxicity in terms of xerostomia, neck fibrosis, skin toxicity, and lymphedema was not significantly different. The 2-year locoregional control rates were 67% after cisplatin alone and 52% after cisplatin + 5-FU (p = 0.35). The metastases-free survival rates were 79% and 69%, respectively (p = 0.65), and the overall survival rates 70% and 51%, respectively (p = 0.10). On multivariate analysis, outcome was significantly associated with performance status, T-category, N-category, hemoglobin level prior to radiotherapy, and radiotherapy break > 1 week. Conclusion: two courses of fractionated cisplatin (20 mg/m 2 /day) alone appear preferable, as this regimen resulted in similar outcome and late toxicity as two courses of cisplatin + 5-FU, but in significantly less acute toxicity. (orig.)

  16. 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including "t-stumps"

    Directory of Open Access Journals (Sweden)

    Lemieux Bruno

    2010-12-01

    Full Text Available Abstract Background In cancer cells the three-dimensional (3D telomere organization of interphase nuclei into a telomeric disk is heavily distorted and aggregates are found. In Hodgkin's lymphoma quantitative FISH (3D Q-FISH reveals a major impact of nuclear telomere dynamics during the transition form mononuclear Hodgkin (H to diagnostic multinuclear Reed-Sternberg (RS cells. In vitro and in vivo formation of RS-cells is associated with the increase of very short telomeres including "t-stumps", telomere loss, telomeric aggregate formation and the generation of "ghost nuclei". Results Here we analyze the 3D telomere dynamics by Q-FISH in the novel Hodgkin cell line U-HO1 and its non-receptor protein-tyrosine phosphatase N1 (PTPN1 stable transfectant U-HO1-PTPN1, derived from a primary refractory Hodgkin's lymphoma. Both cell lines show equally high telomerase activity but U-HO1-PTPN differs from U-HO1 by a three times longer doubling time, low STAT5A expression, accumulation of RS-cells (p As expected, multinuclear U-HO1-RS-cells and multinuclear U-HO1-PTPN1-RS-cells differ from their mononuclear H-precursors by their nuclear volume (p Conclusion Abundant RS-cells without additional very short telomeres including "t-stumps", high rate of apoptosis, but low STAT5A expression, are hallmarks of the U-HO1-PTPN1 cell line. These characteristics are independent of telomerase activity. Thus, PTPN1 induced dephosphorylation of STAT5 with consecutive lack of Akt/PKB activation and cellular arrest in G2, promoting induction of apoptosis, appears as a possible pathogenetic mechanism deserving further experimental investigation.

  17. Charybdotoxin is a new member of the K sup + channel toxin family that includes dendrotoxin I and mast cell degranulating peptide

    Energy Technology Data Exchange (ETDEWEB)

    Schweitz, H.; Bidard, J.N.; Lazdunski, M. (Universite de Nice (France)); Maes, P. (Institut Pasteur de Lille (France))

    1989-12-12

    A polypeptide was identified in the venom of the scorpion Leiurus quinquestriatus hebraeus by its potency to inhibit the high affinity binding of the radiolabeled snake venom toxin dendrotoxin I ({sup 125}I-DTX{sub I}) to its receptor site. It has been purified, and its properties investigated by different techniques were found to be similar to those of MCD and DTX{sub I}, two polypeptide toxins active on a voltage-dependent K{sup +} channel. However, its amino acid sequence was determined, and it was shown that this toxin is in fact charybdotoxin (ChTX), a toxin classically used as a specific tool to block one class of Ca{sup 2+}-activated K{sup +} channels. ChTX, DTX{sub I}, and MCD are potent convulsants and are highly toxic when injected intracerebroventricularly in mice. Their toxicities correlate well with their affinities for their receptors in rat brain. These three structurally different toxins release ({sup 3}H)GABA from preloaded synaptosomes, the efficiency order being DTX{sub I} > ChTX > MCD. Both binding and cross-linking experiments of ChTX to rat brain membranes and to the purified MCD/DTX{sub I} binding protein have shown that the {alpha}-subunit of the MCD/DTX{sub I}-sensitive K{sup +} channel protein also contains the ChTX binding sites. Binding sites for DTX{sub I}, MCD, and ChTX are in negative allosteric interaction. The results show that charybdotoxin belongs to the family of toxins which already includes the dendrotoxins and MCD, which are blockers of voltage-sensitive K{sup +} channels. ChTX is clearly not selective for Ca{sup 2+}-activated K{sup +} channel.

  18. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  19. Hippo signaling controls cell cycle and restricts cell plasticity in planarians.

    Directory of Open Access Journals (Sweden)

    Nídia de Sousa

    2018-01-01

    Full Text Available The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell-based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation.

  20. 4-IBP, a σ1 Receptor Agonist, Decreases the Migration of Human Cancer Cells, Including Glioblastoma Cells, In Vitro and Sensitizes Them In Vitro and In Vivo to Cytotoxic Insults of Proapoptotic and Proautophagic Drugs

    Directory of Open Access Journals (Sweden)

    Veronique Mégalizzi

    2007-05-01

    Full Text Available Although the molecular function of cr receptors has not been fully defined and the natural ligand(s is still not known, there is increasing evidence that these receptors and their ligands might play a significant role in cancer biology. 4-(N-tibenzylpiperidin-4-yl-4iodobenzamide (4-IBP, a selective σ1, agonist, has been used to investigate whether this compound is able to modify: 1 in vitro the migration and proliferation of human cancer cells; 2 in vitro the sensitivity of human glioblastoma cells to cytotoxic drugs; and 3 in vivo in orthotopic glioblastoma and non-small cell lung carcinoma (NSCLC models the survival of mice coadministered cytotoxic agents. 4-IBP has revealed weak anti proliferative effects on human U373-MG glioblastoma and C32 melanoma cells but induced marked concentration-dependent decreases in the growth of human A549 NSCLC and PC3 prostate cancer cells. The compound was also significantly antimigratory in all four cancer cell lines. This may result, at least in U373-MG cells, from modifications to the actin cytoskeleton. 4-IBP modified the sensitivity of U373-MG cells in vitro to proapoptotic lomustin and proautophagic temozolomide, and markedly decreased the expression of two proteins involved in drug resistance: glucosylceramide synthase and Rho guanine nucleotide dissociation inhibitor. In vivo, 4-IBP increased the antitumor effects of temozolomide and irinotecan in immunodeficient mice that were orthotopically grafted with invasive cancer cells.

  1. Development of a modified prognostic index for patients with aggressive adult T-cell leukemia-lymphoma aged 70 years or younger: possible risk-adapted management strategies including allogeneic transplantation.

    Science.gov (United States)

    Fuji, Shigeo; Yamaguchi, Takuhiro; Inoue, Yoshitaka; Utsunomiya, Atae; Moriuchi, Yukiyoshi; Uchimaru, Kaoru; Owatari, Satsuki; Miyagi, Takashi; Taguchi, Jun; Choi, Ilseung; Otsuka, Eiichi; Nakachi, Sawako; Yamamoto, Hisashi; Kurosawa, Saiko; Tobinai, Kensei; Fukuda, Takahiro

    2017-07-01

    Adult T-cell leukemia-lymphoma is a distinct type of peripheral T-cell lymphoma caused by human T-cell lymphotropic virus type I. Although allogeneic stem cell transplantation after chemotherapy is a recommended treatment option for patients with aggressive adult T-cell leukemia-lymphoma, there is no consensus about indications for allogeneic stem cell transplantation because there is no established risk stratification system for transplant eligible patients. We conducted a nationwide survey of patients with aggressive adult T-cell leukemia-lymphoma in order to construct a new, large database that includes 1,792 patients aged 70 years or younger with aggressive adult T-cell leukemia-lymphoma who were diagnosed between 2000 and 2013 and received intensive first-line chemotherapy. We randomly divided patients into two groups (training and validation sets). Acute type, poor performance status, high soluble interleukin-2 receptor levels (> 5,000 U/mL), high adjusted calcium levels (≥ 12 mg/dL), and high C-reactive protein levels (≥ 2.5 mg/dL) were independent adverse prognostic factors used in the training set. We used these five variables to divide patients into three risk groups. In the validation set, median overall survival for the low-, intermediate-, and high-risk groups was 626 days, 322 days, and 197 days, respectively. In the intermediate- and high-risk groups, transplanted recipients had significantly better overall survival than non-transplanted patients. We developed a promising new risk stratification system to identify patients aged 70 years or younger with aggressive adult T-cell leukemia-lymphoma who may benefit from upfront allogeneic stem cell transplantation. Prospective studies are warranted to confirm the benefit of this treatment strategy. Copyright© 2017 Ferrata Storti Foundation.

  2. A phase I multicenter study of antroquinonol in patients with metastatic non-small-cell lung cancer who have received at least two prior systemic treatment regimens, including one platinum-based chemotherapy regimen

    OpenAIRE

    LEE, YU-CHIN; HO, CHING-LIANG; KAO, WOEI-YAU; CHEN, YUH-MIN

    2015-01-01

    Antroquinonol is isolated from Antrodia camphorata, a camphor tree mushroom, and is a valuable traditional Chinese herbal medicine that exhibits pharmacological activities against several diseases, including cancer. This first-in-human phase I study of antroquinonol included patients with metastatic non-small-cell lung cancer who had received at least two prior systemic treatment regimens. An open-label, dose escalation, pharmacokinetic (PK) study was conducted to determine the maximum tolera...

  3. Regulatory effects on the population dynamics and wave propagation in a cell lineage model.

    Science.gov (United States)

    Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin

    2016-03-21

    We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pump apparatus including deconsolidator

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  5. Hippo signaling controls cell cycle and restricts cell plasticity in planarians

    Science.gov (United States)

    de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili

    2018-01-01

    The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350

  6. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  7. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila.

    Science.gov (United States)

    Narbonne-Reveau, Karine; Lanet, Elodie; Dillard, Caroline; Foppolo, Sophie; Chen, Ching-Huan; Parrinello, Hugues; Rialle, Stéphanie; Sokol, Nicholas S; Maurange, Cédric

    2016-06-14

    Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.

  8. Microarray analysis of PDGFR alpha+ populations in ES cell differentiation culture identifies genes involved in differentiation of mesoderm and mesenchyme including ARID3b that is essential for development of embryonic mesenchymal cells.

    Science.gov (United States)

    Takebe, Atsushi; Era, Takumi; Okada, Mitsuhiro; Martin Jakt, Lars; Kuroda, Yoshikazu; Nishikawa, Shin-Ichi

    2006-05-01

    An inherent difficulty in using DNA microarray technology on the early mouse embryo is its relatively small size. In this study, we investigated whether use of ES cell differentiation culture, which has no theoretical limit in the number of cells that can be generated, can improve this situation. Seven distinct ES-cell-derived populations were analyzed by DNA microarray and examined for genes whose distribution patterns are similar to those of PDGFRalpha, a gene implicated in differentiation of mesoderm/mesenchymal lineages. Using software developed in our laboratory, we formed a group of 30 genes which showed the highest similarity to PDGFRalpha, 18 of these genes were shown to be involved in development of either mesodermal, mesenchymal or neural crest cells. This list also contains several genes whose role in embryogenesis has not yet been fully identified. One such molecule is mARID3b. The mARID3b expression is found in the paraxial mesoderm and cranial mesenchyme. mARID3b-null mouse showed early embryonic lethality, and most phenotypes of this mutant appear to develop from a failure to generate a sufficient number of cranial mesenchymal cells. These results demonstrate the potential use of ES cell differentiation culture in identifying novel genes playing an indispensable role in embryogenesis.

  9. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  10. Kruppel-Like Factor 4 Overexpression Initiates a Mesenchymal-to-Epithelial Transition and Redifferentiation of Human Pancreatic Cells following Expansion in Long Term Adherent Culture.

    Directory of Open Access Journals (Sweden)

    Kenneth R Muir

    Full Text Available A replenishable source of insulin-producing cells has the potential to cure type 1 diabetes. Attempts to culture and expand pancreatic β-cells in vitro have resulted in their transition from insulin-producing epithelial cells to mesenchymal stromal cells (MSCs with high proliferative capacity but devoid of any hormone production. The aim of this study was to determine whether the transcription factor Krüppel-like factor 4 (KLF4, could induce a mesenchymal-to-epithelial transition (MET of the cultured cells. Islet-enriched pancreatic cells, allowed to dedifferentiate and expand in adherent cell culture, were transduced with an adenovirus containing KLF4 (Ad-Klf4. Cells were subsequently analysed for changes in cell morphology by light microscopy, and for the presence of epithelial and pancreatic markers by immunocytochemistry and quantitative RT/PCR. Infection with Ad-Klf4 resulted in morphological changes, down-regulation of mesenchymal markers, and re-expression of both epithelial and pancreatic cell markers including insulin and transcription factors specific to β-cells. This effect was further enhanced by culturing cells in suspension. However, the effects of Ad-KLf4 were transient and this was shown to be due to increased apoptosis in Klf4-expressing cells. Klf4 has been recently identified as a pioneer factor with the ability to modulate the structure of chromatin and enhance reprogramming/transdifferentiation. Our results show that Klf4 may have a role in the redifferentiation of expanded pancreatic cells in culture, but before this can be achieved the off-target effects that result in increased apoptosis would need to be overcome.

  11. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-10-01

    Full Text Available Background: Low-intensity ultrasound (LIUS was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders.Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS.Results: Our data revealed following interesting findings: (1 LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2 LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells, MSCs (mesenchymal stem cells, B1-B cells and Treg (regulatory T cells; (3 LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4 LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5 Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6 LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways.Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

  12. Pak2 is essential for the function of Foxp3+ regulatory T cells through maintaining a suppressive Treg phenotype.

    Science.gov (United States)

    O'Hagan, Kyle L; Miller, Stephen D; Phee, Hyewon

    2017-12-06

    Foxp3, a key transcription factor that drives lineage differentiation of regulatory T cells (Tregs), was thought to imprint a unique and irreversible genetic signature within Tregs. Recent evidence, however, suggests that loss or attenuation of Foxp3 expression can cause Tregs to de-differentiate into effector T cells capable of producing proinflammatory cytokines. Herein, we report that the signaling kinase, p21-activated kinase 2 (Pak2), is essential for maintaining Treg stability and suppressive function. Loss of Pak2, specifically in Tregs, resulted in reduced expression of multiple Treg functional molecules, including Foxp3, CD25, Nrp-1 and CTLA-4, coupled with a loss of Treg suppressive function in vitro and in vivo. Interestingly, Pak2-deficient Tregs gained expression of Th2-associated cytokines and the transcription factor, Gata3, becoming Th2-like cells, explaining their inability to regulate immune responses. Collectively, these findings suggest Pak2 as an important signaling molecule for guarding against aberrant immune responses through regulating the stability of Foxp3 + Tregs and maintaining a suppressive Treg phenotype.

  13. Induction of hepatocyte-like cells from mouse embryonic stem cells by lentivirus-mediated constitutive expression of Foxa2/Hnf4a.

    Science.gov (United States)

    Liu, Tao; Zhang, Shichang; Xiang, Dedong; Wang, Yingjie

    2013-11-01

    Hepatocytes can be generated from embryonic stem cells (ESCs) using inducers such as chemical compounds and cytokines, but issues related to low differentiation efficiencies remain to be resolved. Recent work has shown that overexpression of lineage-specific transcription factors can directly cause cells phenotypic changes, including differentiation, trans-differentiation, and de-differentiation. We hypothesized that lentivirus-mediated constitutive expression of forkhead box A2 (Foxa2) and hepatocyte nuclear factor 4 alpha (Hnf4a) could promote inducing mouse ESCs to hepatocyte-likes cells. First, ESC lines that stably expressed Foxa2, Hnf4a, or Foxa2/Hnf4a were constructed via lentiviral expression vectors. Second, observations of cell morphology changes were made during the cell culture process, followed by experiments examining teratoma formation. Then, the effects of constitutive expression of Foxa2 and Hnf4a on hepatic differentiation and maturation were determined by measuring the marker gene expression levels of Albumin, α-fetoprotein, Cytokeratin18, and α1-antitrypsin. The results indicate that constitutive expression of Foxa2 and Hnf4a does not affect ESCs culture, teratoma formation, or the expression levels of the specific hepatocyte genes under autonomous differentiation. However, with some assistance from inducing factors, Foxa2 significantly increased the hepatic differentiation of ESCs, whereas the expression of Hnf4a alone or Foxa2/Hnf4a could not. Differentiated CCE-Foxa2 cells were more superior in expressing several liver-specific markers and protein, storing glycogen than differentiated CCE cells. Therefore, our method employing the transduction of Foxa2 would be a valuable tool for the efficient generation of functional hepatocytes derived from ESCs. © 2013 Wiley Periodicals, Inc.

  14. Identification of a Developmental Gene Expression Signature, Including HOX Genes, for the Normal Human Colonic Crypt Stem Cell Niche: Overexpression of the Signature Parallels Stem Cell Overpopulation During Colon Tumorigenesis

    OpenAIRE

    Bhatlekar, Seema; Addya, Sankar; Salunek, Moreh; Orr, Christopher R.; Surrey, Saul; McKenzie, Steven; Fields, Jeremy Z.; Boman, Bruce M.

    2013-01-01

    Our goal was to identify a unique gene expression signature for human colonic stem cells (SCs). Accordingly, we determined the gene expression pattern for a known SC-enriched region—the crypt bottom. Colonic crypts and isolated crypt subsections (top, middle, and bottom) were purified from fresh, normal, human, surgical specimens. We then used an innovative strategy that used two-color microarrays (∼18,500 genes) to compare gene expression in the crypt bottom with expression in the other cryp...

  15. Malignant lymphomas (including myeloproliferative disorders)

    International Nuclear Information System (INIS)

    Todd, I.D.H.

    1985-01-01

    This chapter deals with the radiotherapy and cytotoxic chemotherapy of the malignant lymphomas. Included within this group are Hodgkin's disease, non-Hodgkin's lymphoma, mycosis fungoides, and chronic lymphatic leukaemia. A further section deals with the myeloproliferative disorders, including granulocytic leukaemia, polycythaemia vera, and primary thrombocythaemia. Excluded are myeloma and reticulum cell sarcoma of bone and acute leukaemia. With regard to Hodgkin's disease, the past 25 years have seen general recognition of the curative potential of radiotherapy, at least in the local stages, and, more recently, awareness of the ability to achieve long-term survival after combination chemotherapy in generalised or in recurrent disease. At the same time the importance of staging has become appreciated and the introduction of procedures such as lymphography, staging laparotomy, and computer tomography (CT) has enormously increased its reliability. Advances have not been so dramatic in the complex group of non-Hodgkins's lymphomas, but are still very real

  16. Fibroadenoma and phyllodes tumors of anogenital mammary-like glands: a series of 13 neoplasms in 12 cases, including mammary-type juvenile fibroadenoma, fibroadenoma with lactation changes, and neurofibromatosis-associated pseudoangiomatous stromal hyperplasia with multinucleated giant cells.

    Science.gov (United States)

    Kazakov, Dmitry V; Spagnolo, Dominic V; Stewart, Colin J; Thompson, Jane; Agaimy, Abbas; Magro, Gaetano; Bisceglia, Michele; Vazmitel, Marina; Kacerovska, Denisa; Kutzner, Heinz; Mukensnabl, Petr; Michal, Michal

    2010-01-01

    The authors present a series of 13 fibroepithelial neoplasms involving anogenital mammary-like glands, all occurring in 12 female patients, whose age at diagnosis ranged from 30 to 51 years (mean, 38 y; median, 42 y). All women presented with a solitary asymptomatic nodule in the vulva (n=8), perineum (n=2), or near the anus (n=2) ranging in size from 1.5 to 4.5 cm. Microscopically, 8 lesions were classified as fibroadenoma, and 5, including 1 recurrent tumor, as phyllodes tumor, of which 1 was benign and 4 low-grade malignant. In addition to conventional findings, we describe several hitherto unreported features including juvenile fibroadenoma-like proliferation, fibroadenoma with lactation change, and pseudoangiomatous stromal hyperplasia with multinucleated stromal giant cells in a patient with neurofibromatosis, type 1 all constituting potential diagnostic pitfalls, which are best averted by using the same approach to diagnosis as for their analogous mammary counterparts.

  17. Curative or pre-emptive adenovirus-specific T cell transfer from matched unrelated or third party haploidentical donors after HSCT, including UCB transplantations: a successful phase I/II multicenter clinical trial

    Directory of Open Access Journals (Sweden)

    Chongsheng Qian

    2017-05-01

    Full Text Available Abstract Background Allogeneic hematopoietic stem cell transplantation (HSCT, the most widely used potentially curable cellular immunotherapeutic approach in the treatment of hematological malignancies, is limited by life-threatening complications: graft versus host disease (GVHD and infections especially viral infections refractory to antiviral drugs. Adoptive transfer of virus-specific T cells is becoming an alternative treatment for infections following HSCT. We report here the results of a phase I/II multicenter study which includes a series of adenovirus-specific T cell (ADV-VST infusion either from the HSCT donor or from a third party haploidentical donor for patients transplanted with umbilical cord blood (UCB. Methods Fourteen patients were eligible and 11 patients received infusions of ADV-VST generated by interferon (IFN-γ-based immunomagnetic isolation from a leukapheresis from their original donor (42.9% or a third party haploidentical donor (57.1%. One patient resolved ADV infection before infusion, and ADV-VST could not reach release or infusion criteria for two patients. Two patients received cellular immunotherapy alone without antiviral drugs as a pre-emptive treatment. Results One patient with adenovirus infection and ten with adenovirus disease were infused with ADV-VST (mean 5.83 ± 8.23 × 103 CD3+IFN-γ+ cells/kg up to 9 months after transplantation. The 11 patients showed in vivo expansion of specific T cells up to 60 days post-infusion, associated with adenovirus load clearance in ten of the patients (91%. Neither de novo GVHD nor side effects were observed during the first month post-infusion, but GVHD reactivations occurred in three patients, irrespective of the type of leukapheresis donor. For two of these patients, GVHD reactivation was controlled by immunosuppressive treatment. Four patients died during follow-up, one due to refractory ADV disease. Conclusions Adoptive transfer of rapidly isolated ADV

  18. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade.

    Science.gov (United States)

    Lu, Qing-Bo; Wan, Ming-Yu; Wang, Pei-Yao; Zhang, Chen-Xing; Xu, Dong-Yan; Liao, Xiang; Sun, Hai-Jian

    2018-04-01

    Phenotypic switch of vascular smooth muscle cells (VSMCs) is characterized by increased expressions of VSMC synthetic markers and decreased levels of VSMC contractile markers, which is an important step for VSMC proliferation and migration during the development and progression of cardiovascular diseases including atherosclerosis. Chicoric acid (CA) is identified to exert powerful cardiovascular protective effects. However, little is known about the effects of CA on VSMC biology. Herein, in cultured VSMCs, we showed that pretreatment with CA dose-dependently suppressed platelet-derived growth factor type BB (PDGF-BB)-induced VSMC phenotypic alteration, proliferation and migration. Mechanistically, PDGF-BB-treated VSMCs exhibited higher mammalian target of rapamycin (mTOR) and P70S6K phosphorylation, which was attenuated by CA pretreatment, diphenyleneiodonium chloride (DPI), reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) and nuclear factor-κB (NFκB) inhibitor Bay117082. PDGF-BB-triggered ROS production and p65-NFκB activation were inhibited by CA. In addition, both NAC and DPI abolished PDGF-BB-evoked p65-NFκB nuclear translocation, phosphorylation and degradation of Inhibitor κBα (IκBα). Of note, blockade of ROS/NFκB/mTOR/P70S6K signaling cascade prevented PDGF-BB-evoked VSMC phenotypic transformation, proliferation and migration. CA treatment prevented intimal hyperplasia and vascular remodeling in rat models of carotid artery ligation in vivo. These results suggest that CA impedes PDGF-BB-induced VSMC phenotypic switching, proliferation, migration and neointima formation via inhibition of ROS/NFκB/mTOR/P70S6K signaling cascade. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Role of stem cells in large bowel carcinogenesis

    Directory of Open Access Journals (Sweden)

    N. A. Nefedova

    2015-01-01

    Full Text Available Сancer stem cells (CSC play a significant role in the development and progression of colorectal cancer. They are capable of self-senewal and multipotent differentiation. CSC can be formed from stem cells or mutant by dedifferentiation of crypt epithelial cells. Recently, much attention is paid to CSC in colon cancer, but very little has been published regarding their expression in colon polyps. In 2010 The World Health Organization attributed the so-called serrated lesions, including hyperplastic polyp, serrated sessile adenoma and traditional serrated adenoma to a group of precancerous lesions of the colon in addition to the classical tubular, villous and tubulo-villous adenomas. Despite the large number of publications devoted to the newly selected category, a full understanding of the processes involved in the formation of polyps and their progression into colon cancer, there is still no. Identification of CSC in colon polyps will assess their potential malignancy conduct adequate therapy, determine the amount of the operation and further treatment strategy. This in turn will contribute to the early detection and prevention of cancer. Identification of CSC, an assessment of their localization and distribution in tubular adenomas, serrated adenoma broad-based, traditional serrated adenoma and hyperplastic polyps allow to evaluate the potential of malignancy and prognosis for each of the polyps. In this regard, the definition of markers characteristic of colon CSC, is interesting not only from a scientific, but also from a practical point of view.

  20. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  1. Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK.

    Directory of Open Access Journals (Sweden)

    Anne Marie Thompson

    Full Text Available Phenotypic plasticity in vascular smooth muscle cells (VSMC is necessary for vessel maintenance, repair and adaptation to vascular changes associated with aging. De-differentiated VSMC contribute to pathologies including atherosclerosis and intimal hyperplasia. As resveratrol has been reported to have cardio- protective effects, we investigated its role in VSMC phenotypic modulation. We demonstrated the novel finding that resveratrol promoted VSMC differentiation as measured by contractile protein expression, contractile morphology and contraction in collagen gels. Resveratrol induced VSMC differentiation through stimulation of SirT1 and AMPK. We made the novel finding that low or high dose resveratrol had an initially different mechanism on induction of differentiation. We found that low dose resveratrol stimulated differentiation through SirT1-mediated activation of AKT, whereas high dose resveratrol stimulated differentiation through AMPK-mediated inhibition of the mTORC1 pathway, allowing activation of AKT. The health effects of resveratrol in cardiovascular diseases, cancer and longevity are an area of active research. We have demonstrated a supplemental avenue where-by resveratrol may promote health by maintaining and enhancing plasticity of the vasculature.

  2. Phosphoproteome and transcription factor activity profiling identify actions of the anti-inflammatory agent UTL-5g in LPS stimulated RAW 264.7 cells including disrupting actin remodeling and STAT-3 activation.

    Science.gov (United States)

    Carruthers, Nicholas J; Stemmer, Paul M; Chen, Ben; Valeriote, Frederick; Gao, Xiaohua; Guatam, Subhash C; Shaw, Jiajiu

    2017-09-15

    UTL-5g is a novel small-molecule TNF-alpha modulator. It reduces cisplatin-induced side effects by protecting kidney, liver, and platelets, thereby increasing tolerance for cisplatin. UTL-5g also reduces radiation-induced acute liver toxicity. The mechanism of action for UTL-5g is not clear at the present time. A phosphoproteomic analysis to a depth of 4943 phosphopeptides and a luminescence-based transcription factor activity assay were used to provide complementary analyses of signaling events that were disrupted by UTL-5g in RAW 264.7 cells. Transcriptional activity downstream of the interferon gamma, IL-6, type 1 Interferon, TGF-β, PKC/Ca 2+ and the glucocorticoid receptor pathways were disrupted by UTL-5g. Phosphoproteomic analysis indicated that hyperphosphorylation of proteins involved in actin remodeling was suppressed by UTL-5g (gene set analysis, FDR 5g. This global characterization of UTL-5g activity in a macrophage cell line discovered that it disrupts selected aspects of LPS signaling including Stat3 activation and actin remodeling providing new insight on how UTL-5g acts to reduce cisplatin-induced side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radial glial cells play a key role in echinoderm neural regeneration

    Science.gov (United States)

    2013-01-01

    Background Unlike the mammalian central nervous system (CNS), the CNS of echinoderms is capable of fast and efficient regeneration following injury and constitutes one of the most promising model systems that can provide important insights into evolution of the cellular and molecular events involved in neural repair in deuterostomes. So far, the cellular mechanisms of neural regeneration in echinoderm remained obscure. In this study we show that radial glial cells are the main source of new cells in the regenerating radial nerve cord in these animals. Results We demonstrate that radial glial cells of the sea cucumber Holothuria glaberrima react to injury by dedifferentiation. Both glia and neurons undergo programmed cell death in the lesioned CNS, but it is the dedifferentiated glial subpopulation in the vicinity of the injury that accounts for the vast majority of cell divisions. Glial outgrowth leads to formation of a tubular scaffold at the growing tip, which is later populated by neural elements. Most importantly, radial glial cells themselves give rise to new neurons. At least some of the newly produced neurons survive for more than 4 months and express neuronal markers typical of the mature echinoderm CNS. Conclusions A hypothesis is formulated that CNS regeneration via activation of radial glial cells may represent a common capacity of the Deuterostomia, which is not invoked spontaneously in higher vertebrates, whose adult CNS does not retain radial glial cells. Potential implications for biomedical research aimed at finding the cure for human CNS injuries are discussed. PMID:23597108

  4. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance

    Directory of Open Access Journals (Sweden)

    Karen A. Boehme

    2018-01-01

    Full Text Available Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC.

  5. HDAC-4 regulates claudin-2 expression in EGFR-ERK1/2 dependent manner to regulate colonic epithelial cell differentiation.

    Science.gov (United States)

    Ahmad, Rizwan; Kumar, Balawant; Pan, Kaichao; Dhawan, Punita; Singh, Amar B

    2017-10-20

    In normal colon, claudin-2 expression is restricted to the crypt bottom containing the undifferentiated and proliferative colonocytes. Claudin-2 expression is also upregulated in colorectal cancer (CRC) and promotes carcinogenesis. However, cellular mechanism/s regulated by increased claudin-2 expression during the CRC and mechanism/s regulating this increase remain poorly understood. Epigenetic mechanisms help regulate expression of cancer-associated genes and inhibition of Histone Deacetylases (HDACs) induces cell cycle arrest and differentiation. Accordingly, based on a comprehensive in vitro and in vivo analysis we here report that Histone Deacetylases regulate claudin-2 expression in causal association with colonocyte dedifferentiation to promote CRC. Detailed differentiation analyses using colon cancer cells demonstrated inverse association between claudin-2 expression and epithelial differentiation. Genetic manipulation studies revealed the causal role of HDAC-4 in regulating claudin-2 expression during this process. Further analysis identified transcriptional regulation as the underlying mechanism, which was dependent on HDAC-4 dependent modulation of the EGFR-ERK1/2 signaling. Accordingly, colon tumors demonstrated marked upregulation of the HDAC-4/ERK1/2/Claudin-2 signaling. Taken together, we demonstrate a novel role for HDAC-4/EGFR/ERK1/2 signaling in regulating claudin-2 expression to modulate colonocyte differentiation. These findings are of clinical significance and highlight epigenetic regulation as potential mechanism to regulate claudin-2 expression during mucosal pathologies including CRC.

  6. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  7. The siRNA-mediated knockdown of GluN3A in 46C-derived neural stem cells affects mRNA expression levels of neural genes, including known iGluR interactors

    Science.gov (United States)

    Eilebrecht, Elke; Schöneborn, Hendrik; Neumann, Sebastian; Benecke, Arndt G.; Hollmann, Michael

    2018-01-01

    For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profiling upon GluN3A knockdown revealed significantly altered expression of a multitude of neural genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal proteins, some of which have been previously shown to interact with GluN3A or other iGluR subunits. Canonical pathway enrichment studies point at important roles of GluN3A affecting key cellular pathways involved in cell growth, proliferation, motility, and survival, such as the mTOR pathway. This study for the first time provides insights into transcriptome changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to identify additional functions and downstream pathways of GluN3A and GluN3A-containing NMDARs. PMID:29438442

  8. Hemograma e perfil bioquímico sérico, inclusive hemogasométrico, de bezerros infectados experimentalmente com Salmonella Dublin Blood cell counts and serum biochemical profile, including blood gas levels, in Salmonella Dublin-infected calves

    Directory of Open Access Journals (Sweden)

    D.G. Silva

    2010-04-01

    Full Text Available O objetivo do estudo foi avaliar o hemograma e o perfil bioquímico sérico, inclusive hemogasométrico, de bezerros infectados experimentalmente com Salmonella Dublin. Foram utilizados 12 bezerros sadios da raça Holandesa com 10 a 15 dias de idade, distribuídos aleatoriamente em dois grupos experimentais: grupo-controle (n= 6 e grupo infectado com 10(8UFC de Salmonella Dublin (n=6. Os bezerros foram submetidos ao exame físico diário, e as amostras de sangue foram coletadas minutos antes da inoculação (0h e 24, 48, 72, 96, 120, 144 e 168h após a inoculação. Além do hemograma e das análises hemogasométricas, foram mensuradas as atividades séricas das enzimas aspartato aminotransferase (AST, fosfatase alcalina (ALP, creatina cinase (CK, gamaglutamiltransferase (GGT e lactato desidrogenase (LDH, e os teores de albumina, bilirrubinas, cálcio total, cálcio ionizado, sódio, potássio, cloretos, creatinina, ferro, fibrinogênio, fósforo, glicose, magnésio, proteína totais e ureia. As principais alterações foram: redução das concentrações de albumina, ferro, glicose, magnésio e proteína total, aumento do teor de fibrinogênio, leucocitose e acidose metabólica e hiponatremia.The blood cell counts and biochemical profile, including blood gas levels, were evaluated, in Salmonella Dublin-infected calves. Twelve healthy 10 to 15-day old Holstein calves were randomly allotted into two groups: control (n=6 and group orally infected with 10(8 CFU Salmonella Dublin (n=6. The calves were submitted to physical examination and the blood samples were taken just before the inoculation (0h and at 24, 48, 72, 96, 120, 144, and 168h later. Besides, blood cell counts, blood gas levels, and the serum concentrations of aspartate aminotransferase (AST, alkaline phosphatase (ALP, creatine kinase (CK, gammaglutamyltransferase (GGT, lactate desidrogenase (LDH, albumin, bilirubin, total calcium, ionic calcium, sodium, potassium, chlorides, creatinine

  9. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration)

    Science.gov (United States)

    Su, Ching-Chieh; Chan, Chi-Ming; Chen, Han-Min; Wu, Chia-Chun; Hsiao, Chien-Yu; Lee, Pei-Lan; Lin, Victor Chia-Hsiang; Hung, Chi-Feng

    2014-01-01

    During the course of proliferative vitreoretinopathy (PVR), the retinal pigment epithelium (RPE) cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF) can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation. PMID:25110866

  10. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  11. A phase I multicenter study of antroquinonol in patients with metastatic non-small-cell lung cancer who have received at least two prior systemic treatment regimens, including one platinum-based chemotherapy regimen.

    Science.gov (United States)

    Lee, Yu-Chin; Ho, Ching-Liang; Kao, Woei-Yau; Chen, Yuh-Min

    2015-11-01

    Antroquinonol is isolated from Antrodia camphorata , a camphor tree mushroom, and is a valuable traditional Chinese herbal medicine that exhibits pharmacological activities against several diseases, including cancer. This first-in-human phase I study of antroquinonol included patients with metastatic non-small-cell lung cancer who had received at least two prior systemic treatment regimens. An open-label, dose escalation, pharmacokinetic (PK) study was conducted to determine the maximum tolerable dose (MTD), dose-limiting toxicities (DLTs), and safety/tolerability and preliminary efficacy profiles of antroquinonol. The patients received escalating doses of once-daily antroquinonol in 4-week cycles (up to 3 cycles). The escalated doses were 50-600 mg. PKs were evaluated on day 1 and 28 of cycle 1. Between January, 2011 and October, 2012, 13 patients with metastatic adenocarcinoma were enrolled. No DLTs occurred in any patient at any dose level. T max was observed between 1.00 and 3.70 h under single-dose conditions, and at 1.92-4.05 h under multiple-dose conditions. The mean elimination half-life ranged between 1.30 and 4.33 h, independent of the treatment dose. Antroquinonol at all dose levels had a mild toxicity profile, with no reported treatment-related mortality. The most common treatment-related adverse events were diarrhea, vomiting and nausea. The best tumor response was stable disease in 3 patients. In conclusion, antroquinonol at all dose levels, administered daily for 4 weeks, was generally safe and well tolerated, without DLTs. The recommended dose level for a phase II study is ≥600 mg daily.

  12. Purification and Characterization of the Principal Antimutagenic Bioactive as Ethoxy-Substituted Phylloquinone from Spinach (Spinacea oleracea L.) Based on Evaluation in Models Including Human Lymphoblast TK+/-Cells.

    Science.gov (United States)

    Kumar, Sanjeev; Chatterjee, Suchandra; Tripathi, Jyoti; Gautam, Satyendra

    2016-11-23

    During in vitro analysis, spinach (Spinacea oleracea L.) leaf extracts displayed varying antimutagenicity when analyzed in models including human lymphoblast (TK +/- ) cell line (thymidine kinase gene mutation assay) and Escherichia coli MG1655 (rifampicin resistance assay) against chemically (ethyl methanesulfonate and 5-azacytidine) induced mutagenicity. Highest antimutagenicity was displayed by the quinone extract. The principal bioactive compound exhibited fluorescence in TLC at 366 nm (termed C4) resolved at R f 0.32 and t R 15.2 min in TLC and HPLC, respectively. On the TLC plate, three spots (C1-C3), observed at 254 nm, displayed comparatively lesser antimutagenicity. Furthermore, biochemical and spectroscopic analyses using MALDI-TOF MS and NMR indicated the nature of the potent compound (C4) as an ethoxy-substituted phylloquinone derivative [2-ethoxy-3-((E)-3,7,11,15-tetramethylhexadec-2-enyl)naphthalene-1,4-dione]. The C4 compound did not display any cytotoxicity and hence possesses significant nutraceutical-based intervention possibility to combat the onset of mutation-associated disease(s).

  13. Colorectal laterally spreading tumors show characteristic expression of cell polarity factors, including atypical protein kinase C λ/ι, E-cadherin, β-catenin and basement membrane component.

    Science.gov (United States)

    Ichikawa, Yasushi; Nagashima, Yoji; Morioka, Kaori; Akimoto, Kazunori; Kojima, Yasuyuki; Ishikawa, Takashi; Goto, Ayumu; Kobayashi, Noritoshi; Watanabe, Kazuteru; Ota, Mitsuyoshi; Fujii, Shoichi; Kawamata, Mayumi; Takagawa, Ryo; Kunizaki, Chikara; Takahashi, Hirokazu; Nakajima, Atsushi; Maeda, Shin; Shimada, Hiroshi; Inayama, Yoshiaki; Ohno, Shigeo; Endo, Itaru

    2014-09-01

    Colorectal flat-type tumors include laterally spreading tumors (LSTs) and flat depressed-type tumors. The former of which shows a predominant lateral spreading growth rather than an invasive growth. The present study examined the morphological characteristics of LSTs, in comparison with polypoid- or flat depressed-type tumors, along with the expression of atypical protein kinase C (aPKC) λ/ι, a pivotal cell polarity regulator, and the hallmarks of cell polarity, as well as with type IV collagen, β-catenin and E-cadherin. In total, 37 flat-type (24 LSTs and 13 flat depressed-type tumors) and 20 polypoid-type colorectal tumors were examined. The LSTs were classified as 15 LST adenoma (LST-A) and nine LST cancer in adenoma (LST-CA). An immunohistochemical examination was performed on aPKC λ/ι, type IV collagen, β-catenin and E-cadherin. The LST-A and -CA showed a superficial replacing growth pattern, with expression of β-catenin and E-cadherin in the basolateral membrane and type IV collagen along the basement membrane. In addition, 86.6% of LST-A and 55.6% of LST-CA showed aPKC λ/ι expression of 1+ (weak to normal intensity staining in the cytoplasm compared with the normal epithelium). Furthermore, ~45% of the polypoid-type adenomas showed 2+ (moderate intensity staining in the cytoplasm and/or nucleus) and 66.7% of the polypoid-type cancer in adenoma were 3+ (strong intensity staining in the cytoplasm and nucleus). A statistically significant positive correlation was observed between the expression of aPKC λ/ι and β-catenin (r=0.842; P<0.001), or type IV collagen (r=0.823; P<0.001). The LSTs showed a unique growth pattern, different from the expanding growth pattern presented by a polypoid tumor and invasive cancer. The growth characteristics of LST appear to be caused by adequate coexpression of β-catenin, type IV collagen and aPKC λ/ι.

  14. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Lechner, Andreas; Nolan, Anna L.; Blacken, Robyn A.; Habener, Joel F.

    2005-01-01

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  15. Patterns and cellular mechanisms of arm regeneration in adult starfish Asterias rollestoni bell

    Science.gov (United States)

    Fan, Tingjun; Fan, Xianyuan; Du, Yutang; Sun, Wenjie; Zhang, Shaofeng; Li, Jiaxin

    2011-09-01

    To understand the mechanisms of starfish regeneration, the arms of adult starfish Asterias rollestoni Bell were amputated and their regeneration patterns and cellular mechanisms were studied. It was found that cells in the outer epidermis and inner parietal peritoneum near the end of the stump began to dedifferentiate 4 d after amputation. The dedifferentiated cells in the outer epidermis proliferated, migrated to the wound site and formed a thickened pre-epidermis which would then re-differentiate gradually into mature epidermis. The new parietal peritoneum formed on the coelomic side of wound might be from the curvely elongated parietal peritoneum, resulting from the dedifferentiated and proliferated cells by extension. Afterwards, the proliferated cells made the outer epidermis and inner parietal peritoneum invaginate into the interior dermis and formed blastema-like structures together with induced dedifferentiated dermal cells. Most interestingly, the arm regeneration in A. rollestoni was achieved synchronously by de novo arm-bud formation and growth, and arm-stump elongation. The crucial aspects of arm-bud formation included cell dedifferentiation, proliferation and migration, while those of arm-stump elongation included cell dedifferentiation, proliferation, invagination, and arm-wall-across blastema-like structure formation. The unique pattern and cellular mechanisms of amputated arm regeneration make it easier to understand the rapid regeneration process of adult starfish. This study may lay solid foundations for the research into molecular mechanisms of echinoderm regeneration.

  16. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Australia: part I--a method of manual documentary analysis.

    Science.gov (United States)

    Ilic, Nina; Savic, Snezana; Siegel, Evan; Atkinson, Kerry; Tasic, Ljiljana

    2012-12-01

    Recent development of a wide range of regulatory standards applicable to production and use of tissues, cells, and other biologics (or biologicals), as advanced therapies, indicates considerable interest in the regulation of these products. The objective of this study was to analyze and compare high-tier documents within the Australian, European, and U.S. biologic drug regulatory environments using qualitative methodology. Cohort 1 of the selected 18 high-tier regulatory documents from the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), and the Therapeutic Goods Administration (TGA) regulatory frameworks were subject to a manual documentary analysis. These documents were consistent with the legal requirements for manufacturing and use of biologic drugs in humans and fall into six different categories. Manual analysis included a terminology search. The occurrence, frequency, and interchangeable use of different terms and phrases were recorded in the manual documentary analysis. Despite obvious differences, manual documentary analysis revealed certain consistency in use of terminology across analyzed frameworks. Phrase search frequencies have shown less uniformity than the search of terms. Overall, the EMA framework's documents referred to "medicinal products" and "marketing authorization(s)," the FDA documents discussed "drug(s)" or "biologic(s)," and the TGA documents referred to "biological(s)." Although high-tier documents often use different terminology they share concepts and themes. Documents originating from the same source have more conjunction in their terminology although they belong to different frameworks (i.e., Good Clinical Practice requirements based on the Declaration of Helsinki, 1964). Automated (software-based) documentary analysis should be obtained for the conceptual and relational analysis.

  17. Overexpression of cyclin D1 induces the reprogramming of differentiated epidermal cells into stem cell-like cells.

    Science.gov (United States)

    Zhao, Along; Yang, Leilei; Ma, Kui; Sun, Mengli; Li, Lei; Huang, Jin; Li, Yang; Zhang, Cuiping; Li, Haihong; Fu, Xiaobing

    2016-01-01

    It has been reported that Wnt/β-catenin is critical for dedifferentiation of differentiated epidermal cells. Cyclin D1 (CCND1) is a β-catenin target gene. In this study, we provide evidence that overexpression of CCND1 induces reprogramming of epidermal cells into stem cell-like cells. After introducing CCND1 gene into differentiated epidermal cells, we found that the large flat-shaped cells with a small nuclear-cytoplasmic ratio changed into small round-shaped cells with a large nuclear-cytoplasmic ratio. The expressions of CK10, β1-integrin, Oct4 and Nanog in CCND1 induced cells were remarkably higher than those in the control group (P cells exhibited a high colony-forming ability and a long-term proliferative potential. When the induced cells were implanted into a wound of laboratory animal model, the wound healing was accelerated. These results suggested that overexpression of CCND1 induced the reprogramming of differentiated epidermal cells into stem cell-like cells. This study may also offer a new approach to yield epidermal stem cells for wound repair and regeneration.

  18. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker

    International Nuclear Information System (INIS)

    Vilming Elgaaen, Bente; Olstad, Ole Kristoffer; Haug, Kari Bente Foss; Brusletto, Berit; Sandvik, Leiv; Staff, Anne Cathrine; Gautvik, Kaare M; Davidson, Ben

    2014-01-01

    Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions. Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously. Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC. Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these mi

  19. Adequacy of herniated disc tissue as a cell source for nucleus pulposus regeneration.

    Science.gov (United States)

    Hegewald, Aldemar A; Endres, Michaela; Abbushi, Alexander; Cabraja, Mario; Woiciechowsky, Christian; Schmieder, Kirsten; Kaps, Christian; Thomé, Claudius

    2011-02-01

    The object of this study was to characterize the regenerative potential of cells isolated from herniated disc tissue obtained during microdiscectomy. The acquired data could help to evaluate the feasibility of these cells for autologous disc cell transplantation. From each of 5 patients (mean age 45 years), tissue from the nucleus pulposus compartment as well as from herniated disc was obtained separately during microdiscectomy of symptomatic herniated lumbar discs. Cells were isolated, and in vitro cell expansion for cells from herniated disc tissue was accomplished using human serum and fibroblast growth factor-2. For 3D culture, expanded cells were loaded in a fibrin-hyaluronan solution on polyglycolic acid scaffolds for 2 weeks. The formation of disc tissue was documented by histological staining of the extracellular matrix as well as by gene expression analysis of typical disc marker genes. Cells isolated from herniated disc tissue showed significant signs of dedifferentiation and degeneration in comparison with cells from tissue of the nucleus compartment. With in vitro cell expansion, further dedifferentiation with distinct suppression of major matrix molecules, such as aggrecan and Type II collagen, was observed. Unlike in previous reports of cells from the nucleus compartment, the cells from herniated disc tissue showed only a weak redifferentiation process in 3D culture. However, propidium iodide/fluorescein diacetate staining documented that 3D assembly of these cells in polyglycolic acid scaffolds allows prolonged culture and high viability. Study results suggested a very limited regenerative potential for cells harvested from herniated disc tissue. Further research on 2 major aspects in patient selection is suggested before conducting reasonable clinical trials in this matter: 1) diagnostic strategies to predict the regenerative potential of harvested cells at a radiological or cell biology level, and 2) clinical assessment strategies to elucidate the

  20. Gene expression profile in human induced pluripotent stem cells: Chondrogenic differentiation in vitro, part A

    Science.gov (United States)

    Suchorska, Wiktoria Maria; Augustyniak, Ewelina; Richter, Magdalena; Trzeciak, Tomasz

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) offer promise in regenerative medicine, however more data are required to improve understanding of key aspects of the cell differentiation process, including how specific chondrogenic processes affect the gene expression profile of chondrocyte-like cells and the relative value of cell differentiation markers. The main aims of the present study were as follows: To determine the gene expression profile of chondrogenic-like cells derived from hiPSCs cultured in mediums conditioned with HC-402-05a cells or supplemented with transforming growth factor β3 (TGF-β3), and to assess the relative utility of the most commonly used chondrogenic markers as indicators of cell differentiation. These issues are relevant with regard to the use of human fibroblasts in the reprogramming process to obtain hiPSCs. Human fibroblasts are derived from the mesoderm and thus share a wide range of properties with chondrocytes, which also originate from the mesenchyme. Thus, the exclusion of dedifferentiation instead of chondrogenic differentiation is crucial. The hiPSCs were obtained from human primary dermal fibroblasts during a reprogramming process. Two methods, both involving embryoid bodies (EB), were used to obtain chondrocytes from the hiPSCs: EBs formed in a chondrogenic medium supplemented with TGF-β3 (10 ng/ml) and EBs formed in a medium conditioned with growth factors from HC-402-05a cells. Based on immunofluorescence and reverse transcription-quantiative polymerase chain reaction analysis, the results indicated that hiPSCs have the capacity for effective chondrogenic differentiation, in particular cells differentiated in the HC-402-05a-conditioned medium, which present morphological features and markers that are characteristic of mature human chondrocytes. By contrast, cells differentiated in the presence of TGF-β3 may demonstrate hypertrophic characteristics. Several genes [paired box 9, sex determining region Y-box (SOX) 5, SOX6

  1. Cell Phenotype Transitions in Cardiovascular Calcification

    Directory of Open Access Journals (Sweden)

    Luis Hortells

    2018-03-01

    Full Text Available Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC; vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.

  2. Poised Regeneration of Zebrafish Melanocytes Involves Direct Differentiation and Concurrent Replenishment of Tissue-Resident Progenitor Cells.

    Science.gov (United States)

    Iyengar, Sharanya; Kasheta, Melissa; Ceol, Craig J

    2015-06-22

    Efficient regeneration following injury is critical for maintaining tissue function and enabling organismal survival. Cells reconstituting damaged tissue are often generated from resident stem or progenitor cells or from cells that have dedifferentiated and become proliferative. While lineage-tracing studies have defined cellular sources of regeneration in many tissues, the process by which these cells execute the regenerative process is largely obscure. Here, we have identified tissue-resident progenitor cells that mediate regeneration of zebrafish stripe melanocytes and defined how these cells reconstitute pigmentation. Nearly all regeneration melanocytes arise through direct differentiation of progenitor cells. Wnt signaling is activated prior to differentiation, and inhibition of Wnt signaling impairs regeneration. Additional progenitors divide symmetrically to sustain the pool of progenitor cells. Combining direct differentiation with symmetric progenitor divisions may serve as a means to rapidly repair injured tissue while preserving the capacity to regenerate. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. TRACKING STEM CELLS IN AN INHERENTLY REGENRATIVE ENVIRONMENT

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    2012-01-01

    tissue without scar formation. Modern regenerative medicine seeks way to adopt these capacities to regenerative therapies in humans. Though much effort is put into the development of stem cell therapies, there exists currently no satisfying technique for non-invasive follow up examinations......Introduction: Regenerative potential in humans is very limited. Like other mammals we rely heavily on fibrosis and scar formation in response to injury. On the contrary, urodele amphibians (salamanders and newts) such as the axolotl (Ambystoma mexicanum) are champions of tissue regeneration among...... vertebrates mastering the ability to replace most tissues in addition to whole limbs, tail, jaw, etc. following damage or amputation. Regeneration in this species is taking place by dedifferentiation of cells to form a collection of stem cells, the regenerative blastema, that proliferate and regenerate lost...

  4. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  5. Plant breeding by using radiation mutation - Selection of herbicide-resistant cell lines by using {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Yeon [Sunchun University, Sunchun (Korea); Seo, Yong Weon [Korea University, Seoul (Korea)

    2000-04-01

    In order to develop the herbicide resistant cell lines, micro calli derived from rice anther culture and mature seed of wheat cultivars were irradiated with gamma rays. 1) The callus was dedifferentiated by 7 or 21 day pretreatment at 7 deg. C in two rice cultivars, Ilpumbyeo ad Dongjinbyeo. 2) To check the optimum concentration of herbicide, three herbicides were tested with micro calli. 3) The optimum dose of gamma ray to seeds of wheat seemed to be from 100 to 150 Gy. 4) AFLP and RAPD technique were established to develope herbicide resistant molecular marker in rice. 34 refs., 10 figs., 5 tabs. (Author)

  6. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Eser, E.; Hegedus, S.S.; McCandless, B.E. (Institute of Energy Conversion)

    2000-08-25

    This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

  7. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for the Development of Polycrystalline Multijunctions Annual Subcontract Report, 24 August 1999 - 23 August 2000

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.

    2001-11-14

    This report describes the results achieved during Phase I of a three-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient, and with respect to device structure and module encapsulation.

  8. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Use of RGD-Functionalized Sandwich Cultures to Promote Redifferentiation of Human Pancreatic Beta Cells After In Vitro Expansion.

    Science.gov (United States)

    Aloy-Reverté, Caterina; Moreno-Amador, José L; Nacher, Montserrat; Montanya, Eduard; Semino, Carlos E

    2018-03-01

    Islet transplantation has provided proof of concept that cell therapy can restore normoglycemia in patients with diabetes. However, limited availability of islet tissue severely restricts the clinical use of the treatment. Thus, there is an urgent need to develop new strategies to generate an abundant source of insulin-producing cells that could be used to treat diabetes. A potential approach is the in vitro expansion of pancreatic beta cells obtained from cadaveric organ donors. However, when human beta cells are expanded in vitro, they dedifferentiate and lose the expression of insulin, probably as a consequence of pancreatic islet dissociation into single cells. We have studied whether reestablishment of cell-cell and cell-matrix relationships with a biomimetic synthetic scaffold could induce redifferentiation of expanded dedifferentiated beta cells. Cells isolated from human islet preparations were expanded in monolayer cultures and allowed to reaggregate into islet-like cell clusters (ICCs). Afterward, ICCs were embedded between two thin layers of the noninstructive self-assembling peptide (SAP), RAD16-I or RAD16-I functionalized with the integrin-binding motif RGD (RAD16-I/RGD) (R: arginine, G: glycine, D: aspartic acid), which was expected to promote cell-extracellular matrix interactions. ICCs cultured with RAD16-I were viable, maintained their cluster conformation, and increased in size by aggregation of ICCs, suggesting a self-organizing process. ICCs cultured in RAD16-I/RGD showed enhanced cell adhesion to RAD16-I matrix and reexpression of the beta cell-specific genes, Ins, Pdx1, Nkx6.1, and MafA. Redifferentiation was caused solely by bioactive cues introduced to the RAD16-I peptide since no differentiation factors were added to the culture medium. The results indicate that RGD-functionalized SAP in sandwich conformation is a promising three-dimensional platform to induce redifferentiation toward a beta cell phenotype and to generate insulin

  10. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  11. The requirement for the hydrophobic motif phosphorylation of Ypk1 in yeast differs depending on the downstream events, including endocytosis, cell growth, and resistance to a sphingolipid biosynthesis inhibitor, ISP-1.

    Science.gov (United States)

    Tanoue, Daisuke; Kobayashi, Takafumi; Sun, Yidi; Fujita, Tetsuro; Takematsu, Hiromu; Kozutsumi, Yasunori

    2005-05-01

    ISP-1 inhibits de novo sphingolipid biosynthesis and induces growth defects in both mammals and yeast (Saccharomyces cerevisiae). In our previous study, YPK1/SLI2 was identified as one of multicopy suppressor genes for ISP-1 in yeast. Ypk1 is proposed to be a downstream serine/threonine kinase of the sphingolipid signaling pathway in yeast. Other than resistance against ISP-1, Ypk1 is involved in at least two downstream events, namely cell growth and endocytosis. In this study, the effect of mutants of Ypk1 on these three downstream events was investigated. Among Ypk1 mutants, no 'kinase-dead' mutants complemented the defects in any of these three downstream events in the ypk1 null strain. One of the hydrophobic motif phosphorylation-deficient mutants of Ypk1, Ypk1(T662A) had the moderate kinase activity compared with the wild-type Ypk1. Ypk1(T662A) and the wild-type Ypk1 completely restored the slow-growth phenotype and fluid-phase endocytosis defect of the ypk1 null strain. However, unlike the wild-type Ypk1, Ypk1(T662A) lost the ability for the recovery of the ISP-1 resistance in the ypk1 null strain. Furthermore, the expression of Ypk1(T662A) in the wild-type strain showed a dominant-negative effect on the ISP-1-resistance activity. On the other hand, the cell growth revertant of the ypk1 null strain still showed the hypersensitive phenotype to ISP-1. These data suggest that the ISP-1-resistance pathway is under the regulation of the hydrophobic motif phosphorylation and is separated from the other pathways downstream of Ypk1.

  12. The effects of selected drugs, including chlorpromazine and non-steroidal anti-inflammatory agents, on polyclonal IgG synthesis and interleukin 1 production by human peripheral blood mononuclear cells in vitro.

    Science.gov (United States)

    Martinez, F; Coleman, J W

    1989-01-01

    We tested a range of drugs for their effects on in vitro polyclonal IgG synthesis by human peripheral blood mononuclear cells (PBMC) stimulated with the lectin pokeweed mitogen (PWM). The test drugs were selected on the basis of reported disruptive effects on immune function in vivo. IgG production between day 4 and days 7 or 8 of culture was measured by biotin-streptavidin sandwich ELISA. The anti-psychotic agent chlorpromazine (0.55-1.7 microM) enhanced IgG synthesis to approximately double control levels. In contrast, the non-steroidal anti-inflammatory drugs (NSAIDs) indomethacin, piroxicam, ibuprofen and aspirin inhibited IgG synthesis by up to 50%, with a rank order of potency that reflects their activity as inhibitors of cyclo-oxygenase. Phenytoin, procainamide, propylthiouracil, methimazole, D-penicillamine and D-penicillamine-L-cysteine all failed to modulate IgG synthesis at non-toxic concentrations. The potentiation and inhibition of IgG synthesis by chlorpromazine and indomethacin, respectively, was observed only when the drug was present during the first 24 h of culture. Neither chlorpromazine nor indomethacin, at non-toxic concentrations, affected PHA- and PWM-stimulated proliferation of PBMC. In addition, chlorpromazine, indomethacin and piroxicam, at concentrations which produced maximal modulation of IgG synthesis, and D-penicillamine and D-penicillamine-L-cysteine at 10 microM failed to influence production of interleukin-1-like activity. We conclude that chlorpromazine and NSAIDs, although they exert opposite effects on IgG synthesis, act at an early stage of B cell differentiation that appears to be independent of interleukin 1 synthesis and early proliferative events. PMID:2788047

  13. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.

    Science.gov (United States)

    Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S

    2018-03-15

    Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for

  14. Study of Collagen Birefringence in Different Grades of Oral Squamous Cell Carcinoma Using Picrosirius Red and Polarized Light Microscopy

    Directory of Open Access Journals (Sweden)

    Pillai Arun Gopinathan

    2015-01-01

    Full Text Available Objectives. The present study was done to evaluate birefringence pattern of collagen fibres in different grades of oral squamous cell carcinoma using Picrosirius red stain and polarization microscopy and to determine if there is a change in collagen fibres between different grades of oral squamous cell carcinoma. Materials and Methods. Picrosirius red stained 5 μm thick sections of previously diagnosed different grades of squamous cell carcinoma and normal oral mucosa were studied under polarization microscopy for arrangement as well as birefringence of collagen fibres around tumour islands. Results. It was found that thin collagen fibres increased and thick collagen fibres decreased with dedifferentiation of OSCC (P<0.0001 . It was observed that there was change in polarization colours of thick fibres from yellowish orange to greenish yellow with dedifferentiation of OSCC indicating loosely packed fibres (P<0.0001. Conclusion. There was a gradual change of birefringence of collagen from yellowish orange to greenish yellow from well to poorly differentiated squamous cell carcinoma, indicating that there is a change from mature form of collagen to immature form as tumour progresses. Studying collagen fibres with Picrosirius red for stromal changes around tumour islands along with routine staining may help in predicting the prognosis of tumour.

  15. Obesity Is an Independent Predictor of Poor Survival in Metastatic Breast Cancer: Retrospective Analysis of a Patient Cohort Whose Treatment Included High-Dose Chemotherapy and Autologous Stem Cell Support

    International Nuclear Information System (INIS)

    Drygalski, A.V.; Tran, T.B.; Drygalski, A.V.; Messer, K.; Pu, M.; Corringham, S.; Nelson, C.; Ball, E.D.

    2011-01-01

    The purpose of the study was to identify predictors of long-term survival in metastatic breast cancer (MBC). A cohort of 96 patients, who received high-dose chemotherapy with autologous stem cell support (HD-ASCT) as part of their treatment, was analyzed. Percent long-term survival at 10 years was 24.5% (CI 17.2-34.9%) when metastasis was diagnosed and 14.4% (CI 8.7-23.9%) when MBC was diagnosed. Survival was impacted significantly by body mass index (BMI). Median overall survival from initial diagnosis or from time of metastasis for patients with BMIs =30 and >30 (obese) was 7.1 (CI 4.4-8.7) and 3.2 years (2.41-6.75), respectively, or 3.2 or 2.3 years (all P=0.02). Also, obesity was the only independent patient-related predictor of time to metastasis and of survival. While obesity is linked with poor outcomes in earlier stages of breast cancer, this has not been previously reported for MBC

  16. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

    Directory of Open Access Journals (Sweden)

    Giulia Donadel

    2017-10-01

    Full Text Available Background: Diabetes mellitus (DM is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1 and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05 increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1, Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2, compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9 were decreased (p < 0.05. These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.

  17. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of cantilever arms (12) contacting the surface of the test sample when performing the movement....... arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area...

  18. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  19. [Adjunctive reflections on history of hematopoietic stem cell study--editorial].

    Science.gov (United States)

    Tang, Pei-Xian

    2005-10-01

    century, the greatest discovery was the existence of adult stem cells in adult tissues, which are no doubt the remnants from the embryonic development including all stages of embryonic stem cells, very earlier and later, hematopoietic and nonhematopoietic, and could be induced to differentiate into all kinds of tissue cells by proper ways in vitro. No evidence has really provided for the hypothesis of so called trans-differentiation or de-differentiation, which brought about strong calls in questions in the past 5 years. The problems in developing the clinical gene therapy by using hematopoietic stem cell as carrier of interested gene still remained to be solved so far. Because of the relatively weak base of related basic studies, the clinical application of gene therapy resulted in the failure of clinical practice with lots of lessons towards the end of last century. The whole history of stem cell study in the world was an endless process of continuous redress for theoretical ideas in stem cell biology that had never been consummate.

  20. Effect of polystyrene and polyether imide cell culture inserts with different roughness on chondrocyte metabolic activity and gene expression profiles of aggrecan and collagen.

    Science.gov (United States)

    König, Josephine; Kohl, Benjamin; Kratz, Karl; Jung, Friedrich; Lendlein, Andreas; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-01-01

    In vitro cultured autologous chondrocytes can be used for implantation to support cartilage repair. For this purpose, a very small number of autologous cells harvested from a biopsy have to be expanded in monolayer culture. Commercially available polymer surfaces lead to chondrocyte dedifferentiation. Hence, the demanding need for optimized polymers and surface topologies supporting chondrocytes' differentiated phenotypes in vitro arises. In this study we explored the effect of tailored cell culture plate inserts prepared from polystyrene (PS) and polyether imide (PEI) exhibiting three different roughness levels (R0, RI, RII) on chondrocyte morphology, metabolism and gene expression profile. As a control, commercially available tissue culture plastic (TCP) dishes were included. Primary porcine articular chondrocytes were seeded on tailored PS and PEI inserts with three different roughness levels. The metabolic activity of the chondrocytes was determined after 24 hours using alamar blue assay. Chondrocyte gene expression profiles (aggrecan, type I and type II collagen) were monitored after 48 hours using Real Time Detection (RTD)-PCR. Chondrocytes cultured on PS and PEI surfaces formed cell clusters after 24 and 48 hours, which was not observed on TCP. The metabolic activity of chondrocytes cultured on PS was lower than of chondrocytes cultured on PEI, but also lower than on TCP. Gene expression analyses revealed an elevated expression of cartilage-specific aggrecan and an impaired expression of both collagen types by chondrocytes on PS and PEI compared with TCP. In summary, PEI is a biocompatible biomaterial suitable for chondrocyte culturing, which can be further chemically functionalized for generating specific surface interactions or covalent binding of biomolecules.

  1. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.

    Science.gov (United States)

    Poli, Vittoria; Fagnocchi, Luca; Fasciani, Alessandra; Cherubini, Alessandro; Mazzoleni, Stefania; Ferrillo, Sara; Miluzio, Annarita; Gaudioso, Gabriella; Vaira, Valentina; Turdo, Alice; Giaggianesi, Miriam; Chinnici, Aurora; Lipari, Elisa; Bicciato, Silvio; Bosari, Silvano; Todaro, Matilde; Zippo, Alessio

    2018-03-09

    Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers.

  2. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  3. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  4. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  5. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Directory of Open Access Journals (Sweden)

    Amy Y Hsiao

    Full Text Available The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  6. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  7. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    Science.gov (United States)

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  8. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  9. Aplasia versus pancytopenia, including the pure red cell variant

    African Journals Online (AJOL)

    production or intramedullary destruction, also known as shunting, that occurs with vitamin B12 and folate deficiency. This needs to be distinguished from the myelodysplastic. (preleukaemic) syndromes. The variability in presentation can be misleading and, to rapidly arrive at the correct interpretation of the patient's problem, ...

  10. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  11. Facts about Stem Cells and Importance of Them

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-05-01

    Full Text Available Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three accessible sources of autologous adult stem cells in humans: Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest, Adipose tissue (lipid cells, which requires extraction by liposuction, and Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation, and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation

  12. The cancer-testis antigen NY-ESO-1 is highly expressed in myxoid and round cell subset of liposarcomas.

    Science.gov (United States)

    Hemminger, Jessica A; Ewart Toland, Amanda; Scharschmidt, Thomas J; Mayerson, Joel L; Kraybill, William G; Guttridge, Denis C; Iwenofu, O Hans

    2013-02-01

    Liposarcomas are a heterogenous group of fat-derived sarcomas, and surgery with or without chemoradiation therapy remains the main stay of treatment. NY-ESO-1 is a cancer-testis antigen expressed in various cancers where it can induce both cellular and humoral immunity. Immunotherapy has shown promise in clinical trials involving NY-ESO-1-expressing tumors. Gene expression studies have shown upregulation of the gene for NY-ESO-1, CTAG1B, in myxoid and round cell liposarcomas. Herein, we evaluated the expression of NY-ESO-1 among liposarcoma subtypes by quantitative real-time PCR, western blot analysis, and immunohistochemistry. Frozen tissue for quantitative real-time PCR and western blot analysis was obtained for the following liposarcoma subtypes (n=15): myxoid and round cell (n=8); well-differentiated (n=4), and dedifferentiated (n=3). Formalin-fixed paraffin-embedded blocks were obtained for the following liposarcoma subtypes (n=44): myxoid and round cell (n=18); well-differentiated (n=10); dedifferentiated (n=10); and pleomorphic (n=6). Full sections were stained with monoclonal antibody NY-ESO-1, and staining was assessed for intensity (1-3+), percentage of tumor positivity, and location. In all, 7/8 (88%) and 16/18 (89%) myxoid and round cell expressed CTAG1B and NY-ESO-1 by quantitative real-time PCR and immunohistochemistry, respectively. Western blot correlated with mRNA expression levels. By immunohistochemistry, 94% (15/16) of positive cases stained homogenously with 2-3+ intensity. Also, 3/6 (50%) pleomorphic liposarcomas demonstrated a range of staining: 1+ intensity in 50% of cells; 2+ intensity in 5% of cells; and 3+ intensity in 90% of cells. One case of dedifferentiated liposarcoma showed strong, diffuse staining (3+ intensity in 75% of cells). Our study shows that both CTAG1B mRNA and protein are overexpressed with high frequency in myxoid and round cell liposarcoma, enabling the potential use of targeted immunotherapy in the treatment of this

  13. [Influence of the activator of transcription GAL4 on growth and development of embryos and embryonic cells in primary cultures of sand dollar].

    Science.gov (United States)

    Odintsova, N A; Kiselev, K V; Bulgakov, V P; Kol'tsova, E A; Iakovlev, K V

    2003-01-01

    In order to solve many tasks of biotechnology, constant lines of the cells of marine invertebrates with a high growth potential are required, which are absent at present. We used the universal activator of transcription gal4 to change the degree of expression of genes of growth factors in embryonic sea urchin cells and, thereby, increase their proliferative activity. The fertilized sea urchin eggs and dissociated embryonic cells at the blastula stage were treated with plasmids containing both the functional gene gal4 and the gene devoid of the regions encoding the activator domain. The transfection of embryonic sea urchin eggs with the functional gene led to cell dedifferentiation and formation of tumor-like structures in the embryos or increased number of embryonic cells in culture. In the cells obtained from the transfected embryos, the pigments were found within two months of cultivation, whose absorption spectrum coincided with that of echinochrome.

  14. Concepts for optical high content screens of excitable primary isolated cells for molecular imaging

    Science.gov (United States)

    Kaestner, Lars; Ruppenthal, Sandra; Schwarz, Sarah; Scholz, Anke; Lipp, Peter

    2009-07-01

    Here we describe the cell- and molecular-biological concepts to utilise excitable primary isolated cells, namely cardiomyocytes, for optical high content screens. This starts with an optimised culture of human adult cardiomyocytes, allowing culture with diminished dedifferentiation for one week. To allow fluorescence based molecular imaging genetically encoded biosensors need to be expressed in the cardiomyocytes. For transduction of end-differentiated primary cells such as neurons or cardiomyocytes, a viral gene transfer is necessary. Several viral systems were balanced against each other and an adenoviral system proofed to be efficient. This adenoviral transduction was used to express the calcium sensors YC3.6 and TN-XL in cardiomyocytes. Example measurements of calcium transients were performed by wide-field video imaging. We discuss the potential application of these cellular and molecular tools in basic research, cardiac safety screens and personalised diagnostics.

  15. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    Science.gov (United States)

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Expression of pluripotency factors in larval epithelia of the frog Xenopus: Evidence for the presence of cornea epithelial stem cells

    Science.gov (United States)

    Perry, Kimberly J.; Thomas, Alvin G.; Henry, Jonathan J.

    2013-01-01

    Understanding the biology of somatic stem cells in self renewing tissues represents an exciting field of study, especially given the potential to harness these cells for tissue regeneration and repair in treating injury and disease. The mammalian cornea contains a population of basal epithelial stem cells involved in cornea homeostasis and repair. Research has been restricted to mammalian systems and little is known about the presence or function of these stem cells in other vertebrates. Therefore, we carried out studies to characterize frog cornea epithelium. Careful examination shows that the Xenopus larval cornea epithelium consists of three distinct layers that include an outer epithelial layer and underlying basal epithelium, in addition to a deeper fibrous layer that contains the main sensory nerve trunks that give rise to numerous branches that extend into these epithelia. These nerves convey sensory and presumably also autonomic innervation to those tissues. The sensory nerves are all derived as branches of the trigeminal nerve/ganglion similar to the situation encountered in mammals, though there appear to be some potentially interesting differences, which are detailed in this paper. We show further that numerous pluripotency genes are expressed by cells in the cornea epithelium, including: sox2, p63, various oct4 homologs, c-myc, klf4 and many others. Antibody localization revealed that p63, a well known mammalian epithelial stem cell marker, was localized strictly to all cells in the basal cornea epithelium. c-myc, was visualized in a smaller subset of basal epithelial cells and adjacent stromal tissue predominately at the periphery of the cornea (limbal zone). Finally, sox2 protein was found to be present throughout all cells of both the outer and basal epithelia, but was much more intensely expressed in a distinct subset of cells that appeared to be either multinucleate or possessed multi-lobed nuclei that are normally located at the periphery of the

  17. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  18. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  19. Cellular Phone Towers, Cell towers developed for Appraiser's Department in 2003. Location was based upon parcel centroids, and corrected to orthophotography. Probably includes towers other than cell towers (uncertain). Not published., Published in 2003, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Cellular Phone Towers dataset current as of 2003. Cell towers developed for Appraiser's Department in 2003. Location was based upon parcel centroids, and corrected...

  20. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  1. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation

    International Nuclear Information System (INIS)

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel

    2005-01-01

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca 2+ movements are essential to ensure SMC functions; one of the roles of Ca 2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT 2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT 2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT 2 is critical in the acquisition and maintenance of SMC differentiation

  2. Expression of IGF‐I, IGF‐II, and IGF‐IR in gallbladder carcinoma. A systematic analysis including primary and corresponding metastatic tumours

    Science.gov (United States)

    Kornprat, P; Rehak, P; Rüschoff, J; Langner, C

    2006-01-01

    Aims The insulin‐like growth factor (IGF) system has been implicated in tumour development and progression. This study was designed to analyse the expression of the IGF‐I receptor (IGF‐IR) and its ligands (IGF‐I, IGF‐II) in gallbladder cancer. Methods IGF‐I, IGF‐II, and IGF‐IR immunoreactivity was investigated in 57 gallbladder carcinomas and corresponding lymph node (n  =  11) and hepatic (n  =  7) metastases using a tissue microarray technique and correlated with tumour stage, grade, and patient outcome. Results Cancer tissue allowing a reliable evaluation of IGF‐I, IGF‐II, and IGF‐IR was present in 55 of 57 primary tumours and 17 of 18 metastases. IGF‐I and IGF‐II immunoreactivity was seen in 25 and 14 of the 55 primary tumours, in addition to six and three of the 17 metastases, respectively. No associations with tumour stage, grade, or prognosis were detected. IGF‐IR was expressed in 52 of 55 primary tumours and all 17 metastases. IGF‐IR staining intensity decreased with tumour cell dedifferentiation. Moreover, IGF‐IR expression in less than 50% of cancer cells was an independent marker of poor prognosis in multivariate analysis (risk ratio, 4.0; 95% confidence interval, 1.4 to 11.2; p  =  0.01). Conclusions The expression of IGF‐IR and its ligands provides evidence for the existence of an auto/paracrine loop of tumour cell stimulation in gallbladder cancer and makes this type of cancer a candidate for therapeutic strategies aimed at interfering with the IGF pathway. The recognition of IGF‐IR as a new independent prognostic biomarker may help to identify patients who might benefit from adjuvant treatment. PMID:16443739

  3. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  4. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  5. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.

    Science.gov (United States)

    Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P

    2011-11-22

    Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41. © 2011 American Chemical Society

  6. Isolation and characterization of progenitor-like cells from human renal proximal tubules.

    Science.gov (United States)

    Lindgren, David; Boström, Anna-Karin; Nilsson, Kristina; Hansson, Jennifer; Sjölund, Jonas; Möller, Christina; Jirström, Karin; Nilsson, Elise; Landberg, Göran; Axelson, Håkan; Johansson, Martin E

    2011-02-01

    The tubules of the kidney display a remarkable capacity for self-renewal on damage. Whether this regeneration is mediated by dedifferentiating surviving cells or, as recently suggested, by stem cells has not been unequivocally settled. Herein, we demonstrate that aldehyde dehydrogenase (ALDH) activity may be used for isolation of cells with progenitor characteristics from adult human renal cortical tissue. Gene expression profiling of the isolated ALDH(high) and ALDH(low) cell fractions followed by immunohistochemical interrogation of renal tissues enabled us to delineate a tentative progenitor cell population scattered through the proximal tubules (PTs). These cells expressed CD24 and CD133, previously described markers for renal progenitors of Bowman's capsule. Furthermore, we show that the PT cells, and the glomerular progenitors, are positive for KRT7, KRT19, BCL2, and vimentin. In addition, tubular epithelium regenerating on acute tubular necrosis displayed long stretches of CD133(+)/VIM(+) cells, further substantiating that these cells may represent a progenitor cell population. Furthermore, a potential association of these progenitor cells with papillary renal cell carcinoma was discovered. Taken together, our data demonstrate the presence of a previously unappreciated subset of the PT cells that may be endowed with a more robust phenotype, allowing increased resistance to acute renal injury, enabling rapid repopulation of the tubules. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet.

    Science.gov (United States)

    Lorenzo, Petra I; Fuente-Martín, Esther; Brun, Thierry; Cobo-Vuilleumier, Nadia; Jimenez-Moreno, Carmen María; G Herrera Gomez, Irene; López Noriega, Livia; Mellado-Gil, José Manuel; Martin-Montalvo, Alejandro; Soria, Bernat; Gauthier, Benoit R

    2015-10-27

    PAX4 is a key regulator of pancreatic islet development whilst in adult acute overexpression protects β-cells against stress-induced apoptosis and stimulates proliferation. Nonetheless, sustained PAX4 expression promotes β-cell dedifferentiation and hyperglycemia, mimicking β-cell failure in diabetic patients. Herein, we study mechanisms that allow stringent PAX4 regulation endowing favorable β-cell adaptation in response to changing environment without loss of identity. To this end, PAX4 expression was monitored using a mouse bearing the enhanced green fluorescent protein (GFP) and cre recombinase construct under the control of the islet specific pax4 promoter. GFP was detected in 30% of islet cells predominantly composed of PAX4-enriched β-cells that responded to glucose-induced insulin secretion. Lineage tracing demonstrated that all islet cells were derived from PAX4(+) progenitor cells but that GFP expression was confined to a subpopulation at birth which declined with age correlating with reduced replication. However, this GFP(+) subpopulation expanded during pregnancy, a state of active β-cell replication. Accordingly, enhanced proliferation was exclusively detected in GFP(+) cells consistent with cell cycle genes being stimulated in PAX4-overexpressing islets. Under stress conditions, GFP(+) cells were more resistant to apoptosis than their GFP(-) counterparts. Our data suggest PAX4 defines an expandable β-cell sub population within adult islets.

  8. Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma.

    Science.gov (United States)

    Song, Wei-tao; Zhang, Xue-yong; Xia, Xiao-bo

    2015-05-01

    Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma. © 2015 by the Society for Experimental Biology and Medicine.

  9. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  10. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

    Science.gov (United States)

    Chandrakanthan, Vashe; Yeola, Avani; Kwan, Jair C.; Oliver, Rema A.; Qiao, Qiao; Kang, Young Chan; Zarzour, Peter; Beck, Dominik; Boelen, Lies; Unnikrishnan, Ashwin; Villanueva, Jeanette E.; Nunez, Andrea C.; Knezevic, Kathy; Palu, Cintia; Nasrallah, Rabab; Carnell, Michael; Macmillan, Alex; Whan, Renee; Yu, Yan; Hardy, Philip; Grey, Shane T.; Gladbach, Amadeus; Delerue, Fabien; Ittner, Lars; Mobbs, Ralph; Walkley, Carl R.; Purton, Louise E.; Ward, Robyn L.; Wong, Jason W. H.; Hesson, Luke B.; Walsh, William; Pimanda, John E.

    2016-01-01

    Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration. PMID:27044077

  11. Global Splicing Pattern Reversion during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Sho Ohta

    2013-10-01

    Full Text Available Alternative splicing generates multiple transcripts from a single gene, and cell-type-specific splicing profiles are important for the properties and functions of the cells. Recently, somatic cells have been shown to undergo dedifferentiation after the forced expression of transcription factors. However, it remains unclear whether somatic cell splicing is reorganized during reprogramming. Here, by combining deep sequencing with high-throughput absolute qRT-PCR, we show that somatic splicing profiles revert to pluripotent ones during reprogramming. Remarkably, the splicing pattern in pluripotent stem cells resembles that in testes, and the regulatory regions have specific characteristics in length and sequence. Furthermore, our siRNA screen has identified RNA-binding proteins that regulate splicing events in iPSCs. We have then demonstrated that two of the RNA-binding proteins, U2af1 and Srsf3, play a role in somatic cell reprogramming. Our results indicate that the drastic alteration in splicing represents part of the molecular network involved in the reprogramming process.

  12. Sirtuin 1 independent effects of resveratrol in INS-1E β-cells

    DEFF Research Database (Denmark)

    Erdogan, Cihan Süleyman; Mørup-Lendal, Mathias; Dalgaard, Louise Torp

    2017-01-01

    . In insulinoma β-cells (INS-1E), Resv is previously shown to improve glucose-stimulated insulin secretion in a Sirt1-dependent mechanism and to protect against β-cell dedifferentiation in non-human primates, while inducing hypertrophy in myoblasts. Mammalian (mechanistic) Target of Rapamycin (mTOR), is a key...... regulator of cellular metabolism and regulates the cell size, β-cell survival and proliferation. In order to understand the interaction of Sirt1 and mTOR cascade activity with Resv-induced changes in the INS-1E cell line, we generated stable Sirt1-down-regulated INS-1E cells, and analysed Sirt1-dependent...... effects of Resv with respect to mTOR cascade activity. Sirt1-knockdown (KD) had a significant increase in cell size compared to negative-control (NEG CTR) cells. Resveratrol treatment increased cell size in both cell types in a dose-dependent manner at 24 h (Resv conc: 15-60 μM), and decreased the cell...

  13. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  14. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  15. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period......GSK-3β abundance in collecting duct. The data are compatible with the notion that increased GSK-3β activity in the postnatal kidney medulla is necessary for kidney development.......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...

  16. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone

    Directory of Open Access Journals (Sweden)

    Gretchen M. Thomsen

    2014-07-01

    Full Text Available The acute response of the rodent subventricular zone (SVZ to traumatic brain injury (TBI involves a physical expansion through increased cell proliferation. However, the cellular underpinnings of these changes are not well understood. Our analyses have revealed that there are two distinct transit-amplifying cell populations that respond in opposite ways to injury. Mash1+ transit-amplifying cells are the primary SVZ cell type that is stimulated to divide following TBI. In contrast, the EGFR+ population, which has been considered to be a functionally equivalent progenitor population to Mash1+ cells in the uninjured brain, becomes significantly less proliferative after injury. Although normally quiescent GFAP+ stem cells are stimulated to divide in SVZ ablation models, we found that the GFAP+ stem cells do not divide more after TBI. We found, instead, that TBI results in increased numbers of GFAP+/EGFR+ stem cells via non-proliferative means—potentially through the dedifferentiation of progenitor cells. EGFR+ progenitors from injured brains only were competent to revert to a stem cell state following brief exposure to growth factors. Thus, our results demonstrate previously unknown changes in lineage relationships that differ from conventional models and likely reflect an adaptive response of the SVZ to maintain endogenous brain repair after TBI.

  17. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. The therapeutic implications of plasticity of the cancer stem cell phenotype.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    2010-12-01

    Full Text Available The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.

  19. Contribution to the systemic study of energetic systems including electrochemical devices: Bond Graph formalism applied to modelling fuel cells, lithium-ion batteries and sun-racer; Contribution a l'etude systemique de dispositifs energetiques a composants electrochimiques. Formalisme Bond Graph applique aux piles a combustible, accumulateurs lithium-ion, vehicule solaire

    Energy Technology Data Exchange (ETDEWEB)

    Saisset, R.

    2004-04-01

    This thesis is a contribution to the study of electric power conversion systems including electrochemical devices. A systemic approach draws advantage of the unified Bond Graph formalism in order to model every component as well as the whole system. A state of the art of electrochemical devices for decentralized electric energy generation and storage put emphasis on common phenomena with the aim of developing 'system oriented' generic models. Solid Oxide and Proton Exchange Fuel Cells (SOFC, PEMFC), as well as Lithium Ion batteries, have been modelled through an efficient work with electrochemistry specialists. These models involve an explicit representation, at a macroscopic level, of conversion and irreversible phenomena linked to the chemical reaction and coupled together both in the hydraulic, chemical, thermodynamic, electric and thermal fields. These models are used to study the modularity of the components, particularly the electric and thermal imbalances in the series and parallel fuel cells associations. The systemic approach is also applied to the study of architectures and energy management of electric power generating units involving PEMFC and battery or super-capacitors storage. Different working conditions for the fuel cells are defined and studied, consisting in either voltage or current or power imposed by means of the storage and static converters environment. Identification of parameters and working tests are performed on specially developed test benches so as to validate theoretical results. At last, the method is applied to study a 'sun-racer', an original complex system with embedded photovoltaic generator, electrochemical storage and brush-less wheel motor, wholly modelled in order to compare various energy management onboard the solar vehicle 'Solelhada'. (author)

  20. Static, Lightweight Includes Resolution for PHP

    NARCIS (Netherlands)

    M.A. Hills (Mark); P. Klint (Paul); J.J. Vinju (Jurgen)

    2014-01-01

    htmlabstractDynamic languages include a number of features that are challenging to model properly in static analysis tools. In PHP, one of these features is the include expression, where an arbitrary expression provides the path of the file to include at runtime. In this paper we present two

  1. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  2. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; van der Zwan, Jan Maarten; Izarzugaza, Isabel; Jaal, Jana; Treasure, Tom; Foschi, Roberto; Ricardi, Umberto; Groen, Harry; Tavilla, Andrea; Ardanaz, Eva

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  3. Rare thoracic cancers, including peritoneum mesothelioma

    NARCIS (Netherlands)

    Siesling, Sabine; Zwan, J.M.V.D.; Izarzugaza, I.; Jaal, J.; Treasure, T.; Foschi, R.; Ricardi, U.; Groen, H.; Tavilla, A.; Ardanaz, E.

    2012-01-01

    Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002,

  4. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Pasternak, Taras; Asard, Han; Potters, Geert; Jansen, Marcel A K

    2014-01-01

    Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct.

    Science.gov (United States)

    Schoen, J; Bondzio, A; Topp, K; Einspanier, R

    2008-03-15

    The oviduct in vivo has to perform various tasks: maturation and transport of the gametes, milieu preparation for fertilization and embryonic development, and transport of the embryo. The complex arrangement of endocrine and paracrine signals being exchanged between the early embryo and the inner cell layers of the oviduct is barely understood. Therefore, a reproducible, well-characterized oviduct epithelial cell line as well as an optimized transfection protocol for DNA vectors and siRNA for this cell line has been established. A bovine oviduct primary cell culture system has been optimized using a selection medium permitting the survival of only epithelial cells. From this we established an adherent bovine oviduct pure epithelial cell line (aBOPEC-1). This cell line maintains some important characteristics of the primary cells such as the expression of estrogen receptors and p450 aromatase but it lacks some characteristics due to the selection and dedifferentiation processes (cilia, expression of progesterone receptor and oviduct specific glycoprotein-1). Optimization of the transfection protocols finally revealed a suitable DNA-transfection procedure yielding transfection efficiencies of over 50%. Additionally, siRNA transfection efficiency reached more than 90%. This new cell line builds an essential basis especially for future functional studies in the oviduct epithelium using distinct knock down experiments.

  6. Composite Pressure Vessel Including Crack Arresting Barrier

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  7. Including Organizational Cultural Parameters in Work Processes

    National Research Council Canada - National Science Library

    Handley, Holly A; Heacox, Nancy J

    2004-01-01

    .... In order to represent the organizational impact on the work process, five organizational cultural parameters were identified and included in an algorithm for modeling and simulation of cultural...

  8. Haemophilus influenzae Disease (Including Hib) Symptoms

    Science.gov (United States)

    ... Links Global Hib Vaccination Hib Vaccination Meningitis Pneumonia Sepsis ... Haemophilus influenzae , including H. influenzae type b or Hib, can cause many different kinds of infections . Symptoms depend on ...

  9. Electrochemical system including lamella settler crystallizer

    Science.gov (United States)

    Maimoni, Arturo

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  10. SMAD3/Stat3 Signaling Mediates β-Cell Epithelial-Mesenchymal Transition in Chronic Pancreatitis-Related Diabetes.

    Science.gov (United States)

    Xiao, Xiangwei; Fischbach, Shane; Zhang, Tina; Chen, Congde; Sheng, Qingfeng; Zimmerman, Ray; Patnaik, Sneha; Fusco, Joseph; Ming, Yungching; Guo, Ping; Shiota, Chiyo; Prasadan, Krishna; Gangopadhyay, Nupur; Husain, Sohail Z; Dong, Henry; Gittes, George K

    2017-10-01

    Many patients with chronic pancreatitis develop diabetes (chronic pancreatitis-related diabetes [CPRD]) through an undetermined mechanism. Here we used long-term partial pancreatic duct ligation (PDL) as a model to study CPRD. We found that long-term PDL induced significant β-cell dedifferentiation, followed by a time-dependent decrease in functional β-cell mass-all specifically in the ligated tail portion of the pancreas (PDL-tail). High levels of transforming growth factor β1 (TGFβ1) were detected in the PDL-tail and were mainly produced by M2 macrophages at the early stage and by activated myofibroblasts at the later stage. Loss of β-cell mass was then found to result from TGFβ1-triggered epithelial-mesenchymal transition (EMT) by β-cells, rather than resulting directly from β-cell apoptosis. Mechanistically, TGFβ1-treated β-cells activated expression of the EMT regulator gene Snail in a SMAD3/Stat3-dependent manner. Moreover, forced expression of forkhead box protein O1 (FoxO1), an antagonist for activated Stat3, specifically in β-cells ameliorated β-cell EMT and β-cell loss and prevented the onset of diabetes in mice undergoing PDL. Together, our data suggest that chronic pancreatitis may trigger TGFβ1-mediated β-cell EMT to lead to CPRD, which could substantially be prevented by sustained expression of FoxO1 in β-cells. © 2017 by the American Diabetes Association.

  11. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...

  12. Including Indigenous Minorities in Decision-Making

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    Based on theories of public sphere participation and deliberative democracy, this book presents empirical results from a study of experiences with including Aboriginal and Maori groups in political decision-making in respectively Western Australia and New Zealand...

  13. Lung Disease Including Asthma and Adult Vaccination

    Science.gov (United States)

    ... Diseases Resources Lung Disease including Asthma and Adult Vaccination Language: English (US) Español (Spanish) Recommend on Facebook ... more about health insurance options. Learn about adult vaccination and other health conditions Asplenia Diabetes Heart Disease, ...

  14. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  15. Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system.

    Science.gov (United States)

    Kaur, H; Carvalho, J; Looso, M; Singh, P; Chennupati, R; Preussner, J; Günther, S; Albarrán-Juárez, J; Tischner, D; Classen, S; Offermanns, S; Wettschureck, N

    2017-06-16

    G-protein-coupled receptor (GPCR) expression is extensively studied in bulk cDNA, but heterogeneity and functional patterning of GPCR expression in individual vascular cells is poorly understood. Here, we perform a microfluidic-based single-cell GPCR expression analysis in primary smooth muscle cells (SMC) and endothelial cells (EC). GPCR expression is highly heterogeneous in all cell types, which is confirmed in reporter mice, on the protein level and in human cells. Inflammatory activation in murine models of sepsis or atherosclerosis results in characteristic changes in the GPCR repertoire, and we identify functionally relevant subgroups of cells that are characterized by specific GPCR patterns. We further show that dedifferentiating SMC upregulate GPCRs such as Gpr39, Gprc5b, Gprc5c or Gpr124, and that selective targeting of Gprc5b modulates their differentiation state. Taken together, single-cell profiling identifies receptors expressed on pathologically relevant subpopulations and provides a basis for the development of new therapeutic strategies in vascular diseases.

  16. Diseases of the abdomen including the pelvis

    International Nuclear Information System (INIS)

    Kido, C.; Tanaka, H.

    1983-01-01

    This book discusses the following diseases: fatty liver; cystic disease of the liver; liver abscess; liver cirrhosis; hepatic hemangioma; cholelithiasis; primary liver cancer; cholangioma; cancer of the common bile duct; pancreatic cyst; pancreatic calculi; chronic pancreatitis; pancreatic pseudocyst; chronic pancreatitis: pancreatic fatty degeneration; cancer of the pancreas; nonfunctioning kidney: chalk kidney; polycystic kidney; perirenal calcified abscess; renal infarct; cancer of the renal pelvis; adrenal pheochromocytoma; adenoma of the adrenal cortex; leiomyosarcoma of the stomach; malignant mesothelioma; intraperitoneal abscess; perityphlic abscess; retroperitoneal reticulum cell sarcoma; and retroperitoneal cyst

  17. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    for lysozyme activity and a colorimetric one for protein concentration. Familiarity with the assays is reinforced by an independently designed project to modify a variable in one of these assays. The assay for lysozyme activity is that of Shugar (6), based on hydrolysis of a cell-wall suspension from the bacterium Micrococcus lysodeikticus, a substrate that is particularly sensitive to lysozyme. As the cell walls are broken down by the enzyme, the turbidity of the sample decreases. This decrease can be conveniently measured by following the decrease in absorbance at a wavelength of 450 nm, using a spectrophotometer or other device for measuring light scattering. The Bradford method (7), a standard assay, is used to determine protein concentration. Using the data from both lysozyme activity assays and protein concentration assays, students can calculate the specific activity for commercial lysozyme and an egg- white solution. These calculations clearly demonstrate the increase in specific activity with increasing purity, since the purified (commercial) preparation has a specific activity approximately 20-fold higher than that of the crude egg-white solution. Lysozyme Purification by Ion-Exchange Chromatography (5 weeks) As suggested by Strang (8), students can design a rational purification of lysozyme using ion-exchange chromatography when presented with information on the isoelectric point of the enzyme and the properties of ion- exchange resins. One week is spent discussing protein purification and the relative advantages and disadvantages of different resins. Each group has a choice of anion-exchange (DEAE) or cation-exchange (CM) resins. Because lysozyme is positively charged below a pH of 11, it will not be adsorbed to an anion-exchange resin, but will be adsorbed to the cation-exchange resin. Therefore, for the cation-exchange protocols, there are further options for methods of collecting and eluting the desired protein. A purification table, including

  18. Dual regulation of myocardin expression by tumor necrosis factor-α in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Pavneet Singh

    Full Text Available De-differentiation of vascular smooth muscle cells (VSMCs plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα. Myocardin is a co-factor of serum response factor (SRF and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.

  19. Smooth muscle cell differentiation in the processus vaginalis of children with hernia or hydrocele.

    Science.gov (United States)

    Mouravas, V K; Koletsa, T; Sfougaris, D K; Philippopoulos, A; Petropoulos, A S; Zavitsanakis, A; Kostopoulos, I

    2010-04-01

    Incomplete obliteration of the processus vaginalis (PV) in children with inguinal hernia or hydrocele has recently been proposed to relate to smooth muscle cell (SMC) persistence. The aim of this study was to evaluate the diversity and differentiation of smooth muscle phenotypes in sacs associated with inguinal hernia and hydrocele through the expression of alpha-smooth muscle actin (SMA), h-caldesmon, desmin, and vimentin. Sacs associated with male hernia (n = 22), female hernia (n = 8), and hydrocele (n = 10) were immunohistochemically evaluated using monoclonal antibodies against SMA, h-caldesmon, desmin, and vimentin. Peritoneal samples (male, 4; female, 3) and obliterated PV (male, 3) obtained from age-matched patients served as controls. Expressions according to the groups were compared through chi-squared test, and P values less than 0.05 were considered to be statistically significant. Immunohistochemistry did not shown the presence of SMCs in control samples. The expression of SMA, desmin, and h-caldesmon did not differ among sacs obtained from patients with inguinal hernia and hydrocele. However, strong expression of vimentin in SMCs within sacs obtained from patients with hydrocele in comparison with sacs from male patients with inguinal hernia were observed. Our results indicate that sacs from patients with inguinal hernias and especially from male inguinal hernias have fully differentiated SMCs. On the other hand SMCs in sacs obtained from boys with hydrocele are in an intermediate state of differentiation-dedifferentiation. This phenotypic modulation may represent attempted apoptosis of SMCs, since sacs more sensitive to apoptosis appeared to have more dedifferentiated SMCs. It also probably depicts the differing influence of sympathetic and parasympathetic tonuses during the descent of the testis and the obliteration of PV.

  20. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    International Nuclear Information System (INIS)

    Yang, Ji Yeon; Ha, Seon-Ah; Yang, Yun-Sik; Kim, Jin Woo

    2010-01-01

    Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists

  1. Combined effects of bone morphogenetic protein 10 and crossveinless-2 on cardiomyocyte differentiation in mouse adipocyte-derived stem cells.

    Science.gov (United States)

    Jumabay, Medet; Zhumabai, Jiayinaguli; Mansurov, Nurlan; Niklason, Katharine C; Guihard, Pierre J; Cubberly, Mark R; Fogelman, Alan M; Iruela-Arispe, Luisa; Yao, Yucheng; Saparov, Arman; Boström, Kristina I

    2018-03-01

    Bone morphogenetic protein (BMP) 10, a cardiac-restricted BMP family member, is essential in cardiomyogenesis, especially during trabeculation. Crossveinless-2 (CV2, also known as BMP endothelial cell precursor derived regulator [BMPER]) is a BMP-binding protein that modulates the activity of several BMPs. The objective of this study was to examine the combined effects of BMP10 and CV2 on cardiomyocyte differentiation using mouse dedifferentiated fat (mDFAT) cells, which spontaneously differentiate into cardiomyocyte-like cells, as a model. Our results revealed that CV2 binds directly to BMP10, as determined by co-immunoprecipitation, and inhibits BMP10 from initiating SMAD signaling, as determined by luciferase reporter gene assays. BMP10 treatment induced mDFAT cell proliferation, whereas CV2 modulated the BMP10-induced proliferation. Differentiation of cardiomyocyte-like cells proceeded in a reproducible fashion in mDFAT cells, starting with small round Nkx2.5-positive progenitor cells that progressively formed myotubes of increasing length that assembled into beating colonies and stained strongly for Troponin I and sarcomeric alpha-actinin. BMP10 enhanced proliferation of the small progenitor cells, thereby securing sufficient numbers to support formation of myotubes. CV2, on the other hand, enhanced formation and maturation of large myotubes and myotube-colonies and was expressed by endothelial-like cells in the mDFAT cultures. Thus BMP10 and CV2 have important roles in coordinating cardiomyogenesis in progenitor cells. © 2017 Wiley Periodicals, Inc.

  2. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  3. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  4. Diversification of Smallholder Tobacco Systems to include ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tobacco is the mainstay of the economy of Malawi, accounting for over 70% of export earnings. Of the 100 000 members of the National Smallholder Farmers' Association of Malawi (NASFAM), 60% rely on tobacco for their sole source of income. Like their counterparts elsewhere, they face many difficulties, including: ...

  5. BIOLOGIC AND ECONOMIC EFFECTS OF INCLUDING DIFFERENT ...

    African Journals Online (AJOL)

    The biologic and economic effects of including three agro-industrial by-products as ingredients in turkey poult diets were investigated using 48 turkey poults in a completely randomised design experiment. Diets were formulated to contain the three by-products – wheat offal, rice husk and palm kernel meal, each at 20% level ...

  6. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  7. Including Children Dependent on Ventilators in School.

    Science.gov (United States)

    Levine, Jack M.

    1996-01-01

    Guidelines for including ventilator-dependent children in school are offered, based on experience with six such students at a New York State school. Guidelines stress adherence to the medical management plan, the school-family partnership, roles of the social worker and psychologist, orientation, transportation, classroom issues, and steps toward…

  8. Musculoskeletal ultrasound including definitions for ultrasonographic pathology

    DEFF Research Database (Denmark)

    Wakefield, RJ; Balint, PV; Szkudlarek, Marcin

    2005-01-01

    Ultrasound (US) has great potential as an outcome in rheumatoid arthritis trials for detecting bone erosions, synovitis, tendon disease, and enthesopathy. It has a number of distinct advantages over magnetic resonance imaging, including good patient tolerability and ability to scan multiple joint...

  9. Modernizing Agrifood Markets : Including Small Producers in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Against this baseline data, they will endeavor to identify success stories or examples of interventions that ensure small farmers' access to modernizing agrifood markets. The research will inform a set of policy recommendations to be promoted through policy platforms in a large number of developing countries, including but ...

  10. Including Students with Visual Impairments: Softball

    Science.gov (United States)

    Brian, Ali; Haegele, Justin A.

    2014-01-01

    Research has shown that while students with visual impairments are likely to be included in general physical education programs, they may not be as active as their typically developing peers. This article provides ideas for equipment modifications and game-like progressions for one popular physical education unit, softball. The purpose of these…

  11. Numerical simulation of spark ignition including ionization

    NARCIS (Netherlands)

    Thiele, M; Selle, S; Riedel, U; Warnatz, J; Maas, U

    2000-01-01

    A detailed understanding of the processes associated Midi spark ignition, as a first step during combustion, is of great importance fur clean operation of spark ignition engines. In the past 10 years. a growing concern for environmental protection, including low emission of pollutants, has increased

  12. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2015-06-01

    Full Text Available Spermatogonial stem cells (SSCs, also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.

  13. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    Science.gov (United States)

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming.

  14. Photoactive devices including porphyrinoids with coordinating additives

    Science.gov (United States)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  15. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  16. Power generation method including membrane separation

    Science.gov (United States)

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  17. Should Trade Agreements Include Environmental Policy?

    OpenAIRE

    Josh Ederington

    2010-01-01

    This article examines the extent to which environmental and trade policies should be treated equally, or symmetrically, in international negotiations. It reviews the recent economics literature on trade and the environment to address two questions. First, should trade negotiations include negotiations over environmental policies and the setting of binding environmental standards? Second, if there are grounds for international environmental negotiations, should environmental agreements b...

  18. Jet-calculus approach including coherence effects

    International Nuclear Information System (INIS)

    Jones, L.M.; Migneron, R.; Narayanan, K.S.S.

    1987-01-01

    We show how integrodifferential equations typical of jet calculus can be combined with an averaging procedure to obtain jet-calculus-based results including the Mueller interference graphs. Results in longitudinal-momentum fraction x for physical quantities are higher at intermediate x and lower at large x than with the conventional ''incoherent'' jet calculus. These results resemble those of Marchesini and Webber, who used a Monte Carlo approach based on the same dynamics

  19. Revisiting Hansen Solubility Parameters by Including Thermodynamics.

    Science.gov (United States)

    Louwerse, Manuel J; Maldonado, Ana; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-11-03

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy and enthalpy, several corrections are suggested that make the methodology thermodynamically sound without losing its ease of use. The most important corrections include accounting for the solvent molecules' size, the destruction of the solid's crystal structure, and the specificity of hydrogen-bonding interactions, as well as opportunities to predict the solubility at extrapolated temperatures. Testing the original and the improved methods on a large industrial dataset including solvent blends, fit qualities improved from 0.89 to 0.97 and the percentage of correct predictions rose from 54 % to 78 %. Full Matlab scripts are included in the Supporting Information, allowing readers to implement these improvements on their own datasets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  1. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway.

    Science.gov (United States)

    Kondegowda, Nagesha Guthalu; Fenutria, Rafael; Pollack, Ilana R; Orthofer, Michael; Garcia-Ocaña, Adolfo; Penninger, Josef M; Vasavada, Rupangi C

    2015-07-07

    Diabetes results from a reduction of pancreatic β-cells. Stimulating replication could normalize β-cell mass. However, adult human β-cells are recalcitrant to proliferation. We identified osteoprotegerin, a bone-related decoy receptor, as a β-cell mitogen. Osteoprotegerin was induced by and required for lactogen-mediated rodent β-cell replication. Osteoprotegerin enhanced β-cell proliferation in young, aged, and diabetic mice. This resulted in increased β-cell mass in young mice and significantly delayed hyperglycemia in diabetic mice. Osteoprotegerin stimulated replication of adult human β-cells, without causing dedifferentiation. Mechanistically, osteoprotegerin induced human and rodent β-cell replication by modulating CREB and GSK3 pathways, through binding Receptor Activator of NF-κB (RANK) Ligand (RANKL), a brake in β-cell proliferation. Denosumab, an FDA-approved osteoporosis drug, and RANKL-specific antibody induced human β-cell proliferation in vitro, and in vivo, in humanized mice. Thus, osteoprotegerin and Denosumab prevent RANKL/RANK interaction to stimulate β-cell replication, highlighting the potential for repurposing an osteoporosis drug to treat diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  3. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  4. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  5. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  6. Including gauge corrections to thermal leptogenesis

    International Nuclear Information System (INIS)

    Huetig, Janine

    2013-01-01

    This thesis provides the first approach of a systematic inclusion of gauge corrections to leading order to the ansatz of thermal leptogenesis. We have derived a complete expression for the integrated lepton number matrix including all resummations needed. For this purpose, a new class of diagram has been invented, namely the cylindrical diagram, which allows diverse investigations into the topic of leptogenesis such as the case of resonant leptogenesis. After a brief introduction of the topic of the baryon asymmetry in the universe and a discussion of its most promising solutions as well as their advantages and disadvantages, we have presented our framework of thermal leptogenesis. An effective model was described as well as the associated Feynman rules. The basis for using nonequilibrium quantum field theory has been built in chapter 3. At first, the main definitions have been presented for equilibrium thermal field theory, afterwards we have discussed the Kadanoff-Baym equations for systems out of equilibrium using the example of the Majorana neutrino. The equations have also been solved in the context of leptogenesis in chapter 4. Since gauge corrections play a crucial role throughout this thesis, we have also repeated the naive ansatz by replacing the free equilibrium propagator by propagators including thermal damping rates due to the Standard Model damping widths for lepton and Higgs fields. It is shown that this leads to a comparable result to the solutions of the Boltzmann equations for thermal leptogenesis. Thus it becomes obvious that Standard Model corrections are not negligible for thermal leptogenesis and therefore need to be included systematically from first principles. In order to achieve this we have started discussing the calculation of ladder rung diagrams for Majorana neutrinos using the HTL and the CTL approach in chapter 5. All gauge corrections are included in this framework and thus it has become the basis for the following considerations

  7. Cadherins in vascular smooth muscle cell (patho)biology: Quid nos scimus?

    Science.gov (United States)

    Frismantiene, Agne; Philippova, Maria; Erne, Paul; Resink, Therese J

    2018-05-01

    Vascular smooth muscle cells (SMCs) phenotypes span a reversible continuum from quiescent/contractile (differentiated) to proliferative/synthetic (dedifferentiated) enabling them to perform a diversity of functions that are context-dependent and important for vascular tone-diameter homeostasis, vasculogenesis, angiogenesis or vessel reparation after injury. Dysregulated phenotype modulation and failure to maintain/regain the mature differentiated and contractile phenotypic state is pivotal in the development of vascular diseases such as atherosclerosis and restenosis after angioplasty and coronary bypass grafting. Many functions of SMCs such as adhesion, migration, proliferation, contraction, differentiation and apoptosis are regulated by a broad spectrum of cell-cell and cell-matrix adhesion molecules. Cadherins represent a superfamily of cell surface homophilic adhesion molecules with fundamental roles in morphogenetic and differentiation processes during development and in the maintenance of tissue integrity and homeostasis in adults. The cadherins have major inputs on signalling pathways and cytoskeletal assemblies that participate in regulating processes such as cell polarity, migration, proliferation, survival, phenotype and differentiation. Abnormalities in these processes have long been recognized to underlie pathological SMC-driven reparation, but knowledge on the involvement of cadherins is remarkably limited. This article presents a comprehensive review of cadherin family members currently identified on vascular SMCs in relation to their functions, molecular mechanisms of action and relevance for vascular pathology. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  9. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  10. Musculoskeletal ultrasound including definitions for ultrasonographic pathology

    DEFF Research Database (Denmark)

    Wakefield, RJ; Balint, PV; Szkudlarek, Marcin

    2005-01-01

    Ultrasound (US) has great potential as an outcome in rheumatoid arthritis trials for detecting bone erosions, synovitis, tendon disease, and enthesopathy. It has a number of distinct advantages over magnetic resonance imaging, including good patient tolerability and ability to scan multiple joints...... in a short period of time. However, there are scarce data regarding its validity, reproducibility, and responsiveness to change, making interpretation and comparison of studies difficult. In particular, there are limited data describing standardized scanning methodology and standardized definitions of US...... pathologies. This article presents the first report from the OMERACT ultrasound special interest group, which has compared US against the criteria of the OMERACT filter. Also proposed for the first time are consensus US definitions for common pathological lesions seen in patients with inflammatory arthritis....

  11. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  12. Should Broca's area include Brodmann area 47?

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2017-02-01

    Understanding brain organization of speech production has been a principal goal of neuroscience. Historically, brain speech production has been associated with so-called Broca’s area (Brodmann area –BA- 44 and 45), however, modern neuroimaging developments suggest speech production is associated with networks rather than with areas. The purpose of this paper was to analyze the connectivity of BA47 ( pars orbitalis) in relation to language . A meta-analysis was conducted to assess the language network in which BA47 is involved. The Brainmap database was used. Twenty papers corresponding to 29 experimental conditions with a total of 373 subjects were included. Our results suggest that BA47 participates in a “frontal language production system” (or extended Broca’s system). The BA47  connectivity found is also concordant with a minor role in language semantics. BA47 plays a central role in the language production system.

  13. Pulmonary disorders, including vocal cord dysfunction.

    Science.gov (United States)

    Greenberger, Paul A; Grammer, Leslie C

    2010-02-01

    The lung is a very complex immunologic organ and responds in a variety of ways to inhaled antigens, organic or inorganic materials, infectious or saprophytic agents, fumes, and irritants. There might be airways obstruction, restriction, neither, or both accompanied by inflammatory destruction of the pulmonary interstitium, alveoli, or bronchioles. This review focuses on diseases organized by their predominant immunologic responses, either innate or acquired. Pulmonary innate immune conditions include transfusion-related acute lung injury, World Trade Center cough, and acute respiratory distress syndrome. Adaptive immunity responses involve the systemic and mucosal immune systems, activated lymphocytes, cytokines, and antibodies that produce CD4(+) T(H)1 phenotypes, such as for tuberculosis or acute forms of hypersensitivity pneumonitis, and CD4(+) T(H)2 phenotypes, such as for asthma, Churg-Strauss syndrome, and allergic bronchopulmonary aspergillosis. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course pr...

  15. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of "LabView Basic I" and "LabView Intermediate II" trainings have been recently changed to include, respectively, an introduction and an expert training on the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to develop expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepare...

  16. CERN Technical Training: LABVIEW courses include RADE

    CERN Multimedia

    HR Department

    2009-01-01

    The contents of the "LabView Basic I" and "LabView Intermediate II" courses have recently been changed to include, respectively, an introduction to and expert training in the Rapid Application Development Environment (RADE). RADE is a LabView-based application developed at CERN to integrate LabView in the accelerator and experiment control infrastructure. It is a suitable solution to developing expert tools, machine development analysis and independent test facilities. The course names have also been changed to "LabVIEW Basics I with RADE Introduction" and "LabVIEW Intermediate II with Advanced RADE Application". " LabVIEW Basics I with RADE Introduction" is designed for: Users preparing to develop applications using LabVIEW, or NI Developer Suite; users and technical managers evaluating LabVIEW or NI Developer Suite in purchasing decisions; users pursuing the Certified LabVIEW Developer certification. The course prepares participants to develop test and measurement, da...

  17. AMS at the ANU including biomedical applications

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R.; King, S.J.; Day, J.P.

    1993-01-01

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of 26 Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of 10 Be, 14 C, 26 Al, 36 Cl, 59 Ni and 129 I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs

  18. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1993-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  19. Neural Progenitor-Like Cells Induced from Human Gingiva-Derived Mesenchymal Stem Cells Regulate Myelination of Schwann Cells in Rat Sciatic Nerve Regeneration.

    Science.gov (United States)

    Zhang, Qunzhou; Nguyen, Phuong; Xu, Qilin; Park, Wonse; Lee, Sumin; Furuhashi, Akihiro; Le, Anh D

    2017-02-01

    Regeneration of peripheral nerve injury remains a major clinical challenge. Recently, mesenchymal stem cells (MSCs) have been considered as potential candidates for peripheral nerve regeneration; however, the underlying mechanisms remain elusive. Here, we show that human gingiva-derived MSCs (GMSCs) could be directly induced into multipotent NPCs (iNPCs) under minimally manipulated conditions without the introduction of exogenous genes. Using a crush-injury model of rat sciatic nerve, we demonstrate that GMSCs transplanted to the injury site could differentiate into neuronal cells, whereas iNPCs could differentiate into both neuronal and Schwann cells. After crush injury, iNPCs, compared with GMSCs, displayed superior therapeutic effects on axonal regeneration at both the injury site and the distal segment of the injured sciatic nerve. Mechanistically, transplantation of GMSCs, especially iNPCs, significantly attenuated injury-triggered increase in the expression of c-Jun, a transcription factor that functions as a major negative regulator of myelination and plays a central role in dedifferentiation/reprogramming of Schwann cells into a progenitor-like state. Meanwhile, our results also demonstrate that transplantation of GMSCs and iNPCs consistently increased the expression of Krox-20/EGR2, a transcription factor that governs the expression of myelin proteins and facilitates myelination. Altogether, our findings suggest that transplantation of GMSCs and iNPCs promotes peripheral nerve repair/regeneration, possibly by promoting remyelination of Schwann cells mediated via the regulation of the antagonistic myelination regulators, c-Jun and Krox-20/EGR2. Stem Cells Translational Medicine 2017;6:458-470. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  20. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

    Science.gov (United States)

    Katoh, Masaru

    2017-01-01

    Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers

  1. Robust Unit Commitment Including Frequency Stability Constraints

    Directory of Open Access Journals (Sweden)

    Felipe Pérez-Illanes

    2016-11-01

    Full Text Available An increased use of variable generation technologies such as wind power and photovoltaic generation can have important effects on system frequency performance during normal operation as well as contingencies. The main reasons are the operational principles and inherent characteristics of these power plants like operation at maximum power point and no inertial response during power system imbalances. This has led to new challenges for Transmission System Operators in terms of ensuring system security during contingencies. In this context, this paper proposes a Robust Unit Commitment including a set of additional frequency stability constraints. To do this, a simplified dynamic model of the initial system frequency response is used in combination with historical frequency nadir data during contingencies. The proposed approach is especially suitable for power systems with cost-based economic dispatch like those in most Latin American countries. The study is done considering the Northern Interconnected System of Chile, a 50-Hz medium size isolated power system. The results obtained were validated by means of dynamic simulations of different system contingencies.

  2. Unifying all elementary particle forces including gravity

    International Nuclear Information System (INIS)

    Terazawa, H.

    1979-01-01

    It is a final goal in physics to unify all four basic forces, strong, weak, electromagnetic and gravitational. First, the unified gauge theories of strong, weak and electromagnetic interactions are discussed. There are two standard models, the model of Pati and Salam in which leptons have the fourth color, and the model of Georgi and Glashow in which a simple group SU (5) is assumed for grand unification. Two mass relations for leptons and quarks were derived, and the extension of the Georgi-Glashow model to a grand unified model of SU (6) gauge group has been made. The quantization of the electric charge of elementary particles is one of the most satisfactory features in grand unified gauge theories. The constraint relations between the gauge couplings, the weak mixing angle and the mass scale of symmetry breaking owing to the renormalization effect are not so severe as those in the grand unified models. However, the mass scale becomes far above the Planck mass in some cases. The baryon number non-conservation is one of the most intriguing features common to grand unified gauge theories. The unified models of all elementary particle forces including gravity are discussed. The discovery of weak vector bosons and the production of subquark pairs are anticipated. (Kako, I.)

  3. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  4. [Contracts including performance and management of uncertainty].

    Science.gov (United States)

    Duru, G; Garassus, P; Auray, J-P

    2013-09-01

    Since many decades in France, the most important part of ambulatory health care expenditure is represented by drug consumption. By the fact, French patient is indeed the greatest world consumer of pharmaceuticals treatments. Therefore, the regulation authorities by successive strategies, attempt to limit or even restrict market access for new drugs in the health care sector secured by public social insurance coverage. Common objectives are to assess the reimbursement to scientific studies and to fix the price of therapeutics at an acceptable level for both industries and government. New trends try then to determine recently the drug price in a dual approach, as a component of global and effective contract, including performance and outcome. The first diffusion authorization is diffusion concerned, but this concept takes into account the eventual success of new produces in long-term survey. Signed for a fixed period as reciprocal partnership between regulation authorities and pharmaceutics industries, the contract integrates two dimensions of incertitude. The first one is represented by the strategy of new treatments development according to efficacy and adapted price, and the second one is linked to the result of diffusion and determines adapted rules if eventual non-respects of the previous engagement are registered. This paper discusses problems related to this new dimension of incertitude affected by conditional drug prices in market access strategy and the adapted follow-up of new treatment diffusion fixed by "outcome" contract between French regulation administration and pharmaceutics industries in our recent economic context. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Resection of thymoma should include nodal sampling.

    Science.gov (United States)

    Weksler, Benny; Pennathur, Arjun; Sullivan, Jennifer L; Nason, Katie S

    2015-03-01

    Thymoma is best treated by surgical resection; however, no clear guidelines have been created regarding lymph node sampling at the time of resection. Additionally, the prognostic implications of nodal metastases are unclear. The aim of this study was to analyze the prognostic implications of nodal metastases in thymoma. The Surveillance, Epidemiology, and End Results database was queried for patients who underwent surgical resection of thymoma with documented pathologic examination of lymph nodes. The impact of nodal status on survival and thymoma staging was examined. We identified 442 patients who underwent thymoma resection with pathologic evaluation of 1 or more lymph nodes. A median of 2 nodes were sampled per patient. Fifty-nine patients (59 of 442, 13.3%) had ≥ 1 positive node. Patients with positive nodes were younger and had smaller tumors than node-negative patients. Median survival in the node-positive patients was 98 months, compared with 144 months in node-negative patients (P = .013). In multivariable analysis, the presence of positive nodes had a significant, independent, adverse impact on survival (hazard ratio 1.945, 95% confidence interval 1.296-2.919, P = .001). The presence of nodal metastases resulted in a change in classification to a higher stage in 80% of patients, the majority from Masaoka-Koga stage III to stage IV. Nodal status seems to be an important prognostic factor in patients with thymoma. Until the prognostic significance of nodal metastases is better understood, surgical therapy for thymoma should include sampling of regional lymph nodes. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  6. Dedifferentiation of leaf explants and antileukemia activity of an ...

    African Journals Online (AJOL)

    user

    2011-04-04

    Apr 4, 2011 ... secondary metabolites due to consistency in quality and quantity of the desired product (Rao and Ravishankar,. 2002). Moreover, it is well known that, .... the best auxin for callus induction as common in monocot and even in dicot (Evans et al., 1984; Ho and Vasil, 1983;. Jaiswal and Naryan, 1985; Chee, ...

  7. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  8. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis.

    Science.gov (United States)

    Maumus, Marie; Manferdini, Cristina; Toupet, Karine; Peyrafitte, Julie-Anne; Ferreira, Rosanna; Facchini, Andrea; Gabusi, Elena; Bourin, Philippe; Jorgensen, Christian; Lisignoli, Gina; Noël, Danièle

    2013-09-01

    Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8+and CD4+T-cell responses with multiple specificities including a novel DR7-restricted epitope.

    Science.gov (United States)

    Baumgaertner, P; Costa Nunes, C; Cachot, A; Maby-El Hajjami, H; Cagnon, L; Braun, M; Derré, L; Rivals, J-P; Rimoldi, D; Gnjatic, S; Abed Maillard, S; Marcos Mondéjar, P; Protti, M P; Romano, E; Michielin, O; Romero, P; Speiser, D E; Jandus, C

    2016-01-01

    Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO-1 79-108 peptide and CpG-B (PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination induced antigen-specific CD8 + and CD4 + T-cell and antibody responses, starting early after initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-specifically, with strong secretion of IFNγ and TNFα, irrespective of patients' HLAs. The most immunogenic regions of the vaccine peptide were NY-ESO-1 89-102 for CD8 + and NY-ESO-1 83-99 for CD4 + T-cells. We discovered a novel and highly immunogenic epitope (HLA-DR7/NY-ESO-1 87-99 ); 7/7 HLA-DR7 + patients generated strong CD4 + T-cell responses, as detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic NY-ESO-1 79-108 peptide combined with the strong immune adjuvant CpG-B induced integrated, robust and functional CD8 + and CD4 + T-cell responses in melanoma patients, supporting the further development of this immunotherapeutic approach.

  10. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    Science.gov (United States)

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  11. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    Science.gov (United States)

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells.

    Science.gov (United States)

    Benitz, Simone; Regel, Ivonne; Reinhard, Tobias; Popp, Anna; Schäffer, Isabell; Raulefs, Susanne; Kong, Bo; Esposito, Irene; Michalski, Christoph W; Kleeff, Jörg

    2016-03-08

    Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells.

  13. A new and improved algorithm for the quantification of chromatin condensation from microscopic data shows decreased chromatin condensation in regenerating axolotl limb cells.

    Science.gov (United States)

    Sosnik, Julian; Vieira, Warren A; Webster, Kaitlyn A; Siegfried, Kellee R; McCusker, Catherine D

    2017-01-01

    The nuclear landscape plays an important role in the regulation of tissue and positional specific genes in embryonic and developing cells. Changes in this landscape can be dynamic, and are associated with the differentiation of cells during embryogenesis, and the de-differentiation of cells during induced pluripotent stem cell (iPSC) formation and in many cancers. However, tools to quantitatively characterize these changes are limited, especially in the in vivo context, where numerous tissue types are present and cells are arranged in multiple layers. Previous tools have been optimized for the monolayer nature of cultured cells. Therefore, we present a new algorithm to quantify the condensation of chromatin in two in vivo systems. We first developed this algorithm to quantify changes in chromatin compaction and validated it in differentiating spermatids in zebrafish testes. Our algorithm successfully detected the typical increase in chromatin compaction as these cells differentiate. We then employed the algorithm to quantify the changes that occur in amphibian limb cells as they participate in a regenerative response. We observed that the chromatin in the limb cells de-compacts as they contribute to the regenerating organ. We present this new tool as an open sourced software that can be readily accessed and optimized to quantify chromatin compaction in complex multi-layered samples.

  14. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    Science.gov (United States)

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  15. A new and improved algorithm for the quantification of chromatin condensation from microscopic data shows decreased chromatin condensation in regenerating axolotl limb cells.

    Directory of Open Access Journals (Sweden)

    Julian Sosnik

    Full Text Available The nuclear landscape plays an important role in the regulation of tissue and positional specific genes in embryonic and developing cells. Changes in this landscape can be dynamic, and are associated with the differentiation of cells during embryogenesis, and the de-differentiation of cells during induced pluripotent stem cell (iPSC formation and in many cancers. However, tools to quantitatively characterize these changes are limited, especially in the in vivo context, where numerous tissue types are present and cells are arranged in multiple layers. Previous tools have been optimized for the monolayer nature of cultured cells. Therefore, we present a new algorithm to quantify the condensation of chromatin in two in vivo systems. We first developed this algorithm to quantify changes in chromatin compaction and validated it in differentiating spermatids in zebrafish testes. Our algorithm successfully detected the typical increase in chromatin compaction as these cells differentiate. We then employed the algorithm to quantify the changes that occur in amphibian limb cells as they participate in a regenerative response. We observed that the chromatin in the limb cells de-compacts as they contribute to the regenerating organ. We present this new tool as an open sourced software that can be readily accessed and optimized to quantify chromatin compaction in complex multi-layered samples.

  16. Intraventricular injection of 6-hydroxydopamine results in an increased number of tyrosine hydroxylase immune-positive cells in the rat cortex.

    Science.gov (United States)

    Wachter, B; Caradonna, S; Gittinger, K; Schläger, A; Küppers, E

    2014-11-07

    Previously we have demonstrated that intraventricular injection of 6-hydroxydopamine (6-OHDA) results in increased proliferation and de-differentiation of rat cortical astrocytes into progenitor-like cells 4 days after lesion (Wachter et al., 2010). To find out if these cells express tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine synthesis pathway, we performed immunohistochemistry in the rat cortex following intraventricular injection of 6-OHDA. Four days after injection we demonstrated a strong emergence of TH-positive (TH(+)) somata in the cortices of 6-OHDA-lesioned animals. The number of TH(+) cells in the cortex of 6-OHDA-lesioned animals was 15 times higher than in sham-operated animals, where virtually no TH(+) somata occurred. Combining TH immunohistochemistry with classical Nissl stain yielded complete congruency, and ∼45% of the TH(+) cells co-expressed calretinin, which indicates an interneuron affiliation. There was no co-staining of TH with other interneuron markers or with glial markers such as glial fibrillary acidic protein (GFAP) or the neural stem/progenitor marker Nestin, nor could we find co-localization with the proliferation marker Ki67. However, we found a co-localization of TH with glial progenitor cell markers (Sox2 and S100β) and with polysialylated-neural cell adhesion molecule (PSA-NCAM), which has been shown to be expressed in immature, but not recently generated cortical neurons. Taken together, this study seems to confirm our previous findings with respect to a 6-OHDA-induced expression of neuronal precursor markers in cells of the rat cortex, although the TH(+) cells found in this study are not identical with the potentially de-differentiated astrocytes described recently (Wachter et al., 2010). The detection of cortical cells expressing the catecholaminergic key enzyme TH might indicate a possible compensatory role of these cells in a dopamine-(DA)-depleted system. Future studies are needed to determine

  17. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  18. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    Science.gov (United States)

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016. © 2016 American Institute of Chemical Engineers.

  19. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  20. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph

  1. What is Sickle Cell Disease?

    Science.gov (United States)

    ... Congenital Anemias Including Sickle Cell Disease (SCD) and Beta-Thalassemia. Are you an adult with sickle cell disease ... Severe Congenital Anemias Including Sickle Cell Disease and Beta-Thalassemia. Are you 16 or older with sickle cell ...

  2. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells.

    Science.gov (United States)

    Bastidas-Ponce, Aimée; Roscioni, Sara S; Burtscher, Ingo; Bader, Erik; Sterr, Michael; Bakhti, Mostafa; Lickert, Heiko

    2017-06-01

    The transcription factors (TF) Foxa2 and Pdx1 are key regulators of beta-cell (β-cell) development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY), pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBF DHom ) fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF) with the newly generated Pdx1-BFP (blue fluorescent protein) fusion (PBF) mice. Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBF DHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass.

  3. Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation.

    Science.gov (United States)

    Feil, Gerhard; Horres, Ralf; Schulte, Julia; Mack, Andreas F; Petzoldt, Svenja; Arnold, Caroline; Meng, Chen; Jost, Lukas; Boxleitner, Jochen; Kiessling-Wolf, Nicole; Serbest, Ender; Helm, Dominic; Kuster, Bernhard; Hartmann, Isabel; Korff, Thomas; Hahne, Hannes

    2017-09-01

    Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K -means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular

  4. Development of a Novel Tissue Engineering Strategy Towards Whole Limb Regeneration

    National Research Council Canada - National Science Library

    Laurencin, Cato T

    2008-01-01

    .... In contrast to the bottom up approach of limb regeneration that relies on blastema formation outgrowth and cell dedifferentiation as seen in amphibians and lower vertebrates tissue engineering...

  5. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  6. Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Choi

    Full Text Available BACKGROUND: Long-term maintenance of avian primordial germ cells (PGCs in vitro has tremendous potential because it can be used to deepen our understanding of the biology of PGCs. A transgenic bioreactor based on the unique migration of PGCs toward the recipients' sex cord via the bloodstream and thereby creating a germline chimeric bird has many potential applications. However, the growth factors and the signaling pathway essential for inducing proliferation of chicken PGCs are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we conducted this study to investigate the effects of various combinations of growth factors on the survival and proliferation of PGCs under feeder-free conditions. We observed proliferation of PGCs in media containing bFGF. Subsequent characterization confirmed that the cultured PGCs maintained expression of PGC-specific markers, telomerase activity, normal migrational activity, and germline transmission. We also found that bFGF activates the mitogen-activated protein kinase kinase/extracellular-signal regulated kinase (MEK/ERK signaling. Also, the expression of 133 transcripts was reversibly altered by bFGF withdrawal. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that chicken PGCs can be maintained in vitro without any differentiation or dedifferentiation in feeder free culture conditions, and subsequent analysis revealed that bFGF is one of the key factors that enable proliferation of chicken PGCs via MEK/ERK signaling regulating downstream genes that may be important for PGC proliferation and survival.

  7. Launch Lock Assemblies Including Axial Gap Amplification Devices and Spacecraft Isolation Systems Including the Same

    Science.gov (United States)

    Barber, Tim Daniel (Inventor); Hindle, Timothy (Inventor); Young, Ken (Inventor); Davis, Torey (Inventor)

    2014-01-01

    Embodiments of a launch lock assembly are provided, as are embodiments of a spacecraft isolation system including one or more launch lock assemblies. In one embodiment, the launch lock assembly includes first and second mount pieces, a releasable clamp device, and an axial gap amplification device. The releasable clamp device normally maintains the first and second mount pieces in clamped engagement; and, when actuated, releases the first and second mount pieces from clamped engagement to allow relative axial motion there between. The axial gap amplification device normally residing in a blocking position wherein the gap amplification device obstructs relative axial motion between the first and second mount pieces. The axial gap amplification device moves into a non-blocking position when the first and second mount pieces are released from clamped engagement to increase the range of axial motion between the first and second mount pieces.

  8. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  9. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  10. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Salamon, Achim; Jonitz-Heincke, Anika; Adam, Stefanie; Rychly, Joachim; Müller-Hilke, Brigitte; Bader, Rainer; Lochner, Katrin; Peters, Kirsten

    2013-01-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  11. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dingke@med.uestc.edu.cn [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, School of medicine, University of Electronic Science and Technology of China, Chengdu 610072 (China); Sichuan Academy of Medical Sciences & Sichuan Provincial People' s Hospital, Chengdu 610072 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yang, Zhong, E-mail: zyang1999@163.com [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2017-03-01

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  12. Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors.

    Science.gov (United States)

    Ungerbäck, Jonas; Åhsberg, Josefine; Strid, Tobias; Somasundaram, Rajesh; Sigvardsson, Mikael

    2015-06-29

    To investigate how transcription factor levels impact B-lymphocyte development, we generated mice carrying transheterozygous mutations in the Pax5 and Ebf1 genes. Whereas combined reduction of Pax5 and Ebf1 had minimal impact on the development of the earliest CD19(+) progenitors, these cells displayed an increased T cell potential in vivo and in vitro. The alteration in lineage fate depended on a Notch1-mediated conversion process, whereas no signs of de-differentiation could be detected. The differences in functional response to Notch signaling in Wt and Pax5(+/-)Ebf1(+/-) pro-B cells were reflected in the transcriptional response. Both genotypes responded by the generation of intracellular Notch1 and activation of a set of target genes, but only the Pax5(+/-)Ebf1(+/-) pro-B cells down-regulated genes central for the preservation of stable B cell identity. This report stresses the importance of the levels of transcription factor expression during lymphocyte development, and suggests that Pax5 and Ebf1 collaborate to modulate the transcriptional response to Notch signaling. This provides an insight on how transcription factors like Ebf1 and Pax5 preserve cellular identity during differentiation. © 2015 Ungerbäck et al.

  13. New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance.

    Science.gov (United States)

    Monderer, David; Luseau, Alexandrine; Bellec, Amélie; David, Emmanuelle; Ponsolle, Stéphanie; Saiagh, Soraya; Bercegeay, Sylvain; Piloquet, Philippe; Denis, Marc G; Lodé, Laurence; Rédini, Françoise; Biger, Marine; Heymann, Dominique; Heymann, Marie-Françoise; Le Bot, Ronan; Gouin, François; Blanchard, Frédéric

    2013-10-01

    Chondrosarcomas are cartilage-forming, poorly vascularized tumors. They represent the second malignant primary bone tumor of adults after osteosarcoma, but in contrast to osteosarcoma they are resistant to chemotherapy and radiotherapy, surgical excision remaining the only therapeutic option. Few cell lines and animal models are available, and the mechanisms behind their chemoresistance remain largely unknown. Our goal was to establish new cell lines and animal cancer models from human chondrosarcoma biopsies to study their chemoresistance. Between 2007 and 2012, 10 chondrosarcoma biopsies were collected and used for cell culture and transplantation into nude mice. Only one transplanted biopsy and one injected cell line has engrafted successfully leading to conventional central high-grade chondrosarcoma similar to the original biopsies. In culture, two new stable cell lines were obtained, one from a dedifferentiated and one from a grade III conventional central chondrosarcoma biopsy. Their genetic characterization revealed triploid karyotypes, mutations in IDH1, IDH2, and TP53, deletion in CDKN2A and/or MDM2 amplification. These cell lines expressed mesenchymal membrane markers (CD44, 73, 90, 105) and were able to produce a hyaline cartilaginous matrix when cultured in chondrogenic three-dimensional (3D) pellets. Using a high-throughput quantitative RT-PCR approach, we observed that cell lines cultured in monolayer had lost expression of several genes implicated in cartilage development (COL2A1, COMP, ACAN) but restored their expression in 3D cultures. Chondrosarcoma cells in monolayer were sensitive to several conventional chemotherapeutic agents but became resistant to low doses of mafosfamide or doxorubicin when cultured in 3D pellets, in parallel with an altered nucleic accumulation of the drug. Our results indicate that the cartilaginous matrix produced by chondrosarcoma cells may impair diffusion of several drugs and thus contribute to chemoresistance

  14. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  15. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  16. Human Coronary Artery Smooth Muscle Cell Responses to Bioactive Polyelectrolyte Multilayer Interfaces

    Directory of Open Access Journals (Sweden)

    Robert G. Newcomer

    2011-01-01

    Full Text Available Under normal physiological conditions, mature human coronary artery smooth muscle cells (hCASMCs exhibit a “contractile” phenotype marked by low rates of proliferation and protein synthesis, but these cells possess the remarkable ability to dedifferentiate into a “synthetic” phenotype when stimulated by conditions of pathologic stress. A variety of polyelectrolyte multilayer (PEMU films are shown here to exhibit bioactive properties that induce distinct responses from cultured hCASMCs. Surfaces terminated with Nafion or poly(styrenesulfonic acid (PSS induce changes in the expression and organization of intracellular proteins, while a hydrophilic, zwitterionic copolymer of acrylic acid and 3-[2-(acrylamido-ethyl dimethylammonio] propane sulfonate (PAA-co-PAEDAPS is resistant to cell attachment and suppresses the formation of key cytoskeletal components. Differential expression of heat shock protein 90 and actin is observed, in terms of both their magnitude and cellular localization, and distinct cytoplasmic patterns of vimentin are seen. The ionophore A23187 induces contraction in confluent hCASMC cultures on Nafion-terminated surfaces. These results demonstrate that PEMU coatings exert direct effects on the cytoskeletal organization of attaching hCASMCs, impeding growth in some cases, inducing changes consistent with phenotypic modulation in others, and suggesting potential utility for PEMU surfaces as a coating for coronary artery stents and other implantable medical devices.

  17. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  18. Transcriptome Analysis of Human Reninomas as an Approach to Understanding Juxtaglomerular Cell Biology.

    Science.gov (United States)

    Martini, Alexandre G; Xa, Lucie K; Lacombe, Marie-Josée; Blanchet-Cohen, Alexis; Mercure, Chantal; Haibe-Kains, Benjamin; Friesema, Edith C H; van den Meiracker, Anton H; Gross, Kenneth W; Azizi, Michel; Corvol, Pierre; Nguyen, Geneviève; Reudelhuber, Timothy L; Danser, A H Jan

    2017-06-01

    Renin, a key component in the regulation of blood pressure in mammals, is produced by the rare and highly specialized juxtaglomerular cells of the kidney. Chronic stimulation of renin release results in a recruitment of new juxtaglomerular cells by the apparent conversion of adjacent smooth muscle cells along the afferent arterioles. Because juxtaglomerular cells rapidly dedifferentiate when removed from the kidney, their developmental origin and the mechanism that explains their phenotypic plasticity remain unclear. To overcome this limitation, we have performed RNA expression analysis on 4 human renin-producing tumors. The most highly expressed genes that were common between the reninomas were subsequently used for in situ hybridization in kidneys of 5-day-old mice, adult mice, and adult mice treated with captopril. From the top 100 genes, 10 encoding for ligands were selected for further analysis. Medium of human embryonic kidney 293 cells transfected with the mouse cDNA encoding these ligands was applied to (pro)renin-synthesizing As4.1 cells. Among the ligands, only platelet-derived growth factor B reduced the medium and cellular (pro)renin levels, as well as As4.1 renin gene expression. In addition, platelet-derived growth factor B-exposed As4.1 cells displayed a more elongated and aligned shape with no alteration in viability. This was accompanied by a downregulated expression of α-smooth muscle actin and an upregulated expression of interleukin-6, suggesting a phenotypic shift from myoendocrine to inflammatory. Our results add 36 new genes to the list that characterize renin-producing cells and reveal a novel role for platelet-derived growth factor B as a regulator of renin-synthesizing cells. © 2017 American Heart Association, Inc.

  19. Generalized fluid theory including non-Maxwellian kinetic effects

    Science.gov (United States)

    Izacard, Olivier

    2017-04-01

    The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g. the INMDF (Izacard, O. 2016b Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 23, 082504) that stands for interpreted non-Maxwellian distribution function). One of the main differences with the literature is our analytic representation of the distribution function in th