WorldWideScience

Sample records for include boundary-fault grabens

  1. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel; Abebe, B.

    2015-01-01

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  2. Fault and graben growth along active magmatic divergent plate boundaries in Iceland and Ethiopia

    KAUST Repository

    Trippanera, D.

    2015-10-08

    Recent studies highlight the importance of annual-scale dike-induced rifting episodes in developing normal faults and graben along the active axis of magmatic divergent plate boundaries (MDPB). However, the longer-term (102-105 years) role of diking on the cumulative surface deformation and evolution of MDPB is not yet well understood. To better understand the longer-term normal faults and graben along the axis of MDPB, we analyze fissure swarms in Iceland and Ethiopia. We first focus on the simplest case of immature fissure swarms, with single dike-fed eruptive fissures; these consist of a <1 km wide graben bordered by normal faults with displacement up to a few meters, consistent with theoretical models and geodetic data. A similar structural pattern is found, with asymmetric and multiple graben, within wider mature fissure swarms, formed by several dike-fed eruptive fissures. We then consider the lateral termination of normal faults along these graben, to detect their upward or downward propagation. Most faults terminate as open fractures on flat surface, suggesting downward fault propagation; this is consistent with recent experiments showing dike-induced normal faults propagating downward from the surface. However, some normal faults also terminate as open fractures on monoclines, which resemble fault propagation folds; this suggests upward propagation of reactivated buried faults, promoted by diking. These results suggest that fault growth and graben development, as well as the longer-term evolution of the axis of MDPB, may be explained only through dike emplacement and that any amagmatic faulting is not necessary.

  3. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    Science.gov (United States)

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  4. Integrated study on the topographic and shallow subsurface expression of the Grote Brogel Fault at the boundary of the Roer Valley Graben, Belgium

    Science.gov (United States)

    Deckers, Jef; Van Noten, Koen; Schiltz, Marco; Lecocq, Thomas; Vanneste, Kris

    2018-01-01

    The Grote Brogel Fault (GBF) is a major WNW-ESE striking normal fault in Belgium that diverges westward from the NW-SE striking western border fault system of the Roer Valley Graben. The GBF delimits the topographically higher Campine Block from the subsiding Roer Valley Graben, and is expressed in the Digital Terrain Model (DTM) by relief gradients or scarps. By integrating DTM, Electrical Resistivity Tomography (ERT), Cone Penetration Test (CPT) and borehole data, we studied the Quaternary activity of the GBF and its effects on local hydrogeology. In the shallow subsurface (< 50 m) underneath these scarps, fault splays of the GBF were interpreted on newly acquired ERT profiles at two investigation sites: one on the eastern section and the other on the western section, near the limit of the visible surface trace of the fault. Borehole and CPT data enabled stratigraphic interpretations of the ERT profiles and thereby allowed measuring vertical fault offsets at the base of Pleistocene fluvial deposits of up to 12 m. Groundwater measurements in the boreholes and CPTs indicate that the GBF acts as a hydrologic boundary that prevents groundwater flow from the elevated footwall towards the hangingwall, resulting in hydraulic head differences of up to 12.7 m. For the two investigation sites, the hydraulic head changes correlate with the relief gradient, which in turn correlates with the Quaternary vertical offset of the GBF. ERT profiles at the eastern site also revealed a local soft-linked stepover in the shallow subsurface, which affects groundwater levels in the different fault blocks, and illustrates the complex small-scale geometry of the GBF.

  5. Gravity and magnetic survey of the Oaxaca city region: Cenozoic horst-and-graben structure superimposed on the Oaxaca-Juarez terrane boundary, southern Mexico

    Science.gov (United States)

    Campos-Enríquez, J. O.; Belmonte-Jiménez, S. I.; Keppie, J. D.; Ortega-Gutiérrez, F.; Arzate, J. A.; Martínez-Silva, J.; Martínez-Serrano, R. G.

    2010-04-01

    A geophysical survey of the Oaxaca Fault along the north-trending Etla and Zaachila valleys area, southern Mexico, shows a series of NNW-SSE Bouguer and magnetic anomalies with steeper gradients towards the east. The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone that constitutes the boundary between the Oaxaca and Juárez terranes. Cooperative interpretation of six combined gravity and magnetic NE-SW profiles perpendicular to the valleys indicates the presence of a composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. The Etla sub-basin is bounded by the moderately E-dipping, Etla Fault and the more steeply W-dipping Oaxaca Fault, which together constitute a graben that continues southwards into the Atzompa graben. The deeper Zaachila sub-basin, south of Oaxaca city, is a wide V-shaped graben with a horst in the middle. The new geophysical data suggest that the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. On the other hand, the Oaxaca Fault may either continue unbroken southwards along the western margin of the horst in the Zaachila sub-basin or be offset along with the terrane boundary. The sinistral movement may have taken place either during the Late Mesozoic-Early Cenozoic, Laramide Orogeny as a lateral ramp in the thrust plane or under Miocene-Pliocene, NE-SW extension. The former suggests that the Donají Fault is a transcurrent fault, whereas the latter implies that it is a transfer fault. The models imply that originally the suture was continuous south of the Donaji Fault and provide a constraint for the accretion of the Oaxaca and Juarez terranes.

  6. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation

    Science.gov (United States)

    Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi

    2018-01-01

    The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.

  7. Assessment of Late Quaternary strain partitioning in the Afar Triple Junction: Dobe and Hanle grabens, Ethiopia and Djibouti

    Science.gov (United States)

    Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.

    2015-12-01

    As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.

  8. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Science.gov (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  9. Modelling of hydrothermal fluid flow and structural architecture in an extensional basin, Ngakuru Graben, Taupo Rift, New Zealand

    Science.gov (United States)

    Kissling, W. M.; Villamor, P.; Ellis, S. M.; Rae, A.

    2018-05-01

    switched on and off during the same period. An asymmetric graben architecture with the Paeroa being the major boundary fault will facilitate the predominant upflow along this fault. Upflow on the axial faults is more difficult to explain with this modelling. It occurs most easily with an asymmetric graben architecture and heat sources close to the graben axis (which could be associated with remnant heat from recent eruptions from Okataina Volcanic Centre). Temporal changes in upflow can also be associated with acceleration and deceleration of fault activity if this is considered a proxy for fault permeability. Other explanations for temporal variations in hydrothermal activity not explored here are different permeability on different faults, and different permeability along fault strike.

  10. Seismic structure and tectonics of the Alasehir--Gediz Graben, Western Turkey

    Science.gov (United States)

    Turk, Sezer

    The Aegean Extensional Province (AEP) in Western Anatolia includes three major graben systems that have formed as a result of N-S tectonic extension in the latest Cenozoic. The 6 to 30-km-wide Alasehir--Gediz Graben (AGG) in the north contains ˜3-km-thick Miocene and Plio-Quaternary, alluvial--fluvial and lacustrine sedimentary rocks. I have used seismic profiles, well-log data and the regional stratigraphy to identify the key stratigraphic units, their bounding surfaces and vertical thicknesses, and to document the subsurface structural architecture of the AGG. A north-dipping detachment fault exposed in the southern shoulder of the AGG basin occurs at 2--2.5 km at depth beneath the graben fill, and is dissected by ˜E--W--striking, synthetic to antithetic, high-angle normal faults. The graben system is crosscut by NNE-oriented cross faults, showing several km of recurrence interval and 10s of meters of vertical displacement. These faults divide the graben into several sub-basins and display positive and negative flower structures. The structural architecture in the sub-basins shows important variations in stratigraphic thicknesses, fault geometry-displacement and deformation patterns, indicating that cross faulting played a critical role in the evolution of the AAG.

  11. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    Science.gov (United States)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  12. Brittle reactivation of mylonitic fabric and the origin of the Cenozoic Rio Santana Graben, southeastern Brazil

    Science.gov (United States)

    Gontijo-Pascutti, Ambrosina; Bezerra, Francisco H. R.; Terra, Emanuele La; Almeida, Julio C. H.

    2010-03-01

    basins of the System of Continental Rifts of southeastern Brazil. We conclude that the Rio Santana Graben is an example of the direct control of a preexisting continental-scale rheological boundary on the geometry and location of fault systems and sediment deposition. Quaternary fault reactivation of the preexisting fabrics represents only the latest movement of a major structure.

  13. Mechanics of graben formation in crustal rocks - A finite element analysis

    Science.gov (United States)

    Melosh, H. J.; Williams, C. A., Jr.

    1989-01-01

    The mechanics of the initial stages of graben formation are examined, showing that the configuration of a graben (a pair of antithetically dipping normal faults) is the most energetically favorable fault configuration in elastic-brittle rocks subjected to pure extension. The stress field in the vicinity of a single initial normal fault is computed with a two-dimensional FEM. It is concluded that the major factor controlling graben width is the depth of the initial fault.

  14. The Late Variscan control on the location and asymmetry of the Upper Rhine Graben

    Science.gov (United States)

    Grimmer, J. C.; Ritter, J. R. R.; Eisbacher, G. H.; Fielitz, W.

    2017-04-01

    The NNE-trending Upper Rhine Graben (URG) of the European Cenozoic Rift System developed from c. 47 Ma onwards in response to changing lithospheric stresses in the northwestern foreland of the Alps. The composite graben structure consists of three segments, each c. 100 km long and 30-40 km wide, but flares to c. 60 km near its southern and to c. 80 km near its northern termination. Normal faulting induced a total extension of 5-8 km of the 1-2 km thick Mesozoic sedimentary Franconian platform and underlying Variscan basement rocks. However, distribution of an up to 3.5 km thick sedimentary graben fill and cumulative displacements near Eastern and Western Main Border fault systems suggest that subsidence of the graben floor and shoulder uplift created strong cross-sectional asymmetries. Cumulative W-down displacements >3 km along strongly segmented transfer faults in the east contrast with E-down displacements emergence of the platform above sea level in late Mesozoic times, the deep-reaching W-dipping "extensional defects" of the East Rhine Detachment exerted a primary lithospheric scale control on both location and cross-sectional asymmetry of the Cenozoic graben structure. NE- and NW-striking, strongly altered and more shallow rooted Permocarboniferous or Mesozoic faults exerted secondary upper crustal controls on transfer faults and the accommodation zones near the terminations and segment boundaries of the URG. Deep crustal to upper lithospheric asymmetries continue to influence the neotectonic setting of the URG, such as westward rising earthquake hypocentres. Seismic activity along the URG appears to be part of a >600 km long zone that delimits the trailing edge of a SW-moving lithospheric block. In the URG area, NE-SW-oriented seismic anisotropy at sublithospheric depths of c. 60-80 km suggest active mantle flow in this direction as a possible driving force for the reactivation of pre-graben lithospheric shear zones.

  15. Middle Jurassic - Early Cretaceous rifting of the Danish Central Graben

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.J.; Rasmussen, E.S.

    1998-12-01

    During the Jurassic-early Cretaceous, the Danish Central Graben developed as a N-S to NNW-SSE trending Graben bounded by the Ringkoebing-Fyn High towards the east and the Mid North Sea High towards the west. The Graben consists of a system of half-Grabens and evolved by fault-controlled subsidence; three main rift pulses have been recognized. The first pulse ranged from the Callovian to the early Oxfordian, the second pulse was initiated in the latest Late Kimmeridgian and Early Volgian, and the third and final pulse occurred within the Valanginian in the Early Cretaceous. The first pulse was characterized by subsidence along N-S trending faults. During the second pulse, in early Volgian times, subsidence was concentrated along new NNW-SSE trending faults and the main depocentre shifted westward, being most marked within the Tail End Graben, the Arne-Elin Graben, and the Feda Graben. This tectonic event was accompanied by the accumulation of a relatively thick sediment load resulting in the development of salt diapers, especially within the Salt Dome Province. The third tectonic pulse was essentially a reactivation of the NNW-SSE trending structures. This tectonic pulse also shows clear evidence of combined fault-controlled subsidence and salt movements. (EG) 12 figs.; 45 refs.

  16. Tectonic geomorphology and volcano-tectonic interaction in the eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA

    Directory of Open Access Journals (Sweden)

    Engielle Mae Raot-raot Paguican

    2016-07-01

    Full Text Available The eastern boundary of the Southern Cascades (Hat Creek Graben region, California, USA, is an extensively faulted volcanic corridor between the Cascade Range and Modoc Plateau. The east-west extending region is in the transition zone between the convergence and subduction of the Gorda Plate underneath the North American Plate; north-south shortening within the Klamath Mountain region; and transcurrent movement in the Walker Lane. We describe the geomorphological and tectonic features, their alignment and distribution, in order to understand the tectonic geomorphology and volcano-tectonic relationships. One outcome of the work is a more refined morpho-structural description that will affect future hazard assessment in the area.A database of volcanic centers and structures was created from interpretations of topographic models generated from satellite images. Volcanic centers in the region were classified by morphological type into cones, sub-cones, shields and massifs. A second classification by height separated the bigger and smaller edifices and revealed an evolutionary trend. Poisson Nearest Neighbor analysis shows that bigger volcanoes are spatially dispersed while smaller ones are clustered. Using volcano centroid locations, about 90 lineaments consisting of at least three centers within 6km of one another were found, revealing that preferential north-northwest directed pathways control the transport of magma from the source to the surface, consistent with the strikes of the major fault systems. Most of the volcano crater openings are perpendicular to the maximum horizontal stress, expected for extensional environments with dominant normal regional faults. These results imply that the extension of the Hat Creek Graben region and impingement of the Walker Lane is accommodated mostly by extensional faults and partly by the intrusions that formed the volcanoes. Early in the history of a volcano or volcano cluster, melt produced at depth in the

  17. Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: The southern Viking Graben (North Sea)

    NARCIS (Netherlands)

    Corver, M.P.; Doust, H.; van Wees, J.D.A.M.; Cloetingh, S.A.P.L.

    2011-01-01

    We present the results of an integrated analogue and numerical modeling study with a focus on structural, stratigraphic and thermal differences between symmetric and asymmetric grabens. These models enable fault interpretation and subsidence analyses in studies of active rifting and graben

  18. Downthrown traps of the NW Witch Ground Graben, UK North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, A.D. (Texaco Ltd., London (GB))

    1989-10-01

    The structures drilled to-date in the NW Witch Ground Graben area have been assigned to two broad categories: upthrown traps with four-way dip closure or tilted fault blocks, generally located on the flanks of the graben; and downthrown traps with closure against a major fault, located downthrown on the main graben border-fault systems. Many of these are in fact combination traps, having upthrown fault-seal and/or stratigraphic elements. A study of trap settings has shown: the success rate for encountering hydrocarbons in upthrown traps and downthrown traps is very similar; the common belief that the footwall seal is the most critical element of a downthrown trap is questionable; modern seismic data reveals that a high proportion of unsuccessful exploratory wells were not located on a closed structure; there is a lesser chance of the reservoir being absent, or there being no migration route to the trap, in downthrown compared with upthrown structures; carboniferous sediments can be a footwall seal for a downthrown trap in one location, and a reservoir for hydrocarbons in another; the structural evolution of the Graben has been ideal for the development of downthrown traps. (author).

  19. Graben calderas of the Sierra Madre Occidental: The case of Guanajuato, central Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Tristán-González, M.; Labarthe-Hernández, G.; Marti, J.

    2013-12-01

    The Sierra Madre Occidental (SMO) volcanic province is characterized by voluminous silicic ignimbrites that reach an accumulated thickness of 500 to 1500 m. A single ignimbrite can reach up to 350 m thick in its outflow facies. This ignimbrite sequence formed mostly within 38-23 Ma, building up a total estimated volume of ca. 580,000 km3 making the SMO the largest ignimbrite province of the world. We have showed that several and probably most of the SMO ignimbrites were erupted from fissures associated to Basin and Range fault systems or grabens (Geology, 2003), thus naming these volcano-tectonic structures as graben calderas (Caldera Volcanism book, Elsevier, 2008). Generally, the sequence observed in graben calderas include, from oldest to youngest, alluvial fan deposits combined with lacustrine deposits, pyroclastic surge deposits and minor volume ignimbrites, a large-volume ignimbrite that could be massive or made of successive layers, and sometimes silicic lava domes and/or mafic fissural lavas both with vents aligned with the graben trend. Fallout deposits, plinian or non-plinian, are not observed in the sequence. Thus, onset of caldera collapse represented by the major ignimbrite must occur just after deposition of continental sediments within the graben domain. A similar volcano-tectonic development is observed in pull-apart grabens. Therefore, extensional or transtensional tectonics, before and during caldera collapse, and the emplacement of a subgraben shallow silicic magma chamber are the necessary conditions for the development of graben calderas. We describe here the case of the Guanajuato graben caldera, located in the central part of Mexico and in the southeastern portion of the SMO volcanic province. The caldera is part of the economically important mining district of Guanajuato, with 28 silver mines, some active since the 16th century. The caldera structure, a rectangle of 10 x 16 km, was controlled by NW and NE regional fault systems. Most ore

  20. Tectono-volcanic control of fissure type vents for the 28 Ma Panalillo ignimbrite in the Villa de Reyes Graben, San Luis PotosI, Mexico

    International Nuclear Information System (INIS)

    Tristan-Gonzalez, Margarito; Labarthe-Hernandez, Guillermo; Aguillon-Robles, Alfredo; Aguirre-DIaz, Gerardo J

    2008-01-01

    The volcano-tectonic events at the Villa de Reyes Graben (VRG), in the southern Sierra Madre Occidental, Mexico, include 1) a regional NNE fault system developed before 32 Ma, 2) this pre-32 Ma faulting controlled the emplacement of 31.5 Ma dacitic domes, 3) NE faulting at 28 Ma that displaced the 31.5 Ma dacitic domes and formed the VRG, as well as the oblique grabens of Bledos and Enramadas oriented NW, 4) emplacement of Panalillo ignimbrite at 28 Ma filling the VRG and erupting from fissures related to the oblique grabens, and eruption of Placa basalt apparently also from fault-controlled vents.

  1. Tectono-volcanic control of fissure type vents for the 28 Ma Panalillo ignimbrite in the Villa de Reyes Graben, San Luis PotosI, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tristan-Gonzalez, Margarito; Labarthe-Hernandez, Guillermo; Aguillon-Robles, Alfredo [Instituto de Geologia/DES IngenierIa, UASLP, Av. Dr. Manuel Nava 5, Zona Universitaria, C.P. 78240, San Luis PotosI, S.L.P. (Mexico); Aguirre-DIaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, 76230 (Mexico)], E-mail: mtiistan@uasln.mx, E-mail: ger@geociencias.unam.mx

    2008-10-01

    The volcano-tectonic events at the Villa de Reyes Graben (VRG), in the southern Sierra Madre Occidental, Mexico, include 1) a regional NNE fault system developed before 32 Ma, 2) this pre-32 Ma faulting controlled the emplacement of 31.5 Ma dacitic domes, 3) NE faulting at 28 Ma that displaced the 31.5 Ma dacitic domes and formed the VRG, as well as the oblique grabens of Bledos and Enramadas oriented NW, 4) emplacement of Panalillo ignimbrite at 28 Ma filling the VRG and erupting from fissures related to the oblique grabens, and eruption of Placa basalt apparently also from fault-controlled vents.

  2. Graben structure in the Las Cañadas edifice (Tenerife, Canary Islands): implications for active degassing and insights on the caldera formation

    Science.gov (United States)

    Galindo, Inés; Soriano, Carles; Martí, Joan; Pérez, Nemesio

    2005-06-01

    A graben structure has been identified at the western area of the Las Cañadas caldera wall, here referred as the Los Azulejos Graben. This graben is 1 km wide and is bounded by two major normal faults trending NE-SW, the Los Azulejos Fault and the Ucanca Fault. The graben was active for at least 0.5 Ma, from the end of the Ucanca Fm to the end of the Guajara Fm, and before the collapse of the Las Cañadas edifice that formed the western caldera. A right-lateral transtension regime operated in the graben as suggested by small fault orientations and kinematics. The prolongation of the NE rift zone of Tenerife to the Cañadas edifice is the most likely volcano-tectonic scenario for the graben. In this context, inflation of phonolitic shallow magma chambers may have produced reverse faults and reactivation of normal faults. An intense and widespread hydrothermal alteration, here called Azulejos-type, occurred mainly before the graben formation, while a fault-related hydrothermal alteration occurred during and after the graben. Diffuse carbon dioxide and hydrogen degassing in and around the Las Cañadas caldera show relatively enriched values along a NE-SW trend suggesting that faults in the Los Azulejos Graben act as a pathway for deep-seated gases to the surface. Diffuse degassing and hydrothermalism indicate that the graben area has been a zone of intense fluid circulation during the evolution of the Las Cañadas edifice.

  3. Structural heritage, reactivation and distribution of fault and fracture network in a rifting context: Case study of the western shoulder of the Upper Rhine Graben

    Science.gov (United States)

    Bertrand, Lionel; Jusseaume, Jessie; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément; Navelot, Vivien; Haffen, Sébastien

    2018-03-01

    In fractured reservoirs in the basement of extensional basins, fault and fracture parameters like density, spacing and length distribution are key properties for modelling and prediction of reservoir properties and fluids flow. As only large faults are detectable using basin-scale geophysical investigations, these fine-scale parameters need to be inferred from faults and fractures in analogous rocks at the outcrop. In this study, we use the western shoulder of the Upper Rhine Graben as an outcropping analogue of several deep borehole projects in the basement of the graben. Geological regional data, DTM (Digital Terrain Model) mapping and outcrop studies with scanlines are used to determine the spatial arrangement of the faults from the regional to the reservoir scale. The data shows that: 1) The fault network can be hierarchized in three different orders of scale and structural blocks with a characteristic structuration. This is consistent with other basement rocks studies in other rifting system allowing the extrapolation of the important parameters for modelling. 2) In the structural blocks, the fracture network linked to the faults is linked to the interplay between rock facies variation linked to the rock emplacement and the rifting event.

  4. Aeromagnetic Study of the Nortern Acambay Graben and Amealco Caldera, Central Mexican Volcanic Belt

    Science.gov (United States)

    Gonzalez, T.

    2011-12-01

    The Mexican Volcanic Belt (MVB) is characterized by E-W striking faults which form a series of en echelon graben along its length. In the central region of the MVB is located the Acambay graben an intra-arc tectonic depression structure, of apparent Quaternary age, which gives rise to pronounced scarps over a distance of about 80 Km. and 15 to 35 Km wide. The general arrangement of the faults that constitute the Acambay graben shows E-W trend which defines the fronts of the graben exhibits a major fault discontinuity. The graben is limited of the north by the Acambay- Tixmadeje and Epitafio Huerta faults and in the south by the Pastores and Venta de Bravo faults.. In the northern wall in the graben is located the Amealco caldera. This volcanic center (approximately 10 km in diameter) was formed by several discrete volcanic events, which produced an ignimbrite which covers the area. It is partially cut by a regional fault and the southern portion of the Amealco Caldera was displaced by a normal faulting along a segment of the Epitafio Huerta system. Continued tectonic activity in the Acambay area is confirmed by recent seismic episodes The Amealco tuff is the most important volcanic unit because of its volume and distribution. Aeromagnetic data was obtained and analyzed the anomalies. The anomaly map was compared with the surface geology and larger anomalies were correlated with major volcanic features. Since our main interest was in mapping the subsurface intrusive and volcanic bodies, the total field magnetic anomalies were reduced to the pole by using the double integral Fourier method. The reduced to the pole anomaly map results in a simplified pattern of isolated positive and negative anomalies, which show an improved correlation with all major volcanic structures. For the analysis and interpretation of the anomalies, the reduced to the pole anomalies were continued upward at various reference levels. These operations result in smoothing of the anomaly field by

  5. Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities - Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France

    Science.gov (United States)

    Chartier, Thomas; Scotti, Oona; Clément, Christophe; Jomard, Hervé; Baize, Stéphane

    2017-09-01

    We perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the companion paper (Jomard et al., 2017, hereafter Part 1) are the dominant factor in hazard estimates at the low annual probability of exceedance relevant for the safety assessment of nuclear installations. Geological information documenting the activity of the faults in this region, however, remains sparse, controversial and affected by a high degree of uncertainty. A logic tree approach is thus implemented to explore the epistemic uncertainty and quantify its impact on the seismic hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard at a 10 000-year return period shows that the Rhine River fault is the main seismic source controlling the hazard level at the site. Sensitivity tests show that the uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to 0.1 mm yr-1 results in a 40 to 50 % increase in hazard levels at the 10 000-year target return period. Reducing epistemic uncertainty in future fault-based PSHA studies at this site will thus require (1) performing in-depth field studies to better characterize the seismic potential of the Rhine River fault; (2) complementing GMPEs with more physics-based modelling approaches to better account for the near-field effects of ground motion and (3) improving the modelling of the background seismicity. Indeed, in this exercise, we assume that background earthquakes can only host M 6. 0 earthquakes have been recently identified at depth within the Upper Rhine Graben (see Part 1) but are not accounted

  6. Grabens on Io: Evidence for Extensional Tectonics

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.

    2012-12-01

    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  7. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  8. How diking affects the longer-term structure and evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, Daniele

    2015-04-01

    Recurrent diking episodes along divergent plate boundaries, as at Dabbahu (2005, Afar) or at Bardarbunga (2014, Iceland) , highlight the possibility to have m-wide opening in a short time (days to weeks). This suggests a prominent role of magma enhancing transient plate separations. However, the role of diking on a longer term (> 102 years) and its influence on the structure and the evolution of a divergent plate boundary is still poorly investigated. Here we use field surveys along the oceanic Icelandic and continental Ethiopian plate boundaries, along five eruptive fissures and four rift segments. Field observations have also been integrated with analogue and numerical models of dike emplacement to better understand the effect of dike emplacement at depth and at the surface. Our results show that the dike-fed eruptive fissures are systematically associated with graben structures formed by inward dipping normal faults having throws up to 10 m and commonly propagating downward. Moreover, rift segments (i.e. mature rift zones), despite any asymmetry and repetition, are characterized by the same features as the eruptive fissures, the only difference lying in the larger size (higher fault throws, up to 40 m, and wider deformation zones). Analogue and numerical models of dike intrusion confirm that all the structural features observed along the rift segments may be dike-induced; these features include downward propagating normal faults bordering graben structures, contraction at the base of the hanging walls of the faults and upward propagating faults. Simple calculations based on the deeper structure of the eroded rift segments in eastern and western Iceland also suggest that all the fault slip in the active rift segments may result from diking. These results suggest that the overall deformation pattern of eruptive fissures and rift segments may be explained only by dike emplacement. In a magmatic rift, the regional tectonic stress may rarely be high enough to be

  9. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  10. Application of helium isotopes in shallow groundwaters for geothermal energy exploration in the Upper Rhine Graben

    International Nuclear Information System (INIS)

    Freundt, Florian

    2017-01-01

    The helium isotope system is an established tool in hydrology for identifying mantle fluids in deep aquifers. This study applies the helium tracer system for the first time in shallow, unconfined aquifers of the Upper Rhine Graben. The Graben is a part of the Cenozoic Rift system of Western and Central Europe, a continental rift zone with unusually high geothermal gradients, making it an ideal region of Germany for geothermal energy development. The aim of this study is to develop a suite of natural groundwater tracers able to achieve a cost and effort reduction in geothermal prospection. The 3 He/ 4 He-ratio is therefore applied, as part of a multi-tracer approach including 3 H, δ 18 O, δ 2 H, δ 13 C, 14 C and 222 Rn, to identify and locate fault zones with suitable permeabilities for power plant operation. Three target areas along the graben were studied, each located on one of the main fault lines. A mantle-derived helium signature could be identified and separated from tritiogenic helium in a shallow aquifer in the north-west of the Graben. The mixing component of mantle-derived fluid in the shallow groundwater is calculated to reach up to 5%, based on the analysis of the 3 He/ 4 He isotope system. The employed method proves that the local permeability of the fault zone is high. The origin of the locally occurring upwelling of salinated water can be redetermined by the data.

  11. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben

    Science.gov (United States)

    Mahéo, G.; Leloup, P. H.; Valli, F.; Lacassin, R.; Arnaud, N.; Paquette, J.-L.; Fernandez, A.; Haibing, L.; Farley, K. A.; Tapponnier, P.

    2007-04-01

    The timing of E-W extension of the Tibetan plateau provides a test of mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this work we focus on the Kung Co half graben (Southern Tibet, China), bounded by an active N-S normal fault with a minimum vertical offset of 1600 m. To estimate the onset of normal faulting we combined high and medium temperature (U-Pb, Ar/Ar) and low temperature ((U-Th)/He) thermochronometry of the Kung Co pluton, a two-mica granite of the northern Himalayan granitic belt that outcrop in the footwall of the fault. Biotite and muscovite Ar/Ar ages , are close from each other [˜ 16 Ma ± 0.2 (Ms) and ˜ 15 ± 0.4 Ma (Bt)], which is typical of fast cooling. The zircon and apatite (U-Th)/He ages range from 11.3 to 9.6 Ma and 9.9 to 3.7 Ma respectively. These He ages are indicative of (1) fast initial cooling, from 11.3 to ˜ 9 Ma, gradually decreasing with time and (2) a high geothermal gradient (˜ 400 °C/km), close to the surface at ˜ 10 Ma. The Kung Co pluton was emplaced at about 22 Ma (U-Pb on zircon) at less than 10 km depth and 520-545 °C. Subsequent to its shallow emplacement, the pluton underwent fast thermal re-equilibration ending around 7.5 Ma, followed by a period of slow cooling caused either by the end of the thermal re-equilibration or by very slow exhumation (0.02-0.03 mm/yr) from ˜ 7.5 Ma to at least 4 Ma. In either case the data suggest that the exhumation rate increased after 4 Ma. We infer this increase to be related to the initiation of the Kung Co normal fault. A critical examination of previously published data show that most ˜ N-S Tibetan normal faults may have formed less than 5 Ma ago rather than in the Miocene as assumed by several authors. Such a young age implies that E-W extension is not related to the Neogene South Tibetan magmatism (25 to 8 Ma). Consequently, models relating E-W extension to magmatism, such as convective removal of the lower lithosphere, may be inappropriate

  12. Heterogeneous distribution of pelagic sediments incoming the Japan Trench possibly controlling slip propagation on shallow plate boundary fault

    Science.gov (United States)

    Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.

    2017-12-01

    Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated

  13. Application of helium isotopes in shallow groundwaters for geothermal energy exploration in the Upper Rhine Graben

    Energy Technology Data Exchange (ETDEWEB)

    Freundt, Florian

    2017-07-12

    The helium isotope system is an established tool in hydrology for identifying mantle fluids in deep aquifers. This study applies the helium tracer system for the first time in shallow, unconfined aquifers of the Upper Rhine Graben. The Graben is a part of the Cenozoic Rift system of Western and Central Europe, a continental rift zone with unusually high geothermal gradients, making it an ideal region of Germany for geothermal energy development. The aim of this study is to develop a suite of natural groundwater tracers able to achieve a cost and effort reduction in geothermal prospection. The {sup 3}He/{sup 4}He-ratio is therefore applied, as part of a multi-tracer approach including {sup 3}H, δ{sup 18}O, δ{sup 2}H, δ{sup 13}C, {sup 14}C and {sup 222}Rn, to identify and locate fault zones with suitable permeabilities for power plant operation. Three target areas along the graben were studied, each located on one of the main fault lines. A mantle-derived helium signature could be identified and separated from tritiogenic helium in a shallow aquifer in the north-west of the Graben. The mixing component of mantle-derived fluid in the shallow groundwater is calculated to reach up to 5%, based on the analysis of the {sup 3}He/{sup 4}He isotope system. The employed method proves that the local permeability of the fault zone is high. The origin of the locally occurring upwelling of salinated water can be redetermined by the data.

  14. Topography and distribution of central graben in Okinawa Trough Miyoko Section

    Science.gov (United States)

    Luan, X.; Qin, Y.

    2006-05-01

    Based on geophysical data obtained by R/V "Science 1¡± of Institute of Oceanology, Chinese Academy of Sciences (IOCAS) and R/V "Xiangyanghong 9¡± of State Oceanic Administration (SOA) in a 200 km long area of Okinawa Trough Miyoko Section recent years, we show the topography and distribution of central graben in great detail for the first time. Central graben within Miyoko Section is separated into 9 discontinuous segments by strike slip faults, from north to south namely Laoshan, Huangdao, Jiaonan, Jiaozhou, Pingdu, Jimo, Laixi, Chengyang and Licang Segment respectively, and shows a dextral echelon pattern in general. By cross shapes, three types of central graben can be distinguished, namely U type, V type and half graben. U type is the most common central graben among those found in our study area. The depth of central graben is from 40 m to 250 m, wide from 6 km to 14 km, length from 17 km to 33 km. The largest water depth of Miyoko Section is 2244.4 m, found at the east side of north end bottom of Chengyang Segment (125°19.3'E, 25°49.8'N). Within the dextral echelon pattern, Huangdao, Chengyang, Licang Segment moves to the west relatively to Laoshan, Laixi and Chengyang Segment respectively, showing a local sinistral echelon pattern. The striking direction of central graben is N60°E roughly, that is 15° more to the east comparing to the striking of the Okinawa Trough. There is 6 km long overlap distance between Laixi Segment and Chengyang Segments, simile with an overlap spreading center in the Mid-Ocean Ridge. Two volcanic chains, the central axis volcanic chain which located within the central graben and the island arc volcanic chain which located at the west side of Ryukyu Island Arc are clearly found in this section. The island volcanic chain has a good continuity, but the axis volcanic chain is sporadic comparatively. From seismic profile, we understand that the development of central axis volcanic chain is after the development of central graben

  15. Tectonic Geomorphology of the northern Upper Rhine Graben, Germany.

    NARCIS (Netherlands)

    Peters, G; van Balen, R.T.

    2007-01-01

    This paper focuses on the northern Upper Rhine Graben (URG), which experienced low tectonic deformation and multiple climate changes during Quaternary times. Recently, human modifications have been high. The paper presents the results of a study into the effects of fault activity on the landscape

  16. Spatial and temporal patterns of fault creep across an active salt system, Canyonlands National Park, Utah

    Science.gov (United States)

    Kravitz, K.; Mueller, K. J.; Furuya, M.; Tiampo, K. F.

    2017-12-01

    First order conditions that control creeping behavior on faults include the strength of faulted materials, fault maturity and stress changes associated with seismic cycles. We present mapping of surface strain from differential interferometric synthetic aperture radar (DInSAR) of actively creeping faults in Eastern Utah that form by reactivation of older joints and faults. A nine-year record of displacement across the region using descending ERS scenes from 1992-2001 suggests maximum slip rates of 1 mm/yr. Time series analysis shows near steady rates across the region consistent with the proposed ultra-weak nature of these faults as suggested by their dilating nature, based on observations of sinkholes, pit chains and recently opened fissures along their lengths. Slip rates along the faults in the main part of the array are systematically faster with closer proximity to the Colorado River Canyon, consistent with mechanical modeling of the boundary conditions that control the overall salt system. Deeply incised side tributaries coincide with and control the edges of the region with higher strain rates. Comparison of D:L scaling at decadal scales in fault bounded grabens (as defined by InSAR) with previous measurements of total slip (D) to length (L) is interpreted to suggest that faults reached nearly their current lengths relatively quickly (i.e. displaying low displacement to length scaling). We argue this may then have been followed by along strike slip distributions where the centers of the grabens slip more rapidly than their endpoints, resulting in a higher D:L ratio over time. InSAR mapping also points to an increase in creep rates in overlap zones where two faults became hard-linked at breached relay ramps. Additionally, we see evidence for soft-linkage, where displacement profiles along a graben coincide with obvious fault segments. While an endmember case (ultra-weak faults sliding above a plastic substrate), structures in this region highlight mechanical

  17. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    Science.gov (United States)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.

  18. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin; Jonsson, Sigurjon; Corbi, Fabio; Rivalta, Eleonora

    2016-01-01

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  19. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin

    2016-03-04

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  20. Rayleigh Wave Group Velocity Tomography from Microseisms in the Acambay Graben

    Science.gov (United States)

    Valderrama Membrillo, S.; Aguirre, J.; Zuñiga-Davila, R.; Iglesias, A.

    2017-12-01

    The Acambay graben is one of the most outstanding structures of the Trans-Mexican Volcanic Belt. The Acambay graben has a length of 80km and 15 to 18 km wide and reaches a maximum height of 400 m in its central part. We obtained the group velocity seismic tomography for the Acamaby graben for three different frequencies (f = 0.1, 0.2 and 0.3 Hz). The graben was divided into 6x6 km cells for the tomography and covered a total area of 1008 km2. Seismic noise data from 10 broadband seismic stations near the Acambay graben were used to extract the surface wave arrival-times between all station pairs. The Green's function was recovered in each stations pair by cross-correlation technique. This technique was applied to seismic recordings collected on the vertical component of 10 broadband stations for a continuous recording period of 5 months. Data processing consisted of removing instrumental response, mean, and trend. After that, we applied time domain normalization, a spectral whitening and applied band-pas filtering of 0.1 to 1 Hz. There are shallow studies of the Acambay graben. But little is known of the distribution of deep graben structures. This study estimated the surface wave velocity deep structure. The structures at the frequency 0.3 Hz indicate a lower depth than the remaining frequencies. The result for this frequency show consistencies with previous studies of gravimetry and resistivity, also defines the fault system of Temascalcingo.

  1. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel

    2015-04-01

    On the 16th of August 2014, an intense seismic swarm was detected at the Bárðarbunga caldera (central Iceland), which migrated to the east and then to the northeast during the following days. The swarm, highlighting magma propagation pathway from the caldera, migrated laterally during the following two weeks over 40 km. By the end of August, a volcanic eruption had started along a north-south oriented fissure located ~45 km from the caldera. Here we focus on the near-field deformation related to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze the temporal evolution of the graben by integrating structural mapping using multiple acquisitions of TerraSAR-X amplitude radar images, InSAR and ground-truth data with GPS and structural measurements. Pixel-offset tracking of radar amplitude images shows clearly the graben subsidence, directly above the intrusion pathway, of up to 6 meters in the satellite line-of-sight direction. We installed a GPS profile of 15 points across the graben in October 2014 and measured its depth up to 8 meters, relative to the flanks of the graben. Field structural observations show graben collapse structures that typically accompany dike intrusions, with two tilted blocks dipping toward the graben axis, bordered by two normal faults. Extensive fractures at the center of the graben and at the graben edges show a cumulative extension of ~8 meters. The formation of the graben was also accompanied by strong seismic activity locally, constraining the time frame period of the main graben formation subsidence. Our results show a rare case of a graben formation captured from space and from ground observations. Such structures are the dominant features along rift zones, however, their formation remain poorly understood. The results also provide

  2. Reassessment of 50 years of seismicity in Simav-Gediz grabens (Western Turkey), based on earthquake relocations

    Science.gov (United States)

    Karasozen, E.; Nissen, E.; Bergman, E. A.; Walters, R. J.

    2013-12-01

    Western Turkey is a rapidly deforming region with a long history of high-magnitude normal faulting earthquakes. However, the locations and slip rates of the responsible faults are poorly constrained. Here, we reassess a series of large instrumental earthquakes in the Simav-Gediz region, an area exhibiting a strong E-W gradient in N-S extension rates, from low rates bordering the Anatolian Plateau to much higher rates in the west. We start with investigating a recent Mw 5.9 earthquake at Simav (19 May 2011) using InSAR, teleseismic body-wave modeling and field observations. Next, we exploit the small but clear InSAR signal to relocate a series of older, larger earthquakes, using a calibrated earthquake relocation method which is based on the hypocentroidial decomposition (HDC) method for multiple event relocation. These improved locations in turn provide an opportunity to reassess the regional style of deformation. One interesting aspect of these earthquakes is that the largest (the Mw 7.2 Gediz earthquake, March 1970) occurred in an area of slow extension and indistinct surface faulting, whilst the well-defined and more rapidly extending Simav graben has ruptured in several smaller, Mw 6 events. However, our relocations highlight the existence of a significant gap in instrumental earthquakes along the central Simav graben, which, if it ruptured in a single event, could equal ~Mw 7. We were unable to identify fault scarps along this section due to dense vegetation and human modification, and we suggest that acquiring LiDAR data in this area should be a high priority in order to properly investigate earthquake hazard in the Simav graben.

  3. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    Science.gov (United States)

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some

  4. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  5. Fluids circulation during the Miocene rifting of the Penedès half-graben, NE Iberian Peninsula

    Science.gov (United States)

    Baqués, Vinyet; Travé, Anna; Cantarero, Irene

    2013-04-01

    The Penedès half-graben, located in the north-western part of the Mediterranean, is a NE-SW oriented basin generated during the Miocene rifting. This graben is bounded to the northwest by the SE-dipping Vallès-Penedès fault, which places the Mesozoic rocks in contact with the Miocene basin-fill. The basin is filled with an up to 4 km thick succession of sediments divided into three lithostratigraphic units. From base to top: (1) a lower continental complex, (2) a continental to marine complex and (3) an upper continental complex. These units are covered by Pliocene deposits which onlap a Messinian regional erosive surface. The structural features within the Penedès half-graben allow defining three deformational phases during the Miocene rifting. The first, during the syn-rift, two successive stages of NE-SW normal faults were formed. The second, during the early post-rift, one stage of NE-SW normal faults and one minor compression phase with a dextral directional developed. The third, during the late post-rift, two successive stages of N-S trending extensional fractures (faults and joints) and one minor compression with a sinistral component developed. The fractures related to the syn-rift stage acted as conduits for meteoric fluids both, in the phreatic and in the vadose zone. During the early post-rift, Fe2+- rich fluids precipitated oxides along the NE-SW fault planes. The dextral directional faults served as conduits for meteoric fluids which reequilibrated totally the marine Miocene host rocks under the phreatic environment. The late post-rift stage was characterized by marine fluids upflowing through the N-S fractures, probably derived from the Miocene marine interval, which mixed with meteoric fluids producing dolomitization. The second set of N-S fractures served as conduits for meteoric fluids characterised by δ13C-depleted soil-derived CO2 attributed to precipitation in the vadose zone. The change from phreatic to vadose meteoric environment and the

  6. 3D numerical modelling of graben interaction and linkage: a case study of the Canyonlands grabens, Utah

    NARCIS (Netherlands)

    Allken, V.; Huismans, R.S.; Fossen, H.; Thieulot, C.

    2013-01-01

    Graben systems in extensional settings tend to be segmented with evidence of segment interaction. To gain a better understanding of the evolution of structures formed during graben growth and interaction, we here study the Grabens area of Canyonlands National Park, Utah, where a wide range of such

  7. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    Science.gov (United States)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid

  8. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    Science.gov (United States)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  9. Strike-Slip Fault Deformation and Its Control in Hydrocarbon Trapping in Ketaling Area, Jambi Subbasin, Indonesia

    Science.gov (United States)

    Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi

    2018-03-01

    Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.

  10. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  11. Estimation of the seismic hazards of the possible rupture of the Pastores and Venta de Bravo faults in the Acambay grabens, state of Mexico, Mexico, using the Empirical Green's Function Method

    Science.gov (United States)

    Ishizawa, O. A.; Lermo, J.; Aguirre, J.

    2003-04-01

    Even though the majority of earthquakes in Mexico and in the world are in direct relation with the movement of tectonic plates, there are less frequent tremors which take place in the continents, within the plates. This is the case with the earthquakes which occur in Mexico along the Neovolcanic Axis. Despite the fact that these quakes in the Neovolcanic Axis are, in general, of small magnitude, there are occassional events of greater magnitude. For instance, in 1912, an earthquake with an approximate magnitude of M=6.9 took place in Acambay, state of Mexico, 80 km. from Mexico City. The reported damage areas for these earthquakes suggest that they were originated in surface faults probably associated with tensional geological structures which exist in the area (grabens). This region stretches along 400 km. between the cities of Mexico and Guadalajara. The faults are normal, extending tens of kilometers, with a dip of up to 80o and vertical differences of several hundred meters. The faults in this part of the country can be classified as "active" or "potentially active", with an important seismic expression. The faulting, volcanism and seismicity manifested in the region studied constitute geological effects of the more recent tectonic activity of the central part of Mexico. The present activity of these faults represent the major part of the natural hazards (geological hazards) for this region, taking account of its high demographic density make it a zone of great vulnerability. We will be primarily interested in two of the faults which constitute the fault system of the Acambay graben, eastern sector of the Mexican Neovolcanic Axis, at approximately 80 km. northwest of Mexico City: the Pastores fault and the Venta de Bravo fault system. We will estimate the resultant seismic movement at the University campus (CU) station, in Mexico DF, utilizing the record of the main earthquake (M=4.0) of Tlaxcoapan, Hgo., of March 18 1998 and formulating the scenario of the

  12. Geological Mapping and Investigation into a Proposed Syn-rift Alluvial Fan Deposit in the Kerpini Fault Block, Greece.

    OpenAIRE

    Hadland, Sindre

    2016-01-01

    Master's thesis in Petroleum geosciences engineering The Kerpini Fault Block is located in the southern part of the Gulf of Corinth rift system. The rift system consists of several east-west orientated half-grabens with associated syn-rift sediments. Kerpini Fault Block is one of the southernmost half-grabens within the rift systems, and is composed of several different stratigraphic units. The stratigraphic framework consists of a complex interaction of several stratigraphic units. One of...

  13. Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany)

    Science.gov (United States)

    Nivière, B.; Bruestle, A.; Bertrand, G.; Carretier, S.; Behrmann, J.; Gourry, J.-C.

    2008-03-01

    The Upper Rhine Graben has two Plio-Quaternary depocentres usually interpreted as resulting from tectonic reactivation. The southern basin, near Freiburg im Breisgau (Germany), contains up to 250 m of sediments. Beneath the younger alluvial deposits related to the current drainage system, a former river network deeply entrenched in the substratum reveals a very low regional base level of early Pleistocene age. The offset of channels at faults allows us to infer a Pleistocene reactivation of the syn-rift fault pattern and the estimation of slip rates. Maximum vertical movements along the faults have not exceeded 0.1 mm/yr since the middle Pleistocene. Current activity is concentrated along the westernmost faults. Morphologic markers indicate late Pleistocene reactivation of the Rhine River fault, and geophysical prospecting suggests a near-surface offset of young sedimentary deposits. The size of the fault segments potentially reactivated suggests that earthquakes with magnitude larger than Mw=6.3 could be expected in the area with a return interval of about 8000 years. Extrapolated to the duration of the Plio-Pleistocene, the strain rate estimates reveal that the tectonic forcing may account for only one-third to one-half of the whole thickness of the Plio-Pleistocene sediments of the basin fill. Thus other processes must be invoked to understand the growth of the Plio-Pleistocene basin. Especially the piracy of the Rhine River to the north during the early Pleistocene could explain these effects.

  14. Late Quaternary palaeoenvironmental reconstruction of sediment drift accumulation in the Malta Graben (central Mediterranean Sea)

    Science.gov (United States)

    Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio

    2018-03-01

    The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.

  15. Late Quaternary palaeoenvironmental reconstruction of sediment drift accumulation in the Malta Graben (central Mediterranean Sea)

    Science.gov (United States)

    Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio

    2018-06-01

    The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.

  16. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    Science.gov (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  17. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Michael [Geomechanics Technologies, Incorporated, Monrovia, CA (United States)

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  18. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  19. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    Science.gov (United States)

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth

  20. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  1. Groundwater sources and geochemical processes in a crystalline fault aquifer

    Science.gov (United States)

    Roques, Clément; Aquilina, Luc; Bour, Olivier; Maréchal, Jean-Christophe; Dewandel, Benoît; Pauwels, Hélène; Labasque, Thierry; Vergnaud-Ayraud, Virginie; Hochreutener, Rebecca

    2014-11-01

    The origin of water flowing in faults and fractures at great depth is poorly known in crystalline media. This paper describes a field study designed to characterize the geochemical compartmentalization of a deep aquifer system constituted by a graben structure where a permeable fault zone was identified. Analyses of the major chemical elements, trace elements, dissolved gases and stable water isotopes reveal the origin of dissolved components for each permeable domain and provide information on various water sources involved during different seasonal regimes. The geochemical response induced by performing a pumping test in the fault-zone is examined, in order to quantify mixing processes and contribution of different permeable domains to the flow. Reactive processes enhanced by the pumped fluxes are also identified and discussed. The fault zone presents different geochemical responses related to changes in hydraulic regime. They are interpreted as different water sources related to various permeable structures within the aquifer. During the low water regime, results suggest mixing of recent water with a clear contribution of older water of inter-glacial origin (recharge temperature around 7 °C), suggesting the involvement of water trapped in a local low-permeability matrix domain or the contribution of large scale circulation loops. During the high water level period, due to inversion of the hydraulic gradient between the major permeable fault zone and its surrounding domains, modern water predominantly flows down to the deep bedrock and ensures recharge at a local scale within the graben. Pumping in a permeable fault zone induces hydraulic connections with storage-reservoirs. The overlaid regolith domain ensures part of the flow rate for long term pumping (around 20% in the present case). During late-time pumping, orthogonal fluxes coming from the fractured domains surrounding the major fault zone are dominant. Storage in the connected fracture network within the

  2. Static stress changes associated with normal faulting earthquakes in South Balkan area

    Science.gov (United States)

    Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.

    2007-10-01

    Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.

  3. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    Science.gov (United States)

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  4. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    Science.gov (United States)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  5. Near-Fault Broadband Ground Motion Simulations Using Empirical Green's Functions: Application to the Upper Rhine Graben (France-Germany) Case Study

    Science.gov (United States)

    Del Gaudio, Sergio; Hok, Sebastien; Festa, Gaetano; Causse, Mathieu; Lancieri, Maria

    2017-09-01

    Seismic hazard estimation relies classically on data-based ground motion prediction equations (GMPEs) giving the expected motion level as a function of several parameters characterizing the source and the sites of interest. However, records of moderate to large earthquakes at short distances from the faults are still rare. For this reason, it is difficult to obtain a reliable ground motion prediction for such a class of events and distances where also the largest amount of damage is usually observed. A possible strategy to fill this lack of information is to generate synthetic accelerograms based on an accurate modeling of both extended fault rupture and wave propagation process. The development of such modeling strategies is essential for estimating seismic hazard close to faults in moderate seismic activity zones, where data are even scarcer. For that reason, we selected a target site in Upper Rhine Graben (URG), at the French-German border. URG is a region where faults producing micro-seismic activity are very close to the sites of interest (e.g., critical infrastructures like supply lines, nuclear power plants, etc.) needing a careful investigation of seismic hazard. In this work, we demonstrate the feasibility of performing near-fault broadband ground motion numerical simulations in a moderate seismic activity region such as URG and discuss some of the challenges related to such an application. The modeling strategy is to couple the multi-empirical Green's function technique (multi-EGFt) with a k -2 kinematic source model. One of the advantages of the multi-EGFt is that it does not require a detailed knowledge of the propagation medium since the records of small events are used as the medium transfer function, if, at the target site, records of small earthquakes located on the target fault are available. The selection of suitable events to be used as multi-EGF is detailed and discussed in our specific situation where less number of events are available. We

  6. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Hongo, Toshifumi; Edalati, Kaveh; Arita, Makoto; Matsuda, Junko; Akiba, Etsuo; Horita, Zenji

    2015-01-01

    Mg 2 Ni intermetallics are processed using three different routes to produce three different microstructural features: annealing at high temperature for coarse grain formation, severe plastic deformation through high-pressure torsion (HPT) for nanograin formation, and HPT processing followed by annealing for the introduction of stacking faults. It is found that both grain boundaries and stacking faults are significantly effective to activate the Mg 2 Ni intermetallics for hydrogen storage at 423 K (150 °C). The hydrogenation kinetics is also considerably enhanced by the introduction of large fractions of grain boundaries and stacking faults while the hydrogenation thermodynamics remains unchanged. This study shows that, similar to grain boundaries and cracks, stacking faults can act as quick pathways for the transportation of hydrogen in the hydrogen storage materials

  7. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  8. Delineation of fault systems on Langeland, Denmark based on AEM data and boreholes

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Westergaard, Joakim Hollenbo; Pytlich, Anders

    in the fault systems can be observed in the AEM data as a low resistivity layer that clearly distinguish from the underlying and surrounding high resistivity fresh water saturated limestone (footwall block) and the overlying glacial clay till. Soil descriptions from a borehole confirm that the low resistivity...... with boreholes, three fault systems in the northern part of the island of Langeland, Denmark are mapped. Two of the fault systems were unknown prior to the mapping campaign. The two unknown fault systems are interpreted as a normal fault and graben structures, respectively. The presence of the hanging-wall block...

  9. Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China

    Science.gov (United States)

    Yu, Zhongyuan; Yin, Na; Shu, Peng; Li, Jincheng; Wei, Qinghai; Min, Wei; Zhang, Peizhen

    2018-01-01

    The Yilan-Yitong Fault Zone (YYFZ), which is composed of two nearly parallel branches with a spacing of 5-30 km and a length of ∼1100 km, is considered to be the key branch of the Tancheng-Lujiang Fault Zone (TLFZ) in NE China. It was traditionally believed that the YYFZ experienced weak activity or was inactive during the Late Quaternary, without the capability to generate strong earthquakes (M ≥ 7), based on the absence of typical outcrops and large historical or instrumental earthquakes (M > 6). However, our paleoseismic study shows that the YYFZ is the primary seismotectonic structure (M ≥ 7) that poses significant earthquake threats to NE China. The synthesis of data collected from geologic investigations, geomorphic mapping, trench logging and the dating of samples indicates that the YYFZ is an active structure that has undergone segmented strong tectonic deformation since the Late Quaternary with a characteristic assemblage of landforms, including linear scarps and troughs, offset or deflected streams, linear sag ponds, small horsts and grabens. The latest ruptures of the YYFZ migrated from previous boundary faults into the basin interior, forming a left-stepping en echelon pattern in plain view, and the kinematics of these events in the Late Quaternary were dominated by reverse dextral slipping. Multi-segment cluster faulting might have occurred during three cluster periods, i.e., ∼34750-35812 a BP, ∼21700-22640 a BP, and ∼4000 a BP-present, which implies that the recurrence interval of large earthquakes along the YYFZ may be as long as tens of thousands of years.

  10. The Jurassic of Denmark and Greenland: Sedimentology and sequence stratigraphy of paralic and shallow marine Upper Jurassic sandstones in the northern Danish Central Graben

    Directory of Open Access Journals (Sweden)

    Johannessen, Peter N.

    2003-10-01

    Full Text Available Paralic and shallow marine sandstones were deposited in the Danish Central Graben during Late Jurassic rifting when half-grabens were developed and the overall eustatic sea level rose. During the Kimmeridgian, an extensive plateau area consisting of the Heno Plateau and the Gertrud Plateau was situated between two highs, the Mandal High to the north, and the combined Inge and Mads Highs to the west. These highs were land areas situated on either side of the plateaus and supplied sand to the Gertrud and Heno Plateaus. Two graben areas, the Feda and Tail End Grabens, flanked the plateau area to the west and east, respectively. The regressive–ransgressive succession consists of intensely bioturbated shoreface sandstones, 25–75 m thick. Two widespread unconformities (SB1, SB2 are recognised on the plateaus, forming the base of sequence 1 and sequence 2, respectively. These unconformities were created by a fall in relative sea level during which rivers may have eroded older shoreface sands and transported sediment across the Heno andGertrud Plateaus, resulting in the accumulation of shoreface sandstones farther out in the Feda and Tail End Grabens, on the south-east Heno Plateau and in the Salt Dome Province. Duringsubsequent transgression, fluvial sediments were reworked by high-energy shoreface processes on the Heno and Gertrud Plateaus, leaving only a lag of granules and pebbles on the marine transgressive surfaces of erosion (MTSE1, MTSE2.The sequence boundary SB1 can be traced to the south-east Heno Plateau and the Salt Dome Province, where it is marked by sharp-based shoreface sandstones. During low sea level, erosion occurred in the southern part of the Feda Graben, which formed part of the Gertrud and Heno Plateaus, and sedimentation occurred in the Norwegian part of the Feda Graben farther to the north. During subsequent transgression, the southern part of the Feda Graben began to subside, and a succession of backstepping back

  11. Transposing an active fault database into a seismic hazard fault model for nuclear facilities. Pt. 1. Building a database of potentially active faults (BDFA) for metropolitan France

    Energy Technology Data Exchange (ETDEWEB)

    Jomard, Herve; Cushing, Edward Marc; Baize, Stephane; Chartier, Thomas [IRSN - Institute of Radiological Protection and Nuclear Safety, Fontenay-aux-Roses (France); Palumbo, Luigi; David, Claire [Neodyme, Joue les Tours (France)

    2017-07-01

    The French Institute for Radiation Protection and Nuclear Safety (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA reports to date 136 faults and represents a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic seismic hazard calculations. A robustness index was introduced, highlighting that less than 15% of the database is controlled by reasonably complete data sets. An example of transposing BDFA into a fault source model for PSHA (probabilistic seismic hazard analysis) calculation is presented for the Upper Rhine Graben (eastern France) and exploited in the companion paper (Chartier et al., 2017, hereafter Part 2) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.

  12. Simulating faults and plate boundaries with a transversely isotropic plasticity model

    Science.gov (United States)

    Sharples, W.; Moresi, L. N.; Velic, M.; Jadamec, M. A.; May, D. A.

    2016-03-01

    In mantle convection simulations, dynamically evolving plate boundaries have, for the most part, been represented using an visco-plastic flow law. These systems develop fine-scale, localized, weak shear band structures which are reminiscent of faults but it is a significant challenge to resolve the large- and the emergent, small-scale-behavior. We address this issue of resolution by taking into account the observation that a rock element with embedded, planar, failure surfaces responds as a non-linear, transversely isotropic material with a weak orientation defined by the plane of the failure surface. This approach partly accounts for the large-scale behavior of fine-scale systems of shear bands which we are not in a position to resolve explicitly. We evaluate the capacity of this continuum approach to model plate boundaries, specifically in the context of subduction models where the plate boundary interface has often been represented as a planar discontinuity. We show that the inclusion of the transversely isotropic plasticity model for the plate boundary promotes asymmetric subduction from initiation. A realistic evolution of the plate boundary interface and associated stresses is crucial to understanding inter-plate coupling, convergent margin driven topography, and earthquakes.

  13. Initiation of the Bukadaban Feng Normal Fault and Implications for the Topographic Evolution of Northern Tibet

    Science.gov (United States)

    Niemi, N. A.; Chang, H.; Li, L.; Molnar, P. H.

    2017-12-01

    The Bukadaban Feng massif in northern Tibet forms the footwall of an east-west trending graben that is kinematically linked to the Kunlun fault. Extension across this graben accommodates left-lateral slip on the Kunlun fault, as evidenced by the 2001 Kunlun earthquake rupture. New geochronologic and thermochronologic data from Bukadaban Feng provide insight into the evolution of this normal fault system. The Bukadaban Feng massif is composed of two plutonic units, an eastern unit of dacitic composition and a western unit of rhyolitic composition. Sixty-five LA-ICP-MS zircon U-Pb age determinations on the rhyolitic unit reveal a range of ages from 873 - 6.3 Ma. CA-TIMS U-Pb zircon geochronology on the nine youngest of these zircons yields an emplacement age of 6.8 Ma. Twenty-seven LA-ICP-MS zircon U-Pb ages on the dacite range from 208 to 7.9 Ma. No coherent population of young zircons was observed, and CA-TIMS analysis was not performed. Zircon (U-Th)/He analysis on the dacite and rhyolite yield ages of 3.9 and 5.0 Ma, respectively, while apatite (U-Th-Sm)/He thermochronology on 5 samples collected from both units along the trace of the normal fault yield ages ranging from 1.4 - 2.6 Ma. The emplacement ages and compositions of plutonic rocks at Bukadaban Feng are consistent with the eruptive timing and geochemistry of silicic volcanic rocks in the graben (Zhang et al., 2012). Silicic magmatism is often associated with the onset of crustal extension, and the combination of plutonism and correlative silicic volcanism provides an indirect constraint on the initiation of this graben at 7 Ma. The distinct zircon (U-Pb) and (U-Th)/He ages indicates that the rocks presently exposed at Bukadaban Feng were emplaced at ambient temperatures in excess of 180°C. The zircon and apatite thermochronologic data require exhumation at rates of 1-2 mm/yr since the late Miocene. A 7 Ma initiation age for the Bukadaban Feng normal fault is consistent with both published estimates of

  14. Stacking fault tetrahedra formation in the neighbourhood of grain boundaries

    CERN Document Server

    Samaras, M; Van Swygenhoven, H; Victoria, M

    2003-01-01

    Large scale molecular dynamics computer simulations are performed to study the role of the grain boundary (GB) during the cascade evolution in irradiated nanocrystalline Ni. At all primary knock-on atom (PKA) energies in cascades near GBs, the damage produced after cooling down is vacancy dominated. Truncated stacking fault tetrahedra (TSFTs) are easily formed at 10 keV and higher PKA energies. At the higher energies a complex partial dislocation network forms, consisting of TSFTs. The GB acts as an interstitial sink without undergoing major structural changes.

  15. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    Science.gov (United States)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  16. Fault control on patterns of Quaternary monogenetic vents in the ...

    African Journals Online (AJOL)

    Field and remote sensing data are used to examine the distribution of volcanism and fault geometry in the Ethiopian Rift between Omo-Chew Bahir rift and Tendaho graben during the Quaternary and evaluate their influence on the location and shape of individual vents as well as the development of alignments. The results ...

  17. La subsidence dans le Viking Graben (mer du Nord septentrionale Subsidence in the Viking Graben (Northern Part of the North Sea

    Directory of Open Access Journals (Sweden)

    Vially R.

    2006-11-01

    Full Text Available L'utilisation des modèles numériques de calcul de la subsidence nécessite une bonne connaissance géologique de la zone étudiée. Seule une étude détaillée de stratigraphie sismique le long de profils régionaux passant par des forages permet de contraindre les différents paramètres servant au calcul de la subsidence. L'étude de la subsidence du Viking Graben a mis en évidence trois épisodes : - phase de distension permo-triasique (saalienne ? dont l'axe de subsidence est décalé vers l'est par rapport à l'axe actuel du Viking Graben; - phase de distension jurassique supérieur (cimmérienne qui crée les structures majeures de cette zone; - phase paléocène correspondant au contrecoup de l'ouverture plus à l'ouest de l'Atlantique Nord. Cette phase est surtout sensible à l'ouest de la zone étudiée. Les cartes de subsidence pour les différentes époques font apparaître l'influence du bati calédonien. Deux directions principales apparaissent, une NE-SW correspondant aux directions structurales visibles à terre en Ecosse et une NW-SE discrète qui sépare le Southern Viking Graben du Northern Viking Graben. Cette dernière direction pourrait se calquer sur la suture (au Silurien d'un diverticule de l'océan lapétus, la Tornquist Sea. The use of numerical models for computing subsidence requires a good geological understanding of the zone being examined. Detailed seismic stratigraphy along regional profiles going via boreholes is the only way to determine the different parameters required for computing subsidence. An investigation of the subsidence of the Viking Graben in the North Sea has revealed three episodes:(a The Permo-Triassic (Saalian ? distension phase during which the axis of subsidence lay to the east of the present axis of the Viking Graben. (b The later Jurassic (Kimmerian distension phase which created the major structures in this zone. (c The Paleocene phase corresponding to the backlash of the westward

  18. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    Science.gov (United States)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  19. Crustal structure and composition of the Oslo Graben, Norway

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Thybo, Hans

    2011-01-01

    across the southern Scandinavian Peninsula, with a focus on the Oslo Graben. Plutonic rocks are now exposed at the surface in the graben due to post rifting erosion and the corresponding low (5.5 km/s) P-wave velocities extend to depths of ~3 km. The Pwave velocity and Poisson's ratio between depths of 6...

  20. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    Science.gov (United States)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  1. Focused Fluid Flow along Convergent Plate Boundaries - Deriving Flow Rates along Faults from Local Upwarping of the Base of the Gas Hydrate Stability Zone

    Science.gov (United States)

    Kunath, P.; Chi, W. C.; Liu, C. S.

    2017-12-01

    Convergent plate boundaries provide the ideal opportunity to examine the interactions of deformation, fluid flow and gas hydrate stability. However, there are still processes and parameters that remain unclear or scarce. This may be in part due to the fact that in situ determination of fluid flow rate is very difficult. Here, we present a newly developed 2-D hydrothermal model for (1) simulating the steady state, thermal effect of forced heat advection along a thin and shallow dipping fault and (2) quantifying fluid velocities required to deliver a thermal anomalies manifested at the bottom-simulating reflector (BSR) at its intersection with the fault zone. Assuming the horizontal thermal conduction is negligible, we derive our model using only a few crucial parameters: (a) the thermal conductivity structure between seafloor and fault; (b) the temperature at BSR depth and the seafloor; (c) fluid flow rate; (d) geometry of the fault conduit, including depth and thickness. Temperature disturbance is then described as a function of Peclet number and of the dip of the fault. Application of our model to Site 892 at Cascadia accretionary wedge (ODP Leg 146), where borehole data provide excellent thermal constraints on the hydrology, shows consistent results. By comparing the temperatures derived at the BSRs with the temperature field of our model, the results demonstrate that the temperature discrepancy is about 0 - 0.5 oC. We propose that this simple approach can provide, on the basis of a few parameters, rough estimate of the disturbance of the temperature caused by advecting fluid. Localized lateral BSR-based heat flow variations have been observed near thrust faults along many convergent plate boundaries around the world and are associated with strong localized fluid flow. We wish to further testing this approach using other seismic datasets to estimate first order of magnitude fluid migration patterns in other convergent boundaries.

  2. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  3. The formation of graben morphology in the Dead Sea Fault, and its implications

    Science.gov (United States)

    Ben-Avraham, Zvi; Katsman, Regina

    2015-09-01

    The Dead Sea Fault (DSF) is a 1000 km long continental transform. It forms a narrow and elongated valley with uplifted shoulders showing an east-west asymmetry, which is not common in other continental transforms. This topography may have strongly affected the course of human history. Several papers addressed the geomorphology of the DSF, but there is still no consensus with respect to the dominant mechanism of its formation. Our thermomechanical modeling demonstrates that existence of a transform prior to the rifting predefined high strain softening on the faults in the strong upper crust and created a precursor weak zone localizing deformations in the subsequent transtensional period. Together with a slow rate of extension over the Arabian plate, they controlled a narrow asymmetric morphology of the fault. This rift pattern was enhanced by a fast deposition of evaporites from the Sedom Lagoon, which occupied the rift depression for a short time period.

  4. Energy principle with included boundary conditions

    International Nuclear Information System (INIS)

    Lehnert, B.

    1994-01-01

    Earlier comments by the author on the limitations of the classical form of the extended energy principle are supported by a complementary analysis on the potential energy change arising from free-boundary displacements of a magnetically confined plasma. In the final formulation of the extended principle, restricted displacements, satisfying pressure continuity by means of plasma volume currents in a thin boundary layer, are replaced by unrestricted (arbitrary) displacements which can give rise to induced surface currents. It is found that these currents contribute to the change in potential energy, and that their contribution is not taken into account by such a formulation. A general expression is further given for surface currents induced by arbitrary displacements. The expression is used to reformulate the energy principle for the class of displacements which satisfy all necessary boundary conditions, including that of the pressure balance. This makes a minimization procedure of the potential energy possible, for the class of all physically relevant test functions which include the constraints imposed by the boundary conditions. Such a procedure is also consistent with a corresponding variational calculus. (Author)

  5. Depositional history and fault-related studies, Bolinas Lagoon, California

    Science.gov (United States)

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  6. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  7. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  8. Experiments of dike-induced deformation: Insights on the long-term evolution of divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2015-10-22

    The shallow transport of magma occurs through dikes causing surface deformation. Our understanding of the effects of diking at the surface is limited, especially on the long term, for repeated intrusive episodes. We use analogue models to study the upper crustal deformation induced by dikes. We insert metal plates within cohesive sand with three setups: in setup A, the intrusion rises upward with constant thickness and in setups B and C, the intrusion thickens at a fixed depth, with final rectangular (setup B) or triangular (setup C) shape in section. Setup A creates a doming delimited by reverse faults, with secondary apical graben, without close correspondence in nature. In setups B and C, a depression flanked by two uplifted areas is bordered by inward dipping normal faults propagating downward and, for deeper intrusions in setup B, also by inner faults, reverse at the surface; this deformation is similar to what is observed in nature, suggesting a consistent physical behavior. Dikes in nature initially propagate developing a mode I fracture at the tip, subsequently thickened by magma intrusion, without any host rock translation in the propagation direction (as in setup A). The deformation pattern in setups B and C depends on the intrusion depth and thickness, consistently to what is observed along divergent plate boundaries. The early deformation in setups B and C is similar to that from a single rifting episode (i.e., Lakagigar, Iceland, and Dabbahu, Afar), whereas the late stages resemble the structure of mature rifts (i.e., Krafla, Iceland), confirming diking as a major process in shaping divergent plate boundaries.

  9. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    Science.gov (United States)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a

  10. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies

    Science.gov (United States)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.

    2010-12-01

    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca

  11. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green...

  12. Pore network properties of sandstones in a fault damage zone

    Science.gov (United States)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  13. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    Science.gov (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  14. Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina)

    Science.gov (United States)

    Varekamp, J. C.; Hesse, A.; Mandeville, C. W.

    2010-11-01

    Young basaltic back-arc volcanoes occur east of the main Andes chain at about 37.5°-39°S in the Loncopue graben, Province of Neuquen, Argentina. These olivine-rich basalts and trachybasalts have up to 8% MgO, with high Ni and Cr contents, but highly variable incompatible element concentrations. Mafic lava flows and cinder cones at the southern end of the graben lack phenocrystic plagioclase. The northern samples have relative Ta-Nb depletions and K, Pb and LREE enrichment. These samples strongly resemble rocks of the nearby arc volcanoes Copahue and Caviahue, including their Fe-Ti enrichment relative to the main Andes arc rocks. The Sr, Nd and Pb isotope ratios show that the source regions of these back-arc basalts are enriched in subducted components that were depleted in the aqueous mobile elements such as Cs, Sr and Ba as a result of prior extractions from the subducted complex below the main arc. Some mafic flows show slightly low 206Pb/ 204Pb and 143Nd/ 144Nd values as well as incompatible trace element ratios similar to southern Patagonia plateau back-arc basalts, suggesting contributions from an EM1 mantle source. Geothermometry and barometry suggest that the basalts crystallized and fractionated small amounts of olivine and spinel at ˜ 35 km depth at temperatures of 1170-1220 °C, at about QFM + 0.5 to QFM + 1 with 1-2% H 2O, and then rose rapidly to the surface. The Loncopue graben back-arc basalts are transitional in composition between the South Patagonia back-arc plateau basalts and the Caviahue and Copahue arc volcanoes to the northwest. The EM1 source endmember is possibly the subcontinental lithospheric mantle. Strong variations in incompatible element enrichment and isotopic compositions between closely spaced cinder cones and lava flows suggest a heterogeneous mantle source for the Loncopue graben volcanics.

  15. Fault structure analysis by means of large deformation simulator; Daihenkei simulator ni yoru danso kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y.; Shi, B. [Geological Survey of Japan, Tsukuba (Japan); Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-05-27

    Large deformation of the crust is generated by relatively large displacement of the mediums on both sides along a fault. In the conventional finite element method, faults are dealt with by special elements which are called joint elements, but joint elements, elements microscopic in width, generate numerical instability if large shear displacement is given. Therefore, by introducing the master slave (MO) method used for contact analysis in the metal processing field, developed was a large deformation simulator for analyzing diastrophism including large displacement along the fault. Analysis examples were shown in case the upper basement and lower basement were relatively dislocated with the fault as a boundary. The bottom surface and right end boundary of the lower basement are fixed boundaries. The left end boundary of the lower basement is fixed, and to the left end boundary of the upper basement, the horizontal speed, 3{times}10{sup -7}m/s, was given. In accordance with the horizontal movement of the upper basement, the boundary surface largely deformed. Stress is almost at right angles at the boundary surface. As to the analysis of faults by the MO method, it has been used for a single simple fault, but should be spread to lots of faults in the future. 13 refs., 2 figs.

  16. Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)

    Energy Technology Data Exchange (ETDEWEB)

    Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

    2012-04-01

    Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks

  17. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  18. The Jurassic of Denmark and Greenland: Sedimentology and sequence stratigraphy of the Bryne and Lulu Formations, Middle Jurassic, northern Danish Central Graben

    Directory of Open Access Journals (Sweden)

    Andsbjerg, Jan

    2003-10-01

    or lacustrine mudstones. The unconformity that separates the alluvial plain deposits of the lower Bryne Formation from the estuary deposits of the upper Bryne Formation is interpreted as a sequence boundary that bounds a system of incised valleys in the western and southern parts of the basin. Sequence boundaries in the Lulu Formation are situated at the top of progradational shoreface units or at the base of estuarine channels. Maximum flooding surfaces are located within marine or lagoonal mudstone units. Marine highstand deposits are partitioned seawards, in the eastern part of the basin, whereas paralic transgressive deposits are partitioned landwards, in the west. This marked sediment artitioning in the uppermost part of the succession resulted from the alternation of episodes of fault-induced half-graben subsidence with periods of slow uniform subsidence.

  19. Mechanical decoupling along a subduction boundary fault: the case of the Tindari-Alfeo Fault System, Calabrian Arc (central Mediterranean Sea)

    Science.gov (United States)

    Maesano, F. E.; Tiberti, M. M.; Basili, R.

    2017-12-01

    In recent years an increasing number of studies have been focused in understanding the lateral terminations of subduction zones. In the Mediterranean region, this topic is of particular interest for the presence of a "land-locked" system of subduction zones interrupted by continental collision and back-arc opening. We present a 3D reconstruction of the area surrounding the Tindari-Alfeo Fault System (TAFS) based on a dense set of deep seismic reflection profiles. This fault system represents a major NNW-SSE trending subduction-transform edge propagator (STEP) that controls the deformation zone bounding the Calabrian subduction zone (central Mediterranean Sea) to the southwest. This 3D model allowed us to characterize the mechanical and kinematic evolution of the TAFS during the Plio-Quaternary. Our study highlights the presence of a mechanical decoupling between the deformation observed in the lower plate, constituted by the Ionian oceanic crust entering the subduction zone, and the upper plate, where a thick accretionary wedge has formed. The lower plate hosts the master faults of the TAFS, whereas the upper plate is affected by secondary deformation (bending-moment faulting, localized subsidence, stepovers, and restraining/releasing bends). The analysis of the syn-tectonic sedimentary basins related to the activity of the TAFS at depth allow us to constrain the propagation rate of the deformation and of the vertical component of the slip-rate. Our findings provide a comprehensive framework of the structural setting that can be expected along a STEP boundary where contractional and transtensional features coexist at close distance from one another.

  20. The geothermal conditions in the Rhine Graben - a summary

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.

    2007-07-15

    This article takes a look at the situation in the upper Rhine valley with respect to its geothermal potential. The Rhine Graben, being part of the European Mid-Continental Rift System is characterised by thinned crust and therefore higher heat flow rates. According to the author, the Rhine Graben presents generally favourable conditions for geothermal energy development and utilisation. This illustrated article presents information on the geological structures to be found and figures obtained from the geothermal exploration project at Soulz-sous-Forets, France, and a number of other geothermal investigation and production projects in Germany.

  1. Normal-Faulting in Madagascar: Another Round of Continental Rifting?

    Science.gov (United States)

    Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.

    2017-12-01

    Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the

  2. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    Science.gov (United States)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper

  3. The deep thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-01-01

    The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.

  4. A bottom-driven mechanism for distributed faulting in the Gulf of California rift

    Science.gov (United States)

    Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc

    2017-11-01

    Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.

  5. Graben formation during the Bárðarbunga rifting event in central Iceland

    KAUST Repository

    Ruch, Joel; Jonsson, Sigurjon; Wang, Teng; Xu, Wenbin; Trippanera, Daniele

    2015-01-01

    to the dike emplacement in the shallow crust, which generated in few days an 8 km long by 0.8 km wide graben (depression) structure. The new graben extends from the northern edge of the Vatnajökull glacier and to the north to the eruptive fissure. We analyze

  6. Supposed capable fault analysis as supporting data for Nuclear Power Plant in Bojonegara, Banten province

    International Nuclear Information System (INIS)

    Purnomo Raharjo; June Mellawati; Yarianto SBS

    2016-01-01

    Fault location and the regions radius 150 km of a fault line or fault zones was rejected area or at the Nuclear Power Plant site. The objective of this study was to identify the existence of surface fault or supposed capable fault at 150 km from the interest site. Methodology covers interpretation of fault structure, seismic analysis reflection on land and sea, seismotectonic analysis, and determining areas which are free from the surface fault. The regional study area, which has the radius of 150 kilometers from the interest, includes the province of Banten, Jakarta, West Java, And South Sumatra (some part of Lampung). The results of Landsat image interpretation showed fault structure pattern northeast-southwest which represent Cimandiri fault, northwest-southeast represent Citandui fault, Baribis fault, Tangkuban Perahu fault. The northeast - southwest fault is estimated as left lateral faults, and northwest - southeast fault trending is estimated as right lateral faults. Based on the seismic data on land, the fault that rise through to Cisubuh formation are classified as supposed capable fault. Data of seismic stratigraphy sequence analysis at the sea correlated with a unit of the age deposition in the Pleistocene, where divided into Qt (Tertiary boundary and Early Pleistocene), Q1 (Early Pleistocene boundary and Middle Pleistocene) and Q2 (Midle Pleistocene boundary and Late Pleistocene), supposed capable fault pierce early to late Pleistocene sequence. The results of the seismotectonic analysis showed that there are capable fault which is estimated as supposed capable fault. (author)

  7. Long Valley caldera and the UCERF depiction of Sierra Nevada range-front faults

    Science.gov (United States)

    Hill, David P.; Montgomery-Brown, Emily K.

    2015-01-01

    Long Valley caldera lies within a left-stepping offset in the north-northwest-striking Sierra Nevada range-front normal faults with the Hilton Creek fault to the south and Hartley Springs fault to the north. Both Uniform California Earthquake Rupture Forecast (UCERF) 2 and its update, UCERF3, depict slip on these major range-front normal faults as extending well into the caldera, with significant normal slip on overlapping, subparallel segments separated by ∼10  km. This depiction is countered by (1) geologic evidence that normal faulting within the caldera consists of a series of graben structures associated with postcaldera magmatism (intrusion and tumescence) and not systematic down-to-the-east displacements consistent with distributed range-front faulting and (2) the lack of kinematic evidence for an evolving, postcaldera relay ramp structure between overlapping strands of the two range-front normal faults. The modifications to the UCERF depiction described here reduce the predicted shaking intensity within the caldera, and they are in accord with the tectonic influence that underlapped offset range-front faults have on seismicity patterns within the caldera associated with ongoing volcanic unrest.

  8. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  9. Methods of evaluating segmentation characteristics and segmentation of major faults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)

    2000-03-15

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary.

  10. Methods of evaluating segmentation characteristics and segmentation of major faults

    International Nuclear Information System (INIS)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok

    2000-03-01

    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary

  11. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    Science.gov (United States)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  12. Upper bounds of deformation in the Upper Rhine Graben from GPS data - First results from GURN (GNSS Upper Rhine Graben Network)

    Science.gov (United States)

    Masson, Frederic; Knoepfler, Andreas; Mayer, Michael; Ulrich, Patrice; Heck, Bernhard

    2010-05-01

    In September 2008, the Institut de Physique du Globe de Strasbourg (Ecole et Observatoire des Sciences de la Terre, EOST) and the Geodetic Institute (GIK) of Karlsruhe University (TH) established a transnational cooperation called GURN (GNSS Upper Rhine Graben Network). Within the GURN initiative these institutions are cooperating in order to establish a highly precise and highly sensitive network of permanently operating GNSS sites for the detection of crustal movements in the Upper Rhine Graben region. At the beginning, the network consisted of the permanently operating GNSS sites of SAPOS®-Baden-Württemberg, different data providers in France (e.g. EOST, Teria, RGP) and some further sites (e.g. IGS). In July 2009, the network was extended to the South when swisstopo (Switzerland) and to the North when SAPOS®-Rheinland-Pfalz joined GURN. Therefore, actually the GNSS network consists of approx. 80 permanently operating reference sites. The presentation will discuss the actual status of GURN, main research goals, and will present first results concerning the data quality as well as time series of a first reprocessing of all available data since 2002 using GAMIT/GLOBK (EOST working group) and the Bernese GPS Software (GIK working group). Based on these time series, the velocity as well as strain fields will be calculated in the future. The GURN initiative is also aiming for the estimation of the upper bounds of deformation in the Upper Rhine Graben region.

  13. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico

    Science.gov (United States)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José

    2018-03-01

    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the

  14. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.

    1990-01-01

    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  15. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia

    Science.gov (United States)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia

    2018-01-01

    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations

  16. Application of electrical resistivity method for groundwater exploration at the Moghra area, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    M.I.I. Mohamaden

    2016-09-01

    Structurally, the study area is influenced by three faults two of them are geological/geoelectrical faults forming a graben structure at the central part; the third fault is a geoelectrical fault and is located to the west of the graben structure forming a horest structure.

  17. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.

    Science.gov (United States)

    Gottscho, Andrew D

    2016-02-01

    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. © 2014 Cambridge Philosophical Society.

  18. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau

    2007-01-01

    The small Neogene Krong Pa graben is situated within the continental Song Ba Rift, which is bounded by strike-slip faults that were reactivated as extensional faults in Middle Miocene time. The 500 m thick graben-fill shows an overall depositional development reflecting the structural evolution...... subsidence rate and possibly a higher influx of water from the axial river systems the general water level in the graben rose and deep lakes formed. High organic preservation in the lakes prompted the formation of two excellent oil-prone lacustrine source-rock units. In the late phase of the graben...... as carrier beds, whereas the braided fluvial sandstones and conglomerates along the graben margins may form reservoirs. The Krong Pa graben thus contains oil-prone lacustrine source rocks, effective conduits for generated hydrocarbons and reservoir sandstones side-sealed by the graben faults toward...

  19. The Queen Charlotte-Fairweather Fault Zone - Geomorphology of a submarine transform fault, offshore British Columbia and southeastern Alaska

    Science.gov (United States)

    Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.

    2017-12-01

    The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.

  20. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan

    2018-01-01

    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  1. Acoustic stratigraphy of Bear Lake, Utah-Idaho: late Quaternary sedimentation patterns in a simple half-graben

    Science.gov (United States)

    Colman, Steven M.

    2006-01-01

    A 277-km network of high-resolution seismic-reflection profiles, supplemented with a sidescan-sonar mosaic of the lake floor, was collected in Bear Lake, Utah–Idaho, in order to explore the sedimentary framework of the lake's paleoclimate record. The acoustic stratigraphy is tied to a 120 m deep, continuously cored drill hole in the lake. Based on the age model for the drill core, the oldest continuously mapped acoustic reflector in the data set has an age of about 100 ka, although older sediments were locally imaged. The acoustic stratigraphy of the sediments below the lake indicates that the basin developed primarily as a simple half-graben, with a steep normal-fault margin on the east and a flexural margin on the west. As expected for a basin controlled by a listric master fault, seismic reflections steepen and diverge toward the fault, bounding eastward-thickening sediment wedges. Secondary normal faults west of the master fault were imaged beneath the lake and many of these faults show progressively increasing offset with depth and age. Several faults cut the youngest sediments in the lake as well as the modern lake floor. The relative simplicity of the sedimentary sequence is interrupted in the northwestern part of the basin by a unit that is interpreted as a large (4 × 10 km) paleodelta of the Bear River. The delta overlies a horizon with an age of about 97 ka, outcrops at the lake floor and is onlapped by much of the uppermost sequence of lake sediments. A feature interpreted as a wave-cut bench occurs in many places on the western side of the lake. The base of this bench occurs at a depth (22–24 m) similar to that (20–25 m) of the distal surface of the paleodelta. Pinch-outs of sedimentary units are common in relatively shallow water on the gentle western margin of the basin and little Holocene sediment has accumulated in water depths of less than 30 m. On the steep eastern margin of the basin, sediments commonly onlap the hanging wall of the East

  2. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    Science.gov (United States)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  3. Late oligocene and miocene faulting and sedimentation, and evolution of the southern Rio Grande rift, New Mexico, USA

    Science.gov (United States)

    Mack, Greg H.; Seager, William R.; Kieling, John

    1994-08-01

    The distribution of nonmarine lithofacies, paleocurrents, and provenance data are used to define the evolution of late Oligocene and Miocene basins and complementary uplifts in the southern Rio Grande rift in the vicinity of Hatch, New Mexico, USA. The late Oligocene-middle Miocene Hayner Ranch Formation, which consists of a maximum of 1000 m of alluvial-fan, alluvial-flat, and lacustrine-carbonate lithofacies, was deposited in a narrow (12 km), northwest-trending, northeast-tilted half graben, whose footwall was the Caballo Mountains block. Stratigraphic separation on the border faults of the Caballo Mountains block was approximately 1615 m. An additional 854 m of stratigraphic separation along the Caballo Mountains border faults occurred during deposition of the middle-late Miocene Rincon Valley Formation, which is composed of up to 610 m of alluvial-fan, alluvial-flat, braided-fluvial, and gypsiferous playa lithofacies. Two new, north-trending fault blocks (Sierra de las Uvas and Dona Ana Mountains) and complementary west-northwest-tilted half graben also developed during Rincon Valley time, with approximately 549 m of stratigraphic separation along the border fault of the Sierra de las Uvas block. In latest Miocene and early Pliocene time, following deposition of the Rincon Valley Formation, movement continued along the border faults of the Caballo Mountains, Dona Ana Mountains, and Sierra de las Uvas blocks, and large parts of the Hayner Ranch and Rincon Valley basins were segmented into smaller fault blocks and basins by movement along new, largely north-trending faults. Analysis of the Hayner Ranch and Rincon Valley Formations, along with previous studies of the early Oligocene Bell Top Formation and late Pliocene-early Pleistocene Camp Rice Formation, indicate that the traditional two-stage model for development of the southern Rio Grande rift should be abandoned in favor of at least four episodes of block faulting beginning 35 Ma ago. With the exception of

  4. Dynamical instability produces transform faults at mid-ocean ridges.

    Science.gov (United States)

    Gerya, Taras

    2010-08-27

    Transform faults at mid-ocean ridges--one of the most striking, yet enigmatic features of terrestrial plate tectonics--are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  5. Preliminary paleoseismic observations along the western Denali fault, Alaska

    Science.gov (United States)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into

  6. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  7. Modeling 3D Dynamic Rupture on Arbitrarily-Shaped faults by Boundary-Conforming Finite Difference Method

    Science.gov (United States)

    Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.

    2008-12-01

    We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.

  8. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    Science.gov (United States)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  9. INTERPRETATION OF BOUGUER ANOMALY TO DETERMINE FAULT AND SUBSURFACE STRUCTURE AT BLAWAN-IJEN GEOTHERMAL AREA

    Directory of Open Access Journals (Sweden)

    Anjar Pranggawan Azhari

    2016-10-01

    Full Text Available Gravity survey has been acquired by Gravimeter Lacoste & Romberg G-1035 at Blawan-Ijen geothermal area. It was a focusing study from previous research. The residual Bouguer anomaly data was obtain after applying gravity data reduction, reduction to horizontal plane, and upward continuation. Result of Bouguer anomaly interpretation shows occurrence of new faults and their relative movement. Blawan fault (F1, F2, F3, and F6 are normal fault. Blawan fault is main fault controlling hot springs at Blawan-Ijen geothermal area. F4 and F5 are oblique fault and forming a graben at Banyupahit River. F7 is reverse fault. Subsurface model shows that Blawan-Ijen geothermal area was dominated by the Ijen caldera forming ignimbrite (ρ1=2.670 g/cm3, embedded shale and sand (ρ2=2.644 g/cm3 as Blawan lake sediments, magma intrusion (ρ3=2.814 g/cm3 & ρ7=2.821 g/cm3, andesite rock (ρ4=2.448 g/cm3 as geothermal reservoir, pyroclastic air fall deposits (ρ5=2.613 g/cm3 from Mt. Blau, and lava flow (ρ6=2.890 g/cm3.

  10. Geometry and Kinematics of the Lopukangri Fault System: Implications for Internal Deformation of the Tibetan Plateau

    Science.gov (United States)

    Murphy, M. A.; Taylor, M. H.

    2006-12-01

    We present geologic mapping and structural data from the Lopukangri fault system in south-central Tibet that sheds light on the geometry, kinematics and spatial characteristics of deformation in western Tibet and the western Himalaya. The Lopukangri fault system strikes N09E and extends 150 km from the Lhasa terrane into the Tethyan fold-thrust belt at 84.5° N. Geologic mapping shows that the deformation is accommodated by a northwest dipping oblique fault system, which accommodates both right-lateral and normal dip-slip movement, consistent with right-lateral separations of Quaternary surficial deposits. The fault system juxtaposes amphibolite-grade rocks in its footwall against greenschist-grade rocks in its hanging wall. Deformation is distributed over a 4 km wide zone that predominately records right-lateral normal slip in ductile and brittle shear fabrics. The fault system right-laterally separates the Gangdese batholith, Kailas conglomerate, Great Counter thrust, and the Tethyan fold-thrust belt for 15 km. Age estimates of the Kailas conglomerate in the Kailas region implies that the Lopukangri fault system initiated after the Early Miocene( 23Ma). The observation that the Lopukangri fault system cuts the Indus-Yaly suture zone, rules out active strike-slip faulting along it at this locality. To assess the role of the Lopukangri fault system in accommodating strain within western Tibet, we compare our results with fault-slip data and structural geometries from the Karakoram and Dangardzong (Thakkhola graben) fault systems. The Dangardzong fault shares similar kinematics with the Lopukangri fault system, both display a significant component of right-slip. Although the two faults do not strike into one another, they may be linked via a transfer zone. The Karakoram fault accommodates right-lateral slip in which a portion of the total slip extends from the Tibetan plateau into the Himalayan thrust belt via right-stepover structures. Fault slip data from the

  11. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  12. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.

    2013-07-01

    Within the framework of plate tectonics, the deformation that arises from the relative movement of two plates occurs across discontinuities in the earth's crust, known as fault zones. Active fault zones are the causal locations of most earthquakes, which suddenly release tectonic stresses within a very short time. In return, fault zones slowly grow by accumulating slip due to such earthquakes by cumulated damage at their tips, and by branching or linking between pre-existing faults of various sizes. Over the last decades, a large amount of knowledge has been acquired concerning the overall phenomenology and mechanics of individual faults and earthquakes: A deep physical and mechanical understanding of the links and interactions between and among them is still missing, however. One of the main issues lies in our failure to always succeed in assigning an earthquake to its causative fault. Using approaches based in pattern-recognition theory, more insight into the relationship between earthquakes and fault structure can be gained by developing an automatic fault network reconstruction approach using high resolution earthquake data sets at largely different scales and by considering individual event uncertainties. This thesis introduces the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. This method consists in fitting a given set of hypocenters with an increasing amount of finite planes until the residuals of the fit compare with location uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, six different validation procedures are applied in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC)) process the fit residuals, while the four others look for solutions that

  13. A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift

    Science.gov (United States)

    Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.

    2017-12-01

    The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our

  14. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    Science.gov (United States)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    to the tectonic accident, located in the south of the Tunisian extrusion, in favour of the eastern migration of the Sahel block toward the free Mediterranean sea boundary. Therefore this geodynamic movement explains the presence, in offshore area, of small elongated NW-SE, N-S &NE-SW petroleum transtensive basins and grabens. To conclude, at the regional scale, the structural geomorphologic approach combined with both field work and reflexion seismic profile analyses appear to be an excellent tool to prove & confirm the east Sahel block extrusion of the central Tunisian part caused by the northward migration of African plate. _______________________________________ Keywords : Geodynamics, Neotectonics, right lateral transtensive fault, Extrusion, Petroleum exploration, Geomorphometry, Digital Elevation Model, Geographic Information System (GIS), Geodatabase, Jeffara, South Tunisia.

  15. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  16. A Study of Interactions Between Thrust and Strike-slip Faults

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Wang

    2013-01-01

    Full Text Available A 3-D finite difference method is applied in this study to investigate a spontaneous rupture within a fault system which includes a primary thrust fault and two strike-slip sub-faults. With the occurrence of a rupture on a fault, the rupture condition follows Coulomb¡¦s friction law wherein the stress-slip obeys the slip-weakening fracture criteria. To overcome the geometrical complexity of such a system, a finite difference method is encoded in two different coordinate systems; then, the calculated displacements are connected between the two systems using a 2-D interpolation technique. The rupture is initiated at the center of the main fault under the compression of regional tectonic stresses and then propagates to the boundaries whereby the main fault rupture triggers two strike-slip sub-faults. Simulation results suggest that the triggering of two sub-faults is attributed to two primary factors, regional tectonic stresses and the relative distances between the two sub-faults and the main fault.

  17. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  18. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian Sunflower

    2017-01-01

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  19. Spatial b-value variations in the Upper Rhine Graben

    Science.gov (United States)

    Barth, A.

    2012-04-01

    The natural seismicity of the Upper Rhine Graben (URG) is of growing interest for science and society, since the management of deep geothermal power plants requires local hazard assessment. The availability of new bulletin data and the combination of catalogues from Germany, France and Switzerland allows us to analyse the spatial changes in the magnitude-frequency distribution along the Graben axis in detail. We derive magnitude conversions between the different bulletins to obtain a uniform earthquake catalogue and decluster the data to extract fore- and aftershocks resulting in a Poissonian event distribution. Since the density of monitoring seismometers has improved over time, we determine several intervals of magnitude completeness. Generally, our catalogue is complete for magnitudes ML ≥ 2.0 since 1982 for the entire URG. To incorporate high magnitude events it is essential to use historic earthquake data. Those magnitudes are estimated by their macroseismic intensity distribution, and thus, they have a high uncertainty compared to instrumental magnitudes. We show that historic earthquake magnitudes are overestimated by 0.4 magnitude units in the URG. We apply a spatial window on the final dataset and move it along the Graben axis. For each set of 50 events we determine local variations of the magnitude frequency distribution after Gutenberg-Richter by a maximum likelihood estimation. The seismicity rate for ML ≥ 2.0 varies between 2 per year per 1000 km2 in the southern URG and 0.2 per year per 1000 km2 in the northern URG. The b-values vary between 0.8 and 1.4 with the highest values around Freiburg, showing a high variability of the magnitude distribution in the URG. Additionally, we examine the hypocentral depth distribution along the Graben, which results in a seismically active upper and lower crust in the southern and northern parts, separated by the central part with missing seismicity in the lower crust. According to the spatial distribution of b

  20. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2014-10-28

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  1. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.; Acocella, V.; Ruch, Joel

    2014-01-01

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  2. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    Science.gov (United States)

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  3. Active, capable, and potentially active faults - a paleoseismic perspective

    Science.gov (United States)

    Machette, M.N.

    2000-01-01

    Maps of faults (geologically defined source zones) may portray seismic hazards in a wide range of completeness depending on which types of faults are shown. Three fault terms - active, capable, and potential - are used in a variety of ways for different reasons or applications. Nevertheless, to be useful for seismic-hazards analysis, fault maps should encompass a time interval that includes several earthquake cycles. For example, if the common recurrence in an area is 20,000-50,000 years, then maps should include faults that are 50,000-100,000 years old (two to five typical earthquake cycles), thus allowing for temporal variability in slip rate and recurrence intervals. Conversely, in more active areas such as plate boundaries, maps showing faults that are Group II-2 Project on Major Active Faults of the World our maps and database will show five age categories and four slip rate categories that allow one to select differing time spans and activity rates for seismic-hazard analysis depending on tectonic regime. The maps are accompanied by a database that describes evidence for Quaternary faulting, geomorphic expression, and paleoseismic parameters (slip rate, recurrence interval and time of most recent surface faulting). These maps and databases provide an inventory of faults that would be defined as active, capable, and potentially active for seismic-hazard assessments.

  4. Geomorphological context of the basins of Northwestern Peninsular Malaysia

    Science.gov (United States)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2014-05-01

    Geomorphological context of the basins of Northwestern Peninsular Malaysia Benjamin Sautter, Manuel Pubellier, David Menier Department of Petroleum Geosciences, Universiti Teknologi PETRONAS CNRS-UMR 8538, Ecole Normale Supérieure, 24, Rue Lhomond, 75231, Paris Cedex 05, France Petroleum basins of Western Malaysia are poorly known and their formation is controlled by the Tertiary stress variations applied on Mesozoic basement structures. Among these are the Paleozoic-Mesozoic Bentong Raub, Inthanon, and Nan suture zones. By the end of Mesozoic times, the arrival of Indian plate was accompanied by strike slip deformation, accommodated by several Major Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults). Due to changes in the boundary forces, these areas of weakness (faults) were reactivated during the Tertiary, leading to the opening of basins in most of Sundaland. Within this framework, while most of the Sundaland records stretching of the crust and opening of basins (SCS, Malay, Penyu, Natuna, Mergui) during the Cenozoics, Peninsular Malaysia and the Strait of Malacca are considered to be in tectonic quiescence by most of the authors. We present the geomorphology of the Northwestern Malaysia Peninsula with emphasis on the deformations onshore from the Bentong Raub Suture Zone to the Bok Bak Fault, via the Kinta Valley, and offshore from the Port Klang Graben to the North Penang Graben. By analyzing Digital Elevation Model from ASTER and SRTM data, two main directions of fractures in the granitic plutons are highlighted: NW-SE to W-E sigmoidal faults and N-S to NE-SW linear fractures which seem to cross-cut the others. In the field in the area of the Kinta Valley (Western Belt, NW Peninsular Malaysia), granitic bodies show intense fracturation reflecting several stages of deformation. The granites are generally syntectonic and do not cut fully across the Late Paleozoic platform limestone. Two sets of fractures (NW-SE and NE

  5. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  6. Implications of horsts and grabens on the development of canyons and seismicity on the west africa coast

    Science.gov (United States)

    Ola, Peter S.; Olabode, Solomon O.

    2018-04-01

    Subsurface basement topography in the Nigerian portion of the Benin Basin has been studied using borehole data of wells drilled to the basement and one strike line of seismic section. Two areas of a sharp drop in topography with a horst in between were observed in the study area. These features were projected to a seismic section in the offshore area of the Benin basin. The result depicts the structural features as horst and grabens coinciding with the Avon platform bounded on the right side by Ise graben, and the Orimedu graben to the left. The observed relationship of the grabens with the present day location of Avon Canyon on the seismic section also suggests an active subsidence along fractured zones. The subsidence, which probably is occurring along similar fracture zones in the Gulf of Guinea, could be responsible for the occasionally reported seismicity on the margin of West Africa. A detailed seismographic study of the fracture zones is recommended.

  7. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    Science.gov (United States)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  8. The detection of boundaries in leaky aquifers

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Geological faults in sedimentary basins can affect the regional and local groundwater flow patterns by virtue of their enhanced permeability properties. Faults can be regarded as vertical flow boundaries and potentially important routes for radionuclide migration from a theoretical radioactive waste repository. This report investigates the hydraulic testing methods currently available which may be used to locate vertical hydraulic discontinuities (boundaries) within an aquifer. It aims to define the theoretical limitations to boundary detection by a single pumping test, to determine the optimum design of a pumping test for locating boundaries, and to define the practical limitations to boundary detection by a pumping test. (author)

  9. Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction

    Science.gov (United States)

    Yang, H.; Moresi, L. N.

    2017-12-01

    The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient 200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.

  10. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  11. Recent surface displacements in the Upper Rhine Graben — Preliminary results from geodetic networks

    Science.gov (United States)

    Fuhrmann, Thomas; Heck, Bernhard; Knöpfler, Andreas; Masson, Frédéric; Mayer, Michael; Ulrich, Patrice; Westerhaus, Malte; Zippelt, Karl

    2013-08-01

    Datasets of the GNSS Upper Rhine Graben Network (GURN) and the national levelling networks in Germany, France and Switzerland are investigated with respect to current surface displacements in the Upper Rhine Graben (URG) area. GURN consists of about 80 permanent GNSS (Global Navigation Satellite Systems) stations. The terrestrial levelling network comprises 1st and 2nd order levelling lines that have been remeasured at intervals of roughly 25 years, starting in 1922. Compared to earlier studies national institutions and private companies made available raw data, allowing for consistent solutions for the URG region. We focussed on the southern and eastern parts of the investigation area. Our preliminary results show that the levelling and GNSS datasets are sensitive to resolve small surface displacement rates down to an order of magnitude of 0.2 mm/a and 0.4 mm/a, respectively. The observed horizontal velocity components for a test region south of Strasbourg, obtained from GNSS coordinate time series, vary around 0.5 mm/a. The results are in general agreement with interseismic strain built-up in a sinistral strike-slip regime. Since the accuracy of the GNSS derived vertical component is insufficient, data of precise levelling networks is used to determine vertical displacement rates. More than 75% of the vertical rates obtained from a kinematic adjustment of 1st order levelling lines in the eastern part of URG vary between - 0.2 mm/a and + 0.2 mm/a, indicating that this region behaves stable. Higher rates up to 0.5 mm/a in a limited region south of Freiburg are in general agreement with active faulting. We conclude that both networks deliver stable results that reflect real surface movements in the URG area. We note, however, that geodetically observed surface displacements generally result from a superposition of different effects, and that a separation in tectonic and non-tectonic processes needs additional information and expertise.

  12. Geochemical signature of paleofluids in microstructures from Main Fault in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Clauer, N. [Laboratoire d’Hydrologie et de Géochimie de Strasbourg (CNRS-UdS), Strasbourg (France); Techer, I. [Equipe Associée, Chrome, Université de Nîmes, Nîmes (France); Nussbaum, Ch. [Swiss Geological Survey, Federal Office of Topography Swisstopo, Wabern (Switzerland); Laurich, B. [Structural Geology, Tectonics and Geomechanics, RWTH Aachen University, Aachen (Germany); Laurich, B. [Federal Institute for Geosciences and Natural Resources BGR, Hannover (Germany)

    2017-04-15

    The present study reports on elemental and Sr isotopic analyses of calcite and associated celestite infillings of various microtectonic features collected mostly in the Main Fault of the Opalinus Clay from Mont Terri rock laboratory. Based on a detailed microstructural description of veins, slickensides, scaly clay aggregates and gouges, the geochemical signatures of the infillings were compared to those of the leachates from undeformed Opalinus Clay, and to the calcite from veins crosscutting Hauptrogenstein, Passwang and Staffelegg Formations above and below the Opalinus Clay. Vein calcite and celestite from Main Fault yield identical {sup 87}Sr/{sup 86}Sr ratios that are also close to those recorded in the Opalinus Clay matrix inside the Main Fault, but different from those of the diffuse Opalinus Clay calcite outside the fault. These varied {sup 87}Sr/{sup 86}Sr ratios of the diffuse calcite evidence a lack of interaction among the associated connate waters and the flowing fluids characterized by a homogeneous Sr signature. The {sup 87}Sr/{sup 86}Sr homogeneity at 0.70774 ± 0.00001 (2σ) for the infillings of most microstructures in the Main Fault, as well as of veins from nearby limestone layer and sediments around the Opalinus Clay, claims for an 'infinite' homogeneous marine supply, whereas the gouge infillings apparently interacted with a fluid chemically more complex. According to the known regional paleogeographic evolution, two seawater supplies were inferred and documented in the Delémont Basin: either during the Priabonian (38-34 Ma ago) from western Bresse graben, and/or during the Rupelian (34-28 Ma ago) from northern Rhine Graben. The Rupelian seawater that yields a mean {sup 87}Sr/{sup 86}Sr signature significantly higher than those of the microstructural infillings seems not to be the appropriate source. Alternatively, Priabonian seawater yields a mean {sup 87}Sr/{sup 86}Sr ratio precisely matching that of the leachates from diffuse

  13. Extensional tectonics and sedimentary response of the Early–Middle Cambrian passive continental margin, Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Zhiqian Gao

    2012-09-01

    Full Text Available The fact that several half-grabens and normal faults developed in the Lower–Middle Cambrian of Tazhong (central Tarim Basin and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under extensional tectonic setting at this time. The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward. Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east, and most importantly, influenced the development of a three-pronged rift in the northeast margin of the Tarim Basin. The fault system controlled the development of platform – slope – bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens. The NW-SE trending half-grabens reflect the distribution of buried basement faults.

  14. ECH system developments including the design of an intelligent fault processor on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Lohr, J.; Tooker, J.F.; O'Neill, R.C.; Moeller, C.P.; Doane, J.L.; Noraky, S.; Dubovenko, K.; Gorelov, Y.A.; Cengher, M.; Penaflor, B.G.; Ellis, R.A.

    2011-01-01

    A new generation fault processor is in development which is intended to increase fault handling flexibility and reduce the number of incomplete DIII-D shots due to gyrotron faults. The processor, which is based upon a field programmable gate array device, will analyze signals for aberrant operation and ramp down high voltage to try to avoid hard faults. The processor will then attempt to ramp back up to an attainable operating point. The new generation fault processor will be developed during an expansion of the electron cyclotron heating (ECH) areas that will include the installation of a depressed collector gyrotron and associated equipment. Existing systems will also be upgraded. Testing of real-time control of the ECH launcher poloidal drives by the DIII-D plasma control system will be completed. The ECH control system software will be upgraded for increased scalability and to increase operator productivity. Resources permitting, all systems will receive an extra layer of interlocks for the filament and magnet power supplies, added shielding for the tank electronics, programmable filament boost shape for long pulses, and electronics upgrades for the installation of the advanced fault processor.

  15. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    Science.gov (United States)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  16. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    Science.gov (United States)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They

  17. Sedimentology of the Upper Maastrichtian chalk, Danish Central Graben. M-10X (Dan Field), E-5X (Tyra SE Field) facies and core logs

    Energy Technology Data Exchange (ETDEWEB)

    Ineson, J.R.

    2004-07-01

    Based on detailed logs presented here at 1:10, the cored Upper Maastrichtian succession of the M-10X (Dan Field) and E-5X (Tyra SE Field) wells in the southern Danish Central Graben is subdivided into eight lithofacies and five ichnofabrics. The dominant bioturbated or laminated chalk mudstones and subordinate sparse skeletal wackestones are largely the result of pelagic carbonate production, sedimented by suspension settling and small volume, low density turbidity currents. Evidence of winnowing/reduced sedimentation rates is yielded by rare incipient hardgrounds; a well-developed mature hardground profile is developed at the Cretaceous-Danian boundary (the ''Maastrichtian hardground''). Rare marl laminae are recorded and a discrete marly chalk bed associated with an interval of finegrained skeletal chalk wackestones near the top of the Maastrichtian is recognised in both wells. Comparison between the two wells demonstrates that the m-scale laminated-bioturbated chalk cycles described from the Dan Field area are both stratigraphically and areally restricted; this has implications for both cyclostratigraphic correlation and reconstruction of depositional environments and Late Maastrichtian evolution of the Danish Central Graben. (au)

  18. Evolution of strike-slip fault systems and associated geomorphic structures. Model test

    International Nuclear Information System (INIS)

    Ueta, Keichi

    2003-01-01

    Sandbox experiments were performed to investigate evolution of fault systems and its associated geomorphic structures caused by strike-slip motion on basement faults. A 200 cm long, 40 cm wide, 25 cm high sandbox was used in a strike-slip fault model test. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evaluation, as well as the three-dimensional geometry, of the faults. The deformation of the sand pack surface was analyzed by use of a laser method 3D scanner, which is a three-dimensional noncontact surface profiling instrument. A comparison of the experimental results with natural cases of active faults reveals the following: In the left-lateral strike-slip fault experiments, the deformation of the sand pack with increasing basement displacement is observed as follows. 1) In three dimensions, the right-stepping shears that have a cirque'/'shell'/'shipbody' shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. The region between two Riedels is always an up-squeezed block. 2) lower-angle shears generally branch off from the first Riedel shears. 3) Pressure ridges develop within the zone defined by the right-stepping helicoidal shaped lower-angle shears. 4) Grabens develop between the pressure ridges. 5) Y-shears offset the pressure ridges. 6) With displacement concentrated on the central throughgoing fault zone, a liner trough developed directly above the basement fault. R1 shear and P foliation are observed in the liner trough. Such evolution of the shears and its associated structures in the fault model tests agrees well with that of strike-slip fault systems and its associated geomorphic structures. (author)

  19. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  20. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  1. Seismicity and Seismotectonic Properties of The Sultandağı Fault Zone (Afyonkarahisar-Konya): Western Anatolia,Turkey

    Science.gov (United States)

    Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.

    2017-12-01

    n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism

  2. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  3. The Geometry of the Aquifer's System of the Terraguelt Graben by the Gravimetry and the Electric Prospecting

    International Nuclear Information System (INIS)

    Brahmia, A.; Hani, A.; Lamouroux, C.

    2009-01-01

    The goal of the present survey is the determination of the shape of Terraguelt graben aquifer system. The gravimetric survey brings a satisfactory answer in this sense that the residual anomaly map made appear a negative anomaly of - 20 m Gals and that the gradient delimits the Graben enough well. The electric survey on the basis of the geologic information and the few mechanical boring achieved in the plain permits to retail the facies of the replenishment better. Indeed some either the length of the current electrode AB line, the center of the plain makes appear of weak values of apparent resistivity, the shalky limestone substratum of age superior Maestrichien is not reached in spite of a length of AB line = 3000 m. Whereas the borders appear with resistivities more important, in the center of the plain these last become more and more weak with the increase of the AB length. The shape of the Graben is illustrated well in the electric cross sections and is confirmed by the interrelationship of the lithostratigraphique columns of the mechanical boring. The interpretation of mechanical boring data shows two principals aquifers : the first one is included in the karstified limestone of upper Maestrichien and the second one is in the replenishment constituted by sand, and gravel, pebble. This replenishment is estimated at 1200 m thickness. The piezo metric maps shows that the aquifers are feeded from the the East and South mountains borders

  4. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    Science.gov (United States)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date

  5. San Andreas tremor cascades define deep fault zone complexity

    Science.gov (United States)

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  6. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  7. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    Science.gov (United States)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  8. Use of deep seismic shooting to study graben-like troughs. [Urals

    Energy Technology Data Exchange (ETDEWEB)

    Makalovskiy, V.V.; Silayev, V.A.

    1983-01-01

    In the Southeast Perm Oblast, in the zone of articulation of the Russian platform and the Cisural trough, in order to study the structure of the graben-like troughs together with deep drilling, well seismic exploration is used by the method of deep seismic shooting (DSS). The DSS method developed by the Kamskiy department of the VNIGNI consists of blasting in the well shaft and recording of the elastic fluctuations on the Earth's surface. The use of the DSS made it possible to pinpoint structural details of the graben-like trough, and to clarify that this is in essence a zone of fracturing, where the lowered blocks alternated with elevated, and to establish the location and amplitude of the tectonic disorders. High geological information content, low labor intensity and rapidity of obtaining the results make it possible to recommend the DSS together with prospecting and exploratory drilling to study complexly constructed objects in order to reduce the number of unproductive wells.

  9. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions

    Science.gov (United States)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.

    2016-12-01

    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  10. Mobilities and dislocation energies of planar faults in an ordered A 3 ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  11. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    Science.gov (United States)

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in

  12. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  13. Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep

    Science.gov (United States)

    Brocard, Gilles; Anselmetti, Flavio S.; Teyssier, Christian

    2016-11-01

    We combine ‘on-fault’ trench observations of slip on the Polochic fault (North America-Caribbean plate boundary) with a 1200 years-long ‘near-fault’ record of seismo-turbidite generation in a lake located within 2 km of the fault. The lake record indicates that, over the past 12 centuries, 10 earthquakes reaching ground-shaking intensities ≥ VI generated seismo-turbidites in the lake. Seismic activity was highly unevenly distributed over time and noticeably includes a cluster of earthquakes spread over a century at the end of the Classic Maya period. This cluster may have contributed to the piecemeal collapse of the Classic Maya civilization in this wet, mountainous southern part of the Maya realm. On-fault observations within 7 km of the lake show that soils formed between 1665 and 1813 CE were displaced by the Polochic fault during a long period of seismic quiescence, from 1450 to 1976 CE. Displacement on the Polochic fault during at least the last 480 years included a component of slip that was aseismic, or associated with very light seismicity (magnitude 1 ky) punctuated by destructive earthquake clusters.

  14. Decadal strain along creeping faults in the Needles District, Paradox Basin Utah determined with InSAR Time Series Analysis

    Science.gov (United States)

    Kravitz, K.; Furuya, M.; Mueller, K. J.

    2013-12-01

    The Needles District, in Canyonlands National Park in Utah exposes an array of actively creeping normal faults that accommodate gravity-driven extension above a plastically deforming substrate of evaporite deposits. Previous interferogram stacking and InSAR analysis of faults in the Needles District using 35 ERS satellite scenes from 1992 to 2002 showed line-of-sight deformation rates of ~1-2 mm/yr along active normal faults, with a wide strain gradient along the eastern margin of the deforming region. More rapid subsidence of ~2-2.5 mm/yr was also evident south of the main fault array across a broad platform bounded by the Colorado River and a single fault scarp to the south. In this study, time series analysis was performed on SAR scenes from Envisat, PALSAR, and ERS satellites ranging from 1992 to 2010 to expand upon previous results. Both persistent scatterer and small baseline methods were implemented using StaMPS. Preliminary results from Envisat data indicate equally distributed slip rates along the length of faults within the Needles District and very little subsidence in the broad region further southwest identified in previous work. A phase ramp that appears to be present within the initial interferograms creates uncertainty in the current analysis and future work is aimed at removing this artifact. Our new results suggest, however that a clear deformation signal is present along a number of large grabens in the northern part of the region at higher rates of up to 3-4 mm/yr. Little to no creep is evident along the single fault zone that bounds the southern Needles, in spite of the presence of a large and apparently active fault. This includes a segment of this fault that is instrumented by a creepmeter that yields slip rates on the order of ~1mm/yr. Further work using time series analysis and a larger sampling of SAR scenes will be used in an effort to determine why differences exist between previous and current work and to test mechanics-based modeling

  15. Plate rotations, fault slip rates, fault locking, and distributed deformation in northern Central America from 1999-2017 GPS observations

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Cosenza, B.; Flores, O.; Guzman-Speziale, M.; Hernandez, D.; Kostoglodov, V.; La Femina, P. C.; Lord, N. E.; Lasserre, C.; Lyon-Caen, H.; McCaffrey, R.; Molina, E.; Rodriguez, M.; Staller, A.; Rogers, R.

    2017-12-01

    We describe plate rotations, fault slip rates, and fault locking estimated from a new 100-station GPS velocity field at the western end of the Caribbean plate, where the Motagua-Polochic fault zone, Middle America trench, and Central America volcanic arc faults converge. In northern Central America, fifty-one upper-plate earthquakes caused approximately 40,000 fatalities since 1900. The proximity of main population centers to these destructive earthquakes and the resulting loss of human life provide strong motivation for studying the present-day tectonics of Central America. Plate rotations, fault slip rates, and deformation are quantified via a two-stage inversion of daily GPS position time series using TDEFNODE modeling software. In the first stage, transient deformation associated with three M>7 earthquakes in 2009 and 2012 is estimated and removed from the GPS position time series. In Stage 2, linear velocities determined from the corrected GPS time series are inverted to estimate deformation within the western Caribbean plate, slip rates along the Motagua-Polochic faults and faults in the Central America volcanic arc, and the gradient of extension in the Honduras-Guatemala wedge. Major outcomes of the second inversion include the following: (1) Confirmation that slip rates on the Motagua fault decrease from 17-18 mm/yr at its eastern end to 0-5 mm/yr at its western end, in accord with previous results. (2) A transition from moderate subduction zone locking offshore from southern Mexico and parts of southern Guatemala to weak or zero coupling offshore from El Salvador and parts of Nicaragua along the Middle America trench. (3) Evidence for significant east-west extension in southern Guatemala between the Motagua fault and volcanic arc. Our study also shows evidence for creep on the eastern Motagua fault that diminishes westward along the North America-Caribbean plate boundary.

  16. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    Science.gov (United States)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  17. Godavari rift and its extension towards the east coast of India

    Science.gov (United States)

    Mishra, D. C.; Gupta, S. B.; Venkatarayudu, M.

    1989-09-01

    The Godavari basin is divided into three parts namely Godavari-Pranhita, Chintalapudi, and coastal sub-basins. The Godavari-Pranhita sub-basin, located northwest of the Mailaram basement "high", depicts the characteristics of a half graben. The maximum thickness of the Gondwana sediments in this part is approximately 7.5 km. The gravity "highs" along the shoulders and inside the basin around Chinnur are interpreted as subsurface mass excesses along the Moho and within the crust. The Chinnur "high" in the centre of the basin probably represents a remanence of the arial doming characterizing the rift valleys. The Chintalapudi basin is bounded by the Mailaram "high" and the coastal fault towards the south. This part of the basin has faulted margins on both the sides as indicated by sharp gradients in the Bouguer anomaly with 3.0 km of sediments in the central part and associated mass excesses along the Moho and the shoulders suggesting it to be a full graben. The development of this full graben in this region alone is probably constrained by the deep faults on all four sides. The boundary faults defining these sub-basins, the shoulder "highs" and the transverse Mailaram "high" are still associated with occasional seismic activity suggesting some neo-tectonic adjustments along them. The coastal basin, though striking NE-SW, depicts the Gondwana structural trends (NW-SE) in the total magnetic intensity map of the region in alignment with the boundary faults of the Chintalapudi sub-basin to the north. The prominent structures in this coastal part are a depression of approximately 4.5 km and a coastal ridge at a depth of 2-2.5 km as interpreted from the magnetic data for a susceptibility of 0.009 CGS units. The northwest part of the magnetic map of the coastal basin depicts more short-wavelength shallow anomalies which provide compatible tectonics for a remanent direction of magnetization with azimuth equal to 140° and inclination +60°. This direction of magnetization

  18. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    Science.gov (United States)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  19. The Latemar: A Middle Triassic polygonal fault-block platform controlled by synsedimentary tectonics

    Science.gov (United States)

    Preto, Nereo; Franceschi, Marco; Gattolin, Giovanni; Massironi, Matteo; Riva, Alberto; Gramigna, Pierparide; Bertoldi, Luca; Nardon, Sergio

    2011-03-01

    Detailed field mapping of a Middle Triassic carbonate buildup, the Latemar in the western Dolomites, northern Italy, has been carried out. The Latemar is an isolated carbonate buildup that nucleates on a fault-bounded structural high (horst) cut into the underlying late Anisian carbonate bank of the Contrin Fm. This study demonstrates that extensional synsedimentary tectonics is the main factor controlling its geometry and provides an age for this tectonic phase. In an early phase, slopes were mostly composed of well bedded, clinostratified grainstones and rudstones. In a later stage, the deposition of grainstones was accompanied by the emplacement of clinostratified megabreccias. The upper portion of slopes is a microbial boundstone with abundant Tubiphytes and patches or lenses of grainstone. Boundstones may occasionally expand into the platform interior and downward to the base of the slope. The depositional profile was that of a mounded platform. The buildup is dissected by a dense framework of high angle fractures and faults, and by magmatic and sedimentary dikes, exhibiting two principal directions trending NNW-SSE and ENE-WSW. Faults trending WNW-ESE were also observed. Magmatic dikes are related to the emplacement of the nearby Predazzo intrusion and are thus upper Ladinian. Kinematic indicators of strike-slip activity were observed on fault planes trending NNE-SSW and NNW-SSE, that can be attributed to Cenozoic Alpine tectonics. Faults, magmatic dikes and sedimentary dikes show systematic cross-cutting relationships, with strike-slip faults cutting magmatic dikes, and magmatic dikes cutting sedimentary (neptunian) dikes. ENE-WSW and WNW-ESE faults are cut by all other structures, and record the oldest tectonic activity in the region. Structural analysis attributes this tectonic phase to an extensional stress field, with a direction of maximum extension oriented ca. N-S. Several lines of evidence, including sealed faults and growth wedge geometries allow us

  20. Kanda fault: A major seismogenic element west of the Rukwa Rift (Tanzania, East Africa)

    Science.gov (United States)

    Vittori, Eutizio; Delvaux, Damien; Kervyn, François

    1997-09-01

    The NW-SE trending Rukwa Rift, part of the East African Rift System, links the approximately N-S oriented Tanganyika and Nyassa (Malawi) depressions. The rift has a complex half-graben structure, generally interpreted as the result of normal and strike-slip faulting. Morphological and structural data (e.g. fault scarps, faceted spurs, tilting of Quaternary continental deposits, volcanism, seismicity) indicate Late Quaternary activity within the rift. In 1910 an earthquake of M = 7.4 (historically the largest felt in Africa) struck the Rukwa region. The epicentre was located near the Kanda fault, which affects the Ufipa plateau, separating the Rukwa depression from the south-Tanganyika basin. The geomorphic expression of the Kanda fault is a prominent fresh-looking scarp more than 180 km long, from Tunduma to north of Sumbawanga, that strikes roughly NW-SE, and dips constantly northeast. No evidence for horizontal slip was observed. Generally, the active faulting affects a very narrow zone, and is only locally distributed over several subparallel scarps. The height of the scarp progressively decreases towards the northwest, from about 40-50 m to a few metres north of Sumbawanga. Faulted lacustrine deposits exposed in a road cut near Kaengesa were dated as 8340 ± 700 and 13 600 ± 1240 radiocarbon years. These low-energy deposits now hang more than 15 m above the present-day valley floor, suggesting rapid uplift during the Holocene. Due to its high rate of activity in very recent times, the Kanda Fault could have produced the 1910 earthquake. Detailed paleoseismological studies are used to characterize its recent history. In addition, the seismic hazard posed by this fault, which crosses the fast growing town of Sumbawanga, must be seriously considered in urban planning.

  1. Stress accumulation and release at complex transform plate boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))

    1992-10-01

    Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.

  2. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  3. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    Science.gov (United States)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  4. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  5. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications

    Science.gov (United States)

    Liao, Wei-Zhi; Lin, Andrew T.; Liu, Char-Shine; Oung, Jung-Nan; Wang, Yunshuen

    2014-10-01

    Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.

  6. Late Jurassic rifting in the southern central Graben -A complex story simplified

    NARCIS (Netherlands)

    Verreussel, R.M.C.H.; Munsterman, D.K.; Ten Veen, J.H.; Weerd, A. van de; Dybkjaer, K.; Johannessen, P.N.

    2014-01-01

    In order to be able to predict the distribution of reservoir sands and of grainsize and porosity trends in a hydrocarbon province, it is essential to understand the basin evolution in detail. In this study, an attempt is made to reconstruct the complex basin evolution of the southern Central Graben

  7. Deciphering Past and Present Tectonics of the Rio Grande Rift in New Mexico Utilizing Apatite Fission Track Thermochronology, Geochronology, Quaternary Faulting, and Cross-Section Restoration

    Science.gov (United States)

    Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.

    2011-12-01

    The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter fault. In order to understand the evolution of faulting in this region, a balanced cross-section was constructed and restored to its pre-rift geometry. Our working hypothesis is that the low angle of the Jeter fault is most adequately explained by a rolling hinge model, where isostatic uplift causes progressive rotation of an initially steep (~60°) normal fault to shallower dips. Thirty km north of

  8. The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Memnonia Fossae and Tharsis volcanism

    International Nuclear Information System (INIS)

    Tanaka, K.L.; Chapman, M.G.

    1990-01-01

    Detailed stratigraphic relations indicate two coeval periods of catastrophic flooding and Tharsis-centered faulting (producing Memnonia Fossae) in the Mangala Valles region of Mars. Major sequences of lava flows of the Tharsis Montes Formation and local, lobate plains flows were erupted during and between these channeling and faulting episodes. First, Late Hesperian channel development overlapped in time the Tharsis-centered faulting that trends north 75 degree to 90 degree E. Next, Late Hesperian/Early Amazonian flooding was coeval with faulting that trends north 55 degree to 70 degree E. In some reaches, resistant lava flows filled the early channels, resulting in inverted channel topography after the later flooding swept through. Both floods likely originated from the same graben, which probably was activated during each episode of faulting. Faulting broke through groundwater barriers and tapped confined aquifers in higher regions west and east of the point of discharge. The minimum volume of water required to erode Mangala Valles (about 5 x 10 12 m 3 ) may have been released through two floods that drained a few percent pore volume from a relatively permeable aquifer. The peak discharges of the floods may have lasted from days to weeks. The perched water discharged from the aquifer may have been produced by hydrothermal groundwater circulation induced by Tharsis magmatism, tectonic uplift centered at Tharsis Montes, and compacting of saturated crater ejecta due to loading by lava flows

  9. Fault structures in the focal area of the 2016 Kumamoto earthquake revealed by derivatives and structure parameters of a gravity gradient tensor

    Science.gov (United States)

    Hiramatsu, Y.; Matsumoto, N.; Sawada, A.

    2016-12-01

    We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault

  10. Investigating The Relationship Between Structural Geology and Wetland Loss Near Golden Meadow, Louisiana By Utilizing 3D Seismic Reflection and Well Log Data

    Science.gov (United States)

    Johnston, A. S.; Zhang, R.; Gottardi, R.; Dawers, N. H.

    2017-12-01

    Wetland loss is one of the greatest environmental and economic threats in the deltaic plain of the Gulf Coast. This loss is controlled by subsidence, sea level rise, decreased sediment supply rates, movement along normal faults, salt tectonics, fluid extraction related to oil, gas and water exploration, and compaction. However, the interplay and feedback between these different processes are still poorly understood. In this study, we investigate the role of active faulting and salt tectonics on wetland loss in an area located between Golden Meadow and Leeville, Louisiana. Using industry 3D seismic and well log data, we investigate key segments of the Golden Meadow fault zone and map shallow faults that overlie the Leeville salt dome, to compare those fault planes with areas of wetland loss and subsidence. Faults were mapped to a depth of 1200 m, and well logs were tied to the upper 180 m of the seismic data to make accurate projections of the faults to the surface. Preliminary results highlight a graben structure south of a segment of the Golden Meadow fault. Well log and published data from shallow borings reveal a thicker Holocene accumulation at the center of the graben, up to 45 m than on the flanks of the graben. The location of this graben spatially correlates with Catfish Lake, and part of it overlies salt adjacent to the main fault surface. Bayou Lafourche, the main distributary channel of the Lafourche lobe of the Mississippi River delta complex, appears to have its path controlled by faults. Bayou Lafourche changes orientation and flows parallel to, and on the downthrown side of, two radial faults associated with the Leeville salt dome. These preliminary results indicate that there is a relationship between surface geomorphology and subsurface structures that, at least in part, exert a control on wetland loss in southern Louisiana.

  11. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  12. Evolution of the Puente Hills Thrust Fault

    Science.gov (United States)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  13. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    Science.gov (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  14. A review of the sedimentology of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting

    Science.gov (United States)

    Eriksson, P. G.; Schreiber, U. M.; van der Neut, M.

    The sedimentary rocks of the Early Proterozoic Pretoria Group form the floor rocks to teh 2050 M.a. Bushveld Complex. An overall alluvial fan-fan-delta - lacustrine palaeoenvironmental model is postulated for the Pretoria Group. This model is compatible with a continental half-graben tectonic setting, with steep footwall scarps on the southern margin and a lower gradient hanging wall developed to the north. The latter provided much of the basin-fill detritus. It is envisaged that the southern boundary fault system migrated southwards by footwall collapse as sedimentation continued. Synsedimentary mechanical rifting, associated with alluvial and deltaic sedimentation (Rooihoogte-Strubenkop Formations) was followed by thermal subsidence, with concomitant transgressive lacustrine deposition (Daspoort-Magaliesberg Formations). The proposed half-graben basin was probably related to the long-lived Thabazimbi-Murchison and Sugarbush-Barberton lineaments, which bound the preserved outcrops of the Pretoria Group.

  15. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

    Science.gov (United States)

    Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina

    2017-01-01

    The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

  16. The Padul normal fault activity constrained by GPS data: Brittle extension orthogonal to folding in the central Betic Cordillera

    Science.gov (United States)

    Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro

    2017-08-01

    The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.

  17. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    Science.gov (United States)

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  18. A low-angle detachment fault revealed: Three-dimensional images of the S-reflector fault zone along the Galicia passive margin

    Science.gov (United States)

    Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.

    2018-06-01

    A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.

  19. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    Science.gov (United States)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  20. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    Science.gov (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  1. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India

    Science.gov (United States)

    Mishra, Anurag; Srivastava, Deepak C.; Shah, Jyoti

    2013-05-01

    Tectonic history of the Himalaya is punctuated by successive development of the faults that run along the boundaries between different lithotectonic terrains. The Main Boundary Fault, defining the southern limit of the Lesser Himalayan terrain, is tectonically most active. A review of published literature reveals that the nature and age of reactivation events on the Main Boundary Fault is one of the poorly understood aspects of the Himalayan orogen. By systematic outcrop mapping of the seismites, this study identifies a Late Miocene-Early Pliocene reactivation on the Main Boundary Thrust in southeast Kumaun Himalaya. Relatively friable and cohesionless Neogene sedimentary sequences host abundant soft-sediment deformation structures in the vicinity of the Main Boundary Thrust. Among a large variety of structures, deformed cross-beds, liquefaction pockets, slump folds, convolute laminations, sand dykes, mushroom structures, fluid escape structures, flame and load structures and synsedimentary faults are common. The morphological attributes, the structural association and the distribution pattern of the soft-sediment deformation structures with respect to the Main Boundary Fault strongly suggest their development by seismically triggered liquefaction and fluidization. Available magnetostratigraphic age data imply that the seismites were developed during a Late Miocene-Early Pliocene slip on the Main Boundary Thrust. The hypocenter of the main seismic event may lie on the Main Boundary Thrust or to the north of the study area on an unknown fault or the Basal Detachment Thrust.

  2. Continental Transform Boundaries: Tectonic Evolution and Geohazards

    Directory of Open Access Journals (Sweden)

    Michael Steckler

    2012-04-01

    Full Text Available Continental transform boundaries cross heavily populated regions, and they are associated with destructive earthquakes,for example, the North Anatolian Fault (NAFacross Turkey, the Enriquillo-Plantain Garden fault in Haiti,the San Andreas Fault in California, and the El Pilar fault in Venezuela. Transform basins are important because they are typically associated with 3-D fault geometries controlling segmentation—thus, the size and timing of damaging earthquakes—and because sediments record both deformation and earthquakes. Even though transform basins have been extensively studied, their evolution remains controversial because we don’t understand the specifics about coupling of vertical and horizontal motions and about the basins’long-term kinematics. Seismic and tsunami hazard assessments require knowing architecture and kinematics of faultsas well as how the faults are segmented.

  3. Adapting plant measurement data to improve hardware fault detection performance in pressurised water reactors

    International Nuclear Information System (INIS)

    Cilliers, A.C.; Mulder, E.J.

    2012-01-01

    Highlights: ► Attempt was to use available resources at a nuclear plant in a value added fashion. ► Includes plant measurement data and plant training and engineering simulator capabilities. ► Solving the fault masking effect by the distributed control systems in the plant. ► Modelling the effect of inaccuracies in plant models used in the simulators. ► Combination of above resulted in the development of a deterministic fault identifications system. -- Abstract: With the fairly recent adoption of digital control and instrumentation systems in the nuclear industry a lot of research now focus on the development expert fault identification systems. The fault identification systems enable detecting early onset faults of fault causes which allows maintenance planning on the equipment showing signs of deterioration or failure. This includes valve and leaks and small cracks in steam generator tubes usually detected by means of ultrasonic inspection. Detecting faults early during transient operation in NPPs is problematic due to the absence of a reliable reference to compare plant measurements with during transients. The distributed application of control systems operating independently to keep the plant operating within the safe operating boundaries complicates the problem since the control systems would not only operate to reduce the effect of transient disturbances but fault disturbances as well. This paper provides a method to adapt the plant measurements that isolates the control actions on the fault and re-introduces it into the measurement data, thereby improving plant diagnostic performance.

  4. Tectonics control over instability of volcanic edifices in transtensional tectonic regimes

    Science.gov (United States)

    Norini, G.; Capra, L.; Lagmay, A. M. F.; Manea, M.; Groppelli, G.

    2009-04-01

    We present the results of analogue modeling designed to investigate the interactions between volcanic edifices and transtensional basement faulting. Three sets of experiments were run to account for three examples of stratovolcanoes in active transtensive tectonics regimes, the Nevado de Toluca and Jocotitlan volcanoes in Mexico, and the Mayon volcano in the Philippines. All these volcanoes show different behavior and relationship among volcanism, instability of the volcanic edifice, and basement tectonics. Field geological and structural data gave the necessary constrains to the models. The modeling apparatus consisted of a sand cone on a sheared basal layer. Injections of vegetable oil were used to model the rising of magma inside the deformed analogue cones. Set 1: In the case of a volcano directly on top of a basal transtensive shear producing a narrow graben, as observed on the Nevado de Toluca volcano, the analogue models reveal a strong control of the basement faulting on the magma migration path and the volcano instability. Small lateral collapses are directed parallel to the basal shear and affect a limited sector of the cone. Set 2: If the graben generated by transtensive tectonics is bigger in respect to the volcanic edifice and the volcano sits on one boundary fault, as in the case of Mayon volcano, the combined normal and transcurrent movements of the analogue basement fault generate a sigmoidal structure in the sand cone, inducing major sector collapses directed at approx 45° relative to the basement shear toward the downthrown block. Set 3: For volcanoes located near major transtensive faults, as the Jocotitlan volcano, analogue modelling shows an important control of the regional tectonics on the geometry of the fractures and migration paths of magma inside the cone. These structures render unstable the flanks of the volcano and promote sector collapses perpendicular to the basement shear and directed toward the graben formed by the transtensive

  5. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    Science.gov (United States)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  6. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  7. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  8. A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault

    Science.gov (United States)

    Fulton, P.M.; Saffer, D.M.; Bekins, B.A.

    2009-01-01

    Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.

  9. New Evidence for Quaternary Strain Partitioning Along the Queen Charlotte Fault System, Southeastern Alaska

    Science.gov (United States)

    Walton, M. A. L.; Miller, N. C.; Brothers, D. S.; Kluesner, J.; Haeussler, P. J.; Conrad, J. E.; Andrews, B. D.; Ten Brink, U. S.

    2017-12-01

    The Queen Charlotte Fault (QCF) is a fast-moving ( 53 mm/yr) transform plate boundary fault separating the Pacific Plate from the North American Plate along western Canada and southeastern Alaska. New high-resolution bathymetric data along the fault show that the QCF main trace accommodates nearly all strike-slip plate motion along a single narrow deformation zone, though questions remain about how and where smaller amounts of oblique convergence are accommodated along-strike. Obliquity and convergence rates are highest in the south, where the 2012 Haida Gwaii, British Columbia MW 7.8 thrust earthquake was likely caused by Pacific underthrusting. In the north, where obliquity is lower, aftershocks from the 2013 Craig, Alaska MW 7.5 strike-slip earthquake also indicate active convergent deformation on the Pacific (west) side of the plate boundary. Off-fault structures previously mapped in legacy crustal-scale seismic profiles may therefore be accommodating part of the lesser amounts of Quaternary convergence north of Haida Gwaii. Between 2015 and 2017, the USGS acquired more than 8,000 line-km of offshore high-resolution multichannel seismic (MCS) data along the QCF to better understand plate boundary deformation. The new MCS data show evidence for Quaternary deformation associated with a series of elongate ridges located within 30 km of the QCF main trace on the Pacific side. These ridges are anticlinal structures flanked by growth faults, with recent deformation and active fluid flow characterized by seafloor scarps and seabed gas seeps at ridge crests. Structural and morphological evidence for contractional deformation decreases northward along the fault, consistent with a decrease in Pacific-North America obliquity along the plate boundary. Preliminary interpretations suggest that plate boundary transpression may be partitioned into distinctive structural domains, in which convergent stress is accommodated by margin-parallel thrust faulting, folding, and ridge

  10. Hanging-wall deformation above a normal fault: sequential limit analyses

    Science.gov (United States)

    Yuan, Xiaoping; Leroy, Yves M.; Maillot, Bertrand

    2015-04-01

    to Dahl, 1987). References: Egholm, D. L., M. Sandiford, O. R. Clausen, and S. B. Nielsen (2007), A new strategy for discrete element numerical models: 2. sandbox applications, Journal of Geophysical Research, 112 (B05204), doi:10.1029/2006JB004558. Groshong, R. H. (1989), Half-graben structures: Balanced models of extensional fault-bend folds, Geological Society of America Bulletin, 101 (1), 96-105. Patton, T. L. (2005), Sandbox models of downward-steepening normal faults, AAPG Bulletin, 89 (6), 781-797. Xiao, H.-B., and J. Suppe (1992), Orgin of rollover, AAPG Bulletin, 76 (4), 509-529.

  11. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  12. Are turtleback fault surfaces common structural elements of highly extended terranes?

    Science.gov (United States)

    Çemen, Ibrahim; Tekeli, Okan; Seyitoğlu, Gűrol; Isik, Veysel

    2005-12-01

    The Death Valley region of the U.S.A. contains three topographic surfaces resembling the carapace of a turtle. These three surfaces are well exposed along the Black Mountain front and are named the Badwater, Copper Canyon, and Mormon Point Turtlebacks. It is widely accepted that the turtlebacks are also detachment surfaces that separate brittlely deformed Cenozoic volcanic and sedimentary rocks of the hanging wall from the strongly mylonitic, ductilely deformed pre-Cenozoic rocks of the footwall. We have found a turtleback-like detachment surface along the southern margin of the Alasehir (Gediz) Graben in western Anatolia, Turkey. This surface qualifies as a turtleback fault surface because it (a) is overall convex-upward and (b) separates brittlely deformed hanging wall Cenozoic sedimentary rocks from the ductilely to brittlely deformed, strongly mylonitic pre-Cenozoic footwall rocks. The surface, named here Horzum Turtleback, contains striations that overprint mylonitic stretching lineations indicating top to the NE sense of shear. This suggests that the northeasterly directed Cenozoic extension in the region resulted in a ductile deformation at depth and as the crust isostatically adjusted to the removal of the rocks in the hanging wall of the detachment fault, the ductilely deformed mylonitic rocks of the footwall were brought to shallower depths where they were brittlely deformed. The turtleback surfaces have been considered unique to the Death Valley region, although detachment surfaces, rollover folds, and other extensional structures have been well observed in other extended terranes of the world. The presence of a turtleback fault surface in western Anatolia, Turkey, suggests that the turtleback faults may be common structural features of highly extended terranes.

  13. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals

    Science.gov (United States)

    Wang, J.; Misra, A.; Hirth, J. P.

    2011-02-01

    Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.

  14. Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany

    Science.gov (United States)

    Böcker, Johannes; Littke, Ralf

    2016-03-01

    In the central Upper Rhine Graben (URG), several major oil fields have been sourced by Liassic Black Shales. In particular, the Posidonia Shale (Lias ɛ, Lower Toarcian) acts as excellent and most prominent source rock in the central URG. This study is the first comprehensive synthesis of Liassic maturity data in the URG area and SW Germany. The thermal maturity of the Liassic Black Shales has been analysed by vitrinite reflectance (VRr) measurements, which have been verified with T max and spore coloration index (SCI) data. In outcrops and shallow wells (oil window (ca. 0.50-0.60 % VRr). This maturity is found in Liassic outcrops and shallow wells in the entire URG area and surrounding Swabian Jura Mountains. Maximum temperatures of the Posidonia Shale before graben formation are in the order of 80-90 °C. These values were likely reached during Late Cretaceous times due to significant Upper Jurassic and minor Cretaceous deposition and influenced by higher heat flows of the beginning rift event at about 70 Ma. In this regard, the consistent regional maturity data (VRr, T max, SCI) of 0.5-0.6 % VRr for the Posidonia Shale close to surface suggest a major burial-controlled maturation before graben formation. These consistent maturity data for Liassic outcrops and shallow wells imply no significant oil generation and expulsion from the Posidonia Shale before formation of the URG. A detailed VRr map has been created using VRr values of 31 wells and outcrops with a structure map of the Posidonia Shale as reference map for a depth-dependent gridding operation. Highest maturity levels occur in the area of the Rastatt Trough (ca. 1.5 % VRr) and along the graben axis with partly very high VRr gradients (e.g. well Scheibenhardt 2). In these deep graben areas, the maximum temperatures which were reached during upper Oligocene to Miocene times greatly exceed those during the Cretaceous.

  15. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.

    2013-09-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  16. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.; Zielke, Olaf; Arrowsmith, J. R.; Ballato, P.; Strecker, M. R.; Schildgen, T. F.; Friedrich, A. M.; Tabatabaei, S. H.

    2013-01-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  17. Aseismic Transform Fault Slip at the Mendocino Triple Junction From Characteristically Repeating Earthquakes

    Science.gov (United States)

    Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland

    2018-01-01

    The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby M5.7 earthquake in 2015, we observe a possible decrease in aseismic slip on the near-shore MFZ that lasts from 2015 to at least early 2017.

  18. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    Science.gov (United States)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  19. Can diligent and extensive mapping of faults provide reliable estimates of the expected maximum earthquakes at these faults? No. (Invited)

    Science.gov (United States)

    Bird, P.

    2010-12-01

    The hope expressed in the title question above can be contradicted in 5 ways, listed below. To summarize, an earthquake rupture can be larger than anticipated either because the fault system has not been fully mapped, or because the rupture is not limited to the pre-existing fault network. 1. Geologic mapping of faults is always incomplete due to four limitations: (a) Map-scale limitation: Faults below a certain (scale-dependent) apparent offset are omitted; (b) Field-time limitation: The most obvious fault(s) get(s) the most attention; (c) Outcrop limitation: You can't map what you can't see; and (d) Lithologic-contrast limitation: Intra-formation faults can be tough to map, so they are often assumed to be minor and omitted. If mapping is incomplete, fault traces may be longer and/or better-connected than we realize. 2. Fault trace “lengths” are unreliable guides to maximum magnitude. Fault networks have multiply-branching, quasi-fractal shapes, so fault “length” may be meaningless. Naming conventions for main strands are unclear, and rarely reviewed. Gaps due to Quaternary alluvial cover may not reflect deeper seismogenic structure. Mapped kinks and other “segment boundary asperities” may be only shallow structures. Also, some recent earthquakes have jumped and linked “separate” faults (Landers, California 1992; Denali, Alaska, 2002) [Wesnousky, 2006; Black, 2008]. 3. Distributed faulting (“eventually occurring everywhere”) is predicted by several simple theories: (a) Viscoelastic stress redistribution in plate/microplate interiors concentrates deviatoric stress upward until they fail by faulting; (b) Unstable triple-junctions (e.g., between 3 strike-slip faults) in 2-D plate theory require new faults to form; and (c) Faults which appear to end (on a geologic map) imply distributed permanent deformation. This means that all fault networks evolve and that even a perfect fault map would be incomplete for future ruptures. 4. A recent attempt

  20. A reevaluation of the lineage development of Pararotalia and Praepararotalia including new material from the Rupelian of the southern Upper Rhine Graben

    Science.gov (United States)

    Pirkenseer, C.; Spezzaferri, S.

    2009-04-01

    The lineage of the benthic Foraminifera Praepararotalia and Pararotalia has a known record since the Late Cretaceous to recent. Showing a wide range of morphologic variations, the most recent thorough generic definition of Pararotalia is heavily based on internal structures (e.g., HOTTINGER et al. 1991). Thus many of the older, not revised species are still assigned to Pararotalia by means of visible external structures. This applies also to the genus Praepararotalia (Cretaceous to Late Eocene), erected by LIU et al. (1998) as a "simple" predecessor-taxon with generally round, smooth to pustulated chambers of slowly increasing diameter, very low to flat spiral side and small overall size. Wall texture and aperture are identical in both genera. According to LIU et al. (1998) Pararotalia s.str. is characterized by a general size increase, planoconvex test, the development of peripheral pseudospines, keel and increasingly conical chambers ("angular" habitus) as well as a distinct umbilical sutures and plug. Pararotalia macneilli (Danian) and P. ishamae (Thanetian) are considered to represent linking species, the main difference being the initial development of an umbilical plug. The separation of the two genera took place in the Late Cretaceous or Earliest Paleogene, with Praepararotalia cretacea being the ancestral species (LIU et al. 1998). We present here a reevaluation of the morphogroups based on material from the Rupelian of the southern Upper Rhine Graben and the analysis of the record of reported species from literature. Four different groups can be separated in terms of external morphology. The first group represents the Praepararotalia-habitus of small size. New material from the Rupelian of the southern Upper Rhine Graben may be attributed to this group. It differs in a higher number of chambers in the last whorl and total chamber numbers (5-6 vs. 6-7, 11-16 vs. up to 22), a much larger size (up to 500µm) and a higher trochospire. Some specimens show a

  1. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    in the central Vienna Basin from commercial 3D seismic data. In addition to detailed conventional fault analysis (displacement and fault shape), syn-and anticlinal structures of sedimentary horizons occurring both in hanging wall and footwall are assessed. Reverse drag geometries of variable magnitudes are found to correlate with local displacement maxima along the fault. In contrast, normal drag is observed along segment boundaries and relay zones. Thus, the detailed documentation of the distribution, type and magnitude of fault drag provides additional information on the fault evolution, as initial fault segments as well as linkage or relay zones can be identified. (author) [de

  2. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    Science.gov (United States)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  3. Neotectonics of Asia: Thin-shell finite-element models with faults

    Science.gov (United States)

    Kong, Xianghong; Bird, Peter

    1994-01-01

    As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the

  4. Seismic Interpretation of the Nam Con Son Basin and its Implication for the Tectonic Evolution

    Directory of Open Access Journals (Sweden)

    Nguyen Quang Tuan

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.127-137The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene, that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time.

  5. The Lithosphere-asthenosphere Boundary beneath the South Island of New Zealand

    Science.gov (United States)

    Hua, J.; Fischer, K. M.; Savage, M. K.

    2017-12-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. This study takes advantage of the long-duration and high-density seismometer networks deployed on or near the South Island, especially 29 broadband stations of the New Zealand permanent seismic network (GeoNet). We obtained 24,980 individual receiver functions by extended-time multi-taper deconvolution, mapping to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography (Ball et al., 2015) and geochemical studies. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the west of the Alpine fault. The deeper LAB to the west of the Alpine fault is consistent with oceanic lithosphere attached to the Australian plate that was partially subducted while also translating parallel to the Alpine fault (e.g. Sutherland, 2000). However, models in which the Pacific lithosphere has been underthrust to the west past the Alpine fault cannot be ruled out. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the west of the fault, juxtaposed against a region of anomalously weak LAB conversions to the east of the fault. This structure, similar to results of Sp imaging beneath the central segment of the San Andreas fault (Ford et al., 2014), also suggests that lithospheric blocks with contrasting LAB properties meet beneath the Alpine fault. The observed variations in

  6. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  7. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  8. Dead sea transform fault system reviews

    CERN Document Server

    Garfunkel, Zvi; Kagan, Elisa

    2014-01-01

    The Dead Sea transform is an active plate boundary connecting the Red Sea seafloor spreading system to the Arabian-Eurasian continental collision zone. Its geology and geophysics provide a natural laboratory for investigation of the surficial, crustal and mantle processes occurring along transtensional and transpressional transform fault domains on a lithospheric scale and related to continental breakup. There have been many detailed and disciplinary studies of the Dead Sea transform fault zone during the last?20 years and this book brings them together.This book is an updated comprehensive coverage of the knowledge, based on recent studies of the tectonics, structure, geophysics, volcanism, active tectonics, sedimentology and paleo and modern climate of the Dead Sea transform fault zone. It puts together all this new information and knowledge in a coherent fashion.

  9. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  10. Conductivity Structure of the San Andreas Fault, Parkfield, Revisited

    Science.gov (United States)

    Park, S. K.; Roberts, J. J.

    2003-12-01

    Laboratory measurements of samples of sedimentary rocks from the Parkfield syncline reveal resistivities as low as 1 ohm m when saturated with fluids comparable to those found in nearby wells. The syncline lies on the North American side of the San Andreas fault at Parkfield and plunges northwestward into the fault zone. A previous interpretation of a high resolution magnetotelluric profile across the San Andreas fault at Parkfield identified an anomalously conductive (1-3 ohm m) region just west of the fault and extending to depths of 3 km. These low resistivity rocks were inferred to be crushed rock in the fault zone that was saturated with brines. As an alternative to this interpretation, we suggest that this anomalous region is actually the Parkfield syncline and that the current trace of the San Andreas fault at Middle Mountain does not form the boundary between the Salinian block and the North American plate. Instead, that boundary is approximately 1 km west and collocated with current seismicity. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and supported specifically by the Office of Basic Energy Science. Additional support was provided by the U.S. Geological Survey (USGS), Department of the Interior, under USGS Award number 03HQGR0041. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

  11. Influence of fault asymmetric dislocation on the gravity changes

    Directory of Open Access Journals (Sweden)

    Duan Hurong

    2014-08-01

    Full Text Available A fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth’s crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, energy release associated with rapid movement on active faults is the cause of most earthquakes. The relationship between unevenness dislocation and gravity changes was studied on the theoretical thought of differential fault. Simulated observation values were adopted to deduce the gravity changes with the model of asymmetric fault and the model of Okada, respectively. The characteristic of unevennes fault momentum distribution is from two end points to middle by 0 according to a certain continuous functional increase. However, the fault momentum distribution in the fault length range is a constant when the Okada model is adopted. Numerical simulation experiments for the activities of the strike-slip fault, dip-slip fault and extension fault were carried out, respectively, to find that both the gravity contours and the gravity variation values are consistent when either of the two models is adopted. The apparent difference lies in that the values at the end points are 17. 97% for the strike-slip fault, 25. 58% for the dip-slip fault, and 24. 73% for the extension fault.

  12. Structural and petrophysical characterization: from outcrop rock analogue to reservoir model of deep geothermal prospect in Eastern France

    Science.gov (United States)

    Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément

    2017-04-01

    The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the

  13. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  14. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  15. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion

    Energy Technology Data Exchange (ETDEWEB)

    Harding, T.P.

    1985-04-01

    Negative and positive flower structures and positive inverted structures imply specific modes of formation, and their distinctive characteristics make them important criteria for the identification of certain structural styles. A negative flower structure from the Andaman Sea consists of a shallow synform bounded by upward-spreading strands of a wrench fault that have mostly normal separations. Paralleling monoclines and oblique, en echelon normal faults flank the divergent wrench fault. A positive flower structure from the Ardmore basin, Oklahoma, consists of a shallow antiform displaced by the upward diverging strands of a wrench fault that have mostly reverse separations. En echelon folds are present on either side of this convergent wrench fault. Positive structural inversion at the Rambutan oil field, South Sumatra basin, has formed a shallow anticlinorium and has partly uplifted the underlying graben. Deeper fault segments bounding the graben have retained their normal fault profiles, but at shallow levels some of these faults have reverse separations.

  16. Dislocation Processes and Frictional Stability of Faults

    Science.gov (United States)

    Toy, V. G.; Mitchell, T. M.; Druiventak, A.

    2011-12-01

    The rate dependence of frictional processes in faults in quartzofeldspathic crust is proposed to change at c. 300°C, because above this temperature asperity deformation can be accommodated by crystal plastic processes. As a consequence, the real fault contact area increases and the fault velocity strengthens. Conversely, faults at lower temperatures are velocity weakening and therefore prone to earthquake slip. We have investigated whether dislocation processes are important around faults in quartzites on seismic timescales, by inducing fault slip on a saw cut surface in novaculite blocks. Deformation was carried out at 450°C and 600°C in a Griggs apparatus. Slip rates of 8.3 x 10-7s-1 allowed total slip, u, of 0.5mm to be achieved in c. 10 minutes. Failure occurred at peak differential stresses of ~1.7 GPa and 1.4 GPa respectively, followed by significant weakening. Structures of the novaculite within and surrounding the fault surface were examined using EBSD, FIB-SEM and TEM to elucidate changes to their dislocation substructure. In the sample deformed at 450°C, a ~50μm thick layer of amorphous / non-crystalline silica was developed on the saw-cut surface during deformation. Rare clasts of the wall rock are preserved within this material. The surrounding sample is mostly composed of equant quartz grains of 5-10μm diameter that lack a preferred orientation, contain very few intercrystalline dislocations, and are divided by organised high angle grain boundaries. After deformation, most quartz grains within the sample retain their starting microstructure. However, within ~10μm of the sliding surface, dislocations are more common, and these are arranged into elongated, tangled zones (subgrain boundaries?). Microfractures are also observed. These microstructures are characteristic of deformation accommodated by low temperature plasticity. Our preliminary observations suggest that dislocation processes may be able to accommodate some deformation around fault

  17. Spatial arrangement and size distribution of normal faults, Buckskin detachment upper plate, Western Arizona

    Science.gov (United States)

    Laubach, S. E.; Hundley, T. H.; Hooker, J. N.; Marrett, R. A.

    2018-03-01

    Fault arrays typically include a wide range of fault sizes and those faults may be randomly located, clustered together, or regularly or periodically located in a rock volume. Here, we investigate size distribution and spatial arrangement of normal faults using rigorous size-scaling methods and normalized correlation count (NCC). Outcrop data from Miocene sedimentary rocks in the immediate upper plate of the regional Buckskin detachment-low angle normal-fault, have differing patterns of spatial arrangement as a function of displacement (offset). Using lower size-thresholds of 1, 0.1, 0.01, and 0.001 m, displacements range over 5 orders of magnitude and have power-law frequency distributions spanning ∼ four orders of magnitude from less than 0.001 m to more than 100 m, with exponents of -0.6 and -0.9. The largest faults with >1 m displacement have a shallower size-distribution slope and regular spacing of about 20 m. In contrast, smaller faults have steep size-distribution slopes and irregular spacing, with NCC plateau patterns indicating imposed clustering. Cluster widths are 15 m for the 0.1-m threshold, 14 m for 0.01-m, and 1 m for 0.001-m displacement threshold faults. Results demonstrate normalized correlation count effectively characterizes the spatial arrangement patterns of these faults. Our example from a high-strain fault pattern above a detachment is compatible with size and spatial organization that was influenced primarily by boundary conditions such as fault shape, mechanical unit thickness and internal stratigraphy on a range of scales rather than purely by interaction among faults during their propagation.

  18. Investigation of a marine magnetic polarity reversal boundary in cross section at the northern boundary of the Kane Megamullion, Mid-Atlantic Ridge, 23°40'N

    Science.gov (United States)

    Xu, Min; Tivey, M. A.

    2016-05-01

    Near-bottom magnetic field measurements made by the submersible Nautile during the 1992 Kanaut Expedition define the cross-sectional geometry of magnetic polarity reversal boundaries and the vertical variation of crustal magnetization in lower oceanic crust exposed along the Kane Transform Fault (TF) at the northern boundary of the Kane Megamullion (KMM). The KMM exposes lower crust and upper mantle rocks on a low-angle normal fault that was active between 3.3 Ma and 2.1 Ma. The geometry of the polarity boundaries is estimated from an inversion of the submarine magnetic data for crustal magnetization. In general, the polarity boundaries dip away from the ridge axis along the Kane TF scarp, with a west dipping angle of ~45° in the shallow (Williams (2007) that the lower crust cools through the Curie temperature of magnetite to become magnetic, with the polarity boundaries representing both frozen isotherms and isochrons. We also test the effects of the rotation of this isotherm structure and/or footwall rotation and find that the magnetic polarity boundary geometry is not sensitive to these directional changes.

  19. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    Collision of the Eurasian and Indian plates has resulted in two spatially offset subduction zones, the Makran subduction zone to the south and the Himalayan convergent margin to the north. These zones are linked by a system of left-lateral strike-slip faults known as the Chaman Fault System, ∼1200 km, which spans along western Pakistan. Although this is one of the greatest strike-slip faults, yet temporal and spatial variation in displacement has not been adequately defined along this fault system. This study conducted geomorphic and geodetic investigations along the Chaman Fault in a search for evidence of spatial variations in motion. Four study areas were selected over the span of the Chaman Fault: (1) Tarnak-Rud area over the Tarnak-Rud valley, (2) Spinatizha area over the Spinatizha Mountain Range, (3) Nushki area over the Nushki basin, and (4) Kharan area over the northern tip of the Central Makran Mountains. Remote sensing data allowed for in depth mapping of different components and faults within the Kohjak group. Wind and water gap pairs along with offset rivers were identified using high-resolution imagery and digital-elevation models to show displacement for the four study areas. The mountain-front-sinuosity ratio, valley height-to-width-ratio, and the stream-length-gradient index were calculated and used to determine the relative tectonic activity of each area. These geomorphic indices suggest that the Kharan area is the most active and the Tarnak-Rud area is the least active. GPS data were processed into a stable Indian plate reference frame and analyzed. Fault parallel velocity versus fault normal distance yielded a ∼8-10 mm/yr displacement rate along the Chaman Fault just north of the Spinatizha area. InSAR data were also integrated to assess displacement rates along the fault system. Geodetic data support that ultra-slow earthquakes similar to those that strike along other major strike-slip faults, such as the San Andreas Fault System, are

  20. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    Science.gov (United States)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  1. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  2. Fault detection of a spur gear using vibration signal with multivariable statistical parameters

    Directory of Open Access Journals (Sweden)

    Songpon Klinchaeam

    2014-10-01

    Full Text Available This paper presents a condition monitoring technique of a spur gear fault detection using vibration signal analysis based on time domain. Vibration signals were acquired from gearboxes and used to simulate various faults on spur gear tooth. In this study, vibration signals were applied to monitor a normal and various fault conditions of a spur gear such as normal, scuffing defect, crack defect and broken tooth. The statistical parameters of vibration signal were used to compare and evaluate the value of fault condition. This technique can be applied to set alarm limit of the signal condition based on statistical parameter such as variance, kurtosis, rms and crest factor. These parameters can be used to set as a boundary decision of signal condition. From the results, the vibration signal analysis with single statistical parameter is unclear to predict fault of the spur gears. The using at least two statistical parameters can be clearly used to separate in every case of fault detection. The boundary decision of statistical parameter with the 99.7% certainty ( 3   from 300 referenced dataset and detected the testing condition with 99.7% ( 3   accuracy and had an error of less than 0.3 % using 50 testing dataset.

  3. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  4. Physical properties and radiometric age estimates of surficial and fracture-fill deposits along a portion of the Carpetbag fault system, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Shroba, R.R.; Muhs, D.R.; Rosholt, J.N.

    1988-07-01

    Surficial deposits and fracture-fill deposits (fracture fillings that consist chiefly of calcium carbonate-cemented, pebbly sand) were studied along a 2.5-km-long portion of the Carpetbag fault system in an area characterized by prominent, explosion-produced scarps and a shallow graben that formed during and subsequent to the 1970 Carpetbag nuclear event in the northwestern part of Yucca Flat, Nevada Test Site. The surficial deposits are fluvial and slopewash deposits and mixed eolian sediment that range in grain size from pebble gravel to silty sand. These deposits have been modified by the accumulation of varying amounts of pedogenic silt, clay, calcium carbonate, and probably opaline silica. Despite the occurrence of ancient fractures and linear features on aerial photographs, that are near and parallel to subsurface faults of the Carpetbag system, no other evidence for prehistoric surface faulting was observed in the study area. The lack of prehistoric fault scarps and the lack of offset of stratigraphic contacts exposed in trench excavations suggest that no significant vertical surface displacement has occurred on the Carpetbag system during the past 125,000 years and possible during the past 350,000 years. 39 refs., 12 figs., 8 tabs

  5. A case for historic joint rupture of the San Andreas and San Jacinto faults

    OpenAIRE

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data...

  6. Strong paleoearthquakes along the Talas-Fergana Fault, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    A.M. Korzhenkov

    2014-02-01

    Full Text Available The Talas-Fergana Fault, the largest strike-slip structure in Centred. Asia, forms an obliquely oriented boundary between the northeastern and southwestern parts of the Tianshan mountain belt. The fault underwent active right-lateral strike-slip during the Paleozoic, with right-lateral movements being rejuvenated in the Late Cenozoic. Tectonic movements along the intracontinental strike-slip faults contribute to absorb part of the regional crustal shortening linked to the India-Eurasia collision; knowledge of strike-slip motions along the Talas-Fergana Fault are necessary for a complete assessment of the active deformation of the Tianshan orogen. To improve our understanding of the intracontinental deformation of the Tianshan mountain belt and the occurrence of strong earthquakes along the whole length of the Talas-Fergana Fault, we identify features of relief arising during strong paleoearthquakes along the Talas-Fergana Fault, fault segmentation, the length of seismogenic ruptures, and the energy and age of ancient catastrophes. We show that during neotectonic time the fault developed as a dextral strike-slip fault, with possible dextral displacements spreading to secondary fault planes north of the main fault trace. We determine rates of Holocene and Late Pleistocene dextral movements, and our radiocarbon dating indicates tens of strong earthquakes occurring along the fault zone during arid interval of 15800 years. The reoccurrence of strong earthquakes along the Talas-Fergana Fault zone during the second half of the Holocene is about 300 years. The next strong earthquake along the fault will most probably occur along its southeastern chain during the next several decades. Seismotectonic deformation parameters indicate that M > 7 earthquakes with oscillation intensity I > IX have occurred.

  7. Late Cenozoic faulting and the stress state in the south-eastern segment of the Siberian platform

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2017-01-01

    Full Text Available We have studied the structural geology and geomorphology of the fault zones in the junction area of the Angara-Lena uplift and the Predbaikalsky trough. We have analyzed faults and folds and reconstructed paleostresses for this junction area named the Irkutsk amphitheatre. Our study shows that syn-fold (Middle Paleozoic faults include thrusts, reverse faults and strike-slip faults with reverse components, that occurred due to compression from the neighbouring folded region. Recently, contrary to compression, faulting took place under the conditions of extension of the sedimentary cover: most of these recent faults have been classified as normal faults. In the Late Cenozoic, the platform cover was subjected to brittle and partly plicative deformation due to the NW–SE-trending extension that is most clearly observed in the adjacent Baikal rift. Thus, the divergent boundary between the Siberian block of the North Eurasian plate and the Transbaikalia block of the Amur plate is a zone of dynamic influence, which occupies the area considerably exceeding the mountainous region on the Siberian platform. Important factors of faulting are differentiated vertical movements of the blocks comprising the platform. Such vertical movements might have been related to displacements of brine volumes. In the Late Cenozoic basins, movements along separate faults took place in the Late Pleistocene – Holocene.

  8. Advanced fault ride-through control of DFIG based wind turbines including grid connection via VSC-HVDC

    Energy Technology Data Exchange (ETDEWEB)

    Feltes, Christian

    2012-07-01

    With the growing renewable energy share in the power generation mix it becomes inevitable that also these new generation technologies participate on the provision of grid services to guarantee stable operation of the grid, especially when one considers the decreasing number of conventional power plants in operation as a result of the expansion of wind based generation plants. These so-called ancillary services include frequency / active power control, voltage / reactive power control and fault ride-through (FRT) with fast voltage control and are stipulated in modern grid codes. In the context of this thesis advanced control algorithms have been developed for wind turbines based on doubly-fed induction generator (DFIG) to allow safe FRT during symmetrical and unsymmetrical faults. This covers the control for conventional AC grid connection as well as for the connection through voltage source converter (VSC) based high voltage direct current transmission (HVDC). Currently, the DFIG is the most used generator technology in modem wind turbines, since it combines a relatively simple slip-ring induction machine with a frequency converter rated to only approx. 30% of the total power. This makes the DFIG a cost-effective concept, which offers a variable speed range and a high degree of flexibility in control. However, due to the direct coupling of the generator stator circuit to the grid, grid faults are a special challenge for the frequency converter, its protection circuits and control algorithms. As base for the detailed evaluation of the impact of grid faults to the DFIG, this thesis contains the analytical derivation of the DFIG short circuit currents under consideration of frequency converter control. The DFIG concept presented in this thesis makes use of a DC chopper in the frequency converter, which allows safe FRT with grid voltage support through both converter sides. The developed control contains a new algorithm for a clear separation and control of positive

  9. Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India

    Directory of Open Access Journals (Sweden)

    Saibal Gupta

    2014-01-01

    Full Text Available In the eastern part of the Indian shield, late Paleozoic–Mesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt (EGMB and amphibolite facies rocks of the Rengali Province. At present, the northern part of the basin experiences periodic seismicity by reactivation of faults located both within the basin, and in the Rengali Province to the north. Detailed gravity data collected across the basin show that Bouguer anomalies decrease from the EGMB (∼+15 mGal, through the basin (∼−10 mGal, into the Rengali Province (∼−15 mGal. The data are consistent with the reportedly uncompensated nature of the EGMB, and indicate that the crust below the Rengali Province has a cratonic gravity signature. The contact between the two domains with distinct sub-surface structure, inferred from gravity data, coincides with the North Orissa Boundary Fault (NOBF that defines the northern boundary of the Talchir Basin. Post-Gondwana faults are also localized along the northern margin of the basin, and present-day seismic tremors also have epicenters close to the NOBF. This indicates that the NOBF was formed by reactivation of a Neoproterozoic terrane boundary, and continues to be susceptible to seismic activity even at the present-day.

  10. New evidence of cenozoic tectonism in the southeastern region of Brazil: the Barra de Sao Joao graben in Cabo Frio platform

    International Nuclear Information System (INIS)

    Mohriak, W.U.

    1990-01-01

    The western portion of the Campos Basin is limited by a hinge line that limits the deposition of pre-Aptian sediments in the offshore region. The Cabo Frio arch corresponds to a platform with smaller relative subsidence, where Tertiary sediments are deposited directly on shallow basement rocks. A conspicuous asymmetric graben occurs in the offshore region between Buzios and Macae. This rhomb-graben measures 20 km by 40 km, with the longer axis trending NE. The geological and geophysical characteristics of the Barra de Sao Joao graben supports a genetic affiliation with the onshore Taubate, Resende and Volta Redonda basins, rather than with the Campos Basin. The latter basin was formed in the Neocomian by rupturing of the Pangea, while the radiometric age determination of ankaramitic lavas near Volta Redonda suggests that the onshore basins were formed during the Eocene or Early Oligocene. A better understanding of the crustal geometry and the postulation of geodynamic models for these sedimentary basins will result from the integration of the onshore geology with the subsurface data presented in this paper. (author)

  11. sedimentology, depositional environments and basin evolution

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The Inter-Trappean coal and oil shale-bearing sedimentation in the Delbi-Moye Basin took place in tectonically controlled grabens and half-grabens formed by extensional fault systems and accompanied by passive subsidence. The sedimentation history of the basin is related to the tectonic events that affected ...

  12. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    Science.gov (United States)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  13. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Duru, Kenneth, E-mail: kduru@stanford.edu [Department of Geophysics, Stanford University, Stanford, CA (United States); Dunham, Eric M. [Department of Geophysics, Stanford University, Stanford, CA (United States); Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (United States)

    2016-01-15

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture

  14. Inversion tectonics of the benue trough | Mamah | Global Journal of ...

    African Journals Online (AJOL)

    Spreading was, however, arrested by the rotation of the hot spot plumes onto the shoulders of the trough such as unto the Cameroom volcanic line by a sequence of events including crustal thinning and doming, rifting and faulting, grabens and horst formation, volcanism and subsidence, imbricate sedimentation and ...

  15. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  16. Experimental Investigation for RUAV's Actuator Fault Detections with AESMF

    Directory of Open Access Journals (Sweden)

    Dalei Song

    2015-07-01

    Full Text Available The adaptive extended set-membership filter (AESMF algorithm for robots' online modelling is today proposed for use in this field. Compared to the traditional ESMF, this novel filter method improves estimation accuracy under variable boundaries of unknown but bounded (UBB process noise, which is often caused by the uncertainties of robotic dynamics. However, the applicability and stability of the AESMF method have not been tested in detail or demonstrated for real robotic systems. In this research, AESMF is applied for the actuator fault detections of a rotor-craft unmanned air vehicle (RUAV. The stability of AESMF is firstly analysed using mathematics and actuator healthy coefficients (AHC are introduced for building the actuator failure model of RUAVs. AESMF is employed for the online boundary estimation of flight states and AHC parameters for fault tolerance control. Based on the proposed AESMF actuator fault estimation, flight experiments are conducted using a ServoHeli-40 RUAV platform and the flight results are compared with traditional ESMF and the adaptive extended Kalman filter (AEKF in order to demonstrate its effectiveness, as well as for suggesting improvements for the actuator failure detection of RUAVs.

  17. Case fault analysis for the mirror fusion test facility (MFTF) magnet system

    International Nuclear Information System (INIS)

    Baldi, R.W.; Poniktera, C.D.

    1979-03-01

    This report describes the stress analysis performed to determine the criticality of selected failures in the magnet case, jacket, and intercoil member. The selected faults were idealized by adding additional nodes coincidental to existing nodes in the baseline finite element model and changing fault boundary plate connectivities. No attempt was made to alter the analysis mesh size adjacent to any fault as this degree of effort was beyond the intent and scope of this task. Results of this analysis indicated that two of the five faults analyzed would be catastrophic in nature. Faults of this cateogry were: Fault No. 1 - A weld joint failure in the minor radius 3 to 5 inch plate inter section in the chamfer region at the centerline of symmetry. Fault No. 5 - Failuree of the 3 to 5 inch transition butt weld joint at the major to minor radius transition on the magnet case top plate

  18. Inward migration of faulting during continental rifting: Effects of pre-existing lithospheric structure and extension rate

    NARCIS (Netherlands)

    Corti, G.; Ranalli, G.; Agostini, A.; Sokoutis, D.

    Lithospheric-scale analogue models are used to analyse the parameters controlling the typical evolution of deformation during continental narrow rifting, characterized by early activation of large boundary faults and basin subsidence, followed by localization of tectonic activity in internal faults

  19. Rifting in heterogeneous lithosphere inferences from numerical modeling of the northern North Sea and the Oslo Graben.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.

    2002-01-01

    Permian rifting and magmatism are widely documented across NW Europe. The different Permian basins often display contrasting structural styles and evolved in lithospheric domains with contrasting past evolution and contrasting thermotectonic ages. In particular, the Oslo Graben and the northern

  20. Fault Current Distribution and Pole Earth Potential Rise (EPR) Under Substation Fault

    Science.gov (United States)

    Nnassereddine, M.; Rizk, J.; Hellany, A.; Nagrial, M.

    2013-09-01

    New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.

  1. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    International Nuclear Information System (INIS)

    Nieto-Obregon, Jorge; Aguirre-DIaz, Gerardo

    2008-01-01

    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  2. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nieto-Obregon, Jorge [Facultad de IngenierIa, UNAM, Coyoacan, 04510, Mexico D.F. (Mexico); Aguirre-DIaz, Gerardo [Centro de Geociencias, UNAM, Campus Juriquilla, 76220, Queretaro, Qro. (Mexico)], E-mail: nieto@servidor.unam.mx, E-mail: ger@geociencias.unam.mx

    2008-10-01

    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  3. A geophysical cross-section of the Hockai Fault Zone (Eastern Belgium): imaging an intraplate weak crustal zone.

    Science.gov (United States)

    Lecocq, T.; Camelbeeck, T.

    2016-12-01

    The Hockai Fault Zone (HFZ) is a NNW-SSE trending structure visible in the regional geomorphology in the Ardennes, Eastern-Belgium. It is situated, between the Pays de Herve (Graben de la Minerie) to the North and the Amblève river, to the South. It crosses the Stavelot Massif, almost perpendicular to the Crête de la Vecquée (Vecquée crest), i.e. the highest crest of the Venn. Faults have been identified or suspected on a contour map of the base of the Tertiary cover (Eocene or Oligocene) in the north western and central Rhenish Massif. These faults are necessary to account for the altitude difference of the base of the cover. The deflection or capture of local rivers show a remarkable alignments on more than 42 km N-S. The alignments are mostly trending SSE-NNW, between N140 and N170, with some potential segments with slightly different orientations. This general orientation has been also evidenced from the analyses of Landsat-1 imagery products. At its crossing with the Vecquée Crest, Demoulin locates the HFZ where the Hoëgne river turns sharply towards the north and crosscuts the quarzitic crest. Demoulin identifies three subparallel faults or fault zones on the Hautes-Fagnes plateau, from East to West: the Eupen faulting zone, the Baelen faulting zone and Hockai faulted zone. In this communication, we report on a large-scale geophysical survey that was conducted in order to search of the Hockai fault zone expression at the surface. The locations to search for the Hockai Fault Zone are based on the surface projection of the 1989/1990 seismic swarm that occurred under the Stavelot Massif, geomorphological evidences and past geophysical surveys in the region. Our objective is not to prove a Quaternary movement of faults, but rather to find reliable evidences of their presence and to analyse their lateral extension. In total, 31 ERT profiles were executed almost parallel to the Vecquée Crest, i.e. a total of 10679 meters of profiles. Four zones are imaged

  4. Evaporite-hosted native sulfur in Trans-Pecos Texas: Relation to late-phase basin and range deformation

    International Nuclear Information System (INIS)

    Hentz, T.F.; Henry, C.D.

    1989-01-01

    Major deposits of biogenic native sulfur are associated with narrow, northeast-trending grabens and normal faults that disrupt the gently tilted, east-dipping Upper Permian evaporite succession of the western Delaware Basin in Trans-Pecos Texas. Orebodies are restricted to geologic traps in the fractured and dissolution-modified downfaulted blocks of the grabens. Other parallel, regionally distributed grabens and normal faults are commonly the sites of noncommercial sulfur deposits and genetically related secondary-replacement (diagenetic) limestone bodies. The sulfur-bearing structures probably formed during the later of two episodes of Basin and Range extension that have not previously been differentiated in Texas but are well defined elsewhere in the western United States. In Texas several lines of evidence collectively support the existence of late-phase, northwest-directed extension that was initiated in the middle Miocene

  5. Types of collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre-Diaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)], E-mail: ger@geociencias.unam.mx

    2008-10-01

    Three main types of collapse calderas can be defined, 1) summit caldera: those formed at the top of large volcanoes, 2) classic caldera: semi-circular to irregular-shaped large structures, several km in diameter and related to relatively large-volume pyroclastic products, and 3) graben caldera: explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several fissural vents along the graben master faults and the intra-graben block faults. These in turn can collapse at least with three styles: 1) Piston: when the collapse occurs as a single crustal block; 2) Trap-door: when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) Piece-meal: when collapse occurs as broken pieces of the crust on top of the magma chamber.

  6. Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus

    Science.gov (United States)

    Graff, J. R.; Ernst, R. E.; Samson, C.

    2018-05-01

    Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.

  7. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  8. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-01-01

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  9. Cadmium Telluride and Grain Boundaries: A Preliminary Study

    Science.gov (United States)

    Liao, Michael Evan

    The efficacy of the CdCl2 treatment on polycrystalline CdTe-based solar cells was discovered over a quarter of a century ago; and yet, the exact mechanism of this treatment is still not fully understood to this day. In fact, the lack of understanding stems from a debate on the exact role of grain boundaries in CdCl2-treated CdTe solar cells. Some hypothesize that the CdCl2-treatment causes grain boundaries to become beneficial to solar cell performance while others disagree and claim that the treatment simply mitigates the harmful effects of grain boundaries via passivation. A future goal of this project is to determine which, if either, hypothesis is correct by direct wafer bonding single crystalline CdTe. Direct wafer bonding of single crystalline materials would create only one grain boundary at the bonded interface. This approach allows the orientation and surface chemistry of interfaces to be controlled in order to study the chemistry of grain boundaries methodically. However, before any direct wafer bonding can be done, a preliminary study of single crystalline CdTe is necessary. High-quality direct wafer bonding can only be achieved if the surfaces of each wafer satisfy certain requirements. Additionally, analyzing single crystalline CdTe materials prior to bonding is crucial in order to make any insightful connections between results found from direct bonding of single crystalline CdTe and what is observed in polycrystalline CdTe. First, the surface of an (001) CdTe layer epitaxially grown on an (001) InSb substrate is studied using atomic force microscopy. Stacking faults on the CdTe surface are observed and the thickness of the grown CdTe epilayer is calculated by considering the interplanar angles between the (001) and (111) crystallographic planes as well as the dimensions of the stacking faults. While the stacking faults will inhibit successful wafer bonding, the roughness of the regions outside the stacking faults is 0.9 nm, which is an acceptable

  10. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  11. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    Science.gov (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  12. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  13. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    Science.gov (United States)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    and potential stick-slip fault behavior across the plate boundary at these sites in order to evaluate the potential for rupture propagation in large earthquakes.

  14. Mineral inclusions in placer zircon from the Ohře (Eger) Graben: New data on „strontiopyrochlore“

    Czech Academy of Sciences Publication Activity Database

    Seifert, W.; Förster, H.-J.; Rhede, D.; Tietz, O.; Ulrych, Jaromír

    2012-01-01

    Roč. 92, 1/2 (2012), s. 39-53 ISSN 0930-0708 R&D Projects: GA ČR(CZ) GA205/09/1170 Institutional support: RVO:67985831 Keywords : Eger Graben * zircon * "strontiopyrochlore" Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.681, year: 2012

  15. Resistivity Structures of the Chelungpu Fault in the Taichung Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Ping-Hu Cheng

    2006-01-01

    Full Text Available We conducted magnetotelluric prospecting in the Taichung area to investigate subsurface resistivity structures of the Chelungpu fault and the resistivity of rock formations. The results indicate that the Chelungpu fault is a complex fault system consisting of two major fault zones, several fracture zones, and back thrust. The two major fault zones, the basal and the Chi-Chi fault zone are about 800 m apart on the ground and converge to a narrow band at a depth of 3000 m. The fault zones are not smooth, composed of ramps and platforms with an average eastward dipping angle of 35° - 37° within the depth of 3000 m. In the shallower region, the basal fault zone has developed along the boundary of the Toukoshan Formation (resistivity: 200 - 400 Ω-m at the footwall and the Neogene formations on the hanging wall, where the Cholan Formation, the Chinshiu Shale, and the Kueichulai Formation have respective resistivity mainly in the ranges: 40 - 100, 8 - 60, and 50 - 150 Ω-m. While the Chi-Chi fault zone has developed along the weak layers of the Cholan Formation where resistivity is lower than the unsheared block.

  16. Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel

    Science.gov (United States)

    Wechsler, Neta; Rockwell, Thomas K.; Klinger, Yann

    2018-01-01

    We resolved displacement on buried stream channels that record the past 3400 years of slip history for the Jordan Gorge (JGF) section of the Dead Sea fault in Israel. Based on three-dimensional (3D) trenching, slip in the past millennium amounts to only 2.7 m, similar to that determined in previous studies, whereas the previous millennium experienced two to three times this amount of displacement with nearly 8 m of cumulative slip, indicating substantial short term variations in slip rate. The slip rate averaged over the past 3400 years, as determined from 3D trenching, is 4.1 mm/yr, which agrees well with geodetic estimates of strain accumulation, as well as with longer-term geologic slip rate estimates. Our results indicate that: 1) the past 1200 years appear to significantly lack slip, which may portend a significant increase in future seismic activity; 2) short-term slip rates for the past two millennia have varied by more than a factor of two and suggest that past behavior is best characterized by clustering of earthquakes. From these observations, the earthquake behavior of the Jordan Gorge fault best fits is a "weak segment model" where the relatively short fault section (20 km), bounded by releasing steps, fails on its own in moderate earthquakes, or ruptures with adjacent segments.

  17. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  18. Investigation of the Meers fault in southwestern Oklahoma

    International Nuclear Information System (INIS)

    Luza, K.V.; Madole, R.F.; Crone, A.J.

    1987-08-01

    The Meers fault is part of a major system of NW-trending faults that form the boundary between the Wichita Mountains and the Anadarko basin in southwestern Oklahoma. A portion of the Meers fault is exposed at the surface in northern Comanche County and strikes approximately N. 60 0 W. where it offsets Permian conglomerate and shale for at least 26 km. The scarp on the fault is consistently down to the south, with a maximum relief of 5 m near the center of the fault trace. Quaternary stratigraphic relationships and 10 14 C age dates constrain the age of the last movement of the Meers fault. The last movement postdates the Browns Creek Alluvium, late Pleistocene to early Holocene, and predates the East Cache Alluvium, 100 to 800 yr B.P. Fan alluvium, produced by the last fault movement, buried a soil that dates between 1400 and 1100 yr B.P. Two trenches excavated across the scarp near Canyon Creek document the near-surface deformation and provide some general information on recurrence. Trench 1 was excavated in the lower Holocene part of the Browns Creek Alluvium, and trench 2 was excavated in unnamed gravels thought to be upper Pleistocene. Flexing and warping was the dominant mode of deformation that produced the scarp. The stratigraphy in both trenches indicates one surface-faulting event, which implies a lengthy recurrence interval for surface faulting on this part of the fault. Organic-rich material from two samples that postdate the last fault movement yielded 14 C ages between 1600 and 1300 yr B.P. These dates are in excellent agreement with the dates obtained from soils buried by the fault-related fan alluvium

  19. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  20. Reactivation of mass movements in Dessie graben, the example of an active landslide area in the Ethiopian Highlands

    Czech Academy of Sciences Publication Activity Database

    Vařilová, Z.; Kropáček, J.; Zvelebil, J.; Šťastný, Martin; Vilímek, V.

    2015-01-01

    Roč. 12, č. 5 (2015), s. 985-996 ISSN 1612-510X Institutional support: RVO:67985831 Keywords : Dessie graben * Ethiopian highlands * human impact * landslides * natural hazards Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.049, year: 2015

  1. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  2. Subsidence Induced Faulting Hazard Zonation Using Persistent Scatterer Interferometry and Horizontal Gradient Mapping in Mexican Urban Areas

    Science.gov (United States)

    Cabral-Cano, E.; Cigna, F.; Osmanoglu, B.; Dixon, T.; Wdowinski, S.

    2011-12-01

    Subsidence and faulting have affected Mexico city for more than a century and the process is becoming widespread throughout larger urban areas in central Mexico. This process causes substantial damages to the urban infrastructure and housing structures and will certainly become a major factor to be considered when planning urban development, land use zoning and hazard mitigation strategies in the next decades. Subsidence is usually associated with aggressive groundwater extraction rates and a general decrease of aquifer static level that promotes soil consolidation, deformation and ultimately, surface faulting. However, local stratigraphic and structural conditions also play an important role in the development and extension of faults. In all studied cases stratigraphy of the uppermost sediment strata and the structure of the underlying volcanic rocks impose a much different subsidence pattern which is most suitable for imaging through satellite geodetic techniques. We present examples from several cities in central Mexico: a) Mexico-Chalco. Very high rates of subsidence, up to 370 mm/yr are observed within this lacustrine environment surrounded by Pliocene-Quaternary volcanic structures. b) Aguascalientes where rates up to 90 mm/yr in the past decade are observed, is controlled by a stair stepped N-S trending graben that induces nucleation of faults along the edges of contrasting sediment package thicknesses. c) Morelia presents subsidence rates as high as 80 mm/yr. Differential deformation is observed across major basin-bounding E-W trending faults and with higher subsidence rates on their hanging walls, where the thickest sequences of compressible Quaternary sediments crop out. Our subsidence and faulting study in urban areas of central Mexico is based on a horizontal gradient analysis using displacement maps from Persistent Scatterer InSAR that allows definition of areas with high vulnerability to surface faulting. Correlation of the surface subsidence pattern

  3. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  4. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  5. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  6. Perspective View, San Andreas Fault

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  7. Interactions of fluid and gas movement and faulting in the Colorado Plateau, southeastern Utah

    Science.gov (United States)

    Shipton, Z. K.; Evans, J. P.; Kirschner, D.; Heath, J.; Williams, A.; Dockrill, B.

    2002-12-01

    The east-west and west-northwest striking Salt Wash and the Little Grand Wash normal faults in the Colorado Plateau of southeastern Utah emit large amounts of CO2 gas from abandon drill holes, springs and a hydrocarbon seep. The leakage of similar CO2 charged water has also occurred in the past as shown by large localized tufa deposits and horizontal veins along the fault traces. These deposits consist of thick tufa terraces and mound extending up to 50 meters from the fault damage zones. The faults cut a north plunging anticline of siltstones, shales, and sandstones, and the fault rocks are fine-grained with clay-rich gouge. The Little Grand Wash fault displaces these rocks approximately 290 m and the Salt Wash graben offsets rocks approximately 130 m; both faults extend at least to the top of the Pennsylvanian Paradox Formation, which contains thick salt horizons 1.5 - 2 km at depth. Well log, geologic surface and geochemical data indicate the CO2 reservoirs and sources have been cut by the faults at depth providing a conduit for the vertical migration of CO2 to the surface, but limited horizontal flow across the fault plane. Three- dimensional flow modals show how the faults damage zones permeability is adjacent to the faults and the leakage though the damage zones is localized near the regional anticlines fold axis. Analysis of the fluids emanating from the faults aims to locate the sources and determine the chemical evolutions of the fluids. δ2H and δ18O isotopic data show that the ground waters are meteoric and have not circulated deeply enough to experience an oxygen-isotope shift. δ13C data and PCO2 values indicate that the gas is external to the ground water systems (i.e., not from soil zone gas or dissolution of carbonate aquifer material alone). 3He/4He ratio 0.30 - 0.31 from springs and geysers indicate that the majority of the gas is crustally derived and contains a minimal component of mantle or magmatic gases. δ13C values of 4 to 5 per mil from

  8. A comparison of GPS strain rate and seismicity in mainland China

    Science.gov (United States)

    Ye, J.; Liu, M.

    2011-12-01

    The spatial distribution and moment release of earthquakes should correlate to crustal strain rates, assuming most of the crustal strain is released by earthquakes. However, the correlation between seismicity and crustal strain rates is not always clear, especially in continental interiors where large earthquakes are infrequent and earthquake records often incomplete. Here we compare seismicity and crustal strain rates in mainland China, where in the past decades the GPS measurements by the Crustal Motion Observation Network of China and other teams have determined the velocity at more than a thousand sites, allowing a meaningful calculation of the spatial distribution of the crustal strain rates. Our strain-rate map of mainland China is consistent with tectonic activities. The average scalar strain rate in West China is 17.5x10-16, contrasting to the much lower value (2.5x 10-16) in East China. The high strain rates are mainly found in the Tibetan Plateau, with the highest values clearly delineating the major active faults, including the Himalayan main boundary thrust, the Xianshuihe fault, the Longmanshan fault, the Haiyuan fault, and the southern Tianshan boundary fault. North China also has relatively high strain rates, but the high strain rates around the cities of Tangshan and Xingtai likely result from postseismic deformation following the 1966 Xingtai earthquake (M 7.2) and the 1976 Tangshan earthquake (M 7.8). We calculated the seismic moment release using the Chinese earthquake catalog that goes back to more than 2000 years. The spatial pattern of cumulative seismic moment release is generally comparable with that of the strain rates. Regions of major discrepancies include the Weihe-Shanxi grabens, which had numerous large earthquakes but have been quiescent in the past 300 years. When we use smaller time windows (200 or 500 years) to calculate the seismic moment release, we found strongly variable spatial patterns that is generally incomparable with the

  9. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    Science.gov (United States)

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  10. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben

    NARCIS (Netherlands)

    Winthaegen, P.L.A.; Verweij, J.M.

    2003-01-01

    The application of the empirical Eaton method to calibrated sonic well information and 3D seismic interval velocity data in the southeastern part of the Central North Sea Graben, using the Japsen (Glob. Planet. Change 24 (2000) 189) normal velocitydepth trend, resulted in the identification of an

  11. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  12. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  13. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  14. Contribution to the Investigation of Structure and Origin of the East African Graben by Gravimetry

    Institute of Scientific and Technical Information of China (English)

    Tondozi Keto; LIU Tianyou

    2005-01-01

    For our investigation we have 235 measurements done in the east part of Democratic Republic of Congo by P. Herrinck during a magnetic survey including the graben region from the parallel joining Goma city and Mahagi city, the region between Albert and Aka lakes, and the route from Aba to Kinsagani. During the surveys the density of recording points has been selected according to the importance of anomalies. In this way, the offset was 1 km where the disturbance was high in Goma city and 20 km have been sufficient along the route from Aba to Kinsagani. For the topographic and isostatic reductions only one cartographic document has been chosen that was the international map of the scale 1/1 000 000 which presents a certain characteristic of homogeneity.

  15. Subsurface structure of the Nojima fault from dipole shear velocity/anisotropy and borehole Stoneley wave

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H; Brie, A

    1996-10-01

    Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.

  16. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia's Great Artesian Basin

    Science.gov (United States)

    Smerdon, Brian D.; Turnadge, Chris

    2015-08-01

    Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie-Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25-50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

  17. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    Science.gov (United States)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  18. Development of Fault Models for Hybrid Fault Detection and Diagnostics Algorithm: October 1, 2014 -- May 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Howard [Purdue Univ., West Lafayette, IN (United States); Braun, James E. [Purdue Univ., West Lafayette, IN (United States)

    2015-12-31

    This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment in the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.

  19. Fault-Tolerant Control Strategy for Steering Failures in Wheeled Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Alexandre Carvalho Leite

    2012-01-01

    Full Text Available Fault-tolerant control design of wheeled planetary rovers is described. This paper covers all steps of the design process, from modeling/simulation to experimentation. A simplified contact model is used with a multibody simulation model and tuned to fit the experimental data. The nominal mode controller is designed to be stable and has its parameters optimized to improve tracking performance and cope with physical boundaries and actuator saturations. This controller was implemented in the real rover and validated experimentally. An impact analysis defines the repertory of faults to be handled. Failures in steering joints are chosen as fault modes; they combined six fault modes and a total of 63 possible configurations of these faults. The fault-tolerant controller is designed as a two-step procedure to provide alternative steering and reuse the nominal controller in a way that resembles a crab-like driving mode. Three fault modes are injected (one, two, and three failed steering joints in the real rover to evaluate the response of the nonreconfigured and reconfigured control systems in face of these faults. The experimental results justify our proposed fault-tolerant controller very satisfactorily. Additional concluding comments and an outlook summarize the lessons learned during the whole design process and foresee the next steps of the research.

  20. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  1. Cold seeps and splay faults on Nankai margin

    Science.gov (United States)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two

  2. A shallow crustal earthquake doublet from the Trans-Mexican volcanic belt (Central Mexico)

    Science.gov (United States)

    Quintanar, L.; Rodríguez-González, M.; Campos-Enríquez, O.

    2003-04-01

    The trans-Mexican volcanic belt is an active volcanic arc related to subduction along the Middle America trench and characterized by shallow seismicity and synvolcanic to postvolcanic extensional arc-parallel faulting. The Mezquital graben is a major intra-arc basin of the central trans-Mexican volcanic belt. A doublet of moderate shallow shocks occurred in March and October 1976 in the region of this graben. These earthquakes were recorded by the Mexican National Seismological network, in particular by the Bosch-Omori seismograph (T_0 = 18 s) at the Tacubaya Observatory in Mexico City. We have carefully relocated the two main shocks and their major aftershocks by reading the original records and using a modified crustal velocity model for this region. A difference of ˜50 km is observed between the locations reported by the Mexican Seismological Service and those obtained in this study, which are additionally supported by the damage distribution of these earthquakes. A first motion analysis, based on regional and teleseismic records, defines for the March and October shocks normal fault mechanisms, characterized by E-W striking fault planes, which coincides with the orientation of the master faults of the Mezquital graben. After calculating the instrumental response, the source parameters were obtained from the Bosch-Omori seismograph records by body-wave modeling. For the March earthquake, we estimate a seismic moment of 4.5×1023 dyne-cm (equivalent to M_w=5.0) and a stress drop of 0.7 MPa assuming a circular rupture model (radius = 3 km). Given the poor quality of the Bosch-Omori record for the October earthquake, we used the comparison, between both events, of long-period (T=20 sec) teleseismic records at 2 stations to obtain its corresponding source parameters. By assuming a similar stress drop as for the March event, we obtain a M_0 of 5.6×1023 dyne-cm and M_w = 5.1 with a rupture length of 6.5 km. According to gravity data, the regional E-W faults are

  3. Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho

    International Nuclear Information System (INIS)

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G.; Kneupfer, P.L.K.; Forman, S.L.; Smith, R.P.

    1991-01-01

    Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14 C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

  4. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  5. Developing seismogenic source models based on geologic fault data

    Science.gov (United States)

    Haller, Kathleen M.; Basili, Roberto

    2011-01-01

    Calculating seismic hazard usually requires input that includes seismicity associated with known faults, historical earthquake catalogs, geodesy, and models of ground shaking. This paper will address the input generally derived from geologic studies that augment the short historical catalog to predict ground shaking at time scales of tens, hundreds, or thousands of years (e.g., SSHAC 1997). A seismogenic source model, terminology we adopt here for a fault source model, includes explicit three-dimensional faults deemed capable of generating ground motions of engineering significance within a specified time frame of interest. In tectonically active regions of the world, such as near plate boundaries, multiple seismic cycles span a few hundred to a few thousand years. In contrast, in less active regions hundreds of kilometers from the nearest plate boundary, seismic cycles generally are thousands to tens of thousands of years long. Therefore, one should include sources having both longer recurrence intervals and possibly older times of most recent rupture in less active regions of the world rather than restricting the model to include only Holocene faults (i.e., those with evidence of large-magnitude earthquakes in the past 11,500 years) as is the practice in tectonically active regions with high deformation rates. During the past 15 years, our institutions independently developed databases to characterize seismogenic sources based on geologic data at a national scale. Our goal here is to compare the content of these two publicly available seismogenic source models compiled for the primary purpose of supporting seismic hazard calculations by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the U.S. Geological Survey (USGS); hereinafter we refer to the two seismogenic source models as INGV and USGS, respectively. This comparison is timely because new initiatives are emerging to characterize seismogenic sources at the continental scale (e.g., SHARE in the

  6. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Computer-oriented approach to fault-tree construction

    International Nuclear Information System (INIS)

    Salem, S.L.; Apostolakis, G.E.; Okrent, D.

    1976-11-01

    A methodology for systematically constructing fault trees for general complex systems is developed and applied, via the Computer Automated Tree (CAT) program, to several systems. A means of representing component behavior by decision tables is presented. The method developed allows the modeling of components with various combinations of electrical, fluid and mechanical inputs and outputs. Each component can have multiple internal failure mechanisms which combine with the states of the inputs to produce the appropriate output states. The generality of this approach allows not only the modeling of hardware, but human actions and interactions as well. A procedure for constructing and editing fault trees, either manually or by computer, is described. The techniques employed result in a complete fault tree, in standard form, suitable for analysis by current computer codes. Methods of describing the system, defining boundary conditions and specifying complex TOP events are developed in order to set up the initial configuration for which the fault tree is to be constructed. The approach used allows rapid modifications of the decision tables and systems to facilitate the analysis and comparison of various refinements and changes in the system configuration and component modeling

  8. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela

    Science.gov (United States)

    Pousse-Beltran, Lea; Vassallo, Riccardo; Audemard, Franck; Jouanne, François; Carcaillet, Julien; Pathier, Erwan; Volat, Matthieu

    2017-07-01

    The Boconó fault is a strike-slip fault lying between the North Andean Block and the South American plate which has triggered at least five Mw > 7 historical earthquakes in Venezuela. The North Andean Block is currently moving toward NNE with respect to a stable South American plate. This relative displacement at 12 mm yr-1 in Venezuela (within the Maracaibo Block) was measured by geodesy, but until now the distribution and rates of Quaternary deformation have remained partially unclear. We used two alluvial fans offset by the Boconó fault (Yaracuy Valley) to quantify slip rates, by combining 10Be cosmogenic dating with measurements of tectonic displacements on high-resolution satellite images (Pleiades). Based upon a fan dated at >79 ka and offset by 1350-1580 m and a second fan dated at 120-273 ka and offset by 1236-1500 m, we obtained two Pleistocene rates of 5.0-11.2 and <20.0 mm yr-1, consistent with the regional geodesy. This indicates that the Boconó fault in the Yaracuy Valley accommodates 40 to 100% of the deformation between the South American plate and the Maracaibo Block. As no aseismic deformation was shown by interferometric synthetic aperture radar analysis, we assume that the fault is locked since the 1812 event. This implies that there is a slip deficit in the Yaracuy Valley since the last earthquake ranging from 1 to 4 m, corresponding to a Mw 7-7.6 earthquake. This magnitude is comparable to the 1812 earthquake and to other historical events along the Boconó fault.

  9. Modelling of Surface Fault Structures Based on Ground Magnetic Survey

    Science.gov (United States)

    Michels, A.; McEnroe, S. A.

    2017-12-01

    The island of Leka confines the exposure of the Leka Ophiolite Complex (LOC) which contains mantle and crustal rocks and provides a rare opportunity to study the magnetic properties and response of these formations. The LOC is comprised of five rock units: (1) harzburgite that is strongly deformed, shifting into an increasingly olivine-rich dunite (2) ultramafic cumulates with layers of olivine, chromite, clinopyroxene and orthopyroxene. These cumulates are overlain by (3) metagabbros, which are cut by (4) metabasaltic dykes and (5) pillow lavas (Furnes et al. 1988). Over the course of three field seasons a detailed ground-magnetic survey was made over the island covering all units of the LOC and collecting samples from 109 sites for magnetic measurements. NRM, susceptibility, density and hysteresis properties were measured. In total 66% of samples with a Q value > 1, suggests that the magnetic anomalies should include both induced and remanent components in the model.This Ophiolite originated from a suprasubduction zone near the coast of Laurentia (497±2 Ma), was obducted onto Laurentia (≈460 Ma) and then transferred to Baltica during the Caledonide Orogeny (≈430 Ma). The LOC was faulted, deformed and serpentinized during these events. The gabbro and ultramafic rocks are separated by a normal fault. The dominant magnetic anomaly that crosses the island correlates with this normal fault. There are a series of smaller scale faults that are parallel to this and some correspond to local highs that can be highlighted by a tilt derivative of the magnetic data. These fault boundaries which are well delineated by the distinct magnetic anomalies in both ground and aeromagnetic survey data are likely caused by increased amount of serpentinization of the ultramafic rocks in the fault areas.

  10. Kinematics, mechanics, and potential earthquake hazards for faults in Pottawatomie County, Kansas, USA

    Science.gov (United States)

    Ohlmacher, G.C.; Berendsen, P.

    2005-01-01

    Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north-northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east-northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85??W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (boundary of the uplift. This structural suite, a contractional stepover between echelon northeast-trending right-lateral faults, is similar to that mapped in the New Madrid Seismic Zone, and both areas currently feature roughly east-west maximum

  11. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  12. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    Science.gov (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is

  13. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  14. What factors control the size of an eruption?

    Science.gov (United States)

    Gudmundsson, Agust

    2017-04-01

    For human society, eruption sizes (eruptive volumes or masses) are of the greatest concern. In particular, the largest eruptions, producing volumes of the order of hundreds or thousands of cubic kilometres, provide, together with meteoritic impacts, the greatest natural threats to mankind. Eruptive volumes tend to follow power laws so that most eruptions are comparatively small whereas a few are very large. It follows that a while during most ruptures of the source chambers a small fraction of the magma leaves the chamber, in some ruptures a very large fraction of the magma leaves the chamber. Most explosive eruptions larger than about 25 km3 are associated with caldera collapse. In the standard 'underpressure' ('lack of magmatic support') model, however, the collapse is the consequence, not the cause, of the large eruption. For poroelastic models, typically less than 4% of the magma in a felsic chamber and less than 0.1% of the magma in a mafic chamber leaves the chamber during rupture (and eventual eruption). In some caldera models, however, 20-70% of the magma is supposed to leave the chamber before the ring-fault forms and the caldera block begins to subside. In these models any amount of magma can flow out of the chamber following its rupture and there is apparently no way to forecast either the volume of magma injected from the chamber (hence the potential size of an eventual eruption) or the conditions for caldera collapse. An alternative model is proposed here. In this model normal (small) eruptions are controlled by standard poroelastity behaviour of the chamber, whereas large eruptions are controlled by chamber-volume reduction or shrinkage primarily through caldera/graben block subsidence into the chamber. Volcanotectonic stresses are then a major cause of ring-fault/graben boundary-fault formation. When large slips occur on these faults, the subsiding crustal block reduces the volume of the underlying chamber/reservoir, thereby maintaining its excess

  15. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  16. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran

    Science.gov (United States)

    Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza

    2018-03-01

    The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data

  17. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand

    Science.gov (United States)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.

    2010-12-01

    cycles were repeated 18 times at Hokuri Creek. Evidence that fault rupture was responsible for the cyclical paleoenvironmental changes at Hokuri Creek include: the average time period for each organic- and clastic-rich couplet to be deposited approximately equals the long-term average Alpine Fault recurrence interval, and the most recent events recorded at Hokuri correlate to an earthquake dated in paleoseismic trenches 100 km along strike; fault rupture is the only mechanism that can create accommodation space for 18 m of sediment to accumulate, and the sedimentary units can be traced from the outcrop to the fault trace and show tectonic deformation. The record of 18 fault rupture events at Hokuri Creek is one of the longest records of surface ruptures on a major plate boundary fault. High-resolution dating and statistical treatment of the radiocarbon data (Biasi et al., this meeting) has resulted in major advances in understanding the long-term behaviour of the Alpine Fault (Berryman et al., this meeting).

  18. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...

  19. Searching for Active Faults in the Western Eurasia-Nubia plate boundary

    Science.gov (United States)

    Antunes, Veronica; Custodio, Susana; Arroucau, Pierre; Carrilho, Fernando

    2016-04-01

    The repeated occurrence of large magnitude earthquakes in southwest Iberia in historical and instrumental times suggests the presence of active faults in the region. However, the region undergoes slow deformation, which results in low rates of seismic activity, and the location, dimension and geometry of active structures remains unsettled. We recently developed a new algorithm for earthquake location in 3D complex media with laterally varying interface depths, which allowed us to relocate 2363 events that occurred from 2007 to 2013. The method takes as inputs P- and S-wave catalog arrival times obtained from the Portuguese Meteorological Institute (IPMA, Instituto Portugues do Mar e da Atmosfera), for a study area defined by 8.5°W < lon < 5°W and 36° < lat < 37.5°. After relocation, we obtain a lineation of events in the Guadalquivir bank region, in the northern Gulf of Cadiz. The lineation defines a low-angle northward-dipping plane rooted at the base of the crust, which could indicate the presence of a major fault. We provide seismological evidence for the existence of this seemingly active structure based on earthquake relocations, focal mechanisms and waveform similarity between neighboring events.

  20. Ground Motion Relations for the Upper Rhine Graben

    Science.gov (United States)

    Calbini, V.; Granet, M.; Camelbeeck, T.

    2006-12-01

    Earthquake in Europe are primarily located within the Euro-Mediterranean domain. However, the Upper Rhine Graben (URG) region regularly suffers earthquakes which are felt physically by inhabitants and cause damage to private property and the industrial infrastructure. In 1356, a major earthquake (I0 = X) destroyed part of the city of Basel. Recently, several events having M > 5 have shaken this area. In the framework of an INTERREG III project funded by the European community, a microzonation study has been achieved across the "three borders" area including the cities of Basel and Mulhouse. In particular, the ground motion was studied. The URG, which belongs to the ECRIS (European Cenozoic Rift System), is characterized by rift-related sedimentary basins with several hundreds meters of tertiary sediments overlaying the basement. Such a subsurface geology leads to strong site effects. Predictive attenuation laws and their related uncertainties are evaluated considering strong motions records and velocimetric records from small to moderate local events (Magnitude ranging 3

  1. Fault condition stress analysis of NET 16 TF coil model

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    As part of the design process of the NET/ITER toroidal field coils (TFCs), the mechanical behaviour of the magnetic system under fault conditions has to be analysed in some detail. Under fault conditions, either electrical or mechanical, the magnetic loading of the coils becomes extreme and further mechanical failure of parts of the overall structure might occur (e.g. failure of the coil, gravitational support, intercoil structure). The mechanical behaviour of the magnetic system under fault conditions has been analysed with a finite element model of the complete TFC system. The analysed fault conditions consist of: a thermal fault, electrical faults and mechanical faults. The mechanical faults have been applied simultaneously with an electrical fault. This report described the work carried out to create the finite element model of 16 TFCs and contains an extensive presentation of the results, obtained with this model, of a normal operating condition analysis and 9 fault condition analyses. Chapter 2-5 contains a detailed description of the finite element model, boundary conditions and loading conditions of the analyses made. Chapters 2-4 can be skipped if the reader is only interested in results. To understand the results presented chapter 6 is recommended, which contains a detailed description of all analysed fault conditions. The dimensions and geometry of the model correspond to the status of the NET/ITER TFC design of May 1990. Compared with previous models of the complete magnetic system, the finite element model of 16 TFCs is 'detailed', and can be used for linear elastic analysis with faulted loads. (author). 8 refs.; 204 figs.; 134 tabs

  2. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    Science.gov (United States)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock

  3. Detection of intermittent resistive faults in electronic systems based on the mixed-signal boundary-scan standard

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Ebrahimi, Hassan

    2015-01-01

    In avionics, like glide computers, the problem of No Faults Found (NFF) is a very serious and extremely costly affair. The rare occurrences and short bursts of these faults are the most difficult ones to detect and diagnose in the testing arena. Several techniques are now being developed in ICs by

  4. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  5. Preferred-rupture propagation to the hangingwall of the shallow part of the out-of-sequence thrust: Ishido Fault in Boso Peninsula, central Japan

    Science.gov (United States)

    Yamamoto, Y.; Fukuyama, M.; Ujiie, K.; Hirose, T.; Hamada, Y.; Kitamura, M.; Kamiya, N.

    2016-12-01

    Although earthquake ruptures in shallow portion of plate boundary have recently been identified (e.g. Tohoku, Nankai, etc.), their mechanisms why the shallow portion of plate boundary composed mainly of clay minerals can accumulate strain and make seismic slip are under controversial. An ancient out-of-sequence thrust which divided the early and late Miocene accretionary complexes in the Boso Peninsula, central Japan records rupture propagation to the shallow portion of accretionary prism (The fault core is composed of black-colored thin (The former is characterized by homogeneous glassy matrix including fragments of quartz/feldspar, submicron-sized Fe-rich spherules, and vesicles. Based on the mineralogy of the host rock and EDS analyses of matrices, origin of the pseudotachylite was apparently frictional melting of smectite containing Fe. Fe-rich spherules formed by rapid cooling of pseudotachylite. On the other hand, overturned fault-related drag fold developed in the footwall, within about 30 m. Although some Riedel sheared normal faults developed in the overturned footwall, no other brittle deformations were identified. These occurrences imply coexistence of low- and high-speed slips along the same thrust fault. The whole-rock major and trace elemental analyses using XRF and ICP-MS show that mudstone in the hangingwall has similar chemical composition to those of pseudotachylite and fluidized fault gouge with REE enriched patterns, whereas the footwall has different chemical characteristics with relatively flat REE pattern and low LOI. Therefore, the protolith of pseudotachylite and fluidized fault gouge is mudstone in the hangingwall. These data imply that rupture propagation preferably occurred in the hangingwall along the fault zone. The footwall was also deformed apparently during slow-slip deformation leading to formation of the overturn, whereas only the hangingwall, just side of the fault zone, slipped under high-speed shear.

  6. Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric

    Science.gov (United States)

    Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.

    2018-03-01

    We integrated temporal aeromagnetic data and recent earthquake data to address the long-standing question on the role of preexisting Precambrian structures in modulating strain accommodation and subsequent ruptures leading to seismic events within the East African Rift System. We used aeromagnetic data to elucidate the relationship between the locations of the 2009 Mw 6.0 Karonga, Malawi, earthquake surface ruptures and buried basement faults along the hinge zone of the half-graben comprising the North Basin of the Malawi Rift. Through the application of derivative filters and depth-to-magnetic-source modeling, we identified and constrained the trend of the Precambrian metamorphic fabrics and correlated them to the three-dimensional structure of buried basement faults. Our results reveal an unprecedented detail of the basement fabric dominated by high-frequency WNW to NW trending magnetic lineaments associated with the Precambrian Mughese Shear Zone fabric. The high-frequency magnetic lineaments are superimposed by lower frequency NNW trending magnetic lineaments associated with possible Cenozoic faults. Surface ruptures associated with the 2009 Mw 6.0 Karonga earthquake swarm aligned with one of the NNW-trending magnetic lineaments defining a normal fault that is characterized by right-stepping segments along its northern half and coalesced segments on its southern half. Fault geometries, regional kinematics, and spatial distribution of seismicity suggest that seismogenic faults reactivated the basement fabric found along the half-graben hinge zone. We suggest that focusing of strain accommodation and seismicity along the half-graben hinge zone is facilitated and modulated by the presence of the basement fabric.

  7. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  8. How Long Is Long Enough? Estimation of Slip-Rate and Earthquake Recurrence Interval on a Simple Plate-Boundary Fault Using 3D Paleoseismic Trenching

    Science.gov (United States)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.

    2012-12-01

    Models used to forecast future seismicity make fundamental assumptions about the behavior of faults and fault systems in the long term, but in many cases this long-term behavior is assumed using short-term and perhaps non-representative observations. The question arises - how long of a record is long enough to represent actual fault behavior, both in terms of recurrence of earthquakes and of moment release (aka slip-rate). We test earthquake recurrence and slip models via high-resolution three-dimensional trenching of the Beteiha (Bet-Zayda) site on the Dead Sea Transform (DST) in northern Israel. We extend the earthquake history of this simple plate boundary fault to establish slip rate for the past 3-4kyr, to determine the amount of slip per event and to study the fundamental behavior, thereby testing competing rupture models (characteristic, slip-patch, slip-loading, and Gutenberg Richter type distribution). To this end we opened more than 900m of trenches, mapped 8 buried channels and dated more than 80 radiocarbon samples. By mapping buried channels, offset by the DST on both sides of the fault, we obtained for each an estimate of displacement. Coupled with fault crossing trenches to determine event history, we construct earthquake and slip history for the fault for the past 2kyr. We observe evidence for a total of 9-10 surface-rupturing earthquakes with varying offset amounts. 6-7 events occurred in the 1st millennium, compared to just 2-3 in the 2nd millennium CE. From our observations it is clear that the fault is not behaving in a periodic fashion. A 4kyr old buried channel yields a slip rate of 3.5-4mm/yr, consistent with GPS rates for this segment. Yet in spite of the apparent agreement between GPS, Pleistocene to present slip rate, and the lifetime rate of the DST, the past 800-1000 year period appears deficit in strain release. Thus, in terms of moment release, most of the fault has remained locked and is accumulating elastic strain. In contrast, the

  9. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    Science.gov (United States)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing

  10. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  11. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    Science.gov (United States)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  12. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    Science.gov (United States)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    documented offset landforms including fluvial terrace risers near Dumay (6.3 +0.9/-1.3 m) and Chauffard/Jameau (32.2 +1.8/-3.1 m), a channel (52 +18/-13 m) ~500 m east of the Chauffard/Jameau site, and an alluvial fan near Fayette (8.6 +2.8/-2.5 m). Based on the fault-trace morphology and distribution of sites where we see 6-8 m offsets, we estimate the probable along-strike extent of past surface rupture was 40 to 60 km along this fault reach. Application of moment-rupture area relationships to these observations suggest that an earthquake similar to, or larger than the Mw 7.0 2010 event is possible along the Enriquillo fault near Port-au-Prince. We deduce that the 2010 earthquake was a relatively small event on a boundary between fault segments that ruptured in 1751 and 1770, based on new analysis of historical damage reports and the gap of well-defined fault-zone morphology where the 2010 earthquake occurred.

  13. Paleoseismology of the Xorxol Segment of the Central Altyn Tagh Fault, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Z. Y. Qiao

    2003-06-01

    Full Text Available Although the Altyn Tagh Fault (ATF is thought to play a key role in accommodating India-Eurasian convergence, little is known about its earthquake history. Studies of this strike-slip fault are important for interpretation of the role of faulting versus distributed deformation in the accommodation of the India- Eurasia collision. In addition, the > 1200 km long fault represents one of the most important and exemplary intracontinental strike-slip faults in the world. We mapped fault trace geometry and interpreted paleoseismic trench exposures to characterize the seismogenic behavior of the ATF. We identified 2 geometric segment boundaries in a 270 km long reach of the central ATF. These boundaries define the westernmost Wuzhunxiao, the Central Pingding, and the easternmost Xorxol (also written as Suekuli or Suo erkuli segments. In this paper, we present the results from the Camel paleoseismic site along the Xorxol Segment at 91.759°E, 38.919°N. There evidence for the last two earthquakes is clear and 14C dates from layers exposed in the excavation bracket their ages. The most recent earthquake occurred between 1456 and 1775 cal A.D. and the penultimate event was between 60 and 980 cal A.D. Combining the Camel interpretations with our published results for the central ATF, we conclude that multiple earthquakes with shorter rupture lengths (?? 50 km rather than complete rupture of the Xorxol Segment better explain the paleoseismic data. We found 2-3 earthquakes in the last 2-3 kyr. When coupled with typical amounts of slip per event (5-10 m, the recurrence times are tentatively consistent with 1-2 cm/yr slip rates. This result favors models that consider the broader distribution of collisional deformation, rather than those with northward motion of India into Asia absorbed along a few faults bounding rigid blocks.

  14. Various Indices for Diagnosis of Air-gap Eccentricity Fault in Induction Motor-A Review

    Science.gov (United States)

    Nikhil; Mathew, Lini, Dr.; Sharma, Amandeep

    2018-03-01

    From the past few years, research has gained an ardent pace in the field of fault detection and diagnosis in induction motors. In the current scenario, software is being introduced with diagnostic features to improve stability and reliability in fault diagnostic techniques. Human involvement in decision making for fault detection is slowly being replaced by Artificial Intelligence techniques. In this paper, a brief introduction of eccentricity fault is presented along with their causes and effects on the health of induction motors. Various indices used to detect eccentricity are being introduced along with their boundary conditions and their future scope of research. At last, merits and demerits of all indices are discussed and a comparison is made between them.

  15. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  16. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  17. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming

    2008-01-01

    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  18. A high-resolution aftershock seismicity image of the 2002 Sultandaği-Çay earthquake (Mw = 6.2), Turkey

    Science.gov (United States)

    Ergin, Mehmet; Aktar, Mustafa; Özalaybey, Serdar; Tapirdamaz, Mustafa C.; Selvi, Oguz; Tarancioglu, Adil

    2009-10-01

    A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultandağı-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE-WSW- and NNE-SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE-SSW-trending Karamık Graben. The intersection of these two grabens, AAG and Karamık Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.

  19. Fault tree graphics

    International Nuclear Information System (INIS)

    Bass, L.; Wynholds, H.W.; Porterfield, W.R.

    1975-01-01

    Described is an operational system that enables the user, through an intelligent graphics terminal, to construct, modify, analyze, and store fault trees. With this system, complex engineering designs can be analyzed. This paper discusses the system and its capabilities. Included is a brief discussion of fault tree analysis, which represents an aspect of reliability and safety modeling

  20. A case for historic joint rupture of the San Andreas and San Jacinto faults.

    Science.gov (United States)

    Lozos, Julian C

    2016-03-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior.

  1. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Science.gov (United States)

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  2. Quantifying strain partitioning between magmatic and amagmatic portions of the Afar triple junction of Ethiopia and Djibouti through use of contemporary and late Quaternary extension rates

    Science.gov (United States)

    Polun, S. G.; Hickcox, K.; Tesfaye, S.; Gomez, F. G.

    2016-12-01

    The central Afar rift in Ethiopia and Djibouti is a zone of accommodation between the onshore propagations of the Gulf of Aden and Red Sea oceanic spreading centers forming part of the Afar triple junction that divides the Arabia, Nubia, and Somalia plates. While extension in the onshore magmatic propagators is accommodated through magmatism and associated faulting, extension in the central Afar is accommodated solely by large and small faults. The contributions of these major faults to the overall strain budget can be well characterized, but smaller faults are more difficult to quantify. Sparse GPS data covering the region constrain the total extension budget across the diffuse triple junction zone. Late Quaternary slip rates for major faults in Hanle, Dobe, Guma, and Immino grabens were estimated using the quantitative analysis of faulted landforms. This forms a nearly complete transect from the onshore propagation of the Red Sea rift in Tendaho graben and the onshore propagation of the Gulf of Aden rift at Manda Inakir. Field surveying was accomplished using a combination of electronic distance measurer profiling and low altitude aerial surveying. Age constraints are provided from the Holocene lacustrine history or through terrestrial cosmogenic nuclide (TCN) dating of the faulted geomorphic surface. Along this transect, late Quaternary slip rates of major faults appear to accommodate 25% of the total horizontal stretching rate between the southern margin of Tendaho graben and the Red Sea coast, as determined from published GPS velocities. This constrains the proportion of total extension between Nubia and Arabia that is accommodated through major faulting in the central Afar, compared to the magmatism and associated faulting of the magmatic propagators elsewhere in the triple junction. Along the transect, individual fault slip rates decrease from the southeast to the northwest, suggesting a `Crank-Arm' model may be more applicable to explain the regional

  3. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China); Jing, Peng; Shan, Debin; Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China)

    2017-01-15

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (< 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  4. A Paleoseismic Record of Earthquakes for the Dead Sea Transform Fault between the First and Seventh Centuries C.E.: Nonperiodic Behavior of a Plate Boundary Fault

    Czech Academy of Sciences Publication Activity Database

    Wechsler, N.; Rockwell, T.K.; Klinger, Y.; Štěpančíková, Petra; Kanari, M.; Marco, S.; Agnon, A.

    2014-01-01

    Roč. 104, č. 3 (2014), s. 1329-1347 ISSN 0037-1106 R&D Projects: GA ČR GAP210/12/0573 Institutional support: RVO:67985891 Keywords : active tectonics * paleoseismology * paleoearthquake * Dead Sea Transform fault * Jordan Gorge fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.322, year: 2014

  5. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A γ-ray survey along Hanaore fault

    International Nuclear Information System (INIS)

    Mino, Kazuo

    1978-01-01

    The γ-ray survey was carried out by a scintillation survey meter at O-hara area near around Hanaore Fault Zone in the northern part of Kyoto. The survey was done several times over along the same observational line. Static pattern of γ-ray intensity is revealed similar one in each other, even there is small difference. Strong intensity of γ-ray means subsistance of crushed rocks zone and a huge fault as Hanaore consists of the structure made by these weak zones. A pretty large earthquake among microearthquakes was occurred, fortunately for us, during survey period. The γ-ray survey was done just on January 6, 1978 when it was just one day before the earthquake. The observational results before the earthquake, did not give large variations of γ-ray intensity. But after 5 days from the earthquake, that is January 11, the intensity of γ-ray decreases into low value, over observational error, at almost all stations. The improvement of γ-ray was found after 2 weeks from the earthquake. Ordinarily the large fault as Hanaore is one of boundaries around block of crust, and fault zone is more sensitive to geophysical activity in the crust. Continuous observation of γ-ray will give the solution to corelation with earthquake or earthquake prediction. (author)

  7. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  8. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  9. The effect of tectonic evolution on lacustrine syn-rift sediment patters in Qikou Sag, Bohaiwan Basin, eastern China

    Science.gov (United States)

    Liao, Y.; Wang, H.; Xu, W.

    2013-12-01

    Normal fault arrays and associated relay ramps between two overlapping en-echelon normal faults are well known to control the deposition and distribution of sediments in alluvial, fluvial and deltaic systems in rift settings. The influence of transfer zones or relay ramps on sediment routes and dispersal patterns in subaqueous (deeper marine/lacustrine), however, is barely studied and hence less clear. Previous experimental studies indicate that subaqueous relay ramps may act as sediment transportation pathways if certain conditions are available. In this study, we integrate detailed structural and stratigraphic analysis with three-dimensional seismic data and limited well log data from the Qikou Sag to examine the tectonic evolution and the syn-rift sediment patterns response to fault growth and linkage in an active rift setting. Qikou Sag is located at the center of Huanghua Depression, Bohaiwan Basin of eastern China. Structurally, it is a typical continental rift basin characterized by a linked system of two NEE-SWW-striking half-grabens and one E-W-striking graben. Qikou sag is filled with Eocene-Oligocene syn-rift sediments and Miocene to Quaternary post-rift sediments. The Eocene-Oligocene rifting stage can be divided into early rifting period (43-36.5 Ma, the third member and second member of Shahejie Formation, Es3 and Es2), stable rifting period (36.5-29Ma, the first member of Shaehejie Formation, Es1) and fault-depressed diversionary period (29-24.6Ma, the Dongying Formation, Ed). This study focus on the early syn-rift, the third and second member of Shehejie Formation, which is mostly dark-grey mudstone interbedded with fine to coarse-grained sandstone deposited by large-scale turbidity currents in deep-lake. In particular, we use a combination of thickness variability and facies distributions, onlap patterns within a high-resolution sequence stratigraphic framework, integrated with structural geometry, fault activity and subsidence history analysis to

  10. Regional tectonic framework of the Pranhita Godavari basin, India

    Science.gov (United States)

    Biswas, S. K.

    2003-03-01

    The Pranhita-Godavari Gondwana rift (PGR) has a co-genetic relationship with Permo-Triassic reactivation of the Narmada-Son Geofracture (NSG). The Satpura Gondwana basin represents the terminal depocentre against the NSG, which restricted the northwestward propagation of the PGR. The NE-SW tensional stress responsible for the NW-SE trending PGR could not propagate beyond the ramp formed by uplift along the NSG and transformed kinetically into an ENE directed horizontal shear along the NSG, inducing large scale strike-slip movements. The latter dynamics were responsible for ENE extension of the Satpura rift as a pull-apart basin. The PGR extends up to the present east coast of India, where it is apparently terminated by the NE-SW trending Bapatla ridge along the Eastern Ghat Rift (EGR). The subsurface data, however, shows that the PGR extends across the Bapatla ridge and continues beneath the Cretaceous-Tertiary sediments of the Krishna-Godavari basin (KG) in the EGR. Thus, the Permo-Triassic PGR appears to have continued in the Indo-Antarctic plate before the Cretaceous break up. The EGR, during break up of the continents, cuts across the PGR and the KG basin was superimposed on it. The PGR site is located on a paleo-suture between the Dharwar and Bastar proto-cratons. The master faults developed bordering the rift, and the intra-rift higher order faults followed the pre-existing fabric. The transverse transfer zones manifested as basement ridges, divide the rift into segments of tectono-sedimentary domains. The major domains are the Chintalapudi, Godavari, and Chandrapur sub-basins, each of which subsided differentially. The central Godavari sub-basin subsided most and shows maximum structural complexity and sediment accommodation. The rifting started with initial half-graben faulting along the northeastern master fault and expanded by successive half graben faulting. This gave rise to intra-basinal horsts and grabens, which exercised control on the syn

  11. A finite difference method for off-fault plasticity throughout the earthquake cycle

    Science.gov (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  12. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    Science.gov (United States)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally

  13. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  14. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  15. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  16. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  17. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  18. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  19. K-Ar and TL volcanism chronology of the southern ends of the Red Sea spreading in Afar since 300 ka

    International Nuclear Information System (INIS)

    Lahite, P.; Coulie, E.; Gillot, P.Y.; Kidane, T.

    2001-01-01

    Continental rift segments linked to the propagation of the Red Sea plate boundary in Afar are dated using thermoluminescence and potassium-argon dating techniques. These new results constrain the mechanism of the two moderate extensional structures located at the southern ends of the propagator: the Manda Hararo and the Dadar graben. Ages obtained show that their internal floor are about 30 and 100 kyr old, respectively, and that the deduced vertical rate of fault scarps display values lower than those linked to the Gulf of Aden propagation. The lower deformation accommodated by the Red Sea structures, their youthfulness and the greater distance to the mature oceanic ridges could justify this contrast of evolution. (authors)

  20. Vibroseis Monitoring of San Andreas Fault in California

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri; Nadeau, Robert

    2004-06-11

    northwest boundary of the region of highest moment release and separates locked and slipping sections of the SAF at depth, as determined independently from geodesy, seismicity and the recurrence rates of characteristically repeating microearthquakes. The mechanism for low FZGW attenuation in the zone is possibly due to dewatering by fracture closure and/or fault-normal compression, or changes in fracture orientation due to a complex stress or strain field at the boundary between creeping and locked zones of the San Andreas Fault. Temporal changes of FZGW correlates with changes in overall seismicity. Active monitoring of changes in FZGW has a potential for imaging and detecting of changes in stress within FZ cores. Since FZGW primarily propagate in the low-velocity core region of fault zones, they sample the most active zone of fault deformation and provide greater structural detail of the inner fault core than body waves which propagate primarily outside of the central core region. FZGW also can be used for FZ continuity studies.

  1. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2017-12-01

    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  2. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-05-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring-fault

  3. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-01-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring-fault

  4. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  5. Fault tolerant control with torque limitation based on fault mode for ten-phase permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-10-01

    Full Text Available This paper proposes a novel fault tolerant control with torque limitation based on the fault mode for the ten-phase permanent magnet synchronous motor (PMSM under various open-circuit and short-circuit fault conditions, which includes the optimal torque control and the torque limitation control based on the fault mode. The optimal torque control is adopted to guarantee the ripple-free electromagnetic torque operation for the ten-phase motor system under the post-fault condition. Furthermore, we systematically analyze the load capacity of the ten-phase motor system under different fault modes. And a torque limitation control approach based on the fault mode is proposed, which was not available earlier. This approach is able to ensure the safety operation of the faulted motor system in long operating time without causing the overheat fault. The simulation result confirms that the proposed fault tolerant control for the ten-phase motor system is able to guarantee the ripple-free electromagnetic torque and the safety operation in long operating time under the normal and fault conditions.

  6. Fault- and Area-Based PSHA in Nepal using OpenQuake: New Insights from the 2015 M7.8 Gorkha-Nepal Earthquake

    Science.gov (United States)

    Stevens, Victoria

    2017-04-01

    The 2015 Gorkha-Nepal M7.8 earthquake (hereafter known simply as the Gorkha earthquake) highlights the seismic risk in Nepal, allows better characterization of the geometry of the Main Himalayan Thrust (MHT), and enables comparison of recorded ground-motions with predicted ground-motions. These new data, together with recent paleoseismic studies and geodetic-based coupling models, allow for good parameterization of the fault characteristics. Other faults in Nepal remain less well studied. Unlike previous PSHA studies in Nepal that are exclusively area-based, we use a mix of faults and areas to describe six seismic sources in Nepal. For each source, the Gutenberg-Richter a and b values are found, and the maximum magnitude earthquake estimated, using a combination of earthquake catalogs, moment conservation principals and similarities to other tectonic regions. The MHT and Karakoram fault are described as fault sources, whereas four other sources - normal faulting in N-S trending grabens of northern Nepal, strike-slip faulting in both eastern and western Nepal, and background seismicity - are described as area sources. We use OpenQuake (http://openquake.org/) to carry out the analysis, and peak ground acceleration (PGA) at 2 and 10% chance in 50 years is found for Nepal, along with hazard curves at various locations. We compare this PSHA model with previous area-based models of Nepal. The Main Himalayan Thrust is the principal seismic hazard in Nepal so we study the effects of changing several parameters associated with this fault. We compare ground shaking predicted from various fault geometries suggested from the Gorkha earthquake with each other, and with a simple model of a flat fault. We also show the results from incorporating a coupling model based on geodetic data and microseismicity, which limits the down-dip extent of rupture. There have been no ground-motion prediction equations (GMPEs) developed specifically for Nepal, so we compare the results of

  7. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...... availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault...... is detected. The envelope of the possible remedial actions is wide. This paper introduces tools to analyze and explore structure and other fundamental properties of an automated system such that any redundancy in the process can be fully utilized to enhance safety and a availability....

  8. Plate boundary deformation of the Pacific plate. Two case studies. (1) Crustal structure of the northwestern Vizcaino block and Gorda escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. (2) A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms and stress observations

    Science.gov (United States)

    Leitner, Beate

    Two examples of Pacific rim plate boundary deformation are presented. In the first part of the thesis crustal models are derived for the northwestern part of the Vizcaino block in California using marine seismic and gravity data collected by the Mendocino Triple Junction Seismic Experiment. A northwest-southeast trending kink in the Moho is imaged and interpreted to have formed under compression by reactivation of preexisting thrust faults in the paleoaccretionary prism at the seaward margin of the Vizcaino block. The study suggests that the deformation resulted from mainly north-south compression between the Pacific-Juan de Fuca plates across the Mendocino transform fault and predates late Pliocene Pacific-North America plate convergence. In the second part, 195 earthquakes recorded during the duration of the Southern Alps Passive Seismic Experiment (SAPSE) are analysed. Precise earthquake locations and focal mechanisms provide unprecedented detail of the seismotectonics in the central South Island. The short term (6 month) SAPSE seismicity is compared with long term (8 years) seismicity recorded by the New Zealand National Seismic network and the Lake Pukaki network. The seismicity rate of the Alpine fault is low, but comparable to locked sections of the San Andreas fault, with large earthquakes expected. Changes of the depth of the seismogenic zone, generally uniform at about 10--12 km, occur only localised over distances smaller than 30 km, suggesting that thermal perturbations must be of similar scale. This implies that the thermal effects of the uplift of the Southern Alps do not change the seismogenic depth significantly and are not in accordance with most of the present thermal models. Both the Hope and Porters Pass fault zones are seismically active and deformation is accommodated near the fault zones and in the adjacent crust. North of Mt Cook, a triangular shaped region along the Alpine fault is characterised by absence of earthquakes. We interpret this

  9. Gravimetric structure for the abyssal mantle massif of Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean, and its relation to active uplift

    Directory of Open Access Journals (Sweden)

    KENJI F. MOTOKI

    2014-06-01

    Full Text Available This paper presents gravimetric and morphologic analyses based on the satellite-derived data set of EGM2008 and TOPEX for the area of the oceanic mantle massif of the Saint Peter and Saint Paul peridotite ridge, Equatorial Atlantic Ocean. The free-air anomaly indicates that the present plate boundary is not situated along the longitudinal graben which cuts peridotite ridge, but about 20 km to the north of it. The high Bouguer anomaly of the peridotite ridge suggests that it is constituted mainly by unserpentinised ultramafic rocks. The absence of isostatic compensation and low-degree serpentinisation of the ultramafic rocks indicate that the peridotite ridge is sustained mainly by active tectonic uplift. The unparallel relation between the transform fault and the relative plate motion generates near north-south compression and the consequent tectonic uplift. In this sense, the peridotite massif is a pressure ridge due to the strike-slip displacement of the Saint Paul Transform Fault.

  10. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  11. Annealing Twinning and the Nucleation of Recrystallization at Grain Boundaries

    DEFF Research Database (Denmark)

    Jones, A R.

    1981-01-01

    boundaries during recovery might stimulate nucleation of recrystallization in low stacking fault energy materials. The experimental observations also lead to the implication that the density of recrystallization nuclei formed in such materials may be directly related to the strength of the deformation...

  12. Evolution of basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Rajchl, M.; Uličný, David; Grygar, R.; Mach, K.

    2009-01-01

    Roč. 21, č. 3 (2009), s. 269-294 ISSN 0950-091X R&D Projects: GA AV ČR IAA3012705; GA ČR GA205/01/0629; GA ČR(CZ) GA205/06/1823 Institutional research plan: CEZ:AV0Z30120515 Keywords : Cenozoic Most Basin * continental rift * Eger Graben Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.161, year: 2009

  13. Estimating Moho basement and faults using gravity inversion in Yushu-earthquake area, China

    Directory of Open Access Journals (Sweden)

    Yang Guangliang

    2012-05-01

    Full Text Available A gravity survey was conducted one month after the 2010 Yushu earthquake in the epicenter area. The cross-fault survey line was 500 km long, from Langqian county to Qingshuihe county, in a transition zone between Bayan Har block and Qiangtang block, in an area of high elevation, large undulating terrain, and complex geological features. An interpretation of the data was carried out together with other kinds of data, such as seismic exploration and magnetic exploration. The result shows that gravity is sensitive to fault boundary; the geologic structure of the region is complex at middle and upper depths, and the density profile reveals an eastward-pushing fault movement.

  14. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  15. Long-Term Fault Memory: A New Time-Dependent Recurrence Model for Large Earthquake Clusters on Plate Boundaries

    Science.gov (United States)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.

    2017-12-01

    A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would

  16. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  17. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  18. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    2000-01-01

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion

  19. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    Science.gov (United States)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  20. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    Science.gov (United States)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at

  1. Evidence for Strong Controls from Preexisting Structures on Border Fault Development and Basin Evolution in the Malawi Rift from 3D Lacustrine Refraction Data

    Science.gov (United States)

    Accardo, N. J.; Shillington, D. J.; Gaherty, J. B.; Scholz, C. A.; Ebinger, C.; Nyblade, A.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Ferdinand-Wambura, R.

    2017-12-01

    A long-standing debate surrounds controls on the development and ultimately abandonment of basin bounding border faults. The Malawi Rift in the the Western Branch of the East African Rift System presents an ideal location to investigate normal fault development. The rift is composed of a series of half graben basins bound by large border faults, which cross several terranes and pre-existing features. To delineate rift basin structure, we undertook 3D first arrival tomography across the North and Central basins of the Malawi Rift based on seismic refraction data acquired in Lake Malawi. The resulting 3D velocity model allows for the first-ever mapping of 3D basin structure in the Western Branch of the EAR. We estimate fault displacement profiles along the two border faults and find that each accommodated 7.2 km of throw. Previous modeling studies suggest that given the significant lengths (>140 km) and throws of these faults, they may be nearing their maximum dimensions or may have already been abandoned. While both faults accommodate similar throws, their lengths differ by 40 km, likely due to the influence of both preexisting basement fabric and large-scale preexisting structures crossing the rift. Over 4 km of sediment exists where the border faults overlap in the accommodation zone indicating that these faults likely established their lengths early. Portions of both basins contain packages of sediment with anomalously fast velocities (> 4 km/s), which we interpret to represent sediment packages from prior rifting episodes. In the Central Basin, this preexisting sediment traces along the inferred offshore continuation of the Karoo-aged Ruhuhu Basin that intersects Lake Malawi at the junction between the North and Central basins. This feature may have influenced the length of the border fault bounding the Central Basin. In the North Basin, the preexisting sediment is thicker ( 4 km) and likely represents the offshore continuation of a series of preexisting rift

  2. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  3. Active tectonics within the NW and SE extensions of the Pambak-Sevan-Syunik fault: Implications for the present geodynamics of Armenia

    Science.gov (United States)

    Ritz, Jeff; Avagyan, A.; Mkrtchyan, M.; Nazari, H.; Blard, P. H.; Karakhanian, A.; Philip, H.; Balescu, Sanda; Mahan, Shannon; Huot, Sebastien; Münch, P.; Lamothe, M.

    2016-01-01

    This study analyzes the active tectonics within the northwestern and southeastern extensions of the Pambak-Sevan-Syunik fault (PSSF), a major right-lateral strike-slip fault cutting through Armenia. Quantifying the deformations in terms of geometry, kinematics, slip rates and earthquake activity, using cosmogenic 3He, OSL/IRSL and radiocarbon dating techniques, reveal different behaviors between the two regions. Within the northwestern extension, in the region of Amasia, the PSSF bends to the west and splits into two main WNW–ESE trending reverse faults defining a compressional pop-up structure. We estimate an uplift rate and a shortening rate of 0.5 ± 0.1 mm/y and 1.4 ± 0.6 mm/y, respectively. This suggests that most of the ∼2 mm/y right lateral movement of the PSSF seems to be absorbed within the Amasia pop-structure. Within the southeastern extension, the PSSF shows signs of dying out within the Tsghuk Volcano region at the southernmost tip of the Syunik graben. There, the tectonic activity is characterized by a very slow NS trending normal faulting associated with a slight right-lateral movement. Slip rates analyses (i.e. vertical slip rate, EW stretching rate at 90° to the fault, and right-lateral slip rate of ∼0.2 mm/y, ∼0.1 mm/y and ∼0.05 mm/y, respectively) lead to the conclusion that the right lateral movement observed further north along the PSSF is mainly transferred within other active faults further west within the Karabagh (Hagari fault or other structures further northwestwards). Comparing our slip rates with those estimated from GPS data suggests that most of the deformation is localized and seismic, at least within the Tsghuk region. The geometrical and kinematic pattern observed within the two terminations of the PSSF suggests that the fault and its surrounding crustal blocks are presently rotating anticlockwise, as also observed within the GPS velocity field. This is consistent with the recent kinematic models proposed for the

  4. A Fault-tolerant RISC Microprocessor for Spacecraft Applications

    Science.gov (United States)

    Timoc, Constantin; Benz, Harry

    1990-01-01

    Viewgraphs on a fault-tolerant RISC microprocessor for spacecraft applications are presented. Topics covered include: reduced instruction set computer; fault tolerant registers; fault tolerant ALU; and double rail CMOS logic.

  5. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    Science.gov (United States)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was

  6. Latest Pleistocene to Holocene thrust faulting paleoearthquakes at Monte Netto (Brescia, Italy): lessons learned from the Middle Ages seismic events in the Po Plain

    Science.gov (United States)

    Michetti, Alessandro Maria; Berlusconi, Andrea; Livio, Franz; Sileo, Giancanio; Zerboni, Andrea; Serva, Leonello; Vittori, Eutizio; Rodnight, Helena; Spötl, Christoph

    2010-05-01

    walls. In particular, we excavated a 3 m deep trench across the graben that affects the crest of a decametric anticline due to paleoseismic bending-moment faulting; evidence of paleoseismicity is also provided by the observation of paleoliquefaction features near the graben. The trench walls allowed to identify 3 discrete events of graben reactivation, interpreted as generated by 3 strong paleoearthquakes. These paleoearthquakes occurred between ca. 45 kyr BP and ca. 5.5 kyr BP, based on OSL and AMS dating of stratigraphic units sampled on the main quarry walls, and mapped also in the October 2009 trench. The post 5.5 kyr BP stratigraphy is missing at the trench site, due to plowing and reworking. The paleoseismic deformation observed at Monte Netto is suitable to constrain the magnitude of the causative earthquakes. At a local scale, the November 24, 2004, Ml 5.2 Salò, earthquake, occurred ca. 40 km NE of Monte Netto, produced rockfalls and fractures in the Lake Garda shores, but no fault displacement at the surface. The only well known surface faulting earthquakes in the Southern Alps is the May 6, 1976, Ms 6.5 Friuli event; secondary surface ruptures were observed for a length of few km and with maximum offset of 20 cm. Using the global database of surface faulting events, the smallest thrust faulting earthquake known to be associated with secondary tectonic ruptures at the ground surface is the October 29, 1989, Mw 6.0 Mount Chenoua, Algeria, event. On the other hand, shallow crustal compressional earthquakes with M>7.0 such as the 1980 El Asnam, 1988 Spitak, and 1999 Taiwan events are invariably associated with tens of km of primary tectonic scarps, with maximum surface displacement of several meters. In the Monte Netto area there is no cumulative geomorphic evidence for repeated surface faulting events of this size. Therefore, our best estimate of the Monte Netto paleoseismic magnitudes is in the range of M6.0 to 6.8, in good agreement with the macroseismically

  7. Morphostructural evidence for Recent/active extension in Central Tanzania beyond the southern termination of the Kenya Rift.

    Science.gov (United States)

    Le Gall, B.; Rolet, J.; Gernigon, L.; Ebinger, C.; Gloaguen, R.

    2003-04-01

    The southern tip zone of the Kenya Rift on the eastern branch of the East African System is usually thought to occur in the so-called North Tanzanian Divergence. In this region, the narrow (50 km-wide) axial graben of southern Kenya splays southwards, via a major EW-trending volcanic lineament, into a 200 km-wide broad rifted zone with three separate arms of normal faulting and tilted fault blocks (Eyasi, Manyara and Pangani arms from W to E). Remote sensing analysis from Central Tanzania demonstrates that rift morphology exists over an area lying 400 km beyond the southern termination of the Kenya Rift. The most prominent rift structures are observed in the Kilombero region and consist of a 100 km-wide range of uplifted basement blocks fringed to the west by an E-facing half-graben inferred to reach depths of 6-8 km from aeromagnetic dataset. Physiographic features (fault scarps), and river drainage anomalies suggest that the present-day rift pattern in the Kilombero extensional province principally results from Recent/Neogene deformation. That assumption is also supported by the seismogenic character of a number of faults. The Kilombero half-graben is superimposed upon an earlier rift system, Karoo in age, which is totally overprinted and is only evidenced from its sedimentary infill. On the other hand, the nature and thickness of the inferred Neogene synrift section is still unknown. The Kilombero rifted zone is assumed to connect northwards into the central rift arm (Manyara) of the South Kenya Rift via a seismically active transverse fault zone that follows ductile fabrics within the Mozambican crystalline basement. The proposed rift model implies that incipient rifting propagates hroughout the cold and strong crust/lithosphere of Central Tanzania along Proterozoic (N140=B0E) basement weakness zones and earlier Karoo (NS)rift structures. A second belt of Recent-active linked fault/basins also extends further East from the Pangani rift arm to the offshore

  8. Late Pleistocene Activity and deformation features of the North Margin Fault of West Qinling Mountains, northeastern Tibet

    Science.gov (United States)

    Chen, P.; Lin, A.; Yan, B.

    2017-12-01

    Abstract: A precise constraints of slip rates of active faults within and around Tibetan Plateau will provide us a definite and explicit knowledge of continental dynamics and present-day tectonic evolution. The major strike-slip faults in the northern and northeastern Tibetan Plateau, including the Altyn Tagh fault and Kunlun fault play a vital role in dissipating and transferring the strain energy. The WNW-trending North Margin Fault of West Qinling Mountains (hereafter name NMFWQM, the target of this study) developed along the topographic boundary between Longzhong basin and the Qinling mountains. Intensive Historic records show that large earthquakes repeatedly in the area around the NMFWQM, including the AD 143 M 7.0 Gangu West earthquake; AD 734 M≥7.0 Tianshui earthquake; AD 1654 M 8.0 Tianshui South earthquake and the most recent 2013 Mw6.0 Zhangxian earthquake. In this study, we investigated the structural features and activity of the NMFWQM including the nature of the fault, slip rate, and paleoseismicity by interpretation of high-resolution remote sensing images and field investigation. Based on the interpretations of high resolution satellite images, field investigations and 14C dating ages, we conclude the following conclusions: 1) The drainage systems have been systematical deflected or offset sinistrally along the fault trace; 2) The amounts of displacement (D) show a positive linear correlation with the upstream length (L) from the deflected point of offset river channels as DaL (a: a certain coefficient); 3) The alluvial fans and terrace risers formed in the last interglacial period are systematically offset by 16.4m to 93.9 m, indicating an accumulation of horizontal displacements as that observed in the offset drainages; 4) A horizontal slip rate is estimated to be 2.5-3.1 mm/yr with an average of 2.8 mm/yr. Comparing with the well-know strike-slip active faults developed in the northern Tibetan Plateau, such as the Altyn Tagh fault and Kunlun

  9. Facies pattern of the middle Permian Barren Measures Formation ...

    Indian Academy of Sciences (India)

    dip-slope and adjoining trough in a continental half-graben setting. ... of the hangingwall dip-slope during reactivation of the basin margin faults ...... The thick accumulation of carbonaceous shale .... tion of cyclothems along the toe-zone of the fault ..... Petrol. 60 1–17. Talbot M R and Kelts K 1990 Paleolimnological signa-.

  10. Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary

    Science.gov (United States)

    Neely, James S.; Furlong, Kevin P.

    2018-03-01

    The San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon Islands, provides an opportunity to study the transform boundary development process. Recent seismicity (2013-2016) along the 280 km long SCT, known as a Subduction-Transform Edge Propagator (STEP) fault, highlights the tearing process and ongoing development of the plate boundary. The region's earthquakes reveal two key characteristics. First, earthquakes at the western terminus of the SCT, which we interpret to indicate the Australia plate tearing, display disparate fault geometries. These events demonstrate that plate tearing is accommodated via multiple intersecting planes rather than a single through-going fault. Second, the SCT hosts sequences of Mw ∼7 strike-slip earthquakes that migrate westward through a rapid succession of events. Sequences in 1993 and 2015 both began along the eastern SCT and propagated west, but neither progression ruptured into or nucleated a large earthquake within the region near the tear. Utilizing b-value and Coulomb Failure Stress analyses, we examine these along-strike variations in the SCT's seismicity. b-Values are highest along the youngest, western end of the SCT and decrease with increasing distance from the tear. This trend may reflect increasing strain localization with increasing displacement. Coulomb Failure Stress analyses indicate that the stress conditions were conducive to continued western propagation of the 1993 and 2015 sequences suggesting that the unruptured western SCT may have fault geometries or properties that inhibit continued rupture. Our results indicate a displacement-driven fault maturation process. The multi-plane Australia plate tearing likely creates a western SCT with diffuse strain accommodated along a network of disorganized faults. After ∼90 km of cumulative displacement (∼900,000 yr of plate motion), strain localizes and faults align, allowing the SCT to host

  11. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  12. Geophysical modeling of Valle de Banderas graben and its structural relation to Bahia de Banderas, Mexico

    OpenAIRE

    Arzate, Jorge A.; Álvarez, Román; Yutsis, Vsevolod; Pacheco, Jesús; López-Loera, Héctor

    2006-01-01

    A gravimetric survey consisting of five lines and 483 stations, as well as a magnetotelluric (MT) survey consisting ofl 7 observation sites, were made in the Valle de Banderas region for the determination of the structural characteristics of the valley. Additionally, data from a previous aeromagnetic survey were analyzed to correlate them with our geophysical measurements. The gravimetric and MT models confirm that the valley corresponds to a graben structure with slumped blocks that vary fro...

  13. Multi-link faults localization and restoration based on fuzzy fault set for dynamic optical networks.

    Science.gov (United States)

    Zhao, Yongli; Li, Xin; Li, Huadong; Wang, Xinbo; Zhang, Jie; Huang, Shanguo

    2013-01-28

    Based on a distributed method of bit-error-rate (BER) monitoring, a novel multi-link faults restoration algorithm is proposed for dynamic optical networks. The concept of fuzzy fault set (FFS) is first introduced for multi-link faults localization, which includes all possible optical equipment or fiber links with a membership describing the possibility of faults. Such a set is characterized by a membership function which assigns each object a grade of membership ranging from zero to one. OSPF protocol extension is designed for the BER information flooding in the network. The BER information can be correlated to link faults through FFS. Based on the BER information and FFS, multi-link faults localization mechanism and restoration algorithm are implemented and experimentally demonstrated on a GMPLS enabled optical network testbed with 40 wavelengths in each fiber link. Experimental results show that the novel localization mechanism has better performance compared with the extended limited perimeter vector matching (LVM) protocol and the restoration algorithm can improve the restoration success rate under multi-link faults scenario.

  14. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    Science.gov (United States)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern

  15. Seismic investigation of the Kunlun Fault: Analysis of the INDEPTH IV 2-D active-source seismic dataset

    Science.gov (United States)

    Seelig, William George

    The Tibetan Plateau has experienced significant crustal thickening and deformation since the continental subduction and collision of the Asian and Indian plates in the Eocene. Deformation of the northern Tibetan Plateau is largely accommodated by strike-slip faulting. The Kunlun Fault is a 1000-km long strike-slip fault near the northern boundary of the Plateau that has experienced five magnitude 7.0 or greater earthquakes in the past 100 years and represents a major rheological boundary. Active-source, 2-D seismic reflection/refraction data, collected as part of project INDEPTH IV (International Deep Profiling of Tibet and the Himalaya, phase IV) in 2007, was used to examine the structure and the dip of the Kunlun fault. The INDEPTH IV data was acquired to better understand the tectonic evolution of the northeastern Tibetan Plateau, such as the far-field deformation associated with the continent-continent collision and the potential subduction of the Asian continent beneath northern Tibet. Seismic reflection common depth point (CDP) stacks were examined to look for reflectivity patterns that may be associated with faulting. A possible reflection from the buried North Kunlun Thrust (NKT) is identified at 18-21 km underneath the East Kunlun Mountains, with an estimated apparent dip of 15°S and thrusting to the north. Minimally-processed shot gathers were also inspected for reflections off near-vertical structures such as faults and information on first-order velocity structure. Shot offset and nearest receiver number to reflection was catalogued to increase confidence of picks. Reflections off the North Kunlun (NKF) and South Kunlun Faults (SKF) were identified and analyzed for apparent dip and subsurface geometry. Fault reflection analysis found that the North Kunlun Fault had an apparent dip of approximately 68ºS to an estimated depth of 5 km, while the South Kunlun Fault dipped at approximately 78ºN to an estimated 3.5 km depth. Constraints on apparent dip and

  16. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  17. Research on the Automatic Fusion Strategy of Fixed Value Boundary Based on the Weak Coupling Condition of Grid Partition

    Science.gov (United States)

    Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.

    2018-03-01

    With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.

  18. Trace element chemistry and textures of low-temperature pyrites associated with shallow fossil subsurface geothermal discharge in the Eger Graben, northwestern Bohemia

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Adamovič, Jiří; Langrová, Anna

    2006-01-01

    Roč. 37, 29 (2006), s. 237-239 ISSN 0032-6267 R&D Projects: GA AV ČR IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : pyrite * geothermal fluids * Eger Graben Subject RIV: DB - Geology ; Mineralogy

  19. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  20. The Bocono Fault Zone, Western Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, C. (I.V.I.C., Caracas (Venezuela)); Estevez, R. (Universidad de los Andes, Merida (Venezuela)); Henneberg, H.G. (Universidad del Zulia, Maracaibo (Venezuela))

    1993-02-01

    The Bocono Fault Zone, the western part of the Bocono Moron-El Pilar Fault System of the southern Caribbean plate boundary, consists of aligned valleys, linear depressions, pull-apart basins and other morphological features, which extend for about 500 km in a N45[degrees]E direction, between the Tachira depression (Venezuela-Colombia border) and the Caribbean Sea. It crosses obliquely the Cordillera de Merida and cuts across the Caribbean Mountains, two different geologic provinces of Late Tertiary-Quaternary and Late Cretaceous-Early Tertiary age, respectively. Therefore, the maximum age that can be assigned to the Bocono Fault Zone is Late Tertiary (probably Pliocene). A total maximum right-lateral offset rate of 3.3 mm/a. The age of the sedimentary fill o[approximately] the La Gonzalez pull-apart basin suggests that the 7-9 km right-lateral offset necessary to produce it took place in Middle to Late Pleistocene time. The majority of seismic events are well aligned with the main fault trace; minor events are distributed in a belt several kilometers wide. Focal depth is typically 15 km and focal mechanisms indicate an average east-west compression across the zone. Return periods of 135-460 a (Richter M = 8), 45-70 a (M = 7), and 7-15 a (M = 6) have been calculated. Geodetic studies of several sites along the zone indicate compressive and right-lateral components; at Mucubaji the rate of right-lateral displacement observed is about 1 mm every 5 months (15 a of measurements).

  1. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    Science.gov (United States)

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust

  2. Aftershocks to Philippine quake found within nearby megathrust fault

    Science.gov (United States)

    Schultz, Colin

    2013-02-01

    On 31 August 2012 a magnitude 7.6 earthquake ruptured deep beneath the sea floor of the Philippine Trench, a powerful intraplate earthquake centered seaward of the plate boundary. In the wake of the main shock, sensors detected a flurry of aftershocks, counting 110 in total. Drawing on seismic wave observations and rupture mechanisms calculated for the aftershocks, Ye et al. found that many were located near the epicenter of the main intraplate quake but at shallower depth; all involved normal faulting. Some shallow thrusting aftershocks were located farther to the west, centered within the potentially dangerous megathrust fault formed by the subduction of the Philippine Sea plate beneath the Philippine microplate, the piece of crust housing the Philippine Islands.

  3. Dating the past 7000 years of major earthquakes on the Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Clark, KJ.; Biasi, G.

    2009-01-01

    The Alpine Fault, New Zealand, is a major plate boundary fault that accommodates two thirds of the motion between the Australian and Pacific plates. The Hokuri Stream locality at the southern end of the Alpine Fault has the potential to contain a long record of earthquakes. The field component of this study involved the description, measurement and sampling of multiple river bank outcrops of the Hokuri sedimentary sequence. Sampling was undertaken by two approaches: discrete sediment sampling and continuous push-core sampling. Radiocarbon samples were processed at the Rafter Radiocarbon Laboratory, New Zealand. 123 samples were dated and the most commonly dated organic fractions were individual leaves, reeds, and seeds. 15 refs., 6 figs.

  4. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  5. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    Science.gov (United States)

    2009-08-01

    Fluctuation Cone The Pressure-Fluctuation Cone was used for all wind-tunnel tests (Figure 3.7). The model is a 7◦ half-angle stainless - steel cone. It...analysis as a medium for fault detection: A review. Journal of Tribology , 130, January 2008. [80] L. M. Mack. Boundary layer linear stability theory. In

  6. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  7. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  8. A study on quantification of unavailability of DPPS with fault tolerant techniques considering fault tolerant techniques' characteristics

    International Nuclear Information System (INIS)

    Kim, B. G.; Kang, H. G.; Kim, H. E.; Seung, P. H.; Kang, H. G.; Lee, S. J.

    2012-01-01

    With the improvement of digital technologies, digital I and C systems have included more various fault tolerant techniques than conventional analog I and C systems have, in order to increase fault detection and to help the system safely perform the required functions in spite of the presence of faults. So, in the reliability evaluation of digital systems, the fault tolerant techniques (FTTs) and their fault coverage must be considered. To consider the effects of FTTs in a digital system, there have been several studies on the reliability of digital model. Therefore, this research based on literature survey attempts to develop a model to evaluate the plant reliability of the digital plant protection system (DPPS) with fault tolerant techniques considering detection and process characteristics and human errors. Sensitivity analysis is performed to ascertain important variables from the fault management coverage and unavailability based on the proposed model

  9. Fault-tolerant Control of Inverter-fed Induction Motor Drives

    DEFF Research Database (Denmark)

    Thybo, C.

    . A description of the different frequency converter components, including models of the inverter, sensors and controllers was given, followed by a fault mode and effect analysis, which points out the potential fault modes of the design. Among the listed fault modes, two were found to be of particular practical...... University, was used as a framework for this work. A short review of the development cycle, including methods for generating and evaluating residuals, was presented. A cost-benefit analysis was proposed, as an extension to the FTC development cycle, to provide a better background for selecting the fault...... bilinear observers. A brief description of threshold- and statistical change detection was included with focus on mean value change detection in a noisy residual. The detection of encoder sensor faults was analysed and three approaches, for encoder fault detection, were proposed. The reference band...

  10. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  11. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    Science.gov (United States)

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  12. A new wall function boundary condition including heat release effect for supersonic combustion flows

    International Nuclear Information System (INIS)

    Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian

    2016-01-01

    Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.

  13. Experiences of pathways, outcomes and choice after severe traumatic brain injury under no-fault versus fault-based motor accident insurance.

    Science.gov (United States)

    Harrington, Rosamund; Foster, Michele; Fleming, Jennifer

    2015-01-01

    To explore experiences of pathways, outcomes and choice after motor vehicle accident (MVA) acquired severe traumatic brain injury (sTBI) under fault-based vs no-fault motor accident insurance (MAI). In-depth qualitative interviews with 10 adults with sTBI and 17 family members examined experiences of pathways, outcomes and choice and how these were shaped by both compensable status and interactions with service providers and service funders under a no-fault and a fault-based MAI scheme. Participants were sampled to provide variation in compensable status, injury severity, time post-injury and metropolitan vs regional residency. Interviews were recorded, transcribed and thematically analysed to identify dominant themes under each scheme. Dominant themes emerging under the no-fault scheme included: (a) rehabilitation-focused pathways; (b) a sense of security; and (c) bounded choices. Dominant themes under the fault-based scheme included: (a) resource-rationed pathways; (b) pressured lives; and (c) unknown choices. Participants under the no-fault scheme experienced superior access to specialist rehabilitation services, greater surety of support and more choice over how rehabilitation and life-time care needs were met. This study provides valuable insights into individual experiences under fault-based vs no-fault MAI. Implications for an injury insurance scheme design to optimize pathways, outcomes and choice after sTBI are discussed.

  14. Strain partitioning in southeastern Alaska: Is the Chatham Strait Fault active?

    Science.gov (United States)

    Brothers, Daniel; Elliott, Julie L.; Conrad, James E.; Haeussler, Peter J.; Kluesner, Jared

    2018-01-01

    A 1200 km-long transform plate boundary passes through southeastern Alaska and northwestern British Columbia and represents one of the most seismically active, but poorly understood continental margins of North America. Although most of the plate motion is accommodated by the right-lateral Queen Charlotte–Fairweather Fault (QCFF) System, which has produced at least six M > 7 earthquakes since 1920, seismic hazard assessments also include the Chatham Strait Fault (CSF) as a potentially active, 400 km-long strike slip fault that cuts northward through southeastern Alaska, connecting with the Eastern Denali Fault. Nearly the entire length of the CSF is submerged beneath Chatham Strait and Lynn Canal and has never been systematically imaged using high-resolution marine geophysical approaches. In this study we present an integrated analysis of new marine seismic reflectiondata acquired across Lynn Canal and tectonic block modeling constrained by data from continuous and campaign GPS sites. Seismic profiles cross the CSF at twelve locations spanning ∼50 km of fault length; they reveal thick (up to 300 m) packages of glaciomarine sedimentary facies emplaced on an unconformity surface that formed during the Last Glacial Maximum (LGM). Localized warping of post-LGM stratigraphy (∼13.9 kyr B.P. to present) appears to correlate with sediment drape on basement topography and current-controlled deposition. There is no evidence for an active fault along the axis of Lynn Canal in the seismic reflection data. Crustal block models constrained by GPS data allow, but do not require, a maximum slip rate of 2–3 mm/yr along the CSF; higher slip rates on the CSF result in significant misfit to GPS data in the surrounding region. Based on the combined marine geophysical and GPS observations, it is plausible that the CSF has not generated resolvable coseismic deformation in the last ∼13 ka and that the modern slip-rate is <1 mm/yr. We propose that models for strain

  15. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    Science.gov (United States)

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  16. Denudation and uplift of the Mawson Escarpment (eastern Lambert Graben, Antarctica) as indicated by apatite fission track data and geomorphological observation

    Science.gov (United States)

    Lisker, F.; Gibson, H.; Wilson, C.J.; Läufer, A.

    2007-01-01

    Analysis of three vertical profiles from the southern Mawson Escarpment (Lambert Graben) reveals apatite fission track (AFT) ages ranging from 102±20 to 287±23 Ma and mean lengths of 12.2 to 13.0 μm. Quantitative thermal histories derived from these data consistently indicate onset of slow cooling below 110°C began sometime prior to 300 Ma, and a second stage of rapid cooling from paleotemperatures up to ≤100°C to surface temperatures occurred in the Late Cretaceous – Paleocene. The first cooling phase refers to Carboniferous – Jurassic basement denudation up to 5 km associated with the initial rifting of the Lambert Graben. The presence of the ancient East Antarctic Erosion Surface and rapid Late Cretaceous – Paleocene cooling indicate a second denudational episode during which up to 4.5 km of sedimentary cover rocks were removed, and that is likely linked to the Cretaceous Gondwana breakup between Antarctica and India and subsequent passive continental margin formation.

  17. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  18. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.

    2000-01-01

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  19. 3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah

    Science.gov (United States)

    Withers, K.; Moschetti, M. P.

    2017-12-01

    We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.

  20. Back analysis of fault-slip in burst prone environment

    Science.gov (United States)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-11-01

    In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.

  1. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  2. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  3. Electrical imaging of deep crustal features of Kutch, India

    Science.gov (United States)

    Sastry, R. S.; Nagarajan, Nandini; Sarma, S. V. S.

    2008-03-01

    A regional Magnetotelluric (MT) study, was carried out with 55 MT soundings, distributed along five traverses, across the Kutch Mainland Unit (KMU), on the west coast of India, a region characterized by a series of successive uplifts and intervening depressions in the form of half graben, bounded by master faults. We obtain the deeper electrical structure of the crust beneath Kutch, from 2-D modelling of MT data along the 5 traverses, in order to evaluate the geo-electrical signatures, if any, of the known primary tectonic structures in this region. The results show that the deeper electrical structure in the Kutch region presents a mosaic of high resistive crustal blocks separated by deep-rooted conductive features. Two such crustal conductive features spatially correlate with the known tectonic features, viz., the Kutch Mainland Fault (KMF), and the Katrol Hill Fault (KHF). An impressive feature of the geo-electrical sections is an additional, well-defined conductive feature, running between Jakhau and Mundra, located at the southern end of each of the five MT traverses and interpreted to be the electrical signature of yet another hidden fault at the southern margin of the KMU. This new feature is named as Jakhau-Mundra Fault (JMF). It is inferred that the presence of JMF together with the Kathiawar Fault (NKF), further south, located at the northern boundary of the Saurashtra Horst, would enhance the possibility of occurrence of a thick sedimentary column in the Gulf of Kutch. The region between the newly delineated fault (JMF) and the Kathiawar fault (NKF) could thus be significant for Hydrocarbon Exploration.

  4. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  5. TREDRA, Minimal Cut Sets Fault Tree Plot Program

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: TREDRA is a computer program for drafting report-quality fault trees. The input to TREDRA is similar to input for standard computer programs that find minimal cut sets from fault trees. Output includes fault tree plots containing all standard fault tree logic and event symbols, gate and event labels, and an output description for each event in the fault tree. TREDRA contains the following features: a variety of program options that allow flexibility in the program output; capability for automatic pagination of the output fault tree, when necessary; input groups which allow labeling of gates, events, and their output descriptions; a symbol library which includes standard fault tree symbols plus several less frequently used symbols; user control of character size and overall plot size; and extensive input error checking and diagnostic oriented output. 2 - Method of solution: Fault trees are generated by user-supplied control parameters and a coded description of the fault tree structure consisting of the name of each gate, the gate type, the number of inputs to the gate, and the names of these inputs. 3 - Restrictions on the complexity of the problem: TREDRA can produce fault trees with a minimum of 3 and a maximum of 56 levels. The width of each level may range from 3 to 37. A total of 50 transfers is allowed during pagination

  6. Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films

    International Nuclear Information System (INIS)

    Csiszár, G.; Kurz, S.J.B.; Mittemeijer, E.J.

    2016-01-01

    A comparative study of Me(=Ni/Cu/Ag)-based, W-alloyed, nanocrystalline, heavily faulted thin films was carried out to identify parameters stabilizing the nanocrystalline nature upon thermal treatment. The three systems, initially of comparably, heavily twinned (twin boundaries at spacings of 1–5 nm) microstructures showed similarities but also strikingly different behaviours upon annealing, as observed by application of in particular X-ray diffraction (line-broadening) analysis and (high resolution) transmission electron microscopy. During annealing in the range of 30–600 °C, (i) segregation at the planar faults (for Me = Ni) and at grain boundaries (for Me = Ni,Cu,Ag), as well as nanoscale phase separation (for Me = Cu,Ag) take place, (ii) distinct grain growth does not occur and (iii) the twin boundaries either are largely preserved ((Ni(W) and Ag(W)) or disappear totally (Cu(W))), which was ascribed to an altered faulting energy, due to change of the amount of W segregated at the twin boundaries, and to the evolution of nano-precipitates. The nanosized films exhibit very large internal (macro)stresses parallel to the surface, which change during annealing in the range of 1 GPa (tensile) to −3 GPa (compressive) and thus are sensitive to the microstructural changes in the films (decomposition and relaxation) that happen on a nanoscale. The results are discussed in terms of thermodynamic and/or kinetic constraints controlling these processes and thus the thermal stability of the systems concerned.

  7. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    Science.gov (United States)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  8. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone

    Science.gov (United States)

    Havazli, E.; Wdowinski, S.; Amelung, F.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to

  9. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  10. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages

  11. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, Claus; Blanke, Mogens

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken...

  12. Fault diagnosis based on controller modification

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2015-01-01

    Detection and isolation of parametric faults in closed-loop systems will be considered in this paper. A major problem is that a feedback controller will in general reduce the effects from variations in the systems including parametric faults on the controlled output from the system. Parametric...... faults can be detected and isolated using active methods, where an auxiliary input is applied. Using active methods for the diagnosis of parametric faults in closed-loop systems, the amplitude of the applied auxiliary input need to be increased to be able to detect and isolate the faults in a reasonable......-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify the feedback controller with a minor effect on the closed-loop performance in the fault-free case and at the same time optimize the detection and isolation in a faulty case. Controller modification in connection...

  13. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  14. A 3D resistivity model derived from the transient electromagnetic data observed on the Araba fault, Jordan

    Science.gov (United States)

    Rödder, A.; Tezkan, B.

    2013-01-01

    72 inloop transient electromagnetic soundings were carried out on two 2 km long profiles perpendicular and two 1 km and two 500 m long profiles parallel to the strike direction of the Araba fault in Jordan which is the southern part of the Dead Sea transform fault indicating the boundary between the African and Arabian continental plates. The distance between the stations was on average 50 m. The late time apparent resistivities derived from the induced voltages show clear differences between the stations located at the eastern and at the western part of the Araba fault. The fault appears as a boundary between the resistive western (ca. 100 Ωm) and the conductive eastern part (ca. 10 Ωm) of the survey area. On profiles parallel to the strike late time apparent resistivities were almost constant as well in the time dependence as in lateral extension at different stations, indicating a 2D resistivity structure of the investigated area. After having been processed, the data were interpreted by conventional 1D Occam and Marquardt inversion. The study using 2D synthetic model data showed, however, that 1D inversions of stations close to the fault resulted in fictitious layers in the subsurface thus producing large interpretation errors. Therefore, the data were interpreted by a 2D forward resistivity modeling which was then extended to a 3D resistivity model. This 3D model explains satisfactorily the time dependences of the observed transients at nearly all stations.

  15. Asymmetric lithosphere as the cause of rifting and magmatism in the Permo-Carboniferous Oslo Graben, in Permo-Carboniferous Rifting and Magmatism in Europe.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.; Davies, G.R.

    2004-01-01

    Compared to other Permo-Carboniferous rift basins of NW Europe, the Oslo Graben has two distinct characteristics. First, it initiated inside cold and stable Precambrian lithosphere, whereas most Permo-Carboniferous basins developed in weaker Phanerozoic lithosphere, and second, it is characterized

  16. Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey

    Science.gov (United States)

    Doğan, Uğur; Koçyiğit, Ali

    2018-04-01

    This study focuses on the morphotectonic evolutionary history of two significant geomorphic features, Suğla structural-border polje and Maviboğaz canyon, located within the Suğla-Seydişehir, Akören-Kavakköy, and Bozkır grabens in the central Taurides. Data were obtained by detailed field mapping of faults, rocks, and geomorphic features. Three phases of tectonic deformation were determined. The three erosional surfaces developed, especially in the form of tectonically controlled steps, during Oligocene-early Miocene, middle Miocene, and late Miocene-early Pliocene, sequentially. Southwest- to northeast-trending karstified hanging paleovalleys are present on the high erosional surfaces, which have been attributed to the end of early Miocene and late Miocene. Faulting-induced tectonic movements enabled the formation of Suğla-Seydişehir paleograben in early Miocene. We suggest that the Maviboğaz canyon was formed by captures at the beginning of late Miocene and late Pliocene and by incision in Late Pliocene-Quaternary, depending on the headward erosion of Çarşamba River. Starting from the beginning of Quaternary, a tensional neotectonic regime became prominent and then a series of modern graben-horst structures formed along the reactivated older grabens. One of these is the Suğla-Seydişehir reactivated graben. Suğla structural-border polje developed within the graben. Total visible tectonic subsidence of the polje is 134 m. Underground capture of surface water occurred on the southern slopes of the graben. Waters of Suğla polje are transported intermittently into Konya basin on the surface and into the Mediterranean basin via natural swallow holes. Beach deposits, water marks, cliffs, and notches marking the late Pleistocene lake level (10 m) and two perched corrosion surfaces ( 50 and 22 m) were detected around the polje.

  17. Geometry and structure of the pull-apart basins developed along the western South American-Scotia plate boundary (SW Atlantic Ocean)

    Science.gov (United States)

    Esteban, F. D.; Tassone, A.; Isola, J. I.; Lodolo, E.; Menichetti, M.

    2018-04-01

    The South American-Scotia plate boundary is a left-lateral fault system which runs roughly E-W for more than 3000 km across the SW Atlantic Ocean and the Tierra del Fuego Island, reaching to the west the southern Chile Trench. Analyses of a large dataset of single- and multi-channel seismic reflection profiles acquired offshore has allowed to map the trace of the plate boundary from Tierra del Fuego to the Malvinas Trough, a tectonic depression located in the eastern part of the fault system, and to reconstruct the shape and geometry of the basins formed along the principal displacement zone of the fault system. Three main Neogene pull-apart basins that range from 70 to 100 km in length, and from 12 to 22 km in width, have been identified along this segment of the plate boundary. These basins have elongated shapes with their major axes parallel to the ENE-WSW direction of the fault zone. The sedimentary architecture and the infill geometry of the basins suggest that they represent mostly strike-slip dominated transtension basins which propagated from E to W. The basins imaged by seismic data show in some cases geometrical and structural features linked to the possible reactivation of previous wedge-top basins and inherited structures pertaining to the external front of the Magallanes fold-and-thrust compression belt, along which the South American-Scotia fault system has been superimposed. It is suggested that the sequence of the elongated basins occur symmetrically to a thorough going strike-slip fault, in a left-stepping geometrical arrangement, in a manner similar to those basins seen in other transcurrent environments.

  18. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of

  19. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    -block’ dilemma is stated for the recent geodynamics of faults in view of interpretations of monitoring results. The matter is that either a block is an active element generating anomalous recent deformation and a fault is a ‘passive’ element, or a fault zone itself is a source of anomalous displacements and blocks are passive elements, i.e. host medium. ‘Paradoxes’ of high and low strain velocities are explainable under the concept that the anomalous recent geodynamics is caused by parametric excitation of deformation processes in fault zones in conditions of a quasi-static regime of loading.Based on empirical data, it is revealed that recent deformation processes migrate in fault zones both in space and time. Two types of waves, ‘inter-fault’ and ‘intra-fault’, are described. A phenomenological model of auto-wave deformation processes is proposed; the model is consistent with monitoring data. A definition of ‘pseudo-wave’ is introduced. Arrangements to establish a system for monitoring deformation auto-waves are described.When applied to geological deformation monitoring, new measurement technologies are associated with result identification problems, including ‘ratios of uncertainty’ such as ‘anomaly’s dimensions – density of monitoring stations’ and ‘anomaly’s duration – details of measurements in time’. It is shown that the RSA interferometry method does not provide for an unambiguous determination of ground surface displacement vectors. 

  20. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data

    Science.gov (United States)

    Fuhrmann, T.; Caro Cuenca, M.; Knöpfler, A.; van Leijen, F. J.; Mayer, M.; Westerhaus, M.; Hanssen, R. F.; Heck, B.

    2015-10-01

    The intra-plate deformation of the Upper Rhine Graben (URG) located in Central Europe is investigated using geodetic measurement techniques. We present a new approach to calculate a combined velocity field from InSAR, levelling and GNSS measurements. As the expected tectonic movements in the URG area are small (less than 1 mm a-1), the best possible solutions for linear velocity rates from single-technique analyses are estimated in a first step. Second, we combine the velocity rates obtained from InSAR (line of sight velocity rates in ascending and descending image geometries), levelling (vertical velocity rates) and GNSS (horizontal velocity rates) using least-squares adjustment (LSA). Focusing on the Northern URG area, we analyse SAR data on four different image stacks (ERS ascending, ERS descending, Envisat ascending, Envisat descending) using the Persistent Scatterer (PS) approach. The linear velocity rates in ascending and descending image geometries, respectively, are estimated in an LSA from joint time-series analysis of ERS and Envisat data. Vertical velocity rates from levelling are obtained from a consistent adjustment of more than 40 000 measured height differences using a kinematic displacement model. Horizontal velocity rates in east and north direction are calculated from a time-series analysis of daily coordinate estimates at 76 permanently operating GNSS sites in the URG region. As the locations, at which the measurement data of PS-InSAR, levelling and GNSS reside, do not coincide, spatial interpolation is needed during several steps of the rigorous processing. We use Ordinary Kriging to interpolate from a given set of data points to the locations of interest with a special focus on the modeling and propagation of errors. The final 3-D velocity field is calculated at a 200 m grid, which carries values only close to the location of PS points, resulting in a mean horizontal and vertical precision of 0.30 and 0.13 mm a-1, respectively. The vertical

  1. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    Science.gov (United States)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  2. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  3. Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults

    Science.gov (United States)

    Rupke, L.; Hasenclever, J.

    2017-12-01

    Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.

  4. Seismotectonics of Western Turkey: A Synthesis of Source Parameters and Rupture Histories of Recent Earthquakes

    Science.gov (United States)

    Taymaz, T.; Tan, O.; Yolsal, S.

    2004-12-01

    The Aegean region, including western Turkey and Greece, is indeed one of the most seismically active and rapidly deforming continental domains in the Earth. The wide range of deformational processes occurring in this region means that the eastern Mediterranean provides a unique opportunity to improve our understanding of the complex kinematics of continental collision, including strike-slip faulting and crustal extension, as well as associated seismicity and volcanism. The tectonic evolution of the Eastern Mediterranean region is dominated by effects of subduction along the Hellenic (Aegean) arc and of continental collision in eastern Anatolia and the Caucasus. Northward subduction of the African plate beneath western Anatolia and the Aegean region is causing crustal extension in the overlying Aegean province. The interplay between dynamic effects of the relative motions of adjoining plates thus controls large-scale crustal deformation and the associated earthquake activity in Turkey. The Aegean region has been subject to extension since Miocene time, and this extension has left a pronounced expression in the present-day topography. It is further widely accepted that the rapid extension observed in western Turkey is mainly accommodated by large active normal faults that control the geomorphology which is dominated by a series of E-W trending normal-fault-bounded horst and graben structures; the N-S extension inferred from these structures is consistent with regional earthquake focal mechanisms. The E-W trending Menderes graben, the NE-SW trending Burdur, Acigol and Baklan, and NW-SE trending Dinar and Sultandag-Aksehir basins all bounded by large faults form a system of half-graben whose orientation is evident in both the topography and the tilting of Neogene sediments adjacent to them. We have studied source mechanisms and rupture histories of ˜20 earthquakes using body-waveform modelling, and have compared the shapes and amplitudes of teleseismic long-period P

  5. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    Science.gov (United States)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  6. The Nysa-Morava Zone: an active tectonic domain with Late Cenozoic sedimentary grabens in the Western Carpathians' foreland (NE Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Špaček, P.; Bábek, O.; Štěpančíková, Petra; Švancara, J.; Pazdírková, J.; Sedláček, J.

    2015-01-01

    Roč. 104, č. 4 (2015), s. 963-990 ISSN 1437-3254 R&D Projects: GA ČR GAP210/12/0573; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * Upper Morava Basin * tectonic evolution * seismicity * sedimentary grabens Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.133, year: 2015

  7. Reading a 400,000-year record of earthquake frequency for an intraplate fault.

    Science.gov (United States)

    Williams, Randolph T; Goodwin, Laurel B; Sharp, Warren D; Mozley, Peter S

    2017-05-09

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ∼550 ka-the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ∼430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO 2 , suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  8. Reading a 400,000-year record of earthquake frequency for an intraplate fault

    Science.gov (United States)

    Williams, Randolph T.; Goodwin, Laurel B.; Sharp, Warren D.; Mozley, Peter S.

    2017-05-01

    Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past ˜550 ka—the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at ˜430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO2, suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.

  9. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  10. Fault detection and diagnosis for refrigerator from compressor sensor

    Science.gov (United States)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    2016-12-06

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.

  11. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  12. Structural and geological analysis of the northern Pescadero basin: preliminary results based on the analysis of 2D multichannel seismic reflection profiles

    Science.gov (United States)

    Spelz, R. M.; Ramirez-Zerpa, N. A.; Gonzalez-Fernandez, A.; Yarbuh, I.; Contreras, J.

    2017-12-01

    The Pacific-North America plate boundary along the Gulf of California is characterized by an array of right-stepping, right-lateral, transform faults connecting a series of pull-apart basins distributed along the gulf axis. Altogether, these structures accommodate an oblique-divergent component of deformation characterizing the modern tectonic regime along the gulf. The northern Pescadero complex, in the southern Gulf of California, is one of the deepest and probably least studied transtensional fault-termination basins in the gulf. The complex is bounded to the north and south by Atl and Farallon transform faults, respectively, and consists of two asymmetric, rhomboidal-shaped, basins with a series of intrabasinal high-angle normal faults and ramps connecting their depocenters. In this study we present preliminary results derived from the processing and analysis of 400 km of seismic reflection profiles, collected in 2006 onboard the R/V Francisco de Ulloa in northern Pescadero, providing new insights into the geology and internal structure of the basin. Northern Pescadero is a deep and narrow basin characterized by a maximum sedimentary infill of 1 km, and depths to the basin floor exceeding 3500 m. Deformation is chiefly accommodated by an array of self-parallel half-graben structures that appear to grow towards the northern flank of the basin. Faults-scarps located farther from the deformation axis appear to be more degraded, suggesting a progressively younger age of the half-grabens near the basin's depocenter. Another important feature revealed in the seismic images is the lack of sediments on top of the crystalline basement that floors the narrow central portion of the basin. In this area the reflectors at the basin's floor show a pronounced increase in amplitude and coherence, indicating the emplacement of magmatic extrusions. Likewise, in those areas with the greater sediment infill, the occurrence of high-amplitude reflectors, located 150 m below the

  13. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    Science.gov (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  14. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  15. Crustal-Scale Fault Interaction at Rifted Margins and the Formation of Domain-Bounding Breakaway Complexes: Insights From Offshore Norway

    Science.gov (United States)

    Osmundsen, P. T.; Péron-Pinvidic, G.

    2018-03-01

    The large-magnitude faults that control crustal thinning and excision at rifted margins combine into laterally persistent structural boundaries that separate margin domains of contrasting morphology and structure. We term them breakaway complexes. At the Mid-Norwegian margin, we identify five principal breakaway complexes that separate the proximal, necking, distal, and outer margin domains. Downdip and lateral interactions between the faults that constitute breakaway complexes became fundamental to the evolution of the 3-D margin architecture. Different types of fault interaction are observed along and between these faults, but simple models for fault growth will not fully describe their evolution. These structures operate on the crustal scale, cut large thicknesses of heterogeneously layered lithosphere, and facilitate fundamental margin processes such as deformation coupling and exhumation. Variations in large-magnitude fault geometry, erosional footwall incision, and subsequent differential subsidence along the main breakaway complexes likely record the variable efficiency of these processes.

  16. Some geodynamic aspects of the Krishna-Godavari Basin, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Subrahmanyam, A.S.; Lakshminarayana, S.; Chandrasekhar, D.V.; Rao, T.C.S.

    in the Nizampatnam bay in the southern part of the basin. The Pranhita Godavari Gondwana graben formed due to this split, pull apart and the subsequent downwarping of the eastern continental margin, appears to be much deeper and wider in the offshore. The NE...., 1993). The Pranhita Godavari Gondwana graben, a pull-apart basin formed during the early Cretaceous period, is controlled by two faulted cross trends, viz, the Chintalapudi Cross Trend (CCT) and the newly inferred Yanam Cross trend (Fig. 4). Earlier...

  17. Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults

    International Nuclear Information System (INIS)

    Mohammadi, J.; Afsharnia, S.; Vaez-Zadeh, S.

    2014-01-01

    Highlights: • A comparative review of DFIGs fault-ride-through improvement approaches is presented. • An efficient control strategy is proposed to improve the FRT capability of DFIG. • The rotor overcurrent, DC-link overvoltage and torque oscillations are decreased. • The RSC, DC-link capacitor and mechanical parts are kept safe during the grid faults. • The DFIG remains connected to the grid during the symmetrical and asymmetrical faults. - Abstract: As the penetration of wind power in electrical power system increases, it is necessary that wind turbines remain connected to the grid and contribute to the system stability during and after the grid faults. This paper proposes an efficient control strategy to improve the fault ride through (FRT) capability of doubly fed induction generator (DFIG) during the symmetrical and asymmetrical grid faults. The proposed scheme consists of active and passive FRT compensators. The active compensator is carried out by determining the rotor current references to reduce the rotor over voltages. The passive compensator is based on rotor current limiter (RCL) that considerably reduces the rotor inrush currents at the instants of occurring and clearing the grid faults with deep sags. By applying the proposed strategy, negative effects of the grid faults in the DFIG system including the rotor over currents, electromagnetic torque oscillations and DC-link over voltage are decreased. The system simulation results confirm the effectiveness of the proposed control strategy

  18. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  19. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  20. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a

  1. Implications of rate and state dependent friclion for creep on shallow faults

    Directory of Open Access Journals (Sweden)

    M. E. Belardinelli

    1994-06-01

    Full Text Available The aseismic sliding on shallow strike-slip faults, under the assumption of a non linear constitutive equation (velocity strengthening, is here treated as a two-dimensional quasi-static crack problem whose equations are solved numerically (boundary elements method. Results are compared with the corresponding one-dimensional («depth averaged» model by a suitable choice of the effective stiffness of the fault. In the one-dimensional case also the inertial term was taken into account in the evolutive equation. The current results are in agreement with an earlier one-dimensional model for afterslip as long as the state variable evolution is neglected a priori and friction depends only on velocity. In general, if the state variable is allowed to evolve, the previous approximation is valid for velocity strengthening slipping section of faults extending down to several kilometers in depth. For smaller sections of fault the evolution of the state variable affects the coseismic and early postseismic phase and accordingly it cannot be neglected. Moreover, in the presence of rheological heterogeneities, for fault sections shallower than 1 km depth, the comparison between the two-dimensional and one-dimensional models suggests the need to employ the two-dimensional model, possibly taking into account inertial effects.

  2. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  3. Revised Geologic Map of the Fort Garland Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Wallace, Alan R.; Machette, Michael N.

    2008-01-01

    The map area includes Fort Garland, Colo., and the surrounding area, which is primarily rural. Fort Garland was established in 1858 to protect settlers in the San Luis Valley, then part of the Territory of New Mexico. East of the town are the Garland mesas (basalt-covered tablelands), which are uplifted as horsts with the Central Sangre de Cristo fault zone. The map also includes the northern part of the Culebra graben, a deep structural basin that extends from south of San Luis (as the Sanchez graben) to near Blanca, about 8 km west of Fort Garland. The oldest rocks exposed in the map area are early Proterozic basement rocks (granites in Ikes Creek block) that occupy an intermediate structural position between the strongly uplifted Blanca Peak block and the Culebra graben. The basement rocks are overlain by Oligocene volcanic and volcaniclastic rocks of unknown origin. The volcanic rocks were buried by a thick sequence of basin-fill deposits of the Santa Fe Group as the Rio Grande rift formed about 25 million years ago. The Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts, was deposited within sediment, and locally provides a basis for dividing the group into upper and lower parts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Exposures of the sediment beneath the basalt and within the low foothills east of the Central Sangre de Cristo fault zone are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) is preserved as isolated remnants that cap high surfaces north and east of Fort Garland. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. The Central

  4. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...

  5. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    Science.gov (United States)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    provides an analog for the evolution of migrating transforms along mid-ocean ridge spreading centers or other places where plate boundary rearrangements result in the formation of a new transform fault in highly anisotropic oceanic crust.

  6. Fluvial terrace formation in the northern Upper Rhine Graben during the last 20 000 years as a result of allogenic controls and autogenic evolution

    NARCIS (Netherlands)

    Erkens, G.; Dambeck, R.; Volleberg, K.P.; Bouman, M.I.T.J.; Bos, J.A.A.; Cohen, K.M.; Hoek, W.Z.

    2009-01-01

    The northern Upper Rhine Graben hosts a well-preserved Late Weichselian and Holocene fluvial terrace sequence. Terraces differ in elevation, morphology, and overbank sediment characteristics. The purpose of this study was to determine the relative importance of allogenic controlling factors versus

  7. Development of direct dating methods of fault gouges: Deep drilling into Nojima Fault, Japan

    Science.gov (United States)

    Miyawaki, M.; Uchida, J. I.; Satsukawa, T.

    2017-12-01

    It is crucial to develop a direct dating method of fault gouges for the assessment of recent fault activity in terms of site evaluation for nuclear power plants. This method would be useful in regions without Late Pleistocene overlying sediments. In order to estimate the age of the latest fault slip event, it is necessary to use fault gouges which have experienced high frictional heating sufficient for age resetting. It is said that frictional heating is higher in deeper depths, because frictional heating generated by fault movement is determined depending on the shear stress. Therefore, we should determine the reliable depth of age resetting, as it is likely that fault gouges from the ground surface have been dated to be older than the actual age of the latest fault movement due to incomplete resetting. In this project, we target the Nojima fault which triggered the 1995 Kobe earthquake in Japan. Samples are collected from various depths (300-1,500m) by trenching and drilling to investigate age resetting conditions and depth using several methods including electron spin resonance (ESR) and optical stimulated luminescence (OSL), which are applicable to ages later than the Late Pleistocene. The preliminary results by the ESR method show approx. 1.1 Ma1) at the ground surface and 0.15-0.28 Ma2) at 388 m depth, respectively. These results indicate that samples from deeper depths preserve a younger age. In contrast, the OSL method dated approx. 2,200 yr1) at the ground surface. Although further consideration is still needed as there is a large margin of error, this result indicates that the age resetting depth of OSL is relatively shallow due to the high thermosensitivity of OSL compare to ESR. In the future, we plan to carry out further investigation for dating fault gouges from various depths up to approx. 1,500 m to verify the use of these direct dating methods.1) Kyoto University, 2017. FY27 Commissioned for the disaster presentation on nuclear facilities (Drilling

  8. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling

    Science.gov (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  9. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  10. SPECIALIZED MAPPING OF CRUSTAL FAULT ZONES. PART 2: MAIN STAGES AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    K. Zh. Seminsky

    2015-01-01

    the basis analysis of the scatter of joint systems, shearing angles and other relevant information. Group II.3: construction of a circle diagram for the specified mapping site with local fault poles (Fig. 8, Б, identification of conjugated systems and dynamic settings of their formation (Fig. 2, plotting the information onto the schematic map of the location under study, and marking the transregional fault zones (Fig. 7, В–К with observation sites showing similar settings and paragenesises of local faults. Group II.4: comparison between diagrams of fault poles of local ranks with reference patterns selected according to the availability of conjugated pairs of fractures (Fig. 9, Б–Г; based on the above comparison, decision making on potential formation of a paragenesis of local faults in the strike-slip, normal and reserve/thrust fault zones (Fig. 9, Д–Ж, and delineation of boundaries of such zones in the schematic map by connecting the observation sites with similar solutions (Fig. 7, Л–Н.Stage III is aimed at interpreting and includes comprehensive analyses of mapping results and priori information, construction of a final scheme of the fault zones showing their subordination by ranks (Fig. 7, О and schemes of fault zones for various structure formation stages, showing types of faults and specific features of their internal patterns, i.e. definition of the peripheral sub-zone, sub-zones of fractures of the 2nd order and, if established, the sub-zone of the major fault (Fig. 7, Л–Н.Prospects of the special mapping method can be highlighted upon its comparison with the conventional structural methods applied in studies of faults. On the one side, the method requires time-consuming mass mea­surements and special processing of 'dumb' joints; on the other side, it provides for analyses of abundant jointing data, ensures a high level of detail in mapping of patterns of fault zones, reveals rank subordination of faults and helps to determine other

  11. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  12. Mine-hoist active fault tolerant control system and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Wang, Y.; Meng, J.; Zhao, P.; Chang, Y. [China University of Mining and Technology, Xuzhou (China)] wzjsdstu@163.com

    2005-06-01

    Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control model (FCM). When a fault is judged from some sensor by the FDM, FCM reconfigures the state of the MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliability and safety of the mine hoist. The simulating result shows that MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there is quite a difference between the real data and the prior fault modes. 7 refs., 5 figs., 1 tab.

  13. Fault locator of an allyl chloride plant

    Directory of Open Access Journals (Sweden)

    Savković-Stevanović Jelenka B.

    2004-01-01

    Full Text Available Process safety analysis, which includes qualitative fault event identification, the relative frequency and event probability functions, as well as consequence analysis, was performed on an allye chloride plant. An event tree for fault diagnosis and cognitive reliability analysis, as well as a troubleshooting system, were developed. Fuzzy inductive reasoning illustrated the advantages compared to crisp inductive reasoning. A qualitative model forecast the future behavior of the system in the case of accident detection and then compared it with the actual measured data. A cognitive model including qualitative and quantitative information by fuzzy logic of the incident scenario was derived as a fault locator for an ally! chloride plant. The obtained results showed the successful application of cognitive dispersion modeling to process safety analysis. A fuzzy inductive reasoner illustrated good performance to discriminate between different types of malfunctions. This fault locator allowed risk analysis and the construction of a fault tolerant system. This study is the first report in the literature showing the cognitive reliability analysis method.

  14. Fault diagnosis for engine air path with neural models and classifier ...

    African Journals Online (AJOL)

    A new FDI scheme is developed for automotive engines in this paper. The method uses an independent radial basis function (RBF) neural ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults considered are 10-20% changes ...

  15. Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data

    NARCIS (Netherlands)

    Fuhrmann, T.; Caro Cuenca, M.; Knöpfler, A.; Leijen, F.J. van; Mayer, M.; Westerhaus, M.; Hanssen, R.F.; Heck, B.

    2015-01-01

    The intra-plate deformation of the Upper Rhine Graben (URG) located in Central Europe is investigated using geodetic measurement techniques. We present a new approach to calculate a combined velocity field from InSAR, levelling and GNSS measurements. As the expected tectonic movements in the URG

  16. Fault structure, frictional properties and mixed-mode fault slip behavior

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Smith, S.A.F.; Marone, C.

    2011-01-01

    Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-modeslipbehavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the

  17. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    Science.gov (United States)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  18. Nonvolcanic tremors deep beneath the San Andreas Fault.

    Science.gov (United States)

    Nadeau, Robert M; Dolenc, David

    2005-01-21

    We have discovered nonvolcanic tremor activity (i.e., long-duration seismic signals with no clear P or S waves) within a transform plate boundary zone along the San Andreas Fault near Cholame, California, the inferred epicentral region of the 1857 Fort Tejon earthquake (moment magnitude approximately 7.8). The tremors occur between 20 to 40 kilometers' depth, below the seismogenic zone (the upper approximately 15 kilometers of Earth's crust where earthquakes occur), and their activity rates may correlate with variations in local earthquake activity.

  19. Le graben de l'Anti-Atlas occidental (Maroc) : contrôle tectonique de la paléogéographie et des séquences au Cambrien inférieurThe Lower-Cambrian western Anti-Atlasic graben: tectonic control of palaeogeography and sequential organisation

    Science.gov (United States)

    Benssaou, Mohammed; Hamoumi, Naı̈ma

    2003-03-01

    In the Moroccan western Anti-Atlas, the combined extensive tectonic events with a long-term sea-level rise is the main factor on building vertical stacking transgressive-regressive sequences. In the Ait Abdallah-Boussafene axis, the subsidence processes, relayed by a brutal platform tilting generated an elongated NE-SW graben. This is an evidence of the persistence of the Anti-Atlasic rifting process during the last part of the Lower-Cambrian succession.

  20. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  1. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the

  2. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    Science.gov (United States)

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  3. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  4. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    Science.gov (United States)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  5. 3D structure and conductive thermal field of the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  6. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    Science.gov (United States)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment

  7. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    Science.gov (United States)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as

  8. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  9. Interpretation of gravity profiles across the northern Oaxaca terrane, its boundaries and the Tehuacán Valley, southern Mexico

    Science.gov (United States)

    Campos-Enríquez, J. O.; Alatorre-Zamora, M. A.; Keppie, J. D.; Belmonte-Jiménez, S. I.; Ramón-Márquez, V. M.

    2014-12-01

    A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E-W to NE-SW discontinuity is inferred to exist between profiles 1 and 2.

  10. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  11. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  12. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  13. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    Science.gov (United States)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric

  14. Simulating spontaneous aseismic and seismic slip events on evolving faults

    Science.gov (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  15. Geologic History of Eocene Stonerose Fossil Beds, Republic, Washington, USA

    Directory of Open Access Journals (Sweden)

    George E. Mustoe

    2015-07-01

    Full Text Available Eocene lakebed sediments at Stonerose Interpretive Center in Republic, Washington, USA are one of the most important Cenozoic fossil sites in North America, having gained international attention because of the abundance and diversity of plant, insect, and fish fossils. This report describes the first detailed geologic investigation of this unusual lagerstätten. Strata are gradationally divided into three units: Siliceous shale that originated as diatomite, overlain by laminated mudstone, which is in turn overlain by massive beds of lithic sandstone. The sedimentary sequence records topographic and hydrologic changes that caused a deep lake to become progressively filled with volcaniclastic detritus from earlier volcanic episodes. The location of the ancient lake within an active graben suggests that displacements along the boundary faults were the most likely trigger for changes in depositional processes.

  16. Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.

    Science.gov (United States)

    Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.

    2014-12-01

    The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and

  17. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  18. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    Science.gov (United States)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  19. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  20. Additive recovery at lateral boundaries of grains under electronic exposure

    International Nuclear Information System (INIS)

    Plotnikov, S.V.; Postnikov, D.V.

    2000-01-01

    The experimental investigation of additive re-distribution under electronic beam revealed a recovery of the additive at grain boundaries. Additive accumulation mainly takes place at the boundaries that are perpendicular to material surface, whereas there is no an observed recovery of additive at the boundaries that are parallel to the surface. To construe the processes of additive recovery at grain boundaries, we may use the kinetic diffusion equation describing the mass transfer processes in the presence of temperature gradients and non-equilibrium vacancies. The additive recovery is caused by spot fault gradients near the grain boundary. The grain boundary is an intensive run-off region of vacancies. Therefore, the average vacancy distribution profile near the grain boundary changes its pattern. The above case indicates that there are two additive fluxes. One of them is vectored perpendicular to the surface, and the other one is parallel to it, i.e. it is vectored to the grain boundary. A study of the perpendicular and parallel boundaries shows that there is no additive settling at the boundaries that are parallel to the surface, since the general flux is vectored to the parallel boundaries. There is no such kind of phenomenon at the grain boundaries that are perpendicular to the surface. Besides, the perpendicular boundaries are more effective run-off regions for vacancies, since there is a slower build-up of the region with vacancies due to displacement of the vacancies to the surface