WorldWideScience

Sample records for include alumina yttrium

  1. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  2. Preparing magnetic yttrium iron garnet nanodot arrays by ultrathin anodic alumina template on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hui; Han, Mangui, E-mail: han-mangui@yahoo.com; Deng, Longjiang [National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zheng, Liang; Zheng, Peng; Qin, Huibin [Institute of Electron Device and Application, Hangzhou Dianzi University, Hangzhou 310008 (China); Wu, Qiong [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2015-08-10

    Ultrahigh density periodically ordered magnetic yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) nanodot arrays have been prepared by pulsed laser deposition through an ultrathin alumina mask (UTAM). UTAM having periodically ordered circularly shaped holes with 350 nm in diameter, 450 nm in inter-pore distance, and 700 nm in height has been prepared on silicon substrate. Furthermore, the microstructure and magnetic properties of YIG nanodot arrays have been characterized. Nanodot arrays with a sharp distribution in diameter centered at 340 nm with standard deviation of 10 nm have been fabricated. Moreover, typical hysteresis loops and ferromagnetic resonance spectra in in-plane and out-of-plane revealed that this unique structure greatly influences the magnetics properties of YIG. First, coercivity of YIG nanodot arrays in in-plane was increased about from 15 Oe of YIG films to 500 Oe. Then, the degree of uniformity about nanodot height decided that two or more resonance peaks in out-of-plane were detected in the spectra. The peak-to-peak linewidth values were about 94 Oe and 40 Oe in the parallel and perpendicular directions, respectively, which indicated that the values were larger by the two-magnon scattering. Consequently, this pattering method creates opportunities for studying physics in oxide nanomagnets and may be applied in spin-wave devices.

  3. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    International Nuclear Information System (INIS)

    Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G.

    2011-01-01

    Research highlights: → The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. → Y promoted selective oxidation of Cr due to refinement of alloy phase size. → The oxidation rate was further reduced by Y plus Al with a protective Al 2 O 3 scale. → The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 o C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  4. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  5. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  6. Production of yttrium

    International Nuclear Information System (INIS)

    Day, J.G.

    1980-01-01

    A process is described for the production of yttrium metal, or of an alloy comprising a major proportion of yttrium, in which calcium (metal) and yttrium fluoride are reacted together by use of a submerged electric arc in a molten slag. (author)

  7. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  8. Coprecipitation of yttrium and aluminium hydroxide for preparation of yttrium aluminium garnet

    NARCIS (Netherlands)

    Vrolijk, J.W.G.A.; Willems, J.W.M.M.; Metselaar, R.

    1990-01-01

    Coprecipitation of yttrium and aluminium hydroxide for the preparation of pure yttrium aluminium garnet (YAG) powder with small grain size is the subject of this study. Starting materials are sulphates and chlorides of yttrium and aluminium. To obtain pure YAG (Y3Al5O12), the pH during flocculation

  9. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  10. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  11. Interpretation of alumina/yttrium-aluminium garnet orientation relationships by geometric criteria

    International Nuclear Information System (INIS)

    Hay, R.S.; Matson, L.E.

    1991-01-01

    This paper reports on geometric criteria for low interface energy and interface structure were tested for the cubic-rhombohedral system YAG/alumina. Orientation relationships near (111)[110] a parallel (112)[110] y and facets on (111) a (112) y were observed in both sol-gel derived composites and directionally solidified eutectic composites. The Σ YAG = 12 near-CSL of 2[111], [110], [112] was inferred to be the preferred structural unit. Dislocations with b = 1/3[111] a and b = 1/2[110] a were observed and inferred to accommodate deviation from the structural unit, respectively. The [110] a, y direction met some of the criteria for an invariant line. Although the OR was explained by geometric criteria it would have been difficult to predict it with such criteria

  12. Porous Alumina Films with Width-Controllable Alumina Stripes

    Directory of Open Access Journals (Sweden)

    Huang Shi-Ming

    2010-01-01

    Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.

  13. Porous Alumina Films with Width-Controllable Alumina Stripes

    Science.gov (United States)

    2010-01-01

    Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406

  14. Solvent extraction studies on separation of yttrium from xenotime

    International Nuclear Information System (INIS)

    Singh, D.K.; Anitha, M.; Kain, V.

    2017-01-01

    Rare earths consists a group of 15 element from La to Lu in the periodic table and it also includes Sc and Y since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties. The unique physical-chemical properties of the REEs render them important in applications as varies as high strength magnets, lighting phosphors, policing compounds and ceramics. In particular, yttrium finds numerous applications in many areas including superconductors, lasers, phosphors, nuclear reactors, astronavigation, ceramics etc. Yttrium is chemically similar to heavy rare earths (HRE: terbium, dysprosium, erbium, holmium, ytterbium, thulium and lutecium). Yttrium behaves like HRE due to similarity in ionic radius and finds place between Ho and Er. The cross current profile in terms of the plot of concentration of yttrium in raffinate as a function of contact number indicated the complete recovery of rare earths from nitrate solution of xenotime wet cake

  15. Diffusion of hydrogen in yttrium

    International Nuclear Information System (INIS)

    Vorobyov, V.V.; Ryabchikov, L.N.

    1966-01-01

    In this work the diffusion coefficients of hydrogen in yttrium were determined from the rate at which the hydrogen was released from yttrium samples under a vacuum at temperatures of 450 to 850 0 C and from the quantity of hydrogen retained by yttrium at hydrogen pressures below 5 x 10 - 4 mm Hg in the same temperature range

  16. Ultrafiltro de alumina Alumina ultrafilter

    Directory of Open Access Journals (Sweden)

    M. F. de Souza

    1999-06-01

    Full Text Available Membranas de alumina AKP-50 foram preparadas sobre um substrato de alumina APC-SG de alta resistência mecânica. As membranas foram sinterizadas a 1000 °C e possuem uma distribuição estreita de poros de 40 a 90 nm, espessura média de 57 mm e taxa de fluxo de 0,4 m3/m2h. O filtro assim obtido é classificado como ultrafiltro sendo capaz de reter bactérias e alguns vírus. São quimicamente inertes e resistem a temperaturas inferiores a 1000 °C. A aderência entre as camadas permite a limpeza por contra-fluxo.Alumina ceramic membranes with unimodal pore size distribution in the 40 to 90 nm range were prepared on alumina porous substrates. The 57mm thickness membrane made from AKP-50 alumina shows 0,4 m3/m2h flow rate. The two layer substrate, prepared to have high mechanical strength, was made from commercially available APC-SG alumina. The filter made of three layers, membrane, intermediate layer and substrate, is classified as ultra-filter being able to retain bacteria and some viruses. Adherence between the three layers allows reverse washing. Filters are chemically inert and resistant to temperatures below 1000oC.

  17. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium

  18. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    Science.gov (United States)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  19. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    International Nuclear Information System (INIS)

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  20. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  1. Synthesis of Alumina using the solvo thermal method

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2007-01-01

    The paper describes work done on synthesis of α- and β-alumina by using the solvo thermal technique. Synthesis of both these aluminas involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD) technique was used to identify α-alumina and β-alumina. After establishing the optimum conditions for the production of a single-phase α- and β-aluminas, characteristic study on the product was performed. An important parameter in establishing nano sized powders is their crystallite size and analysis of the β-alumina shows that it is a nano sized powder with a size of 28 nm while the α-alumina has a crystallite size of 200 nm. Other properties analysed include morphology, surface area and particle size. (author)

  2. The examination of calcium ion implanted alumina with energy filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Hunt, E.M.; Hampikian, J.M.

    1997-01-01

    Ion implantation can be used to alter in the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca + to a fluence of 5 x 10 16 ions/cm 2 . Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ∼7--8 nm in diameter. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium. Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals. EFTEM has confirmed that the aluminum present in the particles is metallic in nature, that the particles are oxygen deficient in comparison with the matrix material and that the particles are deficient in calcium, and therefore not likely to be calcia. The particles thus appear to be FCC Al (possibly alloyed with a few percent Ca) with a lattice parameter of 0.409nm. A similar result was obtained for yttrium ion implantation into alumina

  3. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  4. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    Science.gov (United States)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  5. Study on alumina-alumina brazing for application in vacuum chambers of proton synchrotron

    International Nuclear Information System (INIS)

    Yadav, D.P.; Kaul, R.; Ganesh, P.; Shiroman, Ram; Tiwari, Pragya; Sridhar, R.; Kukreja, L.M.

    2013-01-01

    The paper describes an experimental study to standardize vacuum brazing process to obtain satisfactory high purity alumina brazed joints for application in rapid cycle proton synchrotron machine. Two different brazing routes, adopted for making alumina-alumina brazed joints, included (i) multi-step Mo-Mn metallization and brazing with BVAg-8 alloy and (ii) advanced single-step active brazing with CuSil-ABA alloy. Brazed alumina specimens, prepared by both the routes, yielded ultra high vacuum compatible, helium leak tight and bakeable joints. Active-brazed specimens exhibited satisfactory strength values in tensile and four-point bend tests. Metallized-brazed specimens, although exhibited relatively lower tensile strength than the targeted value, displayed satisfactory flexural strength in four-point bend test. The results of the study demonstrated that active brazing is the simple and cost effective alternative to conventional metallization route for producing satisfactory brazed joints for application in rapid cycle proton synchrotron machine. (author)

  6. Synthesis of nano γ-alumina by the solvothermal technique

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muslimin

    2006-01-01

    The paper describes work done on synthesis of γ-alumina by using the solvo thermal technique. Synthesis of γ-alumina involves the transition reactions of the aluminium hydroxide into alumina by a dehydroxylation process. As there are many forms of transition aluminas produced during this process, a x-ray diffraction (XRD) technique was used to identify γ-alumina and the other forms of alumina. After establishing the optimum conditions for the production of a single-phase γ-alumina, characteristic study on the product was performed. An important parameter in establishing nanosized powders is their crystallite size and analysis of the γ-alumina shows that it is a nanosized powder with a size of 28 nm. Other properties analysed include morphology, surface area and particle size. (Author)

  7. Kinetics of yttrium dissolution from waste ceramic dust

    OpenAIRE

    STOPIC SRECKO R.; FRIEDRIH BERND G.

    2016-01-01

    Yttrium is a silvery transition metal and has similar chemical properties to lanthanoids. Because of this similarity, yttrium belongs to rare earth elements. Ytttrium and yttrium oxide are mostly used in fluoroscent lamps, production of electrodes, in electronic filters, lasers, superconductors and as additives in various materials to improve their properties. Yttrium is mainly recovered from the minerals monazite [(Ce,La,Th,Nd,Y)PO4] and xenotime YPO4.The presence of radioactive elements suc...

  8. Interaction of RBa sub 2 Cu sub 3 O sub x (R = Y or Nd) coatings with alumina and zirconia substrates. [YBaCuO; NdBaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C; Parent, L; Champagne, B; Dallaire, S [National Research Council of Canada, Industrial Materials Research Inst., Boucherville, PQ (Canada)

    1989-12-10

    As-deposited YBa{sub 2}Cu{sub 3}O{sub x} coatings by plasma spraying are not superconducting because of their inadequate crystalline structure and low oxygen content. A post-deposition heat treatment in oxygen is required to restore the appropriate superconducting YBa{sub 2}Cu{sub 3}O{sub x} structure. During heat treatment, deterimental reactions between coatings and substrates may occur and lead to the degradation or destruction of the coating superconducting properties. In the present paper, interactions of RBa{sub 2}Cu{sub 3}O{sub x} (R = Y, Nd) coatings with alumina and zirconia substrates are examined. The modifications of the coating electrical properties and microstructure are studied using X-ray diffraction, energy dispersive X-ray analysis and resistivity measurements. Coating degradation is shown to occur by diffusion of the barium atoms out of the coating leading to the formation of Y{sub 2}BaCuO{sub 5} and CuO in yttrium-based coatings, and to the formation of nonstoichiometric Nd{sub 1+y}Ba{sub 2-y}Cu{sub 3}O{sub x} and CuO in neodymium-based coatings. The coating degradation is more important on alumina substrates that on zirconia substrates for both yttrium- and neodymium-based coatings. (orig.).

  9. Interaction of oxygen vacancies in yttrium germanates

    KAUST Repository

    Wang, Hao

    2012-01-01

    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  10. Ionic and molecular transport in beta- and beta''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.

    1984-03-01

    Investigations of rapid transport of cations and water molecules in the β- and β''-alumina family of superionic conductors are reviewed. Particular topics that are discussed include the Haven ratio and mixed-ion effects in β-alumina, and the influence of superlattice ordering on ionic transport in β''-alumina

  11. Features of solid solutions composition in magnesium with yttrium alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Tarytina, I.E.

    1983-01-01

    Additional data on features of yttrium solid solutions composition in magnesium in the course of their decomposition investigation in the case of aging are obtianed. The investigation has been carried out on the base of a binary magnesium-yttrium alloy the composition of which has been close to maximum solubility (at eutectic temperature) and magnesium-yttrium alloys additionally doped with zinc. It is shown that higher yttrium solubility in solid magnesium than it has been expected, issueing from the difference in atomic radii of these metals indicates electron yttrium-magnesium atoms interaction. In oversaturated magnesium-yttrium solid solutions at earlier decomposition stages Mg 3 Cd type ordering is observed. At aging temperatures up to 250 deg C and long exposures corresponding to highest strengthening in oversaturated magnesium yttrium solid solutions a rhombic crystal lattice phase with three symmetric orientations is formed

  12. Dynamic tensile response of alumina-Al composites

    International Nuclear Information System (INIS)

    Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.

    2002-01-01

    Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here

  13. Extraction of nitrates of lanthanoids (3) of the yttrium group and yttrium (3) by trialkylbenzylammonium nitrate in toluene

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kovalev, S.V.; Keskinov, V.A.; Kopyrin, A.A.

    1997-01-01

    A study was made on extraction of nitrates of lanthanoids (3) of the yttrium group (terbium-lutetium) and yttrium (3) by trialkylbensylammonium nitrate in toluene at T=298.15 K pH 2. Extraction isotherms are described with account of formation of compound of (R 4 N) 2 [Ln(NO 3 ) 5 ] composition in organic phase. Values of extraction constants decreasing in terbium (3)-lutetium (3) series, were calculated. Value of extraction constant for yttrium (3) is close to the value of extraction constant for ytterbium (3). 13 refs., 2 figs., 3 tabs

  14. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  15. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-12-01

    Full Text Available The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al2O3-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  16. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration.

    Science.gov (United States)

    Wang, Bo; Lee, Melanie; Li, Kang

    2015-12-30

    The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ) reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al₂O₃-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  17. Yttrium synovectomy: a meta-analysis of the literature

    International Nuclear Information System (INIS)

    Jones, G.

    1993-01-01

    Yttrium synovectomy for chronic synovitis of the knee enjoys widespread usage in Australia with approximately 400 patients receiving yttrium-90 in 1991. Despite abundant anecdotal evidence of its efficacy there is a paucity of controlled trials and those that have been done have produced conflicting results and have been of insufficient sample size. To critically and quantitatively evaluate the published English literature on comparative trials of yttrium-90 therapy for chronic synovitis of the knee, the technique of meta-analysis was utilised. The literature search was carried out using the MeSH terms of synovectomy and knee; and yttrium. This was augmented by referring to reviews, current textbooks and back-references. Outcome measures varied between trials but could be grouped as treatment success. The Peto modification of Mantel and Haenszl was used for statistical pooling of data yielding a pooled odds ratio (OR). The literature search revealed ten controlled trials of which two were excluded from further analysis. It was found that yttrium was superior to placebo (OR 2.42, 95% CI 1.02-5.73) but it is recommended that this result should be interpreted with caution due to possible publication bias. It is concluded that there is insufficient evidence from comparative trials of yttrium in the English literature to show that yttrium synovectomy is convincingly superior to triamcinolone (OR 1.89, 95% CI 0.81-10.55) or other active modalities (OR 1.04, 95% CI 0.72-1.52). 25 refs., 4 tabs

  18. On the use of hydrogen peroxide as a masking agent for the determination of yttrium in uranium oxide - yttrium oxide mixture

    International Nuclear Information System (INIS)

    Rastogi, R.K.; Chaudhuri, N.K.; Rizvi, G.H.; Subramanian, M.S.

    1985-01-01

    The use of peroxide as a masking agent for uranium during the EDTA titration of yttrium in an yttrium-uranium mixture containing large amounts of uranium was investigated. High acetate ion concentration was necessary to keep the peroxy complex of uranium in solution during the titration. It was observed that uranium could be tolerated up to 500 mg in the determination of yttrium with 0.5 ml of 30% hydrogen peroxide in approx. 1M acetate medium. The precision and accuracy of the method based on 16 determinations of yttrium at 6-16 mg level in the presence of 300 mg uranium was found to be +-0.2%. (author)

  19. Surface modifications induced by yttrium implantation on low manganese-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Univ. Blaise Pascal Clermont-Fd II, Le Puy en Velay (France). Lab. Vellave d' Elaboration et d' Etude des Materiaux; Haanapel, V.A.C.; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Health and Consumer Protection, Joint Research Center, The European Commission, 21020, Ispra (Italy)

    1999-12-15

    Low manganese-carbon steel samples were ion implanted with yttrium. Sample compositions and structures were investigated before and after yttrium implantations to determine the yttrium distribution in the sample. Yttrium implantation effects were characterized using several analytical and structural techniques such as X-ray photoelectron spectroscopy, reflection high energy electron diffraction, X-ray diffraction, glancing angle X-ray diffraction and Rutherford backscattering spectrometry. In this paper it is shown that correlation between composition and structural analyses provides an understanding of the main compounds induced by yttrium implantation in low manganese-carbon steel. (orig.)

  20. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  1. Pt/Au nanoalloy supported on alumina and chlorided alumina: DFT and experimental analysis

    Science.gov (United States)

    Sharifi, N.; Falamaki, C.; Ghorbanzadeh Ahangari, M.

    2018-04-01

    Density functional theory (DFT) was used to explore the adsorption of Pt/Au nanoalloy onto a pure and chlorided γ-Al2O3(110) surface, which has been applied in numerous catalytic reactions. First, we considered the adsorption properties of Pt clusters (n ≤ 5) onto the Al2O3(110) surface to determine the most stable Pt cluster on alumina surface in reforming processes. After full structural relaxations of Pt clusters at various configurations on alumina, our computed results expressed that the minimum binding energy (‑5.67 eV) is accrued for Pt4 cluster and the distance between the nearest Pt atom in the cluster to the alumina surface is equal to 1.13 Å. Then, we investigated the binding energies, geometries, and electronic properties of adsorbed Aun clusters (n ≤ 6) on the γ-Al2O3(110) surface. Our studied showed that Au5 was the most thermodynamically stable structure on γ-Al2O3. Finally, we inspected these properties for adsorbed Au clusters onto the Pt4-decorated alumina (Aun/Pt4-alumina) system. The binding energy of the Au4/Pt4-alumina system was ‑5.01 eV, and the distance between Au4 cluster and Pt4-alumina was 1.33 Å. The Au4/Pt4alumina system was found to be the most stable nanometer-sized catalyst design. At last, our first-principles calculations predicted that the best position of embedment Cl on the Au4/Pt4-alumina.

  2. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths

    Directory of Open Access Journals (Sweden)

    Anne Galarneau

    2012-02-01

    Full Text Available A new rapid, very simple and one-step sol-gel strategy for the large-scale preparation of highly porous γ-Al2O3 is presented. The resulting mesoporous alumina materials feature high surface areas (400 m2 g−1, large pore volumes (0.8 mL g−1 and the ��-Al2O3 phase is obtained at low temperature (500 °C. The main advantages and drawbacks of different preparations of mesoporous alumina materials exhibiting high specific surface areas and large pore volumes such as surfactant-nanostructured alumina, sol-gel methods and hierarchically macro-/mesoporous alumina monoliths have been analyzed and compared. The most reproducible synthesis of mesoporous alumina are given. Evaporation-Induced Self-Assembly (EISA is the sole method to lead to nanostructured mesoporous alumina by direct templating, but it is a difficult method to scale-up. Alumina featuring macro- and mesoporosity in monolithic shape is a very promising material for in flow applications; an optimized synthesis is described.

  3. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  4. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  5. alumina solid electrolyte

    Indian Academy of Sciences (India)

    -β/β -alumina ceramics come from two parent phases designated as β-alumina and β ..... Acknowledgements. This work was supported by the Energy Efficiency & ... of Trade, Industry & Energy, Republic of Korea (No. 20142010102460).

  6. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    International Nuclear Information System (INIS)

    Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-01-01

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes

  7. Method for chromatographically recovering scandium and yttrium

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1991-01-01

    This paper describes a method for chromatographically recovering scandium and yttrium from the residue of a sand chlorinator. It comprises: providing a residue from a sand chlorinator, the residue containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; digesting the residue with an acid to produce an aqueous liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium; feeding the metal containing liquid through a cation exchanger; eluding the cation exchanger with an acid eluant to to produce: a first eluate containing at least half of the total weight of the calcium and sodium in the feed liquid; a second eluate containing at least half of the total weight of the one or more radioactive metals in the feed liquid; a third eluate containing at least half of the yttrium in the feed liquid, and a fourth eluate containing at least half of the weight of the scandium in the feed liquid

  8. Cold Spray Aluminum–Alumina Cermet Coatings: Effect of Alumina Content

    Science.gov (United States)

    Fernandez, Ruben; Jodoin, Bertrand

    2018-04-01

    Deposition behavior and deposition efficiency were investigated for several aluminum-alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.

  9. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  10. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  11. Everlasting Dark Printing on Alumina by Laser

    Science.gov (United States)

    Penide, J.; Quintero, F.; Arias-González, F.; Fernández, A.; del Val, J.; Comesaña, R.; Riveiro, A.; Lusquiños, F.; Pou, J.

    Marks or prints are needed in almost every material, mainly for decorative or identification purposes. Despite alumina is widely employed in many different industries, the need of printing directly on its surface is still a complex problem. In this sense, lasers have largely demonstrated their high capacities to mark almost every material including ceramics, but performing dark permanent marks on alumina is still an open challenge. In this work we present the results of a comprehensive experimental analysis on the process of marking alumina by laser. Four different laser sources were used in this study: a fiber laser (1075 nm) and three diode pumped Nd:YVO4 lasers emitting at near-infrared (1064 nm), visible (532 nm) and ultraviolet (355 nm) wavelengths, respectively. The results obtained with the four lasers were compared and physical processes involved were explained in detail. Colorimetric analyses allowed to identify the optimal parameters and conditions to produce everlasting and high contrast marks on alumina.

  12. N-m-nitrocinnamoylphenylhydroxyl-amine as reagent for amperometric determination of yttrium

    International Nuclear Information System (INIS)

    Oliferenko, G.L.; Gallaj, Z.A.; Sheina, N.M.; Shvedene, N.V.

    1983-01-01

    Possibility of using organic reagent of unsaturated N-arylsubstituted derivatives class of hydroxamic acids N-m-nitrocinnamoyl phenylhydroxylamire (NCPHA) for amperometric titration of yttrium using indication of e.t.p. by current of reagent oxidation on graphite electrode is investigated. Metal and the NCPHA form difficultly soluble complex with ratio of yttrium to the NCPHA, which is equal to 1:3. Buffer mixtures of 0.1MNH 3 +0.1MCH 3 COOH composis tion with pH 6.3-7.5 are optimal background solutions for amperometric titration of yttrium. The proposed method permits to determine 10-600 μkg of yttrium in the volume of 10 ml. Effect of the series of strange elements on titration of yttrium with NCPHA (Ca, Mg, Mn (2), Al, CU (2), Fe (3) REE and others) is studied. The developed method is used for yttrium determination in luminophores of Casub(n)-- Ysub(m)Fsub(z)xMn(2) (1-10%) composition

  13. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    International Nuclear Information System (INIS)

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-01-01

    Highlights: → Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. → The use of sulphuric acid allows to reduce calcium dissolutions. → Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. → Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). → We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO 3 produces toxic vapours. A full factorial design is carried out with HCl and H 2 SO 4 to evaluate the influence of operating factors. HCl and H 2 SO 4 leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H 2 SO 4 concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H 2 SO 4 medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid

  14. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  15. Yttrium doped BSCF membranes for oxygen separation

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2011-01-01

    This work investigates the partial substitution of yttrium in place of iron in BSCF to form Ba0.5Sr0.5Co0.8Fe0.2−xYxO3−δ, where x varied between 0 and 0.2. X-ray diffraction patterns showed the formation of a perovskite cubic phase structure up to x = 0.15, whilst the full substitution of yttrium...

  16. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate; Aproveitamento de itrio e lantanio de um carbonato de terras raras de baixo teor em cerio, de um carbonato de itrio e de um oxido de terras itricas

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Mari Estela de

    2006-07-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  17. Thermoanalytical study of the formation mechanism of yttria from yttrium acetate

    International Nuclear Information System (INIS)

    Farjas, J.; Camps, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.

    2011-01-01

    Highlights: → Thermal decomposition of yttrium acetate: three endothermic stages. → Intermediates: yttrium hydroxide and carbonate. → Product: cubic yttria (the degree of transformation is at least 99%). → The decomposition does not depend on the oxygen partial pressure. - Abstract: The processes involved in the thermal decomposition of yttrium acetate tetrahydrate, Y(CH 3 COO) 3 .4H 2 O, in air and in an inert atmosphere have been analyzed by thermoanalytical techniques (thermogravimetry, differential thermal analysis and evolved gas analysis) and by the structural characterization (X-ray diffraction, infrared spectroscopy, elemental analysis and scanning electron microscopy) of intermediates and final products. Decomposition of yttrium acetate is an endothermic transformation that takes place in a temperature range between 350 and 900 o C. The evolution of the mass during the decomposition process is not affected by the presence of oxygen. The process is initiated by the rupture of the bond between the metallic cation and the acetate ligand. This initial step (350-450 o C) involves the formation of amorphous yttrium hydroxide and yttrium carbonate and is characterized by a fast mass loss rate. A sudden decrease of the mass loss rate indicates a change in the decomposition kinetics that continues with the decomposition of yttrium hydroxide and yttrium carbonate. The main effect of an oxygen atmosphere is an intense exothermic process due to the combustion of organic species in the gas phase.

  18. Studies on yttrium oxide coatings for corrosion protection against molten uranium

    International Nuclear Information System (INIS)

    Chakravarthy, Y.; Bhandari, Subhankar; Pragatheeswaran; Thiyagarajan, T.K.; Ananthapadmanabhan, P.V.; Das, A.K.; Kumar, Jay; Kutty, T.R.G.

    2012-01-01

    Yttrium oxide is resistant to corrosion by molten uranium and its alloys. Yttrium oxide is recommended as a protective oxide layer on graphite and metal components used for melting and processing uranium and its alloys. This paper presents studies on the efficacy of plasma sprayed yttrium oxide coatings for barrier applications against molten uranium

  19. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  20. Bauxite Mining and Alumina Refining

    Science.gov (United States)

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  1. Thermal decomposition of yttrium(III) propionate and butyrate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2013-01-01

    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...

  2. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  3. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  4. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  5. Alumina Yield in the Bayer Process

    Science.gov (United States)

    Den Hond, R.

    The alumina industry has historically been able to reduce alumina production costs, by increasing the liquor alumina yield. To know the potential for further yield increases, the phase diagram of the ternary system Na2O-Al2O -H2O at various temperature levels was analysed. It was found that the maximum theorical precipitation alumina yield is 160 g/l, while that for digestion was calculated to be 675 g/l.

  6. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    % alumina dissolves in spinel (MgAl2O4) at 1600°C. Solid solubility of alumina in spinel decreases rapidly with decreasing temperature, which causes exsolution of alumina from spinel phase. Previous work of one of the authors revealed that ...

  7. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  8. Sol gel synthesis for preparation of yttrium aluminium garnet

    NARCIS (Netherlands)

    Vrolijk, J.W.G.A.; Willems, J.W.M.M.; Metselaar, R.; With, de G.; Terpstra, R.A.; Metselaar, R.

    1989-01-01

    Sol-gel—synthesis for preparation of pure yttrium aluminium garnet powder with small grain size is subject of this ongoing study. Starting materials were sulfates and chlorides of yttrium and aluminium. To obtain pure YAG (Y3A1SO1Z) pH during hydrolysis as well as temperature during calcination and

  9. Reuse of activated alumina

    Energy Technology Data Exchange (ETDEWEB)

    Hobensack, J.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  10. Attrition resistant gamma-alumina catalyst support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  11. Synthesis and characterization of mesoporous ceria/alumina nanocomposite materials via mixing of the corresponding ceria and alumina gel precursors.

    Science.gov (United States)

    Khalil, Kamal M S

    2007-03-01

    Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.

  12. A novel technique for synthesizing dense alumina nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pancholi, A [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Stoleru, V G [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Kell, C D [Department of Chemical Engineering, University of Delaware, Newark, DE 19716 (United States)

    2007-05-30

    The formation of highly ordered nanoporous alumina membranes by anodizing high-purity aluminium under optimum conditions (i.e., anodization time, electrolyte temperature, and cell voltage) in various electrolyte solutions is a well established process. In this paper we report on the formation of a wide range of alumina nanostructures, including nanotubes/nanochannels, nanoplates, and nanofibres, by using a technique that involves anodization and etching processing steps similar to the ones that yield nanopores, under slightly modified experimental conditions. The effects of the anodization voltage, time, and temperature, as well as the effects of the etching time, on the formation and the properties of the alumina nanostructures are analysed. We propose a simple analytical model to describe the formation of different types of alumina nanostructures, as a result of irreversible breakage of the pore walls for long etching times. The geometry of the nanostructures and their dimensions, ranging between 10 and 100 nm, were found to be dependent on the pore dimensions and on the location of the cleavage/breakage of the pore walls.

  13. Microstructure and magnetic properties of yttrium alumina silicate glass microspheres containing iron oxide

    International Nuclear Information System (INIS)

    Sharma, K.; Basak, C.B.; Prajapat, C.L.; Singh, M.R.

    2015-01-01

    Yttrium alumino-silicate glass microspheres have been used for localized delivery of high radiation dose to tissues in the treatment of hepatocellular carcinoma (BCC) and synovitis. 90 Y is a pure beta emitter with beta emission energy of 0.9367 MeV, average penetration range in tissue 2.5 mm, physical half-life of 64.2 h, thus an effective radioisotope for delivering high radiation dose to the tumor. The efficacy of radiotherapy can further be improved if the glass microspheres are doped with magnetic particles for targeted delivery of high radiation dose. Magnetic glass microspheres can also be utilized for cancer treatment using the magnetic heating of tumor cell. The magnetic glass microspheres are obtained from the glasses with nominal composition (64-x) SiO 2 -17Y 2 O 3 -19 Al 2 O 3 -xFe 2 O 3 (x=4-16 mol %). Density of glasses increases from 3.5g/cc to 3.8g/cc as iron oxide content is increased from 4 to 16 mol %. The glass transition temperature and peak crystallization temperature decreases as the iron oxide content increases. T g values of glass samples decreases with increase of Fe 2 O 3 , while SiO 2 content is decreased. SiO 2 is a network forming oxide and a decrease in the network former in glass lead to decrease in thermo-physical properties like T g . The development of ferrimagnetic crystallites in glasses arise from the conversion of iron oxide into magnetite, magnemite and hematite, which is influenced by the structural and ordering of magnetic particles. The microstructure of glass-ceramic exhibited the formation of 50-100 nm size particles. The magnetite and hematite are formed as major crystalline phases. The magnetization values increased with an increase of iron oxide content and attributed to formation of magnetite phase. Results have shown that the glass microspheres with magnetic properties can be used as potential materials for cancer treatment. (author)

  14. Wear of alumina on alumina total hip prosthesis - effect of lubricant on hip simulator test

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M.; Amino, H. [Kyocera Corp., Fushimi, Kyoto (Japan). Bioceram Div.; Oonishi, H. [Dept. of Orthopaedic Surgery, Artificial Joint Sect. and Biomat. Res. Lab., Osaka Minami National Hospital, Osaka (Japan); Clarke, I.C.; Good, V. [Dept. of Orthopaedic Surgery, Loma Linda Univ. Medical Center, CA (United States)

    2001-07-01

    The complex wear-friction-lubrication behavior of alumina on alumina combination in total hip prostheses (THP) was investigated using a hip joint simulator. The objectives of this study were to evaluate the effect of the ball/cup clearance and of the lubricant conditions. Alumina bearings were categorized in three diametrical clearances, 20-30, 60-70 and 90-100 micrometer, three each and wear tests were carried out with 90% bovine serum. There was no significant difference between three groups. Volumetric wear in the run-in phase for all tested nine ceramic liners averaged 0.27mm{sup 3}/million cycles and in the steady-state phase averaged 0.0042mm{sup 3}/million cycles. In addition to the 90% serum, 27% serum and saline were used as the lubricant for evaluate the effect of serum concentration on alumina on alumina wear couples. The wear test results showed that in all tested conditions the wear trends of alumina BEARING were bi-phasic and wear volume could be affected by the serum concentration. Both ''Run-in'' and ''Steady-state'' wear rates in 90% bovine serum were three times higher than those in saline. (orig.)

  15. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  16. Control of porosity in alumina for catalytic purposes - a review; Controle de porosidade em aluminas para fins cataliticos - uma revisao

    Energy Technology Data Exchange (ETDEWEB)

    Moure, Gustavo Torres [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Hidrorrefino, Lubrificantes e Parafinas; Morgado Junior, Edisson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Setor de Tecnologia de Craqueamento Catalitico; Figueiredo, Cecilia Maria C.

    1999-12-01

    In recent years, the Alumina Group, of the Catalysts Division of CENPES, has dedicated research to develop and characterize alumina for the catalytic processes of interest to PETROBRAS. Control of the texture of the alumina and, consequently, the alumina based catalysts, is crucially important to their adequacy and performance. Knowledge of the porosity formation mechanisms in alumina was fundamental for the development of catalysts to satisfy the demand from PETROBRAS. This comprises the scope of this review. (author)

  17. A High-Purity Alumina for Use in Studies of Shock Loaded Samples

    Science.gov (United States)

    Lacina, David; Neel, Christopher

    2017-06-01

    We report the results of plate impact experiments on a potential new ``standard'' material, Coorstek Plasmapure-UC (99.9% purity) polycrystalline alumina, for use in non-conduction, impact environment, shock loading studies. This work was motivated by a desire to find a 99.9% purity alumina to replace the now unavailable Coors Vistal (99.9%) alumina, as it was hoped the Hugoniot elastic limit (HEL) of the new standard would match the 9-11 GPa value of Vistal. Shock response data, including the HEL, Hugoniot particle velocities, Hugoniot shock velocities, stress vs volume, and release wave speeds, was obtained up to 14 GPa. This data will be compared with Hugoniot curve data for other high purity alumina to contrast differences in the shock response, and is intended to be useful in impedance matching calculations. We will show that the HEL of Plasmapure-UC alumina is 5.5 GPa and speculate on causes for this lower than expected value. We will also explore why the elastic-plastic response for Plasmapure-UC alumina differs from what has been observed from other high purity alumina. The final result of this work is to recommend a well-characterized, lower purity alumina (Coorstek AD-995) as a potential new ``standard'' material.

  18. Spectrophotometric determination of yttrium with 2-(2-thiazolylazo)-5-dimethylaminophenol

    International Nuclear Information System (INIS)

    Tsurumi, Chikao; Furuya, Keiichi.

    1975-01-01

    Spectrophotometric determination of small amounts of yttrium with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM) in the presence of zephiramine was investigated. The recommended procedures were as follows; 2.0 ml of water, 7.0 ml of TAM-methanolic solution (2x10 -4 mol/l) and 2.0 ml of zephiramine-aqueous solution (1x10 -2 mol/l) were added to a solution containing less than 35 μg of yttrium and its pH was adjusted to 8.0 with 0.1 mol/l ammonium chloride-0.1 mol/l ammonium hydroxide solution. The solution was transferred to a 25 ml volumetric flask and diluted to the mark with water. After 20 minutes, the absorbance at 575 nm against a reagent blank was measured. The color of yttrium-TAM complex is reddish-violet in the presence of zephiramine and is stable for 90 minutes after color development. The yttrium-TAM complex shows an absorption maximum at 575 nm. The absorbance at 575 nm is constant in a pH range from 7.5 to 8.3. The molar extinction coefficient at this wavelength is 7.2x10 4 l.mol -1 .cm -1 . The band obeys Beer's law up to the concentration of 1.4 μg/ml of yttrium. The molar ratio of yttrium to TAM in the complex is 1 : 2. A number of ions interfere with the determination can be masked by the addition of various masking agents and removed in terms of trioctylamine-xylene extraction. Manganese, tantalum, tin(II), citrate and tartrate ions interfere with the determination. (auth.)

  19. Mullite-alumina functionally gradient ceramics

    International Nuclear Information System (INIS)

    Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.

    1993-01-01

    Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)

  20. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Science.gov (United States)

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

    2014-04-01

    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. © 2013 Wiley Periodicals, Inc.

  1. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  2. Transport properties of alumina nanofluids

    International Nuclear Information System (INIS)

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-01-01

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various

  3. Attempts at treating rheumatoid arthritis with radioactive yttrium

    International Nuclear Information System (INIS)

    Scott, J.T.

    1979-01-01

    Two years' observations on 33 knee joints in 33 patients with rheumatoid arthritis did not prove a therapeutic effect of Y 90 , which was tested in a randomized study against non-radioactive yttrium. It was noticable that 9 knee joints of the isotope group but only one of the control group became unstable. Independent of the yttrium treatment, significant improvement was noticed in patients where fibrin clots had been washed out of the joints in the course of arthroscopies. (orig.) [de

  4. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  5. Yttrium-90 - ED 4310

    International Nuclear Information System (INIS)

    Ammerich, M.; Frot, P.; Gambini, D.; Gauron, C.; Moureaux, P.; Herbelet, G.; Lahaye, T.; Pihet, P.; Rannou, A.; Vidal, E.

    2013-03-01

    This sheet presents the characteristics of yttrium-90, its origin, and its radio-physical and biological properties. It briefly describes its use in nuclear medicine. It indicates its dosimetric parameters for external exposure, cutaneous contamination, and internal exposure due to acute contamination or to chronic contamination. It indicates and comments the various exposure control techniques: ambient dose rate measurement, surface contamination measurement, atmosphere contamination. It addresses the means of protection: premise design, protection against external exposure and against internal exposure. It describes how areas are delimited and controlled within the premises: regulatory areas, controls to be performed. It addresses the personnel classification, training and medical survey. It addresses the issue of solid and liquid wastes and liquid or gaseous effluents. It briefly recalls the administrative procedures related to the authorization and declaration of possession and use of sealed and unsealed sources. It indicates regulatory aspects related to the transport of yttrium-90, describes what is to be done in case of incident or accident (for the different types of contamination or exposure)

  6. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    Science.gov (United States)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  7. Physicochemical analysis of cryocrystallization processes of aqueous solutions of yttrium, barium, copper nitrates and their mixtures

    International Nuclear Information System (INIS)

    Kulakov, A.B.; Mozhaev, A.P.; Tesker, A.M.; Churagulov, B.R.

    1992-01-01

    Products of fast hardening of aqueous solutions of different concentration of yttrium, barium copper nitrates and their mixtures including mixture of three nitrates with molar ratio equal to 1:2:3 used for synthesis of YBa 2 Cu 3 O 7-x HTSC by cryochemical technique, in liquid nitrogen, are studied using low-temperature, differential thermal and X-ray phase analyses. Aqueous solutions of barium, copper, yttrium nitrates are shown to belong to three different classes which differ in behaviour at fast cooling and subsequent slow heating. Cryogranulate at YBa 2 Cu 2 O 7-x synthesis using cryochemical technique represents mixture of X-ray amorphous Ba(NO 3 ) 2 , crystalline Cu(NO 3 ) 2 ·6H 2 O and ice, as well as, supercooled aqueous solution of yttrium and copper nitrates

  8. Photocatalysis of Yttrium Doped BaTiO3 Nanofibres Synthesized by Electrospinning

    Directory of Open Access Journals (Sweden)

    Zhenjiang Shen

    2015-01-01

    Full Text Available Yttrium doped barium titanate (BT nanofibres (NFs with significant photocatalytic effect were successfully synthesized by electrospinning. Considering the necessary factors for semiconductor photocatalysts, a well-designed procedure was carried out to produce yttrium doped BT (BYT NFs. In contrast to BYT ceramics powders and BT NFs, BYT NFs with pure perovskite phase showed much enhanced performance of photocatalysis. The surface modification in electrospinning and subsequent annealing, the surface spreading of transition metal yttrium, and the narrowed band gap energy in yttrium doping were all contributed to the final novel photocatalytic effect. This work provides a direct and efficient route to obtain doped NFs, which has a wide range of potential applications in areas based on complex compounds with specific surface and special doping effect.

  9. The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments.

    Science.gov (United States)

    Cacaina, D; Ylänen, H; Simon, S; Hupa, M

    2008-03-01

    The study aims at the manufacture and investigation of biodegradable glass microspheres incorporated with yttrium potentially useful for radionuclide therapy of cancer. The glass microspheres in the SiO2-Na2O-P2O5-CaO-K2O-MgO system containing yttrium were prepared by conventional melting and flame spheroidization. The behaviour of the yttrium silicate glass microspheres was investigated under in vitro conditions using simulated body fluid (SBF) and Tris buffer solution (TBS), for different periods of time, according to half-life time of the Y-90. The local structure of the glasses and the effect of yttrium on the biodegradability process were evaluated by Fourier Transform Infrared (FT-IR) spectroscopy and Back Scattered Electron Imaging of Scanning Electron Microscopy (BEI-SEM) equipped with Energy Dispersive X-ray (EDX) analysis. UV-VIS spectrometry and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used for analyzing the release behaviour of silica and yttrium in the two used solutions. The results indicate that the addition of yttrium to a bioactive glass increases its structural stability which therefore, induced a different behaviour of the glasses in simulated body environments.

  10. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  11. Yttrium addition for high temperatures stainless steel

    International Nuclear Information System (INIS)

    Furtado, Nelson Cesar Chaves Pinto

    1997-07-01

    The current work studied the effect of Yttrium on the microstructure of 2% Nb, modified - HP steel, with respect to its mechanical properties. Alloys were prepared with nominal Yttrium additions of 0,1% and 0,25%. Microstructural analyses and mechanical tests were undertaken in the as-cast condition and after ageing for 100 h at 700 deg C, 900 deg C and 1100 deg C. Structural characterization was performed by optical microscopy, scanning and transmission electron microscopy (SEM/TEM/EDS), X-ray diffractometry and X-ray photoelectron spectroscopy (XPS). Tensile testing was performed at room temperature and 871 deg C and creep testing at 925 deg C at a loading of 55 MPa. The material produced exhibited superior mechanical properties and surface oxidation resistance than traditional alloys of this class, even through gravity cast in a magnetic furnace. Agglomerates of Yttrium-rich phases were identifies in both as-cast and aged specimens, always associated with chromium carbides of characteristic morphologies. These morphologies, combined with the microstructural constituents, may have established the factors which resulted in the improved metallurgical stability of these alloys under the experimental testing conditions and temperatures which simulated real industrial service conditions and temperatures. (author)

  12. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  13. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Geschwind, Jean Francois H; Salem, Riad; Carr, Brian I; Soulen, Michael C; Thurston, Kenneth G; Goin, Kathleen A; Van Buskirk, Mark; Roberts, Carol A; Goin, James E

    2004-11-01

    Unresectable hepatocellular carcinoma is extremely difficult to treat. TheraSphere consists of yttrium-90 (a pure beta emitter) microspheres, which are injected into the hepatic arteries. This article reviews the safety and survival of patients with hepatocellular carcinoma who were treated with yttrium-90 microspheres. Eighty patients were selected from a database of 108 yttrium-90 microsphere-treated patients and were staged by using Child-Pugh, Okuda, and Cancer of the Liver Italian Program scoring systems. Patients were treated with local, regional, and whole-liver approaches. Survival from first treatment was analyzed with Kaplan-Meier and Cox regression methods. Adverse events and complications of treatment were coded by using the Southwest Oncology Group toxicity scoring system. Patients received liver doses ranging from 47 to 270 Gy. Thirty-two patients (40%) received more than 1 treatment. Survival correlated with pretreatment Cancer of the Liver Italian Program scores ( P = .002), as well as with the individual Cancer of the Liver Italian Program components, Child-Pugh class, alpha-fetoprotein levels, and percentage of tumor replacement. Patients classified as Okuda stage I (n = 54) and II (n = 26) had median survival durations and 1-year survival rates of 628 days and 63%, and 384 days and 51%, respectively ( P = .02). One patient died of liver failure judged as possibly related to treatment. Thus, in selected patients with hepatocellular carcinoma, yttrium-90 microsphere treatment is safe and well tolerated. On the basis of these results, a randomized controlled trial is warranted comparing yttrium-90 microsphere treatment with transarterial chemoembolization by using the Cancer of the Liver Italian Program system for prospective stratified randomization.

  14. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  15. Plasma-sprayed tantalum/alumina cermets

    International Nuclear Information System (INIS)

    Kramer, C.M.

    1977-12-01

    Cermets of tantalum and alumina were fabricated by plasma spraying, with the amount of alumina varied from 0 to 65 percent (by volume). Each of four compositions was then measured for tensile strength, elastic modulus, and coefficient of thermal expansion. In general, strength and strain to failure decreased with increasing alumina content: 62 MPa for 100 percent Ta to 19 MPa for 35 v percent Ta. A maximum of 0.1 percent strain was observed for the sprayed 100 percent Ta specimens. The coefficient of thermal expansion measured for the pure Ta was 6.2 (10 -6 )/K

  16. Fabrication of asymmetric alumina membranes

    International Nuclear Information System (INIS)

    Firouzghalb, H.; Falamaki, C.

    2010-01-01

    The effect of SrO addition on the thermal stabilization of transition aluminas with the aim of producing membrane layers (supported and unsupported) has been investigated. Al 2 O 3 -x wt.% SrO composite powders (x = 1, 3, 5, 8) were synthesized by co-precipitation of the hydroxides from solutions of AlCl 3 and Sr(NO 3 ) 2 salts using NH 4 OH as a precipitating agent. Optimum SrO dopant concentration regarding the transition aluminas stabilization effect was determined to be 5 wt.% based on XRD analysis. STA analysis showed a 30 deg. C shift versus higher temperatures in the transformation of final transitional alumina (θ-Al 2 O 3 ) to stable alpha phase due to addition of 5 wt.% SrO. The mechanism of transition aluminas thermal stabilization as a result of SrO addition is thoroughly discussed. Unsupported alumina membranes were prepared by drying boehmite sols at 600, 800, 1000 and 1100 deg. C. The effect of calcination temperature on surface area, pore size distribution of unsupported membranes containing 5 wt.% SrO has been investigated. The microstructure of unsupported and supported membranes revealed quite different. Smaller grains in the supported layers were attributed to the interaction between support and membrane.

  17. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  18. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification

    Energy Technology Data Exchange (ETDEWEB)

    Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F.

    2017-07-01

    In this work, we studied the aptitude to sintering green bodies using γ-Al2O3 transition alumina as raw powder. We focused on the influence of the heating rate on densification and microstructural evolution. Phase transformations from transition alumina γ→δ→θ→α-Al2O3 were studied by in situ X-rays diffraction from the ambient to 1200°C. XRD patterns revealed coexistence of various phase transformations during the heating cycle. DTA and dilatometry results showed that low heating rate leads to a significant reduction of the temperature of the α-Al2O3 alumina formation. Around 1190, 1217 and 1240°C were found when using 5, 10 and 20°C/min of heating rate, respectively. The activation energy for θ-Al2O3→α-Al2O3 transformation calculated by Kissinger and JMA equations using dilatometry method were 464.29 and 488.79kJ/mol, respectively and by DTA method were 450.72 and 475.49kJ/mol, respectively. In addition, the sintering of the green bodies with low heating rate promotes the rearrangement of the grains during θ-Al2O3→α-Al2O3 transformation, enhancing the relative density to 95% and preventing the development of a vermicular structure. (Author)

  19. Study of behaviour of lanthanum- and yttrium electrodes in chloride melts

    International Nuclear Information System (INIS)

    Shkol'nikov, S.I.; Tolypin, E.S.; Yur'ev, B.P.

    1984-01-01

    A study was made on the lanthanum- and yttrium behaviour in a mixture of molten potassium- and sodium chlorides at various temperatures. It is shown that the lanthanum- and yttrium behaviour in KCl-NaCl melt is similar to the behaviour of other metals. Their corrosion rate is much higher as compared to other metals and it grows rapidly with increasing melt temperature. The temperature growth by 200 deg C results in an increase in the corrosion rate almost by an order. The potentials of lanthanum- and yttrium electrodes at the instant they are immersed in the melt have more negative values than the potentials of alkali metals under similar conditions

  20. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  1. Lanthanoid and yttrium tellurates

    Energy Technology Data Exchange (ETDEWEB)

    Gonalez, C G; Guedes de Carvalho, R A [Faculdade de Engenharia, Porto (Portugal). Centro de Engenharia Quimica

    1978-05-01

    Preparation in aqueous medium of all the lanthanoid (except Ce and Pm) and yttrium tellurates is described. Chemical analyses, solubilities at 25/sup 0/C in water and thermograms of all the products prepared were determined. X-ray diffractograms and DTA and DTG curves of La, Gd and Yb tellurates were obtained and commented. Partial volatilization of lanthanoid is observed in the thermal analysis of tellurates.

  2. High alumina refractories

    International Nuclear Information System (INIS)

    Simao, L.C.; Lopes, A.B.; Galvao Filho, N.B.; Souza, R.B. de

    1989-01-01

    High alumina refractories with 92 to 96.5% Al 2 O 3 were produced using brown and white fused as aggregate. Those refractories present only alumina-α and mullite as crystalline mineralogical phase. Other physical and chemical characteristics are similar to the ones found in refractories produced in Brazil, Japan and U.S.A. The most important physical and chemical tests used for the characterization of the raw materials and refractories, complemented by those realized at high temperatures, plus X-ray Difractometry and optical microscopy are presented, besides the refractory formulation and main parameters of production [pt

  3. New hydrotalcite-like compounds containing yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.M.; Barriga, C.; Ulibarri, M.A. [Universidad de Cordoba (Spain)] [and others

    1997-01-01

    The synthesis of hydrotalcite-type compounds containing yttrium was carried out by the coprecipitation of Mg(II), Al(III), and Y(III) cations at 60 degrees C with strong alkaline solutions. Thermal treatments were applied and changes studied.

  4. Magnetic structure of holmium-yttrium superlattices

    DEFF Research Database (Denmark)

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.

    1993-01-01

    We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  5. Characterization and sintering of niobium-ATR alumina

    International Nuclear Information System (INIS)

    Sibuya, N.H.; Iwasaki, H.; Suzuki, C.K.; Pinatti, D.G.

    1987-01-01

    In the niobium aluminothermy a slag is produced, composed mostly of alumina and other compounds such as niobium oxide and silica. The phase composition of this ATR alumina was characterized by X-ray powder diffractometry, and afterwards this alumina was subjected to leaching processes. It was noticed that the original content of 70% α-alumina in slag rose to 95% after the calcination. ATR alumina (leached and calcined, and without any treatment) was used to make pressed bodies which were fired in air at 1200 to 1400 0 C for 1 to 10,5 hours; and in vacuum at 1550 to 1800$0C for 2 hours. Characterization was done by density measurements, X-ray diffractometry and ultrasonic analysis. Ultrasonic analysis of some vacuum fired bodies showed londitudinal velocities close to the value found in literature. Correlation of several techniques measurements disclosed the niobium oxide interference in sintering. (Author) [pt

  6. Separation of Yttrium from Rare Earth Concentrates in Fractional Hydroxide Precipitation

    International Nuclear Information System (INIS)

    Tri Handini; Purwoto; Mulyono

    2007-01-01

    Yttrium has been separated from rare earth concentrates by precipitation in fractional hydroxide using urea. The purpose of this research is to increase the yttrium rate resulting from the sedimentary process through separation of yttrium from other rare earth in fractional hydroxide precipitation using urea. In this research, we study the process variable of the concentration of urea, the ratio of feed volume to condensation volume of urea, as well as the temperature. Determination analysis of the rare earth rate is conducted using an X-ray spectrometer. The best result Y=92.89 % is obtained at a concentration of urea of 50 %, a level of precipitation of 3 times, and a temperature of 80°C. (author)

  7. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    International Nuclear Information System (INIS)

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco

    2013-01-01

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2 2 full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H 2 O 2 concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2 2 full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na 2 S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%

  8. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  9. Pressure of saturated vapor of yttrium and zirconium acetylacetonates

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-08-01

    The static method and the flow method using /sup 91/Y and /sup 95/Zr radioactive indicators have been applied to determine pressure of saturated vapour of yttrium and zirconium acetylacetonates. Values of thermodynamic functions ..delta..Hsub(subl)=(98+-16)kJ/mol and ..delta..Ssub(subl.)=(155+-30)J/mol x K are calculated for sublimation of yttrium acetylacetonate. For sublimation of zirconium acetylacetonates ..delta..Hsub(subl) equals (116+-38) kJ/mol and ..delta..Ssub(subl) is equal to (198+-65) J/molxK.

  10. Investigating the property profile of polyamide-alumina nanocomposite materials

    International Nuclear Information System (INIS)

    Sarwar, Muhammad Ilyas; Zulfiqar, Sonia; Ahmad, Zahoor

    2009-01-01

    Transparent sol-gel-derived nanocomposites were prepared by incorporating an alumina network into a polyamide matrix. Different amounts of aluminum butoxide were hydrolyzed and condensed to produce the alumina network. Thin composite films were characterized in terms of their optical, morphological, mechanical and thermomechanical properties. Tensile modulus, stress at both yield and break points, improved for alumina loadings of 5-10 wt.%. The glass transition temperature increased to 140 o C for nanocomposites containing 15 wt.% alumina. Scanning electron microscopy investigations indicated a uniform distribution of alumina in the polyamide matrix.

  11. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  12. Structural and dielectric properties of yttrium substituted nickel ferrites

    International Nuclear Information System (INIS)

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe 2−x Y x O 4 ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y 3+ ions on structural and dielectric properties of nickel ferrites (NiFe 2−x Y x O 4 , where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y 3+ ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices

  13. Scanning electron microscopy and X-ray photoelectron studies of high temperature oxidation mechanism of a Fe-Cr-Al alloy; Etude par microscopie electronique a balayage et spectroscopie de photoelectrons des mecanismes d'oxydation a haute temperature d'un alliage Fe-Cr-Al

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, F.; Berthier, C.; Lameille, J.M. [CEA Saclay, Dept. d' Entreposage et de Stockage des Dechets (DCC/DPE/SPCP), 91 - Gif-sur-Yvette (France)

    2000-07-01

    The lifetime of high temperature materials is strongly dependent on their resistance to high temperature oxidation. Hence the technical applications of these materials require the formation of a protective, slow growing oxide scale. The efficiency of Cr{sub 2}O{sub 3}- forming alloys above 1100 deg C is limited because Cr{sub 2}O{sub 3} reacts with oxygen to form volatile CrO{sub 3}. It is known that doping alloys with small additions (< 0.1 wt %) can improve mechanical properties and/or alloy oxidation resistance. Fe{sub 20}Cr{sub 5}Al based alloys form protective scale of alumina with slow growth rates at temperatures above 1000 deg C. The alloy composition is given in Table 1. Various techniques have been used to determine the scale morphology, structure and composition of oxide scale, including Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectrometry, grazing incidence X-ray diffraction, and XPS. During heat treatment at 1150 C, ranging from 5 minutes to 24 hours, a parabolic regime is observed, leading to a protective layer against oxidation. The oxide scale structure mainly consists of thermodynamically stable {alpha}-Al{sub 2}O{sub 3}. After 1 hour, (Mg{sub 1-X}Fe{sub X})Al{sub 2}O{sub 4} appears and increases with treatment time. After 5 minutes at 1150 deg C, X ray maps indicating the location of the elements in the oxide scale were prepared with SEM-EDS. Figure 2 shows that the oxide scale mainly consists of alumina. The secondary electron image shows little islands consisting of yttrium and zirconium on the oxide scale. For longer oxidation time, I hour, XPS results reveal chemical species like Al{sub 2}O{sub 3}),Ti(IV) (TiO{sub 2}), Cr(III) that yttrium and zirconium are not detected. After 24 hours, scale thickness is about 2 {mu}m. Small islands of yttrium and zirconium (and to a lesser degree titanium) are still present. In Figure 4, magnesium and titanium are located on the alumina scale. X-ray maps on cross-sections in Figure

  14. Yttrium implantation and addition element effects on the oxidation behaviour of reference steels at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.; Riffard, F. [Lab. Vellave d' Elaboration et d' Etude des Materiaux, Univ. Blaise Pascal Clermont-Fd 2, Le Puy en Velay (France)

    2004-07-01

    Yttrium implantation effects on reference steels (extra low carbon and low manganese steel) were studied by rutherford backscattering spectrometry (RBS), reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and glancing angle X-ray diffraction (GAXRD). Thermogravimetry and in situ X-ray diffraction at 700 C and P{sub O2}=0.04 Pa for 24h were used to determine the yttrium implantation and addition element effects on sample oxidation resistance at high temperatures. This study clearly shows that yttrium implantation and subsequent high temperature oxidation induced the formation of several yttrium mixed oxides which closely depend on the reference steel addition elements. Moreover, these yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures. (orig.)

  15. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    Science.gov (United States)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  16. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template

    Science.gov (United States)

    Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi

    2014-06-01

    In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.

  17. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies.

    Science.gov (United States)

    Sundh, Anders; Sjögren, Göran

    2008-05-01

    The purpose of the present study was to evaluate the bending resistance of implant-supported CAD/CAM-processed restorations made out of zirconia or manually shaped made out of reinforced alumina. Units of abutments and copies made of (i) a prefabricated hot isostatic pressed (HIPed) yttrium oxide partially-stabilized zirconia (Y-TZP) (Denzir), (ii) a prefabricated densely-sintered magnesia partially stabilized zirconia (Mg-PSZ) (Denzir-M) or, copies made of (iii) a prefabricated partially-sintered, porous reinforced alumina ceramic (RN synOcta-In-Ceram) were subjected to static loading perpendicularly at the long axis. The abutments were attached to either stainless steel analogs or titanium implant fixtures. The Y-TZP and Mg-PSZ copies were bonded onto the ceramic abutments with a dual-cured resin composite (Rely-X Unicem). Units of titanium abutment attached to a titanium implant fixtures were used as reference. The units comprising Denzir abutments as delivered (pstainless steel analogs exhibited significantly higher bending resistance than the control. The heat-treated Denzir copies bonded to the heat-treated Denzir M abutments attached to titanium implant fixtures and the In-Ceram specimens attached to stainless steel analogs showed significantly (pstainless steel analogs. No statistically significant (p>0.05) differences were seen among the other groups studied. All the ceramic abutments and copies exhibited values that were equal or superior to that of the control and exceeded the reported value, up to 300 N, for maximum incisal bite forces. To assess the clinical behavior long-term clinical studies should be conducted.

  18. Treatment of rheumatoid arthritis with 90yttrium. Follow up studies

    International Nuclear Information System (INIS)

    Teuber, J.; Baenkler, H.W.; Regler, G.; Erlangen-Nuernberg Univ., Erlangen

    1978-01-01

    90 Yttrium-silicate was injected into 131 knee-joints from patients with rheumatoid arthritis with stadium II-IV according to Steinbrocker. The observation period lasted until two years. After three months about 80% and after 24 months still more than 50% of the patients treated showed complete or partial remission. Side-effects as formerly observed with 198 -goldpreparations did not occur. Therefore the treatment with 90 Yttrium-silicate offers an alternative to surgical synovectomy. (orig.) [de

  19. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  20. A comparison of alumina, carbon and carbon-covered alumina as support for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (University of Calgary, Calgary, AB (Canada). Dept. of Chemistry)

    1991-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{degree}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon-supported counterparts. However, the carbon-covered alumina-supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. 27 refs., 1 fig., 4 tabs.

  1. A comparison of alumina, carbon and carbon-covered alumina as supports for Ni-Mo-F additives: gas oil hydroprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.M.; Bell, W.S. (Calgary Univ., AB (Canada). Dept. of Chemistry)

    1992-01-01

    Catalysts with 3 wt% NiO, 15 wt% MoO{sub 3} and 0-6.9 nominal wt% fluoride supported on alumina, carbon and carbon-covered alumina were studied to examine the role of fluoride and the influence of the support on hydroprocessing on Alberta gas oil. Experiments were carried out in a batch reactor at 410{sup o}C and 6.9 MPa initial H{sub 2} pressure. It was found that fluoride promotion enhances cracking and hydrogenation reactions resulting in decreased aromatic and sulphur contents in the gas oil. The promotion is dependent on the type of support and is related to the strength of the fluoride-support interaction and the accessibility of the fluoride to the surface hydroxyl groups on the support. A maximum in activity at 3.6 wt% fluoride was observed for the alumina-supported catalysts whereas higher loadings of fluoride were required for carbon-covered alumina-supported catalysts to see an improvement over their carbon supported counterparts. However, the carbon-covered alumina supported catalysts seem to have a lower propensity for coke deposition than their alumina counterparts. (author).

  2. LOW TEMPERATURE SINTERING OF ALUMINA BIOCERAMIC UNDER NORMAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Superfine alumina powder with high purity (mean particle size is less than 0. 35μm) were used as main starting material for sintering alumina ceramic. A multiple additive MgO-ZrO2 (Y2O3) was homogeneously added into the batch by the chemical coprecipitation method. Sintering of alumina bioceramic at low tempera ture (<1600C) was achieved resulting in a dense and high strength alumina ceramic with the bending strength up to 382 MPa and an improved fracture toughness. Mechanism that the multiple additives promote the sintering of alumina ceramic is discussed on the base of XRD and SEM analysis.

  3. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  4. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2017-01-01

    Full Text Available Yttrium oxide thin films were prepared by reactive magnetron sputtering in different deposition condition with various oxygen flow rates. The annealing influence on the yttrium oxide film microstructure is investigated. The oxygen flow shows a hysteresis behavior on the deposition rate. With a low oxygen flow rate, the so called metallic mode process with a high deposition rate (up to 1.4µm/h was achieved, while with a high oxygen flow rate, the process was considered to be in the poisoned mode with an extremely low deposition rate (around 20nm/h. X-ray diffraction (XRD results show that the yttrium oxide films that were produced in the metallic mode represent a mixture of different crystal structures including the metastable monoclinic phase and the stable cubic phase, while the poisoned mode products show a dominating monoclinic phase. The thin films prepared in metallic mode have relatively dense structures with less porosity. Annealing at 600 °C for 15h, as a structure stabilizing process, caused a phase transformation that changes the metastable monoclinic phase to stable cubic phase for both poisoned mode and metallic mode. The composition of yttrium oxide thin films changed from nonstoichiometric to stoichiometric together with a lattice parameter variation during annealing process. For the metallic mode deposition however, cracks were formed due to the thermal expansion coefficient difference between thin film and the substrate material which was not seen in poisoned mode deposition. The yttrium oxide thin films that deposited in different modes give various application options as a nuclear material.

  5. Application of various types of alumina and nano--alumina sulfuric acid in the synthesis of α-aminonitriles derivatives: comparative study

    Directory of Open Access Journals (Sweden)

    A. Teimouri

    2014-09-01

    Full Text Available An efficient and green protocol for the synthesis of α-aminonitrile derivatives by one-pot reaction of different aldehydes with amines and trimethylsilyl cyanide has been developed using natural alumina, alumina sulfuric acid (ASA, nano-g-alumina, nano-g-alumina sulfuric acid (nano-g-ASA under microwave irradiation and solvent-free conditions. The advantages of methods are short reaction times, high yields, milder conditions and easy work up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency. DOI: http://dx.doi.org/10.4314/bcse.v28i3.13

  6. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  7. Blocking of grain reorientation in self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  8. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  9. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  10. Synthesis of Nano Crystalline Gamma Alumina from Waste Cans

    Directory of Open Access Journals (Sweden)

    Nada Sadoon Ahmedzeki

    2018-03-01

    Full Text Available In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5, sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55% and weights of aluminum cans (2, 4, 6, 8 and 10 g. The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS; and maximum yield of alumina solution was 96.3% obtained at 2 mole ratios of reactants, 40% sodium hydroxide concentrations and 10g of aluminum cans respectively. Gamma alumina was acquired by hydrothermal treatment of alumina solution at pH 7 and calcination temperature of 550 ºC. The prepared catalyst was characterized by X-ray diffraction (XRD, N2 adsorption/ desorption isotherms, X-ray fluorescence (XRF and atomic force microscopy (AFM. Results showed good crystallinity of alumina as described by XRD patterns, with surface area of 311.149 m2/g, 0.36 cm3/g pore volume, 5.248 nm pore size and particle size of 68.56 nm respectively.

  11. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Science.gov (United States)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  12. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Directory of Open Access Journals (Sweden)

    Suchopár M.

    2017-01-01

    Full Text Available The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW performed intensive studies of several simple accelerator-driven system (ADS setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  13. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  14. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nano composites

    International Nuclear Information System (INIS)

    Masheane, M.; Nthunya, L.; Malinga, S.; Masheane, M.; Nthunya, L.; Nxumalo, E.; Mhlanga, S.; Barnard, T.

    2016-01-01

    Antimicrobial chitosan-alumina/functionalized-multi walled carbon nano tube (f-MWCNT) nano composites were prepared by a simple phase inversion method. Scanning electron microscopy (SEM) analyses showed the change in the internal morphology of the composites and energy dispersive spectroscopy (EDS) confirmed the presence of alumina and f-MWCNTs in the chitosan polymer matrix. Fourier transform infrared (FTIR) spectroscopy showed the appearance of new functional groups from both alumina and f-MWCNTs, and thermogravimetric analysis (TGA) revealed that the addition of alumina and f-MWCNTs improved the thermal stability of the chitosan polymer. The presence of alumina and f-MWCNTs in the polymer matrix was found to improve the thermal stability and reduced the solubility of chitosan polymer. The prepared chitosan-alumina/f-MWCNT nano composites showed inhibition of twelve strains of bacterial strains that were tested. Thus, the nano composites show a potential for use as a biocides in water treatment for the removal of bacteria at different environmental conditions.

  15. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  16. Fluorimetric determination of yttrium by methyl-bis(8-hydraxy--- 2-quinolyl)amine

    International Nuclear Information System (INIS)

    Golovina, A.P.; Kachin, S.V.; Runov, V.K.; Fakeeva, O.A.

    1982-01-01

    Using a method of mathematical Box-Wilson experiment planning the optimum conditions of yttrium fluorimetric determination by methyl-bis (8-hydroxy-2-quinolyl) amine (pH 7.5, csub(R)=1.4x10sup(-5) M) with the determination limit=0.05 μg/ml are found. An extraction-fluorimetric method of yttrium determination by methyl-bis (8-hydroxy-2-quinolyl) amine is developed. The extraction has been realized with aliphatic alcohols at pH > 11. The method is characteristic of the lowest determination limit (0.01 μg/ml) as compared with the known ones. The possibility is shown of yttrium determination in the presence of 5000-multiple aluminium contents, stoichiometric contents of La, Lu, Fe (3), U (6), tartrates, citrates

  17. Ordering of Octahedral Vacancies in Transition Aluminas

    NARCIS (Netherlands)

    Wang, Yuan Go; Bronsveld, Paul M.; Hosson, Jeff Th.M. De; Djuričić, Boro; McGarry, David; Pickering, Stephen

    1998-01-01

    The microstructure of transition aluminas obtained via the dehydration of boehmite has been characterized by using transmission electron microscopy (TEM). The presence of γ-, δ-, and θ-aluminas was identified by using selected-area electron diffraction. Modifications that resulted from the

  18. Tribological and stability investigations of alkylphosphonic acids on alumina surface

    International Nuclear Information System (INIS)

    Cichomski, M.; Kośla, K.; Grobelny, J.; Kozłowski, W.; Szmaja, W.

    2013-01-01

    Alumina substrates are commonly used for various micro-/nanoelectromechanical systems (MEMS/NEMS). For efficient and lifetime longevity of these devices, lubricant films of self-assembled monolayers (SAMs) with nanometer thickness are increasingly being employed. In the present paper, we report preparation, tribological and stability investigations of alkylphosphonic acids on the alumina surface. The alkylphosphonic acids were prepared on the alumina surface using the liquid phase deposition method. The effectiveness of modification of the alumina surface by alkylphosphonic acids was investigated using water contact angle measurements, secondary ion mass spectrometry, X-ray photoelectron and infrared spectroscopy. Frictional behavior in milinewton load range was studied by microtribometry. It is shown that surface modification of the alumina surface by alkylphosphonic acids reduces the coefficient of friction values compared to the unmodified alumina. In comparison to the non-modified alumina surface, all tested alkylphosphonic acids cause a decrease in the friction coefficients in friction tests for counterparts made from different materials, such as steel, zirconia and silicon nitride. It is also found that the alumina surface modified by alkylphosphonic acids with longer chain has a higher degree of hydrophobicity and lower coefficient of friction. The best frictional properties are obtained for the system consisting of the alumina surface modified by n-octadecylphosphonic acid and silicon nitride counterpart. Stability tests in different environmental conditions: laboratory, acidic and alkaline solutions were also monitored.

  19. Glass transition temperature of PMMA/modified alumina nanocomposite: Molecular dynamic study

    OpenAIRE

    Mohammadi, Maryam; Davoodi, Jamal; Javanbakht, Mahdi; Rezaei, Hamidreza

    2017-01-01

    In this study, the effect of alumina and modified alumina nanoparticles in a PMMA/alumina nanocomposite was investigated. To attain this goal, the glass transition behavior of poly methyl methacrylate (PMMA), PMMA/alumina and PMMA/hydroxylated alumina nanocomposites were investigated by molecular dynamic simulations (MD). All the MD simulations were performed using the Materials Studio 6.0 software package of Accelrys. To obtain the glass transition temperature, the variation of density vs. t...

  20. Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ishaque, M., E-mail: ishaqdgk1@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ali, Irshad; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iqbal, M. Asif [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2015-05-15

    The influence of yttrium (Y) substitution on ferromagnetic resonance (FMR), initial permeability, and magnetic properties of NiFe{sub 2}O{sub 4} ferrites were investigated. It was observed that the FMR line-width decreases with yttrium contents for the substitution level 0≤×≤0.06. Beyond this, the FMR line-width increases with yttrium contents. The nominal composition NiY{sub 0.12}Fe{sub 1.88}O{sub 4} exhibited the smallest FMR line-width ~282 Oe. A significant change in FMR position of nickel–yttrium (Ni–Y) ferrites was observed and it found to exist between 4150 and 4600 Oe. The saturation magnetization was observed to decrease with the increase of yttrium contents and this was referred to the redistribution of cations on octahedral. The coercivity increased from 15 Oe to 59 Oe by increasing the yttrium concentration. The initial permeability decreased from 110 to 35 at 1 MHz by the incorporation of yttrium and this was attributed to the smaller grains which may obstruct the domain wall movement and impede the domain wall motion. The magnetic loss factors of substituted samples exhibit decreasing behavior in the frequency range 1 kHz to 10 MHz. The smaller FMR line-width and reduced magnetic loss factor of the investigated samples suggest the possible use of these materials in high frequency applications. - Highlights: • Influence of Y{sup 3+} substitution on the properties of nickel ferrites is investigated. • Very small FMR line-width (282 Oe) is exhibited by these substituted ferrites. • Fourfold increase in coercivity was observed for NiY{sub 0.24}Fe{sub 1.76}O{sub 4} ferrites.

  1. High toughness alumina/aluminate: The role of hetero-interfaces

    International Nuclear Information System (INIS)

    Brito, M.E.; Yasuoka, M.; Kanzaki, S.

    1996-01-01

    Silica doped alumina/aluminate materials present a combination of high strength and high toughness not achieved before in other alumina systems, except for transformation toughened alumina. The authors have associated the increase in toughness to crack bridging by anisotropically grown alumina grains with concurrent interfacial debonding of these grains. A HREM study of grain boundaries and hetero-interface structures in this material shows the absence of amorphous phases at grain boundaries. Local Auger electron analysis of fractured surfaces revealed the coexistence of Si and La at the grain facets exposed by the noticeable intergranular fracture mode of this material. It is concluded that a certain and important degree of boundaries weakness is related to both presence of Si at the interfaces and existence of alumina/aluminate hetero-interfaces

  2. The effects of alumina nanofillers on mechanical properties of high-performance epoxy resin.

    Science.gov (United States)

    Zhang, Hui; Zhang, Hui; Tang, Longcheng; Liu, Gang; Zhang, Daijun; Zhou, Lingyun; Zhang, Zhong

    2010-11-01

    In the past decade extensive studies have been focused on mechanical properties of inorganic nanofiller/epoxy matrices. In this work we systematically investigated the mechanical properties of nano-alumina-filled E-54/4, 4-diaminodiphenylsulphone (DDS) epoxy resins, which were prepared via combining high-speed mixing with three-roll milling. Homogeneous dispersion of nano-alumina with small agglomerates was obtained in epoxy resin, which was confirmed using transmission electron microscopy (TEM). The static/dynamic modulus, tensile strength and fracture toughness of the nanocomposites were found to be simultaneously enhanced with addition of nano-alumina fillers. About 50% and 80% increases of K(IC) and G(IC) were achieved in nanocomposite filled with 18.4 wt% alumina nanofillers, as compared to that of the unfilled epoxy resin. Furthermore, the corresponding fracture surfaces of tensile and compact tension samples were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques in order to identify the relevant fracture mechanisms involved. Various fracture features including cavities/debonding of nanofiller, local plastic deformation as well as crack pinning/deflection were found to be operative in the presence of nano-alumina fillers.

  3. Electrochemically produced alumina as TL detector

    International Nuclear Information System (INIS)

    Osvay, M.

    1996-01-01

    The goal of this work was to compare the TL properties of various electrochemically produced alumina layers (E-AIO) in order to investigate the effect of the electrolyte and the Mg content on the alloys. It has been found that the TL sensitivity of oxidised layers is more influenced by the type of electrolyte, than by the composition of alloy. Hard oxide layer evolved in reduction electrolyte has rather different character compared to other alumina production investigated. The effect of reducing media seems to be very important during preparation of alumina layer. One of the advantages properties of E-AIO is, that it serve a promising method to increase the measuring range of TL method above 10 kGy as well. (author)

  4. Studies for the yttrium determination by activation analysis, in the presence of lanthanides. Application of the substoichiometric technique

    International Nuclear Information System (INIS)

    Silva, D.I.T. da.

    1978-01-01

    Some methods using extraction chromatography for the separation of yttrium from the lanthanide elements were applied. The separation of yttrium was studied, using di-(2 ethylhexyl) orthophosphoric acid as stationary phase, Kieselguhr as support and HNO 3 of concentration between 4,5 and 5,0 N as the mobile phase. In these conditions, about 50% of pure yttrium was obtained. The substoichiometric technique was applied to the determination of yttrium. The elements was partially complexed and the Y 3 + ions were separated from the complex (EDTA-Y) - by means of a cationic resin. The sensitivity, precision and accuracy which can be expected in the analytical results were studied. The possibility of the analysis of a sample containing 1 part per million of yttrium with an error just above 8% was demonstrated. It was also shown that, admitting an error of 10%, it is possible to determine 60 parts per billion of yttrium [pt

  5. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    Science.gov (United States)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  6. Study of preparation and surface morphology of self-ordered nanoporous alumina; Estudo da preparacao e da morfologia de superficie de alumina nanoporosa auto-organizada

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany, E-mail: elisamarch@gmail.com, E-mail: MG.mdm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG. (Brazil); Silva, Ronald Arreguy, E-mail: arregsilva@yahoo.com.br [Centro Universitario de Belo Horizonte (UniBH), Belo Horizonte, MG (Brazil)

    2013-07-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  7. Yttrium-90

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain; Vial, Eric

    2013-03-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with Yttrium-90

  8. PENGARUH PERBEDAAN SIFAT PENYANGGA ALUMINA TERHADAP SIFAT KATALIS HYDROTREATING BERBASIS NIKEL-MOLIBDENUM

    Directory of Open Access Journals (Sweden)

    Maria Ulfah

    2012-11-01

    Full Text Available EFFECT OF ALUMINA SUPPORT PROPERTIES ON THE NICKEL-MOLIBDENUM BASE HYDROTREATING CATALYST. Effect of surface characteristics of three species of synthesized γ-alumina (alumina-1, alumina-2 and alumina-3 on characteristics NiMo catalysts has been studied. Those aluminas are derived from boehmite Catapal B by varying rasio mol nitric acid to boehmite. A sol-gel method is used to synthesize γ-Al2O3 support. The Nitrogen adsorption, X-ray diffraction (XRD, Temperature Programmed Reduction (TPR of H2, Temperature Programmed Desorption (TPD of NH3, and mechanical strength are used to characterize the supports and catalysts. The results showed that the surface area alumina affects the formation of crystalline MoO3 in the NiMo catalyst, while γ-Al2O3-3 support which has the highest surface area (about 195 m2/g compared to the other two types of alumina (>195 m2/g does not have a crystalline MoO3. The formation of crystalline MoO3 is not influenced by the acidity alumina. Based on the results of XRD, it is  indicated that the supported alumina-3 NiMo catalyst (having the highest acid strength shows that there is no presence of crystalline MoO3. Pore size distribution of support did not change significantly after the deposition of Ni and Mo oxides. Mechanical strength of support also affects the strength NiMo catalyst. Support alumina-3 which has the highest mechanical strength gives the mechanical strength of the highest NiMo catalyst. Pengaruh sifat penyangga γ-alumina hasil pengembangan (alumina-1, alumina-2 dan alumina-3 pada karakter katalis hydrotreating nikel-molibdenum (NiMo telah dipelajari. Ketiga jenis γ-alumina diturunkan dari boehmite “Catapal B” dengan menvariasikan nisbah mol asam nitrat terhadap boehmite. Pembuatan γ-alumina menggunakan metoda sol-gel. Adsorpsi Nitrogen, X-ray difraksi (XRD, Temperature Programmed Reduction (TPR H2, Temperature Programmed Desorption (TPD NH3, dan kekuatan mekanik digunakan untuk

  9. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    International Nuclear Information System (INIS)

    Li Shuai; He Di; Liu Xiaopeng; Wang Shumao; Jiang Lijun

    2012-01-01

    Highlights: ► Deuterium permeation behavior of alumina coating by MOCVD is investigated. ► The as-prepared alumina is amorphous. ► The alumina coating is dense and well adherent to substrate. ► Deuterium permeation rate of alumina coating is 2–3 orders of magnitude lower than martensitic steels. - Abstract: The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51–60 times less than that of the 316L stainless steel and 153–335 times less than that of the referred low activation martensitic steels at 860–960 K.

  10. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  11. Epoxy/α-alumina nanocomposite with high electrical insulation performance

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2017-10-01

    Full Text Available An experimental study was conducted to improve the electrical insulation of epoxy resin. The effects of boehmite, γ-alumina and α-alumina nanoparticles on the volume resistivity, dielectric strength and glass transition temperature of epoxy nanocomposites were investigated. The results showed that α-alumina nanoparticles displayed obvious advantages in enhancing electrical insulation performance of epoxy nanocomposites, compared to boehmite and γ-alumina nanoparticles. The direct current volume resistivity and breakdown strength of epoxy nanocomposite with 2.0 wt% α-alumina nanoparticles was improved to 2.2 × 1018 Ω cm and 76.1 kV mm−1 respectively. And these improved values of electrical insulation properties are much higher than these of epoxy nanocomposites reported in previous studies. The main reason of these improvements may be that the epoxy/α-alumina interaction zone was enhanced by crosslink. Keywords: Nanocomposite, Epoxy resin, Insulation, α-alumina

  12. The mineralogy of bauxite for producing smelter-grade alumina

    Science.gov (United States)

    Authier-Martin, M.; Forte, G.; Ostap, S.; See, J.

    2001-12-01

    Aluminum-producing companies rely on low-cost, high-purity, smelter-grade alumina (aluminum oxide), and alumina production utilizes the bulk of bauxites mined world-wide. The mineralogy of the bauxites has a significant impact on the operation of the Bayer process for alumina production. Typically, the Bayer process produces smelter-grade alumina of 99.5% Al2O3, starting from bauxite containing 30% to 60% Al2O3. The main objective of the Bayer process is to extract the maximum amount of aluminum from the bauxite at as high an aluminate concentration in solution as possible, while limiting any troublesome side reactions. Only with a better understanding of the chemistry of the mineral species and a strict control of the operating/processing conditions can the Bayer process produce efficiently, a low cost, high-quality alumina with minimum detrimental environmental impact.

  13. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  14. Cathodoluminescence properties of yttrium aluminum garnet doped with Eu2+ and Eu3+ ions

    International Nuclear Information System (INIS)

    Trofimov, A. N.; Petrova, M. A.; Zamoryanskaya, M. V.

    2007-01-01

    Yttrium aluminium garnet (YAG) doped with Eu 2+ and Eu 3+ ions is very interesting as a phosphor for conversion of light-emitting diode light for white light sources. The europium ion occupies the structural position of yttrium in yttrium aluminium garnet and has valence state Eu 3+ . Our sample was doped with Zr 4+ , which is why some of the europium ions had valence state Eu 2+ . As a rule, luminescence of Eu 3+ ions is observed in the orange and red range of spectrum. The luminescence of Eu 2+ in yttrium aluminum garnet is characterized by an intensive broad band with maximum of intensity at about 560 nm (green color). In this work, we studied the intensity and decay time dependences on europium concentration, and the influence of excitation power density on the cathodoluminescence of the sample. The most interesting result is the change of visible cathodoluminescence color in dependence on the density of the exciting power

  15. High-frequency characteristics of glass/ceramic composite and alumina multilayer structures

    International Nuclear Information System (INIS)

    Niwa, K.; Suzuki, H.; Yokoyama, H.; Kamechara, N.; Tsubone, K.; Tanisawa, H.; Sugiki, H.

    1990-01-01

    This paper reports the transmission characteristics of glass/ceramic composite (borosilicate glass/alumina) and alumina multilayer structures examined. The triplate stripline formed in the glass/ceramic multilayer shows low conductor and dielectric loss. Alumina multilayer, however, has twice the transmission loss at 10 GHz, because the resistivity of W in the alumina multilayer is higher than the Cu in the glass/ceramic multilayer. Crosstalk between striplines in the glass/ceramics is less than -80 dB up to 11 GHz and 9 GHz for alumina

  16. Characterization of alumina using small angle neutron scattering (SANS)

    International Nuclear Information System (INIS)

    Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro

    2007-01-01

    Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)

  17. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  18. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  19. Synthesis of α-Alumina (Corundum) and its Application

    International Nuclear Information System (INIS)

    Nay Thwe Kyi; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    This paper described the preparation of aluminium isopropoxide from aluminium sheet at different heating times.Aluminium sheet is found to have a reaction with absolute isopropyl alcohol and mercury (II) chloride as a catalyst under nitrogen atmosphere. Aluminium isopropoxide was characterized by NMR, XRD and IR. Aluminium isopropoxide serves as a molecular precursor to derive pure alumina gel by hydrolysis under both homogeneous and heterogeneous conditions. Pyrolysis to this alumina gel transforms it into -aluminia (corundum) at 1200'C. The phase transformation during pyrolysis was characterized by XRD, SEM and TEM. The alumina (corundum) has porous crystalline nature with high surface aera, which may be used as efficient adsorbent packing material in coloumn chromatography for the seperation of vitamin A from the leaves. -alumina can be also used in catalysis

  20. Method for production of transparent yttrium oxide

    International Nuclear Information System (INIS)

    Dutta, S.K.; Gazza, G.A.

    1975-01-01

    The method comprises vacuum hot pressing the yttrium oxide (Y 2 O 3 ) powder in a graphite die at temperatures of between 1300 to 1500 0 C and uniaxial pressures of between 5000 to 7000 psi, for a period of 1 to 2 hours. (U.S.)

  1. Alumina composites for oxide/oxide fibrous monoliths

    International Nuclear Information System (INIS)

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-01-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si 3 N 4 /BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented

  2. Study of decomposition kinetics of volatile β-diketonates of yttrium, barium and copper in flow reactor

    International Nuclear Information System (INIS)

    Devyatykh, G.G.; Gavrishchuk, E.M.; Gibin, A.M.; Dadanov, A.Yu.; Dzyubenko, N.G.; Kaul', A.R.; Nichiporuk, R.V.; Snezhko, N.T.; Ul'yanov, A.A.

    1990-01-01

    Heterogeneous oxidative decomposition of adduct of yttrium acetylacetonate with o-phenanthroline, copper acetylacetonate and barium dipivaloylmethanate in a flow-type reactor was carried out. The basic kinetic characteristics of chemical precipitation processes of films of yttrium, copper and barium oxides, which are components of high-temperature superconductors, were obtained. The values of activation energy of precipitation process of yttrium, copper and barium oxides constituted 76±10, 108±15, 81±12 (t 600 deg C) respectively

  3. Characterization of the microporous HDPE film with alpha alumina

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2010-01-01

    The effects of the addition of the alpha alumina on the properties of the microporous high density polyethylene (HDPE) films were investigated. The particle size and the specific surface area of alpha alumina were 400 nm and 7.3 m 2 g -1 . The HDPE and the alpha alumina were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in oven 120 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume of the microporous HDPE films was increased with an increasing content of the alpha alumina. The mechanical characteristics of the microporous HDPE films were increased with a content of alpha alumina up to 15%, but decreased at 20%. The electrochemical stability of the microporous HDPE film containing alpha alumia was increased with an increased irradiation dose up ti 50 kGy

  4. Radiolabeling Of Albumin Particles With Yttrium-90

    International Nuclear Information System (INIS)

    Nguyen Thi Thu; Nguyen Thi Khanh Giang; Bui Van Cuong, Vo Thi Cam Hoa

    2011-01-01

    This paper presents the process of the radiolabeling of microaggregated albumin particles with radionuclide Yttrium-90 using the directed method. The albumin microsphere kit was prepared in sodium phosphate buffer. The original solution includes 2 mg albumin particle and 0.5 mg stannous chloride dihydrate. The albumin particles size was ranged from 5 ?m to 30 ?m. The mixture was washed three times with phosphate buffer saline, pH 7.2 by centrifugation and suspended in 0.5 M sodium acetate buffer, pH 6. Yttrium - 90 in 1.0 M acetic acid was collected from 90 Sr/ 90 Y generator. The labeling of the particles with Y-90 (185 MBq) was performed at pH 5.5 in acetate buffer with agitating for 60 min at room temperature. The labeled albumin suspensions were centrifuged at 3000 rpm for 15 min. Labeling yields was calculated using centrifugation, filtration and compared with paper chromatography, which is developed in the Tris Acetic EDTA. In this system, the unbound of Y-90 migrates to an R f of 0.9-1.0 and the radiolabeled albumin particles remains at the point of origin (R f = 0). The size of 90 Y-albumin particles was compared with the albumin particles in the original solution to be sure that they did not change during the labeling treatment. The radiolabeling yields were more than 80%. The labeled compound was dialysis in phosphate buffer. The radiochemical purity was 98%. The 90 Y- albumin is an ideal radiopharmaceutical for potential use in malignant cancer treatment as brachytherapy. (author)

  5. Results of recent KROTOS FCI tests. Alumina vs. corium melts

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Magallon, D.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    Recent results from KROTOS fuel-coolant interaction experiments are discussed. Five tests with alumina were performed under highly subcooled conditions, all of these tests resulted in spontaneous steam explosions. Additionally, four tests were performed at low subcooling to confirm, on one hand, the suppression of spontaneous steam explosions under such conditions and, on the other hand, that such a system is still triggerable using an external initiator. The other test parameters in these alumina tests included the melt superheat and the initial pressure. All the tests in the investigated superheat range (150 K - 750 K) produced a steam explosion and no evidence of the explosion suppression by the elevated initial pressure (in the limited range of 0.1 - 0.375 MPa) was observed in the alumina tests. The corium test series include a test with 3 kg of melt under both subcooled and near saturated conditions at ambient pressure. Two additional tests were performed with subcooled water; one test was performed at an elevated pressure of 0.2 MPa with 2.4 kg of melt and another test with 5.1 kg of melt at ambient pressure. None of these tests with corium produced a propagating energetic steam explosion. However, propagating low energy (about twice the energy of the trigger pulse) events were observed. All corium tests produced significantly higher water level swells during the mixing phase than the corresponding alumina tests. Present experimental evidence suggests that the water depletion in the mixing zone suppresses energetic steam explosions with corium melts at ambient pressure and in the present pour geometry. Processes that could produce such a difference in void generation are discussed. (author)

  6. Extraction of Alumina from Red Mud for Synthesis of Mesoporous Alumina by Adding CTABr as Mesoporous Directing Agent

    Directory of Open Access Journals (Sweden)

    Eka Putra Ramdhani

    2018-05-01

    Full Text Available Mines in Bintan were producing bauxite for many years. The production process of bauxite to alumina produced much red mud. From X-ray Fluorescence (XRF, alumina content on Bintan’s red mud was 28.87 wt.%. This research was studying on the extraction alumina from red mud with reduction of hematite (Fe2O3 and desilication processes. After extraction process alumina was collected about 52.89 wt.%. Synthesis of mesoporous alumina from red mud using sol-gel method at the room temperature for 72 h with cetyltrimethylammonium bromide (CTABr as mesoporous directing agent. The CTABr/Al-salt ratio, i.e. 1.57; 4.71 and 7.85 with the sample code of AMC-1, AMC-3, AMC-5, respectively. The product was calcined at 550 °C for 6 h. The synthesized materials were characterized by X-ray Diffraction (XRD, scanning electron microscopy-energy dispersive X-ray (SEM-EDX, transmission electron microscopy (TEM, and N2 adsorption-desorption techniques. XRD pattern of AMC-1, AMC-3, and AMC-5 showed that all synthesized materials have amorphous phase. The morphology were wormhole aggregate that were showed by SEM and TEM characterization. N2 adsorption-desorption characterization showed the distribution of pore size of about 3.2 nm. The highest surface area and pore volume were obtained in solid-solid ratio CTABr/GM-AL by 1.57 (AMC-1 i.e. 241 m2/g and 0.107 cm3/g, respectively.

  7. Positive effect of yttrium on the reduction of pores in cast Al alloy

    International Nuclear Information System (INIS)

    Hua, Guomin; Ahmadi, Hojat; Nouri, Meisam; Li, Dongyang

    2015-01-01

    Mechanical and electrochemical properties of Al alloys can be improved by adding a small amount of rare-earth such as yttrium. Here we demonstrate that adding yttrium also helps suppress the porosity in cast Al alloys, thus minimizing its detrimental effect on mechanical properties of the alloys. The mechanism behind is elucidated based on the hydrogen binding energies and the diffusion activation energies of hydrogen atoms in Al and Al–Y phases, calculated using the first-principle method. - Highlights: • The porosity of commercial Al alloy can be reduced by additive yttrium. • Formed Al 3 Y phase helps reduce homogeneous nucleation of hydrogen bubbles. • Formed Al 3 Y and Al 2 Y phases could suppress the growth of hydrogen bubbles

  8. Influence of additives on the stability of the phases of alumina; Influencia de aditivos na estabilidade das fases da alumina

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D.C.C.; Gouvea, D., E-mail: deisedorosario@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Processos Ceramicos

    2011-07-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO{sub 2}, respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO{sub 2} work on improving the stability but with distinct mechanisms. (author)

  9. A study on heat transfer characteristics of spherical and fibrous alumina nanofluids

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Lee, Gyoung-Ja; Rhee, Chang Kyu

    2012-01-01

    Highlights: ► Spherical and fibrous alumina nanoparticles were prepared by pulsed wire evaporation and hydrolysis methods. ► Fibrous alumina nanofluid exhibited higher thermal conductivity enhancement than spherical one due to entangled structure of nanofibers with high aspect-ratio. ► Decreasing rate of viscosity with temperature for fibrous alumina nanofluid was much larger than that for spherical one. - Abstract: Ethylene glycol based nanofluids containing spherical/fibrous alumina nanoparticles were synthesized by pulsed wire evaporation and hydrolysis methods. The crystallographic and morphological properties of the prepared nanoparticles were analyzed by X-ray diffraction, nitrogen gas adsorption and transmission electron microscopy. The average diameter of spherical alumina nanoparticles was about 80 nm and the alumina nanofibers exhibited a high aspect ratio (length/width). The viscosity and thermal conductivity of the spherical/fibrous alumina nanofluids were experimentally measured in the temperature range from 25 to 80 °C. For the fibrous alumina nanofluid, the increase of temperature raised thermal conductivity but lowered viscosity. On the other hand, for the spherical alumina nanofluid, both thermal conductivity and viscosity were decreased with increasing temperature. In particular, the fibrous alumina nanofluid exhibited a higher enhancement of thermal conductivity than the spherical one due to the well-connected structure between entangled nanofibers with high aspect ratio.

  10. Corrosion resistance characterization of porous alumina membrane supports

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yingchao, E-mail: dongyc9@mail.ustc.edu.cn [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Lin Bin [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Zhou Jianer [Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Zhang Xiaozhen [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Key Lab of Jiangxi Universities for Inorganic Membranes, National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University (JCU) (China); Ling Yihan; Liu Xingqin; Meng Guangyao [USTC Lab for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC) (China); Hampshire, Stuart [Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland)

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  11. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina; Avaliacao das propriedades tecnologicas de refratarios dos sistemas alumina-zirconia e alumina-zirconia-silica

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A., E-mail: adriano@unifesspa.edu.br [Universidade Federal do Sul e Sudeste do Para (UFSSPA), Maraba, PA (Brazil)

    2014-07-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  12. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  13. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  14. Hydrogen diffusion in Pb β''-alumina

    International Nuclear Information System (INIS)

    Bates, J.B.; Dudney, N.J.; Wang, J.C.

    1985-01-01

    The mobile Na + ions in Na β''-alumina can be completely exchanged with Pb 2+ ions by treatment in molten PbCl 2 . When this exchange was carried out in the presence of air, protons in the form of OH - were introduced into the conduction layers along with lead ions. Although the concentration of OH - was low, on the order of 5 x 10 -3 per formula unit of Pb/sub 0.84/Mg/sub 0.67/Al/sub 10.33/O_1_7, the distribution of OH - after ion exchange indicated that the proton mobility in Pb β''-alumina is high. The potential use of Pb β''-alumina as a fast proton conductor that is stable at 400 0 C motivated further studies of hydrogen diffusion. In this report, the results of tracer diffusion measurements by isotope exchange will be presented

  15. Recovery of rare earths from red mud

    International Nuclear Information System (INIS)

    Bautista, R.G.

    1992-01-01

    The prospect for the recovery of rare earths from red mud, the bauxite tailings from the production of alumina is examined. The Jamaican red mud by far has the higher trace concentrations of lanthanum, cerium, neodymium, and yttrium. Scandium is also present. The dissolution of the rare earth is a major extraction problem because of the large volume of other materials. The recovery processes that have been proposed include the production of co-products such as iron, alumina, and titanium concentrates, with the rare earths going with the titanium. In this paper a critical examination of the possible processes are presented with the recommended research projects to be carried out

  16. Alumina Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  17. Production of pure sintered alumina

    International Nuclear Information System (INIS)

    Rocha, J.C. da; Huebner, H.W.

    1982-01-01

    With the aim of optimizing the sintering parameters, the strength of a large number of alumina samples was determined which were produced under widely varying sintering conditions and with different amounts of MgO content. The strength as a function of sintering time or temperature was found to go through a maximum. With increasing time, this maximum is shifted to lower temperatures, and with decreasing temperature to longer times. Data pairs of sintering times and temperatures which yeld the strength maximum were determined. The value of the strength at the maximum remains unchanged. The strength is high (= 400 MN/m 2 , at a grain size of 3 um and a porosity of 2 per cent) and comparable to foreign aluminas produced for commercial purposes, or even higher. The increase in the sintering time from 1 h to 16 h permits a reduction of the sintering temperature from 1600 to 1450 0 C without losing strength. The practical importance of this fact for a production of sintered alumina on a large scale is emphasized. (Author) [pt

  18. Mechanical behavior of alumina and alumina-feldspar based ceramics in an acetic acid (4%) environment

    International Nuclear Information System (INIS)

    Stumpf, Aisha S.G.; Bergmann, Carlos P.; Vicenzi, Juliane; Fetter, Rebecca; Mundstock, Karina S.

    2009-01-01

    This study investigates the mechanical properties of alumina-feldspar based ceramics when exposed to an aggressive environment (acetic acid 4%). Alumina ceramics containing different concentrations of feldspar (0%, 1%, 5%, 10%, or 40%) were sintered at either 1300, 1600, or 1700 o C. Flaws (of width 0%, 30%, or 50%) were introduced into the specimens using a saw. Half of these ceramic bodies were exposed to acetic acid. Their flexural strength, K IC , and porosity were measured and the fractured samples were evaluated using scanning electronic- and optical microscopy. It was found that in the ceramic bodies sintered at 1600 o C, feldspar content up to 10% improved flexural strength and K IC, and reduced porosities. Generally, it was found that acetic acid had a weakening effect on the flexural strength of samples sintered at 1700 o C but a beneficial effect on K IC of ceramics sintered at 1600 o C. It was concluded that alumina-based ceramics with feldspar content up to 10% and sintered at higher temperatures would perform better in an aggressive environment similar to oral cavity.

  19. Near net-shape fabrication of alumina glass composites

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.; Dortmans, L.J.M.G.; Feenstra, F.

    2005-01-01

    The purpose of the present study is to fabricate alumina glass composites by melt infiltration with better dimensional control through reducing both the presintering and infiltration temperature. Main efforts were put to develop glasses that are chemically compatible with alumina. After extensive

  20. Treatment of acromegaly by yttrium implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hibbert, J.; Shaheen, O.H.

    1977-01-01

    Yttrium implantation is one of the many ways of treating acromegaly. The advantages are the minor nature of the procedure and the fact that pituitary replacement is not as commonly required as after hypophysectomy. Thus in young female patients menstruation may be resumed following treatment and pregnancy has occurred. The procedure is not as free from complications as external irradiation but the response is more satisfactory.

  1. Biochemical investigation of yttrium(III) complex containing 1,10-phenanthroline: DNA binding and antibacterial activity.

    Science.gov (United States)

    Khorasani-Motlagh, Mozhgan; Noroozifar, Meissam; Moodi, Asieh; Niroomand, Sona

    2013-03-05

    Characterization of the interaction between yttrium(III) complex containing 1,10-phenanthroline as ligand, [Y(phen)2Cl(OH2)3]Cl2⋅H2O, and DNA has been carried out by UV absorption, fluorescence spectra and viscosity measurements in order to investigate binding mode. The experimental results indicate that the yttrium(III) complex binds to DNA and absorption is decreasing in charge transfer band with the increase in amount of DNA. The binding constant (Kb) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), were calculated according to relevant fluorescent data and Vant' Hoff equation. The results of interaction mechanism studies, suggested that groove binding plays a major role in the binding of the complex and DNA. The activity of yttrium(III) complex against some bacteria was tested and antimicrobial screening tests shown growth inhibitory activity in the presence of yttrium(III) complex. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    Ribeiro, C.A.

    1988-01-01

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  3. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  4. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    International Nuclear Information System (INIS)

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  5. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD

    Science.gov (United States)

    Li, Shuai; He, Di; Liu, Xiaopeng; Wang, Shumao; Jiang, Lijun

    2012-01-01

    The deuterium permeation behavior of the alumina coating on 316L stainless steel prepared by metal organic chemical vapor deposition (MOCVD) was investigated. The alumina coating was also characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). It was found that the as-prepared coating consisted of amorphous alumina. This alumina coating had a dense, crack-free and homogeneous morphology. Although the alumina coating was amorphous, effective suppression of deuterium permeation was demonstrated. The deuterium permeability of the alumina coating was 51-60 times less than that of the 316L stainless steel and 153-335 times less than that of the referred low activation martensitic steels at 860-960 K.

  6. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty.

    Science.gov (United States)

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-02-11

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of this articulation is variable. We reviewed the advantages and disadvantages of ceramicon- polyethylene articulation in THA, hip simulator study and retrieval study for polyethylene wear, in vivo clinical results of THA using alumina ceramic-on-polyethylene bearing surfaces in the literature, and new trial alumina ceramic-onhighly cross linked polyethylene bearing surfaces.

  7. Surface chloride salt formation on Space Shuttle exhaust alumina

    Science.gov (United States)

    Cofer, W. R., III; Pellett, G. L.; Sebacher, D. I.; Wakelyn, N. T.

    1984-01-01

    Aluminum oxide samples from the exhaust of Space Shuttle launches STS-1, STS-4, STS-5, and STS-6 were collected from surfaces on or around the launch pad complex and chemically analyzed. The results indicate that the particulate solid-propellant rocket motor (SRM) alumina was heavily chlorided. Concentrations of water-soluble aluminum (III) ion were large, suggesting that the surface of the SRM alumina particles was rendered soluble by prior reactions with HCl and H2O in the SRM exhaust cloud. These results suggest that Space Shuttle exhaust alumina particles are good sites for nucleation and condensation of atmospheric water. Laboratory experiments conducted at 220 C suggest that partial surface chloriding of alumina may occur in hot Space Shuttle exhaust plumes.

  8. Dynamical stability of the alpha and theta phases of alumina

    DEFF Research Database (Denmark)

    Lodziana, Zbigniew; Parlinski, K.

    2003-01-01

    Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...... cations in alumina, and suggest that some other than entropic mechanism exists, which stabilizes transition aluminas up to 1400 K. The present calculations go beyond the ground state energy calculations [C. Wolverton and K.C. Hass, Phys. Rev. B 63, 24102 (2001)], and give an additional understanding...... of the stability of transition alumina at finite temperatures....

  9. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    International Nuclear Information System (INIS)

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  10. Seeding technique for lowering temperature during synthesis of α-alumina

    Directory of Open Access Journals (Sweden)

    Yoshio Kobayashi

    2015-03-01

    Full Text Available This paper reports a method for producing α-Al2O3 at low temperature using a seeding technique. A white product obtained by hydrolyzing aluminum isopropoxide in water at 80 °C was peptized using acetic acid at 80 °C, which transformed the white product to a transparent alumina sol. α-Al2O3 particles were added to the alumina sol as seed material; the sol containing α-Al2O3 particles was then transformed to an α-Al2O3-seeded alumina gel by drying the sol at room temperature. The non-seeded alumina gel remained boehmite after annealing at 300 °C and crystallized into γ-Al2O3 and α-Al2O3 at temperatures between 300 and 500 °C and between 900 and 1100 °C, respectively. The α-Al2O3 seeding promoted crystallization of the alumina gel into α-Al2O3. The promotion of crystallization was significant with an increase in α-Al2O3 particle content by weight in the final seeded alumina gel. With an α-Al2O3 particle content of 5%, the seeded alumina gel was partially crystallized into α-Al2O3 by annealing at a temperature as low as 900 °C.

  11. Study on stability of labeled yttrium-90 with lipiodol by chemical extraction for liver cancer

    International Nuclear Information System (INIS)

    Mu, P.Y.; Jiang, X.L.; Chen, J.; Zhu, Y.J.

    2005-01-01

    Liver cancer, particularly hepatocellular carcinoma, is one of the most common malignant diseases in many developed and developing countries. It is also one of the most common diseases endangering the people's lives and health heavily. Surgery is very effective in early-stage patients. Unfortunately, there is less than 10% of the patients with hepatocellular carcinoma fitting for surgical therapy. Instead of surgical therapy, other methods are considered for patients in whom surgery may not work well. Systemic administration of chemotherapeutic agents is not often considered in liver cancer patients, due to discouraging result and adverse side effects. Also, hepatocellular carcinoma is not keen on usual radioactive therapy. However, method of inner interventional radioactive nuclide is a potential way to cure liver tumors. Hepatocellular carcinoma would be cured with inner interventional radioactive nuclide, which is a hot topic in experimental research on hepatocellular carcinoma at home and abroad. The purpose of the study is to label Yttrium-90 with lipiodol by means of the chemical extraction method and research the stability of labeled Yttrium-90 ( 90 Y-P204-Lipiodol) in serum of a newly-born cattle and human's blood. We chose to label steady yttrium with lipiodol, because radioactive yttrium has great nuclear character for liver cancer, yttrium-90 can eradiate pure β radial, and it's half time is 64 hours. Average energy of it is 0.93 Mev, the highest energy is 2.27 Mev. Yttrium-90 can be labeled with lipiodol by means of the chemical extraction method, which is mature in chemical techniques, combined with method of radioactive nuclide labeled in. nuclear medicine. At first, yttrium-90 is extracted in certain condition(pH, temperature, whisk time, whisk frequency, etc ) after adding yttrium-90 solution. We use some distilled water to balance the labeled organic phase twice, and test the stability of labeled yttrium-90 in serum of a newly-born cattle and

  12. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    Energy Technology Data Exchange (ETDEWEB)

    Louaer, Seif-Eddine; Wang, Yao, E-mail: yao@buaa.edu.cn; Guo, Lin, E-mail: guolin@buaa.edu.cn

    2014-11-14

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work.

  13. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    International Nuclear Information System (INIS)

    Louaer, Seif-Eddine; Wang, Yao; Guo, Lin

    2014-01-01

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work

  14. Study of preparation and surface morphology of self-ordered nanoporous alumina

    International Nuclear Information System (INIS)

    Rodrigues, Elisa Marchezini; Martins, Maximiliano Delany; Silva, Ronald Arreguy

    2013-01-01

    Nanoporous alumina is a typical material that exhibits self-ordered nanochannels spontaneously organized in hexagonal shape. Produced by anodizing of metallic aluminum, it has been used as a template for production of materials at the nanoscale. This work aimed to study the preparation of nanoporous alumina by anodic anodizing of metallic aluminum substrates. The nanoporous alumina was prepared following the methodology proposed by Masuda and Fukuda (1995), a two-step method consisting of anodizing the aluminum sample in the potentiostatic mode, removing the layer of aluminum oxide (alumina) formed and then repeat the anodization process under the same conditions as the first anodization. This method produces nanoporous alumina with narrow pore diameter distribution and well-ordered structure. (author)

  15. Protein adsorption on low temperature alpha alumina films for surgical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Cloud, A.N., E-mail: acloud@uark.ed [University of Arkansas, Fayetteville, AR 72701 (United States); Kumar, S. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Kavdia, M.; Abu-Safe, H.H.; Gordon, M.H. [University of Arkansas, Fayetteville, AR 72701 (United States)

    2009-08-31

    Bulk alumina has been shown to exhibit reduced protein adsorption, a property that can be exploited for developing alumina-coated surgical instruments and devices. Alpha alumina thin films were deposited on surgical stainless steel substrates to investigate the adsorption of a model protein (BSA, bovine serum albumin). The films were deposited at 480 {sup o}C by AC inverted cylindrical magnetron sputtering. Films were obtained at 6 kW and 50% oxygen partial pressure by volume. The presence of alpha-phase alumina has been shown by transmission electron microscopy. Results indicate that there was a 50% reduction in protein adsorption for samples with the alumina coating compared to those with no coating.

  16. Effect of yttrium chromite doping on its resistance to high-temperature salt and gas corrosions

    International Nuclear Information System (INIS)

    Oryshich, I.V.; Poryadchenko, N.E.; Rakitskij, A.N.; Bega, N.D.

    1996-01-01

    Effect of yttrium chromite doping with 2-4 group metal oxides on the corrosion resistance in the air at 1300 C during 5 hours and in sodium chloride and sulfate melts at 900 C during 20 hours is investigated. A notable increase of corrosion resistance is achieved under complex doping with zirconium and magnesium oxides in a quantity, close to solubility in yttrium oxide and solubility by aluminium oxide. Doping with calcium and strontium oxides in the quantities, dose to solubility in yttrium oxide does not produce any notable effect, and at higher concentrations it reduces the corrosion resistance in media indicated. Refs. 8, refs. 2, tabs. 1

  17. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    Science.gov (United States)

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements. © The Author(s) 2015.

  18. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  19. Preparation of high purity yttrium single crystals by electrotransport

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Ionov, A.M.; Pustovit, A.N.; Sikharulidse, G.G.

    1981-01-01

    The possibility of obtaining yttrium crystals of high purity by the method of solid state electrotransport (SSE) was investigated in the present work. The behaviour of low contents of iron, aluminium, silicon, tantalum, copper, silver and vanadium as metallic impurities was studied using mass spectrometry. It is shown that all the impurities investigated, except copper, migrate to the anode. During electrotransfer a purification with respect to these impurities by a factor of 4 - 6 is obtained. It is proposed that the diffusion coefficients of the metallic impurities investigated are anomalously high and that the behaviour of the impurities during SSE in adapters necessitates further investigation. By using a three-stage process with intermediate removal of the anode end yttrium single crystals with a resistance ratio rho 293 /rhosub(4.2)=570 were produced. (Auth.)

  20. Characterization of silane coated hollow sphere alumina-reinforced

    Indian Academy of Sciences (India)

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  1. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  2. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  3. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    Science.gov (United States)

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  4. A study of the dynamics of hydrogen in yttrium using inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bennington, S M; Benham, M J; Ross, D K [Birmingham Univ. (UK). School of Physics and Space Research; Taylor, A D; Bowden, Z A [Rutherford Appleton Lab., Chilton (UK)

    1989-01-01

    The results of several high resolution inelastic scattering experiments on {alpha}-phase yttrium-hydrogen are presented including measurements of energy levels up to the fourth and a study of the splitting of certain states due to hydrogen-hydrogen interactions. An attempt is made to model the energy levels by using perturbed simple harmonic oscillator wavefunctions. This can account for most of the major features of the spectrum. (orig.).

  5. Microstructural evaluation of alumina-niobium and alumina- niobium-zircon ceramics for ballistic application

    International Nuclear Information System (INIS)

    Mota, Juliana Machado da; Lopes, Cristina Moniz Araujo; Melo, Francisco Lourenco Cristovao de

    2009-01-01

    This study aimed to evaluate the microstructural of Alumina- Niobium and Alumina- Niobium-Zircon ceramics. Samples with 3.5 x 4.5 x 34 mm dimensions were prepared by uniaxial pressure (50 MPa) followed by isostatic pressure (300 MPa). The samples were sintered at 1500 ° C for 1 hour. The ceramics obtained were characterized by scanning electron microscopy (SEM) and X-ray diffraction, to evaluate the phases and microstructures. In order to analyze the microstructure, by SEM the samples were prepared using two techniques: heat treatment (1350 ° C for 5 minutes) and thermochemical treatment (500 ° C for 8 minutes in a solution of NaOH and KOH) on polished and fractured surfaces. The results showed that despite differences between the two etchings, both were effective to analyze the microstructure. (author)

  6. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    Science.gov (United States)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  7. Decision tree analysis to assess the cost-effectiveness of yttrium microspheres for treatment of hepatic metastases from colorectal cancer

    International Nuclear Information System (INIS)

    Kelley, B.B.; Walker, G.D.; Miles, K.A.

    2002-01-01

    Full text: The aim is to determine the cost-effectiveness of yttrium microsphere treatment of hepatic metastases from colorectal cancer, with and without FDG-PET for detection of extra-hepatic disease. A decision tree was created comparing two strategies for yttrium treatment with chemotherapy, one incorporating PET in addition to CT in the pre-treatment work-up, to a strategy of chemotherapy alone. The sensitivity and specificity of PET and CT were obtained from the Federal Government PET review. Imaging costs were obtained from the Medicare benefits schedule with an additional capital component added for PET (final cost $1200). The cost of yttrium treatment was determined by patient-tracking. Previously published reports indicated a mean gain in life-expectancy from treatment of 0.52 years. Patients with extra-hepatic metastases were assumed to receive no survival benefit. Cost effectiveness was expressed as incremental cost per life-year gained (ICER). Sensitivity analysis determined the effect of prior probability of extra-hepatic disease on cost-savings and cost-effectiveness. The cost of yttrium treatment including angiography, particle perfusion studies and bed-stays, was $10530. A baseline value for prior probability of extra-hepatic disease of 0.35 gave ICERs of $26,378 and $25,271 for the no-PET and PET strategies respectively. The PET strategy was less expensive if the prior probability of extra-hepatic metastases was greater than 0.16 and more cost-effective if above 0.28. Yttrium microsphere treatment is less cost-effective than other interventions for colon cancer but comparable to other accepted health interventions. Incorporating PET into the pre-treatment assessment is likely to save costs and improve cost-effectiveness. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  8. Decomposition of silica-alumina ores of Afghanistan by sulfuric acid

    International Nuclear Information System (INIS)

    Khomidi, A.K.; Mamatov, E.D.

    2016-01-01

    Present article is devoted to decomposition of silica-alumina ores of Afghanistan by sulfuric acid. Physicochemical properties of initial silica-alumina ores were studied by means of X-ray phase, differential thermal and silicate analysis. The influence of temperature, process duration and acid concentration on extraction rate of valuable components was considered. The optimal conditions of decomposition of silica-alumina ores of Afghanistan by sulfuric acid were proposed.

  9. Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina.

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles; Xu, Huifang; Pohl, Phil; Yang, Yi; Brinker, C Jeffrey

    2002-10-01

    This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.

  10. Severe wear behaviour of alumina balls sliding against diamond ...

    Indian Academy of Sciences (India)

    study, alumina ball was chosen as the counter body material to show better performance of the ... Tribology is a relatively new science that considers ... The science is applied in ... for example, in hip prosthesis, instead of existing alumina.

  11. Method of growing yttrium aluminate and/or lanthanide single crystals with perovskite structure

    International Nuclear Information System (INIS)

    Kvapil, Jiri; Perner, B.; Kvapil, Josef; Blazek, K.

    1989-01-01

    Single crystals of yttrium aluminate and/or lanthanide with perovskite structure are grown from melt in a vacuum at a pressure of gas residues of max. 0.01 Pa. The melt contains 1±0.05 gram-ions of aluminium per gram-ion of yttrium and/or lanthanides. The single crystals are then heated in a vacuum (0.01 Pa) at temperatures of 1,450 to 1,800 degC for 2 to 3 hours. (B.S.)

  12. Bauxite mining and alumina refining: process description and occupational health risks.

    Science.gov (United States)

    Donoghue, A Michael; Frisch, Neale; Olney, David

    2014-05-01

    To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Review article. The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures.

  13. Development and evaluation of alumina calcination

    International Nuclear Information System (INIS)

    Bennett, I.J.

    2000-01-01

    This thesis focuses on a number of aspects governing the transformation of gibbsite, via intermediate phases, to α-alumina. These aspects include the size and morphology of the gibbsite grains, the influence of additions of foreign elements, the effect of a mechanical treatment of the gibbsite prior to calcination, and combinations of these factors. The materials were characterised by scanning electron microscopy, X-ray diffraction and surface area measurements. For some of the calcined materials an attempt was made to sinter the powders to a dense body to investigate if any of the treatments during calcination had an effect on this process. The literature review covers the current state of understanding of the production of bulk alumina powder by the Bayer process and the phase changes seen on calcination of precursors to the stable α-alumina phase. A detailed description of the phase changes is given and the various routes and conditions necessary for the transformations to occur are considered. The transformations are examined in relation to the morphology of the crystals and the variables controlling the phase transformation route are discussed. Calcination in air showed that the size of the gibbsite grain governs the calcination route taken to reach oc-alumina. The standard gibbsites used in this work show a mixed calcination sequence transforming both via the boehmite phase, followed by the γ, δ and θ phases, and via the χ and κ phases. The formation of boehmite is attributed to retention of water vapour within the grain. Differences in morphology of the starting materials showed that for the range of materials seen, the morphology of the grain is less important than its size. The super fine material confirmed that a small grain size transforms via the non-boehmite route only, with the other gibbsites taking intermediate routes as for the standard gibbsites. Of the additions made prior to calcination, aluminium fluoride was found to reduce the

  14. Experimental research on HEL and failure properties of alumina under impact loading

    Directory of Open Access Journals (Sweden)

    Xiao-wei Feng

    2016-06-01

    Full Text Available A series of plate impact experiments on alumina was conducted using a light gas gun in order to further investigate Hugoniot elastic limit (HEL and failure properties of alumina under shock compression. The velocity interferometer system for any reflector (VISAR was used to record the rear-free surface velocity histories of the alumina samples. According to the experimental results, the HELs of tested alumina samples with different thicknesses were measured, and the decay phenomenon of elastic wave in shocked alumina was studied. A phenomenological expression between HEL and thickness of sample was presented, and the causes of the decay phenomenon were discussed. The propagation of failure wave in shocked alumina was probed. The velocity and delayed time of failure wave propagation were obtained. The physical mechanism of the generation and propagation of failure was further discussed.

  15. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review

    International Nuclear Information System (INIS)

    Salem, Riad; Hunter, Russell D.

    2006-01-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These early studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC

  16. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: a review.

    Science.gov (United States)

    Salem, Riad; Hunter, Russell D

    2006-01-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These early studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC.

  17. Electrochemical corrosion of lanthanum chromite and yttrium chromite in coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, D.D.; Bates, J.L.

    1981-01-01

    Lanthanum chromites have long been considered as electrodes for magnetohydrodynamic (MHD) generator channels. These chromites, when doped with divalent ions such as Ca, Mg or Sr, have adequate electronic and electrical conductivity (2), and melting points greater than 2500/sup 0/K. However, above approx. 1850/sup 0/K, selective vapor loss of chromium results in the formation of a La/sub 2/O/sub 3/ phase. The La/sub 2/O/sub 3/ is hydroscopic at room temperature, resulting in a large volume change and loss of mechanical integrity when exposed to H/sub 2/O. The analogous yttrium chromites have thermal and electrical properties similar to that for the lanthanum chromites. Although vapor loss of Cr results in the formation of Y/sub 2/O/sub 3/, this oxide does not hydrate. Corrosion studies of yttrium chromite compositions show that doped YCrO/sub 3/ may be a viable MHD electrode. An electrochemical corrosion study of both magnesium-doped lanthanum and yttrium chromites in synthetic coal slag electrolytes is described. Possible chemical and electrochemical degradation phenomena, as well as the relative rates of corrosion are emphasized.

  18. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  19. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    Science.gov (United States)

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  20. Uranyl sorption onto alumina

    International Nuclear Information System (INIS)

    Jacobsson, A.M.M.

    1997-01-01

    The mechanism for the adsorption of uranyl onto alumina from aqueous solution was studied experimentally and the data were modeled using a triple layer surface complexation model. The experiments were carried out at low uranium concentrations (9 x 10 -11 --5 x 10 -8 M) in a CO 2 free environment at varying electrolyte concentrations (0.01--1 M) and pH (4.5--12). The first and second acid dissociation constants, pK a1 and pK a2 , of the alumina surface were determined from potentiometric titrations to be 7.2 ± 0.6 and 11.2 ± 0.4, respectively. The adsorption of uranium was found to be independent of the electrolyte concentration. The authors therefore conclude that the uranium binds as an inner sphere complex. The results were modeled using the code FITEQL. Two reactions of uranium with the surface were needed to fit the data, one forming a uranyl complex with a single surface hydroxyl and the other forming a bridged or bidentate complex reacting with two surface hydroxyls of the alumina. There was no evidence from these experiments of site heterogeneity. The constants used for the reactions were based in part on predictions made utilizing the Hard Soft Acid Base, HSAB, theory, relating the surface complexation constants to the hydrolysis of the sorbing metal ion and the acid dissociation constants of the mineral oxide surface

  1. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-88 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, R.W.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Junghaus, R.; Gansow, O.A.; Waldmann, T.A. (Center for Biologics Evaluation and Research, FDA, Bethesda, MD (USA))

    1989-05-15

    One factor that is critical to the potential effectiveness of radioimmunotherapy is the design of radiometal-chelated antibodies that will be stable in vivo. Stability in vivo depends on the condition that both the chelate linkage and radiolabeling procedures not alter antibody specificity and biodistribution. In addition, synthesis and selection of the chelating agent is critical for each radiometal in order to prevent inappropriate release of the radiometal in vivo. In the present study, we compare the in vivo stability of seven radioimmunoconjugates that use different polyaminocarboxylate chelating agents to complex yttrium-88 to the mouse anti-human interleukin-2 receptor monoclonal antibody, anti-Tac. Chelate linkage and radiolabeling procedures did not alter the immunospecificity of anti-Tac. In order to assess whether yttrium was inappropriately released from the chelate-coupled antibody in vivo, iodine-131-labeled and yttrium-88 chelate-coupled antibodies were simultaneously administered to the same animals to correlate the decline in yttrium and radioiodinated antibody activity. The four stable yttrium-88 chelate-coupled antibodies studied displayed similar iodine-131 and yttrium-88 activity, indicating minimal elution of yttrium-88 from the complex. In contrast, the unstable yttrium-88 chelate-coupled antibodies had serum yttrium-88 activities that declined much more rapidly than their iodine-131 activities, suggesting loss of the radiolabel yttrium-88 from the chelate. Furthermore, high rates of yttrium-88 elution correlated with deposition in bone. Four chelating agents emerged as promising immunotherapeutic reagents: isothiocyanate benzyl DTPA and its derivatives 1B3M, MX, and 1M3B.

  2. Electrochemical impedance spectroscopy of nanoporous anodic alumina template

    International Nuclear Information System (INIS)

    Shahzad, K.

    2010-01-01

    Room temperature EIS characterization of nanoporous anodic alumina prepared at 40 V and 60 V has been done in 0.3 M oxalic acid solution. Rapid decrease in impedance was observed for the template prepared at 40 V. EIS study of porous anodic alumina template prepared in 0.3 M oxalic acid has been done in different electrolytes. Templates prepared in 0.3 M sulfuric acid solution were also characterized for comparison. Rapid decrease in the thickness of nonporous anodic film was observed with an increase of aggressiveness of electrolyte. Temperature based systematic study of EIS measurement has been done for porous anodic alumina template at different temperatures. Formation of micropores was observed in the nanoporous anodic alumina film formed on aluminum in 0.3 M oxalic acid solution which accelerates the dissolution rate with increase of measurement temperature. In addition to these, electropolishing behavior of pure aluminum has also been studied in different electrolytes and it was observed that electropolishing conditions prior to anodization are extremely important. (author)

  3. Role of Metal Oxides in Chemical Evolution: Interaction of Ribose Nucleotides with Alumina

    Science.gov (United States)

    Arora, Avnish Kumar; Kamaluddin

    2009-03-01

    Interaction of ribonucleotides—namely, 5‧-AMP, 5‧-GMP, 5‧-CMP, and 5‧-UMP—with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and Xm and KL values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.

  4. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  5. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  6. Quantum design and synthesis of a boron-oxygen-yttrium phase

    International Nuclear Information System (INIS)

    Music, Denis; Chirita, Valeriu; Kreissig, Ulrich; Czigany, Zsolt; Schneider, Jochen M.; Helmersson, Ulf

    2003-01-01

    Ab initio calculations are used to design a crystalline boron-oxygen-yttrium (BOY) phase. The essential constituent is yttrium substituting for oxygen in the boron suboxide structure (BO 0.17 ) with Y/B and O/B ratios of 0.07. The calculations predict that the BOY phase is 0.36 eV/atom more stable than crystalline BO 0.17 and experiments confirm the formation of crystalline thin films. The BOY phase was synthesized with reactive rf magnetron sputtering and identified with x-ray and selected area electron diffraction. Films with Y/B ratios ranging from 0.10 to 0.32, as determined via elastic recoil detection analysis, were grown over a wide range of temperatures (300-600 deg. C) and found to withstand 1000 deg. C

  7. Thermoelectric Properties of the Yttrium-Doped Ceramic Oxide SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Tamal Tahsin; Ur, Soon-Chul [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-01-15

    The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO{sub 3} at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO{sub 3}. The doping level in SrTiO{sub 3} was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO{sub 3} provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.

  8. Fabrication and electrical characterization of 15% yttrium-doped barium zirconate-nitrate freeze drying method combined with vacuum heating

    International Nuclear Information System (INIS)

    Imashuku, Susumu; Uda, Tetsuya; Nose, Yoshitaro; Awakura, Yasuhiro

    2011-01-01

    Research highlights: → Very fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from powder mixed by the nitrate freeze-drying method. → Large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained using the synthesized powder. → Grain boundary resistance was not inversely proportional to the grain size as theoretically expected. → Specific grain boundary conductivity varies with samples because impurities and/or evaporation loss of barium oxide might affect the grain-boundary resistance in 15% yttrium-doped barium zirconate. - Abstract: We applied a nitrate freeze-drying method to obtain a fine synthesized powder of 15% yttrium-doped barium zirconate. Fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from a powder mixed by the nitrate freeze-drying method. However, we could not obtain such fine powder by synthesizing in air. Using the powder synthesized in vacuum, large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained after sintering. Then, the bulk and grain boundary resistance were evaluated by AC 2-terminal measurement of sample in the form of bar and pellet and DC 4-terminal measurement of bar-shape sample. The grain boundary resistance was not inversely proportional to the grain size as theoretically expected. We concluded that specific grain boundary conductivity varies with samples. Some impurities, evaporation loss of barium oxide and/or other unexpected reasons might affect the grain boundary resistance in 15% yttrium-doped barium zirconate.

  9. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiya, Shunta; Kikuchi, Tatsuya, E-mail: kiku@eng.hokudai.ac.jp; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Highlights: • Anodic porous alumina was formed in an arsenic acid solution. • Potential difference (voltage) anodizing at 340 V was achieved. • The porous alumina was slightly ordered under the appropriate conditions. • Pore sealing behavior was not observed in boiling distilled water. • The porous alumina exhibits a white photoluminescence emission under UV irradiation. - Abstract: Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1–0.5 M arsenic acid solutions at 310–340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  10. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao

    2016-01-01

    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  11. Structural, optical and mechanical properties of amorphous and crystalline alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Priyanka [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Khanna, Atul, E-mail: akphysics@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Kabiraj, D.; Abhilash, S.R. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Beake, Ben D.; Losset, Yannick [Micro Materials Limited, Unit 3, Wrexham Technology Park, Wrexham LL13 7YP (United Kingdom); Chen, Banghao [Chemistry and Biochemistry Department, Florida State University, Tallahassee 32306 (United States)

    2014-10-01

    Thin films of amorphous alumina of thickness 350 nm were deposited on fused silica substrates by electron beam evaporation. Amorphous films were annealed at several temperatures in the range: 400–1130 °C and changes in film crystallinity, short-range structure, optical and mechanical properties were studied. X-ray diffraction studies found that crystallization starts at 800 °C and produces γ and δ-alumina, the latter phase grows with heat treatment and the sample was mostly δ and θ-alumina after annealing at 1130 °C. The as-deposited amorphous alumina films have low hardness of 5 to 8 GPa, which increases to 11 to 12 GPa in crystalline sample. {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance was used to study the short-range order of amorphous and crystalline alumina films and it was found that amorphous alumina film contains AlO{sub 5} and AlO{sub 4} structural units in the ratio of 1:2. The concentration of AlO{sub 5} was significantly suppressed in crystalline film, which contains 48% of Al{sup 3+} ions in AlO{sub 6}, 7% in AlO{sub 5} and 45% in AlO{sub 4} units. - Highlights: • Structure–property correlations in alumina films grown by electron-beam evaporation • Amorphous films crystallize into γ and δ-alumina on annealing in air at 800 °C. • δ and θ-alumina films are stable up to 1130 °C and do not transform to α-phase. • Amorphous alumina films contain {sup [5]}Al and {sup [4]}Al structural units in the ratio of 1:2. • {sup [5]}Al decreases whereas {sup [6]}Al concentration increases on crystallization.

  12. Porous alumina scaffold produced by sol-gel combined polymeric sponge method

    Science.gov (United States)

    Hasmaliza, M.; Fazliah, M. N.; Shafinaz, R. J.

    2012-09-01

    Sol gel is a novel method used to produce high purity alumina with nanometric scale. In this study, three-dimensional porous alumina scaffold was produced using sol-gel polymeric sponge method. Briefly, sol gel alumina was prepared by evaporation and polymeric sponge cut to designated sizes were immersed in the sol gel followed by sintering at 1250 and 1550°C. In order to study the cell interaction, the porous alumina scaffold was sterilized using autoclave prior to Human Mesenchymal Stem Cells (HMSCs) seeding on the scaffold and the cell proliferation was assessed by alamarBlue® assay. SEM results showed that during the 21 day period, HMSCs were able to attach on the scaffold surface and the interconnecting pores while maintaining its proliferation. These findings suggested the potential use of the porous alumina produced as a scaffold for implantation procedure.

  13. Adsorption Behavior of Vanadium in Presence of alumina with Emphasize on Triple Layer Model Simulation

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    2006-01-01

    Adsorption behavior of vanadium in alumina colloidal solution as simulation for soil-water and/or sediment - water system was investigated. factors affecting this behavior including Ph, humic acid and alumina concentrations were studied. Three stages of vanadium adsorption on alumina were approved due to Ph changes. The first is increasing adsorption with increasing Ph, in the range 1-3. the second is decreasing adsorption with increasing Ph in the range 6-10. the third is constant adsorption at 100% adsorption in Ph range 3-8 at 10 g/l concentration of alumina. However, at 0.2 g/l, the maximum adsorption of vanadium became less than 100%.The effect of humic acid on the adsorption behavior of vanadium (V) was studied and compared with that of vanadium (IV) . Adsorption behaviors were studied at concentration 4.1 E-4 M for vanadium at 0.1 M ionic strength. Triple layer model was used for simulation of vanadium adsorption behavior in presence of alumina under the same working conditions. the results showed good validation and verification to the data practically found. speciation of vanadium in both homogenous and heterogeneous systems was also studied theoretically so as to verify the most abundant elemental species and its impact on the environment

  14. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  15. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina

    International Nuclear Information System (INIS)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A.

    2014-01-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  16. Comparative evaluation of alumina powders obtained from different routes for engineering applications

    International Nuclear Information System (INIS)

    Page, C.H.; Chatterjee, A.K.

    1991-01-01

    Alumina, the most versatile and widely used refractory ceramic oxide, has currently occupied the position of the most preferred material in engineering ceramic industry. Though limited to some extent, the experience so far has been that the selection of an inappropriat high alumina ceramic can lead to cost penalties and poor performance in service. With this in view, one of the studies undertaken at the research laboratories of The Associated Cement Cos.Ldt. (India) has been to synthesise alumina powders by various process routes and to compare their physico-mechanical, thermal, textural and microstructural characteristics so as to understand the effects emanating from the powder synthesis processes on the performance properties of alumina. Following this approach, the present paper deals with aluminas obtained from four process routes, viz. Sol-Gel, Controlled Precipitation, Pyrolysis and Aluminium salts and conventional alumina obtained by calcination of gibbsite. The properties of these four varieties of alumina are characterised with respect to chemical analysis, particle size, textural features, grindability, etc. Behaviour of these powders in green processing/shaping particularly in terms of compaction, density, binder requirements, etc. have been studied. The calcination characteristics as reflected in shrinkage, densification and crystal morphology have been examined. Finally, the physical and thermal properties of Aluminas obtained from various synthesis routes and their co-relation with various powder characteristics and compact microstrcture have been dealt with. (orig.)

  17. The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.; Tavakoli, R.

    2015-01-01

    Superparamagnetic Y-substituted magnetite (Y x Fe 3–x O 4 ,with x=0.00, 0.10, 0.15, 0.20 and 0.40) nanoparticles were synthesized via hydrothermal reduction route in the presence of citric acid. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM) and gradient field thermomagnetic measurement. The results showed that a minimum amount of citric acid is required to obtain single phase Y-substituted magnetite nanoparticles. Citric acid acts as a modulator and reducing agent in the formation of spinel structure and controls nanoparticle size and crystallinity. Mean crystallite sizes of the single-phase powders were estimated by Williamson–Hall method. Curie temperature measurement of the samples shows that as yttrium content increases, the Curie temperature decreases. Magnetic measurements show that the saturation magnetization of the samples decreases as x increases up to 0.15 and then increases to x=0.20 and finally decreases again for x=0.40. - Highlights: • Single phase yttrium substituted magnetite nanoparticles were synthesized by hydrothermal-reduction route. • Citric acid plays a key role in reduction of Fe 3+ to Fe 2+ , which is necessary for the formation of magnetite phase. • It is possible to substitute yttrium ions for iron ones as high as x=0.4 by hydrothermal reduction route. • Pure magnetite nanoparticles prepared by this route has a high saturation magnetization. • Yttrium substituted magnetite nanoparticles are superparamagnet at room temperature

  18. Tribological effects of yttrium and nitrogen ion implantation on a precipitation hardening stainless steel

    International Nuclear Information System (INIS)

    Alonso, F.; Arizaga, A.; Garcia, A.; Onate, J.I.

    1994-01-01

    Yttrium, nitrogen and combined yttrium and nitrogen implantations have been carried out on an ASTM A286 precipitation hardening iron base alloy to evaluate the benefits in their tribological behaviour. Microindentation tests have shown a significant 20%-60% increment in hardness on the nitrogen implanted material, with a limited improvement in elastic recovery of the indentation. An abrasive test on the same material has also produced a 50% reduction in scratch depth. Y + and Y + +N + implantations also hardened the material but to a lesser extent. Reciprocating ball on disk friction and wear testing at 400 C resulted in very severe damage in all cases. X-ray photoelectron spectroscopy analyses combined with Ar sputtering have disclosed that nitrogen is mainly in a nitrided form, yttrium remains oxidized at the surface, below which there is an apparent increase in the metallic bond. ((orig.))

  19. Master sintering curves of two different alumina powder compacts

    Directory of Open Access Journals (Sweden)

    Vaclav Pouchly

    2009-12-01

    Full Text Available Concept of Master Sintering Curve is a strong tool for optimizing sintering schedule. The sintering behaviour can be predicted, and sintering activation energy can be calculated with the help of few dilatometric measurements. In this paper an automatic procedure was used to calculate Master Sintering Curves of two different alumina compacts. The sintering activation energies were determined as 640 kJ/mol for alumina with particle size of 240 nm, respective 770 kJ/mol for alumina with particle size of 110 nm. The possibility to predict sintering behaviour with the help of Master Sintering Curve was verified.

  20. Quantitative description of yttrium aluminate ceramic composition by means of Er+3 microluminescence spectrum

    Science.gov (United States)

    Videla, F. A.; Tejerina, M. R.; Moreira-Osorio, L.; Conconi, M. S.; Orzi, D. J. O.; Flores, T.; Ponce, L. V.; Bilmes, G. M.; Torchia, G. A.

    2018-05-01

    The composition of erbium-doped yttrium aluminate ceramics was analyzed by means of confocal luminescence spectroscopy, EDX, and X-ray diffraction. A well-defined linear correlation was found between a proposed estimator computed from the luminescence spectrum and the proportion of ceramic phases coexisting in different samples. This result shows the feasibility of using erbium luminescence spectroscopy to perform a quantitative determination of different phases of yttrium aluminates within a micrometric region in nanograined ceramics.

  1. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    International Nuclear Information System (INIS)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J.; Kowalczyk, Z.; Grasza, K.

    1994-01-01

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab

  2. Preparation of polycrystalline lithium-yttrium fluoride for subsequent mono crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, E.; Radomski, J.; Diduszko, R.; Iwanejko, J. [Institute of Vacuum Technology, Warsaw (Poland); Kowalczyk, Z. [Warsaw Univ. (Poland); Grasza, K. [Polska Akademia Nauk, Warsaw (Poland). Inst. Fizyki

    1994-12-31

    High purity lithium-yttrium (YLF) doped with rare earth elements (Nd, Pr, Ho or Tm) was obtained in a two-stage synthesis consisting of (1) reaction of ammonium fluoride with a mixture of lithium carbonate, yttrium oxide, and oxides of lanthanides, and (2) heating of the obtained reaction products at a temperature of about 700 C in an inert gas atmosphere. The phase and chemical purities of the obtained materials were characterized by X-ray diffraction and mass spectrometry techniques. Single crystal growth tests were carried out by means of the Bridgman method. The results showed that the proposed method for manufacture of polycrystalline YLF doped with rare earth elements is appropriate in principle but some parameters of the preparation process are to be more strictly defined. (author). 9 refs, 4 figs, 1 tab.

  3. The effect of alumina nanofillers size and shape on mechanical behavior of PMMA matrix composite

    Directory of Open Access Journals (Sweden)

    Ben Hasan Somaya Ahmed

    2014-01-01

    Full Text Available Composites with the addition of alumina nanofillers show improvement in mechanical properties. The PMMA polymer was used as a matrix and two different types of nanofillers, having extremely different shapes were added in the matrix to form the composite. Reinforcements were based on alumina nanoparticles having either spherical shape or whiskers having the length to diameter ratio of 100. The influence of alumina fillers size, shape and fillers loading on mechanical properties of prepared composite were studied using the nanoindentation measurements and dynamic mechanical analysis. It was observed that both alumina whiskers and alumina spherical nanoparticles added in the PMMA matrix improved the mechanical properties of the composite but the improvement was significantly higher with alumina whisker reinforcement. The concentration of the reinforcing alumina spherical nanoparticles and alumina whiskers in PMMA matrix varied up to 5 wt. %. The best performance was obtained by the addition of 3 wt. % of alumina whiskers in the PMMA matrix with regard to mechanical properties of the obtained composite.

  4. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium–yttrium organic frameworks

    International Nuclear Information System (INIS)

    Han Yinfeng; Fu Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-01-01

    Three mixed europium–yttrium organic frameworks: Eu 2−x Y x (Mel)(H 2 O) 6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu 3+ lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu 2−x Y x (Mel)(H 2 O) 6 (Mel=mellitic acid) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu 3+ lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: ► Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. ► Metal ratios were refined by the single crystal data consistent with the EDS analysis. ► Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. ► Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.

  5. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  6. [Characterization of alumina adobe and sintered body of GI-infiltrated ceramic].

    Science.gov (United States)

    Wang, H; Chao, Y; Liao, Y; Liang, X; Zhu, Z; Gao, W

    2001-06-01

    This study was conducted to elucidate the mechanism of formation of porous structure by investigating the porosity of the alumina adobe and sintered body of GI-II Infiltrate Ceramic, and its role in strengthening and toughening this kind of ceramic composite. The alumina powder size-mass distribution was obtained by BI-XDC powder size analysis device; the open pore parameters of alumina adobe and sintered body were analyzed using the mercury pressure method. Their fracture surfaces were observed under scanning electronic microscope. Fine powder had two main size groups of 0.09-0.1 micron and 0.2-0.5 micron, respectively, and coarse powder, with size between 1.5 to 4.5 microns, occupied the majority of powder mass. Alumina adobe's pores became larger after sintering. The median pore radii of adobe and sintered body were 0.2531 micron and 0.3081 micron, respectively; the average pore radii changed from 0.0956 micron to 0.1102 micron. Under scanning electronic microscope, fine alumina powders were fused partially together and their surfaces were blunted, but coarse powders did not show such phenomena. The alumina size distribution contributes to the formation of porous structure of alumina sintered body. This porous structure is not only the shape skeleton but also the mechanical skeleton of GI-II Infiltrated Ceramic. It plays an important role in raising the mechanical properties of this kind of ceramic composite.

  7. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  8. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution

    International Nuclear Information System (INIS)

    Nam, Nguyen Dang; Thang, Vo Quoc; Hoai, Nguyen To; Hien, Pham Van

    2016-01-01

    Highlights: • Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper. • A high inhibition performance is attributed to the forming protective inhibiting deposits. • Yttrium 3-(4-nitrophenyl)-2-propenoate mitigates corrosion by promoting random distribution of minor anodes. - Abstract: Yttrium 3-(4-nitrophenyl)-2-propenoate has been studied as an effective corrosion inhibitor for copper alloy in 0.1 M chloride solution. The results show that the surface of copper alloy coupons exposed to solutions containing 0.45 mM yttrium 3-(4-nitrophenyl)-2-propenoate had no signs of corrosion attack due to protective film formation, whereas the surface of copper alloy coupons exposed to non-inhibitor and lower concentrations of yttrium 3-(4-nitrophenyl)-2-propenoate containing solutions were severely corroded. A high inhibition performance is attributed to the forming protective inhibiting deposits that slow down the electrochemical corrosion reactions and mitigate corrosion by promoting random distribution of minor anodes.

  9. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyi [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Zhu, Yong, E-mail: y.zhu@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Chen, Youping; Song, Han; Huang, Pengcheng [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Dao, Dzung Viet [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia)

    2017-06-15

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  10. Hydrogen sensor based on palladium-yttrium alloy nanosheet

    International Nuclear Information System (INIS)

    Wang, Boyi; Zhu, Yong; Chen, Youping; Song, Han; Huang, Pengcheng; Dao, Dzung Viet

    2017-01-01

    This paper presents a hydrogen sensor based on palladium-yttrium (Pd-Y) alloy nanosheet. Zigzag-shaped Pd-Y nanosheet with a thickness of 19.3 nm was deposited on a quartz substrate by using an ultrahigh-vacuum magnetron sputtering system and shadow mask. The atomic ratio of palladium to yttrium in the nanosheet was 0.92/0.08. The fabrication process was simple and low-cost, and the sensor can be mass-produced. The experimental results show the sensor has a superior sensitivity, reversibility, and reproducibility. The resistive-based hydrogen detection mechanism in this research is much simpler and more compact compared to the optical-based detection method. - Highlights: • Pd-Y sensing element was fabricated using a magnetron sputtering system and shadow mask. • The Pd-Y compound consisted of 92% Pd and 8% Y. • The fabrication process was simple, low-cost, and mass-production compatible. • The sensor showed superior sensitivity, reversibility, and reproducibility to hydrogen gas. • The device is more compact than the optical-based counterpart.

  11. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  12. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  13. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  14. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  15. Lack of rise in serum prolactin following yttrium-90 interstitial irradiation for acromegaly

    International Nuclear Information System (INIS)

    Clark, A.J.L.; Chahal, P.; Mashiter, K.; Joplin, G.F.

    1983-01-01

    The authors have investigated the possibility that the increase in serum PRL levels observed in patients with acromegaly treated with external irradiation could be due to damage to the hypothalamus or portal vessels, by comparing the effects of yttrium-90 interstitial irradiation, which is highly localised and does not normally extend to the hypothalamus, in a similar series of patients. These results are consistent with the hypothesis; a less likely explanation is that an overgrowth of radio-resistant PRL-secreting tumour cells is occurring after external irradiation, but not after yttrium-90 implantation. (author)

  16. Lack of rise in serum prolactin following yttrium-90 interstitial irradiation for acromegaly

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.J.L.; Chahal, P.; Mashiter, K.; Joplin, G.F. (Royal Postgraduate Medical School, London (UK))

    1983-11-01

    The authors have investigated the possibility that the increase in serum PRL levels observed in patients with acromegaly treated with external irradiation could be due to damage to the hypothalamus or portal vessels, by comparing the effects of yttrium-90 interstitial irradiation, which is highly localised and does not normally extend to the hypothalamus, in a similar series of patients. These results are consistent with the hypothesis; a less likely explanation is that an overgrowth of radio-resistant PRL-secreting tumour cells is occurring after external irradiation, but not after yttrium-90 implantation.

  17. The determination of the structure of γ-alumina using empirical and first principle calculations and supporting experiment

    International Nuclear Information System (INIS)

    Paglia, G.; Buckely, C.E.; O'Connor, B.H.; Van Riessen, A.; Rohl, A.L.; Gale, J.D.

    2002-01-01

    Full text: Because of its hardness, abrasion resistance, mechanical strength, corrosion resistance, and good electrical insulation, alumina (AI 2 O 3 ) is a material of high technological and industrial significance. Alumina exists in a variety of metastable structures including the γ, η, θ, K, and χ aluminas, as well as its stable α alumina phase. The crystal structure of the γ-phase in alumina has attracted considerable attention over the past 40 years, with various reports attributing either a cubic or tetragonal structure to this phase. Consensus on the definitive structure of γ-alumina (γ-AI 2 O 3 ) has yet to be reached. Rapid advancement has occurred in the field of computational materials science in recent times. Huge advances in computing power during this period have made ft possible to apply the laws of quantum mechanics to the study of macroscopic properties of real materials at the atomic level. Predicting the properties of materials by theoretical means complements the traditional experimental approaches. This research is directed at determining the structure of γ-Al 2 O 3 using theoretical first principles and empirical computational techniques combined with experimental methods. The purpose of this presentation is to discuss the problems associated with determining the structure of γ-AI 2 O 3 and to outline the methodology being applied to solve it. Copyright (2002) Australian X-ray Analytical Association Inc

  18. Preparation of Nano Activated γ-Alumina ( with Surfactant and Surface Characterization

    Directory of Open Access Journals (Sweden)

    Enas Sameer AL-Khawaja

    2016-09-01

    Full Text Available This paper deals with the preparation of Alumina by sol-gel technique through the hydrolysis of aluminum ion mixed with the glucose as a surfactant and converting it to gel by ammonium hydroxide in aqueous media. The resulting sol composed of particle is draying to become a transparent gel. The freshly prepared gel is heated at 700°C for 2hrs to obtain alumina ( particles. The obtained particles are found to be γ-alumina particles with high porosity, Their characteristics are determined by LPSA, XRD, SEM, TEM and BET techniques. The results show that the particles are pure alumina, nano-sized=20nm, spherical shape, high surface area=210 /gm.

  19. Polymorphism and electrical behaviour of yttrium thin films

    International Nuclear Information System (INIS)

    Kaul, U.K.; Srivastava, O.N.

    1978-01-01

    It appears that the thickness-resistivity behaviour of yttrium embodying a thickness-dependent polymorphic phase transition can be explained in terms of surface scattering by taking into account the effect of the change in phase. It is interesting to note that, as a result of the polymorphic transition, the resistivity-thickness curve has an unusual shape. (Auth.)

  20. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, P; Inkson, B J; Rainforth, W M [Department of Engineering Materials, Mappin St., University of Sheffield, Sheffield, S1 3JD (United Kingdom); Stewart, T [School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT (United Kingdom)], E-mail: m.rainforth@sheffield.ac.uk

    2008-08-15

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  1. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  2. Radiation protection data sheets for the use of Strontium 90-Yttrium 90 in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This radiation protection data sheet is intended for supervisors and staff in the different medical, hospital, pharmaceutical, university and industrial laboratories and departments where Strontium 90-Yttrium 90 is handled, and also for all those involved in risk prevention in this field. It provides essential data on radiation protection measures during the use of Strontium 90-Yttrium 90 in unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography

  3. Microstructure and defect chemistry of yttrium aluminium garnet ceramics

    International Nuclear Information System (INIS)

    Schuh, L.H.

    1989-01-01

    This thesis describes basic aspects concerning the defect chemistry and the microstructure of yttrium aluminium garnet ceramics. The work consists of three parts: a literature study, an experimental part and a section giving computer simulation data of defects. (author). 320 refs.; 68 figs.; 72 schemes; 32 tabs

  4. Preparation and Characterization of Activated Alumina

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Activated alumina is a high surface area and highly porous form of aluminum oxide that can be employed for contaminant species adsorb from ether gases or liquids without changing its form. The research in getting this material has generated huge interested. Thus, this paper presented preparation of activated alumina from chemical process. Pure aluminum (99.9% pure) reacted at room temperature with an aqueous NaOH in a reactor to produce a solution of sodium aluminate (NaAlO2). This solution was passed through filter paper and the clear filtrate was neutralized with H2SO4, to pH 6, 7 or 8, resulting in the precipitation of a white gel, Al(OH)3·XH2O. The washed gel for sulfate ions were dried at 80 °C for 6 h, a 60 mesh sieve was to separate and sort them into different sizes. The samples were then calcined (burn) for 3h in a muffle furnace, in air, at a heating rate of 2 °C min-1. The prepared activated alumina was further characterized for better understanding of its physical properties in order to predict its chemical mechanism.

  5. The characterization of ceramic alumina prepared by using additive glass beads

    Science.gov (United States)

    Suprapedi; Muljadi; Sardjono, Priyo

    2018-01-01

    The ceramic alumina has been made by using additive glass bead (5 and 10 % wt.). There are two kinds of materials, such as : gamma Alumina and glass bead. Synthesis of alumina was done by ball milling for 24 hours, then the mixed powder was dried in drying oven at 100 °C for 6 hours. Furthermore, the dried powder was mixed by using 2 % of PVA and continued with compacted to form a pellet with pressure of 50 MPA. The next step is sintering process with variation temperature of 1150, 1200, 1250, 1300 and 1400 °C and holding time for 2 hours. The characterization conducted are consist of test density, hardness, shrinkage, and microstructure. The results show that ceramic alumina with addition of 10 % wt. glass bead has the higher value of density, hardness and shrinkage than addition of 5% wt. glass bead. The highest characterization of ceramic alumina with addition 10 % glass bead was achieved at sintering temperature of 1400 °C with density 3.68 g/cm3, hardness vickers 780.40 Hv and shrinkage 15.23 %. The XRD results show that it was founds a corrundum (alpha Alumina) as dominant phase and mullite as minor phase.

  6. Synthesis of Gamma-Alumina from Kankara Kaolin as Potential ...

    African Journals Online (AJOL)

    Engr Solomn Gajere

    Large specific surface area gamma-alumina (γ-Al2O3) was synthesized by hydrothermal method using Kankara kaolin as starting material. Thermal treatment of ammonium alum prepared from the filtrate of the dealuminated metakaolin was employed to obtain the alumina. Crystalline aluminum sulfate with 39 wt% Al2O3 ...

  7. MCrAlY bond coat with enhanced Yttrium layer

    Science.gov (United States)

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  8. Effect of vanadium and yttrium doping on BSCCO superconductors

    International Nuclear Information System (INIS)

    Mohamed, S.B.; Halim, S.A.; Azhan, H.; Sidek, H.A.A; Tee, T.W.; Hassan, Z.A.

    1999-01-01

    The effect of vanadium and yttrium doping on the superconductivity is investigated. The doping was done on the calcium site ranging from x=0.00-0.10. The temperature dependence of electrical resistance and AC susceptibility measurements were made on these samples. The zero resistance for vanadium doped samples varied from 107 K (x = 0.00) to 68.5K (x = 0.10), whereas for yttrium doped samples it varied from 107 K (x = 0.00) to 54K (x 0.10). The volume fraction of the 2223 phase for both dopalit decreases witli increasing doping concentration. The nature of the temperature derivative of the resistance curves indicates the presence of a superconducting transition between grains coupled by weak links. The AC susceptibility data show enrichment of the volume fraction of the low Tc phase at higher compositions. The presence of low Tc phase (∼70 K) is visible in the susceptibility data. X-ray diffraction confirms the presence of mixed phases in the samples. (author)

  9. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni, E-mail: ozawa@numse.nagoya-u.ac.jp; Nishio, Yoshitoyo

    2016-09-01

    Highlights: • Thermal stability of La-modified γ-Al{sub 2}O{sub 3} with nanometer-scaled structure. • LaAlO{sub 3} particles are dispersed in the aggregated particles of alumina. • Increase of the surface basicity of La modified alumina using CO{sub 2}-TPD. - Abstract: Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO{sub 2}. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al{sub 2}O{sub 3} showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al{sub 2}O{sub 3} samples. LaAlO{sub 3} nanoparticle formed among alumina particles by the solid phase reaction of Al{sub 2}O{sub 3} and La{sub 2}O{sub 3}. The increase of the surface basicity of La modified alumina was demonstrated using CO{sub 2} temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  10. On the possibility of producing alumina ceramic with a slight electrical conductivity

    CERN Document Server

    Caspers, Fritz

    1989-01-01

    Antistatic alumina ceramic is desirable for certain particle accelerator applications. In general, highly insulating surface close to a charged particle beam must be avoided in order to prevent the formation of ion pockets and other unwanted electrical effects. For the AA vacuum chamber (UHV), an antistatic ferrite has been produced and successfully installed. The fabrication of antistatic alumina might be possible in a similar way. By using certain metal oxides in the cement, which holds the alumina particles together, a slight conductivity could be obtained after the firing and sintering process, without deteriorating the mechanical and outgassing properties of the alumina compound.

  11. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  12. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  13. Abscopal Effects and Yttrium-90 Radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Ghodadra, Anish; Bhatt, Sumantha [University Pittsburgh School of Medicine, Department of Radiology (United States); Camacho, Juan C. [Emory University School of Medicine, Department of Radiology and Imaging Sciences (United States); Kim, Hyun S., E-mail: kevin.kim@yale.edu [University Pittsburgh School of Medicine, Department of Radiology (United States)

    2016-07-15

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect.

  14. 1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available [approx. 233 MW(e)] could be used for alumina electrolysis

  15. A new f.c.c. phase in yttrium films

    International Nuclear Information System (INIS)

    Kaul, V.K.; Srivastava, O.N.

    1976-01-01

    A new polymorphic phase characterised by a face-centered cubic structure, with lattice parameter 5.83 +- 0.02A, has been identified in thin films of yttrium. Electron diffraction evidence and electrical resistivity measurements have been carried out in order to detect the new f.c.c. phase. (Auth.)

  16. The influence of implanted yttrium on the cyclic oxidation behaviour of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Riffard, F. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)]. E-mail: riffard@iut.u-clermont1.fr; Buscail, H. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Caudron, E. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Cueff, R. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Issartel, C. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France); Perrier, S. [Laboratoire Vellave sur l' Elaboration et l' Etude des Materiaux (LVEEM), CNRS-EA 3864, Universite Blaise Pascal Clermont-Fd II, 8 rue J.B. Fabre, B. P. 219, 43006 Le Puy-en-Velay (France)

    2006-03-15

    High-temperature alloys are frequently used in power plants, gasification systems, petrochemical industry, combustion processes and in aerospace applications. Depending on the application, materials are subjected to corrosive atmospheres and thermal cycling. In the present work, thermal cycling was carried out in order to study the influence of implanted yttrium on the oxide scale adherence on 304 steel specimens oxidised in air at 1273 K. In situ X-ray diffraction indicates that the oxides formed at 1273 K are different on blank specimens compared to implanted specimens. Glancing angle XRD allows to analyse the oxide scale composition after cooling to room temperature. Experimental results show that yttrium implantation at a nominal dose of 10{sup 17} ions cm{sup -2} does not improve significantly the cyclic oxidation behaviour of the austenitic AISI 304 steel. However, it appears that yttrium implantation remarkably enhance the oxidation resistance during isothermal oxidation. It reduces the transient oxidation stage and the parabolic oxidation rate constant by one order of magnitude.

  17. Scratch induced failure of plasma sprayed alumina based coatings

    International Nuclear Information System (INIS)

    Hazra, S; Bandyopadhyay, P.P.

    2012-01-01

    Highlights: ► Scratch induced failure of alumina based coatings including nanostructured is reported. ► Ceramic is deposited on bond coat instead of steel, emulating a realistic situation. ► Lateral force data is supplemented with microscopy to observe coating failure. ► The failure mechanism during scratching has been identified. ► Critical load of failure has been calculated for each bond-top coat combination. -- Abstract: A set of plasma sprayed coatings were obtained from three alumina based top coat and two bond coat powders. Scratch test was undertaken on these coatings, under constant and linearly varying load. Test results include the lateral force data and scanning electron microscope (SEM) images. Failure occurred by large area spallation of the top coat and in most cases tensile cracks appeared on the exposed bond coat. The lateral force showed an increasing trend with an increase in normal load up to a certain point and beyond this, it assumed a steady average value. The locations of coating spallation and occurrence of maximum lateral force did not coincide. A bond coat did not show a significant role in determining the scratch adhesion strength.

  18. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  19. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  20. Pressureless sintering behavior of injection molded alumina ceramics

    Directory of Open Access Journals (Sweden)

    Liu W.

    2014-01-01

    Full Text Available The pressureless sintering behaviors of two widely used submicron alumina (MgOdoped and undoped with different solid loadings produced by injection molding have been studied systematically. Regardless of the sinterability of different powders depending on their inherent properties, solid loading plays a critical role on the sintering behavior of injection molded alumina, which greatly determines the densification and grain size, and leads to its full densification at low temperatures. As compared to the MgO-doped alumina powder, the undoped specimens exhibit a higher sinterability for its smaller particle size and larger surface area. While full densification could be achieved for MgO-doped powders with only a lower solid loading, due to the fact that MgO addition can reduce the detrimental effect of the large pore space on the pore-boundary separation.

  1. Cavity cutting efficiency of a Bioglass and alumina powder ...

    Indian Academy of Sciences (India)

    1531–1536. c Indian Academy of Sciences. ... conical in shape, whereas cavities produced by alumina and alumina + 45S5 were more ... any other material having good cutting properties is highly .... Saw, Buehler Ltd, IL, USA) at a blade speed of 3500 r.p.m. ... and the machine was run for 1min to remove any residual.

  2. Investigations on thermoluminescent dosimetry (TLD) with doped alumina ceramics

    International Nuclear Information System (INIS)

    Janas, R.; Huebner, K.

    1976-01-01

    Alumina ceramics doped and burned under various conditions have been investigated with regard to their suitability for thermoluminescent dosimetry. The production of ceramics is described. The properties essential for dosimetric purposes, such as glow curve, energy dose characteristics, fading, recoverability, lower detection limit and energy dependence, are indicated. The advantages and disadvantages of alumina ceramics are compared. (author)

  3. Study of carbon-doped micro and nano sized alumina for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Fontainha, C. C. P.; Alves, N.; Ferraz, W. B.; Faria, L. O.

    2017-10-01

    New materials have been widely investigated for ionizing radiation dosimetry for medical procedures. Carbon-doped doped alumina (Al 2 O 3 :C) have been proposed as thermoluminescent and photo luminescent dosimeters. In the present study nano and micro-sized alumina doped with different percentages of carbon, sintered under different atmosphere conditions, at temperatures ranging from 1300 to 1750 degrees Celsius, were sintered and their dosimetric characteristics for gamma fields were investigated. Among the investigated sample preparation methods, the micro-sized alumina doped with 0.01% of carbon and sintered at 1700 degrees Celsius under reducing atmosphere has presented the best Tl output, comparable to the best Tl sensitivities ever reported to alumina and better efficiency than the nano-sized alumina synthesized in this study. The influence of humidity in the Tl signal has been evaluated to be -4.0%. The micro-sized alumina obtained by the methodology used in this work is a suitable candidate for application in X and gamma radiation dosimetry. (Author)

  4. An ELM Based Online Soft Sensing Approach for Alumina Concentration Detection

    Directory of Open Access Journals (Sweden)

    Sen Zhang

    2015-01-01

    Full Text Available The concentration of alumina in the electrolyte is of great significance during the production of aluminum; it may affect the stability of aluminum reduction cell and the current efficiency. However, the concentration of alumina is hard to be detected online because of the special circumstance in the aluminum reduction cell. At present, there is lack of fast and accurate soft sensing methods for alumina concentration and existing methods can not meet the needs for online measurement. In this paper, a novel soft sensing method based on a modified extreme learning machine (MELM for online measurement of the alumina concentration is proposed. The modified ELM algorithm is based on the enhanced random search which is called incremental extreme learning machine in some references. It randomly chooses the input weights and analytically determines the output weights without manual intervention. The simulation results show that the approach can give more accurate estimations of alumina concentration with faster learning speed compared with other methods such as BP and SVM.

  5. Surface area, crystal morphology and characterization of transition alumina powders from a new gibbsite precursor

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Vieira Coelho

    2007-06-01

    Full Text Available A new procedure was used to prepare a microcrystalline powder constituted by thin euhedral hexagonal gibbsite plates, 0.2 to 0.6 µm in diameter and 32 nm thick. The powder, fired between 200 and 1000 °C, produced chi and kappa transition aluminas. Alpha-alumina is formed from 1000 °C and recrystallized up to 1500 °C. At 1000 °C, kappa- and alpha-alumina coexisted, but kappa-alumina could only be characterized by SAED. The details of the internal organization of the transition alumina pseudomorphs were clearly observable in TEM due to the great thinness of the I-gibbsite plates. The specific surface area varied from pristine I-gibbsite (24.9 m².g-1 to chi- and kappa transition aluminas (25.4 m².g-1 at 1000 °C to alpha-alumina (4.0 m².g-1 at 1500 °C. The maximum value of specific surface area is 347 m².g-1 in chi-alumina powder at 300 °C, a difference from Bayer gibbsite, in which the chi-alumina highest surface area is 370 m².g-1 at 400 °C.

  6. Influence of alumina characteristics on glaze properties

    Directory of Open Access Journals (Sweden)

    Arrufat, S.

    2010-10-01

    Full Text Available Aluminium oxide is a synthetic raw material manufactured from bauxite by the Bayer process, whose Al2O3 content typically exceeds 99%. Four main types of alumina can be defined, depending on the processing used: hydrargillite Al(OH3, boehmite AlOOH, transition aluminas (calcined at low temperatures, 1000 °C, with an intermediary crystallographic structure between hydrates and alpha alumina, and α-Al2O3 (calcined at high temperatures, >1100 °C. In glaze manufacturing, α-Al2O3 is the main type of alumina used. This raw material acts as a matting agent: the matt effect depends on alumina particle size and content in the glaze. This study examines the effect of the degree of alumina calcination on glaze technical and aesthetic properties. For this purpose, aluminas with different degrees of calcination were added to a glaze formulated with a transparent frit and kaolin, in order to simplify the system to be studied. The results show that, depending on the degree of calcination, alumina particles can react with the glaze components (SiO2, CaO, and ZnO to form new crystalline phases (anorthite and gahnite. Both crystallisations extract CaO and ZnO from the glassy phase, increasing glassy phase viscosity. The variation in crystalline phases and glassy phase viscosity yields glazes with different technical and aesthetic properties.

    El óxido de aluminio es una materia prima sintética fabricada a partir de la bauxita por medio del proceso Bayer, cuyo contenido de Al2O3 supera, por regla general, el 99%. Se pueden definir cuatro tipos de alúmina, en función del tipo de proceso usado: hidrargilita Al(OH3, boehmita AlOOH, alúminas de transición (calcinadas a bajas temperaturas, 1000 °C, con una estructura cristalográfica intermedia entre los hidratos y la alfa alúmina, y la α-Al2O3 (calcinada a

  7. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  8. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  9. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis

    International Nuclear Information System (INIS)

    Yan, Ting; Guo, Xiaode; Zhang, Xiang; Wang, Zhixiang; Shi, Jinqiu

    2016-01-01

    Highlights: • The nano α-Al 2 O 3 with good dispersion was prepared by two-step hydrolysis. • α-Al 2 O 3 powders were added as seed particles in the hydrolysis. • This article indicated that the glucose could impel the γ-Al 2 O 3 transformed to α-Al 2 O 3 directly. • This article indicated that the addictive of α-Al 2 O 3 seed could improve the phase transformation rate of γ-Al 2 O 3 to α-Al 2 O 3 . • In this article, the pure α-Al 2 O 3 could be obtained by calcining at 1000 °C for 1.5 h. - Abstract: The ultral fine alpha-alumina powder has been successfully synthesized via two-step hydrolysis of aluminum isopropoxide. Glucose and polyvinyl pyrrolidone were used as surfactants during the appropriate processing step. The alpha-alumina powder was used as seed particles. Several synthesis parameters, such as the amount of seeds, surfactants, and calcination temperature, were studied by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that glucose greatly lower the phase transformation temperature of alpha-alumina by impelling the gamma-alumina transformed to alpha-alumina directly, and the seed could improve the phase transformation rate of alpha-alumina, the polyvinylpyrrolidone have an effect on preventing excessive grain growth and agglomeration of alpha-alumina powder. Comparatively well dispersed alpha-alumina powder with particle size less than 50 nm can be synthesized through this method after calcinations at 1000 °C for 2 h.

  10. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  11. Membranes obtained from alumina from separation water/oil; Membranas obtidas a partir do residuo de alumina para separacao de agua/oleo

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Neto, M.I.; Lira, H.L; Guimaraes, I.O; Franca, K.B., E-mail: moisesnetu@gmail.com [Universidade Federal de Campina Grande (UFCG), PB, (Brazil)

    2016-07-01

    This study aims to evaluate by flow test emulsion water/oil a membrane obtained from a crude residue of the alumina industry and see if this membrane is able to filter this emulsion within the limits specified by CONAMA. In this work, tubular membranes composed of the alumina and the residue bentonite clay were produced by extrusion and were sintered at 900, 1000 and 1100 ° C. tangential flow tests were conducted with deionized water and subsequently with an emulsion of water / oil, all done with a pressure of 1.5 bar. The results showed that membranes produced from the crude residue the alumina industry were quite efficient the emulsion's oil removal, reducing the concentration of about 100 ppm in the feed, to below 5ppm and flow rates of around 30L/h.m{sup 2}. (author)

  12. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  13. Preparation of palladium nanoparticles on alumina surface by chemical co-precipitation method and catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avvaru Praveen; Kumar, B. Prem; Kumar, A.B.V. Kiran; Huy, Bui The [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Facile synthesis of palladium nanoparticles on alumina surface. Black-Right-Pointing-Pointer The surface morphology and properties of the nanocrystalline powders were characterized. Black-Right-Pointing-Pointer The catalytic activities of palladium nanoparticles were investigated. - Abstract: The present work reports a chemical co-precipitation process to synthesize palladium (Pd) nanoparticles using alumina as a supporting material. The optimized temperature for the formation of nanocrystalline palladium was found to be 600 Degree-Sign C. The X-ray diffraction (XRD) and Raman spectroscopy were used to study the chemical nature of the Pd in alumina matrix. The surface morphology and properties of the nanocrystalline powders were examined using thermogravimetric analysis (TG-DTA), XRD, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The calcinations in different atmospheres including in the inert medium forms the pure nano Pd{sup 0} while in the atmospheric air indicates the existence pure Pd{sup 0} along with PdO nanoparticles. The catalytic activities of the as-synthesized nanocrystalline Pd nanoparticles in the alumina matrix were investigated in Suzuki coupling, Hiyama cross-coupling, alkene and alkyne hydrogenation, and aerobic oxidation reactions.

  14. Mesoporous Alumina Microfibers In Situ Transformation from AACH Fibers and the Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shi

    2014-01-01

    Full Text Available Well-dispersed mesoporous γ-alumina microfibers with high surface were prepared by thermal decomposition of the ammonium aluminum carbonate hydroxide (AACH precursors. The as-synthesized alumina retained the morphology of its precursor and exhibited memory effect. The structural, morphological, porous, and adsorptive properties of the samples were investigated by XRD, FTIR, TGA-DSC, SEM, TEM, and UV-vis spectroscopy. The prepared γ-alumina microfibers exhibited excellent ability to remove organic pollutants from waste water because of their mesoporous structures. The γ-alumina in situ converted from AACH synthesized without surfactant exhibited adsorption ability for Congo red as good as that synthesized with PEG2000 and better than PEG20000 that provided a facile method without surfactant to synthesize γ-alumina with excellent adsorption performance.

  15. Purification in the interaction between yttria mould and Nb-silicide-based alloy during directional solidification: A novel effect of yttrium

    International Nuclear Information System (INIS)

    Ma, Limin; Tang, Xiaoxia; Wang, Bin; Jia, Lina; Yuan, Sainan; Zhang, Hu

    2012-01-01

    Nb-silicide-based alloys were directionally solidified in yttria moulds. As a result of thermal dissociation of yttria, the alloys were slightly contaminated with oxygen, which caused a competitive oxidation between yttrium and hafnium. The addition of 0.15 at.% yttrium reduced the oxygen increment by 42%, because the buoyant inclusions concentrated around the top surface. The yttrium addition caused a significant purification of the interaction between the yttria mould and the Nb-silicide-based alloys during the directional solidification.

  16. Microstructural and mechanical properties of gravity-die-cast A356 alloy inoculated with yttrium and Al-Ti-B grain refiner simultaneously

    Directory of Open Access Journals (Sweden)

    Y.P. Lim

    2011-10-01

    Full Text Available In the present work, the effect of inoculating yttrium and Al-5Ti-1B simultaneously on A356 aluminum alloy has been studied. Gravity die casting process is used to cast the ASTM tensile test specimens for analysis. In each experiment, the Ti and B contents were maintained constantly at 0.1 and 0.02 wt% respectively. The addition of yttrium was manipulated at the amount of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 wt%. Microstructural characterization of the as-cast A356 alloy was investigated by means of optical microscope and its phases are detected by XRD. The mechanical properties tested are tensile strength and hardness. The inoculation of yttrium was found to enhance the grain refinement effect of Al-5Ti-1B grain refiner and improve the mechanical properties. The optimal weight percentage of yttrium was found to be 0.3. The grain refining efficiency of combining yttrium and Al-5Ti-1B on A356 aluminum alloy was mainly attributed to the heterogeneous nucleation of TiB2 and TiAl3 particles which were dispersed more evenly in the presence of yttrium and the grain growth restriction effected by the accumulation of Al-Y compound at grain boundaries.

  17. Tritium compatibility of alumina and Fosterite

    Energy Technology Data Exchange (ETDEWEB)

    Coffin, D.O.

    1979-09-01

    Many pressure measurements are required to control processing of the fuel gases associated with fusion power reactors. Since most pressure transducers respond to changes in pressure sensitive electrical parameters, insulators will be required to withstand chronic exposures to concentrated tritium. For this investigation samples of alumina and Fosterite were exposed to concentrated tritium gas for 11 weeks. Gas phase impurities were then analyzed for clues that would indicate decomposition of the exposed materials. The only gaseous impurity resulting from these tritium exposures was tritio-methane, which is always produced when tritium is stored in stainless steel containers. There was no evidence that either alumina or Fosterite decomposed in the presence of tritium.

  18. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  19. Fabrication of dense yttrium oxyfluoride ceramics by hot pressing and their mechanical, thermal, and electrical properties

    Science.gov (United States)

    Tahara, Ryuki; Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2018-06-01

    Excellent corrosion-resistant materials have been strongly required to reduce particle contamination during the plasma process in semiconductor production. Yttrium oxyfluoride can be a candidate as highly corrosion-resistant material. In this study, three types of dense yttrium oxyfluoride ceramics with different oxygen contents, namely, YOF, Y5O4F7 and Y5O4F7 + YF3, were fabricated by hot pressing, and their mechanical, thermal, and electrical properties were evaluated. Y5O4F7 ceramics showed an excellent thermal stability up to 800 °C, a low loss factor, and volume resistivity comparable to conventional plasma-resistant oxides, such as Y2O3. From these results, yttrium oxyfluoride ceramics are strongly suggested to be used as electrostatic chucks in semiconductor production.

  20. Polyethyleneglycol grafting of γ-alumina membranes for solvent resistant nanofiltration

    NARCIS (Netherlands)

    Tanardi, Cheryl; Catana, Romina; Barboiu, Mihai; Ayral, André; Vankelecom, Ivo F.J.; Nijmeijer, Arian; Winnubst, Aloysius J.A.

    2016-01-01

    A method is presented for grafting mesoporous g-alumina (pore size 5 nm), supported on an a-alumina ceramic membrane, with polyethylene glycols (PEG). The grafting performance of g-Al2O3 powders with various PEG grafting agents, having different molecular weights, alkoxy groups, and ureido

  1. Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Song, Yuanhui; Ju, Yang; Morita, Yasuyuki; Xu, Baiyao; Song, Guanbin

    2014-01-01

    Many studies have demonstrated the possibility to regulate cellular behavior by manipulating the specific characteristics of biomaterials including the physical features and chemical properties. To investigate the synergistic effect of chemical factors and surface topography on the growth behavior of mesenchymal stem cells (MSCs), bone morphorgenic protein 2 (BMP2) was immobilized onto porous alumina substrates with different pore sizes. The BMP2-immobilized alumina substrates were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Growth behavior and osteogenic differentiation of MSCs cultured on the different substrates were investigated. Cell adhesion and morphological changes were observed with SEM, and the results showed that the BMP2-immobilized alumina substrate was able to promote adhesion and spreading of MSCs. MTT assay and immunofluorescence staining of integrin β1 revealed that the BMP2-immobilized alumina substrates were favorable for cell growth. To evaluate the differentiation of MSCs, osteoblastic differentiation markers, such as alkaline phosphatase (ALP) activity and mineralization, were investigated. Compared with those of untreated alumina substrates, significantly higher ALP activities and mineralization were detected in cells cultured on BMP2-immobilized alumina substrates. The results suggested that surface functionalization of nanoporous alumina substrates with BMP2 was beneficial for cell growth and osteogenic differentiation. With the approach of immobilizing growth factors onto material substrates, it provided a new insight to exploit novel biofunctional materials for tissue engineering. - Highlights: • BMP2 was immobilized onto nanoporous alumina substrates with different pore sizes. • BMP2-immobilized substrates were able to promote adhesion and spreading of MSCs. • BMP2-immobilized substrates were favorable for cell growth of MSCs. • BMP2-immobilized substrates promoted osteogenic

  2. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice.

    Directory of Open Access Journals (Sweden)

    Michael R McDevitt

    2007-09-01

    Full Text Available The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86Y-CNT and (111In-CNT, respectively in a mouse model.The (86Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET. The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86Y-CNT were

  3. Temperature effect on elastic properties of yttrium ferrite garnet Y3Fe5O12

    International Nuclear Information System (INIS)

    Burenkov, Yu.A.; Nikanorov, S.P.

    2002-01-01

    One studied temperature dependence of all independent elastic constants describing comprehensively elastic anisotropy of yttrium ferrite garnet within temperature wide range covering T c . One measured the Young modules for [100] and [110] crystallographic directions and the module of shift for [100] direction of specially pure single crystal of yttrium ferrite garnet within 20-600 deg C temperature range. One analyzed behavior of elastic modules and of elastic anisotropy factor near the critical temperature of magnetic phase transition [ru

  4. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  5. Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Goulon, J. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France)], E-mail: goulon@esrf.fr; Wilhelm, F. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)

    2009-12-15

    X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M{sub 1}-edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {l_brace}Y, Bi{r_brace}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: Ia3-bar d), crystal distortions preserving at best trigonal symmetry (R3-bar or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.

  6. Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films

    International Nuclear Information System (INIS)

    Rogalev, A.; Goulon, J.; Wilhelm, F.; Brouder, Ch.; Yaresko, A.; Ben Youssef, J.; Indenbom, M.V.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M 1 -edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {Y, Bi}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: Ia3-bar d), crystal distortions preserving at best trigonal symmetry (R3-bar or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.

  7. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  8. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  9. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  10. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Science.gov (United States)

    Masuda, Tatsuya; Asoh, Hidetaka; Haraguchi, Satoshi; Ono, Sachiko

    2015-01-01

    Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane. PMID:28788005

  11. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Dong, Kang; Wang, Shengping; Zhang, Hanyu; Wu, Jinping

    2013-01-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al 2 O 3 can provide surface area for the deposition of Li 2 S and Li 2 S 2 . ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g −1 , and the remaining capacity was 585 mAh g −1 after 50 cycles at 0.25 mA cm −2 . Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process

  12. Fabrication and Characterization of Single Phase α-Alumina Membranes with Tunable Pore Diameters

    Directory of Open Access Journals (Sweden)

    Tatsuya Masuda

    2015-03-01

    Full Text Available Nanoporous and single phase α-alumina membranes with pore diameters tunable over a wide range of approximately 60–350 nm were successfully fabricated by optimizing the conditions for anodizing, subsequent detachment, and heat treatment. The pore diameter increased and the cell diameter shrunk upon crystallization to α-alumina by approximately 20% and 3%, respectively, in accordance with the 23% volume shrinkage resulting from the change in density associated with the transformation from the amorphous state to α-alumina. Nevertheless, flat α-alumina membranes, each with a diameter of 25 mm and a thickness of 50 μm, were obtained without thermal deformation. The α-alumina membranes exhibited high chemical resistance in various concentrated acidic and alkaline solutions as well as when exposed to high temperature steam under pressure. The Young’s modulus and hardness of the single phase α-alumina membranes formed by heat treatment at 1250 °C were notably decreased compared to the corresponding amorphous membranes, presumably because of the nodular crystallite structure of the cell walls and the substantial increase in porosity. Furthermore, when used for filtration, the α-alumina membrane exhibited a level of flux higher than that of the commercial ceramic membrane.

  13. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  14. Experimental investigation of nano-alumina effect on the filling time ...

    African Journals Online (AJOL)

    In this research, by producing composite samples made of glass fibers and epoxy resin with different percentages of nanoparticles (Nano-alumina), the adding effect of nanoparticles of alumina Alpha and Gamma grade on filling time in the vacuum assistant resin transfer molding process (VARTM) is investigated. The grade ...

  15. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  16. Delayed Failure in a Shock Loaded Alumina

    International Nuclear Information System (INIS)

    Cooper, G. A.; Millett, J. C. F.; Bourne, N. K.; Dandekar, D. P.

    2006-01-01

    Manganin stress gauges have been used to measure the lateral stress in a shock-loaded alumina. In combination with known longitudinal stresses, these have been used to determine the shear strength of this material, behind the shock front. The two-step nature of the lateral stress traces shows a slow moving front behind the main shock, behind which shear strength undergoes a significant decrease. Results also show that this front decreases markedly in velocity as the HEL is crossed, suggesting that limited plasticity occurs during inelastic deformation. Finally, comparison of measured shear strengths with other aluminas shows a high degree of agreement

  17. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  18. Correlation between the mechanical property and microstructure of porcelain with high alumina contents

    International Nuclear Information System (INIS)

    Goulart, E.P.; Jordao, M.A.P.; Souza, D.D.D. de; Kiyohara, P.K.

    1989-01-01

    The substitution of quartz by a alumina in porcelain bodies produces high increase in mechanical strenght of the fired body. In the present paper, body microstruture variations caused by gradual quartz by alumina substitution have been studied and correlated to physical characteristics variations. Several bodies with quartz content varying from 22% to 0% and accordingly, the alumina content varying from 0% to 22% have been prepared. Other quartz-free bodies and the alumina content going up to 40% have been prepared. Three different alumina types have been used: two of them were of microcrystal type, the original crystal size between 1-5μm and obtained by calcining aluminum hydroxide from Bayer process; the third one is an originally macrocrystal type alumina obtained by grinding electrofused material. The sintering temperature ranged from 1250 0 C to 1400 0 C with 50 0 C of intervals between each firing. Tests on specimens covered flexural strenght, water absortion, apparent density and porosity. Microstruture variations and new mineral formation was continuously detected by scanning electron microscopy and X-ray diffraction [pt

  19. Activated alumina preparation and characterization: The review on recent advancement

    Science.gov (United States)

    Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.

    2018-03-01

    Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized

  20. Effective coating of titania nanoparticles with alumina via atomic layer deposition

    Science.gov (United States)

    Azizpour, H.; Talebi, M.; Tichelaar, F. D.; Sotudeh-Gharebagh, R.; Guo, J.; van Ommen, J. R.; Mostoufi, N.

    2017-12-01

    Alumina films were deposited on titania nanoparticles via atomic layer deposition (ALD) in a fluidized bed reactor at 180 °C and 1 bar. Online mass spectrometry was used for real time monitoring of effluent gases from the reactor during each reaction cycle in order to determine the optimal dosing time of precursors. Different oxygen sources were used to see which oxygen source, in combination with trimethyl aluminium (TMA), provides the highest alumina growth per cycle (GPC). Experiments were carried out in 4, 7 and 10 cycles using the optimal dosing time of precursors. Several characterization methods, such as high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and instrumental neutron activation analysis (INAA), were conducted on the products. Formation of the alumina film was confirmed by EDX mapping and EDX line profiling, FTIR and TEM. When using either water or deuterium oxide as the oxygen source, the thickness of the alumina film was greater than that of ozone. The average GPC measured by TEM for the ALD of TMA with water, deuterium oxide and ozone was about 0.16 nm, 0.15 nm and 0.11 nm, respectively. The average GPC calculated using the mass fraction of aluminum from INAA was close to those measured from TEM images. Excess amounts of precursors lead to a higher average growth of alumina film per cycle due to insufficient purging time. XRD analysis demonstrated that amorphous alumina was coated on titania nanoparticles. This amorphous layer was easily distinguished from the crystalline core in the TEM images. Decrease in the photocatalytic activity of titania nanoparticles after alumina coating was confirmed by measuring degradation of Rhodamine B by ultraviolet irradiation.

  1. Optical performance of hybrid porous silicon-porous alumina multilayers

    Science.gov (United States)

    Cencha, L. G.; Antonio Hernández, C.; Forzani, L.; Urteaga, R.; Koropecki, R. R.

    2018-05-01

    In this work, we study the optical response of structures involving porous silicon and porous alumina in a multi-layered hybrid structure. We performed a rational design of the optimal sequence necessary to produce a high transmission and selective filter, with potential applications in chemical and biosensors. The combination of these porous materials can be used to exploit its distinguishing features, i.e., high transparency of alumina and high refractive index of porous silicon. We assembled hybrid microcavities with a central porous alumina layer between two porous silicon Bragg reflectors. In this way, we constructed a Fabry-Perot resonator with high reflectivity and low absorption that improves the quality of the filter compared to a microcavity built only with porous silicon or porous alumina. We explored a simpler design in which one of the Bragg reflectors is replaced by the aluminium that remains bound to the alumina after its fabrication. We theoretically explored the potential of the proposal and its limitations when considering the roughness of the layers. We found that the quality of a microcavity made entirely with porous silicon shows a limit in the visible range due to light absorption. This limitation is overcome in the hybrid scheme, with the roughness of the layers determining the ultimate quality. Q-factors of 220 are experimentally obtained for microcavities supported on aluminium, while Q-factors around 600 are reached for microcavities with double Bragg reflectors, centred at 560 nm. This represents a four-fold increase with respect to the optimal porous silicon microcavity at this wavelength.

  2. Synthesis and in-depth analysis of highly ordered yttrium doped hydroxyapatite nanorods prepared by hydrothermal method and its mechanical analysis

    International Nuclear Information System (INIS)

    Nathanael, A. Joseph; Mangalaraj, D.; Hong, S.I.; Masuda, Y.

    2011-01-01

    In this study, undoped and yttrium (Y) doped nanocrystalline hydroxyapatite crystals were synthesized by the hydrothermal method at 180 °C for 24 h. Highly ordered and oriented hydroxyapatite (HAp) nanorods were prepared by yttrium doping and their nanostructure and physical properties were compared with those of undoped HAp rods. FESEM images showed that the doping with Y ions reduced the diameter (from 25 nm to 15 nm) and increased the length (from 95 nm to 115 nm) of the synthesized rods. The aspect ratio of the undoped and Y-doped nanorods were calculated to be 4.303 (SD = 0.0959) and 7.61 (SD = 0.0355), respectively. Specific surface area (SSA) analysis showed that SSA also increased from 66.74 m 2 /g to 68.57 m 2 /g with the addition of yttrium. Y-doped HAp nanorod reinforced HMWPE composites displayed the better mechanical performance than those reinforced with pure HAp nanorods. The possible strengthening of nanorods and the increase of SSA due to the reduction in the size of nanorods in the presence of yttrium may have contributed to the strengthening of Y-doped HAp/HMWPE composites. - Graphical Abstract: Highly ordered and oriented yttrium doped hydroxyapatite (HAp) nanorods were prepared by hydrothermal method. For undoped HAp the average length of the nanorod is 95 nm with mean diameter of 24 nm and for a Y doped nanorod the average length is ∼ 115 nm and the mean diameter is 15 nm. Mechanical analysis was carried out by polymer/nanoparticle composite method. Highlights: ► Yttrium doped hydroxyapatite nanorods were prepared by hydrothermal method. ► The nanorods have highly uniform size distribution. ► Yttrium substitution and nanostructure formation was confirmed by careful analysis. ► Mechanical strength was analyzed by polymer nanoparticle reinforcement method.

  3. Factorial experimental design intended for the optimization of the alumina purification conditions

    Science.gov (United States)

    Brahmi, Mounaouer; Ba, Mohamedou; Hidri, Yassine; Hassen, Abdennaceur

    2018-04-01

    The objective of this study was to determine the optimal conditions by using the experimental design methodology for the removal of some impurities associated with the alumina. So, three alumina qualities of different origins were investigated under the same conditions. The application of full-factorial designs on the samples of different qualities of alumina has followed the removal rates of the sodium oxide. However, a factorial experimental design was developed to describe the elimination of sodium oxide associated with the alumina. The experimental results showed that chemical analyze followed by XRF prior treatment of the samples, provided a primary idea concerning these prevailing impurities. Therefore, it appeared that the sodium oxide constituted the largest amount among all impurities. After the application of experimental design, analysis of the effectors different factors and their interactions showed that to have a better result, we should reduce the alumina quantity investigated and by against increase the stirring time for the first two samples, whereas, it was necessary to increase the alumina quantity in the case of the third sample. To expand and improve this research, we should take into account all existing impurities, since we found during this investigation that the levels of partial impurities increased after the treatment.

  4. Combustion chemical vapor deposition (CCVD) of LaPO4 monazite and beta-alumina on alumina fibers for ceramic matrix composites

    International Nuclear Information System (INIS)

    Hwang, T.J.; Hendrick, M.R.; Shao, H.; Hornis, H.G.; Hunt, A.T.

    1998-01-01

    This research used the low cost, open atmosphere combustion chemical vapor deposition (CCVD SM ) method to efficiently deposit protective coatings onto alumina fibers (3M Nextel TM 610) for use in ceramic matrix composites (CMCs). La-monazite (LaPO 4 ) and beta-alumina were the primary candidate debonding coating materials investigated. The coated fibers provide thermochemical stability, as well as desired debonding/sliding interface characteristics to the CMC. Dense and uniform La-phosphate coatings were obtained at deposition temperatures as low as 900-1000 C with minimal degradation of fibers. However, all of the β-alumina phases required high deposition temperatures and, thus, could not be applied onto the Nextel TM 610 alumina fibers. The fibers appeared to have complete and relatively uniform coatings around individual filaments when 420 and 1260 filament tows were coated via the CCVD process. Fibers up to 3 feet long were fed through the deposition flame in the laboratory of MicroCoating Technologies (MCT). TEM analyses performed at Wright-Patterson AFB on the CCVD coated fibers showed a 10-30 nm thick La-rich layer at the fiber/coating interface, and a layer of columnar monazite 0.1-1 μm thick covered with sooty carbon of <50 nm thick on the outside. A single strength test on CCVD coated fibers performed by 3M showed that the strength value fell in the higher end of data from other CVD coated samples. (orig.)

  5. Effects of Starch on Properties of Alumina-based Ceramic Cores

    Directory of Open Access Journals (Sweden)

    LI Fengguang

    2016-12-01

    Full Text Available In order to improve the poor leachability of alumina-based ceramic cores, different amount of starch was added to the specimens as pore former. Alumina-based ceramic cores were prepared by hot injection technology using corundum powder as base material, paraffin wax and beeswax as plasticizer, silica powder and magnesium oxide powder as mineralizing agent, wherein the parameters of the hot injection process were as follows:temperature of the slurry was 90℃, hot injection pressure was 0.5 MPa and holding time was 25 s. The effects of starch content on the properties of alumina-based ceramic cores were studied and discussed. The results indicate that during sintering period, the loss of starch in the specimens makes porosity of the alumina-based ceramic cores increase. When starch content increases, the room-temperature flexural strength of the ceramic cores reduces and the apparent porosity increases; the volatile solvent increases and the bulk density decreases. After being sintered at 1560℃ for 2.5 h, room-temperature flexural strength of the alumina-based ceramic cores with starch content of 8%(mass fraction is 24.8 MPa, apparent porosity is 47.98% when the volatile solvent is 1.92 g/h and bulk density is 1.88 g/cm3, the complex properties are optimal.

  6. Ultrasonic measurements and other allied parameters of yttrium soaps in mixed organic solvents

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Tandon, K.

    1990-01-01

    The ultrasonic measurements of yttrium soaps were made in a mixture of 70 % benzene and 30 % dimethylsulfoxide (ν/ν) to determine the critical micelle concentration, soap-solvent interaction and various acoustic and thermodynamic parameters. The values of the CMC decrease with increasing chainlength of fatty acid constituent of the soap molecule and are in agreement with the values obtained from other micellar properties. The various acoustic parameters (intermolecular freelength, adiabatic compressibility, apparent molar compressibility, specific acoustic impedance, apparent molar volume, molar sound velocity, solvation number, available volume and relative association) for yttrium soaps (myristate, palmitate, stearate and oleate) have been evaluated by ultrasonic velocity measurements. (Authors)

  7. Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, University of Tunis Elmanar 2092 Tunis (Tunisia); Harima, N.; Koyama, H. [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Gaponenko, N.V. [Belarusian State University of Informatics and Radioelectronics, P. Browki St. 6, 220013 Minsk (Belarus)

    2012-09-15

    We have used porous anodic alumina (PAA) films as templates for embedding rhodamine 110 (Rh110) molecules and examined their photoluminescence (PL) properties in detail. The analysis of the polarization memory (PM) of PL strongly suggests that there is a significant energy transfer from PAA to Rh110 molecules. The effect of annealing the PAA layer on the PL properties of the nanocomposite has been studied. The results show that the energy transfer becomes more efficient in annealed PAA. - Highlights: Black-Right-Pointing-Pointer Porous anodic alumina-rhodamine 110 nanocomposites are elaborated. Black-Right-Pointing-Pointer Efficient energy transfer from the host to Rh110 molecules is evidenced from measurements of photoluminescence and degree of polarization memory spectra. Black-Right-Pointing-Pointer Thermal annealing of porous anodic alumina can improve the process of excitation transfer.

  8. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin

    2009-06-01

    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  9. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    Energy Technology Data Exchange (ETDEWEB)

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia); Bushev, Pavel [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany)

    2015-09-21

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  10. Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kang [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Wang, Shengping, E-mail: spwang@cug.edu.cn [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China); Zhang, Hanyu; Wu, Jinping [Faculty of Material Science and Chemistry, China University of Geosciences, 388 Lumo Road, 430074 Wuhan (China)

    2013-06-01

    Highlights: ► Micron-sized alumina was synthesized as adsorbent for lithium-sulfur batteries. ► Sulfur-alumina material was synthesized via crystallizing nucleation. ► The Al{sub 2}O{sub 3} can provide surface area for the deposition of Li{sub 2}S and Li{sub 2}S{sub 2}. ► The discharge capacity of the battery is improved during the first several cycles. - Abstract: Nano-sized sulfur particles exhibiting good adhesion with conducting acetylene black and alumina composite materials were synthesized by means of an evaporated solvent and a concentrated crystallization method for use as the cathodes of lithium-sulfur batteries. The composites were characterized and examined by X-ray diffraction, environmental scanning electron microscopy and electrochemical methods, such as cyclic voltammetry, electrical impedance spectroscopy and charge–discharge tests. Micron-sized flaky alumina was employed as an adsorbent for the cathode material. The initial discharge capacity of the cathode with the added alumina was 1171 mAh g{sup −1}, and the remaining capacity was 585 mAh g{sup −1} after 50 cycles at 0.25 mA cm{sup −2}. Compared with bare sulfur electrodes, the electrodes containing alumina showed an obviously superior cycle performance, confirming that alumina can contribute to reducing the dissolution of polysulfides into electrolytes during the sulfur charge–discharge process.

  11. Sintering behaviour of spinel–alumina composites

    Indian Academy of Sciences (India)

    Administrator

    College of Engineering & Ceramic Technology, Kolkata 700 010, India. †. School of .... Chemical compositions of different batches of spinel–alumina composites. Chemistry ..... sence of magnesio–aluminate spinel, Ph D Thesis, University.

  12. Agentes ligantes e seus efeitos em concretos refratários alumina-magnésia Binders and their effects on alumina-magnesia refratory castables

    Directory of Open Access Journals (Sweden)

    M. A. L. Braulio

    2010-12-01

    Full Text Available Concretos refratários alumina-magnésia são comumente ligados por cimentos de aluminato de cálcio. Estes materiais apresentam, em temperaturas elevadas, uma reação de caráter expansivo decorrente da espinelização in-situ (MgAl2O4. Quando ligados por cimentos, reações adicionais (formação de CA2 e CA6 contribuem para a expansão. Uma alternativa para controlar a estabilidade volumétrica é a substituição do cimento tipicamente utilizado (~30%-p CaO por outro de menor teor de cálcio (~20%-p CaO ou por alumina hidratável. Tais substituições podem afetar as propriedades dos concretos, como a resistência mecânica a frio, a hidratação da magnésia e as propriedades durante e após a sinterização. Deste modo, o objetivo deste trabalho é avaliar o impacto destes ligantes no processamento de concretos alumina-magnésia. Sendo assim, pretende-se utilizar a fonte de ligante como uma ferramenta para a obtenção de concretos refratários com expansão engenheirada, visando-se aumentar a flexibilidade na seleção de materiais aplicados em panelas de siderurgia.The usual binder of alumina-magnesia castables is the calcium aluminate cement. Due to in-situ spinel (MgAl2O4 formation at high temperatures, these materials present an expansive behavior. When bonded with cement, further reactions (CA2 and CA6 formation also contribute to the overall expansion. Changing the most common cement used (~ 30 wt.% CaO for other containing less calcia (~ 20 wt.% CaO or for hydratable alumina are suitable alternatives for controlling the castables' volumetric stability. Nevertheless, the binder replacement may affect castables properties, such as cold mechanical strength, MgO hydration degree and properties during and after sintering. Therefore, the objective of the present paper is to analyze the effects of these binders on the alumina-magnesia castables processing. As a result, the binder systems can be used as a tool for designing the alumina

  13. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    International Nuclear Information System (INIS)

    Sola, D.; Gurauskis, J.; Pena, J.I.; Orera, V.M.

    2009-01-01

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 μm and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm 3 per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 μm to 110 μm and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  14. A Study on the Effect of Nano Alumina Particles on Fracture Behavior of PMMA

    Directory of Open Access Journals (Sweden)

    Arezou Sezavar

    2015-04-01

    Full Text Available In the current research, the role of nano-sized alumina on deformation and fracture mechanism of Poly Methyl Methacrylate (PMMA was investigated. For this purpose, PMMA matrix nanocomposite reinforced with different wt% of alumina (i.e., 5, 10 and 15 were fabricated using the compression molding technique. Tensile properties of produced nanocomposites were studied using Zwick Z250 apparatus at cross head speed of about 5 mm/min. In order to specify the role of alumina nanoparticles on deformation and fracture mechanism of PMMA, microscopic evaluation was performed using scanning electron microscope (SEM. The achieved results prove that tensile properties of PMMA depend on alumina wt%. For example, addition of 15 wt% alumina to PMMA causes an increase of about 25% modulus of elasticity. Micrographs taken from the fracture surface of PMMA and its nanocomposites show deformation and fracture mechanism of PMMA changes as alumina is added to it.

  15. Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process

    NARCIS (Netherlands)

    Lin, Liangliang; Starostin, Sergey A.; Li, Sirui; Khan, Saif A.; Hessel, Volker

    2018-01-01

    Plasma electrochemistry is an emerging technique for nanomaterial synthesis. The present study reports the preparation of yttrium oxide nanoparticles via a simple, environmentally benign, microplasma-assisted process operated in pin-to-liquid configuration under ambient atmospheric conditions using

  16. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    International Nuclear Information System (INIS)

    Yang, Fan; Wang, Jinshu; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-01

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y 2 O 3 distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y 2 O 3 improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y 2 O 3 content in the samples. The maximum secondary emission yield δ max of the cathode with 15% amount of Y 2 O 3 can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J 0 of 4.18A/cm 2 has reached at 1050 °C b for this kind of cathode after being activated at 1200 °C b , which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work

  17. Grain size influence on residual stresses in alumina/zirconia composites

    International Nuclear Information System (INIS)

    Sergo, V.; Sbaizero, O.; Pezzotti, G.; Nishida, T.

    1998-01-01

    The grain size (GS) and volume fraction of alumina have been systematically varied in composites with a zirconia matrix and the corresponding residual stresses have been assessed by means of piezospectroscopy. The compressive stress in alumina depends on the volume fraction and it is well predicted by a stochastic model based on information theory. No dependence with GS has been detected, except at the highest volume content (20% vol. alumina). Conversely the stress distribution is independent from the volume fraction and depends on GS: intermediate values of GS exhibit the wider stress distribution. The tensile stress in zirconia shows no clear correlation with the volume fraction and increases with increasing zirconia GS. This latter behavior has been compared with a model based on diffusion relaxation of stresses. The model reproduces correctly the stress change due to different alumina contents, but it diverges from the experimental data at smaller GSs, overestimating the residual stress. It is suggested that grain boundary sliding may also contribute to the relaxation of stresses

  18. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    Science.gov (United States)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  19. Synthesis of ultrafine alumina powders using egg white as complexing medium

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K. A.; Chinelatto, A.S.A.; Chinelatto, A.L.

    2011-01-01

    Synthesis of alumina powders through chemical methods has been attracting much attention of researchers in the past few years, due to the ability to produce powders in nanometric scale with high degree of purity. In this work, there were synthesized alumina powders through a chemical route, using egg white as a complexing medium and aluminium nitrate as the source of Al 3+ cations. Egg white contains ovalbumin, a protein which acts effectively on the isolation of aluminium cations during the mixing process, enabling the formation of ultrafine alumina powders in a relatively economic and environmentally friendly way. The powders obtained by calcinations of the precursor resin were characterized by X-ray diffraction, specific surface area measurements, infrared spectroscopy and scanning electron microscopy. It was observed that the egg white, present at the reaction medium, allowed obtaining transition alumina powders, with high degree of purity. (author)

  20. Synthesis and characterization of alumina application in support of zeolite membrane

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Rodrigues, M.G.F.

    2012-01-01

    Much interest has been aroused in process applications using zeolite membrane. The physicochemical properties of the support have a strong effect on the quality of zeolite membrane. This work is to synthesize and characterize alumina for use as a support for zeolite membrane. In this work was synthesized α-alumina: 40% alumina, 0.2% for PABA, 0.5% oleic acid and 59.3% ethyl alcohol. The mixture was ground in ball mill and placed in an oven for 24 hours at 60 °C, allowed to stand for 24h. The pressing was performed with 4 tons. The pressed material was subjected to sintering at 1400 °C/hour. The samples were characterized by EDX, XRD and SEM. The results for the media by XRD showed that they are crystalline and pure. By EDX was observed that the supports consist essentially of alumina. (author)

  1. Influence of additives on the stability of the phases of alumina

    International Nuclear Information System (INIS)

    Rosario, D.C.C.; Gouvea, D.

    2011-01-01

    Problems with the stability of gamma alumina in catalytic reactions have been solved with the inclusion of additives during the synthesis of alumina. These additives stabilize the temperature of phase transition allowing the use of metastable alumina at high temperatures, but the mechanisms of action of additives are not well defined. It is known that each family of additive or additives behaves in different ways for this stabilization. This work aimed to study the performance of MgO and ZrO 2 , respectively at different concentrations in alumina synthesized via Pechini. The samples were analyzed by DSC, X-ray diffraction, measurement of specific surface area by BET analysis, and infrared analysis. The results showed an increase in transition temperature for both additives, and a different changes for specific surface area, showing that MgO and ZrO 2 work on improving the stability but with distinct mechanisms. (author)

  2. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  3. Determination of intrinsic equilibrium constants at an alumina/electrolyte interface

    Directory of Open Access Journals (Sweden)

    SLOBODAN K. MILONJIC

    2004-12-01

    Full Text Available Intrinsic ionization and complexation constants at an alumina/electrolyte interface were studied by the site binding model, while the sorption of alkali cations from aqueous solutions was interpreted by the triple-layer model. The surface properties of alumina were investigated by the potentiometric acid-base titration method. The point of zero charge (pHpzc of alumina obtained by this method was found to be 7.2. The obtained mean values of the intrinsic protonation and ionization constants of the surface hydroxyl groups and the intrinsic surface complexation constant, in different electrolytes, are pKinta1 = 4.4, pKinta2 = 9.6 and pKintM+ = 9.5, respectively.

  4. Conductivity variations in composites of. alpha. -zirconium phosphate and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Slade, R.C.T.; Knowles, J.A. (Dept. of Chemistry, Exeter Univ. (UK))

    Composite proton-conducting solid electrolytes have been formed from {alpha}-zirconium hydrogen phosphate ({alpha}-Zr(HPO{sub 4}){sub 2}.H{sub 2}O, {alpha}-ZrP) and aluminas (Al{sub 2}O{sub 3}) in varying mole ratios. Conductivity variations as a function of temperature have been characterised and compared to that for a delaminated {alpha}-ZrP (no alumina). There are no appreciable conductivity enhancements on composite formation, but conductivity for materials ca. 50 mole% in alumina can be comparable to the delaminated materials. Differential scanning calorimetry shows the composites to have different thermal properties to simple admixtures. High resolution {sup 31}P NMR studies show reaction to form aluminium phosphate at the interface between components. (orig.).

  5. Reduction in Friction and Wear of Alumina Surfaces as Assisted with Surface-Adsorbing Polymers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Røn, Troels; Lee, Seunghwan

    2016-01-01

    We have investigated the aqueous lubricating effects of various polymers for the sliding contacts of self-mated alumina surfaces in neutral aqueous environment. Given that isoelectric point (IEP) of alumina is ca. pH 9, polyanions can readily adsorb onto alumina surface at neutral pH via electros......We have investigated the aqueous lubricating effects of various polymers for the sliding contacts of self-mated alumina surfaces in neutral aqueous environment. Given that isoelectric point (IEP) of alumina is ca. pH 9, polyanions can readily adsorb onto alumina surface at neutral pH via...

  6. Electrochemical growth of nanowires in anodic alumina templates: the role of pore branching

    International Nuclear Information System (INIS)

    Noyan, Alexey A.; Leontiev, Alexey P.; Yakovlev, Maxim V.; Roslyakov, Ilya V.; Tsirlina, Galina A.; Napolskii, Kirill S.

    2017-01-01

    Highlights: • The model of metal growth inside the anodic alumina with branched pores is developed. • Model predicts the dependence of anodic alumina filling on deposition regime. • Branched pores affect the uniformity of anodic alumina filling with electrodeposits. • Branched pores make growth front of metal nanowires inside template multimodal. - Abstract: A comparative study of electrochemical growth of nanowires in the anodic alumina templates with various degree of porous structure ordering is performed. Scanning electron microscopy and coulometric analysis are used for experimental evaluation of the average filling of pores with metal. The theoretical model of metal growth inside anodic alumina templates is proposed. The model takes into account the presence of branched channels in the real structure of anodic alumina and operates with completeness of template filling achieved at the moment when metal reaches the external surface of the oxide film. In case of the diffusion-controlled regime the strong dependence of the pore filling factor on the thickness of porous film and the degree of its structure ordering is predicted theoretically and observed experimentally. The influence of the nature of limiting current on the homogeneity and completeness of template filling is discussed.

  7. Determination of the emission rate for the 14 MeV neutron generator with the use of radio-yttrium

    Directory of Open Access Journals (Sweden)

    Laszynska Ewa

    2015-06-01

    Full Text Available The neutron emission rate is a crucial parameter for most of the radiation sources that emit neutrons. In the case of large fusion devices the determination of this parameter is necessary for a proper assessment of the power release and the prediction for the neutron budget. The 14 MeV neutron generator will be used for calibration of neutron diagnostics at JET and ITER facilities. The stability of the neutron generator working parameters like emission and angular homogeneity affects the accuracy of calibration other neutron diagnostics. The aim of our experiment was to confirm the usefulness of yttrium activation method for monitoring of the neutron generator SODERN Model: GENIE 16. The reaction rate induced by neutrons inside the yttrium sample was indirectly measured by activation of the yttrium sample, and then by means of the γ-spectrometry method. The pre-calibrated HPGe detector was used to determine the yttrium radioactivity. The emissivity of neutron generator calculated on the basis of the measured radioactivity was compared with the value resulting from its electrical settings, and both of these values were found to be consistent. This allowed for a positive verification of the reaction cross section that was used to determine the reaction rate (6.45 × 10−21 reactions per second and the neutron emission rate (1.04 × 108 n·s−1. Our study confirms usefulness of the yttrium activation method for monitoring of the neutron generator.

  8. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    Science.gov (United States)

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  9. 11C-radioisotope study of methanol co-reaction with ethanol over Ni-MCM-41 silica-alumina and Ni-alumina

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Tsoncheva, T.; Kumar, N.; Murzin, D.Yu.

    2009-01-01

    Complete text of publication follows. The Ni modifies the properties of acidic alumina and light acidic MCM-41 silica-alumina supports. The radioisotopic method is a suitable tool for distinction of the 11 Cradioisotopic methanol and its co-derivates from derivates of non-radioactive ethanol on these catalysts. Experimental. The Ni/A l 2O 3 (5 wt % Ni) is commercially available while H-MCMN-41 (Si/Al=20) and Ni-ion-exchanged MCM-41 silica-alumina (5 wt % Ni) were prepared and characterized in previous works. Before catalysis the Ni/Al 2 O 3 and Ni-MCM-41 were pre-reduced. The 11 C-methanol was formed by a radiochemical process from 11 C-carbon dioxide produced at cyclotron (T 1/2 = 20.4 min). The mixture of equivalent volume of radioactive methanol and non-radioactive ethanol was introduced into glass tube micro-flow reactor at ambient temperature. After adsorption, the valves were closed and the catalyst was heated up to the required temperatures. The desorption rate of the remaining 11 C-derivatives on catalysts were continuously followed by radiodetectors and the derivatives of methanol with ethanol were analyzed by Radio/FID-gas chromatography (FID is coupled on-line with a radiodetector). The ethanol and its derivates were identified by FID while the 11 C-methanol and its co-derivates (with ethanol) were detected by both of FID and radiodetector. Results The 11 C-dimethyl ether was the common product of the single 11 C-methanol transformation on H-MCM-41, Ni-MCM-41 and Ni- Al 2 O 3 at low temperature (200-280 degC) due to middle strong acid sites. At higher temperature (280-350 degC), the dimethyl ether and hydrocarbons were the dominant products on H-MCM-41 while dimethyl ether selectivity decreased on Ni-alumina and Ni-MCM-41 in favor of methane. The selectivities of methanol to formaldehyde and methane were the highest on Ni-MCM-41. During co-reaction of 11 C-methanol with non-radioactive ethanol, the 11 C-labeled coethers, namely 11 C-methyl ethyl ether

  10. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  11. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  12. Phase transformation of aluminium hydroxide to aα- alumina prepared from different aluminium salts

    International Nuclear Information System (INIS)

    Masliana Muslimin; Meor Yusoff Meor Sulaiman

    2006-01-01

    The study intends to look at the most suitable aluminium salt to produce a single-phase a-alumina by the hydrothermal method. In the process to produce alumina from the calcination of aluminium hydroxide (Al(OH) 3 ), three different aluminium salts namely aluminium sulfate (Al 2 (SO 4) 2), aluminium nitrate (A(NO 3 ) 3 ) and aluminium chloride (AlCl 3 ) were tried. The process involved the used of NH 4 OH as the precipitating medium. Aluminium hydroxide produced from each of these salts were characterised by x-ray diffraction (XRD) technique to identity the crystalline phase. Aluminium hydroxide produced by all the different aluminium salts is present as boehmite or pseudo-boehmite phase. Aluminium hydroxide produced from Al 2 (SO) 2 , Al(NO) 3 and AlCl 3 shows the transformation of the boehmite phase to a α-alumina phase at 500 0 C. On further heating, the α-alumina continuously formed at 800 o C followed soon at 1000 o C. But for the Al(NO3) 3 salts a different phase transitions occurs on heating especially at 1000 o C. Here it was observed not a single alumina phase is presence but the presence of both α and γ--alumina phases. At 1300 o C, the single α-alumina phase was formed. The study concluded that aluminium sulphate is recommended in order to obtain a single-phase α-alumina with the required characteristics. (Author)

  13. Radiation silver paramagnetic centers in a beta-alumina crystal

    International Nuclear Information System (INIS)

    Badalyan, A.G.; Zhitnikov, R.A.

    1985-01-01

    Silver paramagnetic centers in a β-alumina crystal, formed after X-ray radiation at 77 K, are investigated by the EPR method. Silver enters the β-alumina crystal, substituting sodium and potassium ions in a mirror plane. Crystals with substitution from 0.1 to 100% of alkali metal ions by Ag + ions are investigated. Silver atomic centers (Ag 0 -centers), formed by electron capture with the Ag + ion, are firstly detected and investigated in the β-alumina. Hole Ag 2+ -centers are investigated and detected in crystals with high concentration of Ag + . By studying the orientation dependence of a g-factor it is established that hole capture by the Ag + ion is accompanied by Ag 2+ ion displacement from the position, Ag + being primarity taken up (Beavers-Roth or anti- Beavers-Roth) to the position between two oxygen ions in the mirror plane

  14. Study of yttrium 4-nitrocinnamate to promote surface interactions with AS1020 steel

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.V. [Department of Chemical Engineering, Bach Khoa University, VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Vu, N.S.H.; Thu, V.T.H. [Faculty of Physics and Engineering Physics, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City (Viet Nam); Somers, A. [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220 (Australia); Nam, N.D., E-mail: namnd@pvu.edu.vn [PetroVietnam University, 762 Cach Mang Thang Tam Street, Long Toan Ward, Ba Ria City, Ba Ria—Vung Tau Province (Viet Nam)

    2017-08-01

    Highlights: • Yttrium 4-nitrocinnamate is a new corrosion inhibitor alternative to chromate technologies. • The inhibition performance is increased with increase of the inhibitor concentration. • Yttrium 4-nitrocinnamate mitigates corrosion by promoting random distribution of minor anodes. • Yttrium 4-nitrocinnamate is a good candidate for substitution of chromate inhibitors. - Abstract: Yttrium 4-nitrocinnamate (Y(4-NO{sub 2}Cin){sub 3}) was added to an aqueous chloride solution and studied as a possible corrosion inhibition system. Electrochemical techniques and surface analysis have been powerful tools to better understand the corrosion and inhibition processes of mild steel in 0.01 M NaCl solution. A combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), Potentiodynamic polarization (PD), electrochemical impedance spectroscopy (EIS) and wire beam electrode (WBE) techniques was found to be useful in the characterization of this system. The result indicated that Y(4-NO{sub 2}Cin){sub 3} is able to effectively inhibit corrosion at a low concentration of 0.45 mM. Surface analysis clearly shows that the surface of steel coupons exposed to Y(4-NO{sub 2}Cin){sub 3} solution remained uniform and smooth, whereas the surface of steel coupons exposed to solution without inhibitor addition was severely corroded. The results suggest that Y(4-NO{sub 2}Cin){sub 3} behaves as a mixed inhibitor and mitigates corrosion by promoting random distribution of minor anodes. These are attributed to the formation of metal species bonding to the 4-nitrocinnamate component and hydrolysis of the Y(4-NO{sub 2}Cin){sub 3} to form oxide/hydroxides as a protective film layer.

  15. Heterogeneous burnable poisons. Sinterability study in oxidizing atmosphere of alumina-gadolinia and alumina-boron carbide compounds

    International Nuclear Information System (INIS)

    Agueda, H.C.; Leiva, S.F.; Russo, D.O.

    1990-01-01

    Solid burnable poisons are used in reactors cooled by pressure light water (PLWR) with the purpose of controlling initial reactivity in the first reactor's core. The burnable poisons may be uniformly mixed with the fuel -known as 'homogeneous' poisons-; or constituting separate elements -known as heterogeneous poisons-. The purpose of this work is to present the results of two sinterability studies, performed on Al 2 O 3 -Gd 2 O 3 and Al 2 O 3 -B 4 C, where alumina acts as inert matrix, storing the absorbing elements as Gd 2 O 3 or B 4 C. The elements were sintered at an air atmosphere and additives permitting the obtention of a greater density alumina were tested at lower temperatures than the characteristic for this material, in order to determine its compatibility with the materials dealt with herein. (Author) [es

  16. Alumina-on-Polyethylene Bearing Surfaces in Total Hip Arthroplasty

    OpenAIRE

    Jung, Yup Lee; Kim, Shin-Yoon

    2010-01-01

    The long-term durability of polyethylene lining total hip arthroplasty (THA) mainly depends on periprosthetic osteolysis due to wear particles, especially in young active patients. In hip simulator study, reports revealed significant wear reduction of the alumina ceramic-on-polyethylene articulation of THA compared with metal-on-polyethylene bearing surfaces. However, medium to long-term clinical studies of THA using the alumina ceramic-on-polyethylene are few and the reported wear rate of th...

  17. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  18. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite–alumina nanocomposites

    International Nuclear Information System (INIS)

    Radha, G.; Balakumar, S.; Venkatesan, Balaji; Vellaichamy, Elangovan

    2015-01-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)–alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. - Highlights: • The microwave-assisted hydroxyapatite (nHAp)–alumina nanocomposites were prepared. • Structural and interaction between nHAp and alumina have been explored. • Increased alumina concentration enhanced mechanical strength of the nHAp. • Trace elements from SBF, incorporated on nHAp–alumina nanocomposite surface, were characterized by FESEM and EDX techniques. • Hemocompatibility of the samples were evaluated and the results are in accordance with ASTM standards

  19. Evaluation of hemocompatibility and in vitro immersion on microwave-assisted hydroxyapatite–alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Radha, G. [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Balakumar, S., E-mail: balasuga@yahoo.com [National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy campus, Chennai - 600025 (India); Venkatesan, Balaji; Vellaichamy, Elangovan [Department of Biochemistry, University of Madras, Guindy campus, Chennai - 600025 (India)

    2015-05-01

    This study reports the microwave-assisted synthesis and characterization of nHAp (nano-hydroxyapatite)–alumina composites. The crystalline phase and interaction of alumina with nHAp was analyzed using X-ray diffraction (XRD) and Raman microscopy analysis, respectively. High resolution transmission electron microscopy (HRTEM) micrographs exhibit morphological changes of nHAp composites with increasing alumina concentrations. Microhardness studies reveal the enhanced mechanical strength of nHAp10 and nHAp20 nanocomposites than pure nHAp. In vitro bioactivity of the nanocomposites was studied by immersing samples in simulated body fluid (Hank's solution) for 21 days. The surface of biomineralized samples were analyzed using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDX). Hemolytic assay revealed acceptable compatibility for varying concentrations of all the samples. Cell proliferation assay was systematically investigated for 1 day and 3 days on Saos-2 osteoblast-like cell lines and it was found that nHAp nanocomposites improved the proliferation. - Highlights: • The microwave-assisted hydroxyapatite (nHAp)–alumina nanocomposites were prepared. • Structural and interaction between nHAp and alumina have been explored. • Increased alumina concentration enhanced mechanical strength of the nHAp. • Trace elements from SBF, incorporated on nHAp–alumina nanocomposite surface, were characterized by FESEM and EDX techniques. • Hemocompatibility of the samples were evaluated and the results are in accordance with ASTM standards.

  20. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  1. Elaboration and characterisation of yttrium oxide and hafnium oxide powders by the sol-gel process

    International Nuclear Information System (INIS)

    Hours, T.

    1988-01-01

    The two classical sol-gel processes, colloidal and polymeric are studied for the preparation of yttrium oxide and hafnium oxide high performance powders. In the colloidal process, controlled and reproducible conditions for the preparation of yttrium oxide and hafnium oxide sols from salts or alkoxides are developed and the hydrothermal synthesis monodisperse hafnium oxide colloids is studied. The polymeric process is studied with hafnium ethyl-hexylate, hydrolysis kinetics for controlled preparation of sols and gels is investigated. Each step of preparation is detailed and powders obtained are characterized [fr

  2. Effect of Manganese Content on the Fabrication of Porous Anodic Alumina

    Directory of Open Access Journals (Sweden)

    C. H. Voon

    2012-01-01

    Full Text Available The influence of manganese content on the formation of well-ordered porous anodic alumina was studied. Porous anodic alumina has been produced on aluminium substrate of different manganese content by single-step anodizing at 50 V in 0.3 M oxalic acid at 15°C for 60 minutes. The well-ordered pore and cell structure was revealed by subjecting the porous anodic alumina to oxide dissolution treatment in a mixture of chromic acid and phosphoric acid. It was found that the manganese content above 1 wt% impaired the regularity of the cell and pore structure significantly, which can be attributed to the presence of secondary phases in the starting material with manganese content above 1 wt%. The pore diameter and interpore distance decreased with the addition of manganese into the substrates. The time variation of current density and the thickness of porous anodic alumina also decreased as a function of the manganese content in the substrates.

  3. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    Science.gov (United States)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  4. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  5. Yttrium deposition on mesoporous TiO2: textural design and UV ...

    Indian Academy of Sciences (India)

    The mesoporous yttrium-doped TiO2 substrates prepared in this research work operate ... bond lengths in the nanoparticles (0.192 and 0.196 nm).18. Additionally ...... Fisicoquímica de Materiales Mesoporosos' (UAM-I CA-31. Fisicoquímica de ...

  6. Synthesis and nature of heterogeneous catalysts of low-valent tungsten supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.; Hucul, D.A.

    1980-01-01

    Temperature-programed decomposition of catalysts prepared from zero-valent W(CO)/sub 6/ and alumina under rigorously air-free conditions showed a low-temperature carbon monoxide desorption peak at 110/sup 0/-172/sup 0/C, depending on alumina pretreatment, in which a relatively stable surface W(CO)/sub 3/ complex was formed; and a high-temperature carbon monoxide desorption peak at 257/sup 0/ to > 400/sup 0/C, which gave zero-valent tungsten if the ratio of hydroxyl groups of alumina to tungsten surface complexes was low, and hexavalent tungsten if the ratio was high. Up to about half the W(CO)/sub 6/ sublimated from the alumina during activation.

  7. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  8. Studies on the pressed yttrium oxide-tungsten matrix as a possible dispenser cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Liu, Wei; Liu, Xiang; Zhou, Meiling

    2015-01-15

    Yttrium oxide was chosen as the secondary emission substance based on calculation results through first principle theory method. A new kind of pressed yttrium oxide-tungsten matrix dispenser cathodes are prepared by a sol–gel method combined with high temperature sintering in dry hydrogen atmosphere. The results show that the growth of the grains is hampered by the pinning effect of Y{sub 2}O{sub 3} distributing uniformly between the tungsten particles, resulting in the formation of small grain size. It is found that Y{sub 2}O{sub 3} improves the secondary electron emission property, i.e., the secondary emission yield increases with the increase of Y{sub 2}O{sub 3} content in the samples. The maximum secondary emission yield δ{sub max} of the cathode with 15% amount of Y{sub 2}O{sub 3} can reach 2.92. Furthermore, the cathode shows a certain thermionic emission performance. The zero field emission current density J{sub 0} of 4.18A/cm{sup 2} has reached at 1050 °C{sub b} for this kind of cathode after being activated at 1200 °C{sub b}, which are much higher than that of rare earth oxide doped molybdenum (REO-Mo) cathode reported in the previous work. - Highlights: • Yttrium oxide was chosen as the secondary emission substance based on first principle calculation result. • A new kind of cathode has been successfully obtained. • Pressed yttrium oxide-tungsten matrix dispenser cathode exhibits good emission properties. • The improvement of the cathode emission can be well explained by the surface analysis results presented in this work.

  9. Experimental Investigations on Tribological Behaviour of Alumina Added Acrylonitrile Butadiene Styrene (ABS Composites

    Directory of Open Access Journals (Sweden)

    T. Panneerselvam

    2016-09-01

    Full Text Available Composite materials are multifunctional in nature, which can be custom-made based on the nature of the applications. The challenge of composite materials lie on complementing the properties of one another i.e. materials which go in the making of composites strengthen each other by inhibiting their weaknesses. Polymers are one of the widely used materials which serve a wide spectrum of engineering needs. In the present work, the tribological behaviour of a composite containing Acrylonitrile Butadiene Styrene (ABS and traces of Alumina is experimentally investigated. Alumina is added to ABS in various percentages such as 1%, and 3% by weight in order to improve the wear resistance of the polymer. Central Composite Design was used to design the experiments and a standard Pin-On-Disk apparatus was used to conduct the experiments. It is observed from the test results that the addition of alumina significantly enhances the wear behavior of the polymer. However, adding more percentage of alumina has led to adverse effect on wear resistance of polymer materials. Abrasive wear mechanism is found to be predominant in the case of alumina added composite materials. It is also found that 1% alumina added composite exhibits excellent wear properties compared to other materials.

  10. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Science.gov (United States)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  11. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  12. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    Science.gov (United States)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  13. Mesoscale Modelling of the Response of Aluminas

    International Nuclear Information System (INIS)

    Bourne, N. K.

    2006-01-01

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response

  14. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  15. Synthesis of Nano- alumina Powder from Impure Kaolin and its Application for Arsenite Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ahmad Khodadadi Darban

    2013-07-01

    Full Text Available Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g and small particle size (22–36 nm was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved. Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe was found to be 40 (mg/g.

  16. Lanthanum and yttrium oxysulfides activated by europium: (Ln1-x Eux)2 O2 S - Synthesis and characterization

    International Nuclear Information System (INIS)

    Luiz, J.M.

    1989-01-01

    The synthesis of lanthanum and yttrium oxysulfides activated by europium were obtained by thermal decomposition of lanthanum and yttrium oxalates doped with europium, under an argon and sulphur atmosphere. The thermal decomposition of these compounds is studied by differential thermal analysis (DTA). The characterization of these oxysulfides were made by chemical analyses, infrared spectroscopy, X-ray diffraction, scanning electron microscopy and emission spectroscopy. (M.V.M.)

  17. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  18. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  19. Nonlinear FMR spectra in yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova

    2015-12-01

    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  20. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara; Thorat, Sanjay B.; La Rocca, Rosanna; Scarpellini, Alice; Salerno, Marco; Dante, Silvia; Das, Gobind

    2014-01-01

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  1. Multifunctional substrates of thin porous alumina for cell biosensors

    KAUST Repository

    Toccafondi, Chiara

    2014-02-27

    We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 104 with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50–130 nm—with pore pitch of about 250 nm—showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.

  2. Separation of tungsten and rhenium on alumina

    Directory of Open Access Journals (Sweden)

    MILOVAN SM. STOILJKOVIC

    2004-09-01

    Full Text Available The conditions for the efficient separation of tungsten(VI and rhenium (VII on alumina were established. The distribution coefficients Kd for tungstate and perrhenate anions, as well as the separation factors a (a = KdWO42-/Kd ReO4- were determined using hydrochloric or nitric acid as the aqueous media. A solution of sodium chloride in the pH range 2–6 was also examined. Under all the tested experimental conditions, alumina is a much better adsorbent for tungsten than for rhenium. The obtained results indicated that the best separation of these two elements is achieved when 0.01– 0.1 mol dm-3 HCl or 1.0 mol dm-3 HNO3 are used as the aqueous media. If NaCl is used as the aqueous phase, the best separation is achieved with 0.20 mol dm-3 NaCl, pH 4–6. Under these experimental conditions, the breakthrough and saturation capacities of alumina for tungsten at pH 4 are 17 and 26 mg W/g Al2O3, respectively. With increasing pH, these values decrease. Thus, at pH 6 they are only 4 and 13 mg W/g Al2O3, respectively.

  3. Efective infrared reflectivity and dielectric function of polycrystalline alumina ceramics

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Borodavka, Fedir; Vaněk, Přemysl; Šimek, Daniel; Trunec, D.; Maca, K.

    2017-01-01

    Roč. 254, č. 5 (2017), s. 1-8, č. článku 1600607. ISSN 0370-1972 R&D Projects: GA ČR GA15-08389S Institutional support: RVO:68378271 Keywords : alumina * ceramics * effective dielectric function * effective medium approximation * geometrical resonances * infrared reflectivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  4. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  5. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  6. Recurrent thermo-luminescence phenomenon in yttrium-aluminum garnet crystals

    International Nuclear Information System (INIS)

    Islamov, A.Kh.; Nuritdinov, I.; Esanov, Z.U.; Eshchanov, B.Kh.; Khayitov, I.A.

    2014-01-01

    Full text : The crystals of yttrium-aluminum garnet Y 2 Al 2 O 1 2 activated by cerium and praseodymium ions by their thermal and chemical durability as well as fast response are perspective scintillation materials. In this work the capture centres formed by action of the ionizing radiation on pure and doped by praseodymium and cerium crystals were investigated. The samples were grown using Chokhralsky method

  7. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    International Nuclear Information System (INIS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-01-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100 deg. C, 1300 deg. C and 1500 deg. C for about 20 hours using heating and cooling rates of 2 deg. C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  8. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    Science.gov (United States)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  9. Comparison by quantitative scanning of the distribution in the body of yttrium-90 and gold-198 after intra-articular injection

    International Nuclear Information System (INIS)

    Williams, E.D.; Caughey, D.E.; John, M.B.; Hurley, P.J.

    1975-01-01

    A new radiopharmaceutical, yttrium-90 ferric hydroxide colloid, has been used to treat knee effusion in patients with rheumatoid arthritis. With a view to assessing absorbed radiation dose, a study was initiated to compare its body distribution with that of gold-198, which has also been used for this purpose. The treated knee was in each case scanned immediately after injection using a dual 5-inch detector scanner, and again two, four and seven days later, when the regional lymph nodes and liver were also scanned. Using calibration factors obtained by scanning water phantoms, data from the scans were used to calculate the percentage of the injected radioactivity in each site. Radioactivity in blood and urine was also measured. Ten knees have been treated, each with five mCi yttrium-90, and twelve with 10 mCi gold-198. The treated knee was immobilized, and the patient rested in bed for four days, to minimize loss of radioactivity from the knee. With this procedure, both radionuclides were found to be equally well retained in the knee. However, the lymph node uptake of yttrium was lower than for gold. Yttrium-90 emits only beta radiation, so the gonadal radiation done in patients treated with yttrium-90 is estimated to be much less than in those treated with gold-198. (author)

  10. The spectrum of singly ionized yttrium, Y II

    International Nuclear Information System (INIS)

    Nilsson, A.E.; Johansson, S.; Kurucz, R.L.

    1991-01-01

    Hollow-cathode spectra of yttrium have been registered in the wavelength region 1000-48800 A. Resonant charge transfer reactions in the light source favour the excitation of Y II, where 174 new levels have been established by means of 1284 newly classified lines. Altogether we report 1521 lines between 235 levels in Y II. The ground complex (4d+5s) 2 is now completely known and a number of Rydberg series have been extended. The new levels belong to the 4dnl (nl=7s, 8s, 9s, 6p, 7p, 4d, 5d, 6d, 7d, 8d, 4f, 5f, 6f, 7f, 5g) and 5snl (nl=7s, 8s, 6p, 6d, 4f, 5f) configurations. Eigenvector compositions, based on paramagnetic calculations including configuration interaction, are given for all levels. The ionization limit has been determined to 98590 ± 5 cm -1 . (orig.)

  11. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  12. Estimation of the intrinsic stresses in α-alumina in relation with its elaboration mode

    International Nuclear Information System (INIS)

    Boumaza, A.; Djelloul, A.

    2010-01-01

    The specific signatures of α-Al 2 O 3 by Fourier transform infrared (FTIR) spectroscopy were investigated to estimate the intrinsic stress in this compound according to its elaboration mode. Thus, α-alumina was prepared either by calcination of boehmite or gibbsite and also generated by oxidation of a metallic FeCrAl alloy. FTIR results were mainly supported by X-ray diffraction (XRD) patterns that allowed to determine the crystallite size and the strain in the various alpha aluminas. Moreover, the infrared peak at 378.7 cm -1 was used as a reference for stress free α-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode. These interpretations were confirmed by results obtained by cathodoluminescence experiments. - Graphical abstract: The infrared peak at 378.7 cm -1 was used as a reference for stress free α-alumina and the shift of this peak allowed to estimate intrinsic stresses, which were related to the morphology and to the specific surface area of aluminas according to their elaboration mode.

  13. Preparation and characterization of multilayer mesoporous γ-alumina membrane obtained via sol-gel using new precursors

    Directory of Open Access Journals (Sweden)

    Tafrishi R.

    2015-12-01

    Full Text Available In this paper, a mesoporous γ-alumina membrane coated on a macroporous α-alumina support via sol-gel method has been reported. A crack-free γ-alumina membrane was obtained by adding PVA to the alumina solution and optimum parameters of roughness, temperature and porosity were achieved. The support was dip-coated in different solutions using two new different solvents with different particle size distributions. Using these two solvents led to the uniform distribution of pore size in the final membrane. The alumina sols showed particle size distributions in the range of 20 to 55 nm which was measured by a DLS Zeta Sizer. X-ray diffraction technique, atomic force microscopy and scanning electron microscopy were used to characterize the membrane layer. XRD and DTA data for the γ-alumina membrane showed its thermal stability up to around 600 °C. The thickness of the mesoporous γ-alumina membrane was about 4 μm with 16 nm of surface roughness and 5 nm pore size. The resultant crack-free mesoporous membrane shows that the membrane preparation procedure was optimum. In this work, it has been investigated the performance of γ-alumina membranes for single gas permeation and separation of binary gas mixtures.

  14. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  15. An ICP AES method for determination of dysprosium and terbium in high purity yttrium oxide

    International Nuclear Information System (INIS)

    Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2011-01-01

    High purity yttrium finds interesting application in astronavigation, luminescence, nuclear energy and metallurgical industries. Most of these applications require yttrium oxide of highest purity. Consequently there is a need for production of high purity yttrium oxide. Separation and purification of yttrium from other rare earths is a challenging task due to their close chemical properties. Liquid-liquid extraction and ion exchange have been widely used in the production of yttrium oxide of highest purity. Determination of impurities, especially other rare earths, in ppm level is required for process development and chemical characterization of the high purity Y 2 O 3 . Many methods have been described in literature. However since the advent of ICP AES much work in this area has been carried out by this technique. This paper describes the work done for determination of dysprosium (Dy) and terbium (Tb) in yttrium oxide using a high resolution sequential ICP AES. Emission spectra of rare earth elements are very complex and due to this complexity it is important to select spectral interference free analyte lines for determination of rare earths in rare earth matrix. For the determination of Dy and Tb in Y 2 O 3 , sensitive lines of Dy and Tb are selected from the instrument wavelength table and spectral interference free emission lines for the determination is selected by scanning around the selected wavelengths using 5 g/L Y solution and 5 mg/L standard solutions of Dy and Tb prepared in 4% nitric acid. It is found 353.170 nm line of Dy and 350.917 nm line Tb is suitable for quantitative determination. The signal to background ratio increases with increase in matrix concentration, i.e. from 1 to 5 mg/L. The optimum forward power is determined and it is found to be 1100W for Dy and 1000W for Tb. The instrument is calibrated using matrix matched standards containing 5g/L of Y matrix. Samples are dissolved in nitric acid and Y concentration is maintained at 5g/L. Two

  16. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    Science.gov (United States)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β″-Al 2O 3 solid electrolyte at elevated temperatures (typically 300-350 °C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

  17. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    2010-01-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al 2 O 3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  18. Nuclear magnetic resonance of iron-57 nuclei in local fields in yttrium and iron garnets; Resonance magnetique nucleaire des noyaux du fer 57 dans les champs locaux du grenat d'yttrium et de fer

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    We have demonstrated the nuclear resonance of {sup 57}Fe nuclei in the local field of each of the two magnetic sub-lattices of yttrium and iron garnets. The resonance frequencies and the relaxation times have been measured as a function of the temperature. (author) [French] Nous avons mis en evidence la resonance nucleaire des noyaux de {sup 57}Fe dans le champ local de chacun des deux sous-reseaux magnetiques du grenat d'yttrium et de fer. Les frequences de resonances et les temps de relaxation ont ete mesures en fonction de la temperature. (auteur)

  19. Studies on the promotion of nickel—alumina coprecipitated catalysts: I. Titanium oxide

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Mercera, P.D.L.; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    A series of TiO2-promoted nickel—alumina catalysts has been prepared and characterized. The promoter was added in various proportions to a calcined coprecipitated nickel—alumina material by adsorption of the acetylacetonate complex of titanium, followed by further calcination and reduction. The

  20. Structural analysis of anodic porous alumina used for resistive random access memory

    International Nuclear Information System (INIS)

    Lee, Jeungwoo; Nigo, Seisuke; Kato, Seiichi; Kitazawa, Hideaki; Kido, Giyuu; Nakano, Yoshihiro

    2010-01-01

    Anodic porous alumina with duplex layers exhibits a voltage-induced switching effect and is a promising candidate for resistive random access memory. The nanostructural analysis of porous alumina is important for understanding the switching effect. We investigated the difference between the two layers of an anodic porous alumina film using transmission electron microscopy and electron energy-loss spectroscopy. Diffraction patterns showed that both layers are amorphous, and the electron energy-loss spectroscopy indicated that the inner layer contains less oxygen than the outer layer. We speculate that the conduction paths are mostly located in the oxygen-depleted area.

  1. Comparative study of selenite adsorption on carbon based adsorbents and activated alumina.

    Science.gov (United States)

    Jegadeesan, G; Mondal, K; Lalvani, S B

    2003-08-01

    The sorption characteristics of carbon-based adsorbents such as activated carbon and chitin for the removal of selenite, Se (IV), an anionic, hazardous contaminant, are compared with those of alpha and gamma alumina. Batch experiments were conducted to determine the influence of pH, concentration of adsorbate, adsorbent loading and temperature on the sorption characteristics of the adsorbents. Generally, low pH of the solution resulted in favorable selenium removal. With the exception of activated carbon, uptakes decreased with increase in temperature. In comparison, chitin was found to be far less effective for the removal of Se (IV) from aqueous solutions. The data also showed that gamma alumina provided higher selenium removal percentages (99%) compared to alpha alumina (94%), activated carbon (87%) and chitin (49%). The selenite removal was found to decrease with increasing initial Se (IV) concentration in the solution. Adsorption capacities of the adsorbents are reported in terms of their Langmuir adsorption isotherms. The adsorption capacity (on unit mass basis) of the adsorbents for selenite is in the order: chitin (specific area (sa) = 9.58 m2 g(-1)) activated carbon (sa = 96.37 m2 g(-1)) < alpha alumina (sa = 6 m2 g(-1)) < gamma alumina (sa = 150 m2 g(-1)).

  2. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Spina, Giulia; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it; Palmero, Paola, E-mail: paola.palmero@polito.it; Montanaro, Laura

    2013-12-16

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y{sub 2}O{sub 3}. YAG powders were obtained by co-precipitation route whereas Y{sub 2}O{sub 3} powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment.

  3. High-pressure structural study of yttrium monochalcogenides from experiment and theory

    DEFF Research Database (Denmark)

    Vaitheeswaran, G.; Kanchana, V.; Svane, A.

    2011-01-01

    High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82...

  4. Separation and purification of gadolinium and others rare earths, and yttrium

    International Nuclear Information System (INIS)

    Awwal, M.A.; Filgueiras, S.A.C.

    1988-01-01

    The experimental works in laboratories for developing a solvent extraction process with the purpose of gadolinium separation and purification, and secondarily samarium, europium, lanthanum and yttrium are described. Using as solvent di-2-ethylhexylphosphoric acid (DEHPA) a preliminary flow chart for separation for these elements are developed. (author)

  5. Synthesis and textural evolution of alumina particles with mesoporous structures

    International Nuclear Information System (INIS)

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-01-01

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous γ-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl - in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into γ-Al 2 O 3 particles with mesostructures after further calcination at 1173 K, whereas coexisting SO 4 2- can promote above morphology evolution and then transformed into γ-Al 2 O 3 nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m 2 g -1 even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl - is beneficial for the formation of γ-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  6. Preparation and characterization of ultrafine alumina via sol-gel polymeric route

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [Ceramic Department, National Research Centre, Dokki, Cairo (Egypt); Abu-Ayana, Y.M. [Polymers and Pigments Department, National Research Centre, Dokki, Cairo (Egypt)], E-mail: yosreya20@gmail.com

    2008-10-15

    Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 deg. C to obtain aluminium oxide. IR and Raman spectroscopic analysis indicated the occupation of Al{sup 3+} at different sites in the polymer network (C=O, -NH{sub 2}, C-O, -NH, and -CH{sub 2}OH). X-ray diffraction of powder calcined at 1000 deg. C revealed the presence of a mixture of {alpha}- and {theta}-alumina together, while a mixture of {alpha}- and {beta}-alumina phases were obtained on calcination at 1400 deg. C. Transmission electron microscope (TEM) examination of the powder fired at 700 deg. C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 deg. C was found to be {approx}25.67 nm, while that of powder calcined at1400 deg. C was {approx}30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 deg. C was 59.17 m{sup 2} g{sup -1}, while that calcined at 1400 deg. C was 49.77 m{sup 2} g{sup -1}.

  7. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  8. A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials

    Science.gov (United States)

    Bengtson, K. B.

    The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.

  9. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  10. Synthesis of alumina powders by precipitation method and solvothermal treatment

    International Nuclear Information System (INIS)

    Politchuk, J.O.; Lima, N.B.; Lazar, D.R.R.; Ussui, V.; Yoshito, W.K.

    2012-01-01

    The improvement of alumina powders synthesis processes has been focused on the preparation of ceramic powders with well defined crystalline structure and with high specific surface area and nanometric particle size without formation of hard agglomerates. For this purpose the precipitation step should be studied and and also the temperature of alumina crystallization should be reduced. The aim of this study was to obtain alumina powders by hydroxide precipitation with ammonia in the presence of cationic surfactant, followed by solvothermal treatment and calcination. The powders were characterized by TG/DTA, X-ray diffraction, surface area measurements by gas adsorption (BET) and scanning electron microscopy. The results showed that powders produced by solvothermal treatment without surfactant have higher crystallinity. However the presence of CTAB enhances 240% the specific surface area compared with powders produced without this reagent (author)

  11. Knee arthroscopy after yttrium or osmic acid injection

    International Nuclear Information System (INIS)

    Guaydier-Souquieres, C.; Beguin, J.; Ollivier, D.; Loyau, G.

    1989-01-01

    This study presents the macroscopic and histologic results of 35 knee arthroscopies performed on patients with rheumatoid arthritis, some months after an yttrium or osmic acid intraarticular injection. The procedure was most often performed after a failure of the injection or a relapse of synovitis. Arthroscopy provides an understanding of the cause of synoviorthesis failure--insufficient action of the product on the synovitis or its poor diffusion, fibri-nonecrotic deposits, or cartilaginous lesions--and may be used both diagnostically and therapeutically

  12. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices

    Directory of Open Access Journals (Sweden)

    Morteza Aramesh

    2015-08-01

    Full Text Available A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell–electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

  13. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    Science.gov (United States)

    Farhat, Mohamed; Cheng, Tsung-Chieh; Le, Khai. Q.; Cheng, Mark Ming-Cheng; Bağcı, Hakan; Chen, Pai-Yen

    2016-01-01

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm-2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  14. Mirror-backed Dark Alumina: A Nearly Perfect Absorber for Thermoelectronics and Thermophotovotaics

    KAUST Repository

    Farhat, Mohamed

    2016-01-28

    We present here a broadband, wide-angle, and polarization-independent nearly perfect absorber consisting of mirror-backed nanoporous alumina. By electrochemically anodizing the disordered multicomponent aluminum and properly tailoring the thickness and air-filling fraction of nanoporous alumina, according to the Maxwell-Garnet mixture theory, a large-area dark alumina can be made with excellent photothermal properties and absorption larger than 93% over a wide wavelength range spanning from near-infrared to ultraviolet light, i.e. 250 nm–2500 nm. The measured absorption is orders of magnitude greater than other reported anodized porous alumina, typically semi-transparent at similar wavelengths. This simple yet effective approach, however, does not require any lithography, nano-mixture deposition, pre- and post-treatment. Here, we also envisage and theoretically investigate the practical use of proposed absorbers and/or photothermal converters in integrated thermoelectronic and/or thermophotovoltaic energy conversion devices, which make efficient use of the entire spectrum of ambient visible to near-infrared radiation.

  15. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    Science.gov (United States)

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  16. STUDIES ON THE EFFICIENCY OF GRUNDWATER TREATMENT PROCESS WITH ADSORPTION ON ACTIVATED ALUMINA

    Directory of Open Access Journals (Sweden)

    Ewa Szatyłowicz

    2017-07-01

    Full Text Available The one of inorganic sorbents used in water treatment technology is activated alumina. Recommended by the European Commission to remove inorganic impurities, such as arsenic, fluoride, selenium and silicates. The adsorbent is usually applied in granular form, under flow conditions. It can become absorbent material increasingly used due to the presence of arsenic beside iron and manganese in groundwater intakes. The aim of the study was to evaluate the effectiveness of groundwater treatment in the technological system containing adsorption on activated alumina. The experiment was performed on test model CE 581 manufactured by G.U.N.T. Hamburg, in which can extract four treatment stages. The first stage is used in a gravel filter of grain size 1-2 mm, in the second sand filter of grain size 0.4-0.8 mm. The third and fourth phase includes two adsorbers. The first adsorber comprises activated alumina (Al2O3 and the other comprises a granular activated carbon. The study was conducted at different speeds of filtration: 5, 10 and 15 m/h. In the raw water samples and the purified water samples after each treatment step were determined the following parameters: pH, O2 concentration, electrolytic conductivity, SO42-, concentration, NO3- concentration, PO43- concentration, Cl-concentration, color, turbidity, iron and manganese concentration, CODMn, total hardness, calcium hardness, magnesium hardness, content of dissolved substances. Conducted research indicates that optimum filtration rate for most pollution is 15 m/h. Moreover, the presence of activated alumina has contributed to increasing the efficiency of nitrate (V and phosphate (V ions removal.

  17. Comparison of the air oxidation behaviors of Zircaloy-4 implanted with yttrium and cerium ions at 500 deg. C

    International Nuclear Information System (INIS)

    Chen, X.W.; Bai, X.D.; Xu, J.; Zhou, Q.G.; Chen, B.S.

    2002-01-01

    As a valuable process for surface modification of materials, ion implantation is eminent to improve mechanical properties, electrochemical corrosion resistance and oxidation behaviors of varieties of materials. To investigate and compare the oxidation behaviors of Zircaloy-4, implantation of yttrium ion and cerium ion were respectively employed by using an MEVVA source at the energy of 40 keV with a dose ranging from 1x10 16 to 1x10 17 ions/cm 2 . Subsequently, weight gain curves of the different specimens including as-received Zircaloy-4 and Zircaloy-4 specimens implanted with the different ions were measured after oxidation in air at 500 deg. C for 100 min. It was obviously found that a significant improvement was achieved in the oxidation behaviors of implanted Zircaloy-4 compared with that of the as-received Zircaloy-4, and the oxidation behavior of cerium-implanted Zircaloy-4 was somewhat better than that of yttrium-implanted specimen. To obtain the valence and the composition of the oxides in the scale, X-ray photoemission spectroscopy was used in the present study. Glancing angle X-ray diffraction, employed to analyze the phase transformation in the oxide films, showed that the addition of yttrium transformed the phase from monoclinic zirconia to tetragonal zirconia, yet the addition of cerium transformed the phase from monoclinic zirconia to hexagonal zirconia. In the end, the mechanism of the improvement of the oxidation behavior was discussed

  18. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  19. Synthesis of zeolite membrane (Y / α-alumina)

    International Nuclear Information System (INIS)

    Araujo, Ana Paula; Silva, Valmir Jose da; Crispin, Alana Carolyne; Rodrigues, Meiry Glaucia F.; Menezes, Romualdo R.

    2009-01-01

    The general aim of this study was to develop materials of the type: Y zeolite (hydrothermal synthesis), ceramic support (forming of powder) and zeolite membrane (rubbing). The preparation of the Y zeolite was conducted in accordance with the hydrothermal synthesis method, the time of crystallization was one day. The ceramic support was prepared by means of the forming of powder technique and subsequently subjected to sintering at a temperature of 1400 deg C/1h. The zeolite membrane (Y/α- alumina) was prepared by secondary growth method (rubbing). These materials were characterized by XRD and SEM. Obtaining Y zeolite could be confirmed by X ray diffractograms. From the images obtained by SEM, it was possible to derive from analysis that the Y zeolite is composed of a homogeneous morphology, where the particles are crowded, with uniform size. The results obtained for the ceramic support (α-alumina) showed that it displays characteristics peaks of aluminum oxide. By using micrographs it was possible to observe a heterogeneous microstructure with a compact form, without cracks upon the layers. According to the XRD, for the method of secondary growth (rubbing), it was observed that the Y zeolite which had been synthesized on the ceramic support displayed a crystalline structure. The micrography of the zeolite membrane (Y/α-alumina) showed the formation of a layer of zeolite on the ceramic support. (author)

  20. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  1. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bakar Sulong, Abu [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, G.C. University, Lahore, Pakistan" f Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal Pakistan (Pakistan); Raza, M.R. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal (Pakistan); Raza, R.; Saleem, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Kashif, M. [Department of Physics, Govt. College University Faisalabad (Pakistan)

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56–19.92 emu/g and 7.30–87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications. - Highlights: • Static and dynamic magnetic properties of YIG and YAIG nanoferrites were determined. • Saturation magnetization, Q and initial permeability increased in YIG nanoferites. • Possible use of these nanoferrites for sensing and switching applications.

  2. Quantitative phase analysis of alumina/calcium-hexaluminate composites using neutron diffraction data and the Rietveld method

    International Nuclear Information System (INIS)

    Asmi, D.; Low, I.M.; O'Connor, B.H.; Kennedy, S.J.

    2000-01-01

    Full text: The Al 2 O 3 -CaO system is the basis of an important class of high-temperature refractories in the steel industry. It contains a number of stable intermediate compounds which include C 3 A, C 12 A 7 , CA, CA 2 , and CA 6 . These calcium aluminates are also important constituents of high alumina cement and have been used to produce high-strength and high-toughness ceramic-polymer composite materials. More recently, alumina composites containing 30 wt% CA 6 platelets have been developed by An et al which show characteristics of self-reinforcement and enhanced toughening through crack-bridging. In this paper, we describe the use of high-temperature neutron diffraction to monitor the in-situ phase formation and abundances of calcium aluminates (CA, CA 2 , and CA 6 ) in alumina composites containing 5-50 wt % CA 6 .at temperatures in the range 1000 - 1600 deg C. These composites were produced using reaction sintering of alumina and calcium oxide. For comparison purposes, control samples of pure α-alumina and CA 6 were also produced. Determination of relative phase abundances in these materials has been performed using the standardless Rietveld refinement method. Results show that the relative phase abundance of calcium aluminates in the composites increased with temperature and in proportion with the amount of calcium oxide present. The formation temperatures of CA, CA 2 , and CA 6 have been observed to occur at 1000 deg , 1200 deg, and ∼1350 deg C respectively, which agree well with results obtained from x-ray diffraction, synchrotron radiation diffraction and differential thermal analysis

  3. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    International Nuclear Information System (INIS)

    Yar, M.A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H.G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    Nano-crystalline W-1%Y 2 O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 deg. C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2 O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2 O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 deg. C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 deg. C.

  4. Preparation and Sintering Behaviour of Alumina Powder by Ammonia Precipitation Method

    Directory of Open Access Journals (Sweden)

    Wang Liuyan

    2017-01-01

    Full Text Available In this paper, alumina precursor was prepared by the ammonia precipitation method which used Al (NO3 3 9H2O as aluminum source and NH4OH as a precipitator, adding a small amount of PEG4000 as the surface active agent. Finally γ-Al2O3 was obtained at 900° for 2h. The stable alumina crystal form of α-Al2O3 was got at 1100° for 2h. The influence of precipitation agent on the precursor was studied by means of TG / DTA and Tem, XRD etc. The effects of the synthesis temperature and time on the phase composition and morphology of the alumina powder were also analysed.

  5. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    Science.gov (United States)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  6. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shibo; Zhang, Zhiyong, E-mail: zyzhang@pku.edu.cn; Si, Jia; Zhong, Donglai; Peng, Lian-Mao, E-mail: lmpeng@pku.edu.cn [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  7. Investigation of Removal Possibilities of Colloidal Alumina from Aqueous Solution by the Use of Anionic Polyacrylamide

    International Nuclear Information System (INIS)

    Wisniewska, M.; Chibowski, S.; Urban, T.

    2016-01-01

    Purification of drinking and industrial water required usage of high molecular weight polymer to cause flocculation process of dispersed suspension of contaminants. Poly electrolytes, including ionic polyacrylamide are especially appropriate for these purposes, because in this case the suspension stability can be controlled by both steric and electrostatic forces. Thus the influence of solution p H and hydrolysis degree (carboxyl groups content) of anionic polyacrylamide (PAM) on the alumina (Al_2O_3) suspension stability were studied. The turbidimetry was applied for determination of the examined systems stability. The mechanism of suspension stabilization or destabilization in the polymer presence was proposed on the basis of determined parameters: adsorbed amount of PAM, its adsorption layer thickness, linear dimensions of macromolecules in the solution and zeta potential of alumina particles covered with the polyacrylamide layer. The greatest decrease of the alumina suspension stability in the polymer presence in comparison to that without the polymer was obtained at p H 6 after the addition of PAMs with higher molecular weight (i.e. 14 000 0000) and hydrolysis degrees 20 and 30% (efficient neutralization of solid surface charge). In turn, the most unstable alumina system proved to be that prepared at p H 9 containing PAM with the highest molecular weight and the greatest hydrolysis degree (causing the most effective bridging flocculation).

  8. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua

    2003-01-01

    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  9. Structural consideration with respect to the thermal stability of a new platinum supported lanthanum-alumina catalyst

    International Nuclear Information System (INIS)

    Oudet, F.; Bordes, E.; Courtine, P.; Maxant, G.; Lambert, C.; Guerlet, J.P.

    1987-01-01

    The influence of lanthanum aluminate, LaAlO 3 , on the thermal stability of both alumina and platinum supported alumina catalysts is investigated. In the case of alumina, the stabilization is interpreted in terms of structural coherence between δ-Al 2 O 3 and a three-fold superstructure of LaAlO 3 . The addition of LaAlO 3 , is shown to increase both the dispersion and the resistance to sintering of the platinum supported alumina catalyst. Moreover, lanthanum hexa-aluminate (La-β-Al 2 O 3 ) is present in the platinum catalyst fired at 1150 0 C. These observations are assumed to result for the epitaxial relations between platinum and the lanthanum-alumina support. 23 refs.; 8 figs.; 2 tabs

  10. Impact of concentration and Si doping on the properties and phase transformation behavior of nanocrystalline alumina prepared via solvothermal synthesis

    International Nuclear Information System (INIS)

    Mekasuwandumrong, Okorn; Tantichuwet, Panutin; Chaisuk, Choowong; Praserthdam, Piyasan

    2008-01-01

    Solvothermal reaction of 20 g aluminum isopropoxide (AIP) in mineral oil at 300 deg. C for 2 h gave χ-alumina showing high thermal stability while the reaction with higher amounts of starting AIP (30 and 40 g) contributed contamination of pseudoboehmite. The χ-alumina thus obtained directly transformed into α-alumina completely at approximately 1400 deg. C bypassing the other transition alumina phases whereas some part of the contaminated product transformed to γ-alumina through θ-alumina and finally α-alumina. When silicon was doped in the alumina matrix (5, 10, 20 and 50 at.%) using tetraethylorthosilicate as the silicon (Si) precursor, χ-alumina was still observed without any contaminations at low concentration doping (5-20 at.%). Amorphous structure was obtained by doping 50 at.% Si. The phase transformation temperature was shifted to the high temperature after loading the Si. The α-phase transformation did not go to completion even after calcinations at 1500 deg. C. This could be due to the incorporation of Si atom in alumina lattice forming SiO 2 -Al 2 O 3 solid solution

  11. Separation of yttrium (III) from lanthanoids (III) by solvent extraction with substituted N-Alkylcarbonyl-N-phenylhydroxylamines

    International Nuclear Information System (INIS)

    Haraguchi, K.; Ogata, T.; Nakagawa, K.; Saitoh, T.; Kamidate, T.; Watanabe, H.

    1996-01-01

    A series of substituted N-alkylcarbonyl-N-phenylhydroxylamines(R-PHAs) were synthesized and utilized for the extraction of yttrium(III) and lanthanoids(III) in order to obtain effective extractants for the separation of yttrium(III) from the lanthanoids(III) and the mutual separation of the lanthanoids(III). The distribution ratio of yttrium(III) and the lanthanoids(III) between the carbon tetrachloride and the aqueous phases was measured as functions of the pH and the extractant concentration at 298 K at an ionic strength of 0.1 (NaNO 3 ). Yttrium(III) and the lanthanoids(III) were extracted with R-PHAs(HL) as self-adducted chelates of the form, ML 3 (HL) x , where 'x' is 1, 2 or 3 depending on the extraction system. The extractability of the metal ions decreased in the order of R-PHA having a primary, a secondary and a tertiary alkyl substituent attached to the carbonyl group because of the steric hindrance of the alkyl group. The separation factors for both Yb/Eu and Yb/Y pairs increased with increasing branching of the alkyl group of R-PHA. The excellent selectivity of R-PHAs having a tertiary alkyl group was attributable to a greater inductive effect of the tertiary alkyl group than those of the primary and secondary alkyl groups. The substituents at the phenyl group of R-PHAs gave no significant effect on the selectivity, while the extractability was enhanced considerably by introduction of electron withdrawing substituents at appropriate positions of the phenyl group of R-PHAs. (authors)

  12. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3 phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.

  13. Chromatographic behavior of carbonate complexes of lanthanides and of thorium in alumina

    International Nuclear Information System (INIS)

    Tomida, E.K.

    1977-01-01

    The chromatographic behavior of some rare earth elements and thorium on alumina is studied in order to evaluate the possibility of separation from concentration of trace rare earths from high-purity thorium compounds. The effect of some factors on complex thorium carbonate formation and the extent of thorium solubility in sodium and potassium carbonate solutions investigated. The sorption of rare earth elements and thoriuum on alumina from alkali carbonate solution is observed, despite the reports that alumina acts as a cation exchanger in alkali media and that thorium and rare earths form stable anionic carbonate complexes. The formation of these elements between alumina and potassium carbonate solutions is studied as a function of pH, carbonate concentration and metal ion concentration. Also the elution of rare earths from alumina is studied and the best results are obtained with mineral acids and EDTA plus alkali carbonate solutions. The effect of some parameters as column aging, mixed solvents, column treatment with organic solvents, temperature, aluant concentration is investigated. Attempting to understand this sorption mechanism, some experiments with strongly basic anion exchanger and cation exchangers of strongly acid and weakly acid type are accomplished. It is observed that there are significant differences, in some conditions, between the behavior of rare earths and of thorium, pointing our the possibility of separation of one lanthanide from others and of these from thorium [pt

  14. Advanced morphological analysis of patterns of thin anodic porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, C. [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy); Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Stępniowski, W.J. [Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Leoncini, M. [Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163 (Italy); Salerno, M., E-mail: marco.salerno@iit.it [Istituto Italiano di Tecnologia, Department of Nanophysics, Via Morego 30, Genova I 16163 (Italy)

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  15. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  16. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    International Nuclear Information System (INIS)

    Apriany, Karima; Permadani, Ita; Rahmawati, Fitria; Syarif, Dani G.; Soepriyanto, Syoni

    2016-01-01

    In this research, zirconium dioxide, ZrO 2 , was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO 2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10 -3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity. (paper)

  17. Germania and Alumina Dopant Diffusion and Viscous Flow Effects at Preparation of Doped Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jens Kobelke

    2017-01-01

    Full Text Available We report on germania and alumina dopant profile shift effects at preparation of compact optical fibers using packaging methods (Stack-and-Draw method, Rod-in-Tube (RiT technique. The sintering of package hollow volume by viscous flow results in a shift of the core-pitch ratio in all-solid microstructured fibers. The ratio is increased by about 5% in the case of a hexagonal package. The shift by diffusion effects of both dopants is simulated for typical slow speed drawing parameters. Thermodynamic approximations of surface dissociation of germania doped silica suggest the need of an adequate undoped silica barrier layer to prevent an undesired bubble formation at fiber drawing. In contrast, alumina doping does not estimate critical dissociation effects with vaporous aluminium oxide components. We report guide values of diffusion length of germania and alumina for the drawing process by kinetic approximation. The germania diffusion involves a small core enlargement, typically in the sub-micrometer scale. Though, the alumina diffusion enlarges it by a few micrometers. A drawn pure alumina preform core rod transforms to an amorphous aluminosilicate core with a molar alumina concentration of only about 50% and a non-gaussian concentration profile.

  18. Environmental Sustainability of the Alumina Industry in Western Europe

    Directory of Open Access Journals (Sweden)

    Valentina Dentoni

    2014-12-01

    Full Text Available The implementation of European policies on environmental protection is enforcing some substantial modifications in the processing methods and technologies traditionally adopted in the alumina industry and, in particular, in the management of the alumina residue produced. The article analyses the evolution of the alumina production and the residue disposal practices in Western Europe. Some critical aspects regarding the legal implementation of the EU Directive on the landfill of waste are highlighted and discussed. With reference to the requirements established for the landfill of non-hazardous waste, a key point is represented by the possibility of reducing the deposit protection measures if the collection and treatment of leachate is not necessary. The flexibility introduced by the Directive is not incorporated into the Italian law; this fact may represent a major issue in the prospect of disposal conversion from wet to dry methods for companies operating in Italy, as it may endanger the economic sustainability of the plants’ upgrade, as well as the opportunity to attract outside investments.

  19. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    Science.gov (United States)

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Preparation of alumina-β'

    International Nuclear Information System (INIS)

    Casarini, J.R.; Souza, D.P.F.

    1984-01-01

    Alumina - (β + β') in powder, with composition of 8.85% Na 2 0 + 0.75% Li 2 0 + 90.40% Al 2 O 3 is obtained using the zeta process. The phase transformation β→β' can be seen with powder X-ray diffraction. It was observed that the efficiency of the transformation is related to the processing and purity of the raw material. Impurities as Ca and Si difficult the phase transformation β→β'. (E.G.) [pt

  1. Hidratação do óxido de magnésio em presença de alumina hidratável Magnesium oxide hydration in presence of hydratable alumina

    Directory of Open Access Journals (Sweden)

    R. Salomão

    2010-07-01

    Full Text Available Aluminas hidratáveis são compostos obtidos a partir da calcinação incompleta da gibsita Al(OH3, que podem reagir com água e possuem ação ligante em suspensões cerâmicas. A substituição do cimento de aluminato de cálcio pelas aluminas hidratáveis em concretos refratários contendo óxido de magnésio (MgO pode gerar diversos benefícios em relação às propriedades termomecânicas e refratariedade. No entanto, os efeitos da combinação desses materiais e suas conseqüências para a hidratação do MgO ainda não foram investigados sistemicamente. Neste trabalho, quatro fontes de MgO e aluminas hidratáveis foram combinadas em diferentes proporções e hidratados simultaneamente. Após investigações utilizando difração de raios X, termogravimetria e expansão volumétrica aparente, verificou-se que a relação MgO/Al2O3 e as diferenças de reatividade de cada matéria prima podem afetar significativamente o processo de hidratação. Além disso, foi observado que essa combinação pode ser utilizada como uma interessante técnica anti-hidratação para o MgO.The substitution of calcium aluminate cement by hydratable aluminas in MgO-containing refractory castables can afford several benefits for these materials mechanical properties and refractoriness. Nevertheless, the way that hydratable aluminas affects MgO hydration and its consequences were not yet systemically explored. In the present work, four sources of magnesia and alumina were combined at different ratios and hydrated simultaneously. They were investigated by X-ray diffraction, thermogravimetry and apparent volumetric expansion measurements. It was found that the magnesia/alumina ratio and the differences of reactivity of each raw material can greatly affect both hydration processes, generating different hydrated compounds. It was also verified that this combination can be suitably used as powerful MgO anti-hydration technique.

  2. Photoluminescence properties of the composite of porous alumina and poly (2,5-dibutoxy-1,4 phenylenevinylene)

    International Nuclear Information System (INIS)

    Zhao Yi; Yang Deren; Zhou Chengyao; Yang Qing; Que Duanlin

    2003-01-01

    The spin coating method was used to assemble polymer (Poly (2,5-dibutoxy-1,4-phenylenevinylene)) (DBO-PPV) into the pores of porous alumina which was prepared by anodization. Four peaks in the photoluminescence (PL) spectra of the composite, with contributions from the DBO-PPV and porous alumina, were found. It was also found that the light emitting from the porous alumina could excite the photoluminescence of DBO-PPV. The nanometer effect of the porous alumina can lead to a blue shift of 90 nm of the PL peaks of DBO-PPV

  3. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  4. Treatment of diffuse large B-cell lymphoma of the liver with yttrium-90 microsphere embolization.

    Science.gov (United States)

    Fenske, Timothy S; Benjamin, Heather; Kroft, Steven H; Hohenwalter, Eric J; Rilling, William S

    2008-11-01

    A 41-year-old male with a 4-year history of chronic hepatitis C presented with a 1-month history of abdominal pain, fatigue, weight loss, and night sweats. Laboratory examinations, chest, abdomen, and pelvic CT scans, PET-CT scans, ultrasound-guided needle biopsies of liver lesions, bone-marrow biopsy, flow cytometry, and immunohistochemical staining for B-cell markers including CD20. Chemoresistant diffuse large B-cell lymphoma, with gradual loss of CD20 antigen expression. Embolization of hepatic tumors using yttrium-90 microspheres (Therasphere, Theragenics Corporation, Buford, GA).

  5. Solid state reaction in alumina nanoparticles/LZSA glass-ceramic composites

    International Nuclear Information System (INIS)

    Montedo, O.K.; Oliveira, A.N. de; Raupp-Pereira, F.

    2016-01-01

    Full text: The aim of this work is to present results related to solid state reactions on LZSA glass-ceramic composites containing alumina reinforcement nano-particles. A LZSA (Li2O-ZrO2-SiO2-Al2O3) glass-ceramic has been prepared by sintering of powders and characterized. Composites containing 0 to 77 vol.% of alumina nanoparticles (27-43 nm APS, 35 m2.g-1 SSA) and a 16.9Li2O•5.0ZrO2•65.1SiO2•8.6Al2O3 glass-ceramic matrix have been prepared. X-ray diffractometry studies have been performed in order of investigating the solid state reactions occurring in LZSA-based composites. Results of the XRD patterns have been related to the coefficient of thermal expansion (CTE), Young modulus, and dielectric constant, showing that, in comparison with the glass-ceramic composition, the composites showed a decrease of CTE with the alumina concentration increasing, due to the increasing of beta-spodumeness formation (solid solution of beta-spodumene, Li2O.Al2O3.4-10SiO2). The performance of the glass-ceramic was improved with the alumina nano-particles addition, showing potential of using in the preparation of Low Thermal Co-fired Ceramics (LTCC). (author)

  6. Experimental-statistical method for investigation of multicomponent yttrium garnet systems

    International Nuclear Information System (INIS)

    Kojouharoff, V.; Ionchey, H.

    1986-01-01

    In the present work, some problems are discussed arising in the construction and study of a mathematical model describing the synthesis of multicomponent yttrium garnets with predetermined microwave parameters. To construct the model, the following formula was used for Ca-V YIG substituted with In and Cr: Y/sub 3-2x/Ca/sub 2x/Fe/sub 5-(x+y+z)/In/sub y/Cr/sub z/V/sub x/O/sub 12/. For this purpose, ferrogarnets were synthesized differing in x, y, and z with their values chosen so as to obtain real roots of a set of equations of the type Y/sub k/ = ΣB/sub i/X/sub i/ + ΣB/sub ij/X/sub i/X/sub j/ + ΣB/sub ijk/X/sub i/X/sub j/X/sub k/, where Y/sub k/ are the ferrogarnet microwave properties. The graphical presentation of these solutions as triple diagrams is a very convenient way of obtaining ferrogarnets with predetermined microwave characteristics. The possibility is created of mathematically predicting and determining the influence of the different components on the yttrium ferrogarnet parameters as a function of their concentration

  7. Equilibrium Studies on the Extraction of Yttrium from Chloride Medium by Mono (2-Ethylhexyl) 2-Ethylhexyl Phosphonic Acid (Ion quest 801)

    International Nuclear Information System (INIS)

    Zaki, E.E.; Ismail, Z.H.; Aly, H.F.; Sabet, S.A.

    2008-01-01

    Since 90 Y is one of the useful radioisotopes in nuclear medicine, liquid-liquid extraction of yttrium from chloride medium has been studied under various conditions using neutralized and un-neutralized mono (2-ethylhexyl) 2-ethylhexyl phosphonic acid (EHEHPA) as an extractant. Effect of reagent concentration, ph of the aqueous medium, metal ion concentration and nature of the diluent on the extraction process has been carried out. Effect of temperature was studied and thermodynamic parameters were evaluated. Yttrium extracted in organic phase was stripped with various reagents. The stoichiometry of the extracted species of yttrium was determined on the basis of slope analysis of experimental results. Equilibrium equations of the extraction process have been estimated and verified

  8. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  9. Thermophysical Properties of High-Frequency Induction Heat Sintered Graphene Nanoplatelets/Alumina Ceramic Functional Nanocomposites

    Science.gov (United States)

    Ahmad, Iftikhar; Subhani, Tayyab; Wang, Nannan; Zhu, Yanqiu

    2018-05-01

    This paper concerns the thermophysical properties of high-frequency induction heat (HFIH) sintered alumina ceramic nanocomposites containing various graphene nanoplatelets (GNP) concentrations. The GNP/alumina nanocomposites demonstrated high densities, fine-grained microstructures, highest fracture toughness and hardness values of 5.7 MPa m1/2 and 18.4 GPa, which found 72 and 8%, superior to the benchmarked monolithic alumina, respectively. We determine the role of GNP in tuning the microstructure and inducing toughening mechanisms in the nanocomposites. The sintered monolithic alumina exhibited thermal conductivity value of 24.8 W/mK; however, steady drops of 2, 15 and 19% were recorded after adding respective GNP contents of 0.25, 0.5 and 1.0 wt.% in the nanocomposites. In addition, a dwindling trend in thermal conductions with increasing temperatures was recorded for all sintered samples. Simulation of experimental results with proven theoretical thermal models showed the dominant role of GNP dispersions, microstructural porosity, elastic modulus and grain size in controlling the thermal transport properties of the GNP/alumina nanocomposites. Thermogravimetric analysis showed that the nanocomposite with up to 0.5 mass% of GNP is thermally stable at the temperatures greater than 875 °C. The GNP/alumina nanocomposites owning a distinctive combination of mechanical and thermal properties are promising contenders for the specific components of the aerospace engine and electronic devices having contact with elevated temperatures.

  10. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  11. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel

    International Nuclear Information System (INIS)

    Chen, Lei; Ma, Xiaocong; Wang, Longmei; Ye, Xiaoning

    2011-01-01

    Research highlights: → Applications of Y in 21Cr-11Ni austenitic heat-resistant stainless steel. → Sensible characteristics of microstructure and properties have been observed. → Y has been found be effective in improving hot ductility of 21Cr-11Ni steel. → Inhibitory effect of Y on S segregation to the grain boundary has been observed. -- Abstract: In this comparative study, the microstructure and the mechanical properties of a 21Cr-11Ni austenitic heat-resistant stainless steel with and without addition of rare earth (RE) element yttrium have been investigated. The results show that a number of fine spherical yttrium-rich oxide particles are not uniformly distributed in the matrix of steel with yttrium; instead, they are aligned along the rolling direction. The grains surrounding the alignment are nearly one order of magnitude smaller than those farther away from the alignment. The approximate calculation results indirectly show that the grain refinement may be mainly attributed to the stimulation for nucleation of recrystallization rather than to pinning by particles. Furthermore, the alignment has resulted in significant loss in transverse impact toughness and tensile elongation at room temperature. There is a trough in the hot ductility-temperature curve, which is located between 973 and 1173 K. The ductility trough of steel with yttrium becomes shallow within a certain temperature range, especially around 1073 K, indicating that improvement on hot ductility is achieved by yttrium addition. The results may be attributed to the increase of grain boundary cohesion indicated by the effective improvement on intergranular failure tendency, and the inhibitory effect of yttrium on sulfur segregation to grain boundaries is believed to be an important cause.

  12. Modification of alumina matrices through chemical etching and electroless deposition of nano-Au array for amperometric sensing

    Directory of Open Access Journals (Sweden)

    Valinčius Gintaras

    2007-01-01

    Full Text Available AbstractSimple nanoporous alumina matrix modification procedure, in which the electrically highly insulating alumina barrier layer at the bottom of the pores is replaced with the conductive layer of the gold beds, was described. This modification makes possible the direct electron exchange between the underlying aluminum support and the redox species encapsulated in the alumina pores, thus, providing the generic platform for the nanoporous alumina sensors (biosensors with the direct amperometric signal readout fabrication.

  13. Development of tungsten coatings for the corrosion protection of alumina-based ceramics

    International Nuclear Information System (INIS)

    Arons, R.M.; Dusek, J.T.; Hafstrom, J.W.

    1979-01-01

    A means of applying tungsten coatings to an alumina based ceramic is described. A slurry of pure tungsten was prepared and applied by brush coating or slip casting on the alumina-3 wt % Yt small crucible. The composite was fired and a very dense ceramic crucible with a crack free tungsten coating was produced

  14. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Kim, Byeol; Lee, Jin Seok

    2014-01-01

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  15. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeol; Lee, Jin Seok [Sookmyung Women' s Univ., Seoul (Korea, Republic of)

    2014-02-15

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced.

  16. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  17. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  18. Peripheral Blood Lymphocyte Depletion After Hepatic Arterial {sup 90}Yttrium Microsphere Therapy for Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Brian I., E-mail: brianicarr@hotmail.com [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA and Department of Nutrition and Exptl Biology, Saverio De Bellis Medical Research Institute, Castellana Grotte, Bari (Italy); Metes, Diana M. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA and Department of Nutrition and Exptl Biology, Saverio De Bellis Medical Research Institute, Castellana Grotte, Bari (Italy)

    2012-03-01

    Purpose: The short- and long-term effects of {sup 90}Yttrium microspheres therapy for hepatocellular carcinoma (HCC) on peripheral blood lymphocytes are unknown and were therefore examined. Methods and Materials: Ninety-two HCC patients were enrolled in a {sup 90}Yttrium therapy study and routine blood counts were examined as part of standard clinical monitoring. Results: We found an early, profound, and prolonged lymphopenia. In a subsequent cohort of 25 additional HCC patients, prospective flow cytometric immune-monitoring analysis was performed to identify specific changes on distinct lymphocyte subsets (i.e., CD3, CD4, CD8 T, and CD19 B lymphocytes) and NK cells absolute numbers, in addition to the granulocytes and platelets subsets. We found that the pretreatment lymphocyte subset absolute numbers (with the exception of NK cells) had a tendency to be lower compared with healthy control values, but no significant differences were detected between groups. Posttherapy follow-up revealed that overall, all lymphocyte subsets, except for NK cells, were significantly (>50% from pretherapy values), promptly (as early as 24 h) and persistently (up to 30 months) depleted post-{sup 90}Yttrium microspheres therapy. In contrast, granulocytes increased rapidly (24 h) to compensate for lymphocyte depletion, and remained increased at 1-year after therapy. We further stratified patients into two groups, according to survival at 1 year. We found that lack of recovery of CD19, CD3, CD8, and especially CD4 T cells was linked to poor patient survival. No fungal or bacterial infections were noted during the 30-month follow-up period. Conclusions: The results show that lymphocytes (and not granulocytes, platelets, or NK cells) are sensitive to hepatic arterial {sup 90}Yttrium without associated clinical toxicity, and lack of lymphocyte recovery (possibly leading to dysregulation of adaptive cellular immunity) posttherapy indicates poor survival.

  19. Numerical Simulation and Experimental Investigation of Multi-function Micro-plasma Jet and Alumina Particle Behaviour

    Directory of Open Access Journals (Sweden)

    Liu Gu

    2016-01-01

    Full Text Available Turbulent flow in multi-function micro-plasma spray, as well as the trajectories and state-changing course of alumina particles in the plasma jet were simulated. The distribution of temperature and velocity of the plasma jet and in-flight alumina particles is discussed. Calculations show that particles are heated and accelerated sufficiently by the plasma flame due to a longer travel time than that of external injection system, therefore, possess higher temperature and velocity. Alumina particles temperature and velocity increase rapidly along the jet axis at the initial stage, but then decrease gradually. The velocity and surface temperature of in-flight alumina particles are measured by Spray Watch-2i system. The velocity and surface temperature of alumina particles measured agree well with the simulation results, confirming that the simulation model is suitable for the prediction of the turbulent flow and the particle characteristics, which also reveals the superiority of the plasma spray gun in this multi-function micro-plasma spraying system.

  20. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon and...

  1. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  2. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  3. Yttrium-90 used to treat colon cancer: Awaiting investigational new drug approval

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A new radiation treatment takes just 14 to 21 days to shrink colorectal tumors in laboratory mice, is under review for clinical trials with human cancer patients. The treatment has succeeded in reducing the size of tumors by up to 95%. Colon cancer, the second leading cause of cancer deaths in the US, is extremely difficult to treat unless it is detected early enough for surgical procedures. In laboratory tests over the last 5 years, a team of researchers has developed the treatment using yttrium-90. The yttrium-90 is transported to the tumors by attaching it to monoclonal antibodies that seek out the cancer cells. Once the radioisotope has been targeted to the tumor, the radiation destroys many of the cells, dramatically reducing the size of the tumor. Since this treatment usually does not completely eliminate all the cancer cells, it cannot be called a cure, but it does seem to be an effective method of shrinking colorectal tumors

  4. Mass synthesis of yttrium oxide nano-powders using radio frequency (RF) plasma

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Chakravarthy, Y.; Nagaraj, A.; Das, A.K.; Dhamale, G.

    2014-01-01

    Mass synthesis of nano-phase Yttrium Oxide (Y 2 O 3 ) from commercially available coarse grain powder is reported. Nano-sized high purity Y 2 O 3 is an important and critical constituent of ceramics like YAG (Yttrium aluminum garnet: Y 3 Al 5 O 12 ) for laser applications. The system is characterized in terms of its thermal and electrical behavior. Boltzmann plot technique is used to measure axial variation of temperature of the generated plasma. The synthesized particles are characterized in terms of XRD, SEM, TEM and BET analyses for qualification of the developed system. Major features observed are efficient conversion into nanometer-sized highly spherical particles, narrow size distribution, highly crystallite nature and highly pure phases. The particle distribution (from TEM) peaks within 20-30 nm. Average particle sizes determined from different methods like XRD, TEM and BET are very close to each other and point toward particle sizes within 20 to 30 nm

  5. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    OpenAIRE

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-01-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The de...

  6. Laser-induced reaction alumina coating on ceramic composite

    Science.gov (United States)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  7. Feasibility study of use alumina waste in compositions containing clay for the mullite synthesis; Estudo da viabilidade do uso de residuo de alumina em composicoes contendo argilas destinadas a sintese de mulita

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.J.; Dias, G.; Goncalves, W.P.; Santana, L.N.L., E-mail: valmir_jspb@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2016-07-01

    The reuse of alumina residue in addition to reducing environmental impacts can be used as raw material in ceramic masses to mullite produce. This study aims to obtain mullite from compositions containing clays and alumina residue used heating in a conventional oven. The raw materials were processed and characterized. Subsequently, these compositions were formulated containing precursors in appropriate proportions based on the stoichiometry of the mullite 3:2. Then, heat treatment was performed at temperatures of 1300 to 1400°C and 5°C rate/min. The products obtained were characterized by XRD, analyzing qualitatively and quantitatively the phases formed. The results showed that is possible, from compositions containing clays and alumina residue to obtain mullite as major phase (>70%) and high crystallinity (> 80%) The percentage of mullite approached the values obtained with the compositions containing alumina and clays. (author)

  8. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    Science.gov (United States)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  9. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  10. About a new preparation method for non-stoichiometric colored alumina

    International Nuclear Information System (INIS)

    Arghiropoulos, Basile; Elston, Jean; Juillet, Francois; Teichner, Stanislas

    1960-01-01

    Non-porous, 150 A diameter alumina spherules (δ variety), initially compressed at a pressure of 1 to 5 t/cm 2 , are colored in black after a vacuum treatment (10 -6 mm Hg) at 500 deg. C. Coloration is linked with oxygen loss. The non-stoichiometry of black alumina is demonstrated using a Mc Bain balance and electric conductivity measurements. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 2549-2551, sitting of 9 December 1959 [fr

  11. Optimizing the Synthesis of Alumina Inserts Using Hot Isostatic Pressing (HIP)

    Science.gov (United States)

    Ariff, T. F.; Azhar, A. Z.; Sariff, M. N.; Rasid, S. N.; Zahari, S. Z.; Bahar, R.; Karim, M.; Nurul Amin, AKM

    2018-01-01

    Alumina or Aluminium Oxide (Al2O3) is well known for its high strength and hardness. Its low heat retention and low specific heat characteristics make it attractive to be used widely as a cutting tool for grinding, milling and turning processes. Various synthesis methods have been used for the purpose of enhancing the properties of the alumina inserts. However, the optimization process using Hot Isostatic Pressing (HIP) has not been performed. This research aims in finding the optimum parameters in synthesizing the alumina inserts (98Al2O3 1.6ZrO2 0.4MgO, 93Al2O3 6.4ZrO2 0.6MgO and 85Al2O3 14.5ZrO2 0.5MgO) using HIP at different temperatures (1200, 1250 and 1300°C) and sintering time (10, 30 and 60 minutes). Hardness, density, shrinkage and microstructure using SEM were analysed. The optimum sintering condition for the alumina insert was found in 98Al2O3 1.6ZrO2 0.4MgO sintered at 1300°C for 60 minutes for it exhibited the highest values of hardness (1917HV), density (3.95g/cm3), shrinkage (9.6%).

  12. Nanostructured thin films of indium oxide nanocrystals confined in alumina matrixes

    International Nuclear Information System (INIS)

    Bouifoulen, A.; Edely, M.; Errien, N.; Kassiba, A.; Outzourhit, A.; Makowska-Janusik, M.; Gautier, N.; Lajaunie, L.; Oueriagli, A.

    2011-01-01

    Nanocrystals of indium oxide (In 2 O 3 ) with sizes below 10 nm were prepared in alumina matrixes by using a co-pulverization method. The used substrates such as borosilicate glasses or (100) silicon as well as the substrate temperatures during the deposition process were modified and their effects characterized on the structural and physical properties of alumina-In 2 O 3 films. Complementary investigation methods including X-ray diffraction, optical transmittance in the range 250-1100 nm and transmission electron microscopy were used to analyze the nanostructured films. The crystalline order, morphology and optical responses were monitored as function of the deposition parameters and the post-synthesis annealing. The optimal conditions were found and allow realizing suitable nanostructured films with a major crystalline order of cubic phase for the In 2 O 3 nanocrystals. The optical properties of the films were analyzed and the key parameters such as direct and indirect band gaps were evaluated as function of the synthesis conditions and the crystalline quality of the films.

  13. Diffusion of Cr, Fe, and Ti ions from Ni-base alloy Inconel-718 into a transition alumina coating

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, M., E-mail: martin.dressler@bam.de; Nofz, M.; Doerfel, I.; Saliwan-Neumann, R.

    2012-04-30

    Heat treating metals at high temperatures trigger diffusion processes which may lead to the formation of oxide layers. In this work the diffusion of Cr, Fe and Ti into an alumina coating applied to Inconel-718 is being investigated. Mass gain measurements, UV-vis spectroscopy and transmission electron microscopy were applied in order to study the evolution of the diffusion process. It was found that mainly Cr as well as minor amounts of Fe and Ti are being incorporated into the alumina coating upon prolonged heat treatment at 700 Degree-Sign C. It could be shown that alumina coatings being void of Cr have the same oxidation related mass gain as uncoated samples. However, incorporation of Cr into the alumina coating decreased their mass gain below that of uncoated substrates forming a Cr oxide scale only. - Highlights: Black-Right-Pointing-Pointer We investigated the diffusion of Cr into alumina coatings applied on IN-718. Black-Right-Pointing-Pointer The ingress of Cr led to the formation of mixed alumina/chromium coatings. Black-Right-Pointing-Pointer The mass gain of mixed alumina/chromium coatings was compared to uncoated IN-718. Black-Right-Pointing-Pointer The mixed alumina/chromium coatings improved the oxidation resistance of IN-718.

  14. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  15. Analysis of effect of nanoporous alumina substrate coated with polypyrrole nanowire on cell morphology based on AFM topography.

    Science.gov (United States)

    El-Said, Waleed Ahmed; Yea, Cheol-Heon; Jung, Mi; Kim, Hyuncheol; Choi, Jeong-Woo

    2010-05-01

    In this study, in situ electrochemical synthesis of polypyrrole nanowires with nanoporous alumina template was described. The formation of highly ordered porous alumina substrate was demonstrated with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). In addition, Fourier transform infrared analysis confirmed that polypyrrole (PP) nanowires were synthesized by direct electrochemical oxidation of pyrrole. HeLa cancer cells and HMCF normal cells were immobilized on the polypyrrole nanowires/nanoporous alumina substrates to determine the effects of the substrate on the cell morphology, adhesion and proliferation as well as the biocompatibility of the substrate. Cell adhesion and proliferation were characterized using a standard MTT assay. The effects of the polypyrrole nanowires/nanoporous alumina substrate on the cell morphology were studied by AFM. The nanoporous alumina coated with polypyrrole nanowires was found to exhibit better cell adhesion and proliferation than polystyrene petridish, aluminum foil, 1st anodized and uncoated 2nd anodized alumina substrate. This study showed the potential of the polypyrrole nanowires/nanoporous alumina substrate as biocompatibility electroactive polymer substrate for both healthy and cancer cell cultures applications.

  16. Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment

    DEFF Research Database (Denmark)

    Abbasi, Mohsen; Mirfendereski, Mojtaba; Fini, Mahdi Nikbakht

    2010-01-01

    In this paper, results of an experimental study on separation of oil from actual and synthetic oily wastewaters with mullite and mullite-alumina tubular ceramic membranes are presented. Mullite and mullite-alumina microfiltration (MF) symmetric membranes were synthesized from kaolin clay and α......-alumina membranes for treatment of synthetic wastewaters were investigated. In order to determine the best operating conditions, 250-3000ppm condensate gas in water emulsions was employed as synthetic oily wastewaters using mullite membrane. At the best operating conditions (3bar pressure, 1.5m/s cross flow...... velocity and 35°C temperature), performance of mullite and mullite-alumina membranes for treatment of real and synthetic wastewaters were also compared. The results for treatment of emulsions showed that the mullite ceramic membrane has the highest R (93.8%) and the lowest FR (28.97%). Also, the mullite...

  17. Thermal conductivity and phase-change properties of aqueous alumina nanofluid

    International Nuclear Information System (INIS)

    Teng, Tun-Ping

    2013-01-01

    Highlights: ► The alumina nanofluid with chitosan was produced by two-step synthesis method. ► The k and phase-change properties of alumina nanofluid were examined. ► Adding Al 2 O 3 nanoparticles into water indeed improves the k. ► Adding the chitosan decreases the thermal conductivity of alumina nanofluid. ► The T cp and h c are 53.4% and 97.8% of those in DW with the optimal combination. - Abstract: This study uses thermal conductivity and differential scanning calorimeter experiments to explore the thermal conductivity and phase-change properties of alumina (Al 2 O 3 )–water nanofluid produced using a two-step synthesis method. Deionized water (DW) is used as a control group, and the Al 2 O 3 –water nanofluid uses chitosan as a dispersant. Nanoparticle morphology and materials were confirmed using transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. The results show that adding Al 2 O 3 nanoparticles to DW improves DW thermal conductivity, but adding chitosan reduces the thermal conductivity of Al 2 O 3 –water nanofluid. Adding the nanoparticles to DW affects the phase-change peak temperature and phase change heat. The optimal combination is 0.1 wt.% chitosan and 0.5 wt.% Al 2 O 3 nanoparticles; the charging phase-change peak temperature and latent heat are 53.4% and 97.8% of those in DW, respectively

  18. Influence of neodymium-doping on structure and properties of yttrium aluminium garnet

    DEFF Research Database (Denmark)

    Zhang, X.D.; He, W.; Yue, Yuanzheng

    2013-01-01

    We study the impact of the Nd-doping on the grain formation, the crystal structure, and the fluorescence of the Yttrium Aluminum Garnet (YAG). The results show that Nd-doping leads to the YAG lattice expansion and distortion, and hence to an increase in defect concentration. This is attributed to...

  19. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  20. Bauxite Mining and Alumina Refining

    OpenAIRE

    Donoghue, A. Michael; Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust,...

  1. The structure-directed effect of Al-based metal–organic frameworks on fabrication of alumina by thermal treatment

    International Nuclear Information System (INIS)

    Liu, Dandan; Dai, Fangna; Tang, Zhe; Liu, Yunqi; Liu, Chenguang

    2015-01-01

    Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state 27 Al nuclear magnetic resonance ( 27 Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m 2 /g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina

  2. Separation of yttrium from strontium in the aqueous phase of the water/nitrobenzene system

    Czech Academy of Sciences Publication Activity Database

    Vaňura, P.; Makrlík, E.; Vobecký, Miloslav

    2002-01-01

    Roč. 253, č. 1 (2002), s. 171-172 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z4031919 Keywords : stroncium * yttrium * separation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.502, year: 2002

  3. Separation of microamounts of yttrium from strontium in the two-phase water/nitrobenzene system

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Vaňura, P.; Vobecký, Miloslav

    2002-01-01

    Roč. 253, č. 1 (2002), s. 153-155 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z4031919 Keywords : separation * stroncium * yttrium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.502, year: 2002

  4. Behaviour of iron and titanium species in cryolite-alumina melts

    OpenAIRE

    Jentoftsen, Trond Eirik

    2000-01-01

    The solubility of divalent iron oxide in cryolite-based melts was studied. Both electrochemical and chemical techniques were employed. To ensure that only divalent iron was present in solution, the melt was contained in an iron crucible under an atmosphere of argon. The experimental work included investigation of the solubility as a function of alumina concentration, temperature and cryolite ratio (CR = NaF/AlF3 molar ratio). The solubility at 1020 ºC was found to decrease from 4.17 wt% Fe in...

  5. Status and prospects on development of yttrium-based high-temperature superconducting coated conductor

    International Nuclear Information System (INIS)

    Izumi, Teruo; Yanagi, Nagato

    2017-01-01

    Development of a large-sized large-current conductor using a high-temperature superconducting wire rod based on copper oxide has been started worldwide for the purpose of applying it as an option of a magnet for a nuclear fusion prototype reactor. There is yttrium-based thin film wire rod as a promising candidate. Japan is leading the development of this wire rod for many years, aiming to apply it to power equipment and the like. This paper explained the history of wire rod development, basic superconducting properties and manufacturing method, and latest achievements, and overviewed the feasibility of application to nuclear fusion reactor magnets. At present, the use of niobium-based low-temperature superconducting wire rod that is used in ITER is the basic idea. On the other hand, the development of wire rod using a copper oxide type high-temperature superconductor (HTS) has also been started. HTS wire rod is evaluated as suitable for application to nuclear fusion magnets due to its superior critical current characteristics and high mechanical rigidity up to high magnetic fields at high temperatures of yttrium. As current development progress, there are development of high-quality wire rod in the magnetic field and development of low AC loss wire rod. As future prospects, cost reduction due to mass production and improvement of yield, and investigation of low-resistance connection technology are being studied. The remaining future challenges of yttrium-based HTS are improvement of the anisotropy, influence on neutron irradiation, and problem of activation. (A.O.)

  6. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution

    International Nuclear Information System (INIS)

    Kannan, Chellapandian; Sundaram, Thiravium; Palvannan, Thayumanavan

    2008-01-01

    The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol -1 ) than silica (69.93 kJ mol -1 ). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (ΔH o > 40 kJ mol -1 ) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina

  7. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Chellapandian [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India)], E-mail: chellapandiankannan@gmail.com; Sundaram, Thiravium [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Palvannan, Thayumanavan [Department of Biochemistry, Periyar University, Salem 636011, Tamilnadu (India)

    2008-08-30

    The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol{sup -1}) than silica (69.93 kJ mol{sup -1}). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions ({delta}H{sup o} > 40 kJ mol{sup -1}) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.

  8. Near-field radiative heat transfer in mesoporous alumina

    International Nuclear Information System (INIS)

    Li Jing; Feng Yan-Hui; Zhang Xin-Xin; Huang Cong-Liang; Wang Ge

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2∼4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. (paper)

  9. Surface study of nano-template anodic porous alumina pre-irradiated by ArF laser

    International Nuclear Information System (INIS)

    Jaleh, B.; Saramad, S.; Farshchi-Tabrizi, M.

    2009-01-01

    Nano-porous alumina membranes have widely used as matrix for the fabrication of nanomaterials for many applications including quantum-dot arrays, magnetic storage devices and composites for catalysis, due to their remarkable hardness, thermal and anti corrupted stability, uniform pore size and high pore density. In this experiment three sets of aluminum samples were chosen for fabrication nano-porous anodic alumina. One set has select for laser cleaning before chemical treatment and the two others with and without chemical treatment without laser irradiation. Anodic aluminum oxide (AAO) films were characterized with Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) micrograph and the SEM results were analyzed by Linear-Angular Fast Fourier Transform (LA-FFT) technique to investigate the arrangement and ordering of pores. According to these results the laser irradiated sample has much better regularity in comparison with the usual one.

  10. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  11. Alumina sludge's Influence on the physicochemical characteristics of CPJ55 cement

    Directory of Open Access Journals (Sweden)

    Dahhou M.

    2018-01-01

    Full Text Available Partial replacement of the Portland cement CPJ55 ingredients by various quantities of alumina sludge (AS, produced during drinking water plant sludge, was used in the preparation of mortar mold with dimensions 40×40×160 mm. The characterization of materials is carried out by X-ray fluorescence (XRF, Xray diffraction (XRD, free lime dosing, and the mechanical tests. Analysis of the chemical composition by XRF shows that the studied alumina sludge is mainly composed of aluminum oxide, silica, which is correlated with the principal mineral phases identified in the XRD analysis results. It is demonstrated that adding 5% of the alumina sludge in Portland cement does not affect the mineralogy of final product. Nevertheless, the compression and flexural strength tests (in 28 days conducted on mortar sample comprising 5% sludge elucidate that it belongs to cement mortar class of type 32.5 R.

  12. An XRF method for determination of common rare earth impurities in high purity yttrium oxide

    International Nuclear Information System (INIS)

    Dixit, R.M.; Deshpande, S.S.

    1975-01-01

    An XRF method for the estimation of Eu, Gd, Tb, Dy, Ho, Er and Yb in yttrium oxide has been developed. Samples are converted to yttrium oxalate and presented to the spectrometer in the form of pressed pellets. Philips PW-1220, a semi-automatic x-ray spectrometer, is used for the analysis. Line interference problems are studied for selecting analysis lines. For the elements except that of Yb, the lower estimation limit is 0.005% and for Yb, it is 0.01%. The average standard deviation is approximately 5% for various elements in the concentration range of 0.005% to 1.0%. The method has been tested for its accuracy by analysing synthesized samples with known composition at three different concentrations. (author)

  13. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    OpenAIRE

    A. E. Baranchikov; V. A. Maslov; S. V. Shcherbakov; V. A. Usachyov; N. E. Kononenko; P. P. Fedorov; K. V. Dukelskiy

    2015-01-01

    Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic co...

  14. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies.

    Science.gov (United States)

    Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza

    2018-05-03

    The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base free radicals. Copyright © 2018. Published by Elsevier B.V.

  15. Adducts compounds of lanthanides (III) trifluoreacetates and yttrium and the N,N - dimenthylformamide

    International Nuclear Information System (INIS)

    Silva, M. das G. da.

    1983-01-01

    Some studies on lanthanides, f transition elements, and yttrium are presented. Adducts of lanthanides trifluoroacetates and N,N -dimethylformamide are described. The characterization of complexes from elementar analysis, conductance measurements, X-ray patterns, vibrational, electronics and fluorescence spectra are analysed. (M.J.C.) [pt

  16. Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.

    Science.gov (United States)

    Kyotani, Tomohiro

    2006-07-01

    Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.

  17. Synthesis and characterization of hydroxyapatite/alumina ceramic ...

    Indian Academy of Sciences (India)

    39

    In the present work, nano crystalline hydroxyapatite/alumina (HAp-Al2O3) composite was .... powder was dried in hot air oven at 80 °C for 24 hours. ... weekly, and the culture medium was changed twice in a week. 4. Results and Discussion.

  18. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400019, Maharashtra (India)

    2016-05-06

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  19. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    International Nuclear Information System (INIS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-01-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al_2O_3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ_A_C) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ_A_C of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ_D_C), critical frequency (ω_c), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ_D_C) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  20. Studies on yttrium-containing smart alloys

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Felix; Wegener, Tobias; Litnovsky, Andrey; Rasinski, Marcin; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany); Mayer, Joachim [Ernst Ruska-Centrum, 52425 Juelich (Germany)

    2016-07-01

    Tungsten is the main candidate as plasma-facing armour material for future fusion reactors, like DEMO. Advantages of tungsten include high melting point, high thermal conductivity, low tritium retention, and low erosion yield. A problem is oxide volatilisation under accidental conditions where the temperature of the first wall can reach 1200 K to 1450 K and air ingress occurs. Therefore smart tungsten alloys are developed. Smart alloys are supposed to preserve properties of tungsten during plasma operation coupled with suppressed tungsten oxide formation in case of an accident. Lab-scale tungsten-chromium-yttrium (W-Cr-Y) samples prepared by magnetron sputtering are used as model system. The mechanisms of oxidation and its dynamics are studied using a thermogravimetric system, focussed ion beam, and electron microscopy. A composition scan was conducted: The new material composition featuring W, ∝ 12 wt.% Cr, ∝ 0.3 wt.% Y showed strongest suppression of oxidation, no pores, and least internal oxidation. At 1273 K in argon-oxygen atmosphere an oxidation rate of 3 . 10{sup -6} mg{sup 2}cm{sup -4}s{sup -1} was measured. At 1473 K ternary W-Cr-Y alloys suppressed evaporation up to 20 min while for W-Cr evaporation was already evident after 5 min. Comparison of passivation in dry and humid atmosphere, at temperatures of 1073 K to 1473 K is performed.