WorldWideScience

Sample records for include actively-cooled parabolic

  1. Diagnostics for the NBETF actively cooled beamdump

    International Nuclear Information System (INIS)

    Theil, E.; Jacobson, V.

    1984-09-01

    Lawrence Berkeley Laboratory's Neutral Beam Engineering Test Facility is currently testing multi-megawatt beams with pulse durations of up to 30 seconds. For this purpose, an actively cooled beam dump composed of heat-absorbing panels tht dissipate the beam energy via high speed water flow has been installed and tested. The panels are mounted in a complex assembly necessary to accommodate the variety of ion sources to be tested. The beam dump required new diagnostics of two kinds: beam diagnostics that provide graphic and quantitative information about the beam, as inferred from energy transferred to the water, and panel diagnostics that provide graphic and quantitative information about the beam dump itself. In this paper we describe our response to these requirements, including new algorithms for beam profiles, and we compare this work to our earlier results for inertial beam dumps. Principal differences are that the power densities on the water-cooled panels can be only indirectly inferred from measurements of the transferred beam energy, and that the acquisition and preparation of raw data is much more complex

  2. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  3. Active cooling of a mobile phone handset

    International Nuclear Information System (INIS)

    Grimes, Ronan; Walsh, Ed; Walsh, Pat

    2010-01-01

    Power dissipation levels in mobile phones continue to increase due to gaming, higher power applications, and increased functionality associated with the internet. The current cooling methodologies of natural convection and radiation limit the power dissipation within a mobile phone to between 1-2 W depending on size. As power dissipation levels increase, products such as mobile phones will require active cooling to ensure that the devices operate within an acceptable temperature envelop from both user comfort and reliability perspectives. In this paper, we focus on the applied thermal engineering problem of an active cooling solution within a typical mobile phone architecture by implementing a custom centrifugal fan within the mobile phone. Its performance is compared in terms of flow rates and pressure drops, allowable phone heat dissipation and maximum phone surface temperature as this is the user constraint for a variety of simulated PCB architectures in the mobile phone. Perforated plates with varying porosity through different size orifices are used to simulate these architectures. The results show that the power level dissipated by a phone for a constant surface temperature may be increased by ∼50 - 75% depending on pressure drop induced by the internal phone architecture. Hence for successful implementation and efficient utilization of active cooling will require chip layout to be considered at the design stage.

  4. Solar parabolic dish technology evaluation report

    Science.gov (United States)

    Lucas, J. W.

    1984-01-01

    The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.

  5. Active cooling in traumatic brain-injured patients: a questionable therapy?

    DEFF Research Database (Denmark)

    Grände, P-O; Reinstrup, P; Rommer, Bertil Roland

    2009-01-01

    -quality trials are considered, TBI patients treated with active cooling were more likely to die, a conclusion supported by a recent high-quality Canadian trial on children. Still, there is a belief that a modified protocol with a shorter time from the accident to the start of active cooling, longer cooling...... and rewarming time and better control of blood pressure and intracranial pressure would be beneficial for TBI patients. This belief has led to the instigation of new trials in adults and in children, including these types of protocol adjustments. The present review provides a short summary of our present...... knowledge of the use of active cooling in TBI patients, and presents some tentative explanations as to why active cooling has not been shown to be effective for outcome after TBI. We focus particularly on the compromised circulation of the penumbra zone, which may be further reduced by the stress caused...

  6. Controllability and stabilization of parabolic equations

    CERN Document Server

    Barbu, Viorel

    2018-01-01

    This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...

  7. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  8. Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC

    CERN Document Server

    Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department

    2018-01-01

    Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).

  9. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  10. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  11. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  12. Evaluation of Active Cooling Systems for Non-Residential Buildings

    Directory of Open Access Journals (Sweden)

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  13. Active cooling of a down hole well tractor

    DEFF Research Database (Denmark)

    Soprani, Stefano; Nesgaard, Carsten

    Wireline interventions in high temperature wells represent one of today’s biggest challenges for the oil and gas industry. The high wellbore temperatures, which can reach 200 °C, drastically reduce the life of the electronic components contained in the wireline downhole tools, which can cause...... the intervention to fail. Active cooling systems represent a possible solution to the electronics overheating, as they could maintain the sensitive electronics at a tolerable temperature, while operating in hotter environments. This work presents the design, construction and testing of an actively cooled downhole......-width-modulation circuit was developed to adapt the downhole power source to a suitable voltage for the thermoelectric cooler. The implementation of the active cooling system was supported by the study of the thermal interaction between the downhole tool and the well environment, which was relevant to define the heat...

  14. ACUTE CARDIOVASCULAR EFFECTS OF FIREFIGHTING AND ACTIVE COOLING DURING REHABILITATION

    Science.gov (United States)

    Burgess, Jefferey L.; Duncan, Michael D.; Hu, Chengcheng; Littau, Sally R.; Caseman, Delayne; Kurzius-Spencer, Margaret; Davis-Gorman, Grace; McDonagh, Paul F.

    2012-01-01

    Objectives To determine the cardiovascular and hemostatic effects of fire suppression and post-exposure active cooling. Methods Forty-four firefighters were evaluated prior to and after a 12 minute live-fire drill. Next, 50 firefighters undergoing the same drill were randomized to post-fire forearm immersion in 10°C water or standard rehabilitation. Results In the first study, heart rate and core body temperature increased and serum C-reactive protein decreased but there were no significant changes in fibrinogen, sE-selectin or sL-selectin. The second study demonstrated an increase in blood coagulability, leukocyte count, factors VIII and X, cortisol and glucose, and a decrease in plasminogen and sP-selectin. Active cooling reduced mean core temperature, heart rate and leukocyte count. Conclusions Live-fire exposure increased core temperature, heart rate, coagulability and leukocyte count; all except coagulability were reduced by active cooling. PMID:23090161

  15. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  16. Nickel-hydrogen battery state of charge management in the absence of active cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, C.; Foroozan, S. [TRW, Redondo Beach, CA (United States); Brewer, J.; Jackson, L.G. [NASA, Huntsville, AL (United States). Marshall Space Flight Center

    1995-12-31

    Battery management during prelaunch activities has always required special attention and careful planning. `ne transition from nickel-cadmium to nickel-hydrogen batteries, with their higher self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, have made this aspect of spacecraft management even more challenging. The NASA AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure adequate state of charge during prelaunch charge, trickle charge, and stand was considered and proved to be expensive and difficult to implement. Alternate approaches were considered. A procedure including optimized charging and low rate (active cooling, appeared promising and was investigated. The investigation includes three phases: (1) demonstration of the feasibility of the proposed procedure (2) development of a parametric data base (3) validation in an AXAF-I mission simulation test. Charging, trickle charging, and open circuit stand are considered in each phase. The major conclusion of this work is that nickel-hydrogen batteries can achieve and maintain high states of charge, in the absence of active cooling, using the approach described in this paper.

  17. High quality actively cooled plasma facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.

    1993-01-01

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed

  18. Actively cooled plasma facing components qualification, commissioning and health monitoring

    International Nuclear Information System (INIS)

    Escourbiac, F.; Durocher, A.; Grosman, A.; Courtois, X.; Farjon, J.-L.; Schlosser, J.; Merola, M.; Tivey, R.

    2006-01-01

    In modern steady state magnetic fusion devices, actively cooled plasma facing components (PFC) have to handle heat fluxes in the range of 10-20 MW/m 2 . This generates a number of engineering constraints: the armour materials must be refractory and compatible with plasma wall interaction requirements (low sputtering and/or low atomic number); the heat sink must offer high thermal conductivity, high mechanical resistance and sufficient ductility; the component cooling system -which is generally based on the circulation of pressurized water in the PFC's heat sink - must offer high thermal heat transfer efficiency. Furthermore, the assembling of the refractory armour material onto the metallic heat sink causes generic difficulties strongly depending on thermo-mechanical properties of materials and design requirements. Life time of the PFC during plasma operation are linked to their manufacturing quality, in particular they are reduced by the possible presence of flaw assembling. The fabrication of PFC in an industrial frame including their qualification and their commissioning - which consists in checking the manufacturing quality during and at the end of manufacture - is a real challenge. From experience gained at Tore Supra on carbon fibre composite flat tiles technology components, it was assessed that a set of qualifications activities must be operated during R(and)D and manufacturing phases. Dedicated Non Destructive Technique (NDT) based on advanced active infrared thermography was developed for this purpose, afterwards, correlations between NDT, high heat flux testing and thermomechanical modelling were performed to analyse damage detection and propagation, and define an acceptance criteria valuable for industrial application. Health monitoring using lock-in technique was also recently operated in-situ of the Tore Supra tokamak for detection of possible defect propagation during operations, presence of acoustic precursor for critical heat flux detection induced

  19. Parabolic features and the erosion rate on Venus

    Science.gov (United States)

    Strom, Robert G.

    1993-01-01

    The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.

  20. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  1. Parabolic solar concentrator

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.

    2006-08-01

    In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.

  2. Cyclotron heating rate in a parabolic mirror

    International Nuclear Information System (INIS)

    Smith, P.K.

    1984-01-01

    Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)

  3. High quality actively cooled plasma-facing components for fusion

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1995-01-01

    This paper interweaves some suggestions for developing actively cooled plasma-facing components (PFCs) for future fusion devices, with supporting examples taken from the design, fabrication and operation of Tore Supra's Phase III outboard pump limiter (OPL). This actively cooled midplane limiter, designed for heat and particle removal during long-pulse operation, has been operated under essentially thermally steady state conditions. Testing to identify braze flaws, analysis of the impact of joining flaws on the thermal-hydraulic performance of the OPL, and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed. This experience suggests that, for PFCs in future fusion devices, flaw-tolerant designs are possible; analyses of the impacts of flaws on performance can provide criteria for quality assurance; and validating appropriate methods of inspection for such flaws early in the design development of PFCs is prudent. The need for in-service monitoring is also discussed. (orig.)

  4. Active Cooling of Oil after Deep-frying.

    Science.gov (United States)

    Totani, Nagao; Yasaki, Naoko; Doi, Rena; Hasegawa, Etsuko

    2017-10-01

    Oil used for deep-frying is often left to stand after cooking. A major concern is oxidation during standing that might be avoidable, especially in the case of oil used repeatedly for commercial deep-frying as this involves large volumes that are difficult to cool in a conventional fryer. This paper describes a method to minimize oil oxidation. French fries were deep-fried and the oil temperature decreased in a manner typical for a commercial deep-fryer. The concentration of polar compounds generated from thermally oxidized oil remarkably increased at temperature higher than 100°C but little oxidation occurred below 60°C. Heating the oil showed that the peroxide and polar compound content did not increase when the oil was actively cooled using a running water-cooled Graham-type condenser system to cool the oil from 180°C to room temperature within 30 min. When French fries were fried and the oil was then immediately cooled using the condenser, the polar compound content during cooling did not increase. Our results demonstrate that active cooling of heated oil is simple and quite effective for inhibiting oxidation.

  5. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  6. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  7. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  8. Venus Mobile Explorer with RPS for Active Cooling: A Feasibility Study

    Science.gov (United States)

    Leifer, Stephanie D.; Green, Jacklyn R.; Balint, Tibor S.; Manvi, Ram

    2009-01-01

    We present our findings from a study to evaluate the feasibility of a radioisotope power system (RPS) combined with active cooling to enable a long-duration Venus surface mission. On-board power with active cooling technology featured prominently in both the National Research Council's Decadal Survey and in the 2006 NASA Solar System Exploration Roadmap as mission-enabling for the exploration of Venus. Power and cooling system options were reviewed and the most promising concepts modeled to develop an assessment tool for Venus mission planners considering a variety of future potential missions to Venus, including a Venus Mobile Explorer (either a balloon or rover concept), a long-lived Venus static lander, or a Venus Geophysical Network. The concepts modeled were based on the integration of General Purpose Heat Source (GPHS) modules with different types of Stirling cycle heat engines for power and cooling. Unlike prior investigations which reported on single point design concepts, this assessment tool allows the user to generate either a point design or parametric curves of approximate power and cooling system mass, power level, and number of GPHS modules needed for a "black box" payload housed in a spherical pressure vessel.

  9. Sasakian and Parabolic Higgs Bundles

    Science.gov (United States)

    Biswas, Indranil; Mj, Mahan

    2018-03-01

    Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.

  10. Strongly nonlinear parabolic variational inequalities.

    Science.gov (United States)

    Browder, F E; Brézis, H

    1980-02-01

    An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.

  11. Fixed point of the parabolic renormalization operator

    CERN Document Server

    Lanford III, Oscar E

    2014-01-01

    This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.   Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.   The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...

  12. Thermomechanical simulation of WEST actively cooled upper divertor

    International Nuclear Information System (INIS)

    Batal, T.; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-01-01

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m 2 . This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m 2 , and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m 2 . The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  13. The design of actively cooled plasma-facing components

    International Nuclear Information System (INIS)

    Scheerer, M.; Smid, I.; Bolt, H.; Gervash, A.; Linke, J.

    2001-01-01

    In future fusion devices, like in the stellarator Wendelstein 7-X, the target plates of the divertor will be exposed to heat loads up to power densities of 10 MW/m 2 for 1000 s. For this purpose actively cooled target elements with an internal coolant flow return, made of 2-D CFC armor tiles brazed onto a two tube cooling structure were developed and manufactured at the Forschungszentrum Juelich. Individual bent- and coolant flow reversal elements were used to achieve a high flexibility in the shape of the target elements. A special brazing technology, using a thin layer of plasma-arc deposited titanium was used for the bonding of the cooling structure to the plasma facing armor (PFA). FEM-simulations of the thermal and mechanical behavior show that a detachment of about 25% of the bonded area between the copper tubes and the PFA can be tolerated, without exceeding the critical heat flux at 15 MW/m 2 or a surface temperature of 1400 C at 10 MW/m 2 by using twisted tape inserts with a twist ratio of 2 at a cooling water velocity of 10 m/s. Thermal cycling tests in an electron beam facility up to a power density level 10.5 MW/m 2 show a very good behavior of parts of the target elements, which confirms the performance under fusion relevant conditions. Even defected parts in the bonding interface of the target elements, known from ultrasonic inspections before, show no change in the thermal performance under cycling, which confirms also the structural integrity of partly defected regions. (orig.)

  14. Thermomechanical simulation of WEST actively cooled upper divertor

    Energy Technology Data Exchange (ETDEWEB)

    Batal, T., E-mail: tristan.batal@cea.fr; Richou, M.; Guilhem, D.; Firdaouss, M.; Larroque, S.; Ferlay, F.; Missirlian, M.; Bucalossi, J.

    2016-11-15

    The Tore Supra tokamak is being transformed in an x-point divertor fusion device in the frame of the WEST (W-for tungsten-Environment in Steady-state Tokamak) project, launched in support to the ITER tungsten divertor strategy. The WEST project aims to test ITER-like W monoblock Plasma Facing Units (PFU). This ITER-like divertor will be tested under long plasma discharge up to 1000 s, with high heat flux density up to 20 MW/m{sup 2}. This paper presents the results of ANSYS thermal-structural simulations of the WEST upper divertor. The upper divertor is made of twelve 30° sectors, each one composed of 38 PFU. The PFUs are actively cooled CuCrZr heat sinks and the incidence surface is coated with a thin tungsten layer. The fixing system is made of pins engaged in slotted holes. Besides, the fixing system of the sector assembly is the same as WEST lower divertor, so one upper divertor sector can be used indifferently in upper or Lower position during transitional operation phases in WEST. The total surface of the upper divertor is 8 m{sup 2}, and it has to be able to extract up to 4 MW in steady-state, with peak heat flux values up to 8 MW/m{sup 2}. The fixing system was designed to handle structural loads such as forces and torques resulting from halo and eddy current, respectively, especially during disruptions and Vertical Displacement Event (VDE). The torque resulting from eddy current is first calculated thanks to an internal CEA ANSYS APDL routine. Then the ANSYS structural and thermal-structural simulations of the PFU are presented, and its design is validated thanks to A-level RCC-MRx criteria. Finally, the most conservative load case is determined in order to validate the design of the pins and the support structure.

  15. Improvement Design of Parabolic Trough

    Science.gov (United States)

    Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.

    2017-03-01

    The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.

  16. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  17. Plasma edge physics in an actively cooled tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Adamek, A.; Boucher, C.

    2005-01-01

    Tore Supra is a large tokamak with a plasma of circular cross section (major radius 2.4 m and minor radius 0.72 m) lying on a toroidal limiter. Tore Supra's main mission is the development of technology to inject up to 25 MW of microwave heating power and extract it continuously for up to 1000 s in steady state without uncontrolled overheating of, or outgassing from, plasma-facing components. The entire first wall of the tokamak is actively cooled by a high pressure water loop and special carbon fiber composite materials have been designed to handle power fluxes up to 10 MW/m 2 . The edge plasma on open magnetic flux surfaces that intersect solid objects plays an important role in the overall behaviour of the plasma. The transport of sputtered impurity ions and the fueling of the core plasma are largely governed by edge plasma density, temperature, and flow profiles. Measurements of these quantities are becoming more reliable and frequent in many tokamaks, and it has become clear that we do not understand them very well. Classical two-dimensional fluid modelling fails to reproduce many aspects of the experimental observations such as the significant thickness of the edge plasma, and the near-sonic flows that occur where none should be expected. It is suspected that plasma turbulence is responsible for these anomalies. In the Tore Supra tokamak, various kinds of Langmuir probes are used to characterize the edge plasma. We will present original measurements that demonstrate the universality of many phenomena that have been observed in X-point divertor tokamaks, especially concerning the ion flows. As in the JET tokamak, surprisingly large values of parallel Mach number are measured midway between the two strike zones, where one would expect to find nearly stagnant plasma if the particle source were poloidally uniform. We will present results of a novel experiment that provides evidence for a poloidally localized particle and energy source on the outboard midplane of

  18. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  19. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  20. Numerical Solution of Parabolic Equations

    DEFF Research Database (Denmark)

    Østerby, Ole

    These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....

  1. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  2. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  3. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    International Nuclear Information System (INIS)

    Missirlian, M; Richou, M; Loarer, T; Riccardi, B; Gavila, P; Constans, S

    2011-01-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m - 2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m - 2 for the CFC-armoured tiles and 15 MW m - 2 for the W-armoured tiles, respectively.

  4. Stability analysis of impulsive parabolic complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)

    2011-11-15

    Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  5. Stability analysis of impulsive parabolic complex networks

    International Nuclear Information System (INIS)

    Wang Jinliang; Wu Huaining

    2011-01-01

    Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.

  6. A parabolic model for dimple potentials

    International Nuclear Information System (INIS)

    Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun

    2013-01-01

    We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)

  7. Solutions to variational inequalities of parabolic type

    Science.gov (United States)

    Zhu, Yuanguo

    2006-09-01

    The existence of strong solutions to a kind of variational inequality of parabolic type is investigated by the theory of semigroups of linear operators. As an application, an abstract semi permeable media problem is studied.

  8. Coercive properties of elliptic-parabolic operator

    International Nuclear Information System (INIS)

    Duong Min Duc.

    1987-06-01

    Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs

  9. Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

    DEFF Research Database (Denmark)

    Soprani, Stefano; Klaas Haertel, Jan Hendrik; Lazarov, Boyan Stefanov

    2015-01-01

    Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration into the dow......Active cooling systems represent a possible solution to the electronics overheating that occurs in wireline downhole tools operating in high temperature oil and gas wells. A Peltier cooler was chosen to maintain the downhole electronics to a tolerable temperature, but its integration......, according to the topology optimization results and assembly constraints, and compared to the optimized cases....

  10. Partial differential equations of parabolic type

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta

  11. Real-time optical laboratory solution of parabolic differential equations

    Science.gov (United States)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  12. MEMS Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  13. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  14. Comparison between actively cooled divertor dump plates with beryllium and CFC armour

    International Nuclear Information System (INIS)

    Falter, H.D.; Araki, M.; Sato, K.; Suzuki, S.; Cardella, A.

    1995-01-01

    Actively cooled test sections with beryllium and graphite armour all withstand power densities between 15 and 20 MW/m 2 . Beryllium as structural material fails mechanically at low power densities. Monoblocks appear to be the most rigid design but frequently large variations in surface temperature are observed. All other test sections show a uniform surface temperature distribution. (orig.)

  15. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    Science.gov (United States)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  16. Experience gained from high heat flux actively cooled PFCs in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2005-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) is one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW/m 2 of nominal convected heat flux. Technical information is drawn from the whole development up to the industrialisation and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non-destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about half of the injected gas during long discharges

  17. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Hatchressian, J.C.; Gargiulo, L.; Samaille, F.; Soler, B.

    2005-01-01

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  18. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  19. Chernoff's distribution and parabolic partial differential equations

    NARCIS (Netherlands)

    P. Groeneboom; S.P. Lalley; N.M. Temme (Nico)

    2013-01-01

    textabstractWe give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting

  20. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Aweda

    The parabolic dish with glass material gave the highest temperature of .... 3: Second day variation temperature and time using different materials. 8. 10 .... the sun rays at that particular time. ... especially between 11:00 am and 3:00 pm when.

  1. Gradient remediability in linear distributed parabolic systems ...

    African Journals Online (AJOL)

    The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...

  2. Temperature Performance Evaluation of Parabolic Dishes Covered ...

    African Journals Online (AJOL)

    Solar radiation reaching the earth is considered to be affected by some parameters like diffusion. This radiation is reflected or scattered by air molecules, cloud and aerosols (dust). Parabolic dishes made of different materials (glass, foil and painted surface) were used to concentrate energy on a copper calorimeter filled with ...

  3. Nonlinear anisotropic parabolic equations in Lm

    Directory of Open Access Journals (Sweden)

    Fares Mokhtari

    2014-01-01

    Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].

  4. Degenerate parabolic stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    span class="emphasis">Hofmanová, Martinaspan>

    2013-01-01

    Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf

  5. Physics basis and mechanical design of the actively cooled duct scraper protection for the JET neutral beam enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.J. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)], E-mail: dwilson@jet.uk; Ciric, D.; Cox, S.J.; Jones, T.T.C.; Kovari, M. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [Association EURATOM-CEA, CEA-Cadarache, 13108 St. Paul-Lez-Durance (France); Martin, D.; Milnes, J.; Shannon, M.; Surrey, E. [UKAEA Fusion/Euratom Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2007-10-15

    The objectives of the JET neutral beam enhancement (NBE) include raising the delivered power from the present 25 MW to more than 34 MW and increasing the pulse length from 10 to 20 s. The additional power will be obtained partly by increasing the fractional energy components of the beam, resulting from acceleration of molecular ions, hence increasing the total particle flux. These changes place extreme demands on the design of the upgraded protection to the torus entry duct. The present inertial duct protection already reaches its thermomechanical limit in 10 s pulses, and active cooling of the upgraded duct protection is therefore essential. Extensive analysis of the pressure and temperature evolution in the present un-cooled duct established the relationship between gas re-emission and surface temperature for copper in this operating environment. This information was used in an integrated physics and engineering approach to the design of the actively cooled duct protection, taking into account the power loads from direct beam interception and re-ionisation. Surface temperature determines power density through the gas re-emission and consequential beam re-ionisation. These considerations define the normal operating point for the chosen enhanced hypervapotron element technology. This approach demonstrated that supplementary in situ duct cryopumping would not be needed, provided that the required heat-transfer performance could be met without any encroachment of the elements beyond the space envelope of the existing inertial duct protection plates. This requirement posed severe constraints on the mechanical design of the hypervapotron element array and its manifolding; the adopted engineering design solutions are presented.

  6. Self-accelerating parabolic cylinder waves in 1-D

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2016-11-25

    Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.

  7. Overview of software development at the parabolic dish test site

    Science.gov (United States)

    Miyazono, C. K.

    1985-01-01

    The development history of the data acquisition and data analysis software is discussed. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of a meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

  8. A compound parabolic concentrator as an ultracold neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hickerson, K.P., E-mail: hickerson@gmail.com; Filippone, B.W., E-mail: bradf@caltech.edu

    2013-09-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa{sup 2} creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment.

  9. A compound parabolic concentrator as an ultracold neutron spectrometer

    International Nuclear Information System (INIS)

    Hickerson, K.P.; Filippone, B.W.

    2013-01-01

    The design principles of nonimaging optics are applied to ultracold neutrons (UCN). In particular a vertical compound parabolic concentrator (CPC) that efficiently redirects UCN vertically into a bounded spatial volume where they have a maximum energy mga that depends only on the initial phase space cross sectional area πa 2 creates a spectrometer which can be applied to neutron lifetime and gravitational quantum state experiments. -- Highlights: • Nonimaging optics is applied to ultracold neutrons. • A novel ultracold neutron spectrometer is discussed. • New uses may include a neutron lifetime experiment

  10. Mechatronic Prototype of Parabolic Solar Tracker

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2016-06-01

    Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  11. Mechatronic Prototype of Parabolic Solar Tracker.

    Science.gov (United States)

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  12. Nanofocusing Parabolic Refractive X-Ray Lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV

  13. Nanofocusing parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.

    2003-01-01

    Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV

  14. A short proof of increased parabolic regularity

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-08-01

    Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.

  15. Structured inverse modeling in parabolic diffusion processess

    OpenAIRE

    Schulz, Volker; Siebenborn, Martin; Welker, Kathrin

    2014-01-01

    Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.

  16. Elliptic and parabolic equations for measures

    Energy Technology Data Exchange (ETDEWEB)

    Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)

    2009-12-31

    This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.

  17. An inverse problem in a parabolic equation

    Directory of Open Access Journals (Sweden)

    Zhilin Li

    1998-11-01

    Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.

  18. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  19. Effect of non-parabolicity on the binding energy of a hydrogenic donor in quantum well with a magnetic field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    A hydrogenic donor in a quantum well in the presence of a magnetic field perpendicular to the barrier is considered in the effective mass approximation. The non-parabolicity of the subband is included in the Hamiltonian by an energy-dependent effective mass. The donor binding energy is calculated variationally for different well widths and the effect of non-parabolicity is discussed in the light of recent experimental results. (author)

  20. Improving the viability and versatility of the E × B probe with an active cooling system

    Science.gov (United States)

    Liu, Lihui; Cai, Guobiao; You, Fengyi; Ren, Xiang; Zheng, Hongru; He, Bijiao

    2018-04-01

    A thermostatic E × B probe is designed to protect the probe body from the thermal effect of the plasma plume that has a significant influence on the resolution of the probe for high-power electric thrusters. An active cooling system, which consists of a cooling panel and carbon fiber felts combined with a recycling system of liquid coolants or an open-type system of gas coolants, is employed to realize the protection of the probe. The threshold for the design parameters for the active cooling system is estimated by deriving the energy transfer of the plasma plume-probe body interaction and the energy taken away by the coolants, and the design details are explained. The diagnostics of the LIPS-300 ion thruster with a power of 3 kW and a screen-grid voltage of 1450 V was implemented by the designed thermostatic E × B probe. The measured spectra illustrate that the thermostatic E × B probe can distinguish the fractions of Xe+ ions and Xe2+ ions without areas of overlap. In addition, the temperature of the probe body was less than 306 K in the beam region of the plasma plume during the 200-min-long continuous test. A thermostatic E × B probe is useful for enhancing the viability and versatility of equipment and for reducing uneconomical and complex test procedures.

  1. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.

    2004-01-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m 2 of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m 2 TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  2. High heat flux actively cooled plasma facing components development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2004-07-01

    The development, design, manufacture and testing of actively cooled high heat flux plasma facing components (PFC) has been an essential stage towards long powerful tokamak operations for Tore-Supra, it lasted about 10 years. This paper deals with the toroidal pumped limiter (TPL) that is able to sustain up to 10 MW/m{sup 2} of nominal heat flux. This device is based on hardened copper alloy heat sink structures covered by a carbon fiber composite armour, it resulted in the manufacturing of 600 elementary components, called finger elements, to achieve the 7.6 m{sup 2} TPL. This assembly has been operating in Tore-Supra since spring 2002. Some difficulties occurred during the manufacturing phase, the valuable industrial experience is summarized in the section 2. The permanent monitoring of PFC surface temperature all along the discharge is performed by a set of 6 actively cooled infrared endoscopes. The heat flux monitoring and control issue but also the progress made in our understanding of the deuterium retention in long discharges are described in the section 3. (A.C.)

  3. Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

    International Nuclear Information System (INIS)

    Budantsev, M. V.; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A.

    2011-01-01

    Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.

  4. Gradient-type methods in inverse parabolic problems

    International Nuclear Information System (INIS)

    Kabanikhin, Sergey; Penenko, Aleksey

    2008-01-01

    This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.

  5. The parabolic equation method for outdoor sound propagation

    DEFF Research Database (Denmark)

    Arranz, Marta Galindo

    The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...

  6. L^p-continuity of solutions to parabolic free boundary problems

    Directory of Open Access Journals (Sweden)

    Abdeslem Lyaghfouri

    2015-07-01

    Full Text Available In this article, we consider a class of parabolic free boundary problems. We establish some properties of the solutions, including L^infinity-regularity in time and a monotonicity property, from which we deduce strong L^p-continuity in time.

  7. Ultraprecise parabolic interpolator for numerically controlled machine tools. [Digital differential analyzer circuit

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, C. M.

    1977-02-01

    The mathematical basis for an ultraprecise digital differential analyzer circuit for use as a parabolic interpolator on numerically controlled machines has been established, and scaling and other error-reduction techniques have been developed. An exact computer model is included, along with typical results showing tracking to within an accuracy of one part per million.

  8. Numerical Schemes for Rough Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)

    2012-04-15

    This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.

  9. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  10. Alignment method for parabolic trough solar concentrators

    Science.gov (United States)

    Diver, Richard B [Albuquerque, NM

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  11. Optimal Wentzell Boundary Control of Parabolic Equations

    International Nuclear Information System (INIS)

    Luo, Yousong

    2017-01-01

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  12. Optimal Wentzell Boundary Control of Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)

    2017-04-15

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  13. Design of an actively cooled plate calorimeter for the investigation of pool fire heat fluxes

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Nicolette, V.F.; Wix, S.D.

    1993-01-01

    In order to better measure local heat fluxes in open pool fires, an actively cooled calorimeter has been designed and analyzed. As this paper is being prepared, the calorimeter is in fabrication. Following fabrication, testing in a radiant heat facility is planned to assure proper performance before introduction into the pool fire environment. Initially, testing in the SMERF facility will assure reproducibility of tests by removing wind effects. As the program progresses, tests in open facilities, and with different geometries are anticipated. Experimental data from the initial tests will be compared continuously to the gray gas model, and as experiments proceed, the gray gas analytical model will be refined with the goal of improving finite element code analysis of shipping containers. (J.P.N.)

  14. Design and fabrication of an actively cooled Langmuir probe for long pulse applications

    International Nuclear Information System (INIS)

    Paterson, J.A.; Biagi, L.A.; Ehlers, K.W.; Koehler, G.W.

    1985-11-01

    The details of the mechanical design and fabrication for a Langmuir Probe for the continuous monitoring of plasma density are given. The probe was designed for use as a diagnostic tool in the development of long pulse positive ion plasma sources for use on neutral beam systems. The essential design feature of this probe is the incorporation of two electrically isolated cooling water circuits which actively cool the probe tip and probe jacket. The electrical isolation is required to prevent drain currents from the probe body disturbing the measurement of the probe tip current and thereby the plasma density measurement. The successful realization of the design requires precision components and vacuum tight ceramic to refractory metal brazes. To date this design has successfully operated in steady-state in plasma densities up to 250 mA/cm 2 and surface heat fluxes of 25 W/cm 2

  15. Steady-state heat and particle removal with the actively cooled Phase III outboard pump limiter in Tore Supra

    International Nuclear Information System (INIS)

    Nygren, R.; Koski, J.; Lutz, T.; McGrath; Miller, J.; Watkins, J.; Guilhem, D.; Chappuis, P.; Cordier, J.; Loarer, T.

    1995-01-01

    Tore Supra's Phase III outboard pump limiter (OPL) is a modular actively-cooled mid-plane limiter, designed for heat and particle removal during long pulse operation. During its initial operation in 1993, the OPL successfully removed about 1 MW of power during ohmicly heated shots of up to 10 s duration and reached (steady state) thermal equilibrium. The particle pumping of the Phase III OPL was found to be about 50% greater than the Phase II OPL which had a radial distance between the last closed flux surface and the entrance of the pumping throat of 3.5 cm compared with only 2.5 cm for the Phase III OPL. This paper gives examples of power distribution over the limiter from IR measurements of surface temperature and from extensively calorimetry (34 thermocouples and 10 flow meters) and compares the distributions with values predicted by a 3D model (HF3D) with a detailed magnetic configuration (e.g., includes field ripple). ((orig.))

  16. Effects of feeding an immunomodulatory supplement to heat-stressed or actively cooled cows during late gestation on postnatal immunity, health, and growth of calves.

    Science.gov (United States)

    Skibiel, Amy L; Fabris, Thiago F; Corrá, Fabiana N; Torres, Yazielis M; McLean, Derek J; Chapman, James D; Kirk, David J; Dahl, Geoffrey E; Laporta, Jimena

    2017-09-01

    Heat stress during late gestation negatively affects the physiology, health, and productivity of dairy cows as well as the calves developing in utero. Providing cows with active cooling devices, such as fans and soakers, and supplementing cows with an immunomodulating feed additive, OmniGen-AF (OG; Phibro Animal Health Corporation), improves immune function and milk yield of cows. It is unknown if maternal supplementation of OG combined with active cooling during late gestation might benefit the developing calf as well. Herein we evaluated markers of innate immune function, including immune cell counts, acute phase proteins, and neutrophil function, of calves born to multiparous dams in a 2 × 2 factorial design. Dams were supplemented with OG or a bentonite control (NO) beginning at 60 d before dry off and exposed to heat stress with cooling (CL) or without active cooling (HT) during the dry period (∼46 d). At birth, calves were separated from their dams and fed 6.6 L of their dams' colostrum in 2 meals. Calf body weight and rectal temperature were recorded, and blood samples were collected at birth (before colostrum feeding) and at 10, 28, and 49 d of age. Calves born to either CL dams or OG dams were heavier at birth than calves born to HT or NO dams, respectively. Concentrations of serum amyloid A were higher in the blood of calves born to OG dams relative to NO and for HT calves relative to CL calves. In addition, calves born to cooled OG dams had greater concentrations of plasma haptoglobin than calves born to cooled control dams. Neutrophil function at 10 d of age was enhanced in calves born to cooled OG dams and lymphocyte counts were higher in calves born to OG dams. Together these results suggest that adding OG to maternal feed in combination with active cooling of cows during late gestation is effective in mitigating the negative effects of in utero heat stress on postnatal calf growth and immune competence. Copyright © 2017 American Dairy Science

  17. Conversion of solar radiation using parabolic mirrors

    Directory of Open Access Journals (Sweden)

    Jolanta Fieducik

    2017-08-01

    Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.

  18. A parabolic mirror x-ray collimator

    Science.gov (United States)

    Franks, A.; Jackson, K.; Yacoot, A.

    2000-05-01

    A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.

  19. Moduli of Parabolic Higgs Bundles and Atiyah Algebroids

    DEFF Research Database (Denmark)

    Logares, Marina; Martens, Johan

    2010-01-01

    In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...

  20. Moduli space of Parabolic vector bundles over hyperelliptic curves

    Indian Academy of Sciences (India)

    27

    This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...

  1. Photoionization cross section in a spherical quantum dot: Effects of some parabolic confining electric potentials

    Directory of Open Access Journals (Sweden)

    M. Tshipa

    2017-12-01

    Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.

  2. Approximation of entropy solutions to degenerate nonlinear parabolic equations

    Science.gov (United States)

    Abreu, Eduardo; Colombeau, Mathilde; Panov, Evgeny Yu

    2017-12-01

    We approximate the unique entropy solutions to general multidimensional degenerate parabolic equations with BV continuous flux and continuous nondecreasing diffusion function (including scalar conservation laws with BV continuous flux) in the periodic case. The approximation procedure reduces, by means of specific formulas, a system of PDEs to a family of systems of the same number of ODEs in the Banach space L^∞, whose solutions constitute a weak asymptotic solution of the original system of PDEs. We establish well posedness, monotonicity and L^1-stability. We prove that the sequence of approximate solutions is strongly L^1-precompact and that it converges to an entropy solution of the original equation in the sense of Carrillo. This result contributes to justify the use of this original method for the Cauchy problem to standard multidimensional systems of fluid dynamics for which a uniqueness result is lacking.

  3. An upwind algorithm for the parabolized Navier-Stokes equations

    Science.gov (United States)

    Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.

    1986-01-01

    A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method does not require the addition of user specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming scheme in terms of accuracy, stability, computer time and storage, and programming effort. The new algorithm has been validated by applying it to three laminar test cases including flat plate boundary-layer flow, hypersonic flow past a 15 deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with the results obtained using the conventional Beam-Warming algorithm.

  4. Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days

    International Nuclear Information System (INIS)

    Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd

    2016-01-01

    Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.

  5. Quasilinear parabolic variational inequalities with multi-valued lower-order terms

    Science.gov (United States)

    Carl, Siegfried; Le, Vy K.

    2014-10-01

    In this paper, we provide an analytical frame work for the following multi-valued parabolic variational inequality in a cylindrical domain : Find and an such that where is some closed and convex subset, A is a time-dependent quasilinear elliptic operator, and the multi-valued function is assumed to be upper semicontinuous only, so that Clarke's generalized gradient is included as a special case. Thus, parabolic variational-hemivariational inequalities are special cases of the problem considered here. The extension of parabolic variational-hemivariational inequalities to the general class of multi-valued problems considered in this paper is not only of disciplinary interest, but is motivated by the need in applications. The main goals are as follows. First, we provide an existence theory for the above-stated problem under coercivity assumptions. Second, in the noncoercive case, we establish an appropriate sub-supersolution method that allows us to get existence, comparison, and enclosure results. Third, the order structure of the solution set enclosed by sub-supersolutions is revealed. In particular, it is shown that the solution set within the sector of sub-supersolutions is a directed set. As an application, a multi-valued parabolic obstacle problem is treated.

  6. Spike-adding in parabolic bursters: The role of folded-saddle canards

    Science.gov (United States)

    Desroches, Mathieu; Krupa, Martin; Rodrigues, Serafim

    2016-09-01

    The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the Plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the Plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.

  7. Radio wave propagation and parabolic equation modeling

    CERN Document Server

    Apaydin, Gokhan

    2018-01-01

    A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...

  8. Telescopic projective methods for parabolic differential equations

    CERN Document Server

    Gear, C W

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

  9. Telescopic projective methods for parabolic differential equations

    International Nuclear Information System (INIS)

    Gear, C.W.; Kevrekidis, Ioannis G.

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components

  10. Two new designs of parabolic solar collectors

    Directory of Open Access Journals (Sweden)

    Karimi Sadaghiyani Omid

    2014-01-01

    Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.

  11. CFC/Cu bond damage in actively cooled plasma facing components

    International Nuclear Information System (INIS)

    Schlosser, J; Martin, E; Henninger, C; Boscary, J; Camus, G; Escourbiac, F; Leguillon, D; Missirlian, M; Mitteau, R

    2007-01-01

    Carbon fibre composite (CFC) armours have been successfully used for actively cooled plasma facing components (PFCs) of the Tore Supra (TS) tokamak. They were also selected for the divertor of the stellarator W7-X under construction and for the vertical target of the ITER divertor. In TS and W7-X a flat tile design for heat fluxes of 10 MW m -2 has been chosen. To predict the lifetime of such PFCs, it is necessary to analyse the damage mechanisms and to model the damage propagation when the component is exposed to thermal cycling loads. Work has been performed to identify a constitutive law for the CFC and parameters to model crack propagation from the edge singularity. The aim is to predict damage rates and to propose geometric or material improvements to increase the strength and the lifetime of the interfacial bond. For ITER a tube-in-tile concept (monoblock), designed to sustain heat fluxes up to 20 MW m -2 , has been developed. The optimization of the CFC/Cu bond, proposed for flat tiles, could be adopted for the monoblock concept

  12. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  13. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  14. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  15. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling

    Science.gov (United States)

    Chaudhary, V.; Ramanujan, R. V.

    2016-10-01

    Low cost, earth abundant, rare earth free magnetocaloric nanoparticles have attracted an enormous amount of attention for green, energy efficient, active near room temperature thermal management. Hence, we investigated the magnetocaloric properties of transition metal based (Fe70Ni30)100-xCrx (x = 1, 3, 5, 6 and 7) nanoparticles. The influence of Cr additions on the Curie temperature (TC) was studied. Only 5% of Cr can reduce the TC from ~438 K to 258 K. These alloys exhibit broad entropy v/s temperature curves, which is useful to enhance relative cooling power (RCP). For a field change of 5 T, the RCP for (Fe70Ni30)99Cr1 nanoparticles was found to be 548 J-kg-1. Tunable TCin broad range, good RCP, low cost, high corrosion resistance and earth abundance make these nanoparticles suitable for low-grade waste heat recovery as well as near room temperature active cooling applications.

  16. Particle exhaust of helium plasmas with actively cooled outboard pump limiter on Tore Supra

    International Nuclear Information System (INIS)

    Uckan, T.; Mioduszewski, P.K.; Loarer, T.; Chatelier, M.; Guilhem, D.; Lutz, T.; Nygren, R.E.; Mahdavi, M.A.

    1995-08-01

    The superconducting tokamak Tore Supra was designed for long-pulse (30-s) high input power operation. Here observations on the particle-handling characteristics of the actively cooled modular outboard pump limiter (OPL) are presented for helium discharges. The important experimental result was that a modest pumping speed (1 m 3 /s) of the OPL turbomolecular pump (TMP) provided background helium exhaust. This result came about due to a well-conditioned vessel wall with helium discharges that caused no wall outgasing. The particle accountability in these helium discharges was excellent, and the well-conditioned wall did not play a significant role in the particle balance. The helium density control, 25% density drop with OPL exhaust efficiency of ∼1%, was possible with TMP although this may not be the case with reactive gases such as deuterium. The observed quadratic increase of the OPL neutral pressure with helium density was consistent with an improvement of the particle control with increasing plasma density

  17. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    International Nuclear Information System (INIS)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-01-01

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face the plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI

  18. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  19. Classification of conformal representations induced from the maximal cuspidal parabolic

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, V. K., E-mail: dobrev@inrne.bas.bg [Scuola Internazionale Superiore di Studi Avanzati (Italy)

    2017-03-15

    In the present paper we continue the project of systematic construction of invariant differential operators on the example of representations of the conformal algebra induced from the maximal cuspidal parabolic.

  20. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-01-01

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular

  1. Packing of equal discs on a parabolic spiral lattice

    International Nuclear Information System (INIS)

    Xudong, F.; Bursill, L.A.; Julin, P.

    1989-01-01

    A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures

  2. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low

  3. Flux form Semi-Lagrangian methods for parabolic problems

    Directory of Open Access Journals (Sweden)

    Bonaventura Luca

    2016-09-01

    Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.

  4. An introduction to geometric theory of fully nonlinear parabolic equations

    International Nuclear Information System (INIS)

    Lunardi, A.

    1991-01-01

    We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs

  5. Linear and quasi-linear equations of parabolic type

    CERN Document Server

    Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N

    1968-01-01

    Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.

  6. A point focusing double parabolic trough concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Murphree, Quincy C. [Kentucky Mountain Bible College, Vancleve, KY (United States)

    2001-07-01

    This article shows that a point focusing solar concentrator can be made from two reflective parabolic troughs, a primary and a secondary, by orienting their longitudinal axes in perpendicular directions and separating them by the difference of their focal lengths along the optical axis. This offers a new alternative to the conventional 3-D paraboloidal concentrator permitting more flexibility in designs for applications requiring high concentrations. Both advantages and disadvantages are discussed. The intensity concentration ratio distribution is calculated in the focal plane and has elliptically shaped contours due to the inherent compensation of errant rays by the concave secondary. The ratio of the major to minor axes was 2.61 for the case considered, resulting in a concentration {approx}2.61 times that of a comparable concentrator without the compensation afforded by a concave secondary. Still, geometrical constraints limit the concentration to about 2000 suns for mirror quality errors of 5 mr. Optimisation of the compensation effect holds potential for improved performance for other concentrator designs. Finally, the functional dependence of the peak concentration and shading factor upon design parameters are presented. (Author)

  7. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2012-03-01

    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  8. Beryllium parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given

  9. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    International Nuclear Information System (INIS)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C.

    2004-01-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m -2 of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  10. Scientific feedback from high heat flux actively cooled PFCs development, realization and first results in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, A.; Bayetti, P.; Brosset, C.; Bucalossi, J.; Cordier, J.J.; Durocher, A.; Escourbiac, F.; Ghendrih, Ph.; Guilhem, D.; Gunn, J.; Loarer, T.; Lipa, M.; Mitteau, R.; Pegourie, B.; Reichle, R.; Schlosser, J.; Tsitrone, E.; Vallet, J.C

    2004-07-01

    The implementation of actively cooled high heat flux plasma facing components (PFCs) are one of the major ingredients required for operating the Tore Supra tokamak with very long pulses. A pioneering activity has been developed in this field from the very beginning of the device operation that is today culminating with the routine operation of an actively cooled toroidal pumped limiter (TPL) capable to sustain up to 10 MW.m{sup -2} of nominal convected heat flux. A technical feedback is given from the whole development up to the industrialization and focuses on a number of critical issues, such as bonding technology analysis, manufacture processes, repair processes, destructive and non destructive testing. The actual experience in Tore Supra allows to address the question of D retention on carbon walls. Redeposition on surfaces without plasma flux is suspected to cause the final 'burial' of about the injected gas during long discharges. (authors)

  11. Explosive Ordnance Disposal (EOD) Ensembles: Biophysical Characteristics and Predicted Work Times With and Without Chemical Protection and Active Cooling Systems

    Science.gov (United States)

    2015-04-29

    Integrated groin protector (IGP), and Boot Protector); GORE lined leather combat boots; and NOMEX® gloves with Velcro ; and EOD9 full face helmet... effective heat removal or cooling capacity of the active cooling system could not be obtained on the manikin, reasonable estimates can be used to...Price MJ, & Oldroyd M. The effect of heat acclimation on thermal strain during explosives ordnance disposal (EOD) related activity in moderate and

  12. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Zhong, Weiping [Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300 (China); Petrović, Milan S. [Institute of Physics, P.O. Box 68, 11001 Belgrade (Serbia); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.

  13. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  14. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  15. Leak tightness tests on actively cooled plasma facing components: Lessons learned from Tore Supra experience and perspectives for the new fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chantant, M., E-mail: michel.chantant@cea.fr; Lambert, R.; Gargiulo, L.; Hatchressian, J.-C.; Guilhem, D.; Samaille, F.; Soler, B.

    2015-10-15

    CrZr structures (toroidal pumped limiter (TPL) composed of 12 sectors of 48 fingers) but also on all metallic ones (ICRH antennas and LHH launchers, vacuum vessel protection walls ∼60 m{sup 2}). During the tests, some leaks were found and the components had to be repaired. The analysis of the results database allows defining guidelines to optimize the presently used procedure for the new ACPFCs generation which will be set-up in WEST or ITER (tungsten (W) elements, high mass components). This paper presents the experience of the Tore Supra teams in the implementation of ACPFC with regard to the tightness issues including the tests procedures which were developed and used since 1990. The prospects for the new generation actively cooled machines are also discussed.

  16. Mixed hyperbolic-second-order-parabolic formulations of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios

    2008-01-01

    Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.

  17. Full parabolic trough qualification from prototype to demonstration loop

    Science.gov (United States)

    Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark

    2017-06-01

    On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.

  18. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  19. Upwind algorithm for the parabolized Navier-Stokes equations

    Science.gov (United States)

    Lawrence, Scott L.; Tannehill, John C.; Chausee, Denny S.

    1989-01-01

    A new upwind algorithm based on Roe's scheme has been developed to solve the two-dimensional parabolized Navier-Stokes equations. This method does not require the addition of user-specified smoothing terms for the capture of discontinuities such as shock waves. Thus, the method is easy to use and can be applied without modification to a wide variety of supersonic flowfields. The advantages and disadvantages of this adaptation are discussed in relation to those of the conventional Beam-Warming (1978) scheme in terms of accuracy, stability, computer time and storage requirements, and programming effort. The new algorithm has been validated by applying it to three laminar test cases, including flat-plate boundary-layer flow, hypersonic flow past a 15-deg compression corner, and hypersonic flow into a converging inlet. The computed results compare well with experiment and show a dramatic improvement in the resolution of flowfield details when compared with results obtained using the conventional Beam-Warming algorithm.

  20. Development of compound parabolic concentrators for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J.; Winston, R.

    1983-10-01

    The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.

  1. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  2. Study on the optical properties of the off-axis parabolic collimator with eccentric pupil

    Science.gov (United States)

    Li, Gang; Gao, Xin; Duan, Jing; Zhang, Henjin

    2017-02-01

    The off-axis parabolic collimator with eccentric pupil has the advantages of wide spectrum, simple structure, easy assembly and adjustment, high performance price ratio. So, it is widely used for parameters testing and image quality calibration of ground-based and space-based cameras. In addition to the Strehl ratio, resolution, wavefront aberration, modulation transfer function, the general evaluation criteria on the imaging quality of the optical system, the beam parallelism characterize the collimator angle resolving capability and collimation condition of the collimator with the target board, can be measured easily ,quickly and operation process is simple, but the study mainly focus on how to measure it so far. In order to solve Quantitative calculation of this problem, firstly, the discussion of aberration condition of the off- axis parabolic is carried out based on the primary aberration theory. Secondly, analysis on the influencing factor on collimator optical properties is given, including the geometrical aberrations of spherical aberration, coma, astigmatism , the relation between the position of the eccentric pupil and the aberration and optical element surface wavefront aberration, after that, according to the basis of diffraction and wavefront aberration theory, the paper deduced calculation method of the beam parallelism, at last, an example of a 400mm diameter off-axis parabolic collimator with eccentric pupil is given to calculate, the practical results shows that calculation data is well in accordance with actual measurement data and results can meet the demand and has a guiding significance to the actual project manufacture and the theory analysis.

  3. Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations

    DEFF Research Database (Denmark)

    Sørensen, Dan Erik Krarup

    1996-01-01

    We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...

  4. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  5. Numerical performance of the parabolized ADM formulation of general relativity

    International Nuclear Information System (INIS)

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2008-01-01

    In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.

  6. Interaction Potential between Parabolic Rotator and an Outside Particle

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-01-01

    Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.

  7. EFFECT OF ACTIVE COOLING AND α-2 ADRENOCEPTOR ANTAGONISM ON CORE TEMPERATURE IN ANESTHETIZED BROWN BEARS (URSUS ARCTOS).

    Science.gov (United States)

    Ozeki, Larissa Mourad; Caulkett, Nigel; Stenhouse, Gordon; Arnemo, Jon M; Fahlman, Åsa

    2015-06-01

    Hyperthermia is a common complication during anesthesia of bears, and it can be life threatening. The objective of this study was to evaluate the effectiveness of active cooling on core body temperature for treatment of hyperthermia in anesthetized brown bears (Ursus arctos). In addition, body temperature after reversal with atipamezole was also evaluated. Twenty-five adult and subadult brown bears were captured with a combination of zolazepam-tiletamine and xylazine or medetomidine. A core temperature capsule was inserted into the bears' stomach or 15 cm into their rectum or a combination of both. In six bears with gastric temperatures≥40.0°C, an active cooling protocol was performed, and the temperature change over 30 min was analyzed. The cooling protocol consisted of enemas with 2 L of water at approximately 5°C/100 kg of body weight every 10 min, 1 L of intravenous fluids at ambient temperature, water or snow on the paws or the inguinal area, intranasal oxygen supplementation, and removing the bear from direct sunlight or providing shade. Nine bears with body temperature>39.0°C that were not cooled served as control for the treated animals. Their body temperatures were recorded for 30 min, prior to administration of reversal. At the end of the anesthetic procedure, all bears received an intramuscular dose of atipamezole. In 10 bears, deep rectal temperature change over 30 min after administration of atipamezole was evaluated. The active cooling protocol used in hyperthermic bears significantly decreased their body temperatures within 10 min, and it produced a significantly greater decrease in their temperature than that recorded in the control group.

  8. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  9. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  10. Global Carleman estimates for degenerate parabolic operators with applications

    CERN Document Server

    Cannarsa, P; Vancostenoble, J

    2016-01-01

    Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.

  11. Maximum principles for boundary-degenerate linear parabolic differential operators

    OpenAIRE

    Feehan, Paul M. N.

    2013-01-01

    We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...

  12. Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    1995-12-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs

  13. A comparative Thermal Analysis of conventional parabolic receiver tube and Cavity model tube in a Solar Parabolic Concentrator

    Science.gov (United States)

    Arumugam, S.; Ramakrishna, P.; Sangavi, S.

    2018-02-01

    Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.

  14. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...

  15. A parabolic-hyperbolic system modelling a moving cell

    Directory of Open Access Journals (Sweden)

    Fabiana Cardetti

    2009-08-01

    Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.

  16. Parabolic cyclinder functions : examples of error bounds for asymptotic expansions

    NARCIS (Netherlands)

    R. Vidunas; N.M. Temme (Nico)

    2002-01-01

    textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.

  17. Monotone difference schemes for weakly coupled elliptic and parabolic systems

    NARCIS (Netherlands)

    P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)

    2017-01-01

    textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is

  18. On the Schauder estimates of solutions to parabolic equations

    International Nuclear Information System (INIS)

    Han Qing

    1998-01-01

    This paper gives a priori estimates on asymptotic polynomials of solutions to parabolic differential equations at any points. This leads to a pointwise version of Schauder estimates. The result improves the classical Schauder estimates in a way that the estimates of solutions and their derivatives at one point depend on the coefficient and nonhomogeneous terms at this particular point

  19. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    Heat Transfer Fluid (HTF); TRNSYS power plant model; STEC library; Solar Advisor Model (SAM);. TRNSYS solar field model; Solar Electric. Generation System (SEGS). INTRODUCTION. Parabolic troughs are currently most used means of power generation option of solar sources. Solar electric generation systems (SEGs) ...

  20. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  1. Parabolic Trough Solar Power for Competitive U.S. Markets

    International Nuclear Information System (INIS)

    Price, Henry W.

    1998-01-01

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market

  2. Attractors for a class of doubly nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2006-03-01

    Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.

  3. A parabolic singular perturbation problem with an internal layer

    NARCIS (Netherlands)

    Grasman, J.; Shih, S.D.

    2004-01-01

    A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner

  4. On some perturbation techniques for quasi-linear parabolic equations

    Directory of Open Access Journals (Sweden)

    Igor Malyshev

    1990-01-01

    Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in “explicit” form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.

  5. Stability test for a parabolic partial differential equation

    NARCIS (Netherlands)

    Vajta, Miklos

    2001-01-01

    The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.

  6. Almost periodic solutions to systems of parabolic equations

    Directory of Open Access Journals (Sweden)

    Janpou Nee

    1994-01-01

    Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.

  7. The fundamental solutions for fractional evolution equations of parabolic type

    Directory of Open Access Journals (Sweden)

    Mahmoud M. El-Borai

    2004-01-01

    Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.

  8. Rothe's method for parabolic equations on non-cylindrical domains

    Czech Academy of Sciences Publication Activity Database

    Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.

    2006-01-01

    Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics

  9. Deployable Ka/W Dual Band Cylindrical Parabolic Antenna including feed support structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for large radio frequency (RF) apertures in space has long driven technology developments that enable aperture sizes that exceed the allowable volume within...

  10. European parabolic flight campaigns with Airbus ZERO-G: Looking back at the A300 and looking forward to the A310

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2015-09-01

    Aircraft parabolic flights repetitively provide up to 23 s of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the Chinese Space Station CSS. The European Space Agency (ESA), the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency) and the 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Centre) have used the Airbus A300 ZERO-G for research experiments in microgravity, and at Moon and Mars gravity levels, from 1997 until October 2014. The French company Novespace, a subsidiary of CNES, based in Bordeaux, France, is in charge of the organisation of Airbus A300 ZERO-G flights. A total of 104 parabolic flight campaigns have been organised by ESA, CNES and DLR since 1997, including 38 ESA, 34 CNES and 23 DLR microgravity campaigns, two Joint European ESA-CNES-DLR Partial-g Parabolic Flight Campaigns, and seven ESA Student campaigns. After 17 years of good and loyal services, this European workhorse for microgravity research in parabolic flights has been retired. The successor aircraft, the Airbus A310 ZERO-G, is being prepared for a first ESA-CNES-DLR cooperative campaign in Spring 2015. This paper looks back over 17 years of microgravity research in parabolic flights with the A300 ZERO-G, and introduces the new A310 ZERO-G that will be used from 2015 onwards.

  11. Test results on parabolic dish concentrators for solar thermal power systems

    Science.gov (United States)

    Jaffe, Leonard D.

    1989-01-01

    This paper presents results of development testing of various solar thermal parabolic dish concentrators. The concentrators were mostly designed for the production of electric power using dish-mounted Rankine, Brayton or Stirling cycle engines, intended to be produced at low cost. Measured performance for various dishes included optical efficiencies ranging from 0.32 to 0.86 at a geometric concentration ratio of 500, and from about 0.09 to 0.85 at a geometric concentration ratio of 3000. Some malfunctions were observed. The tests should provide operating information of value in developing concentrators with improved performance and reduced maintenance.

  12. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  13. Characterization of a focusing parabolic guide using neutron radiography method

    International Nuclear Information System (INIS)

    Kardjilov, Nikolay; Boeni, Peter; Hilger, Andre; Strobl, Markus; Treimer, Wolfgang

    2005-01-01

    The aim of the investigation was to test the focusing properties of a new type of focusing neutron guide (trumpet) with parabolically shaped walls. The guide has a length of 431mm with an entrance area of 16x16mm 2 and an output area of 4x4mm 2 . The interior surfaces were coated with a supermirror-surface m=3 and due to their parabolic shape it was expected that an incident parallel beam can be focused in the focal point of the parabolas. To prove this statement the neutron intensity distribution at different distances behind the guide was recorded by means of a standard, high-resolution radiography detector. The experiments were performed at the V12b instrument at HMI with different levels of beam monochromatization demonstrating maximum intensity gains of about 25. The consideration for using the focusing guide for the purposes of cold neutron radiography will be presented

  14. Shock wave convergence in water with parabolic wall boundaries

    International Nuclear Information System (INIS)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-01-01

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger

  15. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  16. Polarization properties of linearly polarized parabolic scaling Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com

    2016-10-07

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.

  17. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  18. A Review of Psycho-Physiological Responses to Parabolic Flight

    Science.gov (United States)

    Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.

    2008-06-01

    This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.

  19. Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires

    Science.gov (United States)

    Gordon, Jeffrey M.; Kashin, Peter

    1994-01-01

    Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.

  20. Integrated parabolic nanolenses on MicroLED color pixels

    Science.gov (United States)

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-01

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  1. Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)

    Science.gov (United States)

    Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.

    1999-01-01

    The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.

  2. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle

    International Nuclear Information System (INIS)

    He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang

    2012-01-01

    Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.

  3. Stability and instability of stationary solutions for sublinear parabolic equations

    Science.gov (United States)

    Kajikiya, Ryuji

    2018-01-01

    In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.

  4. Theoretical Study of the Compound Parabolic Trough Solar Collector

    OpenAIRE

    Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen

    2012-01-01

    Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  5. Analytic convergence of harmonic metrics for parabolic Higgs bundles

    Science.gov (United States)

    Kim, Semin; Wilkin, Graeme

    2018-04-01

    In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.

  6. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  7. Design and Realisation of a Parabolic Solar Cooker

    International Nuclear Information System (INIS)

    Ouannene, M; Chaouachi, B; Gabsi, S

    2009-01-01

    The sun s energy is really powerful. Solar energy is renewable and it s free. We can use it to make electricity, to heat buildings and to cook. The field of cooking consumes many fossil fuels such as gas and wood. Million people cannot find enough gas and/or wood to cook, so using solar cookers is a good idea. During this work, we designed, built and studied a parabolic solar cooker. The characteristic equations and the experimental results are given

  8. Real parabolic vector bundles over a real curve

    Indian Academy of Sciences (India)

    Abstract. We define real parabolic structures on real vector bundles over a real curve. Let (X,σX ) be a real curve, and let S ⊂ X be a non-empty finite subset of X such that σX (S) = S. Let N ≥ 2 be an integer. We construct an N-fold cyclic cover p : Y → X in the category of real curves, ramified precisely over each point of S, ...

  9. Interior Gradient Estimates for Nonuniformly Parabolic Equations II

    Directory of Open Access Journals (Sweden)

    Lieberman Gary M

    2007-01-01

    Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.

  10. Convergence of shock waves between conical and parabolic boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2016-07-15

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  11. Artificial neural networks approach on solar parabolic dish cooker

    International Nuclear Information System (INIS)

    Lokeswaran, S.; Eswaramoorthy, M.

    2011-01-01

    This paper presents heat transfer analysis of solar parabolic dish cooker using Artificial Neural Network (ANN). The objective of this study to envisage thermal performance parameters such as receiver plate and pot water temperatures of the solar parabolic dish cooker by using the ANN for experimental data. An experiment is conducted under two cases (1) cooker with plain receiver and (2) cooker with porous receiver. The Back Propagation (BP) algorithm is used to train and test networks and ANN predictions are compared with experimental results. Different network configurations are studied by the aid of searching a relatively better network for prediction. The results showed a good regression analysis with the correlation coefficients in the range of 0.9968-0.9992 and mean relative errors (MREs) in the range of 1.2586-4.0346% for the test data set. Thus ANN model can successfully be used for the prediction of the thermal performance parameters of parabolic dish cooker with reasonable degree of accuracy. (authors)

  12. Humidification dehumidification desalination system using parabolic trough solar air collector

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.

    2015-01-01

    This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector

  13. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  14. Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology

    International Nuclear Information System (INIS)

    Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.

    2015-01-01

    We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)

  15. Selberg trace formula for bordered Riemann surfaces: Hyperbolic, elliptic and parabolic conjugacy classes, and determinants of Maass-Laplacians

    International Nuclear Information System (INIS)

    Bolte, J.

    1992-08-01

    The Selberg trace formula for automorphic forms of weight m ε- Z, on bordered Riemann surfaces is developed. The trace formula is formulated for arbitrary Fuchsian groups of the first kind which include hyperbolic, elliptic and parabolic conjugacy classes. In the case of compact bordered Riemann surfaces we can explicitly evaluate determinants of Maass-Laplacians for both Dirichlet and Neumann boundary-conditions, respectively. Some implications for the open bosonic string theory are mentioned. (orig.)

  16. Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

    Science.gov (United States)

    Hashira, Takahiro; Ishida, Sachiko; Yokota, Tomomi

    2018-05-01

    This paper deals with the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type in a ball of RN (N ≥ 2). In the case of non-degenerate diffusion, Cieślak-Stinner [3,4] proved that if q > m + 2/N, where m denotes the intensity of diffusion and q denotes the nonlinearity, then there exist initial data such that the corresponding solution blows up in finite time. As to the case of degenerate diffusion, it is known that a solution blows up if q > m + 2/N (see Ishida-Yokota [13]); however, whether the blow-up time is finite or infinite has been unknown. This paper gives an answer to the unsolved problem. Indeed, the finite-time blow-up of energy solutions is established when q > m + 2/N.

  17. Parabolic-trough technology roadmap: A pathway for sustained commercial development and deployment of parabolic-trough technology

    International Nuclear Information System (INIS)

    David Kearney; Hank Price

    1999-01-01

    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop

  18. Fabrication of off-axis parabolic mirrors

    International Nuclear Information System (INIS)

    Bezik, M.J.; Gerth, H.L.; Sladky, R.E.; Washington, C.A.

    1978-08-01

    The report describes the fabrication process, including metal preparation, copper electroplating, single-crystal-diamond turning, optical inspection, and polishing, used to manufacture the focusing mirrors for the 10-kJ laser fusion experiment being conducted by the Los Alamos Scientific Laboratory. Fabrication of these mirrors by the techniques described resulted in diffraction-limited optics at a 10.6 μm wavelength

  19. Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion.

    Directory of Open Access Journals (Sweden)

    Peiliang Wang

    Full Text Available Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity, relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity.

  20. Semi-analytical model of laser resonance absorption in plasmas with a parabolic density profile

    International Nuclear Information System (INIS)

    Pestehe, S J; Mohammadnejad, M

    2010-01-01

    Analytical expressions for mode conversion and resonance absorption of electromagnetic waves in inhomogeneous, unmagnetized plasmas are required for laboratory and simulation studies. Although most of the analyses of this problem have concentrated on the linear plasma density profile, there are a few research works that deal with different plasma density profiles including the parabolic profile. Almost none of them could give clear analytical formulae for the electric and magnetic components of the electromagnetic field propagating through inhomogeneous plasmas. In this paper, we have considered the resonant absorption of laser light near the critical density of plasmas with parabolic electron density profiles followed by a uniform over-dense region and have obtained expressions for the electric and magnetic vectors of laser light propagating through the plasma. An estimation of the fractional absorption of laser energy has also been carried out. It has been shown that, in contrast to the linear density profile, the energy absorption depends explicitly on the value of collision frequency as well as on a new parameter, N, called the over-dense density order.

  1. Incompressible Navier-Stokes and parabolized Navier-Stokes solution procedures and computational techniques

    Science.gov (United States)

    Rubin, S. G.

    1982-01-01

    Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.

  2. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2018-06-01

    Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement

  3. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    Science.gov (United States)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  4. Impurity magnetopolaron in a parabolic quantum dot: the squeezed-state variational approach

    International Nuclear Information System (INIS)

    Kandemir, B S; Cetin, A

    2005-01-01

    We present a calculation of the ground-state binding energy of an impurity magnetopolaron confined in a three-dimensional (3D) parabolic quantum dot potential, in the framework of a variational approach based on two successive canonical transformations. First, we apply a displaced-oscillator type unitary transformation to diagonalize the relevant Froehlich Hamiltonian. Second, a single-mode squeezed-state transformation is introduced to deal with bilinear terms arising from the first transformation. Finally, the parameters of these transformations together with the parameters included in the electronic trial wavefunction are determined variationally to obtain the ground-state binding energy of an impurity magnetopolaron confined in a 3D parabolic quantum dot potential. Our approach has two advantages: first, the displaced-oscillator transformation allows one to obtain results valid for whole range of electron-phonon coupling strength since it is a special combination of Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations, and second, the later transformation improves all-coupling results. It has been shown that the effects of quadratic terms arising from the all-coupling approach are very important and should be taken into account in studying the size-dependent physical properties of nanostructured materials

  5. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    Science.gov (United States)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  6. Altered Gravity Simulated by Parabolic Flight and Water Immersion Leads to Decreased Trunk Motion

    Science.gov (United States)

    Tian, Yu; Li, Fan; Zhang, Shaoyao; Zhang, Lin; Guo, Yaoyu; Liu, Weibo; Wang, Chunhui; Chen, Shanguang; Guo, Jinhu

    2015-01-01

    Gravity is one of the important environmental factors that influence the physiologies and behaviors of animals and humans, and changes in gravity elicit a variety of physiological and behavioral alterations that include impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions. To elucidate the effects of gravity on human physiology and behavior, we examined changes in wrist and trunk activities and heart rate during parabolic flight and the activity of wrist and trunk in water immersion experiments. Data from 195 person-time parabolas performed by eight subjects revealed that the trunk motion counts decreased by approximately half during ascending legs (hypergravity), relative to the data acquired before the parabolic flights. In contrast, the wrist activity remained unchanged. The results from the water immersion experiments demonstrated that in the underwater condition, both the wrist and trunk activities were significantly decreased but the latter decreased to a much lower level. Together, these data suggest that gravitational alterations can result in differential influences on the motions of the wrist and the trunk. These findings might be important for understanding the degeneration of skeleton and muscular system and performance of astronauts in microgravity. PMID:26208253

  7. The WEST programme: Minimizing technology and operational risks of a full actively cooled tungsten divertor on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Grosman, André, E-mail: andre.grosman@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Bucalossi, Jérôme; Doceul, Louis [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Escourbiac, Frédéric [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Lipa, Manfred [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Merola, Mario [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Missirlian, Marc [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Pitts, Richard A. [ITER Organization, Cadarache, 13115 St. Paul-lez-Durance (France); Samaille, Franck; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► The WEST programme is a unique opportunity to experience the industrial scale manufacture of tungsten plasma-facing components similar to the ITER divertor ones. ► In Tore Supra, it will bring important know how for actively cooled W divertor operation. ► This can be done by a reasonable modification of the Tore Supra tokamak. ► A fast implementation of the project would make this information available in due time. ► This allows a significant contribution to the W ITER divertor risk minimization in its manufacturing and operation phase. -- Abstract: The WEST programme consists in transforming the Tore Supra tokamak into an X point divertor device, while taking advantage of its long discharge capability. This is obtained by inserting in vessel coils to create the X point while adapting the in-vessel elements to this new geometry. This will allow the full tungsten divertor technology to be used on ITER to be tested in anticipation of its use on ITER under relevant heat loading conditions and pulse duration. The early manufacturing of a significant industrial series of ITER-similar W plasma-facing units will contribute to the ITER divertor manufacturing risk mitigation and to that associated with early W divertor plasma operation on ITER.

  8. Performance of brazed graphite, carbon-fiber composite, and TZM materials for actively cooled structures: qualification tests

    International Nuclear Information System (INIS)

    Smid, I.; Croessmann, C. D.; Watson, R. D.; Linke, J.; Cardella, A.; Bolt, H.; Reheis, N.; Kny, E.

    1995-01-01

    The divertor of a near-term fusion device has to withstand high heat fluxes, heat shocks, and erosion caused by the plasma. Furthermore, it has to be maintainable through remote techniques. Above all, a good heat removal capability across the interface (low-Z armor/heat sink) plus overall integrity after many operational cycles are needed. To meet all these requirements, an active metal brazing technique is applied to bond graphite and carbon-fiber composite materials to a heat sink consisting of a Mo-41Re coolant tube through a TZM body. Plain brazed graphite and TZM tiles are tested for their fusion-relevant properties. The interfaces appear undamaged after thermal cycling when the melting point of the braze joint is not exceeded and when the graphite armor is > 4 mm thick. High heat flux tests are performed on three actively cooled divertor targets. The braze joints show no sign of failure after exposure to thermal loads ∼ 25 % higher than the design value surface heat flux of 10 MW/m 2 . (author)

  9. Manufacturing and testing of actively cooled test limiters for TEXTOR made of the brazed joint SEPCARB-N11/TZM

    International Nuclear Information System (INIS)

    Hohenauer, W.; Bolt, H.; Koppitz, T.; Linke, J.; Lison, R.; You, J.H.; Nickel, H.

    1998-01-01

    To investigate the erosion and redepositon phenomena of fusion-related materials under stationary conditions, actively cooled test limiters were developed for TEXTOR (Tokamak Experiment for Technology Orientated Research). They allow experiments under stationary conditions within the plasma pulse length of 10 s. Heat loads of typically 10 MW m<-2 are removed by pressurised water: volume flow is 10 m 3 h -1, pressure 15 bar and the minimum coefficient of heat transfer is about 75000 W m-2 K. Prototype limiters were built as brazed composites of a C/C material (SEPCARB-N11) and a TZM substrate. The samples were successfully tested in screening tests in the ion beam facility MARION (Material Research Ion Beam Test Facility) with hydrogen beams. Maximum heat loads of up to 22 MW m<-2 were applied without any failure of the cooling system. Steady state of the surface temperature was measured within 5 s. An advanced brazing technique enabled the joining of hemispherically shaped C/C shells to a TZM heat sink without failure. An optimised test limiter was tested in TEXTOR. Analytical and numerical models describing the effects of the heat load distribution, spatial temperatures and stresses were experimentally verified. (orig.)

  10. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    Science.gov (United States)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  11. PCCE-A Predictive Code for Calorimetric Estimates in actively cooled components affected by pulsed power loads

    International Nuclear Information System (INIS)

    Agostinetti, P.; Palma, M. Dalla; Fantini, F.; Fellin, F.; Pasqualotto, R.

    2011-01-01

    The analytical interpretative models for calorimetric measurements currently available in the literature can consider close systems in steady-state and transient conditions, or open systems but only in steady-state conditions. The PCCE code (Predictive Code for Calorimetric Estimations), here presented, introduces some novelties. In fact, it can simulate with an analytical approach both the heated component and the cooling circuit, evaluating the heat fluxes due to conductive and convective processes both in steady-state and transient conditions. The main goal of this code is to model heating and cooling processes in actively cooled components of fusion experiments affected by high pulsed power loads, that are not easily analyzed with purely numerical approaches (like Finite Element Method or Computational Fluid Dynamics). A dedicated mathematical formulation, based on concentrated parameters, has been developed and is here described in detail. After a comparison and benchmark with the ANSYS commercial code, the PCCE code is applied to predict the calorimetric parameters in simple scenarios of the SPIDER experiment.

  12. Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins

    Science.gov (United States)

    Ömeroǧlu, Gökhan

    2017-10-01

    Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5 m/s) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350 W/m2. While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5-m/s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.

  13. Design of multi-megawatt actively cooled beam dumps for the Neutral-Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Paterson, J.A.; Koehler, G.; Wells, R.P.

    1981-10-01

    The Neutral Beam Engineering Test Facility will test Neutral Beam Sources up to 170 keV, 65 Amps, with 30 second beam-on times. For this application actively cooled beam dumps for both the neutral and ionized particles will be required. The dumps will be able to dissipate a wide range of power density profiles by utilizing a standard modular panel design which is incorporated into a moveable support structure. The thermal hydraulic design of the panels permit the dissipation of 2 kW/cm 2 anywhere on the panel surface. The water requirements of the dumps are optimized by restricting the flow to panel sections where the heat flux falls short of the design value. The mechanical design of the beam-dump structures is described along with tests performed on a prototype panel. The prototype tests were performed on two different panel designs, one manufactured by Mc Donnell Douglas (MDAC) the other by United Technologies (UT). The dissipation capabilities of the panels were tested at the critical regions to verify their use in the beam dump assemblies

  14. Damage prediction of carbon fibre composite armoured actively cooled plasma-facing components under cycling heat loads

    International Nuclear Information System (INIS)

    Chevet, G; Schlosser, J; Courtois, X; Escourbiac, F; Missirlian, M; Herb, V; Martin, E; Camus, G; Braccini, M

    2009-01-01

    In order to predict the lifetime of carbon fibre composite (CFC) armoured plasma-facing components in magnetic fusion devices, it is necessary to analyse the damage mechanisms and to model the damage propagation under cycling heat loads. At Tore Supra studies have been launched to better understand the damage process of the armoured flat tile elements of the actively cooled toroidal pump limiter, leading to the characterization of the damageable mechanical behaviour of the used N11 CFC material and of the CFC/Cu bond. Up until now the calculations have shown damage developing in the CFC (within the zone submitted to high shear stress) and in the bond (from the free edge of the CFC/Cu interface). Damage is due to manufacturing shear stresses and does not evolve under heat due to stress relaxation. For the ITER divertor, NB31 material has been characterized and the characterization of NB41 is in progress. Finite element calculations show again the development of CFC damage in the high shear stress zones after manufacturing. Stresses also decrease under heat flux so the damage does not evolve. The characterization of the CFC/Cu bond is more complex due to the monoblock geometry, which leads to more scattered stresses. These calculations allow the fabrication difficulties to be better understood and will help to analyse future high heat flux tests on various mock-ups.

  15. Numerical performance of the parabolized ADM (PADM) formulation of General Relativity

    OpenAIRE

    Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei

    2007-01-01

    In a recent paper the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a mixed hyperbolic - second-order parabolic, well-posed system. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation...

  16. On the behaviour of solutions of parabolic equations for large values of time

    International Nuclear Information System (INIS)

    Denisov, V N

    2005-01-01

    This paper is a survey of classical and new results on stabilization of solutions of the Cauchy problem and mixed problems for second-order linear parabolic equations. Proofs are given for some new results about exact sufficient conditions on the behaviour of lower-order coefficients of the parabolic equation; these conditions ensure stabilization of a solution of the Cauchy problem for the parabolic equation in the class of bounded or increasing initial functions

  17. A Systematic Approach to Higher-Order Parabolic Propagation in a Weakly Range-Dependent Duct

    National Research Council Canada - National Science Library

    Gragg, Robert F

    2005-01-01

    Energy-conserving transformations are exploited to split a monochromatic field in a weakly inhomogeneous waveguide into a pair of components that undergo uncoupled parabolic propagation in opposite...

  18. On purpose simulation model for molten salt CSP parabolic trough

    Science.gov (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  19. Processing of data from innovative parabolic strip telescope.

    Science.gov (United States)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  20. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  1. Experimental studies on solar parabolic dish cooker with porous medium

    International Nuclear Information System (INIS)

    Lokeswaran, S.; Eswaramoorthy, M.

    2012-01-01

    The solar cooking is the alternate method of cooking to reduce consumptions of fossil fuels. An affordable, energy efficient solar cooking technology is much need due to the fossil fuels increasing cost and it is the hottest research topic in all over the world. This paper presents an experimental analysis of the heat transfer enhancement of solar parabolic dish cookers by a porous medium made of scrap material. Using the stagnation temperature test and water boiling test are conducted on the cooking vessel with and without porous medium. Experimental results are compared for both cases in terms of thermal performance, optical efficiency, heat loss factor and cooking power. (authors)

  2. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  3. Harnack's Inequality for Degenerate and Singular Parabolic Equations

    CERN Document Server

    DiBenedetto, Emmanuele; Vespri, Vincenzo

    2012-01-01

    Degenerate and singular parabolic equations have been the subject of extensive research for the last 25 years. Despite important achievements, the issue of the Harnack inequality for non-negative solutions to these equations, both of p-Laplacian and porous medium type, while raised by several authors, has remained basically open. Recently considerable progress has been made on this issue, to the point that, except for the singular sub-critical range, both for the p-laplacian and the porous medium equations, the theory is reasonably complete. It seemed therefore timely to trace a comprehensive

  4. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.

    2009-10-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  5. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  6. ON A PARABOLIC FREE BOUNDARY EQUATION MODELING PRICE FORMATION

    KAUST Repository

    MARKOWICH, P. A.; MATEVOSYAN, N.; PIETSCHMANN, J.-F.; WOLFRAM, M.-T.

    2009-01-01

    We discuss existence and uniqueness of solutions for a one-dimensional parabolic evolution equation with a free boundary. This problem was introduced by Lasry and Lions as description of the dynamical formation of the price of a trading good. Short time existence and uniqueness is established by a contraction argument. Then we discuss the issue of global-in-time-extension of the local solution which is closely related to the regularity of the free boundary. We also present numerical results. © 2009 World Scientific Publishing Company.

  7. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.

    1992-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  8. Piecewise-parabolic methods for astrophysical fluid dynamics

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1983-01-01

    A general description of some modern numerical techniques for the simulation of astrophysical fluid flow is presented. The methods are introduced with a thorough discussion of the especially simple case of advection. Attention is focused on the piecewise-parabolic method (PPM). A description of the SLIC method for treating multifluid problems is also given. The discussion is illustrated by a number of advection and hydrodynamics test problems. Finally, a study of Kelvin-Helmholtz instability of supersonic jets using PPM with SLIC fluid interfaces is presented

  9. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  10. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    Science.gov (United States)

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  11. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  12. Experimental study on a parabolic concentrator assisted solar desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Denkenberger, David; Velraj, R.; Sathyamurthy, Ravishankar; Tanaka, Hiroshi; Vinothkumar, K.

    2015-01-01

    Highlights: • We optimized the augmentation of condense by enhanced desalination methodology. • Parabolic concentrator has been integrated with solar distillation systems. • We measured ambient together with solar radiation intensity. - Abstract: This paper presents a modification of parabolic concentrator (PC) – solar still with continuous water circulation using a storage tank to enhance the productivity. Four modes of operation were studied experimentally: (i) PC-solar still without top cover cooling; (ii) PC-solar still with top cover cooling, PC-solar still integrated with phase change material (PCM) without top cover cooling and PC-solar still integrated PCM with cooling. The experiments were carried out for the cooling water flow rates of 40 ml/min; 50 ml/min, 60 ml/min, 80 ml/min and 100 ml/min. Diurnal variations of water temperature (T_w), ambient air temperature (T_a), top cover temperature (T_o_c) and production rate are measured with frequent time intervals. Water cooling was not cost effective, but adding PCM was.

  13. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  14. Smart reconfigurable parabolic space antenna for variable electromagnetic patterns

    Science.gov (United States)

    Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh

    2018-02-01

    An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).

  15. A parabolic velocity-decomposition method for wind turbines

    Science.gov (United States)

    Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.

    2017-02-01

    An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.

  16. Multi-parameter optimization design of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Guo, Jiangfeng; Huai, Xiulan

    2016-01-01

    Highlights: • The optimal condition can be obtained by multi-parameter optimization. • Exergy and thermal efficiencies are employed as objective function. • Exergy efficiency increases at the expense of heat losses. • The heat obtained by working fluid increases as thermal efficiency grows. - Abstract: The design parameters of parabolic trough solar receiver are interrelated and interact with one another, so the optimal performance of solar receiver cannot be obtained by the convectional single-parameter optimization. To overcome the shortcoming of single-parameter optimization, a multi-parameter optimization of parabolic trough solar receiver is employed based on genetic algorithm in the present work. When the thermal efficiency is taken as the objective function, the heat obtained by working fluid increases while the average temperature of working fluid and wall temperatures of solar receiver decrease. The average temperature of working fluid and the wall temperatures of solar receiver increase while the heat obtained by working fluid decreases generally by taking the exergy efficiency as an objective function. Assuming that the solar radiation intensity remains constant, the exergy obtained by working fluid increases by taking exergy efficiency as the objective function, which comes at the expense of heat losses of solar receiver.

  17. INERTIAL MANIFOLDS FOR NONAUTONOMOUS SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present paper deals with the long-time behavior of a class of nonautonomous retarded semilinear parabolic differential equations. When the time delays are small enough and the spectral gap conditions hold, the inertial manifolds of the nonautonomous retard parabolic equations are constructed by using the Lyapunov-Perron method.

  18. Quantum crystal growing: adiabatic preparation of a bosonic antiferromagnet in the presence of a parabolic inhomogeneity

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Eckardt, André

    2013-01-01

    felt by the two species. Using numerical simulations we predict that a finite parabolic potential can assist the adiabatic preparation of the antiferromagnet. The optimal strength of the parabolic inhomogeneity depends sensitively on the number imbalance between the two species. We also find...

  19. Some integral representations and limits for (products of) the parabolic cylinder function

    NARCIS (Netherlands)

    Veestraeten, D.

    2016-01-01

    Recently, [Veestraeten D. On the inverse transform of Laplace transforms that contain (products of) the parabolic cylinder function. Integr Transf Spec F 2015;26:859-871] derived inverse Laplace transforms for Laplace transforms that contain products of two parabolic cylinder functions by exploiting

  20. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    OpenAIRE

    Sun, Jiebao; Zhang, Dazhi; Wu, Boying

    2011-01-01

    We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  1. A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Jiebao Sun

    2011-01-01

    parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.

  2. Spheroidal corrections to the spherical and parabolic bases of the hydrogen atom

    International Nuclear Information System (INIS)

    Mardyan, L.G.; Pogosyan, G.S.; Sisakyan, A.N.

    1986-01-01

    This paper introduces the bases of the hydrogen atom and obtains recursion relations that determine the expansion of the spheroidal basis with respect to its parabolic basis. The leading spheroidal corrections to the spherical and parabolic bases are calculated by perturbation theory

  3. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    Science.gov (United States)

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  4. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    Science.gov (United States)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  5. Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells

    Science.gov (United States)

    Tung, Luong V.; Vinh, Pham T.; Phuc, Huynh V.

    2018-06-01

    We theoretically study the optical absorption in a quantum well with the semi-parabolic potential plus the semi-inverse squared potential (SPSIS) in the presence of a static magnetic field in which both one- and two-photon absorption processes have been taken into account. The expression of the magneto-optical absorption coefficient (MOAC) is expressed by the second-order golden rule approximation including the electron-LO phonon interaction. We also use the profile method to obtain the full width at half maximum (FWHM) of the absorption peaks. Our numerical results show that either MOAC or FWHM strongly depends on the confinement frequency, temperature, and magnetic field but their dependence on the parameter β is very weak. The temperature dependence of FWHM is consistent with the previous theoretical and experimental works.

  6. Thermal and optical study of parabolic trough collectors of Shiraz solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)

    2007-07-01

    The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal

  7. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region. A case study for the island of Cyprus

    International Nuclear Information System (INIS)

    Poullikkas, Andreas

    2009-01-01

    In this work a feasibility study is carried out in order to investigate whether the installation of a parabolic trough solar thermal technology for power generation in the Mediterranean region is economically feasible. The case study takes into account the available solar potential for Cyprus, as well as all available data concerning current renewable energy sources policy of the Cyprus Government, including the relevant feed-in tariff. In order to identify the least cost feasible option for the installation of the parabolic trough solar thermal plant a parametric cost-benefit analysis is carried out by varying parameters, such as, parabolic trough solar thermal plant capacity, parabolic trough solar thermal capital investment, operating hours, carbon dioxide emission trading system price, etc. For all above cases the electricity unit cost or benefit before tax, as well as after tax cash flow, net present value, internal rate of return and payback period are calculated. The results indicate that under certain conditions such projects can be profitable. (author)

  8. Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors

    Directory of Open Access Journals (Sweden)

    F. Francini

    2012-01-01

    Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.

  9. MEP parabolic hydrodynamical model for holes in silicon semiconductors

    International Nuclear Information System (INIS)

    Mascali, G.; Romano, V.; Sellier, J. M.

    2005-01-01

    Consistent hydrodynamical models for electron transport in semi-conductors, free of any fitting parameter, have been formulated on the basis of the maximum entropy principle in Continuum Mech. Thermodyn., 11 (1999) 307, 12 (2000) 31 for silicon and in Continuum Mech. Thermodyn., 14 (2002) 405 for GaAs. In this paper we use the same approach for studying the hole transport in Si, by considering a parabolic approximation for the valence energy band. Scattering of holes with non-polar optical phonons, acoustic phonons and impurities have been taken into account. On the basis of these results, a limiting energy-transport model and an explicit expression for the low field hole mobility have been obtained. The high field mobility is also analyzed by taking into account the influence of impurities

  10. Weyl states and Fermi arcs in parabolic bands

    Science.gov (United States)

    Doria, Mauro M.; Perali, Andrea

    2017-07-01

    Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.

  11. A priori estimates of global solutions of superlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Julius Pacuta

    2016-04-01

    Full Text Available We consider the parabolic system $ u_{t}-\\Delta u = u^{r}v^{p}$, $v_{t}-\\Delta v = u^{q}v^{s}$ in $\\Omega\\times(0,\\infty$, complemented by the homogeneous Dirichlet boundary conditions and the initial conditions $(u,v(\\cdot,0 = (u_{0},v_{0}$ in $\\Omega$, where $\\Omega $ is a smooth bounded domain in $ \\mathbb{R}^{N} $ and $ u_{0},v_{0}\\in L^{\\infty}(\\Omega$ are nonnegative functions. We find conditions on $ p,q,r,s $ guaranteeing a priori estimates of nonnegative classical global solutions. More precisely every such solution is bounded by a constant depending on suitable norm of the initial data. Our proofs are based on bootstrap in weighted Lebesgue spaces, universal estimates of auxiliary functions and estimates of the Dirichlet heat kernel.

  12. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  13. Adaptive distributed parameter and input estimation in linear parabolic PDEs

    KAUST Repository

    Mechhoud, Sarra

    2016-01-01

    In this paper, we discuss the on-line estimation of distributed source term, diffusion, and reaction coefficients of a linear parabolic partial differential equation using both distributed and interior-point measurements. First, new sufficient identifiability conditions of the input and the parameter simultaneous estimation are stated. Then, by means of Lyapunov-based design, an adaptive estimator is derived in the infinite-dimensional framework. It consists of a state observer and gradient-based parameter and input adaptation laws. The parameter convergence depends on the plant signal richness assumption, whereas the state convergence is established using a Lyapunov approach. The results of the paper are illustrated by simulation on tokamak plasma heat transport model using simulated data.

  14. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  15. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-05-13

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.

  16. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  17. Bilinear reduced order approximate model of parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2015-07-01

    This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.

  18. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  19. Motor skills under varied gravitoinertial force in parabolic flight

    Science.gov (United States)

    Ross, Helen E.

    Parabolic flight produces brief alternating periods of high and low gravitoinertial force. Subjects were tested on various paper-and-pencil aiming and tapping tasks during both normal and varied gravity in flight. It was found that changes in g level caused directional errors in the z body axis (the gravity axis), the arm aiming too high under 0g and too low under 2g. The standard deviation also increased for both vertical and lateral movements in the mid-frontal plane. Both variable and directional errors were greater under 0g than 2g. In an unpaced reciprocal tapping task subjects tended to increase their error rate rather than their movement time, but showed a non-significant trend towards slower speeds under 0g for all movement orientations. Larger variable errors or slower speeds were probably due to the difficulty of re-organising a motor skill in an unfamiliar force environment, combined with anchorage difficulties under 0g.

  20. Stochastic modeling of mode interactions via linear parabolized stability equations

    Science.gov (United States)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  1. Identifying Initial Condition in Degenerate Parabolic Equation with Singular Potential

    Directory of Open Access Journals (Sweden)

    K. Atifi

    2017-01-01

    Full Text Available A hybrid algorithm and regularization method are proposed, for the first time, to solve the one-dimensional degenerate inverse heat conduction problem to estimate the initial temperature distribution from point measurements. The evolution of the heat is given by a degenerate parabolic equation with singular potential. This problem can be formulated in a least-squares framework, an iterative procedure which minimizes the difference between the given measurements and the value at sensor locations of a reconstructed field. The mathematical model leads to a nonconvex minimization problem. To solve it, we prove the existence of at least one solution of problem and we propose two approaches: the first is based on a Tikhonov regularization, while the second approach is based on a hybrid genetic algorithm (married genetic with descent method type gradient. Some numerical experiments are given.

  2. Fifth parabolic dish solar thermal power program annual review: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  3. Optimal control for parabolic-hyperbolic system with time delay

    International Nuclear Information System (INIS)

    Kowalewski, A.

    1985-07-01

    In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L 2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)

  4. Development status of the PDC-1 Parabolic Dish Concentrator

    Science.gov (United States)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  5. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  6. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin

    2013-01-01

    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  7. Field test of thermoelectric generator using parabolic trough solar concentrator for power generation

    Science.gov (United States)

    Viña, Rommel R.; Alagao, Feliciano B.

    2018-03-01

    A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.

  8. Cardiopulmonary Resuscitation in Microgravity: Efficacy in the Swine During Parabolic Flight

    Science.gov (United States)

    Johnston, Smith L.; Campbell, Mark R.; Billica, Roger D.; Gilmore, Stevan M.

    2004-01-01

    INTRODUCTION: The International Space Station will need to be as capable as possible in providing Advanced Cardiac Life Support (ACLS) and cardiopulmonary resuscitation (CPR). Previous studies with manikins in parabolic microgravity (0 G) have shown that delivering CPR in microgravity is difficult. End tidal carbon dioxide (PetCO2) has been previously shown to be an effective non-invasive tool for estimating cardiac output during cardiopulmonary resuscitation. Animal models have shown that this diagnostic adjunct can be used as a predictor of survival when PetCO2 values are maintained above 25% of pre-arrest values. METHODS: Eleven anesthetized Yorkshire swine were flown in microgravity during parabolic flight. Physiologic parameters, including PetCO2, were monitored. Standard ACLS protocols were used to resuscitate these models after chemical induction of cardiac arrest. Chest compressions were administered using conventional body positioning with waist restraint and unconventional vertical-inverted body positioning. RESULTS: PetCO2 values were maintained above 25% of both 1-G and O-G pre-arrest values in the microgravity environment (33% +/- 3 and 41 +/- 3). No significant difference between 1-G CPR and O-G CPR was found in these animal models. Effective CPR was delivered in both body positions although conventional body positioning was found to be quickly fatiguing as compared with the vertical-inverted. CONCLUSIONS: Cardiopulmonary resuscitation can be effectively administered in microgravity (0 G). Validation of this model has demonstrated that PetCO2 levels were maintained above a level previously reported to be predictive of survival. The unconventional vertical-inverted position provided effective CPR and was less fatiguing as compared with the conventional body position with waist restraints.

  9. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  10. A compact representation of drawing movements with sequences of parabolic primitives.

    Directory of Open Access Journals (Sweden)

    Felix Polyakov

    2009-07-01

    Full Text Available Some studies suggest that complex arm movements in humans and monkeys may optimize several objective functions, while others claim that arm movements satisfy geometric constraints and are composed of elementary components. However, the ability to unify different constraints has remained an open question. The criterion for a maximally smooth (minimizing jerk motion is satisfied for parabolic trajectories having constant equi-affine speed, which thus comply with the geometric constraint known as the two-thirds power law. Here we empirically test the hypothesis that parabolic segments provide a compact representation of spontaneous drawing movements. Monkey scribblings performed during a period of practice were recorded. Practiced hand paths could be approximated well by relatively long parabolic segments. Following practice, the orientations and spatial locations of the fitted parabolic segments could be drawn from only 2-4 clusters, and there was less discrepancy between the fitted parabolic segments and the executed paths. This enabled us to show that well-practiced spontaneous scribbling movements can be represented as sequences ("words" of a small number of elementary parabolic primitives ("letters". A movement primitive can be defined as a movement entity that cannot be intentionally stopped before its completion. We found that in a well-trained monkey a movement was usually decelerated after receiving a reward, but it stopped only after the completion of a sequence composed of several parabolic segments. Piece-wise parabolic segments can be generated by applying affine geometric transformations to a single parabolic template. Thus, complex movements might be constructed by applying sequences of suitable geometric transformations to a few templates. Our findings therefore suggest that the motor system aims at achieving more parsimonious internal representations through practice, that parabolas serve as geometric primitives and that non

  11. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    Science.gov (United States)

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  12. Canonical generators of the cohomology of moduli of parabolic bundles on curves

    International Nuclear Information System (INIS)

    Biswas, I.; Raghavendra, N.

    1994-11-01

    We determine generators of the rational cohomology algebras of moduli spaces of parabolic vector bundles on a curve, under some 'primality' conditions on the parabolic datum. These generators are canonical in a precise sense. Our results are new even for usual vector bundles (i.e., vector bundles without parabolic structure) whose rank is greater than 2 and is coprime to the degree; in this case, they are generalizations of a theorem of Newstead on the moduli of vector bundles of rank 2 and odd degree. (author). 11 refs

  13. Identifying the principal coefficient of parabolic equations with non-divergent form

    International Nuclear Information System (INIS)

    Jiang, L S; Bian, B J

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well

  14. Identifying the principal coefficient of parabolic equations with non-divergent form

    Science.gov (United States)

    Jiang, L. S.; Bian, B. J.

    2005-01-01

    We deal with an inverse problem of determining a coefficient a(x, t) of principal part for second order parabolic equations with non-divergent form when the solution is known. Such a problem has important applications in a large fields of applied science. We propose a well-posed approximate algorithm to identify the coefficient. The existence, uniqueness and stability of such solutions a(x, t) are proved. A necessary condition which is a couple system of a parabolic equation and a parabolic variational inequality is deduced. Our numerical simulations show that the coefficient is recovered very well.

  15. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    International Nuclear Information System (INIS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s 2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful

  16. Biosignal alterations generated by parabolic flights of small aerobatic aircrafts

    Science.gov (United States)

    Simon, M. Jose; Perez-Poch, Antoni; Ruiz, Xavier; Gavalda, Fina; Saez, Nuria

    Since the pioneering works of Prof. Strughold in 1948, the aerospace medicine aimed to characterize the modifications induced in the human body by changes in the gravity level. In this respect, it is nowadays well known that one of the most serious problems of these kind of environments is the fluid shift. If this effect is enough severe and persistent, serious changes in the hemodynamic of the brain (cerebral blood flow and blood oxigenation level) appear which could be detected as alterations in the electroencephalogram, EEG [1]. Also, this fluid redistribution, together with the relocation of the heart in the thorax, induces detectable changes in the electrocardiogram, ECG [2]. Other kind of important problems are related with vestibular instability, kinetosis and illusory sensations. In particular since the seventies [3,4] it is known that in parabolic flights and due to eye movements triggered by the changing input from the otholith system, fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculogravic illusions). In order to cover all the above-mentioned potential alterations, the present work, together with the gravity level, continuously monitors the electroencephalogram, EEG, the electrocardiogram, ECG and the electrooculogram, EOG of a normal subject trying to detect correlations between the different alterations observed in these signals and the changes of gravity during parabolic flights. The small aerobatic aircraft used is a CAP10B and during the flight the subject is located near the pilot. To properly cover all the range of accelerations we have used two sensitive triaxial accelerometers covering the high and low ranges of acceleration. Biosignals have been gathered using a Biopac data unit together with the Acknowledge software package (from BionicÔ). It is important to finally remark that, due to the obvious difference between the power of the different engines, the accelerometric

  17. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  18. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem

    2017-01-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing

  19. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.; Kim, I.; Lee, H.; Sheen, D.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely

  20. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  1. Existence of the Optimal Control for Stochastic Boundary Control Problems Governed by Semilinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Weifeng Wang

    2014-01-01

    Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.

  2. Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors

    KAUST Repository

    Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature

  3. Sound field computations in the Bay of Bengal using parabolic equation method

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Somayajulu, Y.K.; Murty, C.S.

    Effect of the cold core eddy in the Bay of Bengal on acoustic propagation was analysed by parabolic equation (PE) method. Source depth, frequency and propagation range considered respectively for the two numerical experiments are 150 m, 400 Hz, 650...

  4. On the Approximate Controllability of Some Semilinear Parabolic Boundary-Value Problems

    International Nuclear Information System (INIS)

    Diaz, J. I.; Henry, J.; Ramos, A. M.

    1998-01-01

    We prove the approximate controllability of several nonlinear parabolic boundary-value problems by means of two different methods: the first one can be called a Cancellation method and the second one uses the Kakutani fixed-point theorem

  5. On quantum motion of particle in linear potential bounded by perfectly reflecting plane and parabolic surfaces

    International Nuclear Information System (INIS)

    Pokotilovskij, Yu.N.

    1999-01-01

    The motion of a particle in the linear potential bounded by an inclined plane or parabolic surfaces is considered. The quantization of energy and wave functions is obtained numerically by the separation of the variables method

  6. American lookback option with fixed strike price—2-D parabolic variational inequality

    Science.gov (United States)

    Chen, Xiaoshan; Yi, Fahuai; Wang, Lihe

    In this paper we study a 2-dimensional parabolic variational inequality with financial background. We define a suitable weak formula and obtain existence and uniqueness of the problem. Moreover we analyze the behaviors of the free boundary surface.

  7. Use of a Parabolic Microphone to Detect Hidden Subjects in Search and Rescue.

    Science.gov (United States)

    Bowditch, Nathaniel L; Searing, Stanley K; Thomas, Jeffrey A; Thompson, Peggy K; Tubis, Jacqueline N; Bowditch, Sylvia P

    2018-03-01

    This study compares a parabolic microphone to unaided hearing in detecting and comprehending hidden callers at ranges of 322 to 2510 m. Eight subjects were placed 322 to 2510 m away from a central listening point. The subjects were concealed, and their calling volume was calibrated. In random order, subjects were asked to call the name of a state for 5 minutes. Listeners with parabolic microphones and others with unaided hearing recorded the direction of the call (detection) and name of the state (comprehension). The parabolic microphone was superior to unaided hearing in both detecting subjects and comprehending their calls, with an effect size (Cohen's d) of 1.58 for detection and 1.55 for comprehension. For each of the 8 hidden subjects, there were 24 detection attempts with the parabolic microphone and 54 to 60 attempts by unaided listeners. At the longer distances (1529-2510 m), the parabolic microphone was better at detecting callers (83% vs 51%; P<0.00001 by χ 2 ) and comprehension (57% vs 12%; P<0.00001). At the shorter distances (322-1190 m), the parabolic microphone offered advantages in detection (100% vs 83%; P=0.000023) and comprehension (86% vs 51%; P<0.00001), although not as pronounced as at the longer distances. Use of a 66-cm (26-inch) parabolic microphone significantly improved detection and comprehension of hidden calling subjects at distances between 322 and 2510 m when compared with unaided hearing. This study supports the use of a parabolic microphone in search and rescue to locate responsive subjects in favorable weather and terrain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Modeling mode interactions in boundary layer flows via the Parabolized Floquet Equations

    OpenAIRE

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanović, Mihailo R.

    2017-01-01

    In this paper, we develop a linear model to study interactions between different modes in slowly-growing boundary layer flows. Our method consists of two steps. First, we augment the Blasius boundary layer profile with a disturbance field resulting from the linear Parabolized Stability Equations (PSE) to obtain the modified base flow; and, second, we combine Floquet analysis with the linear PSE to capture the spatial evolution of flow fluctuations. This procedure yields the Parabolized Floque...

  9. Stability in terms of two measures for a class of semilinear impulsive parabolic equations

    International Nuclear Information System (INIS)

    Dvirnyj, Aleksandr I; Slyn'ko, Vitalij I

    2013-01-01

    The problem of stability in terms of two measures is considered for semilinear impulsive parabolic equations. A new version of the comparison method is proposed, and sufficient conditions for stability in terms of two measures are obtained on this basis. An example of a hybrid impulsive system formed by a system of ordinary differential equations coupled with a partial differential equation of parabolic type is given. The efficiency of the described approaches is demonstrated. Bibliography: 24 titles.

  10. Effects of an electric field on the confined hydrogen atom in a parabolic potential well

    International Nuclear Information System (INIS)

    Xie Wenfang

    2009-01-01

    Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.

  11. Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management

    Science.gov (United States)

    Koleva, M. N.

    2011-11-01

    In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.

  12. A note on Hermitian-Einstein metrics on parabolic stable bundles

    International Nuclear Information System (INIS)

    Li Jiayu; Narasimhan, M.S.

    2000-01-01

    Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove that there exists a Hermitian-Einstein metric on E' = E-vertical bar M-barbackslashD compatible with the parabolic structure, and whose curvature is square integrable. (author)

  13. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  14. Efficient solution of parabolic equations by Krylov approximation methods

    Science.gov (United States)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  15. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g, hypergravity (1.8 g, and normal gravity (1 g. Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  16. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio; Sawlan, Zaid A; Scavino, Marco; Tempone, Raul

    2016-01-01

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  17. Parabolic heavy ion flow in the polar magnetosphere

    International Nuclear Information System (INIS)

    Horwitz, J.L.

    1987-01-01

    Recent observations by the Dynamics Explorer 1 satellite over the dayside polar cap magnetosphere have indicated downward flows of heavy ions (O + , O ++ , N + , N ++ ) with flow velocities of the order 1 km/s (Lockwood et al., 1985b). These downward flows were interpreted as the result of parabolic flow of these heavy ionospheric ions from a source region associated with the polar cleft topside ionosphere. Here the author utilizes a two-dimensional kinetic model to elicit features of the transport of very low energy O + ions from the cleft ionosphere. Bulk parameter (density, flux, thermal energies, etc.) distributions in the noon-midnight meridian plane illustrate the effects of varying convection electric fields and source energies. The results illustrate that particularly under conditions of weak convection electric fields and weak ion heating in the cleft region, much of the intermediate altitude polar cap magnetosphere may be populated by downward flowing heavy ions. It is further shown how two-dimensional transport effects may alter the characteristic vertical profiles of densities and fluxes from ordinary profiles computed in one-dimensional steady state models

  18. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2015-01-07

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  19. Bayesian Inference for Linear Parabolic PDEs with Noisy Boundary Conditions

    KAUST Repository

    Ruggeri, Fabrizio

    2016-01-06

    In this work we develop a hierarchical Bayesian setting to infer unknown parameters in initial-boundary value problems (IBVPs) for one-dimensional linear parabolic partial differential equations. Noisy boundary data and known initial condition are assumed. We derive the likelihood function associated with the forward problem, given some measurements of the solution field subject to Gaussian noise. Such function is then analytically marginalized using the linearity of the equation. Gaussian priors have been assumed for the time-dependent Dirichlet boundary values. Our approach is applied to synthetic data for the one-dimensional heat equation model, where the thermal diffusivity is the unknown parameter. We show how to infer the thermal diffusivity parameter when its prior distribution is lognormal or modeled by means of a space-dependent stationary lognormal random field. We use the Laplace method to provide approximated Gaussian posterior distributions for the thermal diffusivity. Expected information gains and predictive posterior densities for observable quantities are numerically estimated for different experimental setups.

  20. Piracetam and fish orientation during parabolic aircraft flight

    Science.gov (United States)

    Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

    1980-01-01

    Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

  1. Control concepts for direct steam generation in parabolic troughs

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)

    2005-02-01

    A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)

  2. Mechanical design of a low cost parabolic solar dish concentrator

    Directory of Open Access Journals (Sweden)

    Hamza Hijazi

    2016-03-01

    Full Text Available The objective of this research was to design a low cost parabolic solar dish concentrator with small-to moderate size for direct electricity generation. Such model can be installed in rural areas which are not connected to governmental grid. Three diameters of the dish; 5, 10 and 20 m are investigated and the focal point to dish diameter ratio is set to be 0.3 in all studied cases. Special attention is given to the selection of the appropriate dimensions of the reflecting surfaces to be cut from the available sheets in the market aiming to reduce both cutting cost and sheets cost. The dimensions of the ribs and rings which support the reflecting surface are optimized in order to minimize the entire weight of the dish while providing the minimum possible total deflection and stresses in the beams. The study applies full stress analysis of the frame of the dish using Autodesk Inventor. The study recommends to use landscape orientation for the reflective facets and increase the ribs angle and the distance between the connecting rings. The methodology presented is robust and can be extended to larger dish diameters.

  3. A comparative study on the effect of glazing and cooling for compound parabolic concentrator PV systems – Experimental and analytical investigations

    International Nuclear Information System (INIS)

    Bahaidarah, Haitham M.; Gandhidasan, P.; Baloch, Ahmer A.B.; Tanweer, Bilal; Mahmood, M.

    2016-01-01

    Highlights: • We model glazed and unglazed PV-CPC systems with and without active water cooling. • Model is validated with experimental results and found good agreement. • Significant increase in the maximum power output is observed with active cooling. • Unglazed PV-CPC system is recommended for greater electric power output. • Levelized cost of energy found was found lower for unglazed CPC with cooling. - Abstract: A key barrier to achieving the economic viability and widespread adoption of photovoltaic (PV) technology for the direct conversion of solar radiation to electricity is the losses related to the high operating temperatures of typical flat-type PV modules. This technical and economic study addresses the cost reduction of PV systems by proposing a methodology for the improvement of solar cell efficiency using low-concentration PV technology and compound parabolic concentrators (CPCs). A theoretical model was developed to evaluate the performance of PV-CPC systems considering their optical, thermal and electrical properties. The model was implemented to investigate glazed and unglazed PV-CPC systems with and without active cooling and it was validated against experimental data. A laboratory-scale bench-top PV string was designed and built with symmetrically truncated CPC modules in these four configurations. The constructed glazed and unglazed PV-CPC systems were used for measurements at the geographic location of Dhahran and showed a very good agreement of 3.8–6.5% between the calculated and experimental results. The effect of glazing was studied and from the electrical point of view, glazing was found to reduce the power output. From the thermal point of view, glazing increased the thermal gain of the PV-CPC system. An unglazed PV-CPC system is recommended for greater electric power output, and glazed system is recommended for higher thermal gain. For economic feasibility, levelized cost of energy (LCE) analysis was performed using annual

  4. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    Science.gov (United States)

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  5. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    Directory of Open Access Journals (Sweden)

    Y. S. Kong

    2013-01-01

    Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  6. Performance of Infinitely Wide Parabolic and Inclined Slider Bearings Lubricated with Couple Stress or Magnetic Fluids

    Science.gov (United States)

    Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene

    2011-10-01

    The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.

  7. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  8. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  9. Analysis and validation of a quasi-dynamic model for a solar collector field with flat plate collectors and parabolic trough collectors in series for district heating

    DEFF Research Database (Denmark)

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2018-01-01

    performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...

  10. Optimising position control of a solar parabolic trough

    Directory of Open Access Journals (Sweden)

    Puramanathan Naidoo

    2011-03-01

    Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.

  11. Use of solar parabolic cookers (SK-14) in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, S. [Asia Network for Small Scale Bioresources, Kathmandu (Nepal)

    2000-07-01

    Solar Cooker is a device that uses only sunlight to cook food and pasteurise water. Solar cooker can be used along with other cooking devices to save cost, fuel and the time spent in gathering fuelwood. Solar cooking enables individual families to do without commercially sold fuel and help save money. In Nepal, supply of energy is one of the major problems for both urban and rural households. Increase in population, high migration, expensive fuel bills, environmental degradation, and unsafe drinking water have resulted in the keen interest from people of Nepal in the use of solar energy. The increasing number of tourists and trekkers are now one of the major sources of income and many people are engaged in running hotels, lodges, and restaurants. This has also increased the fuel demand. This paper highlights the current energy situation of Nepal, the technical details of solar parabolic cooker (SK-14), its uses throughout Nepal, strategies adopted by various organisations for its promotion. A lot of effort have been made by various organisations, educational, governmental and health related institutions in order to introduce solar cooking programs in villages of Nepal. The parameters, which have influenced the adoption of this technology in Nepal are also mentioned. Various awareness programs and the government subsidy program are playing considerable role in dissemination of such technologies. The promotion activities with the objective of mass awareness have long term effect and sustainable rather than instant business. Continued efforts to create awareness, development of models as well as proper promotion and dissemination are required. (au)

  12. Heat transfer analysis of parabolic trough solar receiver

    International Nuclear Information System (INIS)

    Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.

    2011-01-01

    Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.

  13. Performance and durability testing of parabolic trough receivers

    Science.gov (United States)

    Lei, Dongqiang; Fu, Xuqiang; Zhao, Dongming; Yuan, Guofeng; Wang, Zhifeng; Guo, Minghuan

    2017-06-01

    The paper describes the key performance and durability testing facilities of the parabolic trough receiver developed by Institute of Electrical Engineering, Chinese Academy of Sciences. The indoor heat loss test can be applied at 4-7 different temperature levels within 200-550 on receivers. The optical efficiency test bench consists of 12 metal halide lamps as the solar simulator and a 5 m length half-elliptical cylinder reflector with flat end reflectors. 3 ultra-precision temperature sensors are used in receiver each end to get the temperature difference. The residual gas analysis test bench is applied to analyze and predict the vacuum lifetime of the receiver. It can test the variations of composition and partial pressure of residual gases with temperature and time in the receiver annulus space by a high sensitivity quadrupole mass spectrometer gas analyzer. A coating accelerated ageing test bench, which is also used to test the thermal cycle, has been developed. This test bench uses the absorber tube of the recevier as the resistance heater to heat up the whole receiver. The coating lifetime can be predicted by the Arrhenius parameters. For the cycling test, the compressed air is used to directly cool the inner surface of the absorber tube. The thermal cycling test is performed with temperature cycles from 150 °C to 450 °C for 160 cycles. The maximum thermal cycling frequency is 8 cycles per day. The mechanical fatigue test bench is used to test the bellows and the glass-to-metal seals durability at the same time. Both bellows are expanded and compressed to 6.5 mm in turn with 10,000 cycles. A new rotating test bench was also developed to test the thermal efficiency of the receiver.

  14. Computer aided FEA simulation of EN45A parabolic leaf spring

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2013-04-01

    Full Text Available This paper describes computer aided finite element analysis of parabolic leaf spring. The present work is an improvement in design of EN45A parabolic leaf spring used by a light commercial automotive vehicle. Development of a leaf spring is a long process which requires lots of test to validate the design and manufacturing variables. A three-layer parabolic leaf spring of EN45A has been taken for this work. The thickness of leaves varies from center to the outer side following a parabolic pattern. These leaf springs are designed to become lighter, but also provide a much improved ride to the vehicle through a reduction on interleaf friction. The CAD modeling of parabolic leaf spring has been done in CATIA V5 and for analysis the model is imported in ANSYS-11 workbench. The finite element analysis (FEA of the leaf spring has been carried out by initially discretizing the model into finite number of elements and nodes and then applying the necessary boundary conditions. Maximum displacement, directional displacement, equivalent stress and weight of the assembly are the output targets of this analysis for comparison & validation of the work.

  15. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    Science.gov (United States)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  16. Software used with the flux mapper at the solar parabolic dish test site

    Science.gov (United States)

    Miyazono, C.

    1984-01-01

    Software for data archiving and data display was developed for use on a Digital Equipment Corporation (DEC) PDP-11/34A minicomputer for use with the JPL-designed flux mapper. The flux mapper is a two-dimensional, high radiant energy scanning device designed to measure radiant flux energies expected at the focal point of solar parabolic dish concentrators. Interfacing to the DEC equipment was accomplished by standard RS-232C serial lines. The design of the software was dicated by design constraints of the flux-mapper controller. Early attemps at data acquisition from the flux-mapper controller were not without difficulty. Time and personnel limitations result in an alternative method of data recording at the test site with subsequent analysis accomplished at a data evaluation location at some later time. Software for plotting was also written to better visualize the flux patterns. Recommendations for future alternative development are discussed. A listing of the programs used in the anaysis is included in an appendix.

  17. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  18. Efficient Extraction of Light from a Nitrogen-Vacancy Center in a Diamond Parabolic Reflector.

    Science.gov (United States)

    Wan, Noel H; Shields, Brendan J; Kim, Donggyu; Mouradian, Sara; Lienhard, Benjamin; Walsh, Michael; Bakhru, Hassaram; Schröder, Tim; Englund, Dirk

    2018-04-03

    Quantum emitters in solids are being developed for a range of quantum technologies, including quantum networks, computing, and sensing. However, a remaining challenge is the poor photon collection due to the high refractive index of most host materials. Here we overcome this limitation by introducing monolithic parabolic reflectors as an efficient geometry for broadband photon extraction from quantum emitter and experimentally demonstrate this device for the nitrogen-vacancy (NV) center in diamond. Simulations indicate a photon collection efficiency exceeding 75% across the visible spectrum and experimental devices, fabricated using a high-throughput gray scale lithography process, demonstrating a photon extraction efficiency of (41 ± 5)%. This device enables a raw experimental detection efficiency of (12 ± 1)% with fluorescence detection rates as high as (4.114 ± 0.003) × 10 6 counts per second (cps) from a single NV center. Enabled by our deterministic emitter localization and fabrication process, we find a high number of exceptional devices with an average count rate of (3.1 ± 0.9) × 10 6 cps.

  19. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    Science.gov (United States)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  20. Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors

    Directory of Open Access Journals (Sweden)

    Evangelos Bellos

    2017-06-01

    Full Text Available The objective of this work was to optimize and to evaluate a solar-driven trigeneration system which operates with nanofluid-based parabolic trough collectors. The trigeneration system includes an organic Rankine cycle (ORC and an absorption heat pump operating with LiBr-H2O which is powered by the rejected heat of the ORC. Toluene, n-octane, Octamethyltrisiloxane (MDM and cyclohexane are the examined working fluids in the ORC. The use of CuO and Al2O3 nanoparticles in the Syltherm 800 (base fluid is investigated in the solar field loop. The analysis is performed with Engineering Equation Solver (EES under steady state conditions in order to give the emphasis in the exergetic optimization of the system. Except for the different working fluid investigation, the system is optimized by examining three basic operating parameters in all the cases. The pressure in the turbine inlet, the temperature in the ORC condenser and the nanofluid concentration are the optimization variables. According to the final results, the combination of toluene in the ORC with the CuO nanofluid is the optimum choice. The global maximum exergetic efficiency is 24.66% with pressure ratio is equal to 0.7605, heat rejection temperature 113.7 °C and CuO concentration 4.35%.

  1. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S

    2004-07-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to {radical}(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  2. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    International Nuclear Information System (INIS)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S.

    2004-01-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to √(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  3. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    Science.gov (United States)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  4. A parabolic analogue of the higher-order comparison theorem of De Silva and Savin

    Science.gov (United States)

    Banerjee, Agnid; Garofalo, Nicola

    2016-01-01

    We show that the quotient of two caloric functions which vanish on a portion of the lateral boundary of a H k + α domain is H k + α up to the boundary for k ≥ 2. In the case k = 1, we show that the quotient is in H 1 + α if the domain is assumed to be space-time C 1 , α regular. This can be thought of as a parabolic analogue of a recent important result in [8], and we closely follow the ideas in that paper. We also give counterexamples to the fact that analogous results are not true at points on the parabolic boundary which are not on the lateral boundary, i.e., points which are at the corner and base of the parabolic boundary.

  5. Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type

    International Nuclear Information System (INIS)

    Beauchard, K; Cannarsa, P; Yamamoto, M

    2014-01-01

    The approach to Lipschitz stability for uniformly parabolic equations introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates, seems hard to apply to the case of Grushin-type operators of interest to this paper. Indeed, such estimates are still missing for parabolic operators degenerating in the interior of the space domain. Nevertheless, we are able to prove Lipschitz stability results for inverse source problems for such operators, with locally distributed measurements in an arbitrary space dimension. For this purpose, we follow a mixed strategy which combines the approach due to Lebeau and Robbiano, relying on Fourier decomposition and Carleman inequalities for heat equations with non-smooth coefficients (solved by the Fourier modes). As a corollary, we obtain a direct proof of the observability of multidimensional Grushin-type parabolic equations, with locally distributed observations—which is equivalent to null controllability with locally distributed controls. (paper)

  6. Some blow-up problems for a semilinear parabolic equation with a potential

    Science.gov (United States)

    Cheng, Ting; Zheng, Gao-Feng

    The blow-up rate estimate for the solution to a semilinear parabolic equation u=Δu+V(x)|u in Ω×(0,T) with 0-Dirichlet boundary condition is obtained. As an application, it is shown that the asymptotic behavior of blow-up time and blow-up set of the problem with nonnegative initial data u(x,0)=Mφ(x) as M goes to infinity, which have been found in [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006], is improved under some reasonable and weaker conditions compared with [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, preprint, arXiv: math.AP/0607055, July 2006].

  7. Parabolic Equation Modeling of Propagation over Terrain Using Digital Elevation Model

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Guan

    2018-01-01

    Full Text Available The parabolic equation method based on digital elevation model (DEM is applied on propagation predictions over irregular terrains. Starting from a parabolic approximation to the Helmholtz equation, a wide-angle parabolic equation is deduced under the assumption of forward propagation and the split-step Fourier transform algorithm is used to solve it. The application of DEM is extended to the Cartesian coordinate system and expected to provide a precise representation of a three-dimensional surface with high efficiency. In order to validate the accuracy, a perfectly conducting Gaussian terrain profile is simulated and the results are compared with the shift map. As a consequence, a good agreement is observed. Besides, another example is given to provide a theoretical basis and reference for DEM selection. The simulation results demonstrate that the prediction errors will be obvious only when the resolution of the DEM used is much larger than the range step in the PE method.

  8. Parabolic versus spherical partial cross sections for photoionization excitation of He near threshold

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Kwato Njock, M. G.

    2006-01-01

    Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization threshold. A quantitative law giving the dominant spherical partial wave l dom for each excitation level n is obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the related Rydberg series of doubly excited states (K,T) n A . The analysis of radial and angular correlations reveals the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of parabolic partial cross sections is proposed as a challenge to experimentalists

  9. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    Directory of Open Access Journals (Sweden)

    Jishan Fan

    2013-04-01

    Full Text Available Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. That is, we gave a gradient estimate for parabolic equations of divergence forms with piecewise smooth coefficients. The coefficients are assumed to be independent of time and their discontinuities are likewise the previous elliptic equations. As an application of this estimate, we also gave a pointwise gradient estimate for the fundamental solution of a parabolic operator with piecewise smooth coefficients. Both gradient estimates are independent of the distances between manifolds of discontinuities.

  10. Wind load design methods for ground-based heliostats and parabolic dish collectors

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  11. Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

    International Nuclear Information System (INIS)

    Izuani Che Rosid, N A; Ahmadi, M T; Ismail, Razali

    2016-01-01

    The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain. (paper)

  12. Irreversible thermodynamics, parabolic law and self-similar state in grain growth

    International Nuclear Information System (INIS)

    Rios, P.R.

    2004-01-01

    The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis

  13. Extending the Utility of the Parabolic Approximation in Medical Ultrasound Using Wide-Angle Diffraction Modeling.

    Science.gov (United States)

    Soneson, Joshua E

    2017-04-01

    Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.

  14. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    Science.gov (United States)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  15. Distribution-valued weak solutions to a parabolic problem arising in financial mathematics

    Directory of Open Access Journals (Sweden)

    Michael Eydenberg

    2009-07-01

    Full Text Available We study distribution-valued solutions to a parabolic problem that arises from a model of the Black-Scholes equation in option pricing. We give a minor generalization of known existence and uniqueness results for solutions in bounded domains $Omega subset mathbb{R}^{n+1}$ to give existence of solutions for certain classes of distributions $fin mathcal{D}'(Omega$. We also study growth conditions for smooth solutions of certain parabolic equations on $mathbb{R}^nimes (0,T$ that have initial values in the space of distributions.

  16. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity

    International Nuclear Information System (INIS)

    Leiler, Gregor; Rezzolla, Luciano

    2006-01-01

    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion

  17. Integration of equations of parabolic type by the method of nets

    CERN Document Server

    Saul'Yev, V K; Stark, M; Ulam, S

    1964-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff

  18. Finite element simulation of cracks formation in parabolic flume above fixed service live

    Science.gov (United States)

    Bandurin, M. A.; Volosukhin, V. A.; Mikheev, A. V.; Volosukhin, Y. V.; Bandurina, I. P.

    2018-03-01

    In the article, digital simulation data on influence of defect different characteristics on cracks formation in a parabolic flume are presented. The finite element method is based on general hypotheses of the theory of elasticity. The studies showed that the values of absolute movements satisfy the standards of design. The results of the digital simulation of stresses and strains for cracks formation in concrete parabolic flumes after long-term service above the fixed service life are described. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks in reinforced concrete elements is determined.

  19. Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Tatari, Mehdi

    2008-01-01

    In this research, the He's variational iteration technique is used for computing an unknown time-dependent parameter in an inverse quasilinear parabolic partial differential equation. Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and physics, as they appear in various engineering models. The He's variational iteration method is an analytical procedure for finding solutions of differential equations, is based on the use of Lagrange multipliers for identification of an optimal value of a parameter in a functional. To show the efficiency of the new approach, several test problems are presented for one-, two- and three-dimensional cases

  20. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  1. Thermal analysis of a compound parabolic concentrator for refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100

  2. Evaluation of the optical quality of compound parabolic concentrator solar collectors; Avaliacao da qualidade otica de coletores solares concentradores parabolicos compostos

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica

    1990-12-31

    This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.

  3. An error estimate for Tremolieres method for the discretization of parabolic variational inequalities

    International Nuclear Information System (INIS)

    Uko, L.U.

    1990-02-01

    We study a scheme for the time-discretization of parabolic variational inequalities that is often easier to use than the classical method of Rothe. We show that if the data are compatible in a certain sense, then this scheme is of order ≥1/2. (author). 10 refs

  4. Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations

    NARCIS (Netherlands)

    Radu, F.A.; Pop, I.S.; Knabner, P.; Bermúdez de Castro, A.; Gómez, D.; Quintela, P.; Salgado, P.

    2006-01-01

    In this paper we discuss some iterative approaches for solving the nonlinear algebraic systems encountered as fully discrete counterparts of some degenerate (fast diffusion) parabolic problems. After regularization, we combine a mixed finite element discretization with the Euler implicit scheme. For

  5. a numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    M. Ghodbane

    A computer program was developed in Matlab after discretization equations. For the calculation of energy balance was asks these assumptions: The heat transfer fluid is incompressible;. The parabolic shape is symmetrical;. The ambient temperature around the concentrator is uniform;. The effect of the shadow of ...

  6. Time-optimal control of infinite order distributed parabolic systems involving time lags

    Directory of Open Access Journals (Sweden)

    G.M. Bahaa

    2014-06-01

    Full Text Available A time-optimal control problem for linear infinite order distributed parabolic systems involving constant time lags appear both in the state equation and in the boundary condition is presented. Some particular properties of the optimal control are discussed.

  7. Stability estimates for solution of IBVP to fractional parabolic differential and difference equations

    Science.gov (United States)

    Ashyralyev, Allaberen; Cakir, Zafer

    2016-08-01

    In this work, we investigate initial-boundary value problems for fractional parabolic equations with the Neumann boundary condition. Stability estimates for the solution of this problem are established. Difference schemes for approximate solution of initial-boundary value problem are constructed. Furthermore, we give theorem on coercive stability estimates for the solution of the difference schemes.

  8. A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2016-08-01

    Full Text Available We present a cost-effective concentrating photovoltaic system composed of a prism and a compound parabolic concentrator (P-CPC. In this approach, the primary collector consists of a prism, a solid compound parabolic concentrator (CPC, and a slab waveguide. The prism, which is placed on the input aperture of CPC, directs the incoming sunlight beam to be parallel with the main axes of parabolic rims of CPC. Then, the sunlight is reflected at the parabolic rims and concentrated at the focal point of these parabolas. A slab waveguide is coupled at the output aperture of the CPC to collect focused sunlight beams and to guide them to the solar cell. The optical system was modeled and simulated with commercial ray tracing software (LightTools™. Simulation results show that the optical efficiency of a P-CPC can achieve up to 89%. when the concentration ratio of the P-CPC is fixed at 50. We also determine an optimal geometric structure of P-CPC based on simulation. Because of the simplicity of the P-CPC structure, a lower-cost mass production process is possible. A simulation based on optimal structure of P-CPC was performed and the results also shown that P-CPC has high angular tolerance for input sunlight. The high tolerance of the input angle of sunlight allows P-CPC solar concentrator utilize a single sun tracking system instead of a highly precise dual suntracking system as cost effective solution.

  9. Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system

    International Nuclear Information System (INIS)

    Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang

    2016-01-01

    Highlights: • A parabolic primary mirror field is designed to reduce the gap between adjacent mirrors. • The movable receiver can reduce the end losses. • The thermal efficiency of 66% is achieved at Guangzhou in winter. - Abstract: This paper proposes a stretched parabolic linear Fresnel reflector (SPLFR) collecting system. The primary optical mirror field of the SPLFR collecting system and the second-stage concentrator of compound parabolic collector are designed. The mirrors located at the parabolic line are close to each other, which effectively reduce the gap between the adjacent mirrors. The end losses of the receiver are very important, especially in a small-scale collecting system. A movable receiver is introduced for the reduction of the end losses. Moreover, a stretched structure of SPLFR is designed for wind resistance. Finally, the thermal performance of the SPLFR collecting system with fixed and movable receiver located in Guangzhou is tested. The maximum thermal efficiency obtained by this collecting system with movable receiver is 66% which avoid the end losses effectively, and the solar collector thermal loss coefficient is 1.32 W/m"2 °C. The results show that the SPLFR collecting system has excellent thermal performance and a promising application future. Meanwhile, this system will provide a valuable reference for concentrating solar power technology.

  10. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  11. On a non classical oblique derivative problem for parabolic singular integro-differential operators

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Le Quang Trung

    1989-10-01

    In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs

  12. On the Ext algebras of parabolic Verma modules and A infinity-structures

    DEFF Research Database (Denmark)

    Klamt, Angela; Stroppel, Catharina

    2012-01-01

    We study the Ext-algebra of the direct sum of all parabolic Verma modules in the principal block of the Bernstein–Gelfand–Gelfand category O for the Hermitian symmetric pair (gln+m,gln¿glm) and present the corresponding quiver with relations for the cases n=1,2. The Kazhdan–Lusztig combinatorics ...

  13. Admissible solutions for a class of nonlinear parabolic problem with non-negative data

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Petzeltová, Hana; Simondon, F.

    2001-01-01

    Roč. 131, č. 5 (2001), s. 857-883 ISSN 0308-2105 R&D Projects: GA AV ČR IAA1019703 Keywords : admissible solutions%nonlinear parabolic problem * admissible solutions * comparison principle * non-negative data Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2001

  14. Inverse Problems for a Parabolic Integrodifferential Equation in a Convolutional Weak Form

    Directory of Open Access Journals (Sweden)

    Kairi Kasemets

    2013-01-01

    Full Text Available We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem and all computations are implemented in regular Sobolev spaces.

  15. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos

    2017-01-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc...

  16. Nahm transformation for parabolic Higgs bundles on the projective line --- case of non-semisimple residues

    OpenAIRE

    Szabo, Szilard

    2016-01-01

    We extend our earlier construction of Nahm transformation for parabolic Higgs bundles on the projective line to solutions with not necessarily semisimple residues and show that it determines a holomorphic mapping on corresponding moduli spaces. The construction relies on suitable elementary modifications of the logarithmic Dolbeault complex.

  17. Analysis of the stress-deformed condition of the disassembly parabolic antenna

    Science.gov (United States)

    Odinets, M. N.; Kaygorodtseva, N. V.; Krysova, I. V.

    2018-01-01

    Active development of satellite communications and computer-aided design systems raises the problem of designing parabolic antennas on a new round of development. The aim of the work was to investigate the influence of the design of the mirror of a parabolic antenna on its endurance under wind load. The research task was an automated analysis of the stress-deformed condition of various designs of computer models of a paraboloid mirror (segmented or holistic) at modeling the exploitation conditions. The peculiarity of the research was that the assembly model of the antenna’s mirror was subjected to rigid connections on the contacting surfaces of the segments and only then the finite element grid was generated. The analysis showed the advantage of the design of the demountable antenna, which consists of cyclic segments, in front of the construction of the holistic antenna. Calculation of the stress-deformed condition of the antennas allows us to conclude that dividing the design of the antenna’s mirror on parabolic and cyclic segments increases it strength and rigidity. In the future, this can be used to minimize the mass of antenna and the dimensions of the disassembled antenna. The presented way of modeling a mirror of a parabolic antenna using to the method of the finite-element analysis can be used in the production of antennas.

  18. On the inverse transform of Laplace transforms that contain (products of) the parabolic cylinder function

    NARCIS (Netherlands)

    Veestraeten, D.

    2015-01-01

    The Laplace transforms of the transition probability density and distribution functions for the Ornstein-Uhlenbeck process contain the product of two parabolic cylinder functions, namely Dv(x)Dv(y) and Dv(x)Dv−1(y), respectively. The inverse transforms of these products have as yet not been

  19. Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space

    International Nuclear Information System (INIS)

    Du Kai; Qiu, Jinniao; Tang Shanjian

    2012-01-01

    This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.

  20. Fast Time and Space Parallel Algorithms for Solution of Parabolic Partial Differential Equations

    Science.gov (United States)

    Fijany, Amir

    1993-01-01

    In this paper, fast time- and Space -Parallel agorithms for solution of linear parabolic PDEs are developed. It is shown that the seemingly strictly serial iterations of the time-stepping procedure for solution of the problem can be completed decoupled.

  1. New model reduction technique for a class of parabolic partial differential equations

    NARCIS (Netherlands)

    Vajta, Miklos

    1991-01-01

    A model reduction (or lumping) technique for a class of parabolic-type partial differential equations is given, and its application is discussed. The frequency response of the temperature distribution in any multilayer solid is developed and given by a matrix expression. The distributed transfer

  2. A numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    The solar power is a clean and a durable energy; there are several techniques for using them. When necessary to elevated temperatures of heat transfer fluid, this energy must concentration. This paper presents the efficiencies study of a linear solar concentrator of a parabolic trough type. This study was conducted on the ...

  3. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...

  4. Study of weak solutions for parabolic variational inequalities with nonstandard growth conditions.

    Science.gov (United States)

    Dong, Yan

    2018-01-01

    In this paper, we study the degenerate parabolic variational inequality problem in a bounded domain. First, the weak solutions of the variational inequality are defined. Second, the existence and uniqueness of the solutions in the weak sense are proved by using the penalty method and the reduction method.

  5. ESA Parabolic Flight, Drop Tower and Centrifuge Opportunities for University Students

    Science.gov (United States)

    Callens, Natacha; Ventura-Traveset, Javier; Zornoza Garcia-Andrade, Eduardo; Gomez-Calero, Carlos; van Loon, Jack J. W. A.; Pletser, Vladimir; Kufner, Ewald; Krause, Jutta; Lindner, Robert; Gai, Frederic; Eigenbrod, Christian

    The European Space Agency (ESA) Education Office was established in 1998 with the purpose of motivating young people to study science, engineering and technology subjects and to ensure a qualified workforce for ESA and the European space sector in the future. To this end the ESA Education Office is supporting several hands-on activities including small student satellites and student experiments on sounding rockets, high altitude balloons as well as microgravity and hypergravity platforms. This paper is intended to introduce three new ESA Education Office hands-on activities called "Fly Your Thesis!", "Drop Your Thesis!" and "Spin Your Thesis!". These activities give re-spectively access to aircraft parabolic flight, drop tower and centrifuge campaigns to European students. These educational programmes offer university students the unique opportunity to design, build, and eventually perform, in microgravity or hypergravity, a scientific or techno-logical experiment which is linked to their syllabus. During the "Fly Your Thesis!" campaigns, the students accompany their experiments onboard the A300 Zero-G aircraft, operated by the company Novespace, based in Bordeaux, France, for a series of three flights of 30 parabolas each, with each parabola providing about 20s of microgravity [1]. "Drop Your Thesis!" campaigns are held in the ZARM Drop Tower, in Bremen, Germany. The installation delivers 4.74s of microgravity in dropping mode and 9.3s in the catapulting mode [2]. Research topics such as fluid physics, fundamental physics, combustion, biology, material sciences, heat transfer, astrophysics, chemistry or biochemistry can greatly benefit from using microgravity platforms. "Spin Your Thesis!" campaigns take place in the Large Diameter Centrifuge (LDC) facility, at ESTEC, Noordwijk, in the Netherlands. This facility offers an acceleration from 1 to 20 times Earth's gravity [3]. The use of hypergravity allows completing the scientific picture of how gravity has an

  6. Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling

    2017-01-01

    Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct

  7. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    Science.gov (United States)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required

  8. Solar cooker of the portable parabolic type incorporating heat storage based on PCM

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Nogueira, José-Ignacio; Ventas, Rubén; Rodríguez-Hidalgo, María-del-Carmen; Legrand, Mathieu

    2013-01-01

    Highlights: ► A portable utensil for commercial paraboloid type solar cookers is proposed. ► It includes heat storage with phase change materials (PCMs). ► The utensil is stored indoors in a thermally insulating box after charging. ► A thermal 1-D model predicts its performance in sunny days. ► The set allows cooking lunch, dinner and next day the breakfast for a family. - Abstract: This paper reviews relevant issues on solar cooking in order to define and evaluate an innovative layout of a portable solar cooker of the standard concentrating parabolic type that incorporates a daily thermal storage utensil. This utensil is formed by two conventional coaxial cylindrical cooking pots, an internal one and a larger external one. The void space between the two coaxial pots is filled with a phase change material (PCM) forming an intermediate jacket. The ensemble is thermally simulated using 1-D finite differences. A lumped elements model with convective heat transfer correlations is used for the internal behavior of the utensil, subjected to external radiation. This numerical model is used to study its transient behavior for the climatic conditions of Madrid, and validated with experimental data. Two options have been checked as possible PCMs: technical grade paraffin and erythritol. The results indicate that cooking the lunch for a family is possible simultaneously with heat storage along the day. Keeping afterwards the utensil inside an insulating box indoors allows cooking the dinner with the retained heat and also the next day breakfast. This expands the applicability of solar cooking and sustains the possibility of all the day around cooking using solar energy with a low inventory cost

  9. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  10. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  11. Tungsten covered graphite and copper elements and ITER-like actively cooled tungsten divertor plasma facing units for the WEST project

    International Nuclear Information System (INIS)

    Guilhem, D; Bucalossi, J; Burles, S; Corre, Y; Ferlay, F; Firdaouss, M; Languille, P; Lipa, M; Martinez, A; Missirlian, M; Proust, M; Richou, M; Samaille, F; Tsitrone, E

    2016-01-01

    After a brief introduction giving some insight of the WEST project, we present the three types of plasma facing units (PFUs) developed for the WEST project taking into account the envisaged main scenarios: (1) high power short pulse scenario (a few seconds) where the objective is to maximize the power handling of the PFUs, up to 20 MW m −2 , (2) high fluence scenario (a few 100 s) on actively cooled ITER-like tungsten (W) PFUs, up to 10 MW m −2 during 1000 s. For the graphite PFUs, the high heat flux tests have been done at GLADIS (ion beam test facility), and for the CuCrZr PFUs on the JUDITH (electron beam test facility). The tests were successful, as no damage occurred for the different load cases. This confirms that the modelling done during the design phase is appropriate to describe these PFUs. Series productions are expected to be achieved by the end of 2015 for the graphite and CuCrZr PFUs, and few ITER-like W PFUs are expected at the beginning of 2016. The lower divertor will be complemented with ITER-like W PFUs as soon as available from our partners so that different fabrication procedures could be evaluated in a real industrial process and a real tokamak environment. (paper)

  12. OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    KAUST Repository

    GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA

    2014-01-01

    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.

  13. Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers

    International Nuclear Information System (INIS)

    Evans, H.E.; Norfolk, D.J.; Swan, T.

    1978-01-01

    A frequent observation in metal oxidation is the development of subparabolic kinetics, variously described as cubic or quartic. Although a number of detailed mechanisms have been proposed to account for this effect, none seem generally applicable. A model is presented of the oxidation process which is divorced from such restrictions. It is argued that deviations from parabolic behavior occur as a result of the concurrent development of stresses within the oxide. It is shown that the presence of stress fields can influence significantly the rate of transport of vacancy defects within the oxide such that tensile stresses produce positive deviations and compressive stresses, negative deviations from parabolic behavior. The model is applied in detail to Zircaloy-2 oxidation at 773 0 K. It is predicted that the kinetics should be insensitive to the oxygen potential of the environment and this has been confirmed by previous experimental work. 31 refs

  14. Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves

    Science.gov (United States)

    Chang, Yu-Hsuan; Lin, De-Hone

    2014-01-01

    Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.

  15. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  16. Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs

    Science.gov (United States)

    Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.

    2017-10-01

    This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.

  17. Conditional stability in determination of initial data for stochastic parabolic equations

    International Nuclear Information System (INIS)

    Yuan, Ganghua

    2017-01-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper. (paper)

  18. Conditional stability in determination of initial data for stochastic parabolic equations

    Science.gov (United States)

    Yuan, Ganghua

    2017-03-01

    In this paper, we solve two kinds of inverse problems in determination of the initial data for stochastic parabolic equations. One is determination of the initial data by lateral boundary observation on arbitrary portion of the boundary, the second one is determination of the initial data by internal observation in a subregion inside the domain. We obtain conditional stability for the two kinds of inverse problems. To prove the results, we estimate the initial data by a terminal observation near the initial time, then we estimate this terminal observation by lateral boundary observation on arbitrary portion of the boundary or internal observation in a subregion inside the domain. To achieve those goals, we derive several new Carleman estimates for stochastic parabolic equations in this paper.

  19. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  20. Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse

    Science.gov (United States)

    Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan

    2011-11-01

    A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.

  1. ε-neighbourhoods of orbits of parabolic diffeomorphisms and cohomological equations

    International Nuclear Information System (INIS)

    Resman, Maja

    2014-01-01

    In this article, we study the analyticity of (directed) areas of ε-neighbourhoods of orbits of parabolic germs. The article is motivated by the question of analytic classification using ε-neighbourhoods of orbits in the simplest formal class. We show that the coefficient in front of the ε 2 term in the asymptotic expansion in ε, which we call the principal part of the area, is a sectorially analytic function in the initial point of the orbit. It satisfies a cohomological equation similar to the standard trivialization equation for parabolic diffeomorphisms. We give necessary and sufficient conditions on a diffeomorphism f for the existence of a globally analytic solution of this equation. Furthermore, we introduce a new classification type for diffeomorphisms implied by this new equation and investigate the relative position of its classes with respect to the analytic classes. (paper)

  2. Well-Posedness of Nonlocal Parabolic Differential Problems with Dependent Operators

    Directory of Open Access Journals (Sweden)

    Allaberen Ashyralyev

    2014-01-01

    Full Text Available The nonlocal boundary value problem for the parabolic differential equation v'(t+A(tv(t=f(t  (0≤t≤T,  v(0=v(λ+φ,  0<λ≤T in an arbitrary Banach space E with the dependent linear positive operator A(t is investigated. The well-posedness of this problem is established in Banach spaces C0β,γ(Eα-β of all Eα-β-valued continuous functions φ(t on [0,T] satisfying a Hölder condition with a weight (t+τγ. New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  3. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.

  4. Study of the parabolic-spherical shape on the energy resolution in gamma spectrometry

    International Nuclear Information System (INIS)

    Silva, Joao Carlos Pereira da

    1997-01-01

    In gamma spectrometry, the energy resolution is an important parameter. This parameter measures the capability of the system to separate two photopeaks that are together. Scintillation systems have various factors that affect the energy resolution: energy deposition, light emission, light collection and electric signal processing. Light collection depended on the mechanisms of light transport until light strikes on the photocathode. In this trajectory the light losses energy by attenuation and refractions on the surfaces. In order to minimize these effects, a parabolic-spherical shape is proposed. The energy resolutions of hemispherical and parabolic-spherical shapes were measured. The results show a better resolution for the new shape, about 33% for Compton edge due to a 137 Cs radioactive source. (author)

  5. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  6. Effect of Phonon Drag on the Thermopower in a Parabolic Quantum Well

    Energy Technology Data Exchange (ETDEWEB)

    Hasanov, Kh. A., E-mail: xanlarhasanli@rambler.ru; Huseynov, J. I. [Azerbaijan State Pedagogical University (Azerbaijan); Dadashova, V. V. [Baku State University (Azerbaijan); Aliyev, F. F. [National Academy of Sciences of Azerbaijan, Abdullaev Institute of Physics (Azerbaijan)

    2016-03-15

    The theory of phonon-drag thermopower resulting from a temperature gradient in the plane of a two-dimensional electron gas layer in a parabolic quantum well is developed. The interaction mechanisms between electrons and acoustic phonons are considered, taking into account potential screening of the interaction. It is found that the effect of electron drag by phonons makes a significant contribution to the thermopower of the two-dimensional electron gas. It is shown that the consideration of screening has a significant effect on the drag thermopower. For the temperature dependence of the thermopower in a parabolic GaAs/AlGaAs quantum well in the temperature range of 1–10 K, good agreement between the obtained theoretical results and experiments is shown.

  7. Excitons in undoped AlGaAs/GaAs wide parabolic quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, A; Oliveira, J B B [Departamento de Fisica, Universidade Estadual Paulista, 17033-360, Bauru (Brazil); Silva, E C F da; Lamas, T E; Duarte, C A; Gusev, G M, E-mail: tabata@fc.unesp.b [Instituto de Fisica, Universidade de Sao Paulo, 05315-970, Sao Paulo (Brazil)

    2010-02-01

    In this work the electronic structure of undoped AlGaAs/GaAs wide parabolic quantum wells (PQWs) with different well widths (1000 A and 3000 A) were investigated by means of photoluminescence (PL) measurements. Due to the particular potential shape, the sample structure confines photocreated carriers with almost three-dimensional characteristics. Our data show that depending on the well width thickness it is possible to observe very narrow structures in the PL spectra, which were ascribed to emissions associated to the recombination of confined 1s-excitons of the parabolic potential wells. From our measurements, the exciton binding energies (of a few meV) were estimated. Besides the exciton emission, we have also observed PL emissions associated to electrons in the excited subbands of the PQWs.

  8. Tails and bridges in the parabolic restricted three-body problem

    Science.gov (United States)

    Barrabés, Esther; Cors, Josep M.; Garcia-Taberner, Laura; Ollé, Mercè

    2017-12-01

    After a close encounter of two galaxies, bridges and tails can be seen between or around them. A bridge would be a spiral arm between a galaxy and its companion, whereas a tail would correspond to a long and curving set of debris escaping from the galaxy. The goal of this paper is to present a mechanism, applying techniques of dynamical systems theory, that explains the formation of tails and bridges between galaxies in a simple model, the so-called parabolic restricted three-body problem, i.e. we study the motion of a particle under the gravitational influence of two primaries describing parabolic orbits. The equilibrium points and the final evolutions in this problem are recalled,and we show that the invariant manifolds of the collinear equilibrium points and the ones of the collision manifold explain the formation of bridges and tails. Massive numerical simulations are carried out and their application to recover previous results are also analysed.

  9. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    Science.gov (United States)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms

  10. Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem

    Directory of Open Access Journals (Sweden)

    Baiyu Wang

    2014-01-01

    Full Text Available This paper investigates the numerical solution of a class of one-dimensional inverse parabolic problems using the moving least squares approximation; the inverse problem is the determination of an unknown source term depending on time. The collocation method is used for solving the equation; some numerical experiments are presented and discussed to illustrate the stability and high efficiency of the method.

  11. Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

    Czech Academy of Sciences Publication Activity Database

    Krisztin, T.; Rezunenko, Oleksandr

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf

  12. Conditional stability and uniqueness for determining two coefficients in a hyperbolic–parabolic system

    International Nuclear Information System (INIS)

    Wu, Bin; Liu, Jijun

    2011-01-01

    We study the inverse problem of determining two spatially varying coefficients in a thermoelastic model with the following observation data: displacement in a subdomain ω satisfying ∂ω superset of ∂Ω along a sufficiently large time interval, both displacement and temperature at a suitable time over the whole spatial domain. Based on a Carleman estimate on the hyperbolic–parabolic system, we prove the Lipschitz stability and the uniqueness for this inverse problem under some a priori information

  13. Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries

    International Nuclear Information System (INIS)

    Karimov, Ruslan Kh; Kozhevnikova, Larisa M

    2010-01-01

    The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.

  14. A note on numerical solution of a parabolic-Schrödinger equation

    Science.gov (United States)

    Ozdemir, Yildirim; Alp, Mustafa

    2016-08-01

    In the present study, a nonlocal boundary value problem for a parabolic-Schrödinger equation is considered. The stability estimates for the solution of the given problem is established. The first and second order of difference schemes are presented for approximately solving a specific nonlocal boundary problem. The theoretical statements for the solution of these difference schemes are supported by the result of numerical examples.

  15. Dielectric compound parabolic concentrating solar collector with frustrated total internal reflection absorber

    Science.gov (United States)

    Hull, J. R.

    Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.

  16. The modelling of solar radiation quantities and intensities in a two dimensional compound parabolic collector

    OpenAIRE

    2010-01-01

    M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...

  17. Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator

    OpenAIRE

    Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki

    2014-01-01

    Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...

  18. Ray tracing for optimization of compound parabolic concentrators for solar collectors of enclosed design

    OpenAIRE

    YURCHENKO, VLADIMIR; YURCHENKO, EDUARD; ÇİYDEM, MEHMET; TOTUK, ONAT

    2015-01-01

    We present our developments in computer simulations and optimization of compound parabolic concentrators (CPCs) for solar heat collectors. Issues of both the optical and thermal optimization of CPC collectors of enclosed design are discussed. Ray tracing results for a CPC with a V-shaped absorber are presented. A range of optimal values for the apex angle of a V-shaped absorber is proposed for a CPC collector of typical design.

  19. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    OpenAIRE

    Fan, Jishan; Kim, Kyoungsun; Nagayasu, Sei; Nakamura, Gen

    2011-01-01

    Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. T...

  20. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  1. The flow of an incompressible electroconductive fluid past a thin airfoil. The parabolic profile

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-04-01

    Full Text Available We study the two-dimensional steady flow of an ideal incompressible perfectly conducting fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and pressure and the boundary conditions to obtain an integral equation for the jump of the pressure across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic induction.

  2. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Life science experiments during parabolic flight: The McGill experience

    Science.gov (United States)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  4. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  5. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    2015-01-01

    Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf

  6. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations

    Directory of Open Access Journals (Sweden)

    M. G. Crandall

    1999-07-01

    Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.

  7. Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier

    International Nuclear Information System (INIS)

    Chruscinski, Dariusz

    2006-01-01

    We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba

  8. Annealed asymptotics for the parabolic Anderson model with a moving catalyst

    NARCIS (Netherlands)

    Gärtner, J.; Heydenreich, M.O.

    2006-01-01

    This paper deals with the solution u to the parabolic Anderson equation ¿u/¿t=¿¿u+¿u on the lattice . We consider the case where the potential ¿ is time-dependent and has the form ¿(t,x)=d0(x-Yt) with Yt being a simple random walk with jump rate 2d. The solution u may be interpreted as the

  9. Existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time

    Directory of Open Access Journals (Sweden)

    Nabila Bellal

    2014-10-01

    Full Text Available Using the penalty method, we prove the existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time. To find a solution, the original inequality is transformed into an equality by adding a positive function on the right-hand side and a complementary condition. This result can be seen as a generalization of the results by Mokrane in [11] where the obstacle is zero.

  10. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-08-01

    In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  11. Regularization algorithm within two-parameters for identification heat-coefficient in the parabolic equation

    International Nuclear Information System (INIS)

    Hinestroza Gutierrez, D.

    2006-12-01

    In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)

  12. Light absorption in thin quantizing semiconductor wires with non-parabolic law of dispersion of charge carriers

    International Nuclear Information System (INIS)

    Djotian, A.P.; Kazarian, E.M.; Karakashinian, Y.V.

    1993-01-01

    Interband absorption of light in a quantizing wire with non-parabolic dispersion law of charge carries, as well as energy spectrum and state densities are studied. The effect of Coulomb interaction between particles on the spectral curve of interband absorption is considered. Non-parabolic dispersion law of charge carries leads to an essential displacement of absorption line to ground state of one-dimensional exciton. 7 refs

  13. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  14. F John's stability conditions versus A Carasso's SECB constraint for backward parabolic problems

    International Nuclear Information System (INIS)

    Lee, Jinwoo; Sheen, Dongwoo

    2009-01-01

    In order to solve backward parabolic problems John (1960 Commun. Pure. Appl. Math.13 551–85) introduced the two constraints ||u(T)|| ≤ M and ||u(0) − g|| ≤ δ where u(t) satisfies the backward heat equation for t in (0, T) with the initial data u(0). The slow evolution from the continuation boundary (SECB) constraint was introduced by Carasso (1994 SIAM J. Numer. Anal. 31 1535–57) to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t = T. The additional 'SECB constraint' guarantees a significant improvement in stability up to t = T. In this paper, we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ||u(T)|| ≤ M is redundant. This implies that Carasso's SECB condition can be used to replace the a priori boundedness condition of John with an improved stability estimate. Also, a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally, numerical examples are provided

  15. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  16. Analytic expressions for mode conversion in a plasma with a parabolic density profile: Generalized results

    International Nuclear Information System (INIS)

    Hinkel-Lipsker, D.E.; Fried, B.D.; Morales, G.J.

    1993-01-01

    This study provides an analytic solution to the general problem of mode conversion in an unmagnetized plasma. Specifically, an electromagnetic wave of frequency ω propagating through a plasma with a parabolic density profile of scale length L p is examined. The mode conversion points are located a distance Δ 0 from the peak of the profile, where the electron plasma frequency ω p (z) matches the wave frequency ω. The corresponding reflection, transmission, and mode conversion coefficients are expressed analytically in terms of parabolic cylinder functions for all values of Δ 0 . The method of solution is based on a source approximation technique that is valid when the electromagnetic and electrostatic scale lengths are well separated. For large Δ 0 , i.e., (cL p /ω) 1/2 much-lt Δ 0 p , the appropriately scaled result [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 559 (1992)] for a linear density profile is recovered as the parabolic cylinder functions asymptotically become Airy functions. When Δ 0 →0, the special case of conversion at the peak of the profile [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 1772 (1992)] is obtained

  17. Parabolic trough solar concentrators: a technology which can contribute towards pakistan's energy future

    International Nuclear Information System (INIS)

    Masood, R.

    2013-01-01

    The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)

  18. Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region

    International Nuclear Information System (INIS)

    Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa

    2014-01-01

    Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%

  19. Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector

    International Nuclear Information System (INIS)

    Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang

    2016-01-01

    Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.

  20. Optical analysis and performance evaluation of a solar parabolic dish concentrator

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available In this study, the optical design of a solar parabolic dish concentrator is presented. The parabolic dish concentrator consists from 11 curvilinear trapezoidal reflective petals made of polymethyl methacrylate with special reflective coating. The dish diameter is equal to 3.8 m and the theoretical focal point distance is 2.26 m. Numerical simulations are made with the commercial software TracePro from Lambda Research, USA, and the final optimum position between absorber and reflector was calculated to 2.075 m; lower than focus distance. This paper presents results for the optimum position and the optimum diameter of the receiver. The decision for selecting these parameters is based on the calculation of the total flux over the flat and corrugated pipe receiver surface; in its central region and in the peripheral region. The simulation results could be useful reference for designing and optimizing of solar parabolic dish concentrators as for as for CFD analysis, heat transfer and fluid flow analysis in corrugated spiral heat absorbers. [Projekat Ministarstva nauke Republike Srbije, br. III42006: Research and development of energy and environmentally highly effective polygeneration systems based on renewable energy resources i br. III45016: Fabrication and characterization of nanophotonic functional structures in biomedicine and informatics

  1. Space-DRUMS trade mark sign experimental development using parabolic reduced gravity flights

    International Nuclear Information System (INIS)

    Guigne, J.Y.; Millan, D.; Davidson, R.

    2000-01-01

    Space-DRUMS trade mark sign is a microgravity containerless-processing facility that uses acoustic beams to position large diameter liquid or solid samples within a gas-filled chamber. Its capacity to control the position of large diameter (6 cm) low density solid materials was successfully demonstrated on NASA's DC-9 parabolic aircraft in July 1996; two subsequent flights occurred in 1998 using the KC-135 and A-300 aircraft to further refine the technology used in the system. The working environment for the Space-DRUMS trade mark sign facility is the Space Shuttle/Space Station where long duration microgravity experimentation can take place. Since the reduced gravity environment of an A-300 or a KC-135 parabolic flight is much harsher than that of the Space Shuttle in terms of residual acceleration magnitudes experienced by the samples to be held in position; this more extreme environment allows for most Space-DRUMS trade mark sign technical payload functionality tests to be conducted. In addition to flight hardware shakedowns, parabolic flights continue to be extensively used to study and evaluate the behavior of candidate-advanced materials proposed for ISS Space-DRUMS trade mark sign campaigns. The first samples to be processed in 2001 involve combustion synthesis (also known as SHS - Self-propagating High Temperature Synthesis) of large glass-ceramic and of porous ceramic spheres. Upmassing Space-DRUMS trade mark sign for the International Space Station is scheduled for early 2001

  2. Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients

    KAUST Repository

    Matevosyan, Norayr

    2010-10-21

    In this paper we extend the results of Caffarelli, Jerison, and Kenig [Ann. of Math. (2)155 (2002)] and Caffarelli and Kenig [Amer. J. Math.120 (1998)] by establishing an almost monotonicity estimate for pairs of continuous functions satisfying u± ≥ 0 Lu± ≥ -1, u+ · u_ = 0 ;in an infinite strip (global version) or a finite parabolic cylinder (localized version), where L is a uniformly parabolic operator Lu = LA,b,cu := div(A(x, s)∇u) + b(x,s) · ∇u + c(x,s)u - δsu with double Dini continuous A and uniformly bounded b and c. We also prove the elliptic counterpart of this estimate.This closes the gap between the known conditions in the literature (both in the elliptic and parabolic case) imposed on u± in order to obtain an almost monotonicity estimate.At the end of the paper, we demonstrate how to use this new almost monotonicity formula to prove the optimal C1,1-regularity in a fairly general class of quasi-linear obstacle-type free boundary problems. © 2010 Wiley Periodicals, Inc.

  3. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2010-01-01

    In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario. (author)

  4. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  5. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.; Teichmann, Josef; Wolfram, Marie Therese

    2016-01-01

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present

  6. Decay Rates of Interactive Hyperbolic-Parabolic PDE Models with Thermal Effects on the Interface

    International Nuclear Information System (INIS)

    Lasiecka, I.; Lebiedzik, C.

    2000-01-01

    We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0 -a flat surface of the boundary Ω. Thus, the coupling between the wave and the plate takes place on the interface Γ 0 . The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the 'minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0 , suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0 ; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic

  7. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  8. Generalized heat-transport equations: parabolic and hyperbolic models

    Science.gov (United States)

    Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio

    2018-03-01

    We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.

  9. Sound Propagation Around Off-Shore Wind Turbines. Long-Range Parabolic Equation Calculations for Baltic Sea Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Lisa

    2003-07-01

    Low-frequency, long-range sound propagation over a sea surface has been calculated using a wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to investigate noise from off-shore wind turbines. The calculations are made using normal meteorological conditions of the Baltic Sea. Special consideration has been made to a wind phenomenon called low level jet with strong winds on rather low altitude. The effects of water waves on sound propagation have been incorporated in the ground boundary condition using a boss model. This way of including roughness in sound propagation models is valid for water wave heights that are small compared to the wave length of the sound. Nevertheless, since only low frequency sound is considered, waves up to the mean wave height of the Baltic Sea can be included in this manner. The calculation model has been tested against benchmark cases and agrees well with measurements. The calculations show that channelling of sound occurs at downwind conditions and that the sound propagation tends towards cylindrical spreading. The effects of the water waves are found to be fairly small.

  10. From Lévy-type processes to parabolic SPDEs

    CERN Document Server

    Quer-Sardanyons, Lluis

    2016-01-01

    This volume presents the lecture notes from two courses given by Davar Khoshnevisan and René Schilling, respectively, at the second Barcelona Summer School on Stochastic Analysis. René Schilling’s notes are an expanded version of his course on Lévy and Lévy-type processes, the purpose of which is two-fold: on the one hand, the course presents in detail selected properties of the Lévy processes, mainly as Markov processes, and their different constructions, eventually leading to the celebrated Lévy-Itô decomposition. On the other, it identifies the infinitesimal generator of the Lévy process as a pseudo-differential operator whose symbol is the characteristic exponent of the process, making it possible to study the properties of Feller processes as space inhomogeneous processes that locally behave like Lévy processes. The presentation is self-contained, and includes dedicated chapters that review Markov processes, operator semigroups, random measures, etc. In turn, Davar Khoshnevisan’s course inve...

  11. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  12. Solar parabolic dish Stirling engine system design, simulation, and thermal analysis

    International Nuclear Information System (INIS)

    Hafez, A.Z.; Soliman, Ahmed; El-Metwally, K.A.; Ismail, I.M.

    2016-01-01

    Highlights: • Modeling and simulation for different parabolic dish Stirling engine designs using Matlab®. • The effect of solar dish design features and factors had been taken. • Estimation of output power from the solar dish using Matlab®. • The present analysis provides a theoretical guidance for designing and operating solar parabolic dish system. - Abstract: Modeling and simulation for different parabolic dish Stirling engine designs have been carried out using Matlab®. The effect of solar dish design features and factors such as material of the reflector concentrators, the shape of the reflector concentrators and the receiver, solar radiation at the concentrator, diameter of the parabolic dish concentrator, sizing the aperture area of concentrator, focal Length of the parabolic dish, the focal point diameter, sizing the aperture area of receiver, geometric concentration ratio, and rim angle have been studied. The study provides a theoretical guidance for designing and operating solar parabolic dish Stirling engines system. At Zewail city of Science and Technology, Egypt, for a 10 kW Stirling engine; The maximum solar dish Stirling engine output power estimation is 9707 W at 12:00 PM where the maximum beam solar radiation applied in solar dish concentrator is 990 W/m"2 at 12:00 PM. The performance of engine can be improved by increasing the precision of the engine parts and the heat source efficiency. The engine performance could be further increased if a better receiver working fluid is used. We can conclude that where the best time for heating the fluid and fasting the processing, the time required to heat the receiver to reach the minimum temperature for operating the Solar-powered Stirling engine for different heat transfer fluids; this will lead to more economic solar dish systems. Power output of the solar dish system is one of the most important targets in the design that show effectiveness of the system, and this has achieved when we take

  13. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo

    2015-01-01

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  14. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  15. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  16. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  17. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  18. Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D parabolic potential barrier

    Science.gov (United States)

    Chruściński, Dariusz

    2006-04-01

    We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  19. Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations

    CERN Document Server

    Fragnelli, Genni

    2016-01-01

    The authors consider a parabolic problem with degeneracy in the interior of the spatial domain, and they focus on observability results through Carleman estimates for the associated adjoint problem. The novelties of the present paper are two. First, the coefficient of the leading operator only belongs to a Sobolev space. Second, the degeneracy point is allowed to lie even in the interior of the control region, so that no previous result can be adapted to this situation; however, different cases can be handled, and new controllability results are established as a consequence.

  20. The uniqueness of the solution for the definite problem of a parabolic variational inequality

    Directory of Open Access Journals (Sweden)

    Liping Song

    2016-12-01

    Full Text Available Abstract The uniqueness of the solution for the definite problem of a parabolic variational inequality is proved. The problem comes from the study of the optimal exercise strategies for the perpetual executive stock options with unrestricted exercise in financial market. Because the variational inequality is degenerate and the obstacle condition contains the partial derivative of an unknown function, it makes the theoretical study of the definite problem of the variational inequality problem very difficult. Firstly, the property which the value function satisfies is derived by applying the Jensen inequality. Then the uniqueness of the solution is proved by using this property and maximum principles.

  1. Specific heat of parabolic quantum dot with Dresselhaus spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, D., E-mail: sanjeevchs@gmail.com; Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad, India - 500046 (India); Mukhopadhyay, Soma [DVR College of Engineering & Technology, Kashipur, Medak, India - 502285 (India)

    2016-04-13

    The heat capacity of a two electron quantum dot with parabolic confinement in magnetic field in the presence of electron-electron interaction, Dresselhaus spin-orbit interaction (DSOI) has been studied. The electron-electron interaction has been treated by a model potential which makes the Hamiltonian to be soluble exactly. The RSOI has been treated by a unitary transformation and the terms up to second order in DSOI constants have been considered. The heat capacity is obtained by canonical averaging. So far no study has been reported in literature on the effect of DSOI on the heat capacity of quantum dot.

  2. Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis

    Directory of Open Access Journals (Sweden)

    Mathias Jais

    2008-01-01

    Full Text Available We consider the solvability of the semilinear parabolic differential equation \\[\\frac{\\partial u}{\\partial t}(x,t- \\Delta u(x,t + c(x,tu(x,t = \\mathcal{P}(u + \\gamma (x,t\\] in a cylinder \\(D=\\Omega \\times (0,T\\, where \\(\\mathcal{P}\\ is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach operator \\(\\mathcal{P}\\ from overdetermined boundary data.

  3. Stability of a laser cavity with non-parabolic phase transformation elements

    CSIR Research Space (South Africa)

    Litvin, IA

    2013-05-01

    Full Text Available aberration in high–power transversally pumped laser rods,” Opt. Commun. 259(1), 223–235 (2006). 14. A. G. Fox and T. Li, “Resonant Modes in a Maser Interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961). 15. O. Svelto, Principles of Lasers, 3rd edition.... Consequently the intra-cavity implementation of any non-conventional phase transformation elements or taking into account the thermal lensing which in general has a non-parabolic phase transformation [13], leads to a solution of the complicated Fox...

  4. Tracking local control of a parabolic trough collector; Control local de seguimiento cilindro parabolico ACE20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona, J I; Alberdi, J; Gamero, E; Blanco, J

    1992-07-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  5. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  6. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...

  7. Stabilization of the solution of a doubly nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Andriyanova, È R; Mukminov, F Kh

    2013-01-01

    The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles

  8. Justification of the averaging method for parabolic equations containing rapidly oscillating terms with large amplitudes

    International Nuclear Information System (INIS)

    Levenshtam, V B

    2006-01-01

    We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)

  9. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  10. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Directory of Open Access Journals (Sweden)

    Fatima G. Khushtova

    2016-03-01

    Full Text Available In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.

  11. Tracking local control of a parabolic trough collector. Control local de Seguimiento cilindro parabolico ACE 20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.

    1991-01-01

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)

  12. Tracking local control of a parabolic trough collector; Control local de Seguimiento cilindro parabolico ACE 20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.

    1991-12-31

    In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)

  13. Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed

    Science.gov (United States)

    Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.

    2004-01-01

    The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.

  14. Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction.

    Science.gov (United States)

    Gordon, J M; Rabl, A

    1992-12-01

    The properties of nonimaging compound parabolic concentrator (CPC)-type devices are examined in which the extreme direction is not constant but rather is a variable that can change along the reflector. One can then retain the maximal concentration or radiative efficiency of the CPC while the flux map on the absorber or target is modified, depending on whether the device is used for optical concentration or for lighting. Two general classes of reflector are derived, and all the nonimaging devices developed to date are shown to be special cases of the general solution. These two classes are the nonimaging analog of converging and diverging devices of imaging optics.

  15. An accurate solution of parabolic equations by expansion in ultraspherical polynomials

    International Nuclear Information System (INIS)

    Doha, E.H.

    1986-11-01

    An ultraspherical expansion technique is applied to obtain numerically the solution of the third boundary value problem for linear parabolic partial differential equation in one-space variable. The differential equation with its boundary and initial conditions is reduced to a system of ordinary differential equations for the coefficients of the expansion. This system may be solved analytically or numerically in a step-by-step manner. The method in its present form may be considered as a generalization of that of Dew and Scraton. The extension of the method to the polar-type equations is also considered. (author). 12 refs, 1 tab

  16. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity

    KAUST Repository

    Christoforou, Cleopatra

    2017-12-10

    We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

  17. A family of stadium-like billiards with parabolic boundaries under scaling analysis

    International Nuclear Information System (INIS)

    Livorati, Andre L P; Loskutov, Alexander; Leonel, Edson D

    2011-01-01

    Some chaotic properties of a family of stadium-like billiards with parabolic focusing components, which is described by a two-dimensional nonlinear area-preserving map, are studied. Critical values of billiard geometric parameters corresponding to a sudden change of the maximal Lyapunov exponent are found. It is shown that the maximal Lyapunov exponent obtained for chaotic orbits of this family is scaling invariant with respect to the control parameters describing the geometry of the billiard. We also show that this behavior is observed for a generic one-parameter family of mapping with the nonlinearity given by a tangent function.

  18. Complex energy eigenvalues of a linear potential with a parabolical barrier

    International Nuclear Information System (INIS)

    Malherbe, J.B.

    1978-01-01

    The physical meaning and restrictions of complex energy eigenvalues are briefly discussed. It is indicated that a quasi-stationary phase describes an idealised disintegration system. Approximate resonance-eigenvalues of the one dimensional Schrodinger equation with a linear potential and parabolic barrier are calculated by means of Connor's semiclassical method. This method is based on the generalized WKB-method of Miller and Good. The results obtained confirm the correctness of a model representation which explains the unusual distribution of eigenvalues by certain other linear potentials in a complex energy level [af

  19. Analysis of predicted and measured performance of an integrated compound parabolic concentrator (ICPC)

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R.; O' Gallagher, J.J.; Muschaweck, J.; Mahoney, A.R.; Dudley, V.

    1999-07-01

    A variety of configurations of evacuated Integrated Compound Parabolic Concentrator (ICPC) tubes have been under development for many years. A particularly favorable optical design corresponds to the unit concentration limit for a fin CPC solution which is then coupled to a practical, thin, wedge-shaped absorber. Prototype collector modules using tubes with two different fin orientations (horizontal and vertical) have been fabricated and tested. Comprehensive measurements of the optical characteristics of the reflector and absorber have been used together with a detailed ray trace analysis to predict the optical performance characteristics of these designs. The observed performance agrees well with the predicted performance.

  20. Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains

    International Nuclear Information System (INIS)

    Shishkov, A E; Shchelkov, A G

    1999-01-01

    A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain

  1. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  2. Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source

    Directory of Open Access Journals (Sweden)

    Pan Zheng

    2012-01-01

    Full Text Available We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul+uq,  (x,t∈RN×(0,T, where N≥1, p>2 , and m, l,  q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions.

  3. Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity

    KAUST Repository

    Christoforou, Cleopatra; Tzavaras, Athanasios

    2017-01-01

    We extend the relative entropy identity to the class of hyperbolic-parabolic systems whose hyperbolic part is symmetrizable. The resulting identity is useful to provide measure valued weak versus strong uniqueness theorems for the hyperbolic problem. Also, it yields a convergence result in the zero-viscosity limit to smooth solutions in an Lp framework. The relative entropy identity is also developed for the system of gas dynamics for viscous and heat conducting gases, and for the system of thermoviscoelasticity with viscosity and heat-conduction. Existing differences between the example and the general hyperbolic theory are underlined.

  4. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  5. Recovering a coefficient in a parabolic equation using an iterative approach

    Science.gov (United States)

    Azhibekova, Aliya S.

    2016-06-01

    In this paper we are concerned with the problem of determining a coefficient in a parabolic equation using an iterative approach. We investigate an inverse coefficient problem in the difference form. To recover the coefficient, we minimize a residual functional between the observed and calculated values. This is done in a constructive way by fitting a finite-difference approximation to the inverse problem. We obtain some theoretical estimates for a direct and adjoint problem. Using these estimates we prove monotonicity of the objective functional and the convergence of iteration sequences.

  6. Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field

    International Nuclear Information System (INIS)

    Hyman, J.M.; Rosenau, P.

    1984-01-01

    We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation

  7. Higher-order schemes for the Laplace transformation method for parabolic problems

    KAUST Repository

    Douglas, C.

    2011-01-01

    In this paper we solve linear parabolic problems using the three stage noble algorithms. First, the time discretization is approximated using the Laplace transformation method, which is both parallel in time (and can be in space, too) and extremely high order convergent. Second, higher-order compact schemes of order four and six are used for the the spatial discretization. Finally, the discretized linear algebraic systems are solved using multigrid to show the actual convergence rate for numerical examples, which are compared to other numerical solution methods. © 2011 Springer-Verlag.

  8. A parabolic variational inequality arising from the valuation of strike reset options

    Science.gov (United States)

    Yang, Zhou; Yi, Fahuai; Dai, Min

    A strike reset option is an option that allows its holder to reset the strike price to the prevailing underlying asset price at a moment chosen by the holder. The pricing model of the option can be formulated as a one-dimensional parabolic variational inequality, or equivalently, a free boundary problem, where the free boundary just corresponds to the optimal reset strategy adopted by the holder of the option. This paper is concerned with the theoretical analysis of the model. The existence and uniqueness of the solution are established. Furthermore, we study properties of the free boundary. The monotonicity and C smoothness of the free boundary are proven in some situations.

  9. Existence and decay of solutions of some nonlinear parabolic variational inequalities

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Nakao

    1980-01-01

    Full Text Available This paper discusses the existence and decay of solutions u(t of the variational inequality of parabolic type: ≧0for ∀v∈Lp([0,∞;V(p≧2 with v(t∈K a.e. in [0,∞, where K is a closed convex set of a separable uniformly convex Banach space V, A is a nonlinear monotone operator from V to V* and B is a nonlinear operator from Banach space W to W*. V and W are related as V⊂W⊂H for a Hilbert space H. No monotonicity assumption is made on B.

  10. The multi-layered ring under parabolic distribution of radial stresses combined with uniform internal and external pressure

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-04-01

    Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.

  11. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques

    Science.gov (United States)

    Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.

    2018-01-01

    The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper

  12. Experimental analysis of a Flat Plate Pulsating Heat Pipe with Self-ReWetting Fluids during a parabolic flight campaign

    Science.gov (United States)

    Cecere, Anselmo; De Cristofaro, Davide; Savino, Raffaele; Ayel, Vincent; Sole-Agostinelli, Thibaud; Marengo, Marco; Romestant, Cyril; Bertin, Yves

    2018-06-01

    A Flat Plate Pulsating Heat Pipe (FPPHP) filled with an ordinary liquid (water) and a self-rewetting mixture (dilutes aqueous solutions of long-chain alcohols with unusual surface tension behavior) is investigated under variable gravity conditions on board a 'Zero-g' plane during the 65th Parabolic Flight Campaign of the European Space Agency. The FPPHP thermal performance in terms of evaporator and condenser temperatures, start-up levels and flow regimes is characterized for the two working fluids and a power input ranging from 0 to 200 W (up to 17 W/cm2 at the heater/evaporator wall interface). The experimental set-up also includes a transparent plate enabling the visualization of the oscillating flow patterns during the experiments. For a low power input (4 W/cm2), the pulsating heat pipe filled with pure water is not able to work under low-g conditions, because the evaporator immediately exhibits dry-out conditions and the fluid oscillations stops, preventing heat transfer between the hot and cold side and resulting in a global increase of the temperatures. On the other hand, the FPPHP filled with the self-rewetting fluid runs also during the microgravity phase. The liquid rewets several times the evaporator zone triggering the oscillatory regime. The self-rewetting fluid helps both the start-up and the thermal performance of the FPPHP in microgravity conditions.

  13. Performance tests and efficiency analysis of Solar Invictus 53S - A parabolic dish solar collector for direct steam generation

    Science.gov (United States)

    Jamil, Umer; Ali, Wajahat

    2016-05-01

    This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.

  14. Behaviour of Human Hemodynamics under Microcavity –a Proposal for the 7th German Parabolic Flight Campaign

    Directory of Open Access Journals (Sweden)

    Vladimir Blazek

    2005-01-01

    Full Text Available All astronauts often feel uncomfortable during first encounter microgravity because of fluid shifts from the lower extremities to the head caused by weightlessness. Parabolic flights offer a great possibility for research of this phenomenon under “zero gravity”. With a combination of the optoelectronic sensor concepts PPG and PPGI and an ultrasound device it should be possible to measure all relevant parameters for description and further explanation of rapid fluid shifts along the body axis in humans during parabolic flights. A research team of the RWTH Aachen University and the Charité University Berlin will participate in the 7th German Parabolic Flight Campaign in September 2005 and perform the experiments under micro gravitation. A combination of used non-invasive strategies will reveal new insights into the human hemodynamics under microgravity conditions. The optoelectronic part of this interdisciplinary research experiment, details from the measuring setup, data collecting and post processing will be discussed.

  15. Study of the parabolic and elliptic approaches validities for a turbulent co-flowing jet

    Directory of Open Access Journals (Sweden)

    Mahmoud Houda

    2012-01-01

    Full Text Available An axisymmetric turbulent jet discharged in a co-flowing stream was studied with the aid of parabolic and elliptic approaches. The simulations were performed with two in-house codes. Detailed comparisons of data show good agreement with the corresponding experiments; and different behaviors of jet dilution were found in initial region at different ranges of velocities ratios. It has been found that the two approaches give practically the same results for the velocities ratios Ru ≤ 1.5. Further from this value, the elliptic approach highlights the appearance of the fall velocity zone and that’s due to the presence of a trough low pressure. This fall velocity has not been detected by the parabolic approach and that’s due to the jet entrainment by the ambient flow. The intensity of this entrainment is directly related to the difference between the primary (jet and the secondary flow (co-flow. In fact, by increasing the velocities ratios Ru, the sucked flux by the outer stream becomes more important; the fall velocity intensifies and changes into a recirculation zone for Ru ≥ 5.

  16. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu

    2015-12-01

    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  17. Performance and Simulation of a Stand-alone Parabolic Trough Solar Thermal Power Plant

    Science.gov (United States)

    Mohammad, S. T.; Al-Kayiem, H. H.; Assadi, M. K.; Gilani, S. I. U. H.; Khlief, A. K.

    2018-05-01

    In this paper, a Simulink® Thermolib Model has been established for simulation performance evaluation of Stand-alone Parabolic Trough Solar Thermal Power Plant in Universiti Teknologi PETRONAS, Malaysia. This paper proposes a design of 1.2 kW parabolic trough power plant. The model is capable to predict temperatures at any system outlet in the plant, as well as the power output produced. The conditions that are taken into account as input to the model are: local solar radiation and ambient temperatures, which have been measured during the year. Other parameters that have been input to the model are the collector’s sizes, location in terms of latitude and altitude. Lastly, the results are presented in graphical manner to describe the analysed variations of various outputs of the solar fields obtained, and help to predict the performance of the plant. The developed model allows an initial evaluation of the viability and technical feasibility of any similar solar thermal power plant.

  18. A review of Andasol 3 and perspective for parabolic trough CSP plants in South Africa

    Science.gov (United States)

    Dinter, Frank; Möller, Lucas

    2016-05-01

    Andasol 3 is a 50 MW parabolic trough concentrating solar power plant with thermal energy storage in Andalusia, southern Spain. Having started operating in 2011 as one of the first plants of its kind in Spain it has been followed by more than 50 in the country since. For the reason that CSP plants with storage have the potential to compete against fossil fuel fired plants much better than any other renewable energy source a long-term review of such a plant operating on a commercial scale is needed. With data at hand documenting Andasol 3's operation over the course of one year between July 2013 and June 2014 we intend to provide such a review. We calculated the plants overall efficiency, its capacity factor, the gross energy generation as well as auxiliary powers on a monthly basis to reflect upon its overall performance. It was also looked at the benefits caused by the thermal energy storage and especially how steadily and reliably the plant was able to operate. With basic background information about physical, geographical and meteorological aspects influencing the solar resource, its variation and a CSP plant's performance a qualitative estimation for a parabolic trough plant located in South Africa was made.

  19. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  20. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector

    International Nuclear Information System (INIS)

    Ceylan, İlhan; Ergun, Alper

    2013-01-01

    Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C

  1. Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation

    International Nuclear Information System (INIS)

    Lobón, David H.; Valenzuela, Loreto

    2013-01-01

    Using PTC (parabolic-trough solar collectors) for industrial thermal processes in the temperature range up to 300 °C is not new, but in recent years there is a boosted interest in this type of concentrating solar technology. One of the problems that arise when designing PTC solar fields is how to deal with the pressure losses which are critical when producing saturated steam directly in the collectors. Depending on the characteristics of the collector, mainly on the receiver diameter, and on the nominal process conditions defined, a solar field configuration can be feasible or not. This paper presents a sensitivity analysis done using a software tool developed to study the thermo-hydraulic behaviour of PTC systems using water-steam as heat transfer fluid. In the case study presented, a small-sized PTC designed for industrial process heat applications is considered, which has a focal length of 0.2 m, an aperture area of 2 m 2 , and its receiver pipe has an inner diameter of 15 mm. Varied process conditions are inlet water pressure, temperature, and mass flow rate, solar irradiance and incidence angle of solar radiation. Results show that working pressure definition is particularly critical to make feasible or not the direct steam generation in solar collectors. - Highlights: • DSG (Direct steam generation) in small-sized parabolic-trough collectors. • Thermo-hydraulic sensitivity analysis. • Influence of working pressure and receiver geometry in DSG process

  2. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    International Nuclear Information System (INIS)

    Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks

  3. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Morales, A.L. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-11-15

    The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks.

  4. Controllable parabolic lensed liquid-core optical fiber by using electrostatic force.

    Science.gov (United States)

    Tang, Chun Yin; Zhang, Xuming; Chai, Yang; Hui, Long; Tao, Lili; Tsang, Yuen H

    2014-08-25

    For typical optical fiber system, an external lens accessory set is required to adjust the optical path of output light, which however is limited by the fixed parameter of the lens accessory setup. Considering spherical aberration in the imaging process and its small focusable spot size, a complicated lens combination is required to compensate the aberration. This paper has demonstrated a unique method to fabricate liquid-core lensed fibers by filling water and NOA61 respectively into hollow Teflon AF fibers and silicate fiber, the radius of curvature of the liquid lens can be controlled by adjusting the applied voltage on the core liquid and even parabolic shape lens can be produced with enough applied voltage. The experiment has successfully demonstrated a variation of focal length from 0.628 mm to 0.111 mm responding to the change of applied voltage from 0V to 3.2KV (L = 2mm) for the Teflon AF fiber, as well as a variation of focal length from 0.274 mm to 0.08 mm responding to the change of applied voltage from 0V to 3KV (L = 2mm) for the silicate fiber. Further simulation shows that the focused spot size can be reduced to 2 µm by adjusting the refractive index and fiber geometry. Solid state parabolic lensed fiber can be produced after NOA61 is solidified by the UV curing.

  5. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  6. A Fovea Localization Scheme Using Vessel Origin-Based Parabolic Model

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Yu

    2014-09-01

    Full Text Available At the center of the macula, fovea plays an important role in computer-aided diagnosis. To locate the fovea, this paper proposes a vessel origin (VO-based parabolic model, which takes the VO as the vertex of the parabola-like vasculature. Image processing steps are applied to accurately locate the fovea on retinal images. Firstly, morphological gradient and the circular Hough transform are used to find the optic disc. The structure of the vessel is then segmented with the line detector. Based on the characteristics of the VO, four features of VO are extracted, following the Bayesian classification procedure. Once the VO is identified, the VO-based parabolic model will locate the fovea. To find the fittest parabola and the symmetry axis of the retinal vessel, an Shift and Rotation (SR-Hough transform that combines the Hough transform with the shift and rotation of coordinates is presented. Two public databases of retinal images, DRIVE and STARE, are used to evaluate the proposed method. The experiment results show that the average Euclidean distances between the located fovea and the fovea marked by experts in two databases are 9.8 pixels and 30.7 pixels, respectively. The results are stronger than other methods and thus provide a better macular detection for further disease discovery.

  7. Interaction between graviception and carotid baroreflex function in humans during parabolic flight-induced microgravity.

    Science.gov (United States)

    Ogoh, Shigehiko; Marais, Michaël; Lericollais, Romain; Denise, Pierre; Raven, Peter B; Normand, Hervé

    2018-05-10

    The aim of the present study was to assess carotid baroreflex (CBR) during acute changes in otolithic activity in humans. To address this question, we designed a set of experiments to identify the modulatory effects of microgravity on CBR function at a tilt angle of -2{degree sign}, which was identified to minimize changes in central blood volume during parabolic flight. During parabolic flight at 0g and 1g, CBR function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid pulse trains of neck pressure (NP) and neck suction (NS) ranging from +40 to -80 Torr; CBR control of HR (carotid-HR) and MAP (carotid-MAP) baroreflex function curves, respectively. The maximal gain (G max ) of both carotid-HR and carotid-MAP baroreflex function curves were augmented during microgravity compared to 1g (carotid-HR, -0.53 to -0.80 beats/min/mmHg, Pflight-induced acute change of otolithic activity may modify CBR function and identifies that the vestibular system contributes to blood pressure regulation under fluctuations in gravitational forces.

  8. Some characteristics of heat production by stationary parabolic, cylindrical solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Bojic, M.; Marjanovic, N.; Miletic, I.; Mitic, A. [Kragujevac Univ., Kragujevac (Serbia). Faculty of Mechanical Engineering; Stefanovic, V. [Nis Univ., Nis (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    The use of solar energy for heating, cooling and electricity production was discussed with particular reference to the use of a stationary, asymmetric solar concentrator for conversion of solar energy to heat using a reflector and absorber. The infinite length CP-0A type stationary parabolic, cylindrical solar concentrator for heat production consists of the absorber (with water pipes) and parabolic, cylindrical reflector (with a metal surface). It has a geometrical concentration ratio of up to 4. This paper reported on a study that used the CATIA computer software to investigate how direct solar radiation approaches the concentrator aperture and the concentrator reflector. The propagation of light rays inside the concentrator to reach the absorber surface was examined. The study showed that the solar ray either hits the absorber directly or it bounces one or several time from the concentrator reflector. The efficiency of light rays was also calculated as a function of angles of incident of solar rays and type of reflector surface. 5 refs., 8 figs.

  9. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  10. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Science.gov (United States)

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  11. Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector

    KAUST Repository

    Elmetennani, Shahrazed

    2017-09-01

    This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing the produced heat to follow a desired reference despite the unevenly varying solar irradiance. In addition to the unpredictable variations of the energy source, the parabolic solar collectors are subject to inhomogeneous distributed efficiency parameters affecting the heat production. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness with respect to disturbances. Thus, we propose a control strategy based on FOPID to achieve the control objectives. First, the FOPID controller is designed based on a linear approximate model describing the system dynamics under nominal working conditions. Then, the FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. Numerical simulations are carried out to evaluate the performance of the proposed FOPID controller. A comparison to the robust integer order PID is also provided. Robustness tests are performed for the nominal model to show the effectiveness of the FOPID. Furthermore, the proposed FOPID is numerically tested to control the distributed solar collector under real working conditions.

  12. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    Science.gov (United States)

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  13. A Novel Parabolic Trough Concentrating Solar Heating for Cut Tobacco Drying System

    Directory of Open Access Journals (Sweden)

    Jiang Tao Liu

    2014-01-01

    Full Text Available A novel parabolic trough concentrating solar heating for cut tobacco drying system was established. The opening width effect of V type metal cavity absorber was investigated. A cut tobacco drying mathematical model calculated by fourth-order Runge-Kutta numerical solution method was used to simulate the cut tobacco drying process. And finally the orthogonal test method was used to optimize the parameters of cut tobacco drying process. The result shows that the heating rate, acquisition factor, and collector system efficiency increase with increasing the opening width of the absorber. The simulation results are in good agreement with experimental data for cut tobacco drying process. The relative errors between simulated and experimental values are less than 8%, indicating that this mathematical model is accurate for the cut tobacco airflow drying process. The optimum preparation conditions are an inlet airflow velocity of 15 m/s, an initial cut tobacco moisture content of 26%, and an inlet airflow temperature of 200°C. The thermal efficiency of the dryer and the final cut tobacco moisture content are 66.32% and 14.15%, respectively. The result shows that this parabolic trough concentrating solar heating will be one of the heat recourse candidates for cut tobacco drying system.

  14. Control scheme for direct steam generation in parabolic troughs under recirculation operation mode

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, L.; Zarza, E. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, P.O. Box 22, E-04200 Tabernas, Almeria (Spain); Berenguel, M. [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, E-04120 Almeria (Spain); Camacho, E.F. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, E-41092 Sevilla (Spain)

    2006-01-15

    Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almeria (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained. (author)

  15. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    Science.gov (United States)

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  16. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  17. An Alternate Approach to Optimal L 2 -Error Analysis of Semidiscrete Galerkin Methods for Linear Parabolic Problems with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti

    2011-09-01

    In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.

  18. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  19. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    Science.gov (United States)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  20. A semi-parabolic wake model for large offshore wind farms based on the open source CFD solver OpenFOAM

    Directory of Open Access Journals (Sweden)

    Cabezón D.

    2014-01-01

    Full Text Available Wake effect represents one of the main sources of energy loss and uncertainty when designing offshore wind farms. Traditionally analytical models have been used to optimize and estimate power deficits. However these models have shown to underestimate wake effect and consequently overestimate output power [1, 2]. This means that analytical models can be very helpful at optimizing preliminary layouts but not as accurate as needed for an ultimate fine design. Different techniques can be found in the literature to study wind turbine wakes that include simplified kinematic models and more advanced field models, that solve flow equations with different turbulence closure schemes. See the review papers of Crespo et al. [3], Vermeer et al. [4], and Sanderse et al. [5]. Purely elliptic Computational Fluid Dynamics (CFD models based on the actuator disk technique have been developed during the last years [6–8]. They consider wind turbine rotor as a disk where a distribution of axial forces act over the incoming air. It is a fair approach but it can still be computationally expensive for big wind farms in an operative mode. With this technique still active, an alternative approach inspired on the parabolic wake models [9, 10] is proposed. Wind turbine rotors continue to be represented as actuator disks but now the domain is split into subdomains containing one or more wind turbines. The output of each subdomain is mapped onto the input boundary of the next one until the end of the domain is reached, getting a considerable decrease on computational time, by a factor of order 10. As the model is based on the open source CFD solver OpenFOAM, it can be parallelized to speed-up convergence. The near wake is calculated so no initial wind speed deficit profiles have to be supposed as in totally parabolic models and alternative turbulence models, such as the anisotropic Reynolds Stress Model (RSM can be used. Traditional problems of elliptic models related to