WorldWideScience

Sample records for incinerator operating parameters

  1. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  2. The hot demonstration operation of the incinerator

    International Nuclear Information System (INIS)

    Yan Kezhi; Zhang Zhetao; Fan Xianhua; Li Zhenliang

    1991-01-01

    The hot demonstration operation results of the incinerator designed and developed by CIAE described. During the operation, machine oil containing 3 H with the specific activity of 3.7 x 10 4 Bq/L to 3.7 x 10 7 6 Bq/L was burned. The concentration of 3 H in the off-gas after cleaning was about 286 Bq/m 3 . The process parameters, decontamination factors of radionuclides and the results of environmental monitoring and evaluation are also given in this report

  3. Guide of Evaluation of the Operation of Incinerators of Solid Waste in Costa Rica

    International Nuclear Information System (INIS)

    Herrera Sanchez, J.

    2001-01-01

    This project has as general objective to prepare, in accordance with the effective Costa Rica legislation, a guide to evaluate the operation of incinerators of solid waste in Costa Rica. For this, it was necessary to define the parameters and approaches to evaluate the operation of an incineration center, as well as to investigate the regulations related with the topic in our country and to detail the technical specifications of equipment of this nature.The guide embraces such aspects as the specifications of the equipment and chimney, the type of waste to incinerate, the control of gassy emissions and the administration of the scums, distributed in several sections: administration, legislation, waste type, details technician, control and operation. Initially, the state of operation of an incinerator belonging to a hospital center and the project of energy recycling that impels the National Industry of Cements are evaluated. A study of the current state of the incineration of waste in the country must monitor the gassy emissions, the variables of the water heater-chemical process and the operation conditions. For limitations in the availability of the data and for the non existence of similar studies in the country, some of the parameters proposed in the guide are not evaluated. According to spokesmen of the Ministry of Public Health, only five incinerators operate in the country. Of these, none has location permission, construction or sanitary permission of operation, and data on their operation conditions are not carried, neither control of the incinerated waste is taken, of its operation frequency and even less the generated gassy emissions. It is necessary to adapt the standards of emission of Costa Rica (PRONASA Report) to the international standards, incorporating new pollutants (dioxins, furanos) and appropriating the existent ones (solid particles). In the case of our country, the incineration should be constituted in a stage of the process of integral

  4. Operational experience with Seibersdorf low-level incinerator

    International Nuclear Information System (INIS)

    Chalupa, G.

    1987-01-01

    This report contains information about an excess air incinerator which burned low level β and γ wastes (also α up to determined limits). The incinerator was started up in 1980 and it is clear that in a technical plant of such magnitude, some changes and alterations will be needed to be overcome according to the experiences of operation. This paper - after a short description of the incinerator plant itself - gives a summary of some of the operation and the changes which are made in the plant according to these facts. A partial redesign of the incinerator plant in the first half of 1985 resulted in a very satisfying new design, which proved its superiority during the runs in 1985 and 1986

  5. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  6. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  7. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  8. Operation of a prototype high-level alpha solid waste incinerator

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.; Dworjanyn, L.O.

    1979-01-01

    A full-scale (5 kg waste/hour) controlled-air incinerator is presently being tested as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible wastes that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm and 252 Cf. Automatic feed preparation and incinerator operation and control have been incorporated into the design to simulate the future plant design which will minimize operator radiation exposure. Over 250 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr for periods up to 6 hours. Safety and reliability were major design objectives. Upon completion of an initial experimental phase to determine process sensitivity and flexibility, the facility will be used to develop bases for the production unit's safety analysis report, technical standards, and operating procedures. An ultimate use of the experimental unit will be the testing of actual production unit components and the training of Savannah River Plant operating personnel

  9. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  10. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  11. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  12. Operation of a pilot alpha waste incinerator at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1978-01-01

    The pilot incinerator was built and operated successfully at design throughput with simulated wastes. Operating ranges of stable incinerator performance were defined as a function of air and waste feed rates for different materials and mixtures of materials. The complete range of waste materials can be burned without producing tar or soot. The limiting capacity of this incinerator is 0.5 kg/h if all latex rubber is charged or approximately 0.84 kg/h with a waste mixture. Off-gas particulate sampling prior to scrubbing indicates negligible solid carryover. The only material which may present off-gas cleaning problems is a light white smoke which accompanies the burning of PVC. The incinerator was operated continuously between 850 and 1000 0 C from startup on September 6, 1977 until shutdown on February 2, 1978. The 3.6-kW electric heater for the primary combustion chamber burned out on January 13; however, adequate burning temperatures were provided by the eight 1.25-kW heaters in the afterburner to maintain sootless burning. As a result, future incinerator operation will be at 900 0 C rather than 1000 0 C. After 5 months of operation, the condition of the ceramics was very good, and the metal components showed no deterioration or serious corrosion. The incinerator was modified by installing a different design gas burner block, and two baffles and a choke in the afterburner to increase turbulence and mixing. It was started up again on February 27, 1978

  13. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  14. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  15. A chemical basis for the partitioning of radionuclides in incinerator operation

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-01-01

    Incineration as a method of treating radioactive or mixed waste is attractive because of volume reduction, but may result in high concentrations of some hazardous components. For safety reasons during operation, and because of the environmental impact of the plant, it is important to know how these materials partition between the furnace slay, the fly ash, and the stack emission. The chemistry of about 50 elements is discussed and through consideration of high temperature thermodynamic equilibria, an attempt is made to provide a basis for predicting how various radionuclides and heavy metals behave in a typical incinerator. The chemistry of the individual elements is first considered and a prediction of the most stable chemical species in the typical incinerator atmosphere is made. The treatment emphasizes volatility and the parameters considered are temperature, acidity, oxygen, sulfur, and halogen content, and the presence of several other key non-radioactive elements. A computer model is used to calculate equilibrium concentrations of many species in several systems at temperatures ranging from 500 to 1600 degrees K. It is suggested that deliberate addition of various feed chemicals can have a major impact on the fate of many radionuclides and heavy metals. Several problems concerning limitations and application of the data are considered

  16. Los Alamos controlled air incinerator upgrade for TRU/mixed waste operations

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Warner, C.L.; Thompson, T.K.

    1989-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is undergoing a major process upgrade to accept Laboratory-generated transuranic (TRU) and TRU mixed wastes on a production basis. In the interim,prior to the scheduled 1992 operation of a new on-site LLW/mixed waste incinerator, the CAI will also be accepting solid and liquid low-level mixed wastes. This paper describes major modifications that have been made to the process to enhance safety and ensure reliability for long-term, routine waste incineration operations. The regulatory requirements leading to operational status of the system are also briefly described. The CAI was developed in the mid-1970s as a demonstration system for volume reduction of TRU combustible solid wastes. It continues as a successful R and D system well into the 1980s during which incineration tests on a wide variety of radioactive and chemical waste forms were performed. In 1985, a DOE directive required Los Alamos to reduce the volume of its TRU waste prior to ultimate placement in the geological repository at the Waste Isolation Pilot Project (WIPP). With only minor modifications to the original process flowsheet, the Los Alamos CAI was judged capable of conversion to a TRU waste operations mode. 9 refs., 1 fig

  17. 40 CFR 60.2989 - Does this subpart directly affect incineration unit owners and operators in my State?

    Science.gov (United States)

    2010-07-01

    ... incineration unit owners and operators in my State? 60.2989 Section 60.2989 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced... incineration unit owners and operators in my State? (a) No, this subpart does not directly affect incineration...

  18. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  19. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  20. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  1. Operational readiness review for the TSCA incinerator start-up at the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    Jordan, Elizabeth A.; Murray, Alexander P.; Kiang, Peter M.

    1992-01-01

    The Department of Energy (DOE) Toxic Substances Control Act (TSCA) incinerator at Oak Ridge K-25 Site was designed in the early 1980's as a treatment alternative for the increasing quantities of radioactive mixed waste accumulating from gaseous diffusion plant (GDP) operations. The waste feed principally contains low assay uranium and PCBs, although listed solvents and heavy metal containing sludges have also be incinerated. Construction was completed in 1986 and the unit underwent an extensive series of tests and trial burns, because of the following unique characteristics: the incinerator treats radioactive mixed wastes; increased size of the incinerator for greater waste throughout and treatment capacity; expansion of the waste acceptance criteria to include materials and radionuclides from non-GDP operations, such as ORNL and Y-12; modifications and improvement to the Air Pollution Control (APC) system; treatment of large quantities and concentrations of PCB containing materials; projected longevity of operation (40 years); humid, Eastern location with a high, annual precipitation. The incinerator was initially fired in July, 1986. The full performance testing (with the APC) and DOE acceptance of the facility occurred a year later. The trial burn period lasted from 1988 through 1990. Numerous equipment problems were initially encountered, including excessive draft fan wear and failure. These problems have been overcome, the facility is fully permitted, DOE provided authorization for full operations in 1991, and, to date, over two million pounds of mixed waste have been incinerated, with an average volume reduction factor of approximately nine. This paper discusses the Office of Environmental Restoration and Waste Management Readiness Review for the incinerator. (author)

  2. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  3. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  4. Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin Woo; Kim, Su Ho; Sohn, Chae Hoon [Sejong Univ., Seoul (Korea, Republic of)

    2013-12-15

    The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of power plants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

  5. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  6. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  7. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  8. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  9. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  10. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  11. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  12. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-01-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions...... including ‘as-large-as-possible’ changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer...... coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely...

  13. Waste incineration and immobilization for nuclear facilities. Status report, April-September 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Williams, P.M.; Burkhardt, S.C.; Ledford, J.A.; Gallagher, K.Y.

    1980-01-01

    The fluidized bed incinerator and waste immobilization processes are being developed to process various liquid and solid wastes that are generated by a nuclear facility. The versatility of the incinerator liquid waste handling system has been enhanced by recent changes made in the pumping and related piping system. Tributyl phosphate-solvent incineration has been evaluated thoroughly using the pilot plant fluidized bed incinerator. Vitrified glass pellets were made to determine operating parameters of a resistance-heated reactor and to produce samples for testing. Procedures were developed for testing the product pellets. A simplified start-up procedure was devised as development continued on a second type of reactor, the Joule-heated melter

  14. Incineration ashes conditioning by isostatic pressing and melting

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Alpha-bearing solid incineration wastes are conditioned for two principal reasons: to enhance the quality of the finished product for long-term storage, and to reduce the total waste volume. Isostatic pressing parameters were defined using containers 36 mm in diameter; the physicochemical properties of the compacted ashes were determined with 140 mm diameter containers and industrial feasibility was demonstrated with a large (300 mm diameter) container. Two types of ashes were used: ashes fabricated at Marcoule (either in devices developed by the CEA for the MELOX project with a standard MELOX composition, or by direct incineration at COGEMA's UP1 plant) and fly ash from a domestic waste incinerator. A major engineering study was also undertaken to compare the three known ash containment processes: isostatic pressing, melting, and cement-resin matrix embedding. The flowsheet, operational chronology and control principles were detailed for each process, and a typical plant layout was defined to allow comparisons of both investment and operating costs

  15. Automation as a tool for safe and discontinuous operation of the KEMA incinerator

    International Nuclear Information System (INIS)

    Beuse, R.H.J.; Doorn, J.J. van; Eenink, A.H.; Gertsen, B.M.G.

    1985-01-01

    An automatic control system has been developed and implemented for the KEMA cyclone-type incinerator. This paper describes the process analysis and the development of a control program required to obtain carbon-free ashes and clean flue gases. The automatic control will allow the KEMA incinerator to burn solid low-level waste of various compositions and to be easily handled by one operator. An overview of the resulting control structure and some details of the implementation of the control structure are given. (orig.)

  16. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation.

    Science.gov (United States)

    Takeda, Nobuo; Takaoka, Masaki

    2013-04-01

    Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures.

  17. CFD simulation of MSW combustion and SNCR in a commercial incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zihong; Li, Jian; Wu, Tingting [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Chen, Caixia, E-mail: cxchen@ecust.edu.cn [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Zhang, Xiaoke [Shanghai Environment Group Company, 1881 Hongqiao Road, Shanghai 200336 (China)

    2014-09-15

    Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and the selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design and

  18. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Sales, W.L.; Barker, R.E.; Hershey, R.B.

    1980-01-01

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System

  19. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  20. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  1. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  2. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  3. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  4. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  5. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  6. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Richards, J.M.

    1989-01-01

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  7. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  8. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  9. Combustion aerosols from municipal waste incineration - Effect of fuel feedstock and plant operation

    DEFF Research Database (Denmark)

    Zeuthen, J.H.; Pedersen, Anne Juul; Hansen, Jørn

    2007-01-01

    ( NaCl), batteries, and automotive shredder waste. Also, runs with different changes in the operational conditions of the incinerator were made. Mass- based particle size distributions were measured using a cascade impactor and the number- based size distributions were measured using a Scanning...

  10. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Science.gov (United States)

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard...

  11. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  12. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  13. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  14. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  15. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  16. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  17. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  18. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  19. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  20. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  1. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  2. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  3. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  4. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  5. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  6. Incineration plant for thermal destruction of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Bartoli, B.; Lisbonne, P.

    1988-01-01

    Incineration was selected to destroy organic liquids contaminated by radioelements. This treatment offers the advantage of reducing the volume of wastes considerably. Therefore an incineration plant has been built within the nuclear research center of Cadarache. After an experimental work with inactive organic liquids from June 1980 to March 1981, the incineration plant was approved by safety authorities for the incineration of contaminated organic liquids. The capacity ranges from 20l/hr to 50l/hr. On the basis of 6 years of operation and a volume of 200 m3 the incineration plant has shown reliable operating conditions in the destruction of various contaminated organic liquids

  7. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  8. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  9. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  10. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  11. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  12. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  13. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  14. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  15. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  16. Controlled-air incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.; Thompson, T.K.; Warner, C.L.

    1978-01-01

    An overview of the LASL controlled-air incineration (CAI) program is provided through a description of the process, a summary of component selection and system design criteria, a statement of project status, and discussion of experimental and process improvement study plans. The results of the program will be used to formulate the design criteria and operating parameters for a production model controlled-air transuranic (TRU) waste incineration system and govern the construction and operation of a facility for this purpose. The objective of the LASL CAI project is to develop and demonstrate an effective, safe, and reliable process for volume reduction and chemical stabilization of TRU solid wastes using proven technology whenever possible. The benefits of this process will be realized in reduced handling and storage hazards potentials, lower packaging, transportation, and storage expenses, less storage space requirements, and fewer monitoring needs

  17. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  18. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  19. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  20. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  1. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  2. Performance history of the WERF incinerator

    International Nuclear Information System (INIS)

    Dalton, J.D.; Bohrer, H.A.; Smolik, G.R.

    1988-01-01

    As society's environmental conscience grows, diverse political economical, and social contentions cloud the issue of proper waste management. However, experience at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) demonstrates clearly that incineration is an effective component in responsible, long-term waste management. Using a simple but safe design, the WERF incinerator has successfully reduced the volume of low-level beta/gamma waste. This paper discusses some of the achievements and problems experienced during operation of the WERF incinerator

  3. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  4. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  5. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  6. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  7. Fuel optimization in a multi chamber incinerator by the moisture control of oily sludge and medical wastes

    International Nuclear Information System (INIS)

    Haider, I.; Hussain, S.; Khan, S.; Mehran, T.

    2011-01-01

    Experiments have been performed to study the effects of %age moisture content on fuel optimization during the waste feed combustion of oily sludge, medical waste and mix blend waste in a 50 kg/hr multi chamber incinerator installed at NCPC- ARL RWP. Intention is to find out the optimum and in compliance with NEQs incinerator performance at various moisture contents in the different waste feeds. Optimum performances of the incinerator, so that optimum operating moisture conditions, which has been used for multi purpose waste, feeds, may be defined. Three waste feeds of 10 kg batch size were used for the experimentation namely; Oily Sludge, Medical waste and Mix blend waste (oily sludge and medical), with the primary chamber preheating temperature 655 deg. C for 15 mins. interval monitoring. The secondary chamber temperature was set to 850 deg. C. By the data obtained it is apparent that rising the waste moisture content tend to increase fuel consumption specifically in case of medical waste and hence lowering the overall combustion efficiency. In the emissions the CO/sub 2/ concentration is showing the incineration efficiency. Higher efficiency of the system could have been achieved by increasing the CO/sub 2/ in the gases leaving the incinerator, lower fuel usage per kg waste feed and maintain proper operating conditions. Fuel consumption for the oily sludge with 10% moisture content, was found to be least as compared with the same %age of medical waste and mix blend waste. However environmental compliance of the operation is shown by the flue gas analysis. The results shows that using mix blend(oily sludge and medical) waste having 12-13% moisture content would be suitable for incineration in multi-chamber incinerator .Other makes it possible to determine the optimum incinerator temperature control settings and operating conditions, as well as to assure continuous, efficient, environmentally satisfactory operation. The optimum fuel consumption for 10 kg each waste

  8. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  10. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  11. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  12. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  13. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  14. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  15. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  16. Radioactive waste incinerator at the Scientific Ecology Group, Inc

    International Nuclear Information System (INIS)

    Dalton, J.D.; Arrowsmith, H.W.

    1990-01-01

    Scientific Ecology Group, Inc. (SEG) is the largest radioactive waste processor in the United States. This paper discusses how SEG recently began operation of the first commercial low-level radioactive waste incinerator in the United States. This incinerator is an Envikraft EK 980 NC multi-stage, partial pyrolysis, controlled-air unit equipped with an off-gas train that includes a boiler, baghouse, HEPA bank, and wet scrubber. The incinerator facility has been integrated into a large waste management complex with several other processing systems. The incinerator is operated on a continuous around-the-clock basis, processing up to 725 kg/hr (1,600 lbs/hr) of solid waste while achieving volume reduction ratios in excess of 300:1

  17. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  18. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  19. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  20. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  1. Technical report on dismantling of incinerator building of JNC with strict environmental assessments especially for the contamination of surroundings of incinerator by Dioxin's in soil

    International Nuclear Information System (INIS)

    Aizawa, Masanori; Ohmori, Koji; Nomura, Takeshi; Numano, Tatuo; Usui, Kazuya; Irinouchi, Shigenori

    2003-03-01

    Building of incinerator for general waste located at Tokai of Japan Nuclear Cycle Development Institute (JNC in short) were dismantled form April 2002 to March 2003 under environmental control According to the regulation entitled 'Outline for the prevention of exposure of Dioxin's to operators engaged in dismantling of waste incinerator' issued on June 01, 2000 by Ministry of Health, Labor and Welfare in Japan, the regulation requests proper protection methodology to dismantling the incinerator and surroundings contaminated by Dioxin's. This report consists of Environmental assessment under Japanese law and regulations and Procedure of actual dismantling of incinerator building with law-abiding stand point. 1. Environmental assessment; Survey of several laws and regulations concerning on the Dioxin's and actual site assessment to analyze the content of Dioxin's for surroundings of incinerator building. Ground design of dismantling procedures, waste management for disposed during dismantling and scheduling for dismantling of building. 2. Dismantling procedures; Prior to dismantling operation, contamination map by Dioxin's were established then restricted areas were determined. Protection methodology to dioxin's exposure for operators were selected and started dismantling operation after getting permission from the Labor Standards Bureau of Ibaraki Prefecture. Dismantling operations were carried out with respect o above mentioned regulations to prevent the operators exposure to Dioxin's if they are exists in soil or surroundings of building. Finally, dismantling operations were completed without accidents and confirmed no-exposure of Dioxin's to operators of dismantling. Waste generated during dismantling were recycled using specialized recycling companies in Ibaraki prefecture. Dismantling operation of incinerator was first experience at Ibaraki Prefecture, so the officials of Labor Standards Bureau were carried out on-the-spot inspection and have no claim from

  2. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  3. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  4. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  5. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  6. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  7. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  8. A new incinerator for burning radioactive waste

    International Nuclear Information System (INIS)

    Mallek, H.; Laser, M.

    1978-01-01

    A new two stage incinerator for burning radioactive waste consisting of a pyrolysis chamber and an oxidation chamber is described. The fly ash is retained in the oxidation chamber by high temperature filter mats. The capacity of the installed equipment is about 100 kg/h. Waste with different composition and different calorific value were successfully burnt. The operation of the incinerator can easily be controlled by addition of a primary air stream to the pyrolysis chamber and a secondary air stream to the oxidation chamber. During continuous operation the CO and C (organic) content is below 100 ppm and 50 ppm, respectively. The burn-out of the ash is very good. After minor changes the incinerator may be suitable for burning of α-bearing waste

  9. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  10. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  11. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  12. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  13. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  14. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.......Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...

  15. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  16. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    Science.gov (United States)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  17. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  18. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  19. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  20. Incineration of radioactive wastes at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, W; Hempelmann, W; Krause, H

    1976-06-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the fumes are cleaned by ceramic filter candles. After passing the filtering system and cooling, the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 l-drums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m/sup 3/ of combustible solids and about 60 m/sup 3/ organic solvents have been incinerated in the plant. The operating experiences are presented.

  1. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  2. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  3. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  4. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  5. Pollution prevention opportunity assessment for the K-25 Site Toxic Substances Control Act Incinerator Operations, Level III

    International Nuclear Information System (INIS)

    1995-09-01

    A Level III pollution prevention opportunity assessment (PPOA) was performed for the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator to evaluate pollution prevention (P2) options for various waste streams: The main objective of this study was to identify and evaluate options to reduce the quantities of each waste stream generated by the TSCA Incinerator operations to realize significant environmental and/or economic benefits from P2. For each of the waste streams, P2 options were evaluated following the US Environmental Protection Agency (EPA) hierarchy to (1) reduce the quantity of waste generated, (2) recycle the waste, and/or (3) use alternate waste treatment or segregation methods. This report provides process descriptions, identification and evaluation of P2 options, and final recommendations

  6. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  7. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  8. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  9. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F; Gadiou, R; Prado, G [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  10. Incinerator for power reactor low-level radioactive waste

    International Nuclear Information System (INIS)

    Drolet, T.S.; Sovka, J.A.

    1976-01-01

    The technique chosen for volume reduction of combustible waste is incineration by a propane-fired unit. Noncombustible material will be compacted into 200 liter drums. A program of segregation of wastes at the producing nuclear stations was instituted. The design and operation of the incinerator, dose limits to the public, and derived release limits for airborne effluents are discussed

  11. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  12. Incineration plant for radioactive waste at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hempelmann, W.; Krause, H.

    1977-02-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the flue gases are cleaned by ceramic filter candles. After passing the filtering system and cooling the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 ldrums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m 3 of combustible solids and about 60 m 3 organic solvents have been incinerated in the plant. The operating experiences are presented. (orig.) [de

  13. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  14. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  16. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  18. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  19. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  20. Waste incineration and immobilization for nuclear facilities, April--September 1977

    International Nuclear Information System (INIS)

    Johnson, A.J.; Fong, L.Q.

    1978-01-01

    Fluidized bed incineration and waste immobilization processes are being developed to process the types of waste expected from nuclear facilities. An air classification system has been developed to separate tramp metal from shredded combustible solid waste prior to the waste being fed to a fluidized-bed pilot-plant incinerator. Used organic ion exchange resin with up to 55 percent water has been effectively burned in the fluidized bed incinerator. Various methods of feeding waste into the incinerator were investigated as alternatives to the present compression screw; an extrusion ram was found to suffer extensive damage from hard particles in tested waste. A bench-scale continuous waste immobilization process has been operated and has produced glass from incinerator residue and other types of waste materials

  1. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  2. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  3. 40 years of experience in incineration of radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Deckers, J.; Luycx, P.; Detilleux, M.; Beguin, Ph.

    2001-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities; several R and D projects were realised in this specific field and different facilities were erected and operated. An experimental furnace ''Evence Coppee'' was built in 1960 for treatment of LLW produced by the Belgian Research Centre (SCK/CEN). Regularly this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years experience gained by the operation of the ''Evence Coppee'', a completely new industrial incineration installation has been designed in the nineties and commissioned in May 1995, in the frame of the erection of the Belgian Centralised Treatment/Conditioning Facility CILVA. At the end of 1998, the new furnace has burnt 455 tons of solid waste and 246 tons of liquid waste. Besides the conventional incineration process, a High Temperature Slagging Incinerator (HTSI) has been developed, constructed and operated for 10 years in the past. This installation was the combination of an incinerator and a melter producing melted granulated material instead of ashes, and provided experience in the incineration of hazardous waste, such as chlorinated organic compounds and waste with PCB content. The paper presents ''the Belgian Experience'' accumulated year after year with the design and the operation of the above mentioned facilities and demonstrates how the needs required today for a modern installation are met. The paper covers the following aspects; design particularities and description of the systems, operational results for different solid waste categories (bulk waste, precompacted waste, ion exchange resins) and for different liquid waste categories (organic, aqueous, oil), required pretreatment of the waste, ashes conditioning

  4. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  5. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  6. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  7. CO{sub 2} laser-aided waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Costes, J R; Guiberteau, P [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement; Caminat, P; Bournot, P

    1994-12-31

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg{sup -h-1} using a 7 kW CO{sub 2} laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs.

  8. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  9. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  10. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  11. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  12. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities - State-of-the-art. State-of-the-art of environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities. Synthesis

    International Nuclear Information System (INIS)

    Chassagnac, T.; Cornet, C.; Mathieu, L.

    2005-10-01

    Since the beginning of the 70's, the growing concern from the public opinion and the scientific community for the waste incineration issue made people aware of a number of difficulties of the process and the potential risks linked to it. For example checking the good functioning conditions of the facilities has been made compulsory through the continuous emission monitoring of a number of parameters. The ministerial decree from the 20 September 2002 brings something new: the monitoring of the impact of the facilities on its nearby environment. This monitoring comes in addition to the existing continuous monitoring of some gaseous compounds of the incineration process, and widens the scale of the monitoring to the environment of the incineration facilities. But there is no further information in the ministerial decree about the methods available to match this requirement. Incineration facilities' managers have to face a close deadline (28 December 2005) and have to make the optimal choice of a technique matching these requirements but also the needs of their facilities. The aim of this study is to help incineration facilities' managers thanks to an overview as large as possible of the different techniques available. Managers will have to take into account the characteristics of the methods and their adequacy with the local contexts of their sites. This document is meant to be a support for dealing with this issue. (authors)

  14. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  15. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  16. Rotary kiln incinerator engineering tests on simulated transuranic wastes from the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Pattengill, M.G.; Brunner, F.A.; Fasso, J.L.; Mitchel, S.R.; Praskac, R.T.

    1982-09-01

    Nine rotary kiln incineration tests were performed at Colorado School of Mines Research Institute on simulated transuranic waste materials. The rotary kiln incinerator used as 3 ft ID and 30 ft long and was included in an incineration system that also included an afterburner and a baghouse. The purpose of the incineration test program was to determine the applicability and operating characteristics of the rotary kiln with relation to the complete incineration of the simulated waste materials. The results of the study showed that the rotary kiln did completely incinerate the waste materials. Off-gas determinations showed emission levels of SO 2 , NO/sub x/, H 2 SO 4 , HC1, particulate loading, and hydrocarbons, as well as exhaust gas volume, to be within reasonable controllable ranges in a production operation. Included in the report are the results of materials and energy balances, based upon data collected, and design recommendations based upon the data and upon observations during the incineration operation

  17. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  18. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  19. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  20. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  1. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  2. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  3. Technical investigation in solid waste to energy facilities and selection of suitable incineration technology for Tehran

    International Nuclear Information System (INIS)

    Mokarizdeh, V.; Lari, H.R.

    2001-01-01

    Incineration is another way for producing electrical energy. There are various methods for incineration as Stoker Fired, Suspension Fired, Rotary Kiln, Cyclone and Fluidized Bed; that each one has it's own advantages and disadvantages. Selecting suitable one for establishment in Tehran depends on many parameters like technical, economical and environmental factors. Comparing the various technologies due to the mentioned parameters by Multi Criteria Decision Making method shows that stoker-fired incinerator is the best one for the Capital City

  4. A demonstration program to evaluate centralized LLW Incineration

    International Nuclear Information System (INIS)

    Burian, R.J.

    1984-01-01

    Dramatic increases in low level waste burial charges in the last five years have spurred interest in achieving higher volume reduction than currently achieved by compaction. Battelle has completed a planning study to demonstrate the technical and economic feasibility of central site incineration for dry active waste to service several generators within a geographical area. We initiated licensing by the USNRC and Ohio EPA and developed plans, procedures, and estimated costs for licensing, construction, operation, and decommissioning of a central site incinerator. In addition, acceptance criteria were established for incoming waste. Response from the NRC and Ohio EPA indicated that no major obstacles existed toward obtaining licenses. The economic study indicated that a commercial incineration operation lasting 20 years or more was economically advantageous over direct burial of compacted waste, assuming that burial costs continue to escalate at their current rates. However, a 5-year demonstration period was not economically advantageous because of the short period to recover the fixed capital investment

  5. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    International Nuclear Information System (INIS)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-01-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  6. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  7. Costs of head-end incineration with respect to Kr separation in the reprocessing of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Barnert-Wiemer, H.; Boehnert, R.

    1976-07-15

    The C-incinerations and the Kr-separations during head-end incineration in the reprocessing of HTR fuel elements are described. The costs for constructing an operating a head-end incineration of reprocessing capacities with 5,000 to 50,000 MW(e)-HTR power have been determined. The cost estimates are divided into investment and operating costs, further after the fraction of the N/sub 2/-content in the incineration exhaust gas, which strongly affects costs. It appears that, in the case of Kr-separation from the incineration exhaust gas, the investment costs as well as the operating costs of the head-end for N/sub 2/-containing exhaust gas are considerably greater than those for gas without N/sub 2/. The C-incineration of the graphite of the HTR fuel elements should therefore only be performed with influx gas that is free of N/sub 2/.

  8. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  9. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    International Nuclear Information System (INIS)

    Beylot, Antoine; Villeneuve, Jacques

    2013-01-01

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO x emissions. • E.g. climate change impact ranges from −58 to 408 kg CO 2 -eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO 2 -eq to a relatively large burden of 408 kg CO 2 -eq, with 294 kg CO 2 -eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO x process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available

  10. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  11. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  12. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  13. The incineration of low-level radioactive waste: A report for the Advisory Committee on Nuclear Waste

    International Nuclear Information System (INIS)

    Long, S.W.

    1990-06-01

    This report is a summary of the contemporary use of incineration technology as a method for volume reduction of LLW. It is intended primarily to serve as an overview of the technology for waste management professionals involved in the use or regulation of LLW incineration. It is also expected that organizations presently considering the use of incineration as part of their radioactive waste management programs will benefit by gaining a general knowledge of incinerator operating experience. Specific types of incineration technologies are addressed in this report, including designation of the kinds of wastes that can be processed, the magnitudes of volume reduction that are achievable in typical operation, and requirements for ash handling and off-gas filtering and scrubbing. A status listing of both US and foreign incinerators provides highlights of activities at government, industry, institutional, and commercial nuclear power plant sites. The Federal and State legislative structures for the regulation of LLW incineration are also described. 84 refs., 33 tabs

  14. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  15. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  17. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  18. Alpha waste incinerator at the Cea Valduc

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cea/Valduc has brought into operation an incinerator for alpha waste. The incineration is in two steps. The first one is a pyrolysis under reduction atmosphere in a furnace at 550 celsius degrees and the second one is a calcination under oxidizing atmosphere of the pyrolysis residue in a furnace at 900 celsius degrees. The ashes have less than 1% of carbon. The gas coming from incineration become oxidized at 1100 Celsius degrees, then are cooled, filtered to eliminate any track of radioactivity. Then, they are cleaned with a neutralisation process. The facility reduces the volume of waste in a factor 20. The capacity of treatment is 7 kg/h. The annual capacity is 30 m 3 . The investment represents 70 millions of francs and the cost of functioning is 2 M F by year. (N.C.)

  19. Design, operation and management of waste incinerators; Design, Betrieb und Management von Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U; Swithenbank, J; Nasserzadeh, V; Ewan, B; Lee, P H [Sheffield Univ. (United Kingdom). Waste Incineration Centre; Lawrence, D; Garrod, N P [Sheffield Heat and Power Ltd. (United Kingdom); Jones, B; Sykes, G [Sheffield Incinerator Plant (United Kingdom); Bernet, U [Electrowatt Engineering Ltd. (Switzerland)

    1998-09-01

    Design of combustion chambers for solid residues combution is hampered by the non-existence of accurate mathematical models of the combustion process, so that semi-empirical correlations must be used. Modern flow simulation programs (computational fluid dynamics), on the other hand, offer the pssibility of predicting flow in the gaseous phase although further tests are still required for validation. Since experiments on a laboratory scale hardly ever provide reliable data material, research in the field of waste incineration must make tests on industrial-scale systems. For this reason, the Sheffield University Waste Incineration Centre (SUWIC) cooperated with Sheffield Heat and Power Ltd and was therefore able to carry out extensive research at the Bernard Road waste incinerator in Sheffield. (orig./SR) [Deutsch] Die Konstruktion von Feueraeumen zur Feststoffverbrennung wird dadurch behindert, dass kein genaues mathematisches Modell fuer den Verbrennungsprozess existiert. Statt dessen muss noch immer auf halb-empirische Korrelationen zurueckgegriffen werden. Aufgrund moderner Stroemungssimulationsprogramme (Computational Fluid Dynamics) ist hingegen die Vorhersage des Stroemungsverhaltens der Gasphase in Verbrennungsanlagen weiter entwickelt, obwohl zusaetzliche Tests zur Validierung noch erforderlich sind. Da Versuche im Testmassstab selten verlaessliches Datenmaterial liefern, ist die Forschung im Bereich der Muellverbrennung auf Tests an Grossanlagen angewiesen. Dank der guten Beziehungen zu Sheffield Heat and Power Ltd hat Sheffield University Waste Incineration Centre (SUWIC) an der Bernard Road Muellverbrennungsanlage in Sheffield ein umfangreiches Forchungsprogramm durchfuehren koennen. (orig./SR)

  20. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  1. Development of fission micro-chambers for nuclear waste incineration studies

    CERN Document Server

    Fadil, M; Christophe, S; Deruelle, O; Fioni, G; Marie, F; Mounier, C; Ridikas, D; Trapp, J P

    2002-01-01

    The Incineration by Accelerator (INCA) project of the Directorate for Science of Matter of the French Atomic Energy Authority (CEA/DSM) aims to outline the ideal physical conditions to transmute minor actinides in a high intensity neutron flux obtained either by hybrid systems or innovative critical reactors. To measure on-line the incineration rates of minor actinides, we are developing an innovative Double Deposit Fission Chamber (DDFC) working in current mode. Our method is based on a comparison between the isotope under study and a reference material whose nuclear parameters are well known, as sup 2 sup 3 sup 5 U and sup 2 sup 3 sup 9 Pu. This new fission chamber will be used in the High Flux Reactor in Grenoble/France in a neutron flux of 1.2x10 sup 1 sup 5 n cm sup - sup 2 s sup - sup 1 for 50 days, the operating cycle of the reactor. These specific experimental conditions require substantial modifications of the existing chambers. The first experiment will be carried out in fall 2000.

  2. Emissions and dioxins formation from waste incinerators; Emissioni di diossine da inceneritori

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  3. Resolution of USQ regarding source term in the 232-Z Waste Incinerator Building

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1995-09-01

    The 232-Z Waste Incinerator at the Hanford Plutonium Finishing Plant (PFP) was used to incinerate plutonium-bearing combustible materials generated during normal plant operations. Nondestructive (NDA) measurements performed after the incinerator ceased operations indicated high plutonium loadings in exhaust ductwork near the incinerator glovebox, while the incinerator was found to have only low quantities. Measurements, following a campaign to remove some of the ductwork, resulted in markedly higher assay value for the incinerator glovebox itself. Subsequent assays confirmed the most recent results and pointed to a potential further underestimation of the holdup, in part because of attenuation due to fire brick, which could not be seen easily and which had been reported to not be present. NaI detector based measurements were used to map the deposits. Extended count times, using high resolution Ge detectors helped estimate the isotopic composition of the plutonium and quantify the deposits. Experiments were performed using a Ge detector to obtain adequate corrections for the high attenuation of the incinerator glovebox. Several neutron detectors and detector configurations were employed to understand and quantify the neutron flux. Due to the disparity that was anticipated to occur between the gamma ray and neutron assay results, radiation modeling was used to try to reconcile the divergent results. This was a third aspect of the team's effort, utilizing computer modeling to resolve discrepancies between measurement methods

  4. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  5. CLOSURE OF A DIOXIN INCINERATION FACILITY

    Science.gov (United States)

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  6. The Controlled-Air Incinerator at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Newmyer, J.N.

    1994-04-01

    The Controlled-Air Incinerator (CAI) at Los Alamos is being modified and upgraded to begin routine operations treating low-level mixed waste (LLMW), radioactively contaminated polychlorinated biphenyl (PCB) wastes, low-level liquid wastes, and possibly transuranic (TRU) wastes. This paper describes those modifications. Routine waste operations should begin in late FY95.

  7. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  8. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  9. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  10. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  11. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  12. Treatment of waste incinerator air-pollution-control residues with FeSO4: Laboratory investigation of design parameters

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Christensen, Thomas Højlund; Lundtorp, Kasper

    2002-01-01

    supplied, the liquid-to-solid ratio of the process, the separation of solids and wastewater, the sequence of material mixing, the possibilities of reuse of water, the feasibility of using secondary (brackish) water, and simple means to improve the wastewater quality. The investigation showed...... that an optimum process configuration could be obtained yielding a stabilised solid product with low leaching of heavy metals and a dischargable wastewater with high contents of salts (in order to remove salts from the solid product) and low concentrations of heavy metals. The amount of iron added to the APC......The key design parameters of a new process for treatment of air-pollution-control (APC) residues (the Ferroxprocess) were investigated in the laboratory. The optimisation involved two different APC-residues from actual incinerator plants. The design parameters considered were: amount of iron oxide...

  13. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  14. Conventional incinerator redesign for the incineration of low level radioactive solid wastes.; Rediseno de un incinerador convencional para la incineracion de desechos radiactivos de bajo nivel.

    Energy Technology Data Exchange (ETDEWEB)

    Lara Z, L E.C.

    1997-04-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author).

  15. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  16. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  17. Small-scale medical waste incinerators - experiences and trials in South Africa

    International Nuclear Information System (INIS)

    Rogers, David E.C.; Brent, Alan C.

    2006-01-01

    Formal waste management services are not accessible for the majority of primary healthcare clinics on the African continent, and affordable and practicable technology solutions are required in the developing country context. In response, a protocol was established for the first quantitative and qualitative evaluation of relatively low cost small-scale incinerators for use at rural primary healthcare clinics. The protocol comprised the first phase of four, which defined the comprehensive trials of three incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial incinerators, but a panel of experts considered the incinerators to be more acceptable compared to the other waste treatment and disposal options available in under-serviced rural areas. However, the incinerators must be used within a safe waste management programme that provides the necessary resources in the form of collection containers, maintenance support, acceptable energy sources, and understandable operational instructions for the incinerators, whilst minimising the exposure risks to emissions through the correct placement of the units in relation to the clinic and the surrounding communities. On-going training and awareness building are essential in order to ensure that the incinerators are correctly used as a sustainable waste treatment option

  18. Radioactive substances detection at solid waste incinerators entrance

    International Nuclear Information System (INIS)

    Bourjat, V.; Carre, J.; Perrier-Rosset, A.

    2001-01-01

    SYCTOM'S incinerators, operated by TIRU will soon be fitted out with radioactivity control systems to prevent entrance of radioactive waste. Such implementation aims at reducing health risks due to exposition of operators working in incinerators or in sites receiving incineration residues. Radioactive wastes are supposed to be well managed: in the case where the radioactive elements period is short, they have to be stored for a precise time; in all the other cases, a statutory organism dealing with radioactive waste (ANDRA) has to take charge of them. Meanwhile they may arrived in incinerators by mistake. It's difficult to regulate radioactivity control systems for technical reasons; the measured values can be really different from these in the truck because of radiation decreasing; moreover it can't be correlated to an activity, hence it can't be compared to exemption values or to the limits that characterise a radioactive substance. It can explain why regulated documents don't indicate the way to fix alarm threshold. Implementing such a system is not sufficient: when the alarm sound, the following steps can be applied: checking the missing of interference, potential truck return to sender, putting the truck in quarantine, information of authorities and main actors, calling on a specialize company to locate, extract and package the radiation source, storage of this source and spectrometric analysis to identify and quantify the radioactive elements in order to determinate its way of elimination. (authors)

  19. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  20. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. TRU waste cyclone drum incinerator and treatment system: January--March 1978

    International Nuclear Information System (INIS)

    Klingler, L.M.; Batchelder, D.M.; Lewis, E.L.

    1978-01-01

    The cyclone incinerator was operated throughout the past quarter, generating additional data on system characteristics, equipment life expectancies, and by-product generation. Several changes in the incinerator system are in various stages of completion. The lid assembly, secondary chamber, and expansion unit for the new exhaust equipment are nearly ready for installation. A new heat exchanger has been installed in the scrubber system. An ash handling system has been designed for possible future addition to the system. Continuing studies will determine the best delivery mechanism for continuously feeding the cyclone incinerator. Preliminary investigations are being conducted to select an independent system to treat incinerator scrubber solution for recycling and to remove salts and sludge for disposal. Metal samples of two possible materials for incinerator construction were examined for corrosion degradation suffered at the incinerator exhaust outlet. Controlled experiments were conducted on the pressed ash-cement pellet matrix to define compressive strength, mechanical stability, density, and effect of curing environment (wet cure and dry cure). Leachability studies were initiated on pressed sludge/cement matrix in distilled water at ambient temperature. Compressive strengths of sludge/cement pressed matrix samples were investigated. Physical and chemical attributes of incinerated ash were evaluated in relationship to the ash/cement matrix

  2. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    Science.gov (United States)

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  3. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  5. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  6. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1985-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  7. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1986-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  8. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  9. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    Science.gov (United States)

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  10. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  11. Incineration as a radioactive waste volume reduction process for CEA nuclear centers

    International Nuclear Information System (INIS)

    Atabek, R.; Chaudon, L.

    1994-01-01

    Incineration processes represent a promising solution for waste volume reduction, and will be increasingly used in the future. The features and performance specifications of low-level waste incinerators with capacities ranging from 10 to 20 kg - h -1 at the Fontenay-aux-Roses, Grenoble and Cadarache nuclear centers in France are briefly reviewed. More extensive knowledge of low-level wastes produced in facilities operated by the Commissariat a l'Energie Atomique (CEA) has allowed us to assess the volume reduction obtained by processing combustible waste in existing incinerators. Research and development work is in progress to improve management procedures for higher-level waste and to build facilities capable of incinerating α - contaminated waste. (authors). 6 refs., 5 figs., 1 tab

  12. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  13. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  14. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  15. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  16. Monitoring PCDD/Fs in soil and herbage samples collected in the neighborhood of a hazardous waste incinerator after five years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, M.; Bocio, A.; Schuhmacher, M.; Liobet, J.M.; Domingo, J.L. [Rovira i Virgili Univ., Reus (Spain); Diaz-Ferrero, J. [Inst. Quimic de Sarria, Barcelona (Spain)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are among the most dangerous environmental pollutants, usually generated during combustion processes. Until recently, waste incineration was widely referenced as one of the most important sources of PCDD/F release to the atmosphere. In 1999, the only hazardous waste incinerator (HWI) in Spain began regular operations. This facility is placed in Tarragona, Catalonia. The presence of this HWI, as well as that of a municipal solid waste incinerator (MSWI) at a few kilometers, increased the concern of the public opinion in relation to the potential toxic emissions, especially those of metals and PCDD/Fs, which could affect the health of the population living in the area. Previously to regular operations (1996) the baseline levels of PCDD/Fs in soil and vegetation samples collected near the HWI were determined. A second survey was carried out two years later (1998) in order to establish the temporal variation in PCDD/F concentrations in soil and vegetation samples taken at the same sampling points. Vegetation is considered an adequate short-term environmental monitor for PCDD/Fs. Therefore, in the surveillance program of the facility (1999-2003), herbage samples (40) were annually collected at the same sampling points in which baseline samples had been taken. Moreover, considering soil as a suitable long-term monitor for PCDD/Fs, 40 soil samples in this matrix were again collected in 2001 and 2003 to examine the temporal variations of PCDD/F levels in the area. In the present study, we present the concentrations of PCDD/Fs in soil and vegetation samples collected in the vicinity of the HWI after 5 years of regular operations.

  17. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  18. Experimental study of the energy efficiency of an incinerator for medical waste

    International Nuclear Information System (INIS)

    Bujak, J.

    2009-01-01

    The aim of this paper is to explore the flux of usable energy and the coefficient of energy efficiency of an incinerator for medical waste combustion. The incineration facility incorporates a heat recovery system. The installation consists of a loading unit, a combustion chamber, a thermoreactor chamber, and a recovery boiler. The analysis was carried out in the Oncological Hospital in Bydgoszcz (Poland). The primary fuel was comprised of medical waste, with natural gas used as a secondary fuel. The study shows that one can obtain about 660-800 kW of usable energy from 100 kg of medical waste. This amount corresponds to 1000-1200 kg of saturated steam, assuming that the incinerator operates at a heat load above φ > 65%. The average heat flux in additional fuel used for incinerating 100 kg of waste was 415 kW. The coefficient of energy efficiency was set within the range of 47% and 62% depending on the incinerator load. The tests revealed that the flux of usable energy and the coefficient of energy efficiency depend on the incinerator load. In the investigated range of the heat load, this dependence is significant. When the heat load of the incinerator increases, the flux of usable energy and the coefficient of energy efficiency also increase.

  19. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  20. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  1. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.

    Science.gov (United States)

    Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J

    2012-12-01

    There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.

  2. Envirotoxins from waste incineration - how does the supervision work?; Miljoegifter fraan avfallsfoerbraenningen - hur fungerar tillsynen?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    Incineration of household wastes has increased rapidly in Sweden during the last few years, and new plants are being built. The volume of residues from waste incineration is expected to grow from 450,000 tons in 1999 to 1,100,000 tons in 2008. The National Audit Office (SNAO) has made an inquiry into the supervision by responsible authorities of incineration plants and landfills in order to how the environmental legislation is applied in practise. The investigation includes case studies of six incineration plants and seven landfills where the residues from the plants are disposed. The supervision is part of a complex system made up of state, local and private actors who all have a responsibility for applying the environmental legislation. SNAO has found serious shortcomings in the operational supervision of all incineration plants studied and several landfills concerning the risk of toxins leaching into the environment. SNAO also points at the lack of knowledge at the Swedish EPA regarding the potential environmental problems of incineration residues and the need for evaluation of the supervisory function. SNAO recommends that the government take an initiative for making more detailed demands in the environmental legislation, and that the Swedish EPA should improve its knowledge about the quality of the operational supervision in accordance with the legislation.

  3. A comparative study of PCDD/F emissions from medical and industrial waste incinerators in Medellin-Colombia (South America)

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal, B; Montes, C; Cobo, M [Antioquia Univ., Medellin (Colombia); Abad, E; Rivera, J [CID-CSIC, Barcelona (Spain). Dept. of Ecotechnologies

    2004-09-15

    Municipal waste management often combines different strategies such as recycling, composting, thermal treatment or landfill disposal. In Colombia, urban solid waste is landfill disposed but, industrial and medical wastes are incinerated. The total medical and pathological wastes generated in this zone are about 1643 ton/year from which 1022 ton/year are incinerated in six plants operating in Medellin metropolitan area. As a result, new regulations governing stack gas emissions have been enforced with the aim of reducing air pollutant emissions. Few incinerators are equipped with a gas-cleaning system and thus, most do not have any cleaning system. Medical waste incineration has been recognized as one of the major known sources of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans (PCDD/PCDF). To the best of our knowledge, there are not reports about emissions of dioxins and furans from the incineration sector in Colombia. The first aim of this work was to evaluate PCDD/PCDF emissions from the largest incinerators operating in Medellin (Colombia). In this contribution we report results obtained from three incinerators (A, B and C). The incinerated waste in plant A consisted of polymerization sludge, whereas in plants B and C medical and pathological residues were incinerated. Common medical wastes include dirty bandages, culture dishes, plastic, surgical gloves and instruments (including needles) as well as human tissue.

  4. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  5. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  6. Retention and subsequent release of radioactivity from the incineration of wastes containing microspheres

    International Nuclear Information System (INIS)

    Emery, R.J.; Watson, J.E. Jr.

    1990-01-01

    Incineration is the preferred method for disposing of animal carcasses containing radioactive microspheres at the authors University. Routine surveys of ash from successive nonradioactive burns revealed significant contamination from previously incinerated microspheres. Past studies on microsphere incineration quantified the amount of activity retained in ash, but did not address any subsequent releases. This topic was not considered in earlier studies because, in most cases, the carcasses were placed in some type of container to facilitate recovery of ash, preventing contamination of the incinerator refractory. In this study, five sets of controlled burns were performed to quantify the subsequent releases of the microsphere radioisotopes 141 Ce, 113 Sn, 102 Ru, 95 Nb, and 46 Sc. Each set consisted of three successive burns. The first burn of each set incinerated a non-radioactive carcass, the second burn, a radioactive carcass, and the third, a non-radioactive carcass. In all of the burns, the carcasses were placed directly on the incinerator refractory floor, which is the standard procedure during normal operations

  7. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  8. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  9. Prediction of dioxin/furan incinerator emissions using low-molecular-weight volatile products of incomplete combustion.

    Science.gov (United States)

    Lemieux, P M; Lee, C W; Ryan, J V

    2000-12-01

    Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alkene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alkenes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.

  10. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    Science.gov (United States)

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  12. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  13. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  14. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  15. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  16. Low-level waste incineration at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gillins, R.L.; Davis, J.N.; Maughan, R.Y.; Logan, J.A.

    1985-01-01

    A facility for the incineration of low-level beta/gamma contaminated combustible waste has been constructed at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL). The incineration facility was established to: (1) reduce the volume of currently generated contaminated combustible waste being disposed at the INEL's radioactive waste disposal site and thereby prolong the site's useful life; and (2) develop waste processing technology by providing a facility where full-size processes and equipment can be demonstrated and proven during production-scale operations. Cold systems testing has been completed, and contaminated operations began in September of 1984. Currently the facility is processing waste packaged in 2 x 2 x 2 ft cardboard boxes and measuring <10mR/h at contact. 3 figs

  17. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  18. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  19. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  20. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  1. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  2. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  3. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  4. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  5. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  6. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  7. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  8. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  9. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  10. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  11. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  12. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    International Nuclear Information System (INIS)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-01-01

    Highlights: ► Aluminium packaging partitioning in MSW incineration residues is evaluated. ► The amount of aluminium packaging recoverable from the bottom ashes is evaluated. ► Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. ► 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  13. Incineration of spent ion exchange resins in a triphasic mixture at Belgoprocess

    International Nuclear Information System (INIS)

    Deckers, J.; Luycx, P.

    2003-01-01

    Up to 1998, spent ion exchange resins have been fed to the incinerator in combination with various other solid combustible wastes at Belgoprocess. However, thanks to sustained efforts to reduce radioactive waste production in all nuclear facilities in Belgium, the annual production of solid combustible waste is now much too small to allow this practice to be continued. Since the incinerator at Belgoprocess is not capable of treating spent ion exchange resins as such, it was decided to adopt the use of foam as a carrier to feed the resins to the incinerator. The mixture is a pseudohomogeneous charged foam, ensuring easy handling and allowing incineration in the existing furance, while a number of additives may be included, such as oil to increase the calorific value of the mixture and accelerate combustion. The first incineration campaign of spent ion exchange resins in a triphasic foam mixture, in conjunction with other liquid and solid combustible wastes, will be started in January 2000. The foam, comprising 70% by weight of resins, 29% by weight of water and 1% by weight of surfactant will be pulverized in the incinerator through an injection lance, at a feed rate of 40 to 100 kg/h. The incinerator and associated off-gas treatment system can be operated at standard conditions. Belgoprocess is the subsidiary of the Belgian national agency for the management of radioactive waste, known by its Dutch and French acronyms, NIRAS and ONDRAF respectively. The company ensures the treatment, conditioning and interim storage of nearly all radioactive waste produced in Belgium. (orig.)

  14. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  15. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  16. Diesel engine exhaust particulate filter with intake throttling incineration control

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  17. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  19. Incineration of a Single Component Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    1999-01-01

    An Advanced controlled air incinerator has been investigated, developed and put into successful operation for a single component and other combustible solid wastes. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increases by the increase of glowing bed temperature, while H 2 O, H 2 and CO decreases. It was proved that, a burn- out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98%, respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products . Process chemistry and kinetics of the gasification were studied. The rate of reaction of the gasification process was obtained at different operating conditions by solving a set of algebraic equations provided by applying the extent of reaction concept. The comparison showed a satisfactory agreement between the calculated and experimental values. Unsteady state mass balance equations are developed for the gas reactor. The derived equations are Laplace transformed and solved to generate the dynamic behavior of the system . Open loop calculations are conducted to study the effect of some disturbances on the performance of the gas reactor. Model output was compared with actual experimental data as only slight corrections have to be made

  20. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  1. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  2. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  3. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  4. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  5. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  6. Report on the operation of incineration plant of the Coalite Chemical Works, Bolsover, Derbyshire, from commissioning to closure and the subsequent prosecution of the last operator Coalite Products Ltd by H M Inspectorate of Pollution under Section 5 of the Health and Safety at Work Etc. Act 1974

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In June 1991 elevated concentrations of polychlorinated dibenzo-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were reported in cows` milk on farms in the Bolsover area in Derbyshire, UK. Monitoring by the HMIP showed that PCDDs and PCDFs were present in flue gases emitted from a chemical waste incinerator at the Coalite Chemical Works and to a lesser extent from the Coalite smokeless fuel works nearby. A soil survey and further sampling of vegetation showed the Coalite Chemical Works to be the major source of PCDDs and PCDFs. Coalite Products Ltd., pleaded guilty to operating the incinerator in breach of the Health and Safety Act in a case brought against then by HMIP on 20 February 1996. This report describes the investigation undertaken to establish the conditions of operation of the incinerator from its commissioning in 1978 to closure in November 1991. 12 refs., 8 figs., 6 tabs., 3 apps.

  7. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  8. UASB Treatment of Methanolic Pulp Wastewater with Addition of Waste Starch and Incinerated Ash

    Science.gov (United States)

    Takahashi, Shintaro; Kobaysashi, Takuro; Li, Yu-You; Harada, Hideki

    The pulp wastewater consists mainly of methanol. It is expected to treat using upflow anaerobic sludge blanket (UASB) process. Paper manufactories also produce waste starch and incinerated ash. The integrated treating for these wastes is desirable. In this study, two UASB reactors were operated to treat pulp wastewater with addition of waste starch and with addition of incinerated ash, receptively. Continuous operations of a UASB reactor treating pulp wastewater with addition of waste starch (PS reactor) and a UASB reactor treating pulp wastewater with addition of incinerated ash (PA reactor) , were investigated at mesophilic conditions. The PS reactor performed well with an average 93.7% total CODCr and 97.3% soluble CODCr removal efficiency in average at a maximum volumetric loading rate (VLR) of 16.0 kgCOD/m3/d. The PA reactor was also successfully operated with an average 95.3% total CODCr and 97.5% soluble CODCr removal efficiency in average at a maximum VLR of 14.6 kgCOD/m3/d. Successfully developed granules were obtained after over 140 days of operation in both reactors, and the granules were 1 to 2 mm in mean diameter. Microbial analysis revealed the genus Methanomethylovorans was predominant in the granules of both reactors.

  9. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  10. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  11. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  12. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex

    International Nuclear Information System (INIS)

    Hey-Suk Kim; Mi-Soo Shin; Dong-Soon Jang; Tae-In Ohm

    2004-01-01

    Considering the rapid variation of waste composition and the more severe regulation trend of pollutant emission in this country, the importance of the development of a reliable computer program for a full-scale, stoker-type incinerator cannot be emphasized too much, especially in the view of proper design and optimal determination of operating condition of existing and future constructed facility. To this end, a comprehensive, numerical model related with the process of the waste-off gaseous combustion with the capacity of 200 tons/day is successfully made. This includes development of several phenomenological models such as municipal waste-off gaseous reaction, NO pollutant generation and destruction in turbulence-related environment. Especially in this study a number of sound assumptions have been made for the NO reaction model, 3-D geometry of incinerator and waste-bed model to achieve the efficient incorporation of the empirical models and enhancement of the stability of calculation process. First of all, the turbulence-related, complex combustion chemistry involved with NO reaction is modeled by the harmonic mean method, which is given by the relative strength of the rates of chemistry and turbulent mixing. Further, the 3-D rectangular shape of the incinerator is simply approximated by a 3-D axi-symmetric geometry with equivalent area. And the modeling of complex waste-burning process on moving grate is described by a pure gaseous combustion process of waste off-gas. The program developed in this study is successfully validated by comparing with the experimental data such as temperature and NO concentration profiles in the incinerator located at 4th industrial complex of Daejon, S. Korea. Using the program developed, a series of parametric investigations have been made for the evaluation of SNCR process and thereby evaluate various important design and the operating variables. The major parameters considered in this parametric study are heating value of

  13. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  14. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  15. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  16. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  17. Treatment of solid radioactive waste: The incineration of low level radioactive waste

    International Nuclear Information System (INIS)

    Dirks, F.; Hempelmann, W.

    1982-01-01

    Nuclear facilities produce large quantities of burnable solid radioactive waste which incineration can reduce in volume and change into a form capable of ultimate storage. Experiments over many years were carried out at the Karlsruhe Nuclear Research Center to determine the boundary conditions for the design and construction of incineration plants for radioactive waste. On the basis of those experiments a test facility was started up in 1971. This operating facility consists of a shaft furnace lined with ceramics with a downstream series of ceramic flue gas filters. In 1976 the plant was exchanged by the installation of a pilot facility for burning organic solvents and of a flue gas scrubber. The plant has so far been in operation for more than 28000 hours and has processed in excess of 1500 to of solid and some 300 m 3 of liquid low level radioactive wastes. Various repairs and interventions were carried out without greatly impairing availability, which was 81 % on the average. The plant design is being used by various licensees in Japan and Europe; three plants are either in operation or completed, three more are under construction or in the planning stage. On the basis of the available process an incineration plant for alpha contaminated waste will be built at the Karlsruhe Nuclear Research Center in the next few years. (orig.)

  18. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  19. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  20. 40 CFR 60.2886 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  1. Air pollutant emissions and their control with the focus on waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Wandschneider + Gutjahr, Hamburg (Germany)

    2017-07-01

    This text and practical handbook thoroughly presents the control of air pollutant emissions from combustion processes focusing on waste incinerators. Special characteristics are emphasised and the differences to emission control from combustion processes with other fuels are explained. The author illustrates the origin and effects of air pollutants from incineration processes, the mechanics of their appearance in the incineration process, primary and secondary measures for their reduction, processes of measuring the emissions as well as the methods of disposing the residues. In particular, the pros and cons of procedural steps and their appropriate combination under various conditions are emphasised. Moreover, the book contains information and analyses of the emissions situation, the consumption of operating materials and of backlog quantities as well as of the cost structure of waste incinerators with regard to their applied control system. Furthermore, the author explicates the contemporary legal, scientific and technological developments and their influence on air pollutant emission control. An evaluation of the status quo of air pollutant control at waste incinerators in Germany, practical examples about possible combinations and typical performance data complete the content. Accordingly, this book is a guideline for planing a reasonable overall concept of an air pollutant control that takes the location and the segregation tasks into consideration.

  2. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  3. Current practice of incineration of low-level institutional radioactive waste

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1981-02-01

    During 1972, 142 medical and academic institutions were surveyed to assess the current practice of incineration of low-level radioactive waste. This was one activity carried out by the University of Maryland as part of a contract with EG and G Idaho, Inc., to site a radioactive waste incineration system. Of those surveyed, 46 (approximately 32%) were presently incinerating some type of radioactive waste. All were using controlled-air, multistage incinerators. Incinerators were most often used to burn animal carcasses and other biological wastes (96%). The average size unit had a capacity of 113 kg/h. Disposal of liquid scintillation vials posed special problems; eight institutions incinerated full scintillation vials and five incinerated scintillation fluids in bulk form. Most institutions (87%) used the incinerator to dispose of other wastes in addition to radioactive wastes. About half (20) of the institutions incinerating radioactive wastes reported shortcomings in their incineration process; those most often mentioned were: problems with liquid scintillation wastes, ash removal, melting glass, and visible smoke. Frequently cited reasons for incinerating wastes were: less expensive than shipping for commercial shallow land burial, volume reduction, convenience, and closure of existing disposal sites

  4. 40 CFR 60.2015 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  5. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    Science.gov (United States)

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Description of the Seibersdorf incineration plant for low level waste

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput amounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, cooling column and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, Iodine- and Tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. (Author)

  7. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Science.gov (United States)

    Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna

    2018-01-01

    In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  8. Environmental impact of emissions from incineration plants in comparison to typical heating systems

    Directory of Open Access Journals (Sweden)

    Wielgosiński Grzegorz

    2018-01-01

    Full Text Available In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140, stoker-fired boilers (three OR-32 boilers or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.

  9. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  10. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  11. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  12. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  13. Exploitation of the FLK-60 slagging incinerator for different alpha waste streams and study of the feasibility of medium-level alpha-beta-gamma waste incineration in FLK-60

    International Nuclear Information System (INIS)

    Van de Voorde, N.; Taeymans, A.; Hennart, D.; Balleux, W.; Geenen, G.; Gijbels, J.

    1985-01-01

    The FLK-60 high temperature slagging incinerator and its peripherals were developed by SCK/CEN with the help of the Commission of the European Communities in the framework of contract no. EUR-017-76-7 WAS-B. This second contract, which covered the period between October 1980 and December 1982, aimed at gaining exploitation experience by running the FLK-60 installation with beta-gamma radioactive waste in semi-industrial conditions. At the end of those 27 months, the system was ready for exploitation in alpha-conditions with plutonium-containing materials. This report describes the various plant parameters during the 25 runs carried out in the framework of this contract and the results of characterization tests carried out on the final product and the secondary waste streams. In the meantime, typical operation balances are computed

  14. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  15. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  16. On accelerator neutron/γ-ray incineration of long-lived fission products

    International Nuclear Information System (INIS)

    Nakamura, H.

    1995-01-01

    A methodology for evaluation and control of the incineration of Long-Lived Fission Products (LLFPs) by using the accelerator neutrons/γ-rays is presented. An arbitrary number of the auxiliary transmutation chains, each of which consists of a LLFP and its reaction precursors up to 144, are used for calculating the time-dependent depletion-production of the LLFP. In the energy range below 20 MeV, about 20 types of neutron reaction are energetically possible. The semi-empirical formulas and its parameter systematics are used for all the energy dependent reaction cross sections. A computer code TRANS-N.G based on the foregoing prescription for nuclear reactions could be applied to the LLFP incineration strategies under a large variety of situations. (author)

  17. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  18. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  19. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  20. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    have been considered, partly to assess the measuring campaign method and partly to find good MIMO models which can be used for more advanced control design, eg MPC. The dynamic characteristics form the basis of the control strategy design, and as valuable knowledge of the key parameters from two widely different plants is available, it is certain that the optimisation work is generic. A waste density soft sensor has been implemented and tested via radar measurement at Haderslev CHP Plant. The density soft sensor is used to adjust the pusher speed, thus reducing compressibility interruptions considerably. By doing so the control process does not have to wait for the modulus to increase or O{sub 2} and steam flow to be affected before a waste flow deviation can be detected. Based on measuring data it is obvious that the density control stabilises the waste flow to the furnace. A modulus control concept has been developed for coordination of several incineration zones, among other things by simulation. Three concepts have been selected, implemented and commissioned at Haderslev CHP Plant. One concept has been selected, and measuring data show that the modulus is considerably stabilised on activation. The concept combines the advantages with monitoring of the feed grate for overloading and at the same time maintenance of the incineration zone. However, in periods the concept is in conflict with steam flow and O{sub 2} which require manual operator intervention. Unfortunately, it was not possible to finalise and commission the overall control concept within the financial scope of the phase 3 project, because the maturation of the NIR cameras and the work with identification of the vast amount of data from the Reno-Nord tests exceeded the budget. Parts of the control concept have been commissioned and tested, but not the overall control concept as a whole. At the end of the project, it was decided to emphasise data processing and the theoretical mapping of the furnace

  1. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  2. Evaluation of gaseous emissions produced in the tests on the demonstration plant for sludge drying and incineration

    International Nuclear Information System (INIS)

    Lotito, V.; Spinosa, L.; Antonacci, R.; Mininni, G.

    2001-01-01

    Incineration is a valid alternative to other more diffused disposal systems (agricultural use, landfill), when they cannot be applied due to high pollutants concentrations or other unforeseeable constraints. However, it can cause severe air pollution by inorganic (heavy metals) and organic (PAHs, PCDDs, PCDFs) pollutants, particulate, NO x , CO and acidic compounds; this fact has raised public concern about incineration and has hindered a wider application of this practice. Water Research Institute of Italian National Research Council realised a demonstration plant mainly consisting of a fluidized bed furnace, a rotary kiln furnace, a dryer with heat recovery section, particulate and acidic compounds removal apparatuses, and set up a research programme to demonstrate that incineration is a safe operation and can comply the relevant legislation, as far as organic and inorganic micropollutants are concerned. A total of 40 tests were carried out (30 with the fluidized bed furnace and 10 with rotary kiln one) treating dewatered sludges (in many cases with the addition of high chlorinated compounds and Cu salts) or dried ones, under different operating conditions (furnace temperature, after-burner temperature, chlorine concentration). Particulate concentrations, and consequently heavy metals concentrations, at the stack resulted in any case under legal limits. As far as conventional pollutants are concerned, only HCl and CO overcame sometimes standards, mainly due to temporary operating up-sets. PAHs concentration resulted quite constant, thus demonstrating that tests were operated in steady-state and satisfactory conditions. Also dioxins and furans overcame sometimes standards, but no correlation was found with more severe tests conditions; it happened when plant up-set conditions occurred. Operation resulted quite satisfactory, but dryer operation required constant operators attention. In rotary kiln furnace a build up of solidified ashes occurred in counter

  3. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  4. Protection and safety functions of different off-gas treatment systems in radioactive waste incineration

    International Nuclear Information System (INIS)

    Caramelle, D.; Chevalier, G.; Chevalier, G.

    1986-01-01

    Gaseous effluent cleaning installations are designed to protect workmen and environment and must be efficient enough to guarantee that the amounts of gases and dusts emitted by a furnace operating normally or accidentally are at an acceptable level in the atmosphere on the incinerator site. The process equipments necessary to operations and the monitoring devices must be reliable. The main risk in normal operation is occupational exposure close to the radioactive products accumulation points. The accidental risks are mainly related to an outage of the off-gas cleaning or a tightness failure with radioactive products dissemination resulting from either internal perturbation (filter tear, exhauster failure, ...) or external incident (electricity cut-off, furnace disarrangements, fire or explosion inside the incinerator). In view of these risks, it is interesting to examine the safety and protection functions of different components of off-gas treatment systems

  5. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  6. Fluorination of incinerator ash by hydrofluorination or ammonium bifluoride fusion for plutonium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.D.; Gray, J.H.; Kent, S.J.; Apgar, S.A.

    1989-01-01

    Incinerator ash containing small quantities of plutonium has been accumulating across the defense complex for many years. Although the total Pu inventory is small, the ash is a nondiscardable residue which presents storage and accountability difficulties. The work discussed here is the result of a joint exploratory effort between members of Savannah River Laboratory and Los Alamos National Laboratory to compare two proposed pyrochemical pretreatments of incinerator ash prior to aqueous processing. These experiments attempted to determine the relative effectiveness of hydrofluorination and ammonium bifluoride fusion as head-end operations for a two step aqueous recovery method. The two pretreatments are being considered as possible second generation enhancements for the New Special Recovery Facility nearing operation at Savannah River Plant. Experimental results and potential engineering concerns are discussed. 3 figs.

  7. Incineration process for chlorinated alpha-contaminated wastes: industrial application to the Valduc project

    International Nuclear Information System (INIS)

    Longuet, T.; Vincent, J.J.; Cartier, R.; Durec, J.P.

    1993-01-01

    The Commissariat a l'Energie Atomique (CEA) has pursued a broad research and development program for a number of years concerning the incineration of chlorinated α-contaminated wastes produced by work in confined atmosphere. This program has now reached the stage where an alternative solution is available to the conventional direct cement embedding method currently used for such wastes. The proposed solution is based on a two-step incineration process offering a significant volume reduction that constitutes a serious economic advantage for geological disposal. Moreover, the process produces ashes of a quality suitable for direct online vitrification, or for Pu recovery by dissolution with silver II. The process was developed under nonradioactive conditions in the IRIS incineration pilot facility operated by the CEA's Fuel Cycle Division (CEA/DCC), opening the way for the first industrial facility, planned for the VALDUC Research Center. USSI is the prime contractor in this 36-month project. The basic design work has now been completed, and the French safety authorities have authorized construction of the incinerator, based in large part on the experience and expertise acquired by the process licenser CEA/DCC. (author). 6 figs., 3 tabs

  8. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The benefits of flue gas recirculation in waste incineration.

    Science.gov (United States)

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  10. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  11. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.

    1984-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  12. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.; Associated Technologies, Inc., Charlotte, NC)

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor. 4 figs

  13. Commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.

    1985-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application for a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/h, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  14. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  15. 40 CFR 60.2992 - What is an existing incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an existing incineration unit... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2992 What is an existing incineration unit? An existing incineration unit is...

  16. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-01-01

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  17. Development of Mitsubishi--Lurgi fluidized bd incinerator with pre-drying hearths

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y; Senshu, A; Mishima, K; Sato, T; Honda, H

    1979-02-01

    For a better disposal of a steadily increasing volume of sludges with energy conservation it is essential to develop an effective and energy-saving incinerator. The fluidized bed incinerator now widely used for the disposal of sludges has many superior features as compared with the conventional vertical multiple-hearth incinerator, but, on the other hand, has a defect, that is, a large fuel consumption. This is due to the fact that the fluidized bed incinerator has generally low drying efficiency notwithstanding its excellent burning characteristics with minimum excess air. The feasibility of fuel saving by installing sludge pre-drying hearths and an exhaust gas recirculation system additionally on the conventional fluidized bed incinerator and conducted incineration tests on various kinds of sludges, using a 1500 kg/h pilot plant equipped with the incinerator is examined. As the result, the Mitsubishi--Lurgi fluidized bed incinerator with high efficiency multiple pre-drying hearths which consumes less fuel was developed. Part of the incineration test results are presented.

  18. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  19. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  20. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    binding than previously understood. Differences were also observed between MSWI bottom ash DOM and the natural DOM for which the geochemical speciation models SHM and NICA-Donnan are calibrated. Revised parameter values for speciation modelling are therefore suggested. Additions of salt or natural DOM in the influent did not change the leachate concentration of Cu. Thus, although Cl and natural DOM might be present in the influent in the field due to road salting or infiltration of soil water, this is of minor importance for the potential environmental impact from MSWI bottom ash. This thesis allows estimates of long-term leaching and toxicity to be improved and demonstrates the need for broadening the system boundaries in order to highlight the tradeoffs between different types of impact. For decisions on whether incinerator residues should be utilised or landfilled, the use of a life cycle perspective in combination with more detailed assessments is recommended

  1. Residues from waste incineration. Final report. Rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2010-04-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (Author)

  2. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  3. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  4. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  5. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  6. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  7. Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.

    Science.gov (United States)

    Shaaban, A F

    2007-06-25

    Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.

  8. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  9. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  10. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  11. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    Energy Technology Data Exchange (ETDEWEB)

    Motz, L.; Decision and Information Sciences

    2011-02-21

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  12. Controlled air incineration of hazardous chemical and mixed waste at Los Alamos

    International Nuclear Information System (INIS)

    Borduin, L.C.; Hutchins, D.A.; Vavruska, J.J.; Warner, C.L.

    1987-01-01

    The Los Alamos National Laboratory (LANL) Controlled Air Incineration (CAI) system, originally developed for transuranic (TRU) waste volume reduction studies, is currently being qualified for hazardous chemical and mixed waste treatment under provisions of the Resource Conservation and Recovery Act (RCRA). The objective is to obtain a permanent RCRA Part B permit for thermal disposal of hazardous and mixed wastes generated by LANL. Constructed in the mid-1970s as a demonstration project for incineration of TRU solid wastes, the CAI process was substantially modified and tested in 1980-1983 for acceptance of both liquid and solid hazardous chemicals. Successful demonstration of TRU solid waste processing objectives in 1979 and later chemical waste incineration studies have been documented in several publications. In 1984, the LANL CAI became the first US Dept. of Energy (DOE) incinerator to be permitted for polychlorinated biphenyl disposal under the Toxic Substances Control Act. Following establishment of Environmental Protection Agency (EPA) jurisdiction over DOE chemical waste management in 1984, LANL sought and was granted interim status for the CAI and applied for a trial burn permit in the overall laboratory RCRA Part B application. A trial burn and final report have been completed; results have been submitted to EPA and the New Mexico Environmental Improvement Division. This paper provides an overview of trial burn planning and results together with the operational status of LANL's CAI

  13. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  14. Remedial Measures for Erroneous Environmental Policies: Assessing Infrastructure Projects of Waste-to-Energy Incineration in Taiwan with a Case Study of the Taitung Incinerator

    Directory of Open Access Journals (Sweden)

    Lih-Ren Liu

    2016-12-01

    Full Text Available Taiwan, like many other countries, often incentivizes private investors to participate in the construction of infrastructures for environmental protection. The build-operate-transfer (BOT or build-operate-own (BOO model of financing public infrastructure was introduced to Taiwan in the 1990s. Among them, the construction of incinerators to treat the municipal solid waste using the BOT/BOO model was quite a success in the beginning. With the socio-technical change of lifestyle and waste generation, the amount of amount of trash dropped dramatically. The policy failed eventually, however, because the government over-estimated the trash quantity and refrained from inter-municipality cooperation to treat trash efficiently. This failure triggered a rash of intense debates and legal disputes. In the case of the Taitung incinerator, the 26th incinerator located in southeastern Taiwan, the arbitration resulted in the government making significant compensation payments to the private sector. The finished construction was consequently converted into a “mothballed and pensioned off” facility. This study applies in-depth interviews and literature review to discuss aspects contributing to the policy failure and proposes some possible remedial measures. Five aspects are summarized, namely, the administrative organization’s rigid attitude, the irrationality of the BOT/BOO contracts, the loss of the spirit of BOO partnerships, the heavy financial burden on local government, and the abandonment of inter-municipality cooperation. The remedial measures for the policy failure are presented in the form of thorough policy evaluation, room for contract adjustments under the BOT/BOO model, encouragement of cross-boundary cooperation, and revision of the legal framework for implementing decentralization.

  15. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20... § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed material by incineration only: (1) As authorized by paragraph (b) of this section; or (2) If the material...

  16. A commercial regional incinerator facility for treatment of low-level radioactive waste

    International Nuclear Information System (INIS)

    Sauer, R.E.; Jessop, D.T.

    1986-01-01

    In 1981, US Ecology, Inc. began studies on the feasibility of constructing and operating a regional radioactive waste incinerator facility. In December, 1982, US Ecology requested turnkey quotations from several vendors for engineering, procurement, and construction of the new facility. After technical and commercial evaluations, a contract was awarded to Associated Technologies, Inc., of Charlotte, North Carolina, in June, 1983. In June, 1984, US Ecology made a public announcement that they were studying two sites in North Carolina for location of the facility. This same month, they submitted their permit application fro a radioactive material license to the North Carolina Department of Human Resources. The facility will accept wastes from power reactors, medical and research institutions and other industrial users, and will incinerate dry solid waste, pathological waste, scintillation fluids, and turbine oils. The incinerator will be a dual chamber controlled air design, rated at 600 lbs/hr, with a venturi scrubber, packed column, HEPA, and charcoal filters for pollution control. The stack will have a continuous monitor

  17. Mathematical modelling of municipal solid waste incineration and thermodynamic study of the behaviour of heavy metals; Modelisation de l'incineration sur grille d'ordures menageres et approche thermodynamique du comportement des metaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Y

    2003-07-15

    The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evolve during the primary reactions of devolatilization. Other experiments were carried out in a fixed bed pilot-scale reactor: the combustion of two types of solids (wood chips and MSW) was studied, and the influence of operating conditions (flow rate, staging and temperature of the primary air) as well as fuel characteristics (moisture content, inert material fraction, lower calorific value) was investigated. A mathematical model was developed for simulating the combustion of a solid fuel, either in a fixed bed reactor or on the grate of an incineration plant. It has been validated by comparison of the calculated results and the experiments carried out on the pilot. Thanks to this model, we have been able to localize the different processes taking place in the fuel bed and to evaluate the influence of the operating conditions on the combustion efficiency. Numerical simulations of the gas flow and combustion in the post-combustion chamber and the heater of an incineration plant were performed using the CFD code FLUENT. The local thermal conditions as well as local gaseous species concentrations obtained from these simulations were eventually used to carry out thermodynamic calculations of the speciation of HM during incineration. (author)

  18. Field Investigation of Various Weld Overlays in a Waste Incineration Plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Larsen, O. H.

    2005-01-01

    A test waterwall was fabricated so that alternatives to alloy 625 could be exposed in the first pass of the waste incineration plant Haderslev. The difference between application method was also a parameter, such that manual welding, machine welding and arc spraycoating of alloy 625 were compared...... which was present in every test panel. It was observed that all the weld overlay test sections behaved similar to machined alloy 625 in that there was general corrosion and pitting corrosion. In addition, alloy 622 also exhibited preferential corrosion with respect to its dendrite structure........ In addition to the test waterwall exposure, the chemical environment from the waste incineration was also monitored by analyzing deposits and corrosion products from various locations in the boiler. These were analyzed with respect to morphology and composition using electron microscopy with EDS analysis...

  19. Dioxins in processes of incineration of wastes

    International Nuclear Information System (INIS)

    Perez John; Espinel Jorge; Ocampo Alonso; Londono Carlos

    2001-01-01

    This paper is a door to come into the subject of dioxins, which is a little bit known in Colombia. In this way, in order to clarify and to get a wider knowledge about dioxins and waste incineration process, it has been divided in three main sections. The first one gives a basic information about origin, effects on the human health and a chemical definition of dioxins; in the second one the main kind of incinerator processes are given to know, also a deeper knowledge of reaction formation. The last part emphasizes options to control dioxins emissions in incineration systems

  20. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  1. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    Science.gov (United States)

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  3. Effluent testing for the Oak Ridge mixed waste incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1990-12-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals

  4. Materials design considerations and selection for a large rad waste incinerator

    International Nuclear Information System (INIS)

    Vormelker, P.R.; Jenkins, C.F.; Burns, H.H.

    1997-01-01

    A new incinerator has been built to process self-generated, low level radioactive wastes at the Department of Energy's Savannah River Site. Wastes include protective clothing and other solid materials used during the handling of radioactive materials, and liquid chemical wastes resulting from chemical and waste management operations. The basic design and materials of construction selected to solve the anticipated corrosion problems from hot acidic gases are reviewed. Problems surfacing during trial runs prior to radioactive operations are discussed

  5. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  6. Development of low level radioactive waste incineration plant

    International Nuclear Information System (INIS)

    Shaharum bin Ramli; Azmir bin Hanafiah

    1994-01-01

    A laboratory scale liquid waste incineration plant has been constructed. Preliminary tests were conducted by burning kerosene as the waste. The temperature reached 1200 deg.C. The exhaust gas was analysed for CO and CO sub 2 content. The hydrocarbon content was not measured without the proper analyser. Thus, parameters such as the optimum air:kerosene ratio and the maximum kerosene injection rate could not be determined. Complete tests will be carried out with the newly received hydrocarbon, NO sub x, CO, CO sub 2 and O sub 2 gas analyser

  7. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  8. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  9. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    International Nuclear Information System (INIS)

    Bickford, D.F.; Ondrejcin, R.S.; Salley, L.

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments

  10. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment.

    Science.gov (United States)

    Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J

    2014-09-01

    In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Beta-gamma contaminated solid waste incinerator facility

    International Nuclear Information System (INIS)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft 3 per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage

  12. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  13. Oak Ridge Toxic Substances Control Act (TSCA) Incinerator test bed for continuous emissions monitoring systems (CEMS)

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.

    1997-01-01

    The Toxic Substances Control Act (TSCA) Incinerator, located on the K-25 Site at Oak Ridge, Tennessee, continues to be the only operational incinerator in the country that can process hazardous and radioactively contaminated polychlorinated biphenyl (PCB) waste. During 1996, the US Department of Energy (DOE) Environmental Management Office of Science and Technology (EM-50) and Lockheed Martin Energy Systems established a continuous emissions monitoring systems (CEMS) test bed and began conducting evaluations of CEMS under development to measure contaminants from waste combustion and thermal treatment stacks. The program was envisioned to promote CEMS technologies meeting requirements of the recently issued Proposed Standards for Hazardous Waste Combustors as well as monitoring technologies that will allay public concerns about mixed waste thermal treatment and accelerate the development of innovative treatment technologies. Fully developed CEMS, as well as innovative continuous or semi-continuous sampling systems not yet interfaced with a pollutant analyzer, were considered as candidates for testing and evaluation. Complementary to other Environmental Protection Agency and DOE sponsored CEMS testing and within compliant operating conditions of the TSCA Incinerator, prioritization was given to multiple metals monitors also having potential to measure radionuclides associated with particulate emissions. In August 1996, developers of two multiple metals monitors participated in field activities at the incinerator and a commercially available radionuclide particulate monitor was acquired for modification and testing planned in 1997. This paper describes the CEMS test bed infrastructure and summarizes completed and planned activities

  14. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  15. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon [HaJI Co., Ltd., Radiation Eng. Center, Siheung (Korea, Republic of); Kim, Yunbok; Kwon, Youngbock [KORAD, Daejeon (Korea, Republic of)

    2014-05-15

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  16. 40 CFR 60.2885 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2885 Section 60.2885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004....2885 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets all the...

  17. 40 CFR 60.2010 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2010 Section 60.2010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After... Applicability § 60.2010 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets...

  18. Waste wood incineration: long-lasting, environment-friendly and CO2-neutral

    International Nuclear Information System (INIS)

    Bouma, J.W.J.

    1993-01-01

    The economic aspects of energy production from waste wood are evaluated. Heating systems based on the incineration of wood have been considerably improved recently. Several aspects of the incineration of waste wood are reviewed: the implications with regard to the greenhouse effect, the calorific value of wood, the incineration process, and the cost price calculation of energy production by waste wood incineration. In conclusion is stated that energy production by waste wood incineration is a valuable economic alternative for heat production by oil products, especially in view of the current anti-pollution taxes in Belgium. (A.S.)

  19. Np-237 incineration study in various beams in ADS setup QUINTA

    Directory of Open Access Journals (Sweden)

    Kilim Stanisław

    2018-03-01

    Full Text Available Neptunium-237 samples were irradiated in a spallation neutron field produced in accelerator-driven system (ADS setup QUINTA. Five experiments were carried out on the accelerators at the JINR in Dubna - one in carbon (C6+, three in deuteron, and one in a proton beam. The energy in carbon was 24 GeV, in deuteron 2, 4 and 8 GeV, respectively, and 660 MeV in the proton beam. The incineration study method was based on gamma-ray spectrometry. During the analysis of the spectra several fission products and one actinide were identified. Fission product activities yielded the number of fissions. The actinide (Np-238, a result of neutron capture by Np-237, yielded the number of captures. The main goal of this work was to find out if and how the incineration rate depended on parameters of the accelerator beam.

  20. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  1. Mathematical modelling of municipal solid waste incineration and thermodynamic study of the behaviour of heavy metals; Modelisation de l'incineration sur grille d'ordures menageres et approche thermodynamique du comportement des metaux lourds

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Y.

    2003-07-15

    The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evolve during the primary reactions of devolatilization. Other experiments were carried out in a fixed bed pilot-scale reactor: the combustion of two types of solids (wood chips and MSW) was studied, and the influence of operating conditions (flow rate, staging and temperature of the primary air) as well as fuel characteristics (moisture content, inert material fraction, lower calorific value) was investigated. A mathematical model was developed for simulating the combustion of a solid fuel, either in a fixed bed reactor or on the grate of an incineration plant. It has been validated by comparison of the calculated results and the experiments carried out on the pilot. Thanks to this model, we have been able to localize the different processes taking place in the fuel bed and to evaluate the influence of the operating conditions on the combustion efficiency. Numerical simulations of the gas flow and combustion in the post-combustion chamber and the heater of an incineration plant were performed using the CFD code FLUENT. The local thermal conditions as well as local gaseous species concentrations obtained from these simulations were eventually used to carry out thermodynamic calculations of the speciation of HM during incineration. (author)

  2. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  3. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  4. Drying and incineration of wastewater sludge. Experiences and perspectives based on the development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, N.; Bruus, J.

    2003-07-01

    The purpose of this paper is to analyse the recent development within sludge disposal in Denmark, where the traditional disposal for agricultural use has changed to other disposal routes. One of the main routes is the thermal treatment, drying and/or incineration. The great majority of WWTP's in Denmark are small and middle-sized plants, which is why these plants are in focus. Drying and incineration concepts adapted to this size of plants have been developed, and the experience has shown that these concepts are sustainable in all main respects, i.e. energy utilisation, environment, operation etc. (author)

  5. Assessment of relative POHC destruction at EPA's incineration research facility

    International Nuclear Information System (INIS)

    Carroll, G.J.; Lee, J.W.

    1992-01-01

    As part of their permitting process, hazardous waste incinerators must undergo demonstration tests, or trial burns, during which their ability to meet EPA performance standards is evaluated. Among the performance standards is a minimum destruction and removal efficiency (DRE) for principal organic hazardous constituents (POHCs) in the incinerator waste feed. In accordance with the regulations promulgated under the Resource Conservation and Recovery Act (RCRA), selection POHCs for incinerator trial burns is to be based on the degree of difficulty of incineration of the organic constituents in the waste and on their concentration or mass in the waste feed. In order to predict the relative difficulty of incineration specific compounds, several incinerability ranking approaches have been proposed, including a system based on POHC heats of combustion and a system based on thermal stability under pyrolytic condition. The latter ranking system was developed by the University of Dayton Research Institute (UDRI) under contract to the US EPA Risk Reduction Engineering Laboratory (RREL). The system is supported largely by non-flame, laboratory-scale data and is based on kinetic calculations indicating that contributor to emissions of undestroyed organic compounds. The subject tests were conducted to develop data on POHC behavior in a larger-scale, conventional incineration environment. 5 refs., 3 tabs

  6. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    International Nuclear Information System (INIS)

    Wade, J.F.; Williams, P.M.

    1995-01-01

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550 degrees C and 650 degrees C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s

  7. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    Science.gov (United States)

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  8. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  9. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    Science.gov (United States)

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  10. Effluent testing for the Oak Ridge Mixed Waste Incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1991-01-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals. 4 refs., 2 figs., 10 tabs

  11. Incineration in low-level radioactive waste management at the University of Maryland at Baltimore

    International Nuclear Information System (INIS)

    Cooley, L.R.

    1986-01-01

    The selection of an incinerator by the University of Maryland at Baltimore was carried out under a demonstration grant from the Department of Energy (DOE). The system selected is a 300 lb per hour dual-chambered, controlled air incinerator. The cost of the unit was $130,000, excluding installation. The interior is lined with high temperature brick rather than a castable refractory. The burners in the upper and lower chambers are ''oversized'' to insure responsive temperature control of 2.5 million Btu/h in the upper chamber and 1.3 million Btu/h in the lower. The prescribed operating temperatures are 1900 to 2100 0 F in the upper chamber and 900 to 1200 0 F in the lower chamber. The system has a rated capacity of 300 lbs/h of type IV, pathological waste, but operational experience has limited our feed rate to 150 lbs/h

  12. Metals partitioning resulting from rotary kiln incineration of hazardous waste

    International Nuclear Information System (INIS)

    Richards, M.K.; Fournier, D.J. Jr.

    1992-01-01

    In response to the need for date on the partitioning of trace metals from hazardous waste incinerators, an extensive series of test was conducted in the summer of 1991 at the USEPA Incineration Research Facility (IRF) in Jefferson, Arkansas. These tests were conducted in the IRF's rotary kiln incinerator system (RKS) equipped with a pilot-scale Calvert Flux-Force/Condensation scrubber as the primary air pollution control system (APCS). The purpose of this test series was to extend the data base on trace metal partitioning and to investigate the effects of variations in incinerator operation on metal partitioning. Another objective was to evaluate the effectiveness of the scrubber for collecting flue gas metals. This series is a continuation of an ongoing IRF research program investigating trace metal partitioning and APCS collection efficiencies. Two previous test series were conducted using the RKS equipped with a venturi/packed-column scrubber and a single-state ionizing wet scrubber. The primary objective of this test series was to determine the fate of six hazardous and four nonhazardous trace metals fed to the RKS in a synthetic, organic-contaminated solid waste matrix. The six hazardous trace metals used were arsenic, barium, cadmium, chromium, mercury, and lead. The four nonhazardous trace metals--bismuth, copper, magnesium, and strontium--were included primarily to supply data to evaluate their potential for use as surrogates. The temperature, waste feed chlorine content, and scrubber pressure drop. The test program objectives were to identify. The partitioning of metals among kiln ash, scrubber liquor, and flue gas. Changes in metal partitioning related to variations in kiln exit gas temperature and waste feed chlorine content. The efficiency of the Calvert scrubber for collecting flue gas metals. The effects of scrubber pressure drop on metal collection efficiencies. 2 figs., 2 tabs

  13. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  14. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  15. EXPERIENCE IN INCINERATION APPLICABLE TO SUPERFUND SITE REMEDIATION

    Science.gov (United States)

    This document can be used as a reference tool for hazardous waste site remediation where incineration is used as a treatment alternative. It provides the user with information garnered from the experiences of others who use incineration. The document presents useful lessons in ev...

  16. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.

    Science.gov (United States)

    Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

    2008-11-01

    Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.

  17. Radioactive waste incineration system cold demonstration test, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Seike, Yasuhiko; Takaoku, Yoshinobu; Yamanaka, Yasuhiro; Asahara, Masaharu; Katagiri, Keishi; Matsumoto, Kenji; Nagae, Madoka

    1985-12-01

    It is urgently necessary to solve the radioactive waste problem. As an effective means for the volume reduction of low-level radioactive wastes, an improved incineration system is greatly required. SHI's Waste Incineration (WIS) licensed by Combustion Engineering, Inc., has the significant advantage of processing a variety of wastes. We started a cold demonstration test in April, 1984 to verify the excellent performance of WIS. The test was successfully completed in September, 1985 with the record of more than 1000 hours of incineration testing time. In the present paper, we describe the test results during one and half years of test period.

  18. Study of the behaviour of gaseous pollutants during the incineration of municipal solid waste in a circulating fluidized bed; Etude du devenir des polluants gazeux lors de l`incineration d`ordures menageres en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Desroches-Ducarne, E

    1997-09-30

    The Circulating Fluidized Bed (CFB) combustor seems to be a promising tool, being able to burn a variety of fuels whilst maintaining low emissions levels. The present work describes an experimental and theoretical investigation into the formation and destruction of acid gases (HCl and SO{sub 2}) and nitrogen oxides (NO and N{sub 2}O) during Municipal Solid Waste incineration. Experiments were conducted on six different fuels (namely MSW, mixtures of wood, paper, plastics, polyethylene...). The effect of five parameters (temperature, excess air, air staging, calcium addition and moisture) on the emissions levels was investigated. A statistical study on the experimental data allowed us to quantify the impact of the operating conditions and the influence of the fuel characteristics. A mathematical model has been developed which includes the main physical and chemical steps of combustion in CFB and which predicts the pollutant emissions under various operating conditions. A parametric study of the influence of operating conditions on emissions showed that in most cases the trends predicted by the model are in agreement with the experimental observations. (author) 175 refs.

  19. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  20. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  1. Incineration of urban solid waste containing radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Ronchin, G.P., E-mail: giulio.ronchin@mail.polimi.i [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Campi, F.; Porta, A.A. [Dipartimento di Energia (Sezione nucleare - Cesnef), Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2011-01-15

    Incineration of urban solid waste accidentally contaminated by orphan sources or radioactive material is a potential risk for environment and public health. Moreover, production and emission of radioactive fumes can cause a heavy contamination of the plant, leading to important economic detriment. In order to prevent such a hazard, in February 2004 a radiometric portal for detection of radioactive material in incoming waste has been installed at AMSA (Azienda Milanese per i Servizi Ambientali) 'Silla 2' urban solid waste incineration plant of Milan. Radioactive detections performed from installation time up to December 2006 consist entirely of low-activity material contaminated from radiopharmaceuticals (mainly {sup 131}I). In this work an estimate of the dose that would have been committed to population, due to incineration of the radioactive material detected by the radiometric portal, has been evaluated. Furthermore, public health and environmental effects due to incineration of a high-activity source have been estimated. Incineration of the contaminated material detected appears to have negligible effects at all; the evaluated annual collective dose, almost entirely conferred by {sup 131}I, is indeed 0.1 man mSv. Otherwise, incineration of a 3.7 x 10{sup 10} Bq (1 Ci) source of {sup 137}Cs, assumed as reference accident, could result in a light environmental contamination involving a large area. Although the maximum total dose, owing to inhalation and submersion, committed to a single individual appears to be negligible (less than 10{sup -8} Sv), the environmental contamination leads to a potential important exposure due to ingestion of contaminated foods. With respect to 'Silla 2' plant and to the worst meteorological conditions, the evaluated collective dose results in 0.34 man Sv. Performed analyses have confirmed that radiometric portals, which are today mainly used in foundries, represent a valid public health and environmental

  2. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    Science.gov (United States)

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  3. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  4. Incineration facility for combustible solid and liquid radioactive wastes in IPEN-CNEN - Sao Paulo

    International Nuclear Information System (INIS)

    Krutman, I.; Grosche Filho, C.E.; Chandra, U.; Suarez, A.A.

    1987-01-01

    A system for incinerating the combustible solid and liquid radioactive wastes was developed in order to achieve higher mass and volume reduction of the wastes generated at IPEN-CNEN/SP or received from other institutions. The radioactive wastes for incineration are: animal carcasses, ion-exchange resins, contaminated lubricant oils, cellulosic materials, plastics, etc. The optimization of the process was achieved by considering the following factors: selection of better construction and insulating material; dimensions; modular design of combustion chambers to increase burning capacity in future; applicability for various types of wastes; choise of gas cleaning system. The off-gas system utilizes dry treatment. The operation is designed to function with a negative pressure. (Author) [pt

  5. Viability study for the implantation of an incineration unit for low level radioactive wastes

    International Nuclear Information System (INIS)

    Andrade, Andre Wagner Oliani

    1995-01-01

    Incineration have been a world-wide accepted volume reduction technique for combustible materials due to its high efficiency and excellent results. This technique is used since the last century as an alternative to reduce cities garbage and during the last four decades for the hazardous wastes. The nuclear industry is also involved in this technique development related to the low level radioactive waste management. There are different types of incineration installations and the definition of the right system is based on a criterious survey of its main characteristics, related to the rad wastes as well technical, economical and burocratic parameters. After the autonomous Brazilian nuclear programme development and the onlook of the future intensive nuclear energy uses, a radwaste generation increase is expected. One of the installations where these radwastes volumes are awaited to be high is the Experimental Center of ARAMAR (CEA). Nuclear reactors for propulsion and power generation have been developed in CEA beyond other nuclear combustible cycle activities. In this panorama it is important to evaluate the incineration role in CEA installations, as a volume reduction technique for an appropriate radioactive wastes management implementation. In this work main aspects related to the low level radwaste incineration systems were up rised. This information are important to a coherent viability study and also to give a clear and impartial about a topic that is still non discussed in the national scenery. (author)

  6. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  7. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  8. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  9. INEL RCRA [Resource Conservation and Recovery Act] permit for incineration of hazardous waste: Status report

    International Nuclear Information System (INIS)

    McFee, J.N.; Dalton, J.D.; Bohrer, H.A.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) was constructed to reduce the volume of low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). To address the problem of radioactively contaminated ignitable hazardous waste resulting from INEL activities, a development program was carried out to evaluate WERF's ability to meet the regulated criteria for incinerating liquid and solid ignitable waste. Concurrently, INEL submitted its hazardous waste Part B application under the Resource Conservation and Recovery Act (RCRA). As required, and as a major step in the permitting process, the WERF incinerator portion of the permit application included a proposed trial burn, which is a demonstration test of the incinerator's ability to destroy hazardous materials. The trial burn plan was designed to demonstrate the system performance for liquid and solid ignitable wastes at three operating conditions, using a prepared mix of materials representative of waste to be processed. EPA Region X reviewed and commented on the plan prior to the trial burn. Results of the liquid feed trial burn showed a greater than 97% probability of meeting the RCRA-dictated DRE value for chlorinated solvents and a greater than 99% probability for nonchlorinated solvents. Nonchlorinated solid waste results were calculated at a 93% probability of meeting the required DRE, with a 75% probability for chlorinated solid wastes. In addition, the incinerator DRE continued to improve long after the assumed pre-test equilibrium period had ended. The trial burn demonstrates that the WERF incinerator can safely and adequately destroy ignitable hazardous and mixed waste and provides a significant enhancement of the INEL's waste management system

  10. A solution to level 3 dismantling of gas-cooled reactors: Graphite incineration

    International Nuclear Information System (INIS)

    Dubourg, M.

    1993-01-01

    This paper presents an approach developed to solve the specific decommissioning problems of the G2 and G3 gas cooled reactors at Marcoule and the strategy applied with emphasis in incinerating the graphite core components, using a fluidized-bed incinerator developed jointly between the CEA and FRAMATOME. The incineration option was selected over subsurface storage for technical and economic reasons. Studies have shown that gaseous incineration releases are environmentally acceptable

  11. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  12. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    Science.gov (United States)

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in

  13. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE)

    DEFF Research Database (Denmark)

    Riber, Christian; Bhander, Gurbakhash Singh; Christensen, Thomas Højlund

    2008-01-01

    of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input......A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model...... in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator....

  14. Fundamental characteristics of input waste of small MSW incinerators in Korea.

    Science.gov (United States)

    Choi, Ki-In; Lee, Suk-Hui; Lee, Dong-Hoon; Osako, Masahiro

    2008-11-01

    Waste incineration in a small incinerator is a simple and convenient way of treating waste discharged from small areas or from large facilities and buildings such as business centers, marketplaces, factories, and military units. Despite their ostensible advantages, however, many small incinerators frequently suffer from serious problems, e.g., unsystematic waste feeding, unstable combustion, deficient air pollution control devices, and consequently, environmental pollution. To obtain a better understanding of the characterization of wastes in small incinerators, we investigated a series of fundamental characteristics, i.e., physical composition, bulk density, proximate and ultimate analysis, potential energy content, and so on. The main waste components in small incinerators were identified as paper and plastic; the proportion of food waste was less than that in large incinerators. Especially, a low ratio of food waste had a strong influence on other waste characteristics, e.g., lower moisture content and bulk density, and higher potential energy. On the other hand, in contrast with that of HCl, there was no distinguishable linear relationship between Cl content in waste and PCDD/DF concentration in combustion gas.

  15. Shredder and incinerator technology for volume reduction of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.

    1986-06-01

    Pacific Northwest Laboratory (PNL) is evaluating alternatives and developing technology for treatment of radioactive wastes generated during commercial nuclear activities. Transuranic wastes that require volume reduction include spent HEPA filters, sample and analytical cell waste, and general process trash. A review of current technologies for volume reduction of these wastes led to the selection and testing of several low-speed shredder systems and three candidate incineration processes. The incinerators tested were the electrically heated control-led-air, gas-heated controlled-air, and rotary kiln. Equipment tests were conducted using simulated commercial transuranic wastes to provide a data base for the comparison of the various technologies. The electrically driven, low-speed shredder process was selected as the preferred method for size reduction of the wastes prior to incineration. All three incinerators effectively reduced the waste volume. Based on a technical and economic evaluation on the incineration processes, the recommended system for the commercial waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment

  16. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  17. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  18. Initial emission assessment of hazardous-waste-incineration facilities

    International Nuclear Information System (INIS)

    Harrington, E.S.; Holton, G.A.; O'Donnell, F.R.

    1982-01-01

    Health and Safety Research Division, sponsored by EPA, conducted a study to quantify emission factors from stacks, spills, fugitives, storage, and treatment for a typical hazardous waste incinerator facility. Engineering participated in preparing flowsheets and providing calculations for fugitive emissions. Typical block-flow diagrams were developed two types of hazardous waste incinerators (rotary kiln and liquid-injector) and for three capacities (small: 1 MM Btu/hr, median: 10 MM Btu/hr, and large: 150 MM Btu/hr). Storage reqirements and support services were determined in more detail. Using the properties of a typical waste, fugitive emissions were determined, including emissions from pump leaks, valve leaks, flange leaks, and tank vents. An atmospheric dispersion model was then employed to calculate atmospheric concentration and population exposure estimates. With these estimates, an assessment was performed to determine the percentage of concentrations and exposure associated with selected emissions from each source at the incineration facility. Results indicated the relative importance of each source at the incineration facility. Results indicated the relative importance of each source both in terms of public health and pollution control requirements

  19. Molten salt oxidation as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Cooper, J.F.; Farmer, J.C.; Upadhye, R.S.

    1992-03-01

    Molten Salt Oxidation was originally developed by Rockwell International as part of their coal gasification, and nuclear-and hazardous-waste treatment programs. Single-stage oxidation units employing molten carbonate salt mixtures were found to process up to one ton/day of common solid and liquid wastes (such as paper, rags, plastics, and solvents), and (in larger units) up to one ton/hour of coal. After the oxidation of coal with excess oxygen, coal ash residuals (alumina-silicates) were found adhering to the vessel walls above the liquid level. The phenomenon was not observed with coal gasification-i.e., under oxygen-deficient conditions. Lawrence Livermore National Laboratory (LLNL) is developing a two-stage/two-vessel approach as a possible means of extending the utility of the process to wastes which contain high concentrations of alumina-silicates in the form of soils or clays, or high concentrations of nitrates including low-level and transuranic wastes. The first stage operates under oxygen-deficient (''pyrolysis'') conditions; the second stage completes oxidation of the evolved gases. The process allows complete oxidation of the organic materials without an open flame. In addition, all acidic gases that would be generated in incinerators are directly metathesized via the molten Na 2 CO 3 to form stable salts (NaCl, Na 2 SO 4 etc.). Molten salt oxidation therefore avoids the corrosion problems associated with free HCl in incineration. The process is being developed to use pure O 2 feeds in lieu of air, in order to reduce offgas volume and retain the option of closed system operation. In addition, ash is wetted and retained in the melt of the first vessel which must be replaced (continuously or batch-wise). The LLNL Molten Salt unit is described together with the initial operating data

  20. Criticality management organization in the alpha incinerator

    International Nuclear Information System (INIS)

    Devillard, D.; Thiebaut, C.; Poinso, J.Y.; Huin, M.

    2004-01-01

    The Valduc Research Center, which reports to the CEA's Military applications Division, generates solid wastes contaminated with alpha emitters in the operation of its installations. An incineration plant has been built to treat these contaminated wastes. Criticality risk prevention is based on limiting the mass of active material undergoing treatment in the facility. A balance is compiled continuously by calculating the difference between the mass of active material entering the facility and the mass leaving it. Due to measurement uncertainties, the balance must be zeroed periodically by cleaning and drainage of all the equipment and the absence of holdup in the components must be checked. (authors)

  1. The use of oxygen in hazardous waste incineration

    International Nuclear Information System (INIS)

    Ho, M.D.; Ding, M.G.

    1989-01-01

    The use of advanced oxygen combustion technologies in hazardous waste (such as PCBs and hydrocarbons) incineration has emerged in the last two years as one of the most significant breakthroughs among all the competing treatment technologies. For many years, industrial furnaces have used oxygen enrichment of the combustion air and oxygen-fuel burners, but with conventional technologies a high oxygen level generally poses problems. The flame temperature is high, leading to high NOx formation and local overeating. Different technical approaches to overcome these problems and their respective effectiveness will be reviewed. Previously, commercial oxygen enrichment in incinerators was limited to a rather modest level applications of much higher oxygen enrichment levels in hazardous waste incinerators

  2. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators....... The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting...

  3. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    Science.gov (United States)

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  4. Balance carried out on an alpha waste incinerator in order to qualify its filtration system

    International Nuclear Information System (INIS)

    Cartier, R.; Burghofer, P.; Tregoures, A.; Maurel, J.M.; Vendel, J.

    1991-01-01

    A balance was carried out on a pilot incinerator of inactive solid waste running at 4 kg/h. Various measurements were taken in order to qualify the prefiltration system of the incineration process operating by pyrolysis, afterburning and calcination: determining the ventilation characteristics of the plant (gas flow rates and residence time) and the physico-chemical characteristics of the effluent (mass flow and granulometric range of particles, chemical composition of gases). Various methods of sampling and of analyzing the gases were adopted and a thermochemical model was produced. Its results are reasonably close to the experimental measurements. The emission consists of submicronic particles and porous layers are the best adapted cleaning system

  5. Sorbent control of trace metals in sewage sludge combustion and incineration

    Science.gov (United States)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  6. Effects of an incinerator project on a healthcare-waste management system.

    Science.gov (United States)

    Khammaneechan, Patthanasak; Okanurak, Kamolnetr; Sithisarankul, Pornchai; Tantrakarnapa, Kraichat; Norramit, Poonsup

    2011-10-01

    This evaluative research study aimed to assess the effects of the central healthcare incinerator project on waste management in Yala Province. The study data were collected twice: at baseline and during the operational phase. A combination of structured interview and observation were used during data collection. The study covered 127 healthcare facilities: government hospitals, healthcare centres, and private clinics. The results showed 63% of healthcare risk waste (HCRW) handlers attended the HCRW management training. Improvements in each stage of the HCRW management system were observed in all groups of facilities. The total cost of the HCRW management system did not change, however; the costs for hospitals decreased, whereas those for clinics increased significantly. It was concluded that the central healthcare waste incinerator project positively affected HCRW management in the area, although the costs of management might increase for a particular group. However, the benefits of changing to a more appropriately managed HCRW system will outweigh the increased costs.

  7. Noncondensable hydrogen sulfide incineration with brine scrubbing air emissions control system

    International Nuclear Information System (INIS)

    Goddard, W.B.; Goddard, C.B.; McClain, D.W.

    1990-01-01

    This paper reports on the technical and institutional feasibility of incinerating hydrogen sulfide (H2S) contained in geothermal noncondensable gases, and the use of geothermal brine for sulfur dioxide scrubbing and absorption as an Air Emissions Control System (AECS), for geothermal power plant, that have been documented through engineering analysis in the Phase I grant study funded through the California Department of Health Services (DOHS), Hazardous Materials Reduction Grant Program and hosted by California Energy Company (CECI). Grant funding for Phase II now has been approved to proceed with the project through the pilot plant design phase. This innovative AECS does not necessitate the use of hazardous materials or produce hazardous wastes. Cost savings were documented compared to injection pump operation or conventional AECS without the use of hazardous materials. The phase II project is to design, improve, research and develop a source reduction demonstration pilot plant geothermal noncondensable H2S incineration AECS

  8. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  9. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  10. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  11. A feasibility study of municipal solid waste incineration fly ash utilisation in Estonia.

    Science.gov (United States)

    Berber, Hakan; Frey, Ruedi; Voronova, Viktoria; Koroljova, Arina

    2017-09-01

    The purpose of this paper is to discuss the alternative environmental management options for the utilisation of municipal solid waste (MSW) incineration fly ash (FA), which is generated at Iru Power Plant where MSW is incinerated in Estonia. To determine sustainable and economically feasible environmental management options for MSW incineration FA in Estonia, CO 2 sequestration with a further carbonation process was examined. A partial Cost & Benefit Analysis has been conducted to compare the carbonation process to the current situation. Two carbonation options were developed. Option 1 is to use carbonated FA in any other processes based on the waste-to-product principle. Option 2 is to send carbonated FA to the non-hazardous landfill in Tallinn, Estonia. Important parameters, such as Net Present Value (NPV), Internal Rate of Return (IRR), Benefit-Cost Ratio (BCR) and Break Even Point (BEP), have been calculated for carbonation options and the current case. In addition, a sensitivity analysis has been conducted to examine its robustness. The results showed that the best option is carbonation Option 1 with NPV of 9,209,662 EUR, IRR of 43%, BCR of 2.63 and BEP between 2018 and 2019. Both Options 1 and 2 constitute more sustainable and environmentally friendly management options compared to the current situation. It can be concluded that this preliminary feasibility study showed that running a carbonation plant may be profitable and sustainable for Estonia. Currently, there is no treatment technology for MSW incineration FA in Estonia and FA is sent to a neighbouring country for further utilisation. This is the first study to demonstrate FA management options with economic and environmental benefits.

  12. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  14. Economical incineration of volatile organic compounds (VOC) using oxide catalysts with optimized superficial properties; Incineration economique de composes organiques volatils (COV) a l'aide des catalyseurs d'oxydes aux proprietes superficielles optimisees

    Energy Technology Data Exchange (ETDEWEB)

    Evstratov, A. [Ecole Nationale Superieure des Techniques Industrielles et des Mines d' Ales, ENSTIMA, Centre LGEI, 30 - Ales (France)

    2001-07-01

    This study aims at presenting the existing possibilities of improvement of the technological parameters of the incineration processes for VOC-bearing industrial gases. Two different approaches are considered. One is based on the preliminary accumulation of the compounds to be degraded on catalytic surfaces having important acid-base and redox capabilities; the formation of the deposits is followed by the in situ catalytic incineration. The other is based on the application of catalysts with optimized acidities in order to limit the acid-base interactions and to maintain the catalytic surfaces in a stationary state at reduced temperatures. The first approach is applied to reactive VOC (unsaturated and polar compounds), while the other can be useful for the economical treatment of any type of VOC-bearing effluent. (J.S.)

  15. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Review of biosolids management options and co-incineration of a biosolid-derived fuel.

    Science.gov (United States)

    Roy, Murari Mohon; Dutta, Animesh; Corscadden, Kenny; Havard, Peter; Dickie, Lucas

    2011-11-01

    This paper reviews current biosolids management options, and identifies incineration as a promising technology. Incineration is attractive both for volume reduction and energy recovery. Reported emissions from the incineration of biosolids were compared to various regulations to identify the challenges and future direction of biosolids incineration research. Most of the gaseous and metal emissions were lower than existing regulations, or could be met by existing technologies. This paper also presents the results of an experimental study to investigate the potential use of biosolids for co-incineration with wood pellets in a conventional wood pellet stove. Pilot scale combustion tests revealed that co-incineration of 10% biosolids with 90% premium grade wood pellets resulted in successful combustion without any significant degradation of efficiency and emissions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  18. Management of atmospheric pollutants from waste incineration processes: the case of Bozen.

    Science.gov (United States)

    Ragazzi, Marco; Tirler, Werner; Angelucci, Giulio; Zardi, Dino; Rada, Elena Cristina

    2013-03-01

    This article presents the case study of a waste incinerator located in a region rich in natural and environmental resources, and close to the city of Bozen, where there are about 100,000 inhabitants. Local authorities paid special attention to the effect of the plant on human health and the surrounding environment. Indeed, among the measures adopted to control the emissions, in 2003 an automatic sampling system was installed specifically to monitor polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions during the complete operation time of the plant. The continuous sampling system was coupled directly to aerosol spectrometers for the determination of fine and ultra-fine particles in the emissions of the plant. The measurement results suggest that the waste incineration plant of Bozen is not a significant source of PCDD/F, or fine and ultra-fine particles. Immission measurements from other monitoring systems confirmed these results.

  19. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  20. Characterization on incineration residue of radioactive solid wastes

    International Nuclear Information System (INIS)

    Katoh, Kiyoshi; Hirayama, Katsuyoshi; Kato, Akira.

    1989-01-01

    Characterization was carried out on incineration residue discharged from the radioactive solid waste incineration unit (capacity, 100 kg/h) in use at the Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI) to obtain basic data for investigating solidification methods of the residue. The characterized residue was taken from furnace and a primary ceramic filter of the incineration unit which incinerates combustible solid wastes generated at JAERI and the outside organizations. Items of characterization involve a particle size distribution, misplaced materials content, ignition loss, chemical composition and radioactivity of nuclides in the ash. As the results, the size of ash sampled from the furnace distributed a wide range, with about 35∼60 % of ash smaller than 5 mm and about 10∼25 % of massive one larger than 30 mm (max. size: ∼130 mm). The ignition loss was 2∼3 %. The chemical compositions of the ash were mainly SiO 2 , Fe 2 O 3 , CaO and Al 2 O 3 . The specific activities of the ash were about 0.4∼4 x 10 3 Bq/g, and principal contaminants were 60 Co and 137 Cs. (author)

  1. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  2. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  3. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  4. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    Science.gov (United States)

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  5. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  6. Flaring versus thermal incineration of waste gases in the oil and gas industry

    International Nuclear Information System (INIS)

    Smolarski, G.M.

    1999-01-01

    The efficient combustion of waste gases at oil processing plants, battery or well sites is discussed. Several problem situations are examined, field test results are reviewed, and custom design systems are explained including modifications to systems to conserve fuel. It is shown that combustion of waste gases in fuel efficient thermal incinerators is a practical means of disposal, particularly for sour or toxic gas of low heating value. These gases contain noxious compounds that may cause odours or adverse health effects. Results of a field tests of a portable in-situ incinerator show that compared to flaring (to oxide waste gas), incineration is a more efficient form of waste management. Emission tests also prove the superior performance of incineration. The feasibility of incinerating oil storage tank vapours was also demonstrated. Tests were also conducted with a fuel-efficient Glycol Still Off-Gas Incinerator which was developed to control toxic waste emissions. Glycol dehydration removes water vapour from natural gas. The key compounds that are removed by glycol are aromatic hydrocarbons or BTEX compounds (benzene, toluene, ethylbenzene and xylene), and sulphur compounds. The main design considerations for any incinerator are temperature, turbulence and residence time. An incinerator exit temperature of 760 degrees C is generally needed to reduce sulphur compounds. 2 refs., 8 tabs., 7 figs

  7. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  8. Incineration of European non-nuclear radioactive waste in the USA

    International Nuclear Information System (INIS)

    Moloney, B. P.; Ferguson, D.; Stephenson, B.

    2013-01-01

    Incineration of dry low level radioactive waste from nuclear stations is a well established process achieving high volume reduction factors to minimise disposal costs and to stabilise residues for disposal. Incineration has also been applied successfully in many European Union member countries to wastes arising from use of radionuclides in medicine, nonnuclear research and industry. However, some nations have preferred to accumulate wastes over many years in decay stores to reduce the radioactive burden at point of processing. After decay and sorting the waste, they then require a safe, industrial scale and affordable processing solution for the large volumes accumulated. This paper reports the regulatory, logistical and technical issues encountered in a programme delivered for Eckert and Ziegler Nuclitec to incinerate safely 100 te of waste collected originally from German research, hospital and industrial centres, applying for the first time a 'burn and return' process model for European waste in the US. The EnergySolutions incinerators at Bear Creek, Oak Ridge, Tennessee, USA routinely incinerate waste arising from the non-nuclear user community. To address the requirement from Germany, EnergySolutions had to run a dedicated campaign to reduce cross-contamination with non-German radionuclides to the practical minimum. The waste itself had to be sampled in a carefully controlled programme to ensure the exacting standards of Bear Creek's license and US emissions laws were maintained. Innovation was required in packaging of the waste to minimise transportation costs, including sea freight. The incineration was inspected on behalf of the German regulator (the BfS) to ensure suitability for return to Germany and disposal. This first 'burn and return' programme has safely completed the incineration phase in February and the arising ash will be returned to Germany presently. The paper reports the main findings and lessons learned on this first

  9. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  10. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  11. Risk identification for PPP waste-to-energy incineration projects in China

    International Nuclear Information System (INIS)

    Song, Jinbo; Song, Danrong; Zhang, Xueqing; Sun, Yan

    2013-01-01

    Municipal solid waste (MSW) is regarded as a renewable energy source. In China, the sharp increase of MSW has precipitated the rapid growth of waste-to-energy (WTE) incineration plants. Private capital has been getting into the WTE incineration industry through the public–private partnership (PPP) arrangement. Due to the large construction cost and the long concession period commonly associated with this arrangement, a number of failures have emerged in PPP WTE incineration projects. The aim of this paper is to investigate the key risks of PPP WTE incineration projects in China and study the strategies for managing these risks by drawing experience and learning lessons from these projects. First, we analyzed the MSW management practices, relevant legislations and policies, and the development of PPP WTE incineration projects in China. Second, we identified ten key risks through interviews, surveys and visits to some selected projects, and provided detailed analysis of these risks. Lastly, we developed response strategies for these risks from the perspectives of both public and private sectors. - Highlights: • We analyze MSW management practices, relevant legislations and policies in China. • Through case study on PPP WTE incineration projects, ten key risks are identified. • Response strategies for key risks are developed

  12. Controlled-air incineration of alpha-bearing solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Neuls, A.S.; Newmyer, J.M.

    1980-01-01

    The Los Alamos Scientific Laboratory is completing a study of controlled-air incineration (CAI) as a technique for volume reduction and stabilization of combustible transuranic-contaminated solid wastes. To demonstrate feasibility, a process has been assembled and operated on synthetic and contaminated combustibles. This paper summarizes the CAI project history, process design, provisions for radioactive operation, experimental results to date, and future plans. Achievements include operation at the design feed rate as well as combustion of separate feed compositions including cellulosics, polyethylene, polyvinyl chloride (PVC) and latex rubber. Refractory life has been satisfactory to date, with studies continuing. The offgas cleanup system has proven to be extremely effective; the final high-efficiency filters showing virtually no pressure drop increase. The ability of the system to process high concentrations of PVC has been demonstrated with no chloride-induced degradation detected. Chloride and sulfate removal from the offgas has been excellent with concentrations reaching 8 and 10 ppM maximum, respectively, in the process condensate

  13. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  14. Thermal treatments available for destruction of industrial wastes. Application to the incineration of radioactive wastes

    International Nuclear Information System (INIS)

    Chevalier, Gerard.

    1981-08-01

    Both the collecting and processing circuits and the physicochemical laws of combustion and thermal degradation of industrial wastes are recalled. The various incineration processes are reviewed considering especially conversion of refuse to energy and recovery of raw materials either before or after treatment. Wastes are devided into three classes according to their physical state: solid, liquid or sludge, gas. Some processes based on pyrolysis in the absence of air or at sub-stoichiometric levels are presented. A similar study is carried out on radioactive wastes, taking into account the particular aspects raised by incineration. Operational devices are described and some lines of research about the application of new techniques are summarized. The results derived from laboratory or pilot plant experiments are presented [fr

  15. Quantitative characterization of hazardous waste incinerator performance - Part I: Model components viewed in the context of exchange among equilibrium reactions zones

    International Nuclear Information System (INIS)

    Atimtay, A.; Weaver, R.E.C.; Murray, J.G.

    1985-01-01

    This first paper of a series treats the algorithmic details of an efficient approach to equilibrium definition through free energy minimization and examines the region near the flame of a selected incinerator configuration, explicitly treating candidate heat and mass transfer processes occurring among the zones in local chemical equilibrium. The prospect for achieving maximum permitted flexibility of operations out of RCRA Part B Test Burn studies (in addition to achieving design improvements) will be enhanced by having a tractable yet versatile incinerator simulation capability. This approach seeks to integrate as much independent evidence on constituents processes as may be available in a quantitative aggregate from which a comparison can be drawn with what is measured in actual operations

  16. Tracing source and migration of Pb during waste incineration using stable Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Shao, Li-Ming; He, Pin-Jing [Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092 (China)

    2017-04-05

    Highlights: • The migration of Pb during waste incineration was investigated using Pb isotopes. • Source tracing of Pb during incineration by isotopic technology was feasible. • Contributions of MSW components were measured to trace Pb sources quantitatively. • Isotopic technology helps understand the migration of Pb during thermal treatment. - Abstract: Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components ({sup 207}Pb/{sup 206}Pb = 0.8550–0.8627 and {sup 208}Pb/{sup 206}Pb = 2.0957–2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.

  17. On-line temperature control of fluidized bed incinerator using fuzzy algorithm; Fuzzu seigyo donyu ni yoru ryudosogata shokyakuro unten no jidoka

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, S.; Kuratani, T.; Imai, H. [Ajinomoto Co. Inc., Tokyo (Japan)

    1995-03-15

    Automatic control of incinerators for their stable operation has been desired for the preservation of the environment in the factory. An on-line fuzzy control system has been successfully introduced for temperature control of the fluidized bed of incinerator for industrial wastes. In this case, manual control can be applied to the plant instead of a PID control system, because of the complexity of the waste materials and the large delay in detection of the temperature change in the fluidized bed sand. On the basis of analyzing the dynamic performance of the process and the know-how of skilled operators, membership functions and fuzzy control rules are selected, then determined carefully for the system. Introduction of the system resulted in almost the same performance as manual control. Subsequently the operators are freed from manual operation in the control room for an hour. 6 refs., 5 figs., 4 tabs.

  18. Volume reduction and solidification of radioactive waste incineration ash with waste glass

    International Nuclear Information System (INIS)

    Koyama, Hidemi; Kobayashi, Masayuki

    2007-01-01

    The low-level radioactive waste generated from research institutions and hospitals etc. is packed into a container and is kept. The volume reduced state or the unprocessed state by incineration or compression processing are used because neither landfill sites nor disposal methods have been fixed. Especially, because the bulk density is low, and it is easy to disperse, the low-level radioactive waste incineration ash incinerated for the volume reduction is a big issue in security, safety, stability in the inventory location. A safe and appropriate disposal processing method is desired. When the low temperature sintering method in the use of the glass bottle cullet was examined, volume reduction and stabilization of low-level radioactive waste incineration ash were verified. The proposed method is useful for the easy treatment of the low-level radioactive waste incineration ash. (author)

  19. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  20. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  1. Improvement of the IRIS Process for Incineration of Various Radioactive Waste Compositions

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J. P.

    2003-01-01

    Incineration represents a promising weight and volume reduction technique for alpha-contaminated organic waste. Following several years of laboratory research initiated in 1983 on a nonradioactive prototype unit at the CEA's Rhone Valley (Marcoule) Research Center, an innovative process, IRIS, has been developed to meet the need for processing nuclear glove box waste containing large amounts of chlorine. In March 1999, the first highly chlorinated alpha-contaminated waste was incinerated in the industrial facility based on the IRIS process at the CEA's Valduc Center. The nonradioactive prototype at Marcoule and the radioactive facility at Valduc demonstrated that the process is highly effective with a continuously fed rotating tubular kiln and with a very effective control of corrosion by pyrolytic decomposition of the waste initially at 550 C. The ash quality meets specification requirements (< 1% carbon, < 1% chlorine) and the volume and weight reduction factors are sufficient (around 30). The offgas treatment system exhibits very high operating efficiency complying with gaseous emission standards

  2. Environmental impact and human health risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a new hazardous waste incinerator: a case study.

    OpenAIRE

    Ferré-Huguet, Núria; Nadal, Martí; Schuhmacher, Marta; Domingo, José L.

    2006-01-01

    KEYWORDS - CLASSIFICATION: adverse effects;analysis;Benzofurans;cancer epidemiology;Dioxins;Environmental Exposure;Environmental Health;Environmental Monitoring;Hazardous Waste;Humans;Incineration;metabolism;Refuse Disposal;Research;Risk Assessment;Spain;Toxicology. The purpose of this study was to assess the environmental impact of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the vicinity of a new hazardous waste incinerator (HWI) 4 years after regular operation of the...

  3. Influence of heat transfer modes on the scale-up of solvent pool burning in controlled-air incinerators

    International Nuclear Information System (INIS)

    Gandhi, P.D.; Orloff, D.I.

    1982-01-01

    An analytical modes of pool burning in a controlled-air incinerator was developed. Incinerator performance predicted by the model compared favorably with laboratory-scale incineration experiments. The model was extended to a full-scale incinerator, using results from an intermediate pilot-scale incinerator. The full-scale results showed the influence of various modes of heat transfer, and the importance of flame emissivity and incinerator wall temperature in controlling the burning rate. The influence of pan geometry on consumption rate was also evaluated for the full-scale incinerator

  4. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    Energy Technology Data Exchange (ETDEWEB)

    Sahlin, Jenny [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); Ekvall, Tomas [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-41296 Goeteborg (Sweden); IVL Swedish Environmental Research Institute, P.O. Box 5302, SE-40014 Goeteborg (Sweden); Bisaillon, Mattias; Sundberg, Johan [Profu AB, Goetaforsliden 13, SE-43134 Moelndal (Sweden)

    2007-10-15

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  5. Introduction of a waste incineration tax. Effects on the Swedish waste flows

    International Nuclear Information System (INIS)

    Sahlin, Jenny; Ekvall, Tomas; Bisaillon, Mattias; Sundberg, Johan

    2007-01-01

    A tax on waste-to-energy incineration of fossil carbon in municipal solid waste from households was introduced in Sweden on July 1, 2006. The tax has led to higher incineration gate fees. One of the main purposes with the tax is to increase the incentive for recycling of materials, including biological treatment. We investigate whether and to what extent this effect can be expected. A spreadsheet model is developed in order to estimate the net marginal cost of alternative waste treatment methods, i.e., the marginal cost of alternative treatment minus avoided cost of incineration. The value of the households' time needed for source separation is discussed and included. The model includes the nine largest fractions, totalling 85% (weight), of the household waste currently being sent to waste incineration: food waste, newsprint, paper packaging, soft and hard plastic packaging, diapers, yard waste, other paper waste, and non-combustible waste. Our results indicate that the incineration tax will have the largest effect on biological treatment of kitchen and garden waste, which may increase by 9%. The consequences of an incineration tax depend on: (a) the level of the tax, (b) whether the tax is based on an assumed average Swedish fossil carbon content or on the measured carbon content in each incineration plant, (c) institutional factors such as the cooperation between waste incinerators, and (d) technological factors such as the availability of central sorting of waste or techniques for measurement of fossil carbon in exhaust gases, etc. Information turns out to be a key factor in transferring the governing force of the tax to the households as well improving the households' attitudes towards material recycling. (author)

  6. A sustainability analysis of an incineration project in Serbia.

    Science.gov (United States)

    Mikic, Miljan; Naunovic, Zorana

    2013-11-01

    The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.

  7. Dual ant colony operational modal analysis parameter estimation method

    Science.gov (United States)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  8. Verification test of an engineering-scale multi-purpose radwaste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The verification test of an engineering-scale multi-purpose radwaste incinerator was implemented. The test items include performance determination for the system when solid wastes (include resins) or spent oil were incinerating and off gas was cleaning, tracer test for determining decontamination factor and 72 h continuos running test. 500 h tests verify the reliability and feasibility of designs of technological process, main structure, instrument control and system safety. The incineration system ran smoothly, devices and instruments worked stably. The specifications such as capacity, volume reduction factor, carbon remainder in ash and decontamination factor all meet the design requirements

  9. [Public health risk caused by emissions from refuse incinerators].

    Science.gov (United States)

    Wassermann, O; Kruse, H

    1995-01-01

    An irresponsible "approval on request" in favour of waste incineration written by a consulting committee of the German Federal Board of Physicians has meanwhile been widely distributed both nationally and internationally. The aim of this politically motivated paper is to dramatically increase the present number of 49 waste incinerators in Germany. It is our duty to warn of this intention. Health problems are known to exist both in workers at waste incinerators and in humans living in their vicinity. Furthermore, in the long run negative impact also to ecosystems should be expected from the emissions. Health problems in patients living downwind of waste incinerators repeatedly have been reported on by physicians. "Lack of statistical significance", often used as counter-argument, is only due to absence of funding of comprehensive epidemiological studies in Germany. Analyses of soil samples reveal the pollution from waste incineration. Considering the pre-load of the region, additional emissions caused by waste incineration and other sources have to be assessed. The application of preventive limit values is imperative. The presently used "limit values", being about 100 times too high, bear an unacceptable risk. Therefore, reliable regional registers of emissions have to be established immediately. Limit values continuously have to be adjusted to the progress of scientific knowledge. In this respect it is imperative to consider that the actual composition of emissions is unknown; isolated risk assessment of single compounds underestimates the total risk; the negative impact, e.g. of dioxins, on both the immune and hormone systems occurs at concentrations 100 times lower than those causing carcinogenic effects; the assumption of "threshold values" is obsolete; a considerable lack of knowledge exists about accumulation in food webs and in ecosystems; the demand of preservation of natural, geogenic situations is indispensable in assessments of soil and water pollution

  10. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reconstruction of the Leudelange refuse incineration plant with integration of existing plant parts; Erneuerung der MVA Leudelange unter Integration vorhandener Anlagenteile

    Energy Technology Data Exchange (ETDEWEB)

    Buechner, Harm-Peter; Jolas, Uwe [EEW Energy from Waste GmbH, Helmstedt (Germany)

    2013-10-01

    SIDOR, a special purpose association for waste management in Luxembourg, manages the waste disposal of around two-thirds of Luxembourg's entire population. E.ON Energy from Waste (EEW) participated in SIDOR's tender process for both constructing as well as operating a new incineration line with an overall capacity of 150,000 t/a, which was accepted by SIDOR in October 2006. The new incineration line with an overall gross heat output of 67 MWth replaced the existing lines after completion. (orig.)

  12. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan

    2006-02-15

    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  13. Coal as a supplemental heat source in sludge incineration

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, G J; Bergstedt, D C

    1979-07-01

    The use of coal as a supplemental fuel in multiple hearth sludge incineration was investigated; how sulphur lump coal was added to dewatered sludge being fed to the furnace, reducing incinerator oil requirements by 70%. With full-scale retrofit of the treatment plant total annual costs for coal supplemental feeding would be 161,000 dollars, but oil savings would be 240,000 dollars.

  14. The domestic wastes incinerators; Les incinerateurs d'ordures menegares: quels risques? quelles politiques?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-01

    This document presents the opinion of the Committee of Prevention and Precaution (CPP), on the domestic wastes incinerators, in the framework of the global wastes policy. The seven chapters detail and bring advices on the following topics: the elements which are going in and out of the incinerators, the technical processes, the occupational activities and the risks bound to the incinerators use, the transfer modes towards the different environmental areas, the exposure estimation, the risks of people living near the domestic wastes incinerators compared to the other concerning a cancer development, the legislation concerning the domestic wastes and the social acceptability of the incinerators. (A.L.B.)

  15. Demonstration test of 'multi-purpose incinerating melter system'

    International Nuclear Information System (INIS)

    Miyazaki, Hitoshi; Tanimoto, Kenichi; Wakui, Hitoshi; Oasada, Kaoru; Ishikawa, Fuyuhiko.

    1994-01-01

    A Multi-Purpose Incinerating Melter System (MIMS) has been developed as a volume reduction technique for a wide variety of radwastes including flame retardants such as spent resin, and non-combustible materials such as concrete, glass and steel. In the MIMS, these wastes are incinerated and/or melted at temperatures between 1,000 and 1,500degC generated by fossil fueled burner to produce obsidian-like ingots with high integrity. A demonstration test program was carried out from 1989 until 1991 using an engineering-scale demonstration unit. In the test program, various simulated wastes with traces of 60 Co, 54 Mn, 59 Fe, 137 Cs, 22 Na and 106 Ru were treated to obtain decontamination factor (DF) data and leach-resistance data of the products. The summarized results drawn from the 13 runs of demonstrative operations are the following: (1) Most involatile radionuclides are transferred into solidified products. (2) Global DF of the system excluding a HEPA filter ranged 1x10 4 thru 1x10 5 for 60 Co, 2x10 2 thru 2x10 3 for 137 Cs and 2x10 2 thru 1x10 4 for 106 Ru. (3) Leaching resistance of the solidified product is a match for that of a typical borosilicate glass waste form. (author)

  16. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.

  17. The PWI [plutonium waste incinerator] expert system: Real time, PC-based process analysis

    International Nuclear Information System (INIS)

    Brown, K.G.; Smith, F.G.

    1987-01-01

    A real time, microcomputer-based expert system is being developed for a prototype plutonium waste incinerator (PWI) process at Du Pont's Savannah River Laboratory. The expert system will diagnose instrumentation problems, assist operator training, serve as a repository for engineering knowledge about the process, and provide continuous operation and performance information. A set of necessary operational criteria was developed from process and engineering constraints; it was used to define hardware and software needs. The most important criterion is operating speed because the analysis operates in real time. TURBO PROLOG by Borland International was selected. The analysis system is divided into three sections: the user-system interface, the inference engine and rule base, and the files representing the blackboard information center

  18. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development and prospects of municipal solid waste (MSW) incineration in China

    Institute of Scientific and Technical Information of China (English)

    Yongfeng NIE

    2008-01-01

    With the lack of space for new landfills, municipal solid waste (MSW) incineration is playing an increasingly important role in municipal solid waste management in China. The literatures on certain aspects of incineration plants in China are reviewed in this paper, including the development and status of the application of MSW incineration technologies, the treatment of leachate from stored MSW, air pollution control technologies, and the status of the fly-ash control method. Energy policy and its promotion of MSW-to-energy conversion are also elucidated.

  20. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  1. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  2. Observations on self-incineration characteristics in 24 years (1993-2016) of autopsies in the city of Milan.

    Science.gov (United States)

    Amadasi, Alberto; Boracchi, Michele; Gentile, Guendalina; Maciocco, Francesca; Maghin, Francesca; Zoja, Riccardo

    2018-01-01

    Self-incineration is one of the most dramatic and lethal suicide methods. It is rarely reported in Western countries and is more frequent in developing regions. We illustrate the forensic cases of self-immolation occurring over 24 years in the city of Milan, Italy, highlighting the main issues of such a complex and rare suicide. We selected 33 cases of self-incineration among 23,417 autopsies (4022 suicides) performed at the Department of Legal Medicine of the University of Milan over a period of 24 years (1993-2016). Several parameters were included and analysed: gender and age of the victims, pathological history, previous suicide intentions/attempts, duration of burning, place of death or discovery of the corpse, circumstantial data of fatal events and autopsy findings, with particular attention to thermal injuries. Self-incineration was found in 0.8% of total suicides and 0.14% of total autopsies. One of these cases involved a complex modality (association with plastic-bag suffocation). The typical characteristics of the victim were an Italian man with psychiatric illness, frequently moved by passion, existential discomfort and economic problems. During the 24-year period, the number of cases of self-incineration progressively reduced. This study provides a general overview in one of the biggest metropolitan Italian areas and is one of the few works performed on this topic. It may be helpful in understanding and studying such an unusual manner of suicide.

  3. Determination of hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in waste incineration fly ash using ultrasonic extraction followed by column cleanup and GC-MS analysis.

    Science.gov (United States)

    Zhang, Haiyan; Jiang, Lei; Zhou, Xin; Zeng, Tao; He, Zhiqiao; Huang, Xinwen; Chen, Jianmeng; Song, Shuang

    2018-03-01

    Hexachlorobutadiene (HCBD) was listed as a new controlling persistent organic pollutant in the Stockholm Convention because of its wide industrial applications and potential genotoxicity and carcinogenicity. However, only limited information exists on the release of HCBD from unintentional sources, such as waste incineration. Identification and quantification of HCBD in fly ash, one of the major outputs of waste incineration, is imperative. This work presents a simple method for determining HCBD in waste incineration fly ash based on ultrasonic extraction coupled with a silica gel-Florisil column cleanup followed by gas chromatography-mass spectrometry detection. Two typical persistent organic pollutants, pentachlorobenzene (PeCB) and hexachlorobenzene (HCB), were measured simultaneously. The parameters that influence the extraction efficiency and the quality of instrument detection were studied. Under the optimum experimental conditions, high sensitivity (detection limit 0.25-0.53 ng g -1 ), acceptable recoveries (64.0-71.4%) at spiking levels of 5-500 ng g -1 , and good repeatability [relative standard deviation (n = 3) of 14% or less] were achieved for all target analytes. The validation of this method was performed by analysis of six real fly ash samples from different waste incinerators in eastern China. The concentrations of HCBD detected in these samples (1.39-97.6 ng g -1 ) were comparable to those of PeCB (1.22-150 ng g -1 ) and HCB (0.82-120 ng g -1 ), indicating that the residual HCBD as well as PeCB and HCB in waste incineration fly ash should not be ignored. The results confirm for the first time that waste incineration is an unintentional source of HCBD in China. Graphical abstract An analytical method for hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in fly ash from waste incineration. GC-MS gas chromatography-mass spectrometry, Ph-d10 phenanthrene-d 10 .

  4. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  5. Accumulative behavior of radioactive cesium during the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Mizuhara, Shinji; Kawamoto, Katsuya; Maeseto, Tomoharu; Kuramochi, Hidetoshi; Osako, Masahiro

    2015-01-01

    Understanding the long-term accumulation behavior of radioactive cesium (r- Cs) in municipal solid waste (MSW) incineration plants is important for safety management of them. In this study, first, not only air dose rate but also r-Cs activity in wall adhesion dust at different point in the inside of a MSW incineration plant were measured. The results showed that higher amounts of the Cs were observed in the surface layer of refractory and that higher air dose ratios were obtained in the upstream region in incineration process. However, the Cs content of adhered dust onto the surface material of incineration equipment was higher in downstream than upstream because of the decrease of flue gas temperature. (author)

  6. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators.

    Science.gov (United States)

    Cordier, S; Chevrier, C; Robert-Gnansia, E; Lorente, C; Brula, P; Hours, M

    2004-01-01

    Although municipal solid waste incineration (MSWI) has contributed to increase the overall environmental load of particulate matter containing dioxins and metals, evidence of health consequences to populations is sparse. To assess at a regional level (in southeast France) the impact of these emissions on birth defect rates. Communities with fewer than 50 000 inhabitants surrounding the 70 incinerators that operated at least one year from 1988 to 1997 were studied. Each exposed community (n = 194) was assigned an exposure index estimated from a Gaussian plume model. Poisson models and a reference population of the 2678 unexposed communities in the region were used to calculate relative risks for congenital malformations, adjusted for year of birth, maternal age, department of birth, population density, average family income, and when available, local road traffic. The rate of congenital anomalies was not significantly higher in exposed compared with unexposed communities. Some subgroups of major anomalies, specifically facial clefts and renal dysplasia, were more frequent in the exposed communities. Among exposed communities, a dose-response trend of risk with increasing exposure was observed for obstructive uropathies. Risks of cardiac anomalies, obstructive uropathies, and skin anomalies increased linearly with road traffic density. Although both incinerator emissions and road traffic may plausibly explain some of the excess risks observed, several alternative explanations, including exposure misclassification, ascertainment bias, and residual confounding cannot be excluded. Some of the effects observed, if real, might be attributable to old-technology MSWIs and the persistent pollution they have generated.

  7. Risk for non Hodgkin’s lymphoma in the vicinity of French municipal solid waste incinerators

    Directory of Open Access Journals (Sweden)

    Sauleau Erik-André

    2008-10-01

    Full Text Available Abstract Background Dioxin emissions from municipal solid waste incinerators are one of the major sources of dioxins and therefore are an exposure source of public concern. There is growing epidemiologic evidence of an increased risk for non-Hodgkin's lymphoma (NHL in the vicinity of some municipal solid waste incinerators with high dioxin emission levels. The purpose of this study was to examine this association on a larger population scale. Methods The study area consisted of four French administrative departments, comprising a total of 2270 block groups. NHL cases that had been diagnosed during the period 1990–1999, and were aged 15 years and over, were considered. Each case was assigned a block group by residential address geocoding. Atmospheric Dispersion Model System software was used to estimate immissions in the surroundings of 13 incinerators which operated in the study area. Then, cumulative ground-level dioxin concentrations were calculated for each block group. Poisson multiple regression models, incorporating penalized regression splines to control for covariates and dealing with Poisson overdispersion, were used. Five confounding factors were considered: population density, urbanisation, socio-economic level, airborne traffic pollution, and industrial pollution. Results A total of 3974 NHL incident cases was observed (2147 among males, and 1827 among females during the 1990–1999 time period. A statistically significant relationship was found at the block group level between risk for NHL and dioxin exposure, with a relative risk (RR of 1.120 (95% confidence interval [CI] 1.002 – 1.251 for persons living in highly exposed census blocks compared to those living in slightly exposed block groups. Population density appeared positively linked both to risk for NHL and dioxin exposure. Subgroup multivariate analyses per gender yielded a significant RR for females only (RR = 1.178, 95% CI 1.013 – 1.369. Conclusion This study, in

  8. Waste incineration and adverse birth and neonatal outcomes: a systematic review.

    Science.gov (United States)

    Ashworth, Danielle C; Elliott, Paul; Toledano, Mireille B

    2014-08-01

    Public concern about potential health risks associated with incineration has prompted studies to investigate the relationship between incineration and risk of cancer, and more recently, birth outcomes. We conducted a systematic review of epidemiologic studies evaluating the relationship between waste incineration and the risk of adverse birth and neonatal outcomes. Literature searches were performed within the MEDLINE database, through PubMed and Ovid interfaces, for the search terms; incineration, birth, reproduction, neonatal, congenital anomalies and all related terms. Here we discuss and critically evaluate the findings of these studies. A comprehensive literature search yielded fourteen studies, encompassing a range of outcomes (including congenital anomalies, birth weight, twinning, stillbirths, sex ratio and infant death), exposure assessment methods and study designs. For congenital anomalies most studies reported no association with proximity to or emissions from waste incinerators and "all anomalies", but weak associations for neural tube and heart defects and stronger associations with facial clefts and urinary tract defects. There is limited evidence for an association between incineration and twinning and no evidence of an association with birth weight, stillbirths or sex ratio, but this may reflect the sparsity of studies exploring these outcomes. The current evidence-base is inconclusive and often limited by problems of exposure assessment, possible residual confounding, lack of statistical power with variability in study design and outcomes. However, we identified a number of higher quality studies reporting significant positive relationships with broad groups of congenital anomalies, warranting further investigation. Future studies should address the identified limitations in order to help improve our understanding of any potential adverse birth outcomes associated with incineration, particularly focussing on broad groups of anomalies, to inform

  9. Incineration for resource recovery in a closed ecological life support system

    Science.gov (United States)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  10. System of the incineration for the liquid scintillation garbage

    International Nuclear Information System (INIS)

    Naba, Katsumi

    1981-12-01

    In Japan from 1980 the incineration of the used scintillation liquid has been permitted according to the safety guide regulation of Japan Scientific Technology Agency. This incineration method would disperse the radioactivity in local site and destroy the chemicals at the same time. This system are consist of three parts. (1) Filtration and pH. adjustment of liquid garbage. (2) Bubbling vaporization in closed cycle. The temperature of the solution inside vessel is kept from 65 0 C to 85 0 C and the solution is bubbled with nealy 4 0 C circulated air. After the end of distillation, water layer is separated from the organic chemical layer and put it down the drain according to the regulation. (3) The residue is mixed with only the distilled organic chemicals according to the next classification, thereafter incineration is carried out. (a) For under the radioactive concentration of 1 x 10 -3 μCi/ml, the mixed scintillation liquid are burned up in specially designed incinerator. (b) For over the level of 1 x 10 -3 μCi/ml, only the distilled organic chemicals are burned up and the residue will be sent to the Waste Disposal Site. (c) For under the water content of 5% these liquid garbage can be directly are burned up without distillation The residue seemed to be suitable for the combustion of the dried carcased animals as the auxiliary fuels. This incinerator will be able to use as room heater or water heater for the bath without radioactive contamination inside of install room. (author)

  11. Feasibility study of a granular bed prefilter for purifying combustion gases from a solid radioactive waste incinerator

    International Nuclear Information System (INIS)

    Girod, M.

    1993-01-01

    The purpose of incineration is to minimize the volumes of radioactive waste to be stored. Cleaning combustion gases from these incinerators requires prefilters to protect the very high efficiency filters (known by the French acronym THE). These prefilters should make it possible to recover products such as plutonium while at the same time presenting a very limited source of secondary waste. This document sets out the feasibility study for a granular bed prefilter. This bed should be made of a material which is itself combustible so that it can be recycled in the incinerator to minimize production of secondary waste. During an initial stage, a design study of a demonstration device was carried out using a calculation code constructed on the basis of existing physical models, and which makes it possible to forecast the performance of the support. This theoretical approach has been correlated against experimental results from the validation test. During a second stage, the study dealt with the selection of the material from which the bed was made as well as quantification of the release of radiation during incineration of the plutonium contamined material. In this way, the very low transfer of radioactivity into the gaseous phase was demonstrated. Finally, during a third stage, a study of the change in efficiency and the loss of charge of a granular bed filter was carried out during industrial operation using an incinerator. In conclusion, it was demonstrated that the granular bed represents a viable solution for prefiltering at 200 deg C. Research might develop along a different path and involve using the granular bed as a high temperature filter at 500 to 600 deg C

  12. Design considerations for incineration of transuranic-contaminated solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.

    1977-01-01

    The Los Alamos Scientific Laboratory has established a development program to evaluate alternate production-level (100-200 lb/hr throughput) volume reduction processes for transuranic-contaminated solid waste. The first process selected for installation and study is based on controlled-air incineration. Design considerations leading to selection of feed preparation, incineration, residue removal, and off-gas cleanup components and their respective radioactive containment provisions will be presented

  13. Incinerator carryover tests with dysprosium as a stand-in for plutonium

    International Nuclear Information System (INIS)

    Hooker, R.L.

    1981-11-01

    A full-scale (5 kg/h) incinerator is being tested with nonradioactive feed materials which simulate SRP-generator combustible transuranic wastes. The incinerator is two-stage and is designed to provide relatively quiescent conditions in the primary chamber where the ash is formed. This feature should minimize entrainment of Pu-bearing particles into the off-gas system. A series of runs have been completed in which incinerator feed was spiked with dysprosium to simulate Pu. Carryover of Dy into the off-gas system was found to be low (about 1/4%). 4 figures, 3 tables

  14. Incineration as an effective means in Malaysian municipal solid waste treatment

    International Nuclear Information System (INIS)

    Sharifah, A.S.A.K.; Subari, F.; Zainal Abidin, H.

    2006-01-01

    Malaysia is in dire need of an alternative to current method in municipal solid waste treatment. An industrial pilot plant incinerator has been constructed at Universiti Teknologi Mara Shah Alam campus. A study has been performed to investigate the performance of the locally developed and manufactured rotary kiln incinerator. On the overall, the temperature profiles are well in agreement with species concentration observed. The emission quality satisfy the air pollution standards and on the overall the rotary kiln incinerator shows great potential in municipal solid waste treatment. (Author)

  15. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  16. TRIAL BURN RESULTS AND FUTURE ACTIVITES OF THE EPA MOBILE INCINERATOR

    Science.gov (United States)

    The EPA Mobile Incinerator has demonstrated its ability to successfully destroy dioxin. A trial burn conducted in 1987 demonstrated the incinerator's ability to destroy a wide variety of compounds. The destruction and removal efficiency (DRE) of carbon tetrachloride, hexachloro...

  17. Non-radioactive verification test of ZRF25 radioactive combustible solid waste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Li Xiaohai; Yang Liguo

    2013-01-01

    This paper mainly introduces the construction and test run of ZRF25 radioactive combustible solid waste incinerator, by a series of simulating waste tests, such as 24 h test, 72 h test, 168 h test, making a conclusion that the incinerator runs reliably. In addition, all of the indexes (such as treatment capacity, volume reduction coefficient, clinker ignition loss of incineration ash) meet the requirements of contract and pollution discharging standards. (authors)

  18. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  19. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  20. 40 CFR 60.3062 - What is an air curtain incinerator?

    Science.gov (United States)

    2010-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  1. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China

    DEFF Research Database (Denmark)

    Zhao, Yan; Xing, Wei; Lu, Wenjing

    2012-01-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250kg of coal...... per ton of waste. Based on observed environmental impacts of incineration, fossil CO2 and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits......-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese...

  2. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  3. Cost Benefit Analysis: Closed-Cell Polyurethane Foam Use in DOD Forward-Deployed Structures and As An Alternative Building Material to Reduce Operational Fuel Demand and Associated Costs

    Science.gov (United States)

    2015-06-01

    value and/or consideration operational energy has within the requirements and acquisition management systems . 2. Past DOD Operational Energy Policy...Key Performance Parameter (KPP)” (Bohnwagner 2013a, p. 1) to ensure energy demand of weapons systems are optimized to manage the expected fuel burden...and/or capabilities (e.g., landfill or incinerator ), thus making them only quantifiable when location and corresponding environmental regulations are

  4. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    International Nuclear Information System (INIS)

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-01-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative 'incineration' was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material

  5. Small-scale medical waste incinerators: experiences and trials in South Africa

    CSIR Research Space (South Africa)

    Rogers, DEC

    2006-01-01

    Full Text Available incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial...

  6. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  7. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  8. Enviromental impact of a hospital waste incineration plant in Krakow (Poland).

    Science.gov (United States)

    Gielar, Agnieszka; Helios-Rybicka, Edeltrauda

    2013-07-01

    The environmental impact of a hospital waste incineration plant in Krakow was investigated. The objective of this study was to assess the degree of environmental effect of the secondary solid waste generated during the incineration process of medical waste. The analysis of pollution of the air emissions and leaching test of ashes and slag were carried out. The obtained results allowed us to conclude that (i) the hospital waste incineration plant significantly solves the problems of medical waste treatment in Krakow; (ii) the detected contaminant concentrations were generally lower than the permissible values; (iii) the generated ashes and slag contained considerable concentrations of heavy metals, mainly zinc, and chloride and sulfate anions. Ashes and slag constituted 10-15% of the mass of incinerated wastes; they are more harmful for the environment when compared with untreated waste, and after solidification they can be deposited in the hazardous waste disposal.

  9. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  10. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  11. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    Science.gov (United States)

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  13. Waste incineration and immobilization for nuclear facilities. Status report, October 1977--March 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Burkhardt, S.C.; Ledford, J.A.; Williams, P.M.

    1979-01-01

    Fluidized bed incineration and processes for immobilization of wastes generated at nuclear facilities are undergoing development. After minor piping modifications to eliminate dust collecting points, a pilot plant fluidized bed incinerator run of 225 continuous hours was successfully completed in a demonstration of component reliability. Vitrification of incinerator ash and other wastes is now being accomplished using a pilot scale unit developed as a continuous flow process

  14. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  15. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    Science.gov (United States)

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Incinerator Pollution and Child Development in the Taiwan Birth Cohort Study

    Directory of Open Access Journals (Sweden)

    Bih-Ching Shu

    2013-05-01

    Full Text Available This study aimed to investigate the direct and indirect effects of environmental pollutants on child development and parental concerns. It focused on the pathway relationships among the following factors: living within three kilometers of an incinerator, breastfeeding, place of residence, parental concerns about development, and parent-perceived child development. The Taiwan Birth Cohort Study (TBCS dataset includes randomized community data on 21,248 children at six, 18, and 36 months of age. The Parental Concern Checklist and the Taiwan Birth Cohort Study-Developmental Instrument were used to measure parental concern and parent-perceived child development. Living within three kilometers of an incinerator increased the risk of children showing delayed development in the gross motor domain at six and 36 months. Although breastfeeding is a protective factor against uneven/delayed developmental disability (U/DDD, children living near an incinerator who were breastfed had an increased risk of U/DDD compared with those who did not live near incinerators. The presence of a local incinerator affected parent-perceived child development directly and indirectly through the mediating factor of breastfeeding. Further follow-up of these children to investigate the long-term effects of specific toxins on their development and later diagnostic categorization is necessary.

  17. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    OpenAIRE

    k. louhab; H. Assas

    2006-01-01

    The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result sho...

  18. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  19. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  20. 40 CFR 60.2991 - What incineration units must I address in my State plan?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What incineration units must I address... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2991 What incineration units must I address in my State...