WorldWideScience

Sample records for incinerator operating parameters

  1. The hot demonstration operation of the incinerator

    International Nuclear Information System (INIS)

    Yan Kezhi; Zhang Zhetao; Fan Xianhua; Li Zhenliang

    1991-01-01

    The hot demonstration operation results of the incinerator designed and developed by CIAE described. During the operation, machine oil containing 3 H with the specific activity of 3.7 x 10 4 Bq/L to 3.7 x 10 7 6 Bq/L was burned. The concentration of 3 H in the off-gas after cleaning was about 286 Bq/m 3 . The process parameters, decontamination factors of radionuclides and the results of environmental monitoring and evaluation are also given in this report

  2. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  3. Design and operation of a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Becker, G.W. Jr.; Makohon, P.A.

    1981-01-01

    A full-scale test incinerator has been built at the Savannah River Laboratory to provide a design basis for a radioactive facility that will burn low-level beta-gamma contaminated waste. The processing steps include waste feed loading, incineration, ash residue packaging, and off-gas cleanup. Both solid and liquid waste will be incinerated during the test program. The components of the solid waste are cellulose, latex, polyethylene, and PVC; the solvent is composed of n-paraffin and TBP. A research program will confirm the feasibility of the design and determine the operating parameters

  4. Operational experience with Seibersdorf low-level incinerator

    International Nuclear Information System (INIS)

    Chalupa, G.

    1987-01-01

    This report contains information about an excess air incinerator which burned low level β and γ wastes (also α up to determined limits). The incinerator was started up in 1980 and it is clear that in a technical plant of such magnitude, some changes and alterations will be needed to be overcome according to the experiences of operation. This paper - after a short description of the incinerator plant itself - gives a summary of some of the operation and the changes which are made in the plant according to these facts. A partial redesign of the incinerator plant in the first half of 1985 resulted in a very satisfying new design, which proved its superiority during the runs in 1985 and 1986

  5. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  6. Guide of Evaluation of the Operation of Incinerators of Solid Waste in Costa Rica

    International Nuclear Information System (INIS)

    Herrera Sanchez, J.

    2001-01-01

    This project has as general objective to prepare, in accordance with the effective Costa Rica legislation, a guide to evaluate the operation of incinerators of solid waste in Costa Rica. For this, it was necessary to define the parameters and approaches to evaluate the operation of an incineration center, as well as to investigate the regulations related with the topic in our country and to detail the technical specifications of equipment of this nature.The guide embraces such aspects as the specifications of the equipment and chimney, the type of waste to incinerate, the control of gassy emissions and the administration of the scums, distributed in several sections: administration, legislation, waste type, details technician, control and operation. Initially, the state of operation of an incinerator belonging to a hospital center and the project of energy recycling that impels the National Industry of Cements are evaluated. A study of the current state of the incineration of waste in the country must monitor the gassy emissions, the variables of the water heater-chemical process and the operation conditions. For limitations in the availability of the data and for the non existence of similar studies in the country, some of the parameters proposed in the guide are not evaluated. According to spokesmen of the Ministry of Public Health, only five incinerators operate in the country. Of these, none has location permission, construction or sanitary permission of operation, and data on their operation conditions are not carried, neither control of the incinerated waste is taken, of its operation frequency and even less the generated gassy emissions. It is necessary to adapt the standards of emission of Costa Rica (PRONASA Report) to the international standards, incorporating new pollutants (dioxins, furanos) and appropriating the existent ones (solid particles). In the case of our country, the incineration should be constituted in a stage of the process of integral

  7. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  8. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  9. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  10. 40 CFR 60.2989 - Does this subpart directly affect incineration unit owners and operators in my State?

    Science.gov (United States)

    2010-07-01

    ... incineration unit owners and operators in my State? 60.2989 Section 60.2989 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Other Solid Waste Incineration Units That Commenced... incineration unit owners and operators in my State? (a) No, this subpart does not directly affect incineration...

  11. A chemical basis for the partitioning of radionuclides in incinerator operation

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-01-01

    Incineration as a method of treating radioactive or mixed waste is attractive because of volume reduction, but may result in high concentrations of some hazardous components. For safety reasons during operation, and because of the environmental impact of the plant, it is important to know how these materials partition between the furnace slay, the fly ash, and the stack emission. The chemistry of about 50 elements is discussed and through consideration of high temperature thermodynamic equilibria, an attempt is made to provide a basis for predicting how various radionuclides and heavy metals behave in a typical incinerator. The chemistry of the individual elements is first considered and a prediction of the most stable chemical species in the typical incinerator atmosphere is made. The treatment emphasizes volatility and the parameters considered are temperature, acidity, oxygen, sulfur, and halogen content, and the presence of several other key non-radioactive elements. A computer model is used to calculate equilibrium concentrations of many species in several systems at temperatures ranging from 500 to 1600 degrees K. It is suggested that deliberate addition of various feed chemicals can have a major impact on the fate of many radionuclides and heavy metals. Several problems concerning limitations and application of the data are considered

  12. Operating experience and data on revolving type fluidized bed incineration plants

    International Nuclear Information System (INIS)

    Nakayama, J.

    1990-01-01

    In refuse incinerators operating by revolving fluidization (Revolving Type Fluidized Bed Incinerator) a broad range of wastes, from low caloric refuse of high moisture content to high caloric value material including a wide variety of plastics, can be incinerated at high efficiency because the unit is outstanding in terms of distribution of waste in the incinerator bed and uniformity of heat. In addition, its vigorous revolving fluidization action is very effective in pulverizing refuse, so even relatively strict emission standards can be met without fine pre-shredding. Residues are discharged in a clean, dry form free of putrescible material. Data on practical operation of the revolving fluidized bed incinerator are presented in this paper

  13. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  14. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  15. Operation of low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Choi, E.C.; Drolet, T.S.; Stewart, W.B.; Campbell, A.V.

    1979-01-01

    Ontaro Hydro's radioactive waste incinerator designed to reduce the volume of low-level combustible wastes from nuclear generating station's was declared in-service in September 1977. Hiterto about 1500 m 3 of combustible waste have been processed in over 90 separate batches. The process has resulted in 40:1 reduction in the volume and 12.5:1 reduction in the weight of the Type 1 wastes. The ultimate volume reduction factor after storage is 23:1. Airborne emissions has been maintained at the order of 10 -3 to 10 -5 % of the Derived Emission Limits. Incineration of radioactive combustible wastes has been proven feasible, and will remain as one of the most important processes in Ontario Hydro's Radioactive Waste Management Program

  16. Operation of a prototype high-level alpha solid waste incinerator

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.; Dworjanyn, L.O.

    1979-01-01

    A full-scale (5 kg waste/hour) controlled-air incinerator is presently being tested as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible wastes that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm and 252 Cf. Automatic feed preparation and incinerator operation and control have been incorporated into the design to simulate the future plant design which will minimize operator radiation exposure. Over 250 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr for periods up to 6 hours. Safety and reliability were major design objectives. Upon completion of an initial experimental phase to determine process sensitivity and flexibility, the facility will be used to develop bases for the production unit's safety analysis report, technical standards, and operating procedures. An ultimate use of the experimental unit will be the testing of actual production unit components and the training of Savannah River Plant operating personnel

  17. Analysis of operating costs a Low-Level Mixed Waste Incineration Facility

    International Nuclear Information System (INIS)

    Loghry, S.L.; Salmon, R.; Hermes, W.H.

    1995-01-01

    By definition, mixed wastes contain both chemically hazardous and radioactive components. These components make the treatment and disposal of mixed wastes expensive and highly complex issues because the different regulations which pertain to the two classes of contaminants frequently conflict. One method to dispose of low-level mixed wastes (LLMWs) is by incineration, which volatizes and destroys the organic (and other) hazardous contaminants and also greatly reduces the waste volume. The US Department of Energy currently incinerates liquid LLMW in its Toxic Substances Control Act (TSCA) Incinerator, located at the K-25 Site in Oak Ridge, Tennessee. This incinerator has been fully permitted since 1991 and to date has treated approximately 7 x 10 6 kg of liquid LLMW. This paper presents an analysis of the budgeted operating costs by category (e.g., maintenance, plant operations, sampling and analysis, and utilities) for fiscal year 1994 based on actual operating experience (i.e., a ''bottoms-up'' budget). These costs provide benchmarking guidelines which could be used in comparing incinerator operating costs with those of other technologies designed to dispose of liquid LLMW. A discussion of the current upgrade status and future activities are included in this paper. Capital costs are not addressed

  18. Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jin Woo; Kim, Su Ho; Sohn, Chae Hoon [Sejong Univ., Seoul (Korea, Republic of)

    2013-12-15

    The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of power plants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

  19. Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Riber, Christian; Pedersen, Anne Juul

    2011-01-01

    Waste incineration can be considered a robust technology for energy recovery from mixed waste. Modern incinerators are generally able to maintain relatively stable performance, but changes in waste input and furnace operation may affect emissions. This study investigated how inorganic air emissions...... including ‘as-large-as-possible’ changes in furnace operation (oxygen levels, air supply and burnout level) only using normal MSW as input. The experiments showed that effects from the added waste materials were significant in relation to: air emissions (in particular As, Cd, Cr, Hg, Sb), element transfer...... coefficients, and residue composition (As, Cd, Cl, Cr, Cu, Hg, Mo, Ni, Pb, S, Sb, Zn). Changes in furnace operation could not be directly linked to changes in emissions and residues. The results outlined important elements in waste which should be addressed in relation to waste incinerator performance. Likely...

  20. Operation of a pilot alpha waste incinerator at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1978-01-01

    The pilot incinerator was built and operated successfully at design throughput with simulated wastes. Operating ranges of stable incinerator performance were defined as a function of air and waste feed rates for different materials and mixtures of materials. The complete range of waste materials can be burned without producing tar or soot. The limiting capacity of this incinerator is 0.5 kg/h if all latex rubber is charged or approximately 0.84 kg/h with a waste mixture. Off-gas particulate sampling prior to scrubbing indicates negligible solid carryover. The only material which may present off-gas cleaning problems is a light white smoke which accompanies the burning of PVC. The incinerator was operated continuously between 850 and 1000 0 C from startup on September 6, 1977 until shutdown on February 2, 1978. The 3.6-kW electric heater for the primary combustion chamber burned out on January 13; however, adequate burning temperatures were provided by the eight 1.25-kW heaters in the afterburner to maintain sootless burning. As a result, future incinerator operation will be at 900 0 C rather than 1000 0 C. After 5 months of operation, the condition of the ceramics was very good, and the metal components showed no deterioration or serious corrosion. The incinerator was modified by installing a different design gas burner block, and two baffles and a choke in the afterburner to increase turbulence and mixing. It was started up again on February 27, 1978

  1. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Sales, W.L.; Barker, R.E.; Hershey, R.B.

    1980-01-01

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System

  2. Automation as a tool for safe and discontinuous operation of the KEMA incinerator

    International Nuclear Information System (INIS)

    Beuse, R.H.J.; Doorn, J.J. van; Eenink, A.H.; Gertsen, B.M.G.

    1985-01-01

    An automatic control system has been developed and implemented for the KEMA cyclone-type incinerator. This paper describes the process analysis and the development of a control program required to obtain carbon-free ashes and clean flue gases. The automatic control will allow the KEMA incinerator to burn solid low-level waste of various compositions and to be easily handled by one operator. An overview of the resulting control structure and some details of the implementation of the control structure are given. (orig.)

  3. Combustion aerosols from municipal waste incineration - Effect of fuel feedstock and plant operation

    DEFF Research Database (Denmark)

    Zeuthen, J.H.; Pedersen, Anne Juul; Hansen, Jørn

    2007-01-01

    ( NaCl), batteries, and automotive shredder waste. Also, runs with different changes in the operational conditions of the incinerator were made. Mass- based particle size distributions were measured using a cascade impactor and the number- based size distributions were measured using a Scanning...

  4. Los Alamos controlled air incinerator upgrade for TRU/mixed waste operations

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Warner, C.L.; Thompson, T.K.

    1989-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is undergoing a major process upgrade to accept Laboratory-generated transuranic (TRU) and TRU mixed wastes on a production basis. In the interim,prior to the scheduled 1992 operation of a new on-site LLW/mixed waste incinerator, the CAI will also be accepting solid and liquid low-level mixed wastes. This paper describes major modifications that have been made to the process to enhance safety and ensure reliability for long-term, routine waste incineration operations. The regulatory requirements leading to operational status of the system are also briefly described. The CAI was developed in the mid-1970s as a demonstration system for volume reduction of TRU combustible solid wastes. It continues as a successful R and D system well into the 1980s during which incineration tests on a wide variety of radioactive and chemical waste forms were performed. In 1985, a DOE directive required Los Alamos to reduce the volume of its TRU waste prior to ultimate placement in the geological repository at the Waste Isolation Pilot Project (WIPP). With only minor modifications to the original process flowsheet, the Los Alamos CAI was judged capable of conversion to a TRU waste operations mode. 9 refs., 1 fig

  5. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  6. Categorisation of waste streams arising from the operation of a low active waste incinerator and justification of discharge practices

    International Nuclear Information System (INIS)

    Richards, J.M.

    1989-01-01

    Waste streams arising from the low active waste incinerator at Harwell are described, and the radiological impact of each exposure pathway discussed. The waste streams to be considered are: (i) discharge of scrubber liquors after effluent treatment to the river Thames; (ii) disposal of incinerator ash; and (iii) discharge of airborne gaseous effluents to the atmosphere. Doses to the collective population and critical groups as a result of the operation of the incinerator are assessed and an attempt made to justify the incineration practice by consideration of the radiological impact and monetary costs associated with alternative disposal methods. (author)

  7. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  8. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.R.M.

    1983-01-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxiliary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10,000 kcal/kg waste. The maximum throughput amounts to 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveyed by doserate and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (author)

  9. Design and operational experience with the off-gas cleaning system of the Seibersdorf incinerator plant

    International Nuclear Information System (INIS)

    Patek, P.

    1982-05-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput ammounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, an electrostatic filter and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, iodine- and tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. Finally the experiences of the first year of operation and the main problems in running the plant are described. (Author) [de

  10. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Science.gov (United States)

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard...

  11. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  12. An assessment of dioxin contamination from the intermittent operation of a municipal waste incinerator in Japan and associated remediation.

    Science.gov (United States)

    Takeda, Nobuo; Takaoka, Masaki

    2013-04-01

    Significant dioxin (polychlorinated dibenzo-para-dioxins (PCDDs)/polychlorinated dibenzo-furans (PCDFs)) pollution from a municipal solid waste incinerator was discovered in 1997 in Osaka prefecture/Japan. The cause and mechanism of pollution was identified by a detailed assessment of the environment and incinerator plant. The primary sources of PCDD/PCDF pollution were high dioxin releases from an intermittently operated waste incinerator with PCDD/PCDF emissions of 150 ng-TEQ/Nm(3). PCDD/PCDF also accumulated in the wet scrubber system (3,000 μg TEQ/L) by adsorption and water recirculation in the incinerator. Scrubber water was air-cooled with a cooling tower located on the roof of the incinerator. High concentrations of dioxins in the cooling water were released as aerosols into the surrounding and caused heavy soil pollution in the area near the plant. These emissions were considered as the major contamination pathway from the plant. Decontamination and soil remediation in and around the incinerator plant were conducted using a variety of destruction technologies (including incineration, photochemical degradation and GeoMelt technology). Although the soil remediation process was successfully finished in December 2006 about 3% of the waste still remains. The case demonstrates that releases from incinerators which do not use best available technology or which are not operated according to best environmental practices can contaminate their operators and surrounding land. This significant pollution had a large impact on the Japanese government's approach toward controlling dioxin pollution. Since this incident, a ministerial conference on dioxins has successfully strengthened control measures.

  13. EVALUATION OF ROTARY KILN INCINERATOR OPERATION AT LOW TO MODERATE TEMPERATURE CONDITIONS VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    A test program was performed at the Environmental Protection Agency Incineration Research Facility to study the effectiveness of incineration at low-to-moderate temperatures in decontaminating soils containing organic compounds with different volatilities (boiling points). The da...

  14. The selection, licensing, and operation of a low-level radioactive waste incinerator

    International Nuclear Information System (INIS)

    Arrowsmith, H.W.; Dalton, D.

    1990-01-01

    The Scientific Ecology Group has just completed the selection, procurement, licensing, and start-up of a low-level radioactive waste incinerator. This incinerator is the only commercial radioactive waste incinerator in the US and was licensed by the Environmental Protection Agency, the State of Tennessee, the City of Oak Ridge, and the Tennessee Valley Authority. This incinerator has a thermal capacity of 13,000,000 BTUs and can burn approximately 1,000 pounds per hour of typical radioactive waste. Waste to be incinerated is sorted in a new waste sorting system at the SEG facility. The sorting is essential to assure that the incinerator will not be damaged by any unexpected waste and to maintain the purity of the incinerator off-gas. The volume reduction expected for typical waste is approximately 100:1. After burning, the incinerator ash is compacted or vitrified before shipment to burial sites

  15. Operational readiness review for the TSCA incinerator start-up at the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    Jordan, Elizabeth A.; Murray, Alexander P.; Kiang, Peter M.

    1992-01-01

    The Department of Energy (DOE) Toxic Substances Control Act (TSCA) incinerator at Oak Ridge K-25 Site was designed in the early 1980's as a treatment alternative for the increasing quantities of radioactive mixed waste accumulating from gaseous diffusion plant (GDP) operations. The waste feed principally contains low assay uranium and PCBs, although listed solvents and heavy metal containing sludges have also be incinerated. Construction was completed in 1986 and the unit underwent an extensive series of tests and trial burns, because of the following unique characteristics: the incinerator treats radioactive mixed wastes; increased size of the incinerator for greater waste throughout and treatment capacity; expansion of the waste acceptance criteria to include materials and radionuclides from non-GDP operations, such as ORNL and Y-12; modifications and improvement to the Air Pollution Control (APC) system; treatment of large quantities and concentrations of PCB containing materials; projected longevity of operation (40 years); humid, Eastern location with a high, annual precipitation. The incinerator was initially fired in July, 1986. The full performance testing (with the APC) and DOE acceptance of the facility occurred a year later. The trial burn period lasted from 1988 through 1990. Numerous equipment problems were initially encountered, including excessive draft fan wear and failure. These problems have been overcome, the facility is fully permitted, DOE provided authorization for full operations in 1991, and, to date, over two million pounds of mixed waste have been incinerated, with an average volume reduction factor of approximately nine. This paper discusses the Office of Environmental Restoration and Waste Management Readiness Review for the incinerator. (author)

  16. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  17. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  18. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  19. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  20. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  1. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  2. Treatment of waste incinerator air-pollution-control residues with FeSO4: Laboratory investigation of design parameters

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Christensen, Thomas Højlund; Lundtorp, Kasper

    2002-01-01

    supplied, the liquid-to-solid ratio of the process, the separation of solids and wastewater, the sequence of material mixing, the possibilities of reuse of water, the feasibility of using secondary (brackish) water, and simple means to improve the wastewater quality. The investigation showed...... that an optimum process configuration could be obtained yielding a stabilised solid product with low leaching of heavy metals and a dischargable wastewater with high contents of salts (in order to remove salts from the solid product) and low concentrations of heavy metals. The amount of iron added to the APC......The key design parameters of a new process for treatment of air-pollution-control (APC) residues (the Ferroxprocess) were investigated in the laboratory. The optimisation involved two different APC-residues from actual incinerator plants. The design parameters considered were: amount of iron oxide...

  3. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  4. Pollution prevention opportunity assessment for the K-25 Site Toxic Substances Control Act Incinerator Operations, Level III

    International Nuclear Information System (INIS)

    1995-09-01

    A Level III pollution prevention opportunity assessment (PPOA) was performed for the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator to evaluate pollution prevention (P2) options for various waste streams: The main objective of this study was to identify and evaluate options to reduce the quantities of each waste stream generated by the TSCA Incinerator operations to realize significant environmental and/or economic benefits from P2. For each of the waste streams, P2 options were evaluated following the US Environmental Protection Agency (EPA) hierarchy to (1) reduce the quantity of waste generated, (2) recycle the waste, and/or (3) use alternate waste treatment or segregation methods. This report provides process descriptions, identification and evaluation of P2 options, and final recommendations

  5. Savannah River Plant low-level waste incinerator: Operational results and technical development

    International Nuclear Information System (INIS)

    Irujo, M.J.; Bucci, J.R.

    1987-04-01

    Volume reduction of solid and liquid low-level waste has been demonstrated at the Savannah River Plant (SRP) in the Waste Management Beta-Gamma Incinerator facility (BGI). The BGI uses a two-stage, controlled-air incinerator capable of processing 180 kg/hr (400 lbs/hr) of solid waste or 150 liters/hr (40 gal/hr) of liquid waste. These wastes are pyrolyzed in a substoichiometric air environment at 900 to 1100 degrees Celsius in the primary chamber. Products of partial combustion from the primary chamber are oxidized at 950 to 1150 degrees Celsius in the secondary chamber. A spray dryer, baghouse,and HEPA filter unit cool and filter the incinerator offgases. 2 refs., 9 tabs

  6. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  7. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  8. Design, operation and management of waste incinerators; Design, Betrieb und Management von Muellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U; Swithenbank, J; Nasserzadeh, V; Ewan, B; Lee, P H [Sheffield Univ. (United Kingdom). Waste Incineration Centre; Lawrence, D; Garrod, N P [Sheffield Heat and Power Ltd. (United Kingdom); Jones, B; Sykes, G [Sheffield Incinerator Plant (United Kingdom); Bernet, U [Electrowatt Engineering Ltd. (Switzerland)

    1998-09-01

    Design of combustion chambers for solid residues combution is hampered by the non-existence of accurate mathematical models of the combustion process, so that semi-empirical correlations must be used. Modern flow simulation programs (computational fluid dynamics), on the other hand, offer the pssibility of predicting flow in the gaseous phase although further tests are still required for validation. Since experiments on a laboratory scale hardly ever provide reliable data material, research in the field of waste incineration must make tests on industrial-scale systems. For this reason, the Sheffield University Waste Incineration Centre (SUWIC) cooperated with Sheffield Heat and Power Ltd and was therefore able to carry out extensive research at the Bernard Road waste incinerator in Sheffield. (orig./SR) [Deutsch] Die Konstruktion von Feueraeumen zur Feststoffverbrennung wird dadurch behindert, dass kein genaues mathematisches Modell fuer den Verbrennungsprozess existiert. Statt dessen muss noch immer auf halb-empirische Korrelationen zurueckgegriffen werden. Aufgrund moderner Stroemungssimulationsprogramme (Computational Fluid Dynamics) ist hingegen die Vorhersage des Stroemungsverhaltens der Gasphase in Verbrennungsanlagen weiter entwickelt, obwohl zusaetzliche Tests zur Validierung noch erforderlich sind. Da Versuche im Testmassstab selten verlaessliches Datenmaterial liefern, ist die Forschung im Bereich der Muellverbrennung auf Tests an Grossanlagen angewiesen. Dank der guten Beziehungen zu Sheffield Heat and Power Ltd hat Sheffield University Waste Incineration Centre (SUWIC) an der Bernard Road Muellverbrennungsanlage in Sheffield ein umfangreiches Forchungsprogramm durchfuehren koennen. (orig./SR)

  9. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  10. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  11. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  12. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  13. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  14. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  15. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  16. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    Energy Technology Data Exchange (ETDEWEB)

    Motz, L.; Decision and Information Sciences

    2011-02-21

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  17. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  18. Waste incineration models for operation optimization. Phase 1: Advanced measurement equipment for improved operation of waste fired plants; Affaldsforbraendingsmodeller til driftsoptimering. Fase 1: Avanceret maeleudstyr til forbedret drift af affaldsfyrede anlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    This report describes results from the PSO projects ELTRA-5294 and ELTRA-5348: Waste incineration models for operation optimization. Phase 1, and Advanced measurement equipment for improved operation of waste fired plants. Phase 1. The two projects form the first step in a project course build on a long-term vision of a fully automatic system using a wide range of advanced measurement data, advanced dynamic models for prediction of operation and advanced regulation methods for optimization of the operation of waste incinerator plants. (BA)

  19. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  20. Development and application of new parameters for TRU transmutation effectiveness

    International Nuclear Information System (INIS)

    Han, Chi Young

    2005-02-01

    Four new parameters (incineration branching ratio, incineration rate, incineration time, and incineration buckling) have been developed to evaluate quantitatively the TRU transmutation effectiveness and applied to transmutation of uranium and TRU. From the incineration branching ratio, it is possible to analyze the main contributors to fission reaction for transmutation of a target nuclide. From the incineration rate, it is available to evaluate the transmutation effectiveness in the viewpoint of a relative incineration rate to incineration potential of a target nuclide and its family. This parameter is also used to calculate the incineration time and incineration buckling together with the incineration branching ratio. The incineration time makes it possible to discuss more practically the transmutation speed instead of the existing other parameters. The incineration buckling can be used to evaluate the time behavior of the incineration rate and also employed to support the results from the incineration time. Taking into account the transmutation effectiveness and potential of uranium and TRU derived by using the parameters and an existing neutron economy parameter, it was noted that the thermal neutron energy is very preferable from the transmutation effectiveness point of view, on the other hand the fast neutron energy is effective from the transmutation potential. Applying them to the typical critical and subcritical TRU burners, it is indicated that the critical reactor containing fertile uranium undergoes effectively the selective TRU transmutation on the present fast spectrum. It was also noted that the uranium-free subcritical reactor could be operated effectively on a little softer spectrum due to the larger neutron excess in the present spectrum. It is expected that the new parameters developed in this study and the results are directly applicable to practical transmutation reactor design, in particular accelerator-driven transmutation reactor

  1. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  2. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  3. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  4. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  5. Online operations optimization of waste incineration plants. Phase 3: Control concept and demonstration; Online driftsoptimering af affaldsfyrede anlaeg. Fase 3: Reguleringskoncept og demonstration. Hovedrapport ver. C

    Energy Technology Data Exchange (ETDEWEB)

    Boecher Poulsen, K.; Rassing Stoltze, K.; Solberg, B.; Hansen, Lars Henrik (DONG Energy (Denmark)); Cramer, J.; Andreasen, L.B. (FORCE Technology (Denmark)); Nymann Thomsen, S.; West, F. (Babcock and Wilcox Voelund (Denmark)); Clausen, S.; Fateev, A. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2010-06-15

    have been considered, partly to assess the measuring campaign method and partly to find good MIMO models which can be used for more advanced control design, eg MPC. The dynamic characteristics form the basis of the control strategy design, and as valuable knowledge of the key parameters from two widely different plants is available, it is certain that the optimisation work is generic. A waste density soft sensor has been implemented and tested via radar measurement at Haderslev CHP Plant. The density soft sensor is used to adjust the pusher speed, thus reducing compressibility interruptions considerably. By doing so the control process does not have to wait for the modulus to increase or O{sub 2} and steam flow to be affected before a waste flow deviation can be detected. Based on measuring data it is obvious that the density control stabilises the waste flow to the furnace. A modulus control concept has been developed for coordination of several incineration zones, among other things by simulation. Three concepts have been selected, implemented and commissioned at Haderslev CHP Plant. One concept has been selected, and measuring data show that the modulus is considerably stabilised on activation. The concept combines the advantages with monitoring of the feed grate for overloading and at the same time maintenance of the incineration zone. However, in periods the concept is in conflict with steam flow and O{sub 2} which require manual operator intervention. Unfortunately, it was not possible to finalise and commission the overall control concept within the financial scope of the phase 3 project, because the maturation of the NIR cameras and the work with identification of the vast amount of data from the Reno-Nord tests exceeded the budget. Parts of the control concept have been commissioned and tested, but not the overall control concept as a whole. At the end of the project, it was decided to emphasise data processing and the theoretical mapping of the furnace

  6. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  7. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  8. Emissions of polychlorinated diphenyl ethers from a municipal solid waste incinerator during the start-up operation

    International Nuclear Information System (INIS)

    Yang, Jing-Sing; Lin, Sheng-Lun; Lin, Ta-Chang; Wu, Yee-Lin; Wang, Lin-Chi; Chang-Chien, Guo-Ping

    2015-01-01

    Highlights: • This is the first study on the PCDE emission during a MSWI start-up procedure. • The highest PCDE level occurred similar to the PCDD/F reformation temperature. • The pollution control were modified and reduce 86% PCDE peak emission. • Multiple start-ups are analyzed for their effects on the annual PCDE emission. - Abstract: This study examines the emissions of polychlorinated diphenyl ethers (PCDEs) during the start-up processes of a municipal solid waste incinerator (MSWI). Both normal and modified emission control start-ups were tested. Fifteen samples were taken from the flue gas with increasing furnace temperature. Peak PCDE concentrations of 1.48–10.3 ng/Nm 3 were observed at 8–11 h after the start of combustion, when the furnace temperature was in the range of 267–440 °C, that also needed for PCDD/F formation by de novo synthesis. The PCDE emissions could thus, be reduced by current control techniques. Furthermore, the modified control strategies inhibited PCDE formation at the beginning of combustion, and led to an 86% reduction in the maximum PCDE concentration. The overall start-up emissions were calculated as 1.01–3.08 mg, while the annual PCDE emissions with one start-up operation were found to be 7.48–9.64 mg. However, total PCDE emissions will increase by 12–69% if the number of start-up runs increases to between two and eight times per year. Consequently, the prevention of the unnecessary start-ups and advanced activation of the related emission control system are both efficient ways to reduce PCDE emissions.

  9. Emissions of polychlorinated diphenyl ethers from a municipal solid waste incinerator during the start-up operation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing-Sing [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Sheng-Lun, E-mail: cbmsgml@gmail.com [Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Lin, Ta-Chang; Wu, Yee-Lin [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Chang-Chien, Guo-Ping, E-mail: guoping@csu.edu.tw [Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan (China); Department of Cosmetic and Fashion Styling, Kaohsiung 83347, Taiwan (China)

    2015-12-15

    Highlights: • This is the first study on the PCDE emission during a MSWI start-up procedure. • The highest PCDE level occurred similar to the PCDD/F reformation temperature. • The pollution control were modified and reduce 86% PCDE peak emission. • Multiple start-ups are analyzed for their effects on the annual PCDE emission. - Abstract: This study examines the emissions of polychlorinated diphenyl ethers (PCDEs) during the start-up processes of a municipal solid waste incinerator (MSWI). Both normal and modified emission control start-ups were tested. Fifteen samples were taken from the flue gas with increasing furnace temperature. Peak PCDE concentrations of 1.48–10.3 ng/Nm{sup 3} were observed at 8–11 h after the start of combustion, when the furnace temperature was in the range of 267–440 °C, that also needed for PCDD/F formation by de novo synthesis. The PCDE emissions could thus, be reduced by current control techniques. Furthermore, the modified control strategies inhibited PCDE formation at the beginning of combustion, and led to an 86% reduction in the maximum PCDE concentration. The overall start-up emissions were calculated as 1.01–3.08 mg, while the annual PCDE emissions with one start-up operation were found to be 7.48–9.64 mg. However, total PCDE emissions will increase by 12–69% if the number of start-up runs increases to between two and eight times per year. Consequently, the prevention of the unnecessary start-ups and advanced activation of the related emission control system are both efficient ways to reduce PCDE emissions.

  10. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  11. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  12. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  13. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  14. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  15. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  16. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  17. Monitoring PCDD/Fs in soil and herbage samples collected in the neighborhood of a hazardous waste incinerator after five years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, M.; Bocio, A.; Schuhmacher, M.; Liobet, J.M.; Domingo, J.L. [Rovira i Virgili Univ., Reus (Spain); Diaz-Ferrero, J. [Inst. Quimic de Sarria, Barcelona (Spain)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are among the most dangerous environmental pollutants, usually generated during combustion processes. Until recently, waste incineration was widely referenced as one of the most important sources of PCDD/F release to the atmosphere. In 1999, the only hazardous waste incinerator (HWI) in Spain began regular operations. This facility is placed in Tarragona, Catalonia. The presence of this HWI, as well as that of a municipal solid waste incinerator (MSWI) at a few kilometers, increased the concern of the public opinion in relation to the potential toxic emissions, especially those of metals and PCDD/Fs, which could affect the health of the population living in the area. Previously to regular operations (1996) the baseline levels of PCDD/Fs in soil and vegetation samples collected near the HWI were determined. A second survey was carried out two years later (1998) in order to establish the temporal variation in PCDD/F concentrations in soil and vegetation samples taken at the same sampling points. Vegetation is considered an adequate short-term environmental monitor for PCDD/Fs. Therefore, in the surveillance program of the facility (1999-2003), herbage samples (40) were annually collected at the same sampling points in which baseline samples had been taken. Moreover, considering soil as a suitable long-term monitor for PCDD/Fs, 40 soil samples in this matrix were again collected in 2001 and 2003 to examine the temporal variations of PCDD/F levels in the area. In the present study, we present the concentrations of PCDD/Fs in soil and vegetation samples collected in the vicinity of the HWI after 5 years of regular operations.

  18. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  19. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  20. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  1. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  2. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  3. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  4. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  5. Waste incineration and immobilization for nuclear facilities. Status report, April-September 1978

    International Nuclear Information System (INIS)

    Johnson, A.J.; Williams, P.M.; Burkhardt, S.C.; Ledford, J.A.; Gallagher, K.Y.

    1980-01-01

    The fluidized bed incinerator and waste immobilization processes are being developed to process various liquid and solid wastes that are generated by a nuclear facility. The versatility of the incinerator liquid waste handling system has been enhanced by recent changes made in the pumping and related piping system. Tributyl phosphate-solvent incineration has been evaluated thoroughly using the pilot plant fluidized bed incinerator. Vitrified glass pellets were made to determine operating parameters of a resistance-heated reactor and to produce samples for testing. Procedures were developed for testing the product pellets. A simplified start-up procedure was devised as development continued on a second type of reactor, the Joule-heated melter

  6. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  7. Impact of staffing parameters on operational reliability

    International Nuclear Information System (INIS)

    Hahn, H.A.; Houghton, F.K.

    1993-01-01

    This paper reports on a project related to human resource management of the Department of Energy's (DOE's) High-Level Waste (HLW) Tank program. Safety and reliability of waste tank operations is impacted by several issues, including not only the design of the tanks themselves, but also how operations and operational personnel are managed. As demonstrated by management assessments performed by the Tiger Teams, DOE believes that the effective use of human resources impacts environment safety, and health concerns. For the of the current paper, human resource management activities are identified as ''Staffing'' and include the of developing the functional responsibilities and qualifications of technical and administrative personnel. This paper discusses the importance of staff plans and management in the overall view of safety and reliability. The work activities and procedures associated with the project, a review of the results of these activities, including a summary of the literature and a preliminary analysis of the data. We conclude that although identification of staffing issues and the development of staffing plans contributes to the overall reliability and safety of the HLW tanks, the relationship is not well understood and is in need of further development

  8. Impact of staffing parameters on operational reliability

    International Nuclear Information System (INIS)

    Hahn, H.A.; Houghton, F.K.

    1993-01-01

    This paper reports on a project related to human resource management of the Department of Energy (DOEs) High-Level Waste (HLW) Tank program. Safety and reliability of waste tank operations is impacted by several issues, including not only the design of the tanks themselves, but also how operations and operational personnel are managed. As demonstrated by management assessments performed by the Tiger Teams, DOE believes that the effective use of human resources impacts environment, safety, and health concerns. For the purposes of the current paper, human resource management activities are identified as 'Staffing' and include the process of developing the functional responsibilities and qualifications of technical and administrative personnel. This paper discusses the importance of staff plans and management in the overall view of safety and reliability, the work activities and procedures associated with the project, a review of the results of these activities, including a summary of the literature and a preliminary analysis of the data. We conclude that, although identification of staffing issues and the development of staffing plans contributes to the overall reliability and safety of the HLW tanks, the relationship is not well understood and is in need of further development

  9. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  10. Incineration plant for thermal destruction of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Bartoli, B.; Lisbonne, P.

    1988-01-01

    Incineration was selected to destroy organic liquids contaminated by radioelements. This treatment offers the advantage of reducing the volume of wastes considerably. Therefore an incineration plant has been built within the nuclear research center of Cadarache. After an experimental work with inactive organic liquids from June 1980 to March 1981, the incineration plant was approved by safety authorities for the incineration of contaminated organic liquids. The capacity ranges from 20l/hr to 50l/hr. On the basis of 6 years of operation and a volume of 200 m3 the incineration plant has shown reliable operating conditions in the destruction of various contaminated organic liquids

  11. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  12. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  13. Plasma parameters for alternate operating modes of TIBER-II

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Devoto, R.S.; Logan, B.G.; Perkins, L.J.

    1987-01-01

    Parameters for operating points of TIBER-II, different from the baseline steady-state operation, are presented. These results have been generated with the MUMAK tokamak power balance code. Pulsed ignited and high performance steady-state operating points are described. 20 refs

  14. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  15. Evolution of operational parameters in a UASB wastewater plant ...

    African Journals Online (AJOL)

    The objective of this research was to establish the operational parameters of the plant and evolution of elimination of pollutants. Influent and effluent parameters used for this research, were oils, volatile fatty acidity, alkalinity, ammonium, bacteria, flow, chlorides, BOD, detergents, COD, phosphates, total nitrogen, pH, ...

  16. Peak thrust operation of linear induction machines from parameter identification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  17. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  18. Performance history of the WERF incinerator

    International Nuclear Information System (INIS)

    Dalton, J.D.; Bohrer, H.A.; Smolik, G.R.

    1988-01-01

    As society's environmental conscience grows, diverse political economical, and social contentions cloud the issue of proper waste management. However, experience at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) demonstrates clearly that incineration is an effective component in responsible, long-term waste management. Using a simple but safe design, the WERF incinerator has successfully reduced the volume of low-level beta/gamma waste. This paper discusses some of the achievements and problems experienced during operation of the WERF incinerator

  19. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  20. Mechanisms of formation and destruction of nitrogen oxides during polyamide incineration in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Hahnel, F; Gadiou, R; Prado, G [Univ. de Haute Alsace, Mulhouse (France). Lab. de Gestion des Risques et Environnement

    1998-09-01

    In order to study the incineration of nitrogen-containing polymers, a fludized bed has been built. This paper reports the results for polyamide 6-6 incineration. The main nitrogen containing species have been identified, and the axial profiles of concentration of nitrogen oxides, HCN and NH3 have been measured. The main steps of decomposition of the polyamide were identified. We present an experimental investigation of the influence of operating parameters (temperature, excess air) on the formation and reduction of polymer combustion products. The yields of conversion of nitrogen to the different N-species have been calculated as a function of excess air in the fluidized bed. (orig.)

  1. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  2. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  3. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  4. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  5. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  6. Dual ant colony operational modal analysis parameter estimation method

    Science.gov (United States)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  7. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  8. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  9. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  10. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.......Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...

  11. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  12. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  13. Hazard and Operability Study (HAZOP) Rocky Mountain Arsenal, Basin F liquid Incineration, Task IRA 2, Version 3.0.

    Science.gov (United States)

    1992-07-01

    Affects plant operations and may require plant shutdown. Not a safety problem, but likely of i economic concern for plant operations. C Safety...doublewalled, heat waced . Loss of heat tracing can lead to potential for freezing in line at very low flow rates. B 5 aA, cnl B-3 B Project No. 22206A

  14. Incineration ashes conditioning by isostatic pressing and melting

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Alpha-bearing solid incineration wastes are conditioned for two principal reasons: to enhance the quality of the finished product for long-term storage, and to reduce the total waste volume. Isostatic pressing parameters were defined using containers 36 mm in diameter; the physicochemical properties of the compacted ashes were determined with 140 mm diameter containers and industrial feasibility was demonstrated with a large (300 mm diameter) container. Two types of ashes were used: ashes fabricated at Marcoule (either in devices developed by the CEA for the MELOX project with a standard MELOX composition, or by direct incineration at COGEMA's UP1 plant) and fly ash from a domestic waste incinerator. A major engineering study was also undertaken to compare the three known ash containment processes: isostatic pressing, melting, and cement-resin matrix embedding. The flowsheet, operational chronology and control principles were detailed for each process, and a typical plant layout was defined to allow comparisons of both investment and operating costs

  15. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  16. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  17. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  18. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  19. Tuning the operational parameters of the first microtron stage

    International Nuclear Information System (INIS)

    Jahnke, Cristiane; Silva, Tiago F.; Martins, Marcos N.

    2013-01-01

    The Laboratório do Acelerador Linear is building a racetrack microtron electron accelerator. It has two acceleration stages: the booster and the main microtron. The aim of this work is to optimize the operation parameters of the booster stage by means of simulation tools. The accelerator admittances were determined successfuly and the results are presented. The injection beam has been characterized previously, and the available data were used to match the transverse beam emittances of the injector to the transverse beam admittances of the booster. Preliminary results showed that the simulations have a good agreement with the working parameters.

  20. Low-cost waste incineration and recycling from the operator`s point of view; Kostenguenstige thermische Abfallverwertung und Kreislaufwirtschaftsgesetz aus Betreibersicht

    Energy Technology Data Exchange (ETDEWEB)

    Burgorf, J [Saarberg-Oekotechnic GmbH, Saarbruecken (Germany)

    1998-09-01

    The 1996 Act on Recycling and Waste Management specified that waste production should be reduced first of all, and that waste still produced should be recycled or used for power generation. Dumping and `classic` incineration are permissible only if it is the more acceptable solution from an environmental point of view. There are two categories of thermal treatment: Thermal treatment of `waste for dumping`, and use of the energy content of `waste for utilisation`. The contribution analyzes the effects of the law on future waste management concepts in consideration of the current situation of thermal treatment of residual waste. (orig.) [Deutsch] Das im Oktober 1996 in Kraft getretene Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG) schreibt in den Grundsaetzen der Kreislaufwirtschaft fest, dass Abfaelle in erster Linie zu vermeiden und in zweiter Linie stofflich oder energetisch zu verwerten sind. Die Beseitigung von Abfaellen - und darunter faellt auch die `klassische` Muellverbrennung - ist nur dann zugelassen, wenn sie gegenueber der Verwertung die umweltvertraeglichere Loesung darstellt. Fuer die thermische Behandlung von Abfaellen denfiniert das KrW-/AbfG deshalb zwei Wege mit unterschiedlichen Ansaetzen: Zum einen die thermische Behandlung von `Abfaellen zur Beseitigung`, wie sie bisher in vielen Anlagen zur Muellverbrennung realisiert worden ist und zum anderen die energetische Nutzung von `Abfaellen zur Verwertung`. Der vorliegende Beitrag soll die Auswirkung dieser Vorgabe auf zukuenftige Abfallwirtschaftskonzepte unter Beruecksichtigung der derzeitigen Situation der thermischen Restabfallbehandlung darstellen. (orig.)

  1. Report on the operation of incineration plant of the Coalite Chemical Works, Bolsover, Derbyshire, from commissioning to closure and the subsequent prosecution of the last operator Coalite Products Ltd by H M Inspectorate of Pollution under Section 5 of the Health and Safety at Work Etc. Act 1974

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    In June 1991 elevated concentrations of polychlorinated dibenzo-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were reported in cows` milk on farms in the Bolsover area in Derbyshire, UK. Monitoring by the HMIP showed that PCDDs and PCDFs were present in flue gases emitted from a chemical waste incinerator at the Coalite Chemical Works and to a lesser extent from the Coalite smokeless fuel works nearby. A soil survey and further sampling of vegetation showed the Coalite Chemical Works to be the major source of PCDDs and PCDFs. Coalite Products Ltd., pleaded guilty to operating the incinerator in breach of the Health and Safety Act in a case brought against then by HMIP on 20 February 1996. This report describes the investigation undertaken to establish the conditions of operation of the incinerator from its commissioning in 1978 to closure in November 1991. 12 refs., 8 figs., 6 tabs., 3 apps.

  2. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  3. WIND TURBINE OPERATION PARAMETER CHARACTERISTICS AT A GIVEN WIND SPEED

    Directory of Open Access Journals (Sweden)

    Zdzisław Kamiński

    2014-06-01

    Full Text Available This paper discusses the results of the CFD simulation of the flow around Vertical Axis Wind Turbine rotor. The examined rotor was designed following patent application no. 402214. The turbine operation is characterised by parameters, such as opening angle of blades, power, torque, rotational velocity at a given wind velocity. Those parameters have an impact on the performance of entire assembly. The distribution of forces acting on the working surfaces in the turbine can change, depending on the angle of rotor rotation. Moreover, the resultant force derived from the force acting on the oncoming and leaving blades should be as high as possible. Accordingly, those parameters were individually simulated over time for each blade in three complete rotations. The attempts to improve the performance of the entire system resulted in a new research trend to improve the performance of working turbine rotor blades.

  4. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  5. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    Lee, Jae Won; Park, J. J.; Shin, J. M.; Yun, Y. W.; Park, G. I.; Lee, J. W.

    2010-10-01

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U 3 O 8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO 2 pellet into U 3 O 8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U 3 O 8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO 2+x granules into UO 2 granules at 1000 .deg. C in an atmosphere of 4%H 2 -Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  6. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  7. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  8. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  9. Incinerator for power reactor low-level radioactive waste

    International Nuclear Information System (INIS)

    Drolet, T.S.; Sovka, J.A.

    1976-01-01

    The technique chosen for volume reduction of combustible waste is incineration by a propane-fired unit. Noncombustible material will be compacted into 200 liter drums. A program of segregation of wastes at the producing nuclear stations was instituted. The design and operation of the incinerator, dose limits to the public, and derived release limits for airborne effluents are discussed

  10. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    Czech Academy of Sciences Publication Activity Database

    Košnář, Z.; Mercl, F.; Perná, Ivana; Tlustoš, P.

    563-564, SEP 1 (2016), s. 53-61 ISSN 0048-9697 Institutional support: RVO:67985891 Keywords : PAHs * biomass combustion * ashes * incineration temperature * combustibles Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.900, year: 2016

  11. Dynamic removal of uranium by chitosan: influence of operating parameters

    International Nuclear Information System (INIS)

    Jansson-Charrier, Marielle; Guibal, Eric; Roussy, Jean; Surjous, Robert; Le Cloirec, Pierre

    1996-01-01

    New wastewater treatments involving biosorption processes are being developed. This work focuses on the dynamic removal of uranium using chitosan in fixed-bed reactors and investigates the main operating parameters: particle size, column size, flow velocity and metal ion concentrations. The results confirm the predominant effect of diffusion on the control rate. The optimization of the process should take into account both sorption performances and hydrodynamic behaviour. The process is successfully applied to the treatment of leachates at an abandoned mine site. This study shows that chitosan is an effective sorbent for the treatment and recovery of uranium from dilute effluents. (Author)

  12. A new incinerator for burning radioactive waste

    International Nuclear Information System (INIS)

    Mallek, H.; Laser, M.

    1978-01-01

    A new two stage incinerator for burning radioactive waste consisting of a pyrolysis chamber and an oxidation chamber is described. The fly ash is retained in the oxidation chamber by high temperature filter mats. The capacity of the installed equipment is about 100 kg/h. Waste with different composition and different calorific value were successfully burnt. The operation of the incinerator can easily be controlled by addition of a primary air stream to the pyrolysis chamber and a secondary air stream to the oxidation chamber. During continuous operation the CO and C (organic) content is below 100 ppm and 50 ppm, respectively. The burn-out of the ash is very good. After minor changes the incinerator may be suitable for burning of α-bearing waste

  13. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  14. Study of Operating Parameters for Accelerated Anode Degradation in SOFCs

    DEFF Research Database (Denmark)

    Ploner, Alexandra; Hagen, Anke; Hauch, Anne

    2017-01-01

    Solid oxide fuel cell (SOFC) applications require lifetimes of several years on the system level. A big challenge is to demonstrate such exceptionally long lifetimes in ongoing R&D projects. Accelerated or compressed testing are alternative methods to obtain this. Activities in this area have been...... carried out without arriving at a generally accepted methodology. This is mainly due to the complexity of degradation mechanisms on the single SOFC components as function of operating parameters. In this study, we present a detailed analysis of approx. 180 durability tests regarding degradation of single...... SOFC components as function of operating conditions. Electrochemical impedance data were collected on the fresh and long-term tested SOFCs and used to de-convolute the individual losses of single SOFC cell components – electrolyte, cathode and anode. The main findings include a time-dependent effect...

  15. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  16. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  17. Geographic and Operational Site Parameters List (GOSPL) for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V.; Nichols, William E.; Kincaid, Charles T.

    2006-06-01

    This data package was originally prepared to support a 2004 composite analysis (CA) of low-level waste disposal at the Hanford Site. The Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site (Kincaid et. al. 2004) identified the requirements for that analysis and served as the basis for initial preparation of this data package. Completion of the 2004 CA was later deferred, with the 2004 Annual Status Report for the Composite Analysis of Low-Level Waste Disposal in the Central Plateau at the Hanford Site (DOE 2005) indicating that a comprehensive update to the CA was in preparation and would be submitted in 2006. However, the U.S. Department of Energy (DOE) has recently decided to further defer the CA update and will use the cumulative assessment currently under preparation for the environmental impact statement (EIS) being prepared for tank closure and other site decisions as the updated CA. Submittal of the draft EIS is currently planned for FY 2008. This data package describes the facility-specific parameters (e.g. location, operational dates, etc.) used to numerically simulate contaminant flow and transport in large-scale Hanford assessments. Kincaid et al. (2004) indicated that the System Assessment Capability (SAC) (Kincaid et al. 2000; Bryce et al. 2002; Eslinger 2002a, 2002b) would be used to analyze over a thousand different waste sites. A master spreadsheet termed the Geographic and Operational Site Parameters List (GOSPL) was assembled to facilitate the generation of keyword input files containing general information on each waste site/facility, its operational/disposal history, and its environmental settings (past, current, and future). This report briefly describes each of the key data fields, including the source(s) of data, and provides the resulting inputs to be used for large-scale Hanford assessments.

  18. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  20. Alpha waste incinerator at the Cea Valduc

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cea/Valduc has brought into operation an incinerator for alpha waste. The incineration is in two steps. The first one is a pyrolysis under reduction atmosphere in a furnace at 550 celsius degrees and the second one is a calcination under oxidizing atmosphere of the pyrolysis residue in a furnace at 900 celsius degrees. The ashes have less than 1% of carbon. The gas coming from incineration become oxidized at 1100 Celsius degrees, then are cooled, filtered to eliminate any track of radioactivity. Then, they are cleaned with a neutralisation process. The facility reduces the volume of waste in a factor 20. The capacity of treatment is 7 kg/h. The annual capacity is 30 m 3 . The investment represents 70 millions of francs and the cost of functioning is 2 M F by year. (N.C.)

  1. Fuel optimization in a multi chamber incinerator by the moisture control of oily sludge and medical wastes

    International Nuclear Information System (INIS)

    Haider, I.; Hussain, S.; Khan, S.; Mehran, T.

    2011-01-01

    Experiments have been performed to study the effects of %age moisture content on fuel optimization during the waste feed combustion of oily sludge, medical waste and mix blend waste in a 50 kg/hr multi chamber incinerator installed at NCPC- ARL RWP. Intention is to find out the optimum and in compliance with NEQs incinerator performance at various moisture contents in the different waste feeds. Optimum performances of the incinerator, so that optimum operating moisture conditions, which has been used for multi purpose waste, feeds, may be defined. Three waste feeds of 10 kg batch size were used for the experimentation namely; Oily Sludge, Medical waste and Mix blend waste (oily sludge and medical), with the primary chamber preheating temperature 655 deg. C for 15 mins. interval monitoring. The secondary chamber temperature was set to 850 deg. C. By the data obtained it is apparent that rising the waste moisture content tend to increase fuel consumption specifically in case of medical waste and hence lowering the overall combustion efficiency. In the emissions the CO/sub 2/ concentration is showing the incineration efficiency. Higher efficiency of the system could have been achieved by increasing the CO/sub 2/ in the gases leaving the incinerator, lower fuel usage per kg waste feed and maintain proper operating conditions. Fuel consumption for the oily sludge with 10% moisture content, was found to be least as compared with the same %age of medical waste and mix blend waste. However environmental compliance of the operation is shown by the flue gas analysis. The results shows that using mix blend(oily sludge and medical) waste having 12-13% moisture content would be suitable for incineration in multi-chamber incinerator .Other makes it possible to determine the optimum incinerator temperature control settings and operating conditions, as well as to assure continuous, efficient, environmentally satisfactory operation. The optimum fuel consumption for 10 kg each waste

  2. Investigation of operating parameters for ICRH antennas on TMX upgrade

    International Nuclear Information System (INIS)

    Whaley, D.R.

    1985-01-01

    A primary physics and engineering concern when the design of a fusion device is being investigated is the mechanism by which the plasma particles are to be heated. The method explored in this paper is ion cyclotron resonant heating (ICRH). The equipment consists of a conducting coil external to and surrounding the confined plasma. RF power is applied to the coil, creating electromagnetic fields which propagate through the plasma provided density and frequency conditions are satisfied. The main purpose of the work presented here is determination of optimal operating parameters for various ICRH antenna designs. The response of the electromagnetic fields and power deposition profiles to plasma densities and temperatures, excitation frequencies, etc., are determined using the McVey Antenna-Plasma Coupling Code

  3. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  4. OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

    Directory of Open Access Journals (Sweden)

    JEONG DONG KIM

    2014-06-01

    As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

  5. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  6. CLOSURE OF A DIOXIN INCINERATION FACILITY

    Science.gov (United States)

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  7. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  8. Safety parameter display systems' effect on operator performance

    International Nuclear Information System (INIS)

    Cerven, F.; Ford, R.E.; Blackman, H.S.

    1983-01-01

    Computer generated displays are a powerful and flexible tool for presenting data to the operators of nuclear power plants. Such displays are currently being developed in industry for use as safety parameter displays and for use in advanced control rooms. There exists a need for methods to objectively evaluate the effect of these displays, positive or negative, on the performance of control room personnel. Results of developing one such method, noninteractive simulation, and the two experiments that were performed to determine if it can be used as a method for evaluating computer displays are presented. This method is more objective and powerful than pencil and paper methods because it measures human performance rather than opinion or perference, has excellent control of the experimental variables, and has a higher fidelity to the control room environment. The results of these experiments indicates that the present methodology does not differentiate among the display types tested at a statistically significant level. In other words, all display types tested worked equally well in providing operators needed information

  9. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  10. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  11. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  12. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  13. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  14. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  15. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  16. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  17. Exposure dose evaluation of worker at radioactive waste incineration facility on KAERI

    International Nuclear Information System (INIS)

    Park, Sang Kyu; Jeon, Jong Seon; Kim, Youn Hwa; Lee, Jae Min; Lee, Gi Won

    2011-01-01

    An incineration treatment of inflammable radioactive wastes leads to have a reduction effect of disposal cost and also to contribute an enhancement of safety at a disposal site by taking the advantage of stabilization of the wastes which is accomplished by converting organic materials into inorganic materials. As it was required for an incineration technology, KAERI (Korea Atomic Energy Research Institute) has developed a pilot incineration process and then constructed a demonstration incineration facility having based on the operating experiences of the pilot process. In this study, worker exposure doses were evaluated to confirm safety of workers before the demonstration incineration facility will commence a commercial. (author)

  18. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Controlled-air incineration studies at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.; Thompson, T.K.; Warner, C.L.

    1978-01-01

    An overview of the LASL controlled-air incineration (CAI) program is provided through a description of the process, a summary of component selection and system design criteria, a statement of project status, and discussion of experimental and process improvement study plans. The results of the program will be used to formulate the design criteria and operating parameters for a production model controlled-air transuranic (TRU) waste incineration system and govern the construction and operation of a facility for this purpose. The objective of the LASL CAI project is to develop and demonstrate an effective, safe, and reliable process for volume reduction and chemical stabilization of TRU solid wastes using proven technology whenever possible. The benefits of this process will be realized in reduced handling and storage hazards potentials, lower packaging, transportation, and storage expenses, less storage space requirements, and fewer monitoring needs

  20. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  1. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  2. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  3. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  4. Technical investigation in solid waste to energy facilities and selection of suitable incineration technology for Tehran

    International Nuclear Information System (INIS)

    Mokarizdeh, V.; Lari, H.R.

    2001-01-01

    Incineration is another way for producing electrical energy. There are various methods for incineration as Stoker Fired, Suspension Fired, Rotary Kiln, Cyclone and Fluidized Bed; that each one has it's own advantages and disadvantages. Selecting suitable one for establishment in Tehran depends on many parameters like technical, economical and environmental factors. Comparing the various technologies due to the mentioned parameters by Multi Criteria Decision Making method shows that stoker-fired incinerator is the best one for the Capital City

  5. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    Science.gov (United States)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  6. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  7. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  8. CFD simulation of MSW combustion and SNCR in a commercial incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zihong; Li, Jian; Wu, Tingting [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Chen, Caixia, E-mail: cxchen@ecust.edu.cn [Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, Shanghai (China); Zhang, Xiaoke [Shanghai Environment Group Company, 1881 Hongqiao Road, Shanghai 200336 (China)

    2014-09-15

    Highlights: • Presented a CFD scheme for modeling MSW incinerator including SNCR process. • Performed a sensitivity analysis of SNCR operating conditions. • Non-uniform distributions of gas velocity, temperature and NO{sub x} in the incinerator. • The injection position of reagent was critical for a desirable performance of SNCR. • A NSR 1.5 was recommended as a compromise of NO{sub x} reduction rates and NH{sub 3} slip. - Abstract: A CFD scheme was presented for modeling municipal solid waste (MSW) combustion in a moving-grate incinerator, including the in-bed burning of solid wastes, the out-of-bed burnout of gaseous volatiles, and the selective non-catalytic reduction (SNCR) process between urea (CO(NH{sub 2}){sub 2}) and NO{sub x}. The in-bed calculations provided 2-D profiles of the gas–solid temperatures and the gas species concentrations along the bed length, which were then used as inlet conditions for the out-of-bed computations. The over-bed simulations provided the profiles of incident radiation heat flux on the top of bed. A 3-dimensional benchmark simulation was conducted with a 750 t/day commercial incinerator using the present coupling scheme incorporating with a reduced SNCR reduction mechanism. Numerical tests were performed to investigate the effects of operating parameters such as injection position, injection speed and the normalized stoichiometric ratio (NSR) on the SNCR performance. The simulation results showed that the distributions of gas velocity, temperature and NO{sub x} concentration were highly non-uniform, which made the injection position one of the most sensitive operating parameters influencing the SNCR performance of moving grate incinerators. The simulation results also showed that multi-layer injections were needed to meet the EU2000 standard, and a NSR 1.5 was suggested as a compromise of a satisfactory NO{sub x} reduction and reasonable NH{sub 3} slip rates. This work provided useful guides to the design and

  9. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  10. Trace formulas for parameter-dependent pseudodifferential operators

    DEFF Research Database (Denmark)

    Grubb, Gerd

    2002-01-01

    Trace expansions for operator families such as the resolvent, the heat operator and the complex powers are established for elliptic problems containing pseudodifferential elements. We consider operators on closed manifolds, as well as operators on compact manifolds with boundary, where suitable...

  11. The incineration of absorbed liquid wastes in the INEL's [Idaho National Engineering Laboratory] WERF [Waste Experimental Reduction Facility] incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; McFee, J.N.

    1987-01-01

    The concept of burning absorbed flammable liquids in boxes in the WERF incinerator was evaluated as a waste treatment method. The safety and feasibility of this procedure were evaluated in a series of tests. In the testing, the effect on incinerator operations of burning various quantities of absorbed flammable liquids was measured and compared to normal operations conducted on low-level radioactive waste (LLW). The test results indicated that the proposed procedure is safe and practical for use on a wide variety of solvents with quantities as high as one liter per box. No adverse or unacceptable operating conditions resulted from burning any of the solvents tested. Incineration of the solvents in this fashion was no different than burning LLW during normal incineration. 6 refs., 7 figs., 3 tabs

  12. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  13. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  14. Radioactive waste incinerator at the Scientific Ecology Group, Inc

    International Nuclear Information System (INIS)

    Dalton, J.D.; Arrowsmith, H.W.

    1990-01-01

    Scientific Ecology Group, Inc. (SEG) is the largest radioactive waste processor in the United States. This paper discusses how SEG recently began operation of the first commercial low-level radioactive waste incinerator in the United States. This incinerator is an Envikraft EK 980 NC multi-stage, partial pyrolysis, controlled-air unit equipped with an off-gas train that includes a boiler, baghouse, HEPA bank, and wet scrubber. The incinerator facility has been integrated into a large waste management complex with several other processing systems. The incinerator is operated on a continuous around-the-clock basis, processing up to 725 kg/hr (1,600 lbs/hr) of solid waste while achieving volume reduction ratios in excess of 300:1

  15. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  16. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  17. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  18. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  19. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  20. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  1. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  2. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  3. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  4. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    International Nuclear Information System (INIS)

    Park, Sukyoung; Heo, Gyunyoung; Kim, Jung Taek; Kim, Tae Wan

    2014-01-01

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  5. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sukyoung; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Kim, Jung Taek [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Tae Wan [Kepco International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  6. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  7. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  8. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  9. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  10. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  11. Rotary kiln incinerator engineering tests on simulated transuranic wastes from the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Pattengill, M.G.; Brunner, F.A.; Fasso, J.L.; Mitchel, S.R.; Praskac, R.T.

    1982-09-01

    Nine rotary kiln incineration tests were performed at Colorado School of Mines Research Institute on simulated transuranic waste materials. The rotary kiln incinerator used as 3 ft ID and 30 ft long and was included in an incineration system that also included an afterburner and a baghouse. The purpose of the incineration test program was to determine the applicability and operating characteristics of the rotary kiln with relation to the complete incineration of the simulated waste materials. The results of the study showed that the rotary kiln did completely incinerate the waste materials. Off-gas determinations showed emission levels of SO 2 , NO/sub x/, H 2 SO 4 , HC1, particulate loading, and hydrocarbons, as well as exhaust gas volume, to be within reasonable controllable ranges in a production operation. Included in the report are the results of materials and energy balances, based upon data collected, and design recommendations based upon the data and upon observations during the incineration operation

  12. Correlation of operating parameters on turbine shaft vibrations

    Science.gov (United States)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  13. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  14. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  15. CO{sub 2} laser-aided waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Costes, J R; Guiberteau, P [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement; Caminat, P; Bournot, P

    1994-12-31

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg{sup -h-1} using a 7 kW CO{sub 2} laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs.

  16. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  17. Incineration technology for alpha-bearing radioactive waste in Germany

    International Nuclear Information System (INIS)

    Dirks, Friedlich; Pfeiffer, Reinhard

    1997-01-01

    Since 1971 the Karlsruhe Research Center has developed and operated plants for the incineration of radioactive waste. Three incineration plants for pure β/γ solid, α-bearing solid and radioactive liquid waste have been successfully utilized during last two decades. Recently more than 20 year-old β/γ plant was shut down with the economic point of view, mainly due to the recently reduced volume of burnable β/γ waste. Burnable β/γ solid waste is now being treated with α-bearing waste in a α solid incineration plant. The status of incineration technology for α-bearing waste and other radioactive waste treatment technologies, which are now utilized in Karlsruhe Research Center, such as conditioning of incineration ash, supercompaction, scrapping, and decontamination of solid radioactive waste, etc. are introduced in this presentation. Additionally, operational results of the recently installed new dioxin adsorber and fluidized-bed drier for scrubber liquid in α incineration plant are also described in this presentation. (author) 1 tab., 13 figs

  18. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  19. A comparative assessment of waste incinerators in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, J.D., E-mail: j.nixon@kingston.ac.uk [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Wright, D.G.; Dey, P.K. [Aston Business School, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Ghosh, S.K. [Mechanical Engineering Department, Centre for Quality Management System, Jadavpur University, Kolkata 700 032 (India); Davies, P.A. [Sustainable Environment Research Group, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom)

    2013-11-15

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  20. A comparative assessment of waste incinerators in the UK

    International Nuclear Information System (INIS)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-01-01

    Highlights: • We evaluate operational municipal solid waste incinerators in the UK. • The supply chain of four case study plants are examined and compared in detail. • Technical, financial and operational data has been gathered for the four plants. • We suggest the best business practices for waste incinerators. • Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste

  1. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  2. Monetising the impacts of waste incinerators sited on brownfield land using the hedonic pricing method.

    Science.gov (United States)

    Rivas Casado, Monica; Serafini, Jan; Glen, John; Angus, Andrew

    2017-03-01

    In England and Wales planning regulations require local governments to treat waste near its source. This policy principle alongside regional self-sufficiency and the logistical advantages of minimising distances for waste treatment mean that energy from waste incinerators have been built close to, or even within urban conurbations. There is a clear policy and research need to balance the benefits of energy production from waste incinerators against the negative externalities experienced by local residents. However, the monetary costs of nuisance emissions from incinerators are not immediately apparent. This study uses the Hedonic Pricing Method to estimate the monetary value of impacts associated with three incinerators in England. Once operational, the impact of the incinerators on local house prices ranged from approximately 0.4% to 1.3% of the mean house price for the respective areas. Each of the incinerators studied had been sited on previously industrialised land to minimise overall impact. To an extent this was achieved and results support the effectiveness of spatial planning strategies to reduce the impact on residents. However, negative impacts occurred in areas further afield from the incinerator, suggesting that more can be done to minimise the impacts of incinerators. The results also suggest that in some case the incinerator increased the value of houses within a specified distance of incinerators under specific circumstances, which requires further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Integral validation of the effective beta parameter for the MOX reactors and incinerators; Validation integrale des estimations du parametre beta effectif pour les reacteurs Mox et incinerateurs

    Energy Technology Data Exchange (ETDEWEB)

    Zammit-Averlant, V

    1998-11-19

    {beta}{sub eff}, which represents the effective delayed neutron fraction, is an important parameter for the reactor nominal working as well as for studies of its behaviour in accidental situation. In order to improve the safety of nuclear reactors, we propose here to validate its calculation by using the ERANOS code with ERALIB1 library and by taking into account all the fission process physics through the {nu} energy dependence. To validate the quality of this calculation formalism, we calculated uncertainties as precisely as possible. The experimental values of {beta}{sub eff}, as well their uncertainties, have also been re-evaluated for consistency, because these `experimental` values actually contain a calculated component. We therefore obtained an entirely coherent set of calculated and measured {beta}{sub eff}. The comparative study of the calculated and measured values pointed out that the JEF2.2 {nu}{sub d} are already sufficient because the (E-C)/C are inferior to 3 % in average and in their uncertainly bars. The experimental uncertainties, even if lightly superior to those previously edited, remain inferior to the uncertainties of the calculated values. This allowed us to fit {nu}{sub d} with {beta}{sub eff}. This adjustment has brought an additional improvement on the recommendations of the {nu}{sub d} average values, for the classical scheme (thermal energy, fast energy) and for the new scheme which explains the {nu}{sub d} energy dependence. {beta}{sub eff}, for MOX or UOX fuel assemblies in thermal or fast configurations, can therefore be obtained with an uncertainty due to the nuclear data of about 2.0 %. (author) 110 refs.

  4. Micro controller based system for characterizing gas detector operating parameters

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Verma, Amit K.; Anilkumar, S.; Babu, D.A.R.; Sharma, D.N.; Harikumar, M.

    2011-01-01

    The estimation and analysis of radioactivity levels in samples from environment and from various stages of nuclear fuel cycle operations has become a matter of concern for the implementation of radiological safety procedures. Gas filled/ flow detectors play crucial role in achieving this objective. Since these detectors need high voltage for their operation, the operating characteristics of each detector for optimum performance has to be determined before incorporating into the systems. The operating voltages of these detectors are ranging from few hundred volts to few kilo volts. Present paper describes the design of microcontroller based system to control two HV modules (Electron tubes make: PS2001/12P) independently and acquire data from different gas filled radiation detectors simultaneously. The system uses Philips 80C552 microcontroller based Single Board Computer (SBC). The inbuilt DAC and ADC of microcontroller were used to control HV from 0-2000 with less than ± 1 %, error 1000V. The starting HV, HV step size, decision making intelligence to terminate HV increment (for preset plateau slope) and data acquisition (for preset time), data acquisition time etc., can be programmed. Nearly 200 detectors data (20 data points per detector) can be stored and transferred to PC on request. Data collected by the system for LND 719 GM detectors with starting voltage from 500 V, HV step size of 24 V and 100 seconds counting time to find out the plateau length. The plateau slope and length obtained with this system for LND 719 GM detectors are 3-5%/100V and ∼ 150V respectively. (author)

  5. The incineration of low-level radioactive waste: A report for the Advisory Committee on Nuclear Waste

    International Nuclear Information System (INIS)

    Long, S.W.

    1990-06-01

    This report is a summary of the contemporary use of incineration technology as a method for volume reduction of LLW. It is intended primarily to serve as an overview of the technology for waste management professionals involved in the use or regulation of LLW incineration. It is also expected that organizations presently considering the use of incineration as part of their radioactive waste management programs will benefit by gaining a general knowledge of incinerator operating experience. Specific types of incineration technologies are addressed in this report, including designation of the kinds of wastes that can be processed, the magnitudes of volume reduction that are achievable in typical operation, and requirements for ash handling and off-gas filtering and scrubbing. A status listing of both US and foreign incinerators provides highlights of activities at government, industry, institutional, and commercial nuclear power plant sites. The Federal and State legislative structures for the regulation of LLW incineration are also described. 84 refs., 33 tabs

  6. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  7. Municipal waste processing: Technical/economic comparison of composting and incineration options

    International Nuclear Information System (INIS)

    Bertanza, G.

    1993-01-01

    The first part of this paper which assessed the state-of-the-art of municipal waste composting and incineration technologies indicated that the advanced level of available technologies in this field now allows the realization of reliable and safe plants. This second part of the paper deals with the economics of the composting and incineration options. Cost benefit analyses using the discounted cash flow method are made for waste processing plants featuring composting alone, incineration only and mixed composting and incineration. The economic analyses show that plants employing conventional composting techniques work well for the case of exclusively organic waste materials. Incineration schemes are shown to be economically effective when they incorporate suitable energy recovery systems. The integrated composting-incineration waste processing plant appears to be the least attractive option in terms of economics. Current R ampersand D activities in this field are being directed towards the development of systems with lower environmental impacts and capital and operating costs

  8. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  9. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  10. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach.

    Science.gov (United States)

    Beylot, Antoine; Villeneuve, Jacques

    2013-12-01

    Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e., 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of -58 kg CO2-eq to a relatively large burden of 408 kg CO2-eq, with 294 kg CO2-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NOx process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Volume reduction of low- and medium-level waste by incineration/calcination

    International Nuclear Information System (INIS)

    Buzonniere, A. de; Gauthey, J.C.

    1993-01-01

    Nuclear installations generate large quantities of low- and medium-level radwaste. This waste comes from various installations in the fuel cycle, reactor operation, research institute, hospitals, nuclear plate dismantling, etc.. TECHNICATOME did the project development work for the incineration plant of PIERRELATE (France) on behalf of COGEMA (Compagnie Generale des d'Etudes Technique). This plant has been in active service since November 1987. In addition, TECHNICATOME was in charge of the incinerator by a turnkey contract. This incinerator was commissioned in 1992. For a number of years, TECHNICATOME has been examining, developing and producing incineration and drying/calcination installations. They are used for precessing low- and medium-level radwaste

  12. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  13. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  14. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  15. A comparative assessment of waste incinerators in the UK.

    Science.gov (United States)

    Nixon, J D; Wright, D G; Dey, P K; Ghosh, S K; Davies, P A

    2013-11-01

    The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  17. Incinerator for radioactive wastes

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburn chamber for off-gases. The latter is formed by vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary a magazine feeds waste to a horizontal tube forming the primary combustion chamber. (author)

  18. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  19. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  20. Electrodialytic remediation of municipal solid waste incineration residues using different membranes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues...... as a technology to upgrade municipal solid waste incineration residues....

  1. The Controlled-Air Incinerator at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Newmyer, J.N.

    1994-04-01

    The Controlled-Air Incinerator (CAI) at Los Alamos is being modified and upgraded to begin routine operations treating low-level mixed waste (LLMW), radioactively contaminated polychlorinated biphenyl (PCB) wastes, low-level liquid wastes, and possibly transuranic (TRU) wastes. This paper describes those modifications. Routine waste operations should begin in late FY95.

  2. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators.

    Science.gov (United States)

    You, Haihui; Ma, Zengyi; Tang, Yijun; Wang, Yuelan; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa; Huang, Qunxing

    2017-10-01

    The heating values, particularly lower heating values of burning municipal solid waste are critically important parameters in operating circulating fluidized bed incineration systems. However, the heating values change widely and frequently, while there is no reliable real-time instrument to measure heating values in the process of incinerating municipal solid waste. A rapid, cost-effective, and comparative methodology was proposed to evaluate the heating values of burning MSW online based on prior knowledge, expert experience, and data-mining techniques. First, selecting the input variables of the model by analyzing the operational mechanism of circulating fluidized bed incinerators, and the corresponding heating value was classified into one of nine fuzzy expressions according to expert advice. Development of prediction models by employing four different nonlinear models was undertaken, including a multilayer perceptron neural network, a support vector machine, an adaptive neuro-fuzzy inference system, and a random forest; a series of optimization schemes were implemented simultaneously in order to improve the performance of each model. Finally, a comprehensive comparison study was carried out to evaluate the performance of the models. Results indicate that the adaptive neuro-fuzzy inference system model outperforms the other three models, with the random forest model performing second-best, and the multilayer perceptron model performing at the worst level. A model with sufficient accuracy would contribute adequately to the control of circulating fluidized bed incinerator operation and provide reliable heating value signals for an automatic combustion control system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William B. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidance in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.

  4. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  5. Conventional incinerator redesign for the incineration of low level radioactive solid wastes.; Rediseno de un incinerador convencional para la incineracion de desechos radiactivos de bajo nivel.

    Energy Technology Data Exchange (ETDEWEB)

    Lara Z, L E.C.

    1997-04-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author).

  6. A demonstration program to evaluate centralized LLW Incineration

    International Nuclear Information System (INIS)

    Burian, R.J.

    1984-01-01

    Dramatic increases in low level waste burial charges in the last five years have spurred interest in achieving higher volume reduction than currently achieved by compaction. Battelle has completed a planning study to demonstrate the technical and economic feasibility of central site incineration for dry active waste to service several generators within a geographical area. We initiated licensing by the USNRC and Ohio EPA and developed plans, procedures, and estimated costs for licensing, construction, operation, and decommissioning of a central site incinerator. In addition, acceptance criteria were established for incoming waste. Response from the NRC and Ohio EPA indicated that no major obstacles existed toward obtaining licenses. The economic study indicated that a commercial incineration operation lasting 20 years or more was economically advantageous over direct burial of compacted waste, assuming that burial costs continue to escalate at their current rates. However, a 5-year demonstration period was not economically advantageous because of the short period to recover the fixed capital investment

  7. The application of probabilistic risk assessment to a LLW incinerator

    International Nuclear Information System (INIS)

    Li, K.K.; Huang, F.T.

    1993-01-01

    The 100 Kg/hr low-level radioactive waste (LLW) incinerator and the 1,500 ton supercompactor are two main vehicles in the Taiwan Power Company's Volume Reduction Center. Since the hot test of the incinerator in mid 1990, various problems associated with the original design and operating procedures were encountered. During the early stages of putting an incinerator in service, the modification and fine-tuning of the system would help future reliable operations. The probabilistic risk assessment (PRA) method was introduced to evaluate the interaction between potential system failure and its environmental impact and further help diagnose the system defects initially. The draft Level 1 system analysis was completed and the event and fault trees were constructed. Qualitatively, this approach is useful for preventing the system failure from occurring. However, Levels 2 and 3 analysis can only be done when sufficient data become available in the future

  8. Costs of head-end incineration with respect to Kr separation in the reprocessing of HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Barnert-Wiemer, H.; Boehnert, R.

    1976-07-15

    The C-incinerations and the Kr-separations during head-end incineration in the reprocessing of HTR fuel elements are described. The costs for constructing an operating a head-end incineration of reprocessing capacities with 5,000 to 50,000 MW(e)-HTR power have been determined. The cost estimates are divided into investment and operating costs, further after the fraction of the N/sub 2/-content in the incineration exhaust gas, which strongly affects costs. It appears that, in the case of Kr-separation from the incineration exhaust gas, the investment costs as well as the operating costs of the head-end for N/sub 2/-containing exhaust gas are considerably greater than those for gas without N/sub 2/. The C-incineration of the graphite of the HTR fuel elements should therefore only be performed with influx gas that is free of N/sub 2/.

  9. Emission of greenhouse gases from waste incineration in Korea.

    Science.gov (United States)

    Hwang, Kum-Lok; Choi, Sang-Min; Kim, Moon-Kyung; Heo, Jong-Bae; Zoh, Kyung-Duk

    2017-07-01

    Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NO x ) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 ± 17 kg CO 2 ton -1 , 88 ± 36 g CH 4 ton -1 , and 69 ± 16 g N 2 O ton -1 , while those for CSW incineration were 22.56 g CH 4 ton -1 and 259.76 g N 2 O ton -1 , and for SW incineration emission factors were 2959 kg CO 2 ton -1 , 43.44 g CH 4 ton -1 and 401.21 g N 2 O ton -1 , respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO 2 -eq yr -1 for A facility and 11,082 ton CO 2 -eq yr -1 for B facility, while those of IPCC default values were 13,167 ton CO 2- eq yr -1 for A facility and 32,916 ton CO 2- eq yr -1 , indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO 2 -eq yr -1 , while those of SW for D to I facilities was 28,830 ton CO 2 -eq yr -1 . The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and

  10. Regenerative-filter-incinerator device

    Energy Technology Data Exchange (ETDEWEB)

    Rosebrock, T.L.

    1977-10-18

    A regenerative-filter-incinerator device, for use in the exhaust system of a diesel engine, includes a drum-like regenerative-heat exchanger-filter assembly rotatably mounted within a housing that is adapted to be installed directly in the exhaust gas stream discharged from a diesel engine as close to the engine as possible. The regenerative-heat exchanger-filter assembly provides an inner chamber which serves as a reaction chamber for the secondary combustion of exhaust gases including particulates discharged from the engine. The regenerative-heat exchanger-filter assembly includes separately rotatable heat exchange-filter elements pervious to radial flow of fluid therethrough and adapted to filter out particulates from the exhaust gases and to carry them into the reaction chamber. During engine operation, the reaction chamber is provided with a quantity of heat, as necessary, to effect secondary combustion of the exhaust gases and particulates by means of an auxiliary heat source and the heat generated within the reaction chamber is stored in the individual heat exchange-filter elements during the discharge of exhaust gases therethrough from the reaction chamber and this heat is then transferred to the inflowing volume of the exhaust gases so that, in effect, exhaust gas is discharged from the device at substantially the same temperature as it was during its inlet into the device from the engine.

  11. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    binding than previously understood. Differences were also observed between MSWI bottom ash DOM and the natural DOM for which the geochemical speciation models SHM and NICA-Donnan are calibrated. Revised parameter values for speciation modelling are therefore suggested. Additions of salt or natural DOM in the influent did not change the leachate concentration of Cu. Thus, although Cl and natural DOM might be present in the influent in the field due to road salting or infiltration of soil water, this is of minor importance for the potential environmental impact from MSWI bottom ash. This thesis allows estimates of long-term leaching and toxicity to be improved and demonstrates the need for broadening the system boundaries in order to highlight the tradeoffs between different types of impact. For decisions on whether incinerator residues should be utilised or landfilled, the use of a life cycle perspective in combination with more detailed assessments is recommended

  12. Study on Developing Degradation Model for Nuclear Power Plants With Ageing Elements Affected on Operation Parameter

    International Nuclear Information System (INIS)

    Choi, Yong Won; Lim, Sung Won; Lee, Un Chul; Kim, Man Woong; Kim, Kab; Ryu, Yong Ho

    2009-01-01

    As a part of development the evaluation system of safety margin effects for degradation of CANDU reactors, it is required that the degradation model represents the distribution of each ageing factor's value during operating year. Unfortunately, it is not easy to make an explicit relation between the RELAP-CANDU parameters and ageing mechanism because of insufficient data and lack of applicable models. So, operating parameter related with ageing is used for range determination of ageing factor. Then, relation between operating parameter and ageing elements is analyzed and ageing constant values for degradation model are determined. Also the other ageing factor is derived for more accurate ageing analysis

  13. An overview of environment Canada's National Incinerator Testing and Evaluation Program (NITEP)

    International Nuclear Information System (INIS)

    Finkelstein, A.

    1991-01-01

    In response to the many concerns associated with incineration, Environment Canada established the National Incineration Testing and evaluation Program (NITEP) in 1984. It's mission was to assess the incineration process as a means for disposal of MSW in Canada. The program primarily focused on the environment and health impacts of MSW incinerators by determining how design and operating conditions can be modified to reduce emissions of concern. In addition to developing better measuring and monitoring methods, supporting ash residue management research programs, NITEP established four major field projects to develop the data base necessary for national guidelines. This paper presents a brief overview of the most significant field program findings over the past six years and the rationale for the Canadian Council of Ministers of the Environment (CCME) Operating and Emissions Guidelines for MSW Incinerators published in June of 1989. In addition an overview of the ash work completed to date, and work still underway, will be presented

  14. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  16. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    International Nuclear Information System (INIS)

    Beylot, Antoine; Villeneuve, Jacques

    2013-01-01

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO x emissions. • E.g. climate change impact ranges from −58 to 408 kg CO 2 -eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO 2 -eq to a relatively large burden of 408 kg CO 2 -eq, with 294 kg CO 2 -eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO x process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available

  17. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    Energy Technology Data Exchange (ETDEWEB)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  18. Eigenstates of the higher power of the annihilation operator of two-parameter deformed harmonic oscillator

    International Nuclear Information System (INIS)

    Wang Jisuo; Sun Changyong; He Jinyu

    1996-01-01

    The eigenstates of the higher power of the annihilation operator a qs k (k≥3) of the two-parameter deformed harmonic oscillator are constructed. Their completeness is demonstrated in terms of the qs-integration

  19. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  20. Criticality management organization in the alpha incinerator

    International Nuclear Information System (INIS)

    Devillard, D.; Thiebaut, C.; Poinso, J.Y.; Huin, M.

    2004-01-01

    The Valduc Research Center, which reports to the CEA's Military applications Division, generates solid wastes contaminated with alpha emitters in the operation of its installations. An incineration plant has been built to treat these contaminated wastes. Criticality risk prevention is based on limiting the mass of active material undergoing treatment in the facility. A balance is compiled continuously by calculating the difference between the mass of active material entering the facility and the mass leaving it. Due to measurement uncertainties, the balance must be zeroed periodically by cleaning and drainage of all the equipment and the absence of holdup in the components must be checked. (authors)

  1. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  2. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  3. The effect of operational parameters on the photocatalytic degradation of pesticide.

    Science.gov (United States)

    Choi, Euiso; Cho, Il-Hyoung; Park, Jaehong

    2004-01-01

    The photocatalytic degradation of Cartap Hydrochloride, a synthetic pesticide. has been investigated over coated TiO2 photocatalysts irradiated with a ultraviolet (UV) light. The effect of operational parameters, i.e., Cartap Hydrochloride concentration, reaction time, light intensity and additive on the degradation rate of aqueous solution of Cartap Hydrochloride has been examined. Results show that the employment of efficient photocatalysts and the selection of optimal operational parameters may lead to degradation of Cartap Hydrochloride solutions.

  4. Sensitivity analysis of physical/operational parameters in neutron multiplicity counting

    International Nuclear Information System (INIS)

    Peerani, P.; Marin Ferrer, M.

    2007-01-01

    In this paper, we perform a sensitivity study on the influence of various physical and operational parameters on the results of neutron multiplicity counting. The purpose is to have a better understanding of the importance of each component and its contribution to the measurement uncertainty. Then we will be able to determine the optimal conditions for the operational parameters and for detector design and as well to point out weaknesses in the knowledge of critical fundamental nuclear data

  5. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  6. The primary ion source for construction and optimization of operation parameters

    International Nuclear Information System (INIS)

    Synowiecki, A.; Gazda, E.

    1986-01-01

    The construction of primary ion source for SIMS has been presented. The influence of individual operation parameters on the properties of ion source has been investigated. Optimization of these parameters has allowed to appreciate usefulness of the ion source for SIMS study. 14 refs., 8 figs., 2 tabs. (author)

  7. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  8. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    Science.gov (United States)

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  9. Progress on radioactive waste slurry incineration with oxygen and steam

    International Nuclear Information System (INIS)

    Hoshino, M.; Hayashi, M.; Oda, I.; Nonaka, N.; Kuwayama, K.; Shigeta, T.

    1988-01-01

    The radioactive waste (radwaste) slurry generated from the nuclear power plant operation, such as spent ion-exchange resins (powdered, bead), fire-retardant oils including phosphate ester and concentrated laundry (by the wet method) liquid waste, has been stored in an untreated condition on the plant site. Recently, since the Condensate Filter Demineralizer (CFD) has been applied in advanced BWR plants, the discharged volume of untreated spent powered resin slurry has been increasing steadily. TEE and NCE have been developing an effective new volume reduction system to treat this radwaste slurry based on an innovative incineration concept. The new system is called the IOS process, the feature of which is incineration with oxygen and steam admixture instead of conventional air. The IOS process, which consists mainly of high heat load incineration with slurry atomization, and combustion gas cooling and condensation by the wet method, has several advantages which are summarized in this paper

  10. Effect of important operating parameters on product properties and operation of HDPE slurry reactor

    International Nuclear Information System (INIS)

    Soltanieh, M.; Remezani Saadat Abadi, A.; Dashti, A.; Mokhtari, J.

    2007-01-01

    In this article, a complete model for the mixed flow slurry reactor for polymerization of ethylene to high density polyethylene in the presence of Ziegler-Natta catalyst is presented. In addition to the effects of the multiple active sites, the effect of other important parameters such as the catalyst concentration, co-catalyst, hydrogen, monomer, impurities and pressure on the mass-average and number-average polymer product chain length, the average product distribution index and the required residence time for the reactor were investigated. The simulation results show that as the catalyst, hydrogen and solvent concentrations increase, the mass and number-average polymer chain length decrease, whereas with increasing monomer concentration and pressure, the average molecular weight increases. The effects of these parameters on the polydispersity index and residence time do not follow the same trend and their relationship changes in some of these variables

  11. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    Science.gov (United States)

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  12. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihua Zhang

    2016-01-01

    Full Text Available Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO. Rechenberg’s 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  13. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm.

    Science.gov (United States)

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter.

  14. On the issue of selecting technical and operational parameters for buses in urban passenger routes

    Directory of Open Access Journals (Sweden)

    Rudzinskyi V.V.

    2017-10-01

    Full Text Available Problems of a public transport bus service in urban areas were analyzed. The aim of the article is to determine actual operational parameters of buses during passenger transportation in Zhytomyr. Ways of determining technical and operational parameters of buses were developed using visual and tabular methods of city buses real-time speed and acceleration performance registration by GPS-monitoring system with the help of a communicational and informational intelligent transport system of the city. Experimental studies of city buses motion parameters were presented. A comprehensive survey of passenger traffic and conditions of public transport functioning in Zhytomyr was carried out. The values of technical and operational parameters of buses on city routes were obtained. Preliminarily conclusions and recommendations considering the criteria for selecting the optimal rolling stock for a bus network of the city were suggested.

  15. Waste incineration and immobilization for nuclear facilities, April--September 1977

    International Nuclear Information System (INIS)

    Johnson, A.J.; Fong, L.Q.

    1978-01-01

    Fluidized bed incineration and waste immobilization processes are being developed to process the types of waste expected from nuclear facilities. An air classification system has been developed to separate tramp metal from shredded combustible solid waste prior to the waste being fed to a fluidized-bed pilot-plant incinerator. Used organic ion exchange resin with up to 55 percent water has been effectively burned in the fluidized bed incinerator. Various methods of feeding waste into the incinerator were investigated as alternatives to the present compression screw; an extrusion ram was found to suffer extensive damage from hard particles in tested waste. A bench-scale continuous waste immobilization process has been operated and has produced glass from incinerator residue and other types of waste materials

  16. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  17. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  18. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  19. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  20. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  1. Small-scale medical waste incinerators - experiences and trials in South Africa

    International Nuclear Information System (INIS)

    Rogers, David E.C.; Brent, Alan C.

    2006-01-01

    Formal waste management services are not accessible for the majority of primary healthcare clinics on the African continent, and affordable and practicable technology solutions are required in the developing country context. In response, a protocol was established for the first quantitative and qualitative evaluation of relatively low cost small-scale incinerators for use at rural primary healthcare clinics. The protocol comprised the first phase of four, which defined the comprehensive trials of three incineration units. The trials showed that all of the units could be used to render medical waste non-infectious, and to destroy syringes or render needles unsuitable for reuse. Emission loads from the incinerators are higher than large-scale commercial incinerators, but a panel of experts considered the incinerators to be more acceptable compared to the other waste treatment and disposal options available in under-serviced rural areas. However, the incinerators must be used within a safe waste management programme that provides the necessary resources in the form of collection containers, maintenance support, acceptable energy sources, and understandable operational instructions for the incinerators, whilst minimising the exposure risks to emissions through the correct placement of the units in relation to the clinic and the surrounding communities. On-going training and awareness building are essential in order to ensure that the incinerators are correctly used as a sustainable waste treatment option

  2. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  3. Heavy metals behavior during thermal plasma vitrification of incineration residues

    International Nuclear Information System (INIS)

    Cerqueira, N.; Vandensteendam, C.; Baronnet, J.M.

    2005-01-01

    In the developed world, incineration of wastes is widely and increasingly practiced. Worldwide, a total of approximately 100 millions of tons of municipal solid waste (MSW) material is incinerated annually. Incineration of one ton of MSW leads to the formation of 30 to 50 kg of fly ash, depending on the type of incinerator. The waste disposal of these dusts already causes great problems today; they are of low bulk density, they contain high concentrations of hazardous water-soluble heavy metal compounds, organohalogen compounds (dioxines, furanes), sulfur, and chlorinated compounds. Thermal processes, based mainly on electrical arc processes, show great promise: the residues are melted at high temperature and converted in a relatively inert glass. A few tens of plants, essentially in Japan and Taiwan, have been in industrial operation for a few years. To be authorized to be dumped in a common landfill, the glassy product has to satisfy the leaching test procedure to ensure long-term durability. But to satisfy the regulation to be reused, for example as a nonhazardous standard material in road building, the glassy product would probably include contents in some heavy metals lower than critical limits. So today, there are two alternatives: the first one is to improve the heavy toxic metals evaporation to get a 'light' glassy product and to recycle separately the said separated metals; the second is on the contrary to improve the incorporation of a maximum of heavy metals into the vitreous silicate matrix. Whatever, it is highly required to control, in situ and in real time, volatility of these metals during ash melting under electrical arc. The objective of this work was to reach basic data about metals volatility under the plasma column of an electrical arc transferred on the melt: an experiment has been designed to examine the effects of processing conditions, such as melt temperature, melt composition, and furnace atmosphere, upon volatilization and glassy slag

  4. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    Science.gov (United States)

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  5. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  6. Incineration of a Single Component Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    1999-01-01

    An Advanced controlled air incinerator has been investigated, developed and put into successful operation for a single component and other combustible solid wastes. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increases by the increase of glowing bed temperature, while H 2 O, H 2 and CO decreases. It was proved that, a burn- out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98%, respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products . Process chemistry and kinetics of the gasification were studied. The rate of reaction of the gasification process was obtained at different operating conditions by solving a set of algebraic equations provided by applying the extent of reaction concept. The comparison showed a satisfactory agreement between the calculated and experimental values. Unsteady state mass balance equations are developed for the gas reactor. The derived equations are Laplace transformed and solved to generate the dynamic behavior of the system . Open loop calculations are conducted to study the effect of some disturbances on the performance of the gas reactor. Model output was compared with actual experimental data as only slight corrections have to be made

  7. Incineration of radioactive wastes at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, W; Hempelmann, W; Krause, H

    1976-06-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the fumes are cleaned by ceramic filter candles. After passing the filtering system and cooling, the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 l-drums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m/sup 3/ of combustible solids and about 60 m/sup 3/ organic solvents have been incinerated in the plant. The operating experiences are presented.

  8. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  9. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  10. Lead-cooled hybrid reactors and fuel regeneration for energy production and incineration evolution of physical parameters and induced radiotoxicity; Capacites des reacteurs hybrides au plomb pour la production d'energie et l'incineration avec multirecyclage des combustibles evolution des parametres physiques radiotoxicites induites

    Energy Technology Data Exchange (ETDEWEB)

    David, S

    1999-07-01

    The concept of accelerator driven subcritical reactors (hybrid reactors), as re-launched in the beginning of the 1990's by C. Rubbia and C.D. Bowman, allows to open new paths in the management of radioactive wastes. This work treats, first, of the study of the neutron multiplication characteristics in a subcritical reactor core and shows the fundamental differences with critical systems and the advantages that follow. This study is based on the series of measurements performed at Cadarache (Muse experiment), the first results of which are presented. The subcritical property of an hybrid reactor makes this system very flexible and allows to foresee different uses, like the energy production or the incineration of wastes. The second part of this work deals with the Monte Carlo simulation of the capacities of fast spectrum and lead-cooled hybrid systems to produce energy by using different fuel cycles (uranium and thorium), and in the same time regenerating the fissile matter and keeping the reactivity up without any external intervention. Different types of fuel multi-recycles are considered. The results allow to quantify the advantages linked with the use of the thorium cycle, in particular in terms of radiotoxicity abatement. The study of the intermediate steps necessary to develop this reactor technology with the present day fuels (plutonium from thermal reactors and enriched uranium) proposes an efficient management of the actinides produced by today's reactors which are used as auxiliary fissile materials. Finally, the incineration of actinides at the end of the cycle (shutdown scenario) is considered and allows to describe the advantage of lead-cooled hybrid systems for the abatement of the radiotoxicity of an inventory at the end of cycle. (J.S.)

  11. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  12. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    International Nuclear Information System (INIS)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-01-01

    Highlights: ► Aluminium packaging partitioning in MSW incineration residues is evaluated. ► The amount of aluminium packaging recoverable from the bottom ashes is evaluated. ► Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. ► 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  13. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy); Gorla, Leopoldo; Nessi, Simone; Grosso, Mario [Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  14. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  15. A comparative study of PCDD/F emissions from medical and industrial waste incinerators in Medellin-Colombia (South America)

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal, B; Montes, C; Cobo, M [Antioquia Univ., Medellin (Colombia); Abad, E; Rivera, J [CID-CSIC, Barcelona (Spain). Dept. of Ecotechnologies

    2004-09-15

    Municipal waste management often combines different strategies such as recycling, composting, thermal treatment or landfill disposal. In Colombia, urban solid waste is landfill disposed but, industrial and medical wastes are incinerated. The total medical and pathological wastes generated in this zone are about 1643 ton/year from which 1022 ton/year are incinerated in six plants operating in Medellin metropolitan area. As a result, new regulations governing stack gas emissions have been enforced with the aim of reducing air pollutant emissions. Few incinerators are equipped with a gas-cleaning system and thus, most do not have any cleaning system. Medical waste incineration has been recognized as one of the major known sources of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans (PCDD/PCDF). To the best of our knowledge, there are not reports about emissions of dioxins and furans from the incineration sector in Colombia. The first aim of this work was to evaluate PCDD/PCDF emissions from the largest incinerators operating in Medellin (Colombia). In this contribution we report results obtained from three incinerators (A, B and C). The incinerated waste in plant A consisted of polymerization sludge, whereas in plants B and C medical and pathological residues were incinerated. Common medical wastes include dirty bandages, culture dishes, plastic, surgical gloves and instruments (including needles) as well as human tissue.

  16. Optimization of basic parameters of cyclic operation of underground gas storages

    Directory of Open Access Journals (Sweden)

    Віктор Олександрович Заєць

    2015-04-01

    Full Text Available The problem of optimization of process parameters of cyclic operation of underground gas storages in gas mode is determined in the article. The target function is defined, expressing necessary capacity of compressor station for gas injection in the storage. Its minimization will find the necessary technological parameters, such as flow and reservoir pressure change over time. Limitations and target function are reduced to a linear form. Solution of problems is made by the simplex method

  17. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  18. Investigation on sense of control parameters for joystick interface in remote operated container crane application

    Science.gov (United States)

    Abdullah, U. N. N.; Handroos, H.

    2017-09-01

    Introduction: This paper presents the study of sense of control parameters to improve the lack of direct motion feeling through remote operated container crane station (ROCCS) joystick interface. The investigations of the parameters in this study are important to develop the engineering parameters related to the sense of control goal in the next design process. Methodology: Structured interviews and observations were conducted to obtain the user experience data from thirteen remote container crane operators from two international terminals. Then, interview analysis, task analysis, activity analysis and time line analysis were conducted to compare and contrast the results from interviews and observations. Results: Four experience parameters were identified to support the sense of control goal in the later design improvement of the ROCC joystick interface. The significance of difficulties to control, unsynchronized movements, facilitate in control and decision making in unexpected situation as parameters to the sense of control goal were validated by' feedbacks from operators as well as analysis. Contribution: This study provides feedback directly from end users towards developing a sustainable control interface for ROCCS in specific and remote operated off-road vehicles in general.

  19. Emissions and dioxins formation from waste incinerators; Emissioni di diossine da inceneritori

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  20. Operation and maintenance of waste incinerators - A comparison of two techniques and strategies; Drift och underhaall av avfallsfoerbraenningsanlaeggningar - En jaemfoerelse av tvaa tekniker och strategier

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Andreas [SP Technical Research Inst. of Sweden, Boraas (Sweden); Hoegskolan i Boraas, Boraas (Sweden); Niklasson, Fredrik [SP Technical Research Inst. of Sweden, Boraas (Sweden); Johnsson, Anders [Boraas Energi och Miljoe, Boraas (Sweden); Fredaeng, Julia [Dalkia, Stockholm (Sweden); Wettergren, Hans [Renova AB, Goeteborg (Sweden)

    2009-06-15

    This work has developed and demonstrated a simple method for comparison of operation and maintenance cost for various waste combustion techniques and plants. The principal of the method is to coarsely and initially divide cost into comparable posts. Post of specific interest is thereafter compared on a more detailed level. This procedure allows comparison with a modest consumption of time and effort. There is a lack of such comparison because of the effort needed to in detail compare the, often for each plant unique, selection of techniques and strategies. A consequence of the lack of comparisons is that success stories become invisible. The same can be said about common research needs. The demonstrated method visualizes the effects of various selections of techniques and strategies. It also points out bottlenecks for further improvement of the investigated units. The method has been simple to use and it is therefore considered as suitable to use in a larger investigation covering several waste combustion units. Thus, the project has accomplished its aims.

  1. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  2. Radioactive substances detection at solid waste incinerators entrance

    International Nuclear Information System (INIS)

    Bourjat, V.; Carre, J.; Perrier-Rosset, A.

    2001-01-01

    SYCTOM'S incinerators, operated by TIRU will soon be fitted out with radioactivity control systems to prevent entrance of radioactive waste. Such implementation aims at reducing health risks due to exposition of operators working in incinerators or in sites receiving incineration residues. Radioactive wastes are supposed to be well managed: in the case where the radioactive elements period is short, they have to be stored for a precise time; in all the other cases, a statutory organism dealing with radioactive waste (ANDRA) has to take charge of them. Meanwhile they may arrived in incinerators by mistake. It's difficult to regulate radioactivity control systems for technical reasons; the measured values can be really different from these in the truck because of radiation decreasing; moreover it can't be correlated to an activity, hence it can't be compared to exemption values or to the limits that characterise a radioactive substance. It can explain why regulated documents don't indicate the way to fix alarm threshold. Implementing such a system is not sufficient: when the alarm sound, the following steps can be applied: checking the missing of interference, potential truck return to sender, putting the truck in quarantine, information of authorities and main actors, calling on a specialize company to locate, extract and package the radiation source, storage of this source and spectrometric analysis to identify and quantify the radioactive elements in order to determinate its way of elimination. (authors)

  3. Experience with high-temperature filtration of incinerator flue gases

    International Nuclear Information System (INIS)

    Carpentier, S.; de Tassigny, C.

    1990-01-01

    It is always preferable to filter incinerator flue gases as close as possible to their origin, i.e. in a high-temperature zone, and means must be provided to destroy the other organic parts of the flyash resulting from these gases by in-filter combustion. The filter also traps a mineral part of the flyash, which eventually causes clogging and requires replacement or regeneration. Such filtration systems are available and can be operated on an industrial scale. They include candles made of micro-expanded refractory alloys supporting filtering media, porous ceramic candles and other devices. Research and subsequent pilot facility testing have enabled development of alumina fiber filter cartridges that offer more advantages than other equipment employed to date. Specifically, these advantages are: ultralight weight, which enables construction of systems that are relatively unaffected by creep and high-temperature deformations; excellent refractory qualities, which permit a use above 1000 degrees C; insensitivity to thermal shocks and in-situ carbon fines combustion capability; anti-acid quality of the material, which enables high-temperature filtration of acidic flue gases (chlorine and hydrochloric acid, SO x , etc.); low initial pressure drop of the cartridges; dimensional stability of the cartridges, which can be machined to a given tolerance with specific contours after casting and drying. This paper reports the results obtained during the last filtration system test campaign. Details are given for operating conditions, grain sizes and real-time monitoring of various parameters

  4. Resolution of USQ regarding source term in the 232-Z Waste Incinerator Building

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1995-09-01

    The 232-Z Waste Incinerator at the Hanford Plutonium Finishing Plant (PFP) was used to incinerate plutonium-bearing combustible materials generated during normal plant operations. Nondestructive (NDA) measurements performed after the incinerator ceased operations indicated high plutonium loadings in exhaust ductwork near the incinerator glovebox, while the incinerator was found to have only low quantities. Measurements, following a campaign to remove some of the ductwork, resulted in markedly higher assay value for the incinerator glovebox itself. Subsequent assays confirmed the most recent results and pointed to a potential further underestimation of the holdup, in part because of attenuation due to fire brick, which could not be seen easily and which had been reported to not be present. NaI detector based measurements were used to map the deposits. Extended count times, using high resolution Ge detectors helped estimate the isotopic composition of the plutonium and quantify the deposits. Experiments were performed using a Ge detector to obtain adequate corrections for the high attenuation of the incinerator glovebox. Several neutron detectors and detector configurations were employed to understand and quantify the neutron flux. Due to the disparity that was anticipated to occur between the gamma ray and neutron assay results, radiation modeling was used to try to reconcile the divergent results. This was a third aspect of the team's effort, utilizing computer modeling to resolve discrepancies between measurement methods

  5. Prediction of dioxin/furan incinerator emissions using low-molecular-weight volatile products of incomplete combustion.

    Science.gov (United States)

    Lemieux, P M; Lee, C W; Ryan, J V

    2000-12-01

    Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from incinerators and other stationary combustion sources are of environmental concern because of the toxicity of certain PCDD/F congeners. Measurement of trace levels of PCDDs/Fs in combustor emissions is not a trivial matter. Development of one or more simple, easy-to-measure, reliable indicators of stack PCDD/F concentrations not only would enable incinerator operators to economically optimize system performance with respect to PCDD/F emissions, but could also provide a potential technique for demonstrating compliance status on a more frequent basis. This paper focuses on one approach to empirically estimate PCDD/F emissions using easy-to-measure volatile organic C2 chlorinated alkene precursors coupled with flue gas cleaning parameters. Three data sets from pilot-scale incineration experiments were examined for correlations between C2 chlorinated alkenes and PCDDs/Fs. Each data set contained one or more C2 chloroalkenes that were able to account for a statistically significant fraction of the variance in PCDD/F emissions. Variations in the vinyl chloride concentrations were able to account for the variations in the PCDD/F concentrations strongly in two of the three data sets and weakly in one of the data sets.

  6. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  7. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    International Nuclear Information System (INIS)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-01-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  8. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    Science.gov (United States)

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    Science.gov (United States)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  10. Numerical investigation of the effect of operating parameters on a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Raj, Abhishek; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Effects of operating parameters on a planar type of SOFC are investigated. • The studies carried out by developing a three dimensional mathematical model. • The cell performance is enhanced at high temperatures and cathode stoichiometry. • Cathode stoichiometry has a high influence on the cell performance. • The effect of anode stoichiometry on the cell performance is low. - Abstract: The three operating parameters – temperature, stoichiometry and the degree of humidification – constitute key factors required to ensure high performance of the solid oxide fuel cell (SOFC). A careful trade-off between performance and parasitic loads is required in order to optimize the output. The present study numerically analyzes the influence of the key operating parameters on the performance of planar type of SOFC and parasitic loads utilizing a validated three dimensional mathematical model which takes into account of the conservation of mass, momentum, species and charge. The numerical results indicate that the cell performance is enhanced at high temperatures and cathode stoichiometry and it declines with increasing cathode relative humidity. Furthermore, cathode stoichiometry is found to have higher influence on the cell performance as compared to the anode stoichiometry. The gain in cell performance however, has to be balanced with the changing parasitic load requirement from pumping, humidification and heating. The results presented herein can assist in the selection of optimum or near-to-optimum operating parameters for high performance planar type SOFC

  11. Reduction of Erosion Wear of Mean Pressure Cylinder of Steam Turbines Operating Beyond Critical Parameters

    Directory of Open Access Journals (Sweden)

    V. P. Kascheev

    2009-01-01

    Full Text Available The paper considers problems leading to erosion wear of flowing part of a mean pressure turbine cylinder operating beyond critical parameters. Explanation of erosion wear of flowing part of a mean pressure turbine cylinder which is proved in practice and recommendations for wear reduction are given in the paper

  12. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    Science.gov (United States)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  13. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  14. Efficient compliance with prescribed bounds on operational parameters by means of hypothesis testing using reactor data

    International Nuclear Information System (INIS)

    Sermer, P.; Olive, C.; Hoppe, F.M.

    2000-01-01

    - A common problem in any reactor operations is to comply with a requirement that certain operational parameters are constrained to lie within some prescribed bounds. The fundamental issue which is to be addressed in any compliance description can be stated as follows: The compliance definition, compliance procedures and allowances for uncertainties in data and accompanying methodologies, should be well defined and justifiable. To this end, a mathematical framework for compliance, in which the computed or measured estimates of process parameters are considered random variables, is described in this paper. This allows a statistical formulation of the definition of compliance with licence or otherwise imposed limits. An important aspect of the proposed methodology is that the derived statistical tests are obtained by a Monte Carlo procedure using actual reactor operational data. The implementation of the methodology requires a routine surveillance of the reactor core in order to perform the underlying statistical tests. The additional work required for surveillance is balanced by the fact that the resulting actions on the reactor operations, implemented in station procedures, make the reactor 'safer' by increasing the operating margins. Furthermore, increased margins are also achieved by efficient solution techniques which may allow an increase in reactor power. A rigorous analysis of a compliance problem using statistical hypothesis testing based on extreme value probability distributions and actual reactor operational data leads to effective solutions in the areas of licensing, nuclear safety, reliability and competitiveness of operating nuclear reactors. (author)

  15. Strategy for nuclear wastes incineration in hybrid reactors

    International Nuclear Information System (INIS)

    Lelievre, F.

    1998-01-01

    The transmutation of nuclear wastes in accelerator-driven nuclear reactors offers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  16. A comparative study of parameters used in design and operation of desalination experimental facility versus the process parameters in a commercial desalination plant

    International Nuclear Information System (INIS)

    Hanra, M.S.; Verma, R.K.; Ramani, M.P.S.

    1982-01-01

    Desalination Experimental Facility (DEF) based on multistage flash desalination process has been set up by the Desalination Division of the Bhabha Atomic Research Centre, Bombay. The design parameters of DEF and materials used for various equipment and parts of DEF are mentioned. DEF was operated for 2300 hours in six operational runs. The range of operational parameters maintained during operation and observations on the performance of the materials of construction are given. Detailed comparison has been made for the orocess parameters in DEF and those in a large size plant. (M.G.B.)

  17. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    International Nuclear Information System (INIS)

    Okuda, Yasunori; Yoshida, Yoshitaka; Gotou, Kazuko

    2001-01-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  18. Development of graphic display program of reactor operating parameters for emergency exercise at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori; Yoshida, Yoshitaka [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Gotou, Kazuko [Kansai Electric Power Co., Inc., Osaka (Japan)

    2001-09-01

    A scenario of nuclear emergency exercise based on the result of accident progress analysis is expected to ensure effective training. Thereupon a new graphic display program for reactor operating parameters has been developed to present real-time of plant process values (parameters), released radioactivities from the plant, and dose rate data around the site calculated by using the accident analysis code MAAP4 and other codes. This system has a trend graph screen displaying reactor operating parameters, an environmental dose rate summary screen indicating dose rate distribution around the site on the map, and a plant parameters summary screen showing important plant parameters on a simplified plant system diagram. One screen can be switched to another any time. It also has a jump-function easily accessing any stage during the exercise scenario in accordance with progress of the exercise. As a result of the application of this system to a real nuclear emergency exercise, it has been verified that this system is quite useful for confirming the parameters when the nuclear emergency exercise starts and the licensee reports the plant conditions to related bodied. (author)

  19. Study of operational parameters on the performance of micro PEMFCs with different flow fields

    International Nuclear Information System (INIS)

    Hsieh, S.-S.; Yang, S.-H.; Kuo, J.-K.; Huang, C.-F.; Tsai, H.-H.

    2006-01-01

    The effects of different operating parameters on micro PEMFC performances were experimentally studied for three different flow field configurations (interdigitated, mesh, and serpentine). Experiments with different cell operating temperatures and different backpressures on the H 2 flow channels, as well as various combinations of these parameters, have been conducted for three different flow geometries. The micro PEMFCs were designed and fabricated inhouse through a deep UV lithography technique and the SU-8 photoresist was used as microstructure material for the fuel cell flow field plates. Results are presented in the form of polarization VI curves and PI curves under different operating conditions. The possible transport mechanisms associated with the parametric effects were discussed. In addition, it was found that among the three flow patterns considered, significant improvements can be reached with a specified flow geometry

  20. Treatment of off-gas from radioactive waste incinerators

    International Nuclear Information System (INIS)

    1989-01-01

    An effective process reducing volume of radioactive wastes is incineration of combustible wastes. Appropriate design of the off-gas treatment system is necessary to ensure that any releases of airborne radionuclides into the environment are kept below acceptable limits. In many cases, the off-gas system must be designed to accommodate chemical constituents in the gas stream. The purpose of this publication is to provide the most up-to-date information regarding off-gas treatment as well as an account of some of the developments so as to aid users in the selection of an integrated system for a particular application. The choice of incinerator/off-gas system combination depends on the wastes to be treated, as well as other factors, such as regulatory requirements. Current problems and development needs are discussed. Following comprehensive discussions of the various factors affecting a choice, various incinerator and off-gas treatment systems are recommended for the various types of wastes that may be treated: low PVC content solid, high PVC content solid, organic liquid and resins. The economics or costs of the off-gas system and an evaluation of the overall cost effectiveness of incineration or direct burial is not discussed in detail. This publication is specifically directed toward technical aspects and addresses: incineration types and origin, sources and characteristics of off-gas streams; descriptions of available technologies for off-gas treatment; basic component design requirements and component description; operational experience of plants in active operation and their current practices; legal aspects and safety requirements; remaining problems to be solved and development trends in plant design and component structure. This report seeks to broaden and enhance the understanding of the developed technology and to indicate areas where improvements can be made by further research and development. 110 refs

  1. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  2. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  3. Study on incineration technology of oil gas generated during the recovery process of oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shuhn-Shyurng [Department of Mechanical Engineering, Kun Shan University, Tainan 71003 (China); Ko, Yung-Chang [China Steel Corporation, Kaohsiung 81233 (China); Lin, Ta-Hui [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2011-03-15

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area. (author)

  4. Study on incineration technology of oil gas generated during the recovery process of oil spill

    International Nuclear Information System (INIS)

    Hou, Shuhn-Shyurng; Ko, Yung-Chang; Lin, Ta-Hui

    2011-01-01

    The objective of this study is to design, set up and operate an incinerator system capable of providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in Taiwan. In this study, we successfully develop a vertical-type incinerator, which consists of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. The incinerator system is equipped with necessary control units in order to achieve safe, easy, fast, and efficient operation. Flame appearance, flue gas temperature and CO emission of the incinerator system for burning oil gas are reported and discussed. Under the long-term operation, it is found that the new designed incinerator is satisfactory for burning oil gas with low supply pressure at various compositions and supply rates during the recovery process of oil spill. It is noteworthy that the results obtained herein are of great significance to provide a good guidance for those who need to design, set up and operate an incinerator system providing clean exhaust and safety control for burning oil gas generated during the recovery process of oil spill in a polluted site with a large area.

  5. TRU waste cyclone drum incinerator and treatment system: January--March 1978

    International Nuclear Information System (INIS)

    Klingler, L.M.; Batchelder, D.M.; Lewis, E.L.

    1978-01-01

    The cyclone incinerator was operated throughout the past quarter, generating additional data on system characteristics, equipment life expectancies, and by-product generation. Several changes in the incinerator system are in various stages of completion. The lid assembly, secondary chamber, and expansion unit for the new exhaust equipment are nearly ready for installation. A new heat exchanger has been installed in the scrubber system. An ash handling system has been designed for possible future addition to the system. Continuing studies will determine the best delivery mechanism for continuously feeding the cyclone incinerator. Preliminary investigations are being conducted to select an independent system to treat incinerator scrubber solution for recycling and to remove salts and sludge for disposal. Metal samples of two possible materials for incinerator construction were examined for corrosion degradation suffered at the incinerator exhaust outlet. Controlled experiments were conducted on the pressed ash-cement pellet matrix to define compressive strength, mechanical stability, density, and effect of curing environment (wet cure and dry cure). Leachability studies were initiated on pressed sludge/cement matrix in distilled water at ambient temperature. Compressive strengths of sludge/cement pressed matrix samples were investigated. Physical and chemical attributes of incinerated ash were evaluated in relationship to the ash/cement matrix

  6. Experimental study of the energy efficiency of an incinerator for medical waste

    International Nuclear Information System (INIS)

    Bujak, J.

    2009-01-01

    The aim of this paper is to explore the flux of usable energy and the coefficient of energy efficiency of an incinerator for medical waste combustion. The incineration facility incorporates a heat recovery system. The installation consists of a loading unit, a combustion chamber, a thermoreactor chamber, and a recovery boiler. The analysis was carried out in the Oncological Hospital in Bydgoszcz (Poland). The primary fuel was comprised of medical waste, with natural gas used as a secondary fuel. The study shows that one can obtain about 660-800 kW of usable energy from 100 kg of medical waste. This amount corresponds to 1000-1200 kg of saturated steam, assuming that the incinerator operates at a heat load above φ > 65%. The average heat flux in additional fuel used for incinerating 100 kg of waste was 415 kW. The coefficient of energy efficiency was set within the range of 47% and 62% depending on the incinerator load. The tests revealed that the flux of usable energy and the coefficient of energy efficiency depend on the incinerator load. In the investigated range of the heat load, this dependence is significant. When the heat load of the incinerator increases, the flux of usable energy and the coefficient of energy efficiency also increase.

  7. Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Harris, J.D.; Harvego, L.A.; Jacobs, A.M.; Willcox, M.V.

    1998-01-01

    The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex

  8. Value as a parameter to consider in operational strategies for CSP plants

    Science.gov (United States)

    de Meyer, Oelof; Dinter, Frank; Govender, Saneshan

    2017-06-01

    This paper introduced a value parameter to consider when analyzing operational strategies for CSP plants. The electric system in South Africa, used as case study, is severely constrained with an influx of renewables in the early phase of deployment. The energy demand curve for the system is analyzed showing the total wind and solar photovoltaic contributions for winter and summer. Due to the intermittent nature and meteorological operating conditions of wind and solar photovoltaic plants, the value of CSP plants within the electric system is introduced. Analyzing CSP plants based on the value parameter alone will remain only a philosophical view. Currently there is no quantifiable measure to translate the philosophical view or subjective value and it solely remains the position of the stakeholder. By introducing three other parameters, Cost, Plant and System to a holistic representation of the Operating Strategies of generation plants, the Value parameter can be translated into a quantifiable measure. Utilizing the country's current procurement program as case study, CSP operating under the various PPA within the Bid Windows are analyzed. The Value Cost Plant System diagram developed is used to quantify the value parameter. This paper concluded that no value is obtained from CSP plants operating under the Bid Window 1 & 2 Power Purchase Agreement. However, by recognizing the dispatchability potential of CSP plants in Bid Window 3 & 3.5, the value of CSP in the electric system can be quantified utilizing Value Added Relationship VCPS-diagram. Similarly ancillary services to the system were analyzed. One of the relationships that have not yet been explored within the industry is an interdependent relationship. It was emphasized that the cost and value structure is shared between the plant and system. Although this relationship is functional when the plant and system belongs to the same entity, additional value is achieved by marginalizing the cost structure. A

  9. Optimization of design and operating parameters in a pilot scale Jameson cell for slime coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hacifazlioglu, Hasan; Toroglu, Ihsan [Department of Mining Engineering, University of Karaelmas, 67100 (Turkey)

    2007-07-15

    The Jameson flotation cell has been commonly used to treat a variety of ores (lead, zinc, copper etc.), coal and industrial minerals at commercial scale since 1989. It is especially known to be highly efficient at fine and ultrafine coal recovery. However, although the Jameson cell has quite a simple structure, it may be largely inefficient if the design and operating parameters chosen are not appropriate. In this study, the design and operating parameters of a pilot scale Jameson cell were optimized to obtain a desired metallurgical performance in the slime coal flotation. The optimized design parameters are the nozzle type, the height of the nozzle above the pulp level, the downcomer diameter and the immersion depth of the downcomer. Among the operating parameters optimized are the collector dosage, the frother dosage, the percentage of solids and the froth height. In the optimum conditions, a clean coal with an ash content of 14.90% was obtained from the sample slime having 45.30% ash with a combustible recovery of 74.20%. In addition, a new type nozzle was developed for the Jameson cell, which led to an increase of about 9% in the combustible recovery value.

  10. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  11. Technical report on dismantling of incinerator building of JNC with strict environmental assessments especially for the contamination of surroundings of incinerator by Dioxin's in soil

    International Nuclear Information System (INIS)

    Aizawa, Masanori; Ohmori, Koji; Nomura, Takeshi; Numano, Tatuo; Usui, Kazuya; Irinouchi, Shigenori

    2003-03-01

    Building of incinerator for general waste located at Tokai of Japan Nuclear Cycle Development Institute (JNC in short) were dismantled form April 2002 to March 2003 under environmental control According to the regulation entitled 'Outline for the prevention of exposure of Dioxin's to operators engaged in dismantling of waste incinerator' issued on June 01, 2000 by Ministry of Health, Labor and Welfare in Japan, the regulation requests proper protection methodology to dismantling the incinerator and surroundings contaminated by Dioxin's. This report consists of Environmental assessment under Japanese law and regulations and Procedure of actual dismantling of incinerator building with law-abiding stand point. 1. Environmental assessment; Survey of several laws and regulations concerning on the Dioxin's and actual site assessment to analyze the content of Dioxin's for surroundings of incinerator building. Ground design of dismantling procedures, waste management for disposed during dismantling and scheduling for dismantling of building. 2. Dismantling procedures; Prior to dismantling operation, contamination map by Dioxin's were established then restricted areas were determined. Protection methodology to dioxin's exposure for operators were selected and started dismantling operation after getting permission from the Labor Standards Bureau of Ibaraki Prefecture. Dismantling operations were carried out with respect o above mentioned regulations to prevent the operators exposure to Dioxin's if they are exists in soil or surroundings of building. Finally, dismantling operations were completed without accidents and confirmed no-exposure of Dioxin's to operators of dismantling. Waste generated during dismantling were recycled using specialized recycling companies in Ibaraki prefecture. Dismantling operation of incinerator was first experience at Ibaraki Prefecture, so the officials of Labor Standards Bureau were carried out on-the-spot inspection and have no claim from

  12. Influence of some design and operating parameters of conveyor with suspended belt and distributed drive on the technical specifications

    OpenAIRE

    Tolkachev E.N.

    2017-01-01

    The influence of several design and operating parameters of conveyor on the individual components of the stretching tension in the belt of conveyor with suspended belt and distributed drive was analyzed. The analysis of influence a number design and operating parameters on the technical specifications of conveyor with suspended belt and distributed drive was done. Recommendations on the choice of rational parameters were formulated.

  13. Estimation of intra-operator variability in perfusion parameter measurements using DCE-US.

    Science.gov (United States)

    Gauthier, Marianne; Leguerney, Ingrid; Thalmensi, Jessie; Chebil, Mohamed; Parisot, Sarah; Peronneau, Pierre; Roche, Alain; Lassau, Nathalie

    2011-03-28

    To investigate intra-operator variability of semi-quantitative perfusion parameters using dynamic contrast-enhanced ultrasonography (DCE-US), following bolus injections of SonoVue(®). The in vitro experiments were conducted using three in-house sets up based on pumping a fluid through a phantom placed in a water tank. In the in vivo experiments, B16F10 melanoma cells were xenografted to five nude mice. Both in vitro and in vivo, images were acquired following bolus injections of the ultrasound contrast agent SonoVue(®) (Bracco, Milan, Italy) and using a Toshiba Aplio(®) ultrasound scanner connected to a 2.9-5.8 MHz linear transducer (PZT, PLT 604AT probe) (Toshiba, Japan) allowing harmonic imaging ("Vascular Recognition Imaging") involving linear raw data. A mathematical model based on the dye-dilution theory was developed by the Gustave Roussy Institute, Villejuif, France and used to evaluate seven perfusion parameters from time-intensity curves. Intra-operator variability analyses were based on determining perfusion parameter coefficients of variation (CV). In vitro, different volumes of SonoVue(®) were tested with the three phantoms: intra-operator variability was found to range from 2.33% to 23.72%. In vivo, experiments were performed on tumor tissues and perfusion parameters exhibited values ranging from 1.48% to 29.97%. In addition, the area under the curve (AUC) and the area under the wash-out (AUWO) were two of the parameters of great interest since throughout in vitro and in vivo experiments their variability was lower than 15.79%. AUC and AUWO appear to be the most reliable parameters for assessing tumor perfusion using DCE-US as they exhibited the lowest CV values.

  14. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  15. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  16. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-01-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied....... Increasing the draft tube inner diameter, sharper inner angle of the conical section and higher height of entrained zone increase the internal solid circulation rate and the pressure drop. Even though, for all different configurations, higher gas feeding rate leads to higher internal solid circulation rate...

  17. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Moon, S. Y.; Choe, W.

    2006-01-01

    Controllability of small size atmospheric pressure plasma generated at low frequency in a pin to dielectric plane electrode configuration was studied. It was shown that the plasma characteristics could be controlled by geometrical and operational parameters of the experiment. Under most circumstances, continuous glow discharges were observed, but both the corona and/or the dielectric barrier discharge characteristics were observed depending on the position of the pin electrode. The plasma size and the rotational temperature were also varied by the parameters. The rotational temperature was between 300 and 490 K, being low enough to treat thermally sensitive materials

  18. Saturne II synchroton injector parameters operation and control: computerization and optimization

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1983-01-01

    The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr

  19. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  20. Evaluation of turbine microjet engine operating parameters in conditions conducive to inlet freezing

    Directory of Open Access Journals (Sweden)

    Markowski Jaroslaw

    2017-01-01

    Full Text Available The problem of turbine microjet engine operation is related to flight conditions of unmanned aircraft. These flights are often performed at low altitudes, where, in autumn and winter conditions, the air can be characterized by high humidity and low temperature. Such operating conditions may cause freezing the turbine engine inlet. In particular, this problem may be related to microengines, which most often are not equipped with a de-icing installation. Frosting of the inlet violates the air flow conditions at the engine inlet and may cause unstable operation and even outages, which eventually may lead to a loss of aircraft’s stability and breakdown. Therefore, an attempt was made to evaluate the changes in operational parameters of the turbine microjet engine under conditions leading to the freezing of the inlet. The engine test was performed in stationary conditions and the analysis of the obtained results are presented in this article.

  1. Health-care waste incineration and related dangers to public health: case study of the two teaching and referral hospitals in Kenya.

    Science.gov (United States)

    Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J

    2012-12-01

    There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.

  2. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  3. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  4. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  5. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  6. Selection of stirling engine parameter and modes of joint operation with the Topaz II

    International Nuclear Information System (INIS)

    Kirillov, E.Y.; Ogloblin, B.G.; Shalaev, A.I.

    1996-01-01

    In addition to a high-temperature thermionic conversion cycle, application of a low-temperature machine cycle, such as the Stirling engine, is being considered. To select the optimum mode for joint operation of the Topaz II system and Stirling engine, output electric parameters are obtained as a function of thermal power released in the TFE fuel cores. The hydraulic diagram used for joint operation of the Topaz II and the Stirling engine is considered. Requirements to hydraulic characteristics of the Stirling engine heat exchanges are formulated. Scope of necessary modifications to mount the Stirling Engine on the Topaz II is estimated. copyright 1996 American Institute of Physics

  7. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    Science.gov (United States)

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu

    2018-02-01

    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  8. A novel membrane-based process to isolate peroxidase from horseradish roots: optimization of operating parameters.

    Science.gov (United States)

    Liu, Jianguo; Yang, Bo; Chen, Changzhen

    2013-02-01

    The optimization of operating parameters for the isolation of peroxidase from horseradish (Armoracia rusticana) roots with ultrafiltration (UF) technology was systemically studied. The effects of UF operating conditions on the transmission of proteins were quantified using the parameter scanning UF. These conditions included solution pH, ionic strength, stirring speed and permeate flux. Under optimized conditions, the purity of horseradish peroxidase (HRP) obtained was greater than 84 % after a two-stage UF process and the recovery of HRP from the feedstock was close to 90 %. The resulting peroxidase product was then analysed by isoelectric focusing, SDS-PAGE and circular dichroism, to confirm its isoelectric point, molecular weight and molecular secondary structure. The effects of calcium ion on HRP specific activities were also experimentally determined.

  9. Studies on water quality parameters due to operation of PHWR at KAPS

    International Nuclear Information System (INIS)

    Jha, Mukesh; John, Jaison T.; Joshi, C.P.; Vyas, P.V.; Hegde, A.G.

    2005-01-01

    The paper elucidates the effect of water quality due to operation of Pressurised Heavy Water Reactor located at Kakrapar as water is the essential commodity for all living beings. It is the main concern in recent times for environmental protection, there is a pressure on all type of industries including nuclear power stations to discharge various types of effluents in such a manner that pollution in surrounding environment is kept to the minimum. Owing the wastewater discharge modes of Kakrapar atomic power station behavior of effluents resulting impact on environment and general public will be guided by the water quality of the aquatic system. To ensure the quality of water, the study of water quality parameters are taken up and the investigated parameters showed no degradation in ecosystem due to the operation of PHWR at KAPS. (author)

  10. The effects of operation parameter on the performance of a solar-powered adsorption chiller

    International Nuclear Information System (INIS)

    Luo, Huilong; Wang, Ruzhu; Dai, Yanjun

    2010-01-01

    A solar-powered adsorption chiller with heat and mass recovery cycle was designed and constructed. It consists of a solar water heating unit, a silica gel-water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller includes two identical adsorption units and a second stage evaporator with methanol working fluid. The effects of operation parameter on system performance were tested successfully. Test results indicated that the COP (coefficient of performance) and cooling power of the solar-powered adsorption chiller could be improved greatly by optimizing the key operation parameters, such as solar hot water temperature, heating/cooling time, mass recovery time, and chilled water temperature. Under the climatic conditions of daily solar radiation being about 16-21 MJ/m 2 , this solar-powered adsorption chiller can produce a cooling capacity about 66-90 W per m 2 collector area, its daily solar cooling COP is about 0.1-0.13.

  11. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  12. An Investigation of the dependence of CMS RPC operation on environmental parameters

    Energy Technology Data Exchange (ETDEWEB)

    Assran, Y. [Faculty of Petroleum and Mining Eng., Suez Canal University (Egypt); Colafranceschi, S. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Doninck, W.A. [Vrije Universiteit Brussel, B-1050 Brussels (Belgium); Sharma, A. [CERN, CH-1211, Geneva (Switzerland); Wickramage, N., E-mail: nwickram@cern.ch [EHEP, Tata Institute of Fundamental Research, Mumbai (India)

    2011-06-15

    In this paper an analysis is presented on performance of RPC chambers installed in the cosmic ray test stand at ISR, CERN. The currents of RPC chambers are studied as a function of environmental parameters such as temperature, humidity and pressure, which are important for the operation of the RPC detector system at CMS. A neural network approach has been used to analyze the data and to build a model using experimental measurements and combining the results of the simulations.

  13. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  14. Research into operational parameters of diesel engines running on RME biodiesel

    Directory of Open Access Journals (Sweden)

    S. Lebedevas

    2006-12-01

    Full Text Available The results of motor experimental researches on operational parameters of diesel engines F2L511 and A41 are presented in the publication. Change of harmful emission of exhaust gases was determined and evaluated, fuel economy and thrust characteristics of diesel engines running on RME biodiesel compared to diesel fuel. The influence of technical condition of fuel injection aggregates was evaluated for parameters of harmful emission of diesel engines running on biodiesel by simulation of setback of fuel injection in alowable range of technical conditions – the coking of nozzles of fuel injector. The complex improvement of all ecological parameters was evaluated by optimisation of fuel injection phase of diesel engines running on RME biodiesel. Objectives and aspects of further researches on indicator process of diesel engines were determined.

  15. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1985-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  16. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  17. Solid waste treatment volume reduction by compaction or incineration

    International Nuclear Information System (INIS)

    Vigreux, B.; Carpentier, S.

    1986-01-01

    A short presentation is made of various techniques available for volume reduction by compaction of solid waste produced during nuclear plant operation. A long industrial experience has been accumulated in France on such compactors. Incineration is the most performing method of volume reduction for combustible waste. The CEA Group and SGN have developed a very reliable, simple and safe incinerator which operates with excess air and at high temperature. Sorting and feeding of the waste, ash discharge and transportation to the conditioning unit, gas treatment, are included in the system. The adding of a programmable controller makes it fully automated. The system is described with some detail and recent performance measurements are given [fr

  18. Application study of evolutionary operation methods in optimization of process parameters for mosquito coils industry

    Science.gov (United States)

    Ginting, E.; Tambunanand, M. M.; Syahputri, K.

    2018-02-01

    Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.

  19. Development of fission micro-chambers for nuclear waste incineration studies

    CERN Document Server

    Fadil, M; Christophe, S; Deruelle, O; Fioni, G; Marie, F; Mounier, C; Ridikas, D; Trapp, J P

    2002-01-01

    The Incineration by Accelerator (INCA) project of the Directorate for Science of Matter of the French Atomic Energy Authority (CEA/DSM) aims to outline the ideal physical conditions to transmute minor actinides in a high intensity neutron flux obtained either by hybrid systems or innovative critical reactors. To measure on-line the incineration rates of minor actinides, we are developing an innovative Double Deposit Fission Chamber (DDFC) working in current mode. Our method is based on a comparison between the isotope under study and a reference material whose nuclear parameters are well known, as sup 2 sup 3 sup 5 U and sup 2 sup 3 sup 9 Pu. This new fission chamber will be used in the High Flux Reactor in Grenoble/France in a neutron flux of 1.2x10 sup 1 sup 5 n cm sup - sup 2 s sup - sup 1 for 50 days, the operating cycle of the reactor. These specific experimental conditions require substantial modifications of the existing chambers. The first experiment will be carried out in fall 2000.

  20. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  1. Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koukorava, C.; Carinou, E.; Ferrari, P.; Krim, S.; Struelens, L.

    2011-01-01

    Measurements performed within the ORAMED project helped to evaluate the dose levels to the operators’ hands, wrists, legs and eye lenses, during several types of interventional radiology (IR) and cardiology (IC) procedures, and also to determine the parameters that affect the doses. However, the study of the effect of each parameter separately, was possible only through Monte Carlo (MC) simulations, as in clinical practice many of those parameters change simultaneously. The influence of the protective equipment, the beam projections, the beam quality, the field size and the position of the operator according to the position of access of the catheter was investigated, using anthropomorphic phantoms in setups that represent realistic IR/IC procedures. The proper use of protective shields was found to be the most important way of reducing extremity and eye lens exposure during such examinations. Ceiling suspended shields can reduce the doses to the eye lenses up to 97%, but they can also reduce hand doses about 70% when placed correctly. The highest exposure to the operator is observed for left anterior oblique (LAO) and cranial projections. Additionally, for overcouch irradiations the eyes and the hands are about 6 times more exposed compared to the cases where the tube is below the operating table. For the lateral LAO projection, placing the ceiling suspended shield at the left side of the operator is twice more effective for the protection of the eyes compared to the cases where it is placed above the patient. Finally, beam collimation was found to play an important role in the reduction of the hands and wrists doses, especially when the operator is close to the irradiation field.

  2. Determination of Initial Conditions for the Safety Analysis by Random Sampling of Operating Parameters

    International Nuclear Information System (INIS)

    Jeong, Hae-Yong; Park, Moon-Ghu

    2015-01-01

    In most existing evaluation methodologies, which follow a conservative approach, the most conservative initial conditions are searched for each transient scenario through tremendous assessment for wide operating windows or limiting conditions for operation (LCO) allowed by the operating guidelines. In this procedure, a user effect could be involved and a remarkable time and human resources are consumed. In the present study, we investigated a more effective statistical method for the selection of the most conservative initial condition by the use of random sampling of operating parameters affecting the initial conditions. A method for the determination of initial conditions based on random sampling of plant design parameters is proposed. This method is expected to be applied for the selection of the most conservative initial plant conditions in the safety analysis using a conservative evaluation methodology. In the method, it is suggested that the initial conditions of reactor coolant flow rate, pressurizer level, pressurizer pressure, and SG level are adjusted by controlling the pump rated flow, setpoints of PLCS, PPCS, and FWCS, respectively. The proposed technique is expected to contribute to eliminate the human factors introduced in the conventional safety analysis procedure and also to reduce the human resources invested in the safety evaluation of nuclear power plants

  3. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  4. Incineration as a radioactive waste volume reduction process for CEA nuclear centers

    International Nuclear Information System (INIS)

    Atabek, R.; Chaudon, L.

    1994-01-01

    Incineration processes represent a promising solution for waste volume reduction, and will be increasingly used in the future. The features and performance specifications of low-level waste incinerators with capacities ranging from 10 to 20 kg - h -1 at the Fontenay-aux-Roses, Grenoble and Cadarache nuclear centers in France are briefly reviewed. More extensive knowledge of low-level wastes produced in facilities operated by the Commissariat a l'Energie Atomique (CEA) has allowed us to assess the volume reduction obtained by processing combustible waste in existing incinerators. Research and development work is in progress to improve management procedures for higher-level waste and to build facilities capable of incinerating α - contaminated waste. (authors). 6 refs., 5 figs., 1 tab

  5. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  6. A survey of Trace Metals Determination in Hospital Waste Incinerator in Lucknow City, India

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar

    2004-08-01

    Full Text Available Information on the elemental content of incinerator burning of human organ, animal and medical waste is scanty in India Nineteen trace elements were analyzed in the incinerator ash from four major hospitals, one municipal waste incinerator and two R & D laboratories engaged in animal experiment in Lucknow city. Concentrations of Zinc and Lead were found to be very high in comparison to other metals due to burning of plastic products. The source of Ca, P and K are mainly bone, teeth and other animal organs. A wide variation in trace concentration of several toxic elements have been seen due to variation in initial waste composition, design of the incinerator and operating conditions.

  7. Investigation on combustion parameters of palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    M.H.M. Yasin

    2015-12-01

    Full Text Available Biodiesel is a renewable and decomposable fuel which is derived from edible and non-edible oils. It has different properties compared to conventional diesel but can be used directly in diesel engines. Different fuel properties characterise different combustion-phasing parameters such as cyclic variations of Indicated Mean Effective Pressure (IMEP and maximum pressure (Pmax. In this study, cyclic variations of combustion parameters such as IMEP and Pmax were investigated using a multi-cylinder diesel engine operating with conventional diesel and palm biodiesel. The experiments were conducted using different engine loads; 20, 40, and 60% at a constant engine speed of 2500 rpm. The coefficient of variation (COV and standard deviation of parameters were used to evaluate the cyclic variations of the combustion phasing parameters for the test fuels at specific engine test conditions. It was observed that palm biodiesel has lower COV IMEP compared to conventional diesel but is higher in COV Pmax at higher engine loads respectively. In addition, palm biodiesel tends to have a higher recurrence for the frequency distribution for maximum pressure. It can be concluded from the study that the fuel properties of palm biodiesel have influenced most of the combustion parameters.

  8. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  9. Envirotoxins from waste incineration - how does the supervision work?; Miljoegifter fraan avfallsfoerbraenningen - hur fungerar tillsynen?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-01

    Incineration of household wastes has increased rapidly in Sweden during the last few years, and new plants are being built. The volume of residues from waste incineration is expected to grow from 450,000 tons in 1999 to 1,100,000 tons in 2008. The National Audit Office (SNAO) has made an inquiry into the supervision by responsible authorities of incineration plants and landfills in order to how the environmental legislation is applied in practise. The investigation includes case studies of six incineration plants and seven landfills where the residues from the plants are disposed. The supervision is part of a complex system made up of state, local and private actors who all have a responsibility for applying the environmental legislation. SNAO has found serious shortcomings in the operational supervision of all incineration plants studied and several landfills concerning the risk of toxins leaching into the environment. SNAO also points at the lack of knowledge at the Swedish EPA regarding the potential environmental problems of incineration residues and the need for evaluation of the supervisory function. SNAO recommends that the government take an initiative for making more detailed demands in the environmental legislation, and that the Swedish EPA should improve its knowledge about the quality of the operational supervision in accordance with the legislation.

  10. An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators

    International Nuclear Information System (INIS)

    Arcos-Olalla, Rafael; Reyes, Marco A.; Rosu, Haret C.

    2012-01-01

    We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.

  11. An alternative factorization of the quantum harmonic oscillator and two-parameter family of self-adjoint operators

    Energy Technology Data Exchange (ETDEWEB)

    Arcos-Olalla, Rafael, E-mail: olalla@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Reyes, Marco A., E-mail: marco@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosí, S.L.P. (Mexico)

    2012-10-01

    We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.

  12. Factors influencing pollutant gas emissions of VOC recuperative incinerators-Large-scale parametric study

    International Nuclear Information System (INIS)

    Salvador, S.; Commandre, J.-M.; Kara, Y.

    2006-01-01

    This work establishes quantitative links between the operation parameters-plus one geometrical parameter-and the gas pollutant emissions of a recuperative incinerator (RI) of volatile organic compounds (VOCs). Using experimental design methodology, and based on a large number of experiments carried out on a half-industrial-scale pilot unit, mathematical expressions are established to calculate each of the pollutant emissions from the value of all the operation and design parameters. The gas emissions concerned are total hydrocarbons, and CO and NO x emissions, while the control parameters are the flow rate of the treated air flow, the concentration of VOCs in the air flow, the preheating temperature of the flow, and the temperature at the exit of the combustion chamber. One design parameter-the aperture of the diaphragms-is also considered. We show that the constraining emissions are only that of CO and NO x . Polynomials to predict them with a high accuracy are established. The air preheating temperature has an effect on the natural gas consumption, but not on CO and NO x emissions. There is an optimal value for the aperture of the diaphragms, and this value is quantitatively established. If the concentration of VOCs in the air flow is high, CO and NO x emissions both decrease and a high rate of efficiency in VOC destruction is attained. This demonstrates that a pre-concentration of VOCs in the air flow prior to treatment by RI is recommended. (author)

  13. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  14. Electrochemical incineration of wastes

    Science.gov (United States)

    Kaba, L.; Hitchens, G. D.; Bockris, J. OM.

    1989-01-01

    The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.

  15. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  16. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  17. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  18. Influence of physical properties and operating parameters on hydrodynamics in Centrifugal Partition Chromatography.

    Science.gov (United States)

    Adelmann, S; Schembecker, G

    2011-08-12

    Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. 40 years of experience in incineration of radioactive waste in Belgium

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Deckers, J.; Luycx, P.; Detilleux, M.; Beguin, Ph.

    2001-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities; several R and D projects were realised in this specific field and different facilities were erected and operated. An experimental furnace ''Evence Coppee'' was built in 1960 for treatment of LLW produced by the Belgian Research Centre (SCK/CEN). Regularly this furnace has been modified, improved and equipped with additional installations to obtain better combustion conditions and a more efficient gas cleaning system. Based on the 35 years experience gained by the operation of the ''Evence Coppee'', a completely new industrial incineration installation has been designed in the nineties and commissioned in May 1995, in the frame of the erection of the Belgian Centralised Treatment/Conditioning Facility CILVA. At the end of 1998, the new furnace has burnt 455 tons of solid waste and 246 tons of liquid waste. Besides the conventional incineration process, a High Temperature Slagging Incinerator (HTSI) has been developed, constructed and operated for 10 years in the past. This installation was the combination of an incinerator and a melter producing melted granulated material instead of ashes, and provided experience in the incineration of hazardous waste, such as chlorinated organic compounds and waste with PCB content. The paper presents ''the Belgian Experience'' accumulated year after year with the design and the operation of the above mentioned facilities and demonstrates how the needs required today for a modern installation are met. The paper covers the following aspects; design particularities and description of the systems, operational results for different solid waste categories (bulk waste, precompacted waste, ion exchange resins) and for different liquid waste categories (organic, aqueous, oil), required pretreatment of the waste, ashes conditioning

  20. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Huo Jiepeng; Zhang Xianfeng; Lin Zirong

    2012-01-01

    Miniature loop heat pipe (MLHP) with flat evaporator has been proved that it has the capability to fulfill the demand for the thermal management of high-power electronic system. To employ MLHP into practical application and obtain the best operating parameters, a copper-water MLHP with flat evaporator of 8 mm thick was fabricated and tested in the condition of different condenser locations and operating orientations. The results show that the condenser located close to the evaporator outlet and adverse orientation have positive impact on the operating temperature of the loop, but negative impact on the cooling capability of condenser. For better understanding of their effect on the heat transfer characteristics of MLHP, the start-up behaviors, thermal performance and the operating regimes are explored in detail. - Highlights: ► A copper-water MLHP with flat evaporator of only 8 mm thick was fabricated. ► The MLHP can be applied to electronic cooling. ► The effect of condenser locations was investigated for the first time. ► The experimental results were discussed and analyzed comprehensively. ► Some practical solutions for disadvantages of LHP operation were provided.

  1. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  2. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  3. Separation of oily materials in radioactive waste waters by flotation. Determination of operation and control parameters

    International Nuclear Information System (INIS)

    Ortiz O, H.B.; Flores E, R.M.

    2003-01-01

    In this work the determination of the operation and control parameters (air/solids ratio G/S, retention time Θ, pressure P and de pressurized volume of mixed air-water V), of the flotation system used in the treatment of oleaginous residual water (polluted mainly with 60 Co) coming from the decontamination process of worn out oils, using as response parameters the concentration of oleaginous material and the residual turbidity. The obtained results allowed to observe the dependence of G/S with the pressure and volume of air-water given. At the same time it was settled down that the set of operation conditions that offers the greater separation percentage of G As and turbidity in the smallest time, they are those obtained by V 2 = 0.0012 m 3 and P 2 = 620 kPa, (G/S = 0.30 - 0.35, = 14-16 min) for what were employees as the ideal values of operation and control in the flotation system. As long as, the concentration of total Co is found under 1 mgL -1 . Finally, the selected flotation system showed high separation levels of 60 Co, whose specific activity are below of 0.007 BqmL -1 . (Author)

  4. Anaerobic monodigestion of poultry manure: determination of operational parameters for CSTR.

    Science.gov (United States)

    Chamy, R; León, C; Vivanco, E; Poirrier, P; Ramos, C

    2012-01-01

    In this work the anaerobic monodigestion for the treatment of turkey manure was evaluated, without its codigestion with another substrate. The effect of the organic loading rate (OLR) and the substrate concentration (high total solids (TS) concentration) or product concentration (high volatile fatty acids (VFA) and/or ammonia (NH(3)-N) concentrations) was studied. The results show that for a continuous stirred tank reactor (CSTR) operation, a maximum of 40 g/L of TS and 4.0 g/L of ammonium (NH(4)(+)) was required. In addition, the maximum organic loading rate (OLR) will not exceed 1.5 kg VS/m(3)d. Higher TS and NH(4)(+) concentrations and OLR lead to a reduction on the methane productivity and volatile solids (VS) removal. During the CSTR operation, a high alkalinity concentration (above 10 g/L CaCO(3)) was found; this situation allowed maintaining a constant and appropriate pH (close to 7.8), despite the VFA accumulation. In this sense, the alkalinity ratio (α) is a more appropriate control and monitoring parameter of the reactor operation compared to pH. Additionally, with this parameter a VS removal of 80% with a methane productivity of 0.50 m(3)(CH4)/m(3)(R)d is achieved.

  5. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    Science.gov (United States)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  6. Improved Battery Parameter Estimation Method Considering Operating Scenarios for HEV/EV Applications

    Directory of Open Access Journals (Sweden)

    Jufeng Yang

    2016-12-01

    Full Text Available This paper presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted dataset is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.

  7. Dependence of the time-constant of a fuel rod on different design and operational parameters

    International Nuclear Information System (INIS)

    Elenkov, D.; Lassmann, K.; Schubert, A.; Laar, J. van de

    2001-01-01

    The temperature response during a reactor shutdown has been measured for many years in the OECD-Halden Project. It has been shown that the complicated shutdown processes can be characterized by a time constant τ which depends on different fuel design and operational parameters, such as fuel geometry, gap size, fill gas pressure and composition, burnup and linear heat rate. In the paper the concept of a time constant is analyzed and the dependence of the time constant on various parameters is investigated analytically. Measured time constants for different designs and conditions are compared with those derived from calculations of the TRANSURANUS code. Employing standard models results in a systematic underprediction of the time constant, i.e. the heat transfer during shutdown is overestimated. (author)

  8. Development and optimization of operational parameters of a gas-fired baking oven

    OpenAIRE

    Afolabi Tunde MORAKINYO; Babatunde OMIDIJI; Hakeem OWOLABI

    2017-01-01

    This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The ph...

  9. Adaptive Synchronization of Chaotic Systems considering Performance Parameters of Operational Amplifiers

    Directory of Open Access Journals (Sweden)

    Sergio Ruíz-Hernández

    2015-01-01

    Full Text Available This paper addresses an adaptive control approach for synchronizing two chaotic oscillators with saturated nonlinear function series as nonlinear functions. Mathematical models to characterize the behavior of the transmitter and receiver circuit were derived, including in the latter the adaptive control and taking into account, for both chaotic oscillators, the most influential performance parameters associated with operational amplifiers. Asymptotic stability of the full synchronization system is studied by using Lyapunov direct method. Theoretical derivations and related results are experimentally validated through implementations from commercially available devices. Finally, the full synchronization system can easily be reproducible at a low cost.

  10. New techniques for improved performance in surface blasting operation and optimisation of blast design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.P. [Central Mining Research Institute, Dhanbad (India). Blasting Dept.

    1999-02-01

    Experimental blasts were conducted for optimisation of blasting parameters using separate technologies involving non-electric initiation systems, air decking accessories in conjunction with different explosive products like emulsion (cartridge and site-mixed), slurries (cartridge and site-mixed) and ANFO. The cost associated with each such technology was then compared with the conventional methods of drilling and blasting operations. The results of cost analyses are given. Theoretical and practical aspects of such technologies and their best possible usage in order to establish the desired fragmentation, muck profile, wall control and ultimately the accepted level of costs are mentioned in subsequent sections. 16 refs., 17 figs., 8 plates, 11 tabs.

  11. Description of the Seibersdorf incineration plant for low level waste

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    After a description of the design and the construction principles of the incinerator building, the furnace and its attached auxilary devices are explained. The incinerator is layed out for low level wastes. It has a vertical furnace, operates with discontinuous feeding for trashes with heat-values between 600 and 10000 kcal/kg waste. The maximum throughput amounts 40 kg/h. The purification of the off-gas is guaranteed by a multistage filter system: 2 stages with ceramic candles, cooling column and a HEPA-filter system. The control of the off-gas cleaning is carried out by a stack instrumentation, consisting of an aerosol-, gas-, Iodine- and Tritium-monitor; the building is surveilled by doserate- and aerosolmonitors. (Author)

  12. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  13. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  14. Numerical and experimental study of the influence of the operational parameters on the formation mechanisms of oxides of nitrogen during the combustion of mixtures of cellulosic and plastic materials; Etude experimentale et numerique de l'influence des parametres operatoires sur les mecanismes de formation des oxydes d'azote lors de la combustion de melanges de materiaux cellulosiques et plastiques

    Energy Technology Data Exchange (ETDEWEB)

    Andzi Barhe, T.

    2004-10-15

    The current thesis was performed within a collaboration between the Laboratoire de Combustion et de Detonique (LCD of the University of Poitiers) and the Laboratoire de Physique et de Chimie d'Environnement (LPCE) of the University of Ouagadougou. It was financed by Agency for Environment and Energy Management (ADEME). The principle object of this study is the optimisation of the combustion process during the incineration of waste. This optimisation is aimed at the reduction of the polluting emissions, principally CO and NO, during the incineration of cellulosic and plastic materials. It involves the analysis of the influence of the operational parameters on the polluting emissions and the control of reaction mechanisms of formation and reduction of these pollutants during the combustion process. Consequently, the study was performed in two parts: an experimental part and a numerical part. The experimental part was realised using a fixed bed counterflow reactor. This setup simulates the combustion within an industrial waste incinerator. The reactor allows the combustion of a vertical layer of waste mixture (wood, cardboard, PET, polyamide) to be followed. Three model mixtures representative of the makeup of household waste were studied in order to determine the influence of the composition of the waste on the emission of pollutants (CO and NO). The obtained results show that this parameter has a practically negligible influence within the tested parameter range. Consequently the formation of pollutants depends on the operating parameters - the equivalence ratio and the temperature. A numerical study of the influence of these parameters in order to show their impact on the mechanisms of pollutant formation and to determine the chemical mechanisms involved in the formation of oxides of nitrogen. The numerical study was performed with software developed at the LCD. This programme based on a detailed chemical model coupled to a simple physical model. It uses the

  15. The SPS beam parameters, the operational cycle, and proton sharing with the SHiP facility

    CERN Document Server

    Arduini, Gianluigi; Gatignon, Lau; Cornelis, Karel

    2015-01-01

    The SHiP experiment aims at acquiring a total of 4×1019 protons on target per year. Based on demonstrated SPS performance for CNGS, the expected proton sharing between the TCC2 targets and SHiP is estimated taking into account the constraints in the super-cycle composition. We review the SPS beam parameters, the operational cycles taking into account the concurrent operation of the SPS as LHC injector and for the TCC2 experiments and the limitations on the maximum possible power dissipation and the expected sharing of the protons on target of the SHiP facility with the TCC2 targets. As a typical example this aim could be achieved while maintaining a duty cycle for the other fixed target experiments of about 18%.

  16. Study of the impact of environmental parameters on the operation of CMS RPCs

    CERN Document Server

    Assran, Yasser

    2011-01-01

    CMS (Compact Muon Solenoid) is a general purpose detector designed to run at the highest luminosity at Large Hadron Collider (LHC), CERN, Geneva, Switzerland. The muon system of the CMS experiment relies on Drift Tubes (DT), Cathode Strip Chambers (CSC) and Resistive Plate Chambers (RPC). RPCs are dedicated for the first level muon trigger and they are characterized by bakelite electrodes delimited in a specialized gas volume filled with operational gas mixture. This analysis has been done for the RPC chambers installed in CMS experiment at CERN. The Currents of CMS RPCs chambers are analyzed as a function of environmental parameters such as Temperature, Humidity and pressure, which are important for the operation of the muon detector system. A novel Neural Network approach has been used to analyze the data and to build a model using experimental measurements and combining the results of the simulations. Data from RPC Chambers in CMS experiment are taken and compared to the results from neural Network.

  17. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    International Nuclear Information System (INIS)

    Jaederstroem, Henrik; Bronson, Frazier

    2013-01-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  18. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    Energy Technology Data Exchange (ETDEWEB)

    Jaederstroem, Henrik; Bronson, Frazier [Canberra Industries Inc., 800 Research Parkway Meriden CT 06450 (United States)

    2013-07-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  19. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  20. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.br, E-mail: amir@cdtn.br, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  1. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2013-01-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  2. Effects of PEMFC operating parameters on the performance of an integrated ethanol processor

    Energy Technology Data Exchange (ETDEWEB)

    Francesconi, Javier A.; Mussati, Miguel C.; Aguirre, Pio A. [INGAR Instituto de Desarrollo y Diseno (CONICET-UTN), Avellaneda 3657, CP:S3002GJC, Santa Fe (Argentina)

    2010-06-15

    In this paper the performance of a complete fuel cell system processing ethanol fuel has been analyzed as a function of the main fuel cell operating parameters. The fuel processor is based on the steam reforming process, followed by high- and low-temperature shift reactors, and carbon monoxide preferential oxidation reactor, which are coupled to a polymeric fuel cell (PEMFC). The goal was to analyze and improve the fuel cell system performance by simulation techniques. PEMFC operation has been analyzed using an available parametric model, which was implemented within HYSYS environment software. Pinch Analysis concepts were used to investigate the process energy integration and determine the maximum efficiency minimizing ethanol consumption. The system performance was analyzed for the SR-12 Modular PEM Generator, the Ballard Mark V fuel cell and the BCS 500 W stack. The net system efficiency is dependent on the required power demand. Efficiency values higher than 50% at low loads and less than 30% at high power demands are computed. In addition, the effect of fuel cell temperature, pressure and hydrogen utilization was analyzed. The trade-off between the reformer yield and the fuel cell performance defines the optimal operation pressure. The cell temperature determines operating zones where the water, involved in the reforming reactions, can be produced or demanded. (author)

  3. Influence of some design and operating parameters of conveyor with suspended belt and distributed drive on the technical specifications

    Directory of Open Access Journals (Sweden)

    Tolkachev E.N.

    2017-03-01

    Full Text Available The influence of several design and operating parameters of conveyor on the individual components of the stretching tension in the belt of conveyor with suspended belt and distributed drive was analyzed. The analysis of influence a number design and operating parameters on the technical specifications of conveyor with suspended belt and distributed drive was done. Recommendations on the choice of rational parameters were formulated.

  4. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  5. Determination of the optimal area of waste incineration in a rotary kiln using a simulation model.

    Science.gov (United States)

    Bujak, J

    2015-08-01

    The article presents a mathematical model to determine the flux of incinerated waste in terms of its calorific values. The model is applicable in waste incineration systems equipped with rotary kilns. It is based on the known and proven energy flux balances and equations that describe the specific losses of energy flux while considering the specificity of waste incineration systems. The model is universal as it can be used both for the analysis and testing of systems burning different types of waste (municipal, medical, animal, etc.) and for allowing the use of any kind of additional fuel. Types of waste incinerated and additional fuel are identified by a determination of their elemental composition. The computational model has been verified in three existing industrial-scale plants. Each system incinerated a different type of waste. Each waste type was selected in terms of a different calorific value. This allowed the full verification of the model. Therefore the model can be used to optimize the operation of waste incineration system both at the design stage and during its lifetime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions.

    Science.gov (United States)

    Lu, Jia-Wei; Zhang, Sukun; Hai, Jing; Lei, Ming

    2017-11-01

    With the rapid expansion of municipal solid waste (MSW) incineration, the applicability, technical status, and future improvement of MSW incineration attract much attention in China. This paper aims to be a sensible response, with the aid of a comparison between China and some representative developed regions including the EU, the U.S., Japan, South Korea, and Taiwan area. A large number of up-to-date data and information are collected to quantitatively and impartially support the comparison, which covers a wider range of key points including spatial distribution, temporal evolution, technologies, emissions, and perspectives. Analysis results show that MSW incineration is not an outdated choice; however, policy making should prevent the potentially insufficient utilization of MSW incinerators. The structure of MSW incineration technologies is changing in China. The ratio of plants using fluidized bed is decreasing due to various realistic reasons. Decision-makers would select suitable combustion technologies by comprehensive assessments, rather than just by costs. Air pollution control systems are improved with the implementation of China's new emission standard. However, MSW incineration in China is currently blamed for substandard emissions. The reasons include the particular elemental compositions of Chinese MSW, the lack of operating experience, deficient fund for compliance with the emission standard, and the lack of reliable supervisory measures. Some perspectives and suggestions from both technical and managerial aspects are given for the compliance with the emission standard. This paper can provide strategic enlightenments for MSW management in China and other developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Retention and subsequent release of radioactivity from the incineration of wastes containing microspheres

    International Nuclear Information System (INIS)

    Emery, R.J.; Watson, J.E. Jr.

    1990-01-01

    Incineration is the preferred method for disposing of animal carcasses containing radioactive microspheres at the authors University. Routine surveys of ash from successive nonradioactive burns revealed significant contamination from previously incinerated microspheres. Past studies on microsphere incineration quantified the amount of activity retained in ash, but did not address any subsequent releases. This topic was not considered in earlier studies because, in most cases, the carcasses were placed in some type of container to facilitate recovery of ash, preventing contamination of the incinerator refractory. In this study, five sets of controlled burns were performed to quantify the subsequent releases of the microsphere radioisotopes 141 Ce, 113 Sn, 102 Ru, 95 Nb, and 46 Sc. Each set consisted of three successive burns. The first burn of each set incinerated a non-radioactive carcass, the second burn, a radioactive carcass, and the third, a non-radioactive carcass. In all of the burns, the carcasses were placed directly on the incinerator refractory floor, which is the standard procedure during normal operations

  8. Application countermeasures of non-incineration technologies for medical waste treatment in China.

    Science.gov (United States)

    Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong

    2013-12-01

    By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.

  9. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    Science.gov (United States)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte

  10. Themoeconomic optimization of triple pressure heat recovery steam generator operating parameters for combined cycle plants

    Directory of Open Access Journals (Sweden)

    Mohammd Mohammed S.

    2015-01-01

    Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.

  11. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    Highlights: • An experimental and simulation study of a linear engine is conducted. • The effects of operating parameters on the generating power are investigated. • The air gap length has a significant influence on the generating power. • The generating power of the linear engine is optimized with the value of 111.3 W. • There are no problems for the linear engine after 100 h of durable test. - Abstract: In this paper, we present our experiment and simulation study of a free piston linear engine based on operating conditions and structure of the linear engine for generating electric power. The free piston linear engine includes a two-stroke free piston engine, linear generators, and compressors. In the experimental study, the effects of key parameters such as input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air gap length on the piston dynamics and electric power output are investigated. Propane is used as a fuel in the free piston linear engine, and it is premixed with the air to make a homogeneous charge before go into the cylinder. The air and fuel mass flow rate are varied by a mass flow controller. The experimental results show that the maximum generating power is found with the value of 111 W at the input caloric value of 5.88 kJ/s, spark timing delay of 1.5 ms, equivalence ratio of 1.0, electric resistance of 30 Ω, and air gap length of 1.0 mm. In order to check the durability of the linear engine, a durable test is conducted during 100 h. The experimental results show that there are no problems for the linear engine after about one hundred hours of the durable test. Beside experimental study, a simulation study is conducted to predict operating behavior of the linear engine. In the simulation study, the two-stroke free piston linear engine is modeled and simulated through a combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These

  12. Determining the optimum process parameter for grinding operations using robust process

    Energy Technology Data Exchange (ETDEWEB)

    Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent [Univ. of Selcuk, Konya (Turkmenistan)

    2012-11-15

    We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L{sup 27} orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R{sup 2Ra}=and 2 92.73) R{sup 2Vb}=that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process.

  13. Determining the optimum process parameter for grinding operations using robust process

    International Nuclear Information System (INIS)

    Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent

    2012-01-01

    We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L 27 orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R 2Ra =and 2 92.73) R 2Vb =that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process

  14. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing.

    Science.gov (United States)

    Inguglia, Elena S; Zhang, Zhihang; Burgess, Catherine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-02-01

    The present study investigated the effect of geometric parameters of the ultrasound instrument during meat salting in order to enhance salt diffusion and salt distribution in pork meat on a lab scale. The effects of probe size (∅2.5 and 1.3cm) and of different distances between the transducer and the meat sample (0.3, 0.5, and 0.8cm) on NaCl diffusion were investigated. Changes in the moisture content and NaCl gain were used to evaluate salt distribution and diffusion in the samples, parallel and perpendicular to ultrasound propagation direction. Results showed that 0.3cm was the most efficient distance between the probe and the sample to ensure a higher salt diffusion rate. A distance of 0.5cm was however considered as a trade-off distance to ensure salt diffusion and maintenance of meat quality parameters. The enhancement of salt diffusion by ultrasound was observed to decrease with increased horizontal distance from the probe. This study is of valuable importance for meat processing industries willing to apply new technologies on a larger scale and with defined operational standards. The data suggest that the geometric parameters of ultrasound systems can have strong influence on the efficiency of ultrasonic enhancement of NaCl uptake in meat and can be a crucial element in determining salt uptake during meat processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Facility status and progress of the INEL's WERF MLLW and LLW incinerator

    International Nuclear Information System (INIS)

    Conley, D.; Corrigan, S.

    1996-01-01

    The Idaho National Engineering Laboratory's (INEL) Waste Experimental Reduction Facility (WERF) incinerator began processing beta/gamma- emitting low-level waste (LLW) in September 1984. A Resource Conservation and Recovery Act (RCRA) trial burn for the WERF incinerator was conducted in 1986, and in 1989 WERF began processing (hazardous and low-level radioactive) waste known as mixed low-level waste (MLLW). On February 14, 1991 WERF operations were suspended to improve operating procedures and configuration management. On July 12, 1995, WERF initiated incineration of LLW; and on September 20, 1995 WERF resumed its primary mission of incinerating MLLW. MLLW incineration is proceeding under RCRA interim status. State of Idaho issuance of the Part B permit is one of the State's highest permitting priorities. The State of Idaho's Division of Environmental Quality is reviewing the permit application along with a revised trial burn plan that was also submitted with the application. The trial burn has been proposed to be performed in 1996 to demonstrate compliance with the current incinerator guidance. This paper describes the experiences and problems associated with WERF's operations, incineration of MLLW, and the RCRA Part B Permit Application. Some of the challenges that have been overcome include waste characterization, waste repackaging, repackaged waste storage, and implementation of RCRA interim status requirements. A number of challenges remain. They include revision of the RCRA Part B Permit Application and the Trial Burn Plan in response to comments from the state permit application reviewers as well as facility and equipment upgrades required to meet RCRA Permitted Status

  16. Static analysis of the thermochemical hydrogen production IS process for assessment of the operation parameters and the chemical properties

    International Nuclear Information System (INIS)

    Kasahara, Seiji; Onuki, Kaoru; Nomura, Mikihiro; Nakao, Shin-ichi

    2006-01-01

    A sensitivity analysis of the operation parameters and the chemical properties in the thermochemical hydrogen production IS process (iodine-sulfur process) was carried out for a static flow sheet. These parameters were evaluated by hydrogen production thermal efficiency, the mass flow rate or heat exchange based on the heat/mass balance. The most important parameters were the concentration of HI after electro-electrodialysis (EED) and the apparent transport number of protons of the cation exchange membrane in the EED cell. HI concentration operation should be operated carefully because the parameters for optimum thermal efficiency and for the optimum flow rate and heat exchange were different. For the chemical properties, composition at the inlet of the HI decomposition procedure and HI x pseudo-azeotropic composition had great effects. The HI concentration after the EED should be optimized for each composition. The order of priority for the assessment of the operation parameters and chemical properties was determined by the evaluation. (author)

  17. Dioxins in processes of incineration of wastes

    International Nuclear Information System (INIS)

    Perez John; Espinel Jorge; Ocampo Alonso; Londono Carlos

    2001-01-01

    This paper is a door to come into the subject of dioxins, which is a little bit known in Colombia. In this way, in order to clarify and to get a wider knowledge about dioxins and waste incineration process, it has been divided in three main sections. The first one gives a basic information about origin, effects on the human health and a chemical definition of dioxins; in the second one the main kind of incinerator processes are given to know, also a deeper knowledge of reaction formation. The last part emphasizes options to control dioxins emissions in incineration systems

  18. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  19. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  20. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    Science.gov (United States)

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  1. Influence of the fuel operational parameters on the aluminium cladding quality of discharged fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Czajkowski, W.; Borek-Kruszewska, E. [Institute of Atomic Energy, Otwock Swierk (POLAND)

    2002-07-01

    In the last two years, the new MR6 type fuel containing 1550 g of U with 36% enrichment has been loaded into MARIA reactor core. Its aluminium cladding thickness is 0,6 mm and typical burnup -about 4080 MWh (as compared to 2880 MWh for the 80% enriched fuel used). However, increased fission product release from these assemblies was observed near the end of its operational time. The results presented earlier [1] show that the corrosion behaviour of aluminium cladding depends on the conditions of fuel operation in the reactor. The corrosion process in the aluminum of fuel cladding proceeds faster then in the aluminum of constructional elements. This tendency was also observed in MR-6/80% and in WWR- SM fuel assemblies. Therefore the visual tests of discharged MR-6/36% fuel elements were performed. Some change of appearance of aluminum cladding was observed, especially in the regions with large energy generation i.e. in the centre of reactor core and in the strong horizontal gradient of neutron flux. In the present paper, the results of visual investigation of discharged fuel assemblies are presented. The results of the investigation are correlated with the operational parameters. (author)

  2. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Barun Kumar Nandi

    2017-05-01

    Full Text Available This paper presents an experimental study on the removal of brilliant green dye from aqueous solutions in a batch stirred electrocoagulation (EC reactor using iron electrodes. The main objectives of the experiments were to investigate the effects of the various operating parameters, such as current density, inter electrode distance, initial dye concentration, pH of the solution, EC duration and salt (NaCl concentrations on the brilliant green dye removal efficiency from synthetic wastewater containing in batch EC process. The experimental results showed that 99.59% dye removal was observed for initial dye concentration of 100 mg/L with current density of 41.7 A/m2, initial pH of 4.0 at the end of 30 min of operation. It was observed that, an increase in current density, time of operation and decrease in inter electrode distance improved the dye removal efficiency. Optimum pH for highest dye removal was 4.0–10.0. It was also observed that increase in salt (NaCl concentration in the solution reduces the specific electrical energy consumption (SEEC.

  3. Impact of power plant reliability on the choice of operating parameter values

    International Nuclear Information System (INIS)

    Kramer, R.A.

    1985-01-01

    In this thesis, the basic structure for the development of a methodology to evaluate the effect of operating parameters on plant availability and generating system economic dispatch optimization is described. Plant availability is determined by a fault free model. In this model historic, time dependent, component induced forced outage data is utilized as the basis for the calculation of projected plant forced outage rates. The influence of a particular fuel-cycle length at a specific generating station on the operational planning of a multi unit generating system is considered. The basis of the dispatch of units in this analysis is optimal economic operation, i.e., the minimization of the cost of reliability supplying electricity to the system's customers. As a result of the utilization of this technique, a simplified example that considers the choice between a 12- and 18-month fuel cycle length is evaluated in terms of its impact on plant availability, fuel cycle economics and overall optimal generating system economic dispatch. The reliability portion of this methodology is applied to a simplified representation of the recirculation system of a pressurized water reactor nuclear power plant to illustrate the analytic techniques

  4. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  5. The benefits of flue gas recirculation in waste incineration.

    Science.gov (United States)

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  6. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  7. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Deckers, Jan; Mols, Ludo

    2007-01-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  8. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  9. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...... suicide in remote areas of the countryside. Most were found dead at the scene, and the cause of death was usually heat exposure. Only a minority had a lethal carboxy-hemoglobin (CO-Hb) concentration. It is concluded that close cooperation between police, fire experts, and the forensic pathologist...

  10. Metals partitioning resulting from rotary kiln incineration of hazardous waste

    International Nuclear Information System (INIS)

    Richards, M.K.; Fournier, D.J. Jr.

    1992-01-01

    In response to the need for date on the partitioning of trace metals from hazardous waste incinerators, an extensive series of test was conducted in the summer of 1991 at the USEPA Incineration Research Facility (IRF) in Jefferson, Arkansas. These tests were conducted in the IRF's rotary kiln incinerator system (RKS) equipped with a pilot-scale Calvert Flux-Force/Condensation scrubber as the primary air pollution control system (APCS). The purpose of this test series was to extend the data base on trace metal partitioning and to investigate the effects of variations in incinerator operation on metal partitioning. Another objective was to evaluate the effectiveness of the scrubber for collecting flue gas metals. This series is a continuation of an ongoing IRF research program investigating trace metal partitioning and APCS collection efficiencies. Two previous test series were conducted using the RKS equipped with a venturi/packed-column scrubber and a single-state ionizing wet scrubber. The primary objective of this test series was to determine the fate of six hazardous and four nonhazardous trace metals fed to the RKS in a synthetic, organic-contaminated solid waste matrix. The six hazardous trace metals used were arsenic, barium, cadmium, chromium, mercury, and lead. The four nonhazardous trace metals--bismuth, copper, magnesium, and strontium--were included primarily to supply data to evaluate their potential for use as surrogates. The temperature, waste feed chlorine content, and scrubber pressure drop. The test program objectives were to identify. The partitioning of metals among kiln ash, scrubber liquor, and flue gas. Changes in metal partitioning related to variations in kiln exit gas temperature and waste feed chlorine content. The efficiency of the Calvert scrubber for collecting flue gas metals. The effects of scrubber pressure drop on metal collection efficiencies. 2 figs., 2 tabs

  11. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  12. Preliminary evaluation of operational parameters in fixed x-ray diagnostics equipment

    International Nuclear Information System (INIS)

    Bacelar, Alexandre; Oliveira, Sandro Soletti de; Streck, Elaine E.; Furtado, Alvaro Porto Alegre; Pinto, Ana Lucia Acosta

    1998-01-01

    In this work they were appraised 22 fixed X-ray diagnostic equipment belonging to three great medical institutions in Porto Alegre - RS, Brazil, with the purpose of demonstrating the importance of the implementation of a Quality Warranty program, advised by a health physicist, in the performance of these equipment. For so some data of alignment and collimation of the beam, peak tube voltage, tube current, transportable charge and exposition time were collected. The results of the tests showed that in only one of the institutions all the equipment remained in operationally acceptable conditions, with relative percent errors below 10%, concerning to the analyzed parameters. This study also showed that the performance of the equipment of the three analyzed institutions is a direct reflex of the maintenance of a Quality Warranty Program, advised by a qualified professional. (author)

  13. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  14. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  15. Communication: Effects of thermionic-gun parameters on operating modes in ultrafast electron microscopy

    Directory of Open Access Journals (Sweden)

    Erik Kieft

    2015-09-01

    Full Text Available Ultrafast electron microscopes with thermionic guns and LaB6 sources can be operated in both the nanosecond, single-shot and femtosecond, single-electron modes. This has been demonstrated with conventional Wehnelt electrodes and absent any applied bias. Here, by conducting simulations using the General Particle Tracer code, we define the electron-gun parameter space within which various modes may be optimized. The properties of interest include electron collection efficiency, temporal and energy spreads, and effects of laser-pulse duration incident on the LaB6 source. We find that collection efficiencies can reach 100% for all modes, despite there being no bias applied to the electrode.

  16. Choice of initial operating parameters for high average current linear accelerators

    International Nuclear Information System (INIS)

    Batchelor, K.

    1976-01-01

    Recent emphasis on alternative energy sources together with the need for intense neutron sources for testing of materials for CTR has resulted in renewed interest in high current (approximately 100 mA) c.w. proton and deuteron linear accelerators. In desinging an accelerator for such high currents, it is evident that beam losses in the machine must be minimized, which implies well matched beams, and that adequate acceptance under severe space charge conditions must be met. An investigation is presented of the input parameters to an Alvarez type drift-tube accelerator resulting from such factors. The analysis indicates that an accelerator operating at a frequency of 50 MHz is capable of accepting deuteron currents of about 0.4 amperes and proton currents of about 1.2 amperes. These values depend critically on the assumed values of beam emittance and on the ability to properly ''match'' this to the linac acceptance

  17. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  18. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    Science.gov (United States)

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  19. Giving waste a hot time [incineration technology

    International Nuclear Information System (INIS)

    Cruickshank, Andrew.

    1986-01-01

    High temperature incineration technology, as an effective way of managing both solid wastes and sludges, is described. The process, developed by the Belgian Nuclear Research Centre, is detailed. (U.K.)

  20. Some notes about radioactive wastes incineration

    International Nuclear Information System (INIS)

    Martin Martin, L.

    1984-01-01

    A general review about the most significant techniques in order to incinerate radioactive wastes by controlled air, acid digestion, fluidized bed, etc., is presented. These features are briefly exposed in the article through feed preparation, combustion effectiveness, etc. (author)

  1. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  2. Waterbury, Conn., Incinerator to Control Mercury Emissions

    Science.gov (United States)

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  3. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  4. Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

    Science.gov (United States)

    Farré, Maria José; Döderer, Katrin; Hearn, Laurence; Poussade, Yvan; Keller, Jurg; Gernjak, Wolfgang

    2011-01-30

    N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Integration of neural networks with fuzzy reasoning for measuring operational parameters in a nuclear reactor

    International Nuclear Information System (INIS)

    Ikonomopoulos, A.; Tsoukalas, L.H.

    1993-01-01

    A novel approach is described for measuring variables with operational significance in a complex system such as a nuclear reactor. The methodology is based on the integration of artificial neural networks with fuzzy reasoning. Neural networks are used to map dynamic time series to a set of user-defined linguistic labels called fuzzy values. The process takes place in a manner analogous to that of measurement. Hence, the entire procedure is referred to as virtual measurement and its software implementation as a virtual measuring device. An optimization algorithm based on information criteria and fuzzy algebra augments the process and assists in the identification of different states of the monitored parameter. The proposed technique is applied for monitoring parameters such as performance, valve position, transient type, and reactivity. The results obtained from the application of the neural network-fuzzy reasoning integration in a high power research reactor clearly demonstrate the excellent tolerance of the virtual measuring device to faulty signals as well as its ability to accommodate noisy inputs

  6. Effects of Laser Operating Parameters on Piezoelectric Substrates Micromachining with Picosecond Laser

    Directory of Open Access Journals (Sweden)

    Lamia EL Fissi

    2014-12-01

    Full Text Available Ten picoseconds (200 kHz ultrafast laser micro-structuring of piezoelectric substrates including AT-cut quartz, Lithium Niobate and Lithium Tantalate have been studied for the purpose of piezoelectric devices application ranging from surface acoustic wave devices, e.g., bandpass filters, to photonic devices such as optical waveguides and holograms. The study examines the impact of changing several laser parameters on the resulting microstructural shapes and morphology. The micromachining rate has been observed to be strongly dependent on the operating parameters, such as the pulse fluence, the scan speed and the scan number. The results specifically indicate that ablation at low fluence and low speed scan tends to form a U-shaped cross-section, while a V-shaped profile can be obtained by using a high fluence and a high scan speed. The evolution of surface morphology revealed that laser pulses overlap in a range around 93% for both Lithium Niobate (LiNbO3 and Lithium Tantalate (LiTaO3 and 98% for AT-cut quartz can help to achieve optimal residual surface roughness.

  7. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  8. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  9. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  10. MHD stability limits to the operation parameters of the FT tokamak

    International Nuclear Information System (INIS)

    Alladio, F.; Bardotti, G.; Bartiromo, R.

    1986-01-01

    A systematic study of the macroscopic instabilities limiting the accessible operation parameters has been performed on the Ohmic discharges of the FT tokamak at Bsub(T)=40 and 60 kG. The MHD fluctuation behaviour and the modifications of the profiles associated with the precursor of the disruption are discussed in detail for the cases of breaking through qsub(L)=3, low-qsub(L) operation, disruptions at the high-density limit and disruptions following the disappearance of the sawtooth activity. In all these cases the power balance terms that appear associated with the development of the MHD instabilities are dominant either in the centre or at the edge of the discharge and so transport in the intermediate confinement zone does not seem to be affected during the precursor of the disruption. The loop voltage negative spike of the disruption itself is found to be associated with the appearance of a burst of m=3, n=2 modes in the presence of m=2, n=1 precursor activity. (author)

  11. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  12. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    Science.gov (United States)

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  13. Sensitivity analysis in oxidation ditch modelling: the effect of variations in stoichiometric, kinetic and operating parameters on the performance indices

    NARCIS (Netherlands)

    Abusam, A.A.A.; Keesman, K.J.; Straten, van G.; Spanjers, H.; Meinema, K.

    2001-01-01

    This paper demonstrates the application of the factorial sensitivity analysis methodology in studying the influence of variations in stoichiometric, kinetic and operating parameters on the performance indices of an oxidation ditch simulation model (benchmark). Factorial sensitivity analysis

  14. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  15. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  16. Utilization of waste heat from Vienna waste incinerators for the operation of a district cooling grid. Effects on the primary energy efficiency of district heating and district cooling in Vienna; Nutzung der Abwaerme aus den Wiener Abfallverbrennungsanlagen fuer den Betrieb eines Fernkaeltenetzes. Auswirkungen auf die Primaerenergieeffizienz der Fernwaerme und Fernkaelte in Wien

    Energy Technology Data Exchange (ETDEWEB)

    Schindelar, F.; Wallisch, A. [Fernwaerme Wien GmbH, Vienna (Austria)

    2007-07-01

    The need of coldness increases and has to be covered efficiently as well as ecologically. At optimal constellation and mode of operation, the establishment of refrigeration plants from absorption refrigerators and compression refrigerators seems to be economically more competitive than decentralized plants. The optimal constellation is present, if: (a) ecologically and economically favourable waste heat are available; (b) Electricity from the domestic production with waste energy is present; (c) Resources-conserving recirculation cooling possibilities exist; (d) cooling water tanks and/or hot water tanks are available for top coverage; (e) a high grid density exists; (f) in-building station corresponds to the technical conditions. If these fundamental conditions are present, then the district coldness offers a good chance for waste incineration plants to use a safe heat consumer also in summer and to utilize optimally the existing energy.

  17. Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex

    International Nuclear Information System (INIS)

    Hey-Suk Kim; Mi-Soo Shin; Dong-Soon Jang; Tae-In Ohm

    2004-01-01

    Considering the rapid variation of waste composition and the more severe regulation trend of pollutant emission in this country, the importance of the development of a reliable computer program for a full-scale, stoker-type incinerator cannot be emphasized too much, especially in the view of proper design and optimal determination of operating condition of existing and future constructed facility. To this end, a comprehensive, numerical model related with the process of the waste-off gaseous combustion with the capacity of 200 tons/day is successfully made. This includes development of several phenomenological models such as municipal waste-off gaseous reaction, NO pollutant generation and destruction in turbulence-related environment. Especially in this study a number of sound assumptions have been made for the NO reaction model, 3-D geometry of incinerator and waste-bed model to achieve the efficient incorporation of the empirical models and enhancement of the stability of calculation process. First of all, the turbulence-related, complex combustion chemistry involved with NO reaction is modeled by the harmonic mean method, which is given by the relative strength of the rates of chemistry and turbulent mixing. Further, the 3-D rectangular shape of the incinerator is simply approximated by a 3-D axi-symmetric geometry with equivalent area. And the modeling of complex waste-burning process on moving grate is described by a pure gaseous combustion process of waste off-gas. The program developed in this study is successfully validated by comparing with the experimental data such as temperature and NO concentration profiles in the incinerator located at 4th industrial complex of Daejon, S. Korea. Using the program developed, a series of parametric investigations have been made for the evaluation of SNCR process and thereby evaluate various important design and the operating variables. The major parameters considered in this parametric study are heating value of

  18. Development of low level radioactive waste incineration plant

    International Nuclear Information System (INIS)

    Shaharum bin Ramli; Azmir bin Hanafiah

    1994-01-01

    A laboratory scale liquid waste incineration plant has been constructed. Preliminary tests were conducted by burning kerosene as the waste. The temperature reached 1200 deg.C. The exhaust gas was analysed for CO and CO sub 2 content. The hydrocarbon content was not measured without the proper analyser. Thus, parameters such as the optimum air:kerosene ratio and the maximum kerosene injection rate could not be determined. Complete tests will be carried out with the newly received hydrocarbon, NO sub x, CO, CO sub 2 and O sub 2 gas analyser

  19. Incineration of spent ion exchange resins in a triphasic mixture at Belgoprocess

    International Nuclear Information System (INIS)

    Deckers, J.; Luycx, P.

    2003-01-01

    Up to 1998, spent ion exchange resins have been fed to the incinerator in combination with various other solid combustible wastes at Belgoprocess. However, thanks to sustained efforts to reduce radioactive waste production in all nuclear facilities in Belgium, the annual production of solid combustible waste is now much too small to allow this practice to be continued. Since the incinerator at Belgoprocess is not capable of treating spent ion exchange resins as such, it was decided to adopt the use of foam as a carrier to feed the resins to the incinerator. The mixture is a pseudohomogeneous charged foam, ensuring easy handling and allowing incineration in the existing furance, while a number of additives may be included, such as oil to increase the calorific value of the mixture and accelerate combustion. The first incineration campaign of spent ion exchange resins in a triphasic foam mixture, in conjunction with other liquid and solid combustible wastes, will be started in January 2000. The foam, comprising 70% by weight of resins, 29% by weight of water and 1% by weight of surfactant will be pulverized in the incinerator through an injection lance, at a feed rate of 40 to 100 kg/h. The incinerator and associated off-gas treatment system can be operated at standard conditions. Belgoprocess is the subsidiary of the Belgian national agency for the management of radioactive waste, known by its Dutch and French acronyms, NIRAS and ONDRAF respectively. The company ensures the treatment, conditioning and interim storage of nearly all radioactive waste produced in Belgium. (orig.)

  20. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  1. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Sposito, Fabio; Frunzo, Luigi; Trably, Eric; Escudié, Renaud; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-04-01

    This work aimed to investigate the effect of the initial pH, combination of food to microorganism ratio (F/M) and initial pH, substrate pre-treatment and different inoculum sources on the dark fermentative biohydrogen (H2) yields. Three model complex waste biomasses (food waste, olive mill wastewater (OMWW) and rice straw) were used to assess the effect of the aforementioned parameters. The effect of the initial pH between 4.5 and 7.0 was investigated in batch tests carried out with food waste. The highest H2 yields were shown at initial pH 4.5 (60.6 ± 9.0 mL H2/g VS) and pH 5.0 (50.7 ± 0.8 mL H2/g VS). Furthermore, tests carried out with F/M ratios of 0.5, 1.0 and 1.5 at initial pH 5.0 and 6.5 revealed that a lower F/M ratio (0.5 and 1.0) favored the H2 production at an initial pH 5.0 compared to pH 6.5. Alkaline pre-treatment of raw rice straw using 4% and 8% NaOH at 55°C for 24h, increased the H2 yield by 26 and 57-fold, respectively. In the dark fermentation of OMWW, the H2 yield was doubled when heat-shock pre-treated activated sludge was used as inoculum in comparison to anaerobic sludge. Overall, this study shows that the application of different operating parameters to maximize the H2 yields strongly depends on the biodegradability of the substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Impact of operator on determining functional parameters of nuclear medicine procedures.

    Science.gov (United States)

    Mohammed, A M; Naddaf, S Y; Mahdi, F S; Al-Mutawa, Q I; Al-Dossary, H A; Elgazzar, A H

    2006-01-01

    The study was designed to assess the significance of the interoperator variability in the estimation of functional parameters for four nuclear medicine procedures. Three nuclear medicine technologists with varying years of experience processed the following randomly selected 20 cases with diverse functions of each study type: renography, renal cortical scans, myocardial perfusion gated single-photon emission computed tomography (MP-GSPECT) and gated blood pool ventriculography (GBPV). The technologists used the same standard processing routines and were blinded to the results of each other. The means of the values and the means of differences calculated case by case were statistically analyzed by one-way ANOVA. The values were further analyzed using Pearson correlation. The range of the mean values and standard deviation of relative renal function obtained by the three technologists were 50.65 +/- 3.9 to 50.92 +/- 4.4% for renography, 51.43 +/- 8.4 to 51.55 +/- 8.8% for renal cortical scans, 57.40 +/- 14.3 to 58.30 +/- 14.9% for left ventricular ejection fraction from MP-GSPECT and 54.80 +/- 12.8 to 55.10 +/- 13.1% for GBPV. The difference was not statistically significant, p > 0.9. The values showed a high correlation of more than 0.95. Calculated case by case, the mean of differences +/- SD was found to range from 0.42 +/- 0.36% in renal cortical scans to 1.35 +/- 0.87% in MP-GSPECT with a maximum difference of 4.00%. The difference was not statistically significant, p > 0.19. The estimated functional parameters were reproducible and operator independent as long as the standard processing instructions were followed. Copyright 2006 S. Karger AG, Basel.

  3. Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Becker, Hans

    2018-01-01

    -term operation. Durability is assessed for 16 identically fabricated membrane electrode assemblies (MEAs), and evaluations are carried out using operating parameters as stressors with gas stoichiometries ranging from 2 to 25, current densities from 200 to 800 mA cm(-2), and temperatures of 160 or 180 degrees C...

  4. Ozonation of aqueous solution containing bisphenol A: Effect of operational parameters

    International Nuclear Information System (INIS)

    Garoma, Temesgen; Matsumoto, Shinsyu

    2009-01-01

    The degradation of bisphenol A (BPA) in aqueous solution by ozonation was studied. The study was conducted experimentally in a semi-batch reactor under different operational conditions, i.e., varying influent ozone gas concentration, initial BPA concentration, pH, and bicarbonate ion concentration. The results of the study indicated that ozonation could be used to effectively remove BPA from contaminated water. Keeping other operational parameters constant, the rate of BPA degradation linearly increased with ozone dosage. At pH value of 7.0, the second-order rate constants for the reaction of BPA with aqueous ozone were determined as 1.22 x 10 5 , 1.71 x 10 5 , and 2.59 x 10 5 M -1 s -1 for ozone gas dosages of 1.4, 2.2, and 5.1 mg L -1 , respectively. Bicarbonate ion in the range of 1.0-8.0 mM (61-488 ppm) showed no significant effect on BPA degradation for concentrations of BPA used in the study (23.0-57.0 μM). It was also observed that the rate of BPA degradation increased with pH up to 7.0, resulting in rate constants of 0.48 x 10 5 , 0.94 x 10 5 , and 1.71 x 10 5 M -1 s -1 at pH values of 2.0, 5.0, and 7.0, respectively; and the rate constant decreased to 1.16 x 10 5 M -1 s -1 at pH of 10.0.

  5. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  6. Diesel engine exhaust particulate filter with intake throttling incineration control

    Energy Technology Data Exchange (ETDEWEB)

    Ludecke, O.; Rosebrock, T.

    1980-07-08

    A description is given of a diesel engine exhaust filter and particulate incineration system in combination with a diesel engine having a normally unthrottled air induction system for admitting combustion air to the engine and an exhaust system for carrying off spent combustion products exhausted from the engine, said filter and incineration system comprising: a combustion resistant filter disposed in the exhaust system and operative to collect and retain portions of the largely carbonaceous particulate matter contained in the engine exhaust products, said fiber being capable of withstanding without substantial damage internal temperatures sufficient to burn the collected particulate matter, a throttle in the indication system and operable to restrict air flow into the engine to reduce the admittance of excess combustion air and thereby increase engine exhaust gas temperature, and means to actuate said throttle periodically during engine operation to an air flow restricting burn mode capable of raising the particulates in said filter to their combustion temperature under certain engine operating conditions and to maintain said throttle mode for an interval adequate to burn retained particulates in the filter.

  7. Environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities - State-of-the-art. State-of-the-art of environmental impact monitoring methods in the vicinity of waste incineration and co-incineration facilities. Synthesis

    International Nuclear Information System (INIS)

    Chassagnac, T.; Cornet, C.; Mathieu, L.

    2005-10-01

    Since the beginning of the 70's, the growing concern from the public opinion and the scientific community for the waste incineration issue made people aware of a number of difficulties of the process and the potential risks linked to it. For example checking the good functioning conditions of the facilities has been made compulsory through the continuous emission monitoring of a number of parameters. The ministerial decree from the 20 September 2002 brings something new: the monitoring of the impact of the facilities on its nearby environment. This monitoring comes in addition to the existing continuous monitoring of some gaseous compounds of the incineration process, and widens the scale of the monitoring to the environment of the incineration facilities. But there is no further information in the ministerial decree about the methods available to match this requirement. Incineration facilities' managers have to face a close deadline (28 December 2005) and have to make the optimal choice of a technique matching these requirements but also the needs of their facilities. The aim of this study is to help incineration facilities' managers thanks to an overview as large as possible of the different techniques available. Managers will have to take into account the characteristics of the methods and their adequacy with the local contexts of their sites. This document is meant to be a support for dealing with this issue. (authors)

  8. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    Science.gov (United States)

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  10. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  11. Development and optimization of operational parameters of a gas-fired baking oven

    Directory of Open Access Journals (Sweden)

    Afolabi Tunde MORAKINYO

    2017-12-01

    Full Text Available This study presented the development and optimization of operational parameters of an indigenous gas-fired bread-baking oven for small-scale entrepreneur. It is an insulated rectangular box-like chamber, made of galvanized-steel sheets and having a total dimension of 920mm×650mm×600mm. This oven consists of two baking compartments and three combustion chambers. The oven characteristics were evaluated in terms of the baking capacity, baking efficiency and weight loss of the baked bread. The physical properties of the baked breads were measured and analyzed using Duncan multiple range test of one way ANOVA at significant level of p<0.05. These properties were optimized to determine the optimum baking temperature using 3D surface response plot of Statistical Release 7. The baking capacity, baking efficiency, weight loss and optimum baking temperature were: 12.5 kg/hr, 87.8%, 12.5 g, 200-220oC, respectively. The physical properties of baked bread dough were found to correspond with the imported product (control sample. These results showed that, the developed gas-fired baking oven can be adopted for baking of bread at domestic and commercial levels.

  12. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    International Nuclear Information System (INIS)

    Faria, Érica R.; Tello, Clédola C.O.; Costa, Bruna S.

    2017-01-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  13. Influence of operating parameters on the arsenic and boron removal by electrocoagulation

    International Nuclear Information System (INIS)

    Can, B. Z.; Boncukcuoglu, R.; Bayar, S.; Bayhan, Y.K

    2016-01-01

    Despite their high boron contents, some boron deposits contain considerable amounts of arsenic. Its toxicology and health hazard also has been reported for many years. In this work arsenic and boron removal from synthetic water was studied on laboratory scale by electrocoagulation using aluminum electrodes. The influence of main operating parameters such as current density, stirring speed, supporting electrolyte type and concentration on the arsenic and boron removal was investigated. Waste water sample was prepared with initial arsenic concentration of 50 mg L/sup -1/ and boron concentration of 1000 mg L/sup -1/. Current density was varied from 0.18 to 4.28 mA cm/sup -2/, stirring speed was varied as 50, 150, 250, 350 rpm, NaCl, KCl and Na/sub 2/SO/sub 4/ were used as supporting electrolyte. The obtained experimental results showed that efficiency of arsenic and boron removal increased with increasing current density. As the current density increases, the potential difference applied to the system also increases the energy consumption. Increasing the supporting electrolyte concentration increased conductivity of solution and decreased energy consumption. The most favorable supporting electrolyte type was NaCl for arsenic and boron removal. The best stirring speed was 150 rpm for arsenic and boron removal. (author)

  14. Influence of operating parameters on electrocoagulation of C.I. disperse yellow 3

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-12-01

    Full Text Available This work deals with the electrocoagulation (EC process for an organic dye removal. The chosen organic dye is C.I. disperse yellow 3 (DY which is used in textile industry. Experiments were performed in batch mode using Al electrodes and for comparison purposes Fe electrodes. The experimental set-up was composed of 1 L beaker, two identical electrodes which are separated 2 cm from each other. The main operating parameters influencing EC process were examined such as pH, supporting electrolyte concentration CNaCl, current density i, and DY concentration. High performance EC process was shown during 45 min for 200 mg/L dye concentration at i = 350 A m-2 (applied voltage 12 V and CNaCl = 1 g L-1 reaching 98 % for pHs 3 and 10 and 99 % for pH 6. After 10 min, DY was also efficiently removed (86 % showing that EC process may be conveniently applied for textile industry wastewater treatment. EC using Fe electrodes exhibited slightly lower performance comparing EC using Al electrodes.

  15. Ultrasonic Degradation of Fuchsin Basic in Aqueous Solution: Effects of Operating Parameters and Additives

    Directory of Open Access Journals (Sweden)

    Rui-Jia Lan

    2013-01-01

    Full Text Available Ultrasonic degradation is one of the recent advanced oxidation processes (AOPs and proven to be effective for removing low-concentration organic pollutants from aqueous solutions. In this study, removal of fuchsin basic from aqueous solutions by ultrasound was investigated. The effects of operating parameters such as ultrasound power (200 W–500 W, initial pH (3–6.5, and temperature (15, 22, 35, and 60°C on the ultrasonic degradation were studied. The degradation of fuchsin under ultrasound irradiation basic was found to obey pseudo first-order reaction kinetics. Addition of catalyst Fe(II had a markedly positive effect on degradation. 84.1% extent of degradation was achieved at initial dye concentration 10 μmol L−1, ultrasound power 400 W, ultrasound frequency 25 kHz, dosage of Fe(II 4 mg L−1, initial pH 6.5, and temperature 22°C. But addition of heterogeneous catalyst TiO2 affected degradation slightly. Addition of radical scavenger suppressed fuchsin basic degradation significantly.

  16. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Érica R.; Tello, Clédola C.O., E-mail: erica.engqui@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil); Costa, Bruna S., E-mail: brusilveirac@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2017-07-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  17. Gamma Radiation Effects on the Electrical Parameters of Some Operational Amplifiers

    International Nuclear Information System (INIS)

    Ashry, H.A.; Soliman, F.A.S.; Swidan, A.M.; El-Ghana, M.; Abdel Rahman, W.A.

    2008-01-01

    In this work, the effect of gamma-radiation on different types of operational amplifiers (HA17741 OK, HA17741 1D1, LM741 CN and μtA741 CN) was studied. It is shown that a serious effect occurs on the electrical characteristics of the op-amp's, and consequently the devices lose their main features. The input offset voltage, offset current, and bias current are shown to increase with increasing gamma dose. Also, the closed loop gain of the op-amp's is shown to decrease with increasing gamma dose, where its rate of decrease is a function of frequency. As a result, the slew rate, common mode rejection ratio and input impedance were shown to decrease with increasing gamma dose levels. On the other hand, the output impedance is inversely proportion to the gain; so, its value increases with increasing gamma exposure. Finally, it is clearly shown that the radiation dependence of the op-amp electrical parameters is a function of the fabrication technique of the op-amp's, where, the op-amps of the types HA17741 IDI and HA17741 OK are shown to be less sensitive to gamma rays than the op-amps of the types LM741 CN and μtA741 CN

  18. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.

    Science.gov (United States)

    Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

    2008-11-01

    Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.

  19. Developing safer systems in a NPP environment using the operator`s comfort parameters and virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.

    1995-07-01

    The contents of this paper is based on two studies involving the design of visual displays from the operator`s point of view, and the utilization of virtual reality for operations, training and maintenance repairs. The studies involve a methodology known as Neuro-Linguistic Programming (NLP), and its use in strengthening design choices from the user`s perspective model of the environment. The contents of this paper focuses on the results which may be implemented in nuclear power plants for the purpose of providing systems which are less inherently error prone.

  20. Effluent testing for the Oak Ridge Mixed Waste Incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1991-01-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals. 4 refs., 2 figs., 10 tabs

  1. Energy recovery from waste incineration: Assessing the importance of district heating networks

    International Nuclear Information System (INIS)

    Fruergaard, T.; Christensen, T.H.; Astrup, T.

    2010-01-01

    Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO 2 accounts showed significantly different results: waste incineration in one network caused a CO 2 saving of 48 kg CO 2 /GJ energy input while in the other network a load of 43 kg CO 2 /GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

  2. Air pollutant emissions and their control with the focus on waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Wandschneider + Gutjahr, Hamburg (Germany)

    2017-07-01

    This text and practical handbook thoroughly presents the control of air pollutant emissions from combustion processes focusing on waste incinerators. Special characteristics are emphasised and the differences to emission control from combustion processes with other fuels are explained. The author illustrates the origin and effects of air pollutants from incineration processes, the mechanics of their appearance in the incineration process, primary and secondary measures for their reduction, processes of measuring the emissions as well as the methods of disposing the residues. In particular, the pros and cons of procedural steps and their appropriate combination under various conditions are emphasised. Moreover, the book contains information and analyses of the emissions situation, the consumption of operating materials and of backlog quantities as well as of the cost structure of waste incinerators with regard to their applied control system. Furthermore, the author explicates the contemporary legal, scientific and technological developments and their influence on air pollutant emission control. An evaluation of the status quo of air pollutant control at waste incinerators in Germany, practical examples about possible combinations and typical performance data complete the content. Accordingly, this book is a guideline for planing a reasonable overall concept of an air pollutant control that takes the location and the segregation tasks into consideration.

  3. Effluent testing for the Oak Ridge mixed waste incinerator: Emissions test for August 27, 1990

    International Nuclear Information System (INIS)

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1990-12-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals

  4. Drying and incineration of wastewater sludge. Experiences and perspectives based on the development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, N.; Bruus, J.

    2003-07-01

    The purpose of this paper is to analyse the recent development within sludge disposal in Denmark, where the traditional disposal for agricultural use has changed to other disposal routes. One of the main routes is the thermal treatment, drying and/or incineration. The great majority of WWTP's in Denmark are small and middle-sized plants, which is why these plants are in focus. Drying and incineration concepts adapted to this size of plants have been developed, and the experience has shown that these concepts are sustainable in all main respects, i.e. energy utilisation, environment, operation etc. (author)

  5. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  6. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  7. Artificial neural networks for dynamic monitoring of simulated-operating parameters of high temperature gas cooled engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Seker, Serhat; Tuerkcan, Erdinc; Ayaz, Emine; Barutcu, Burak

    2003-01-01

    This paper addresses to the problem of utilisation of the artificial neural networks (ANNs) for detecting anomalies as well as physical parameters of a nuclear power plant during power operation in real time. Three different types of neural network algorithms were used namely, feed-forward neural network (back-propagation, BP) and two types of recurrent neural networks (RNN). The data used in this paper were gathered from the simulation of the power operation of the Japan's High Temperature Engineering Testing Reactor (HTTR). For the wide range of power operation, 56 signals were generated by the reactor dynamic simulation code for several hours of normal power operation at different power ramps between 30 and 100% nominal power. Paper will compare the outcomes of different neural networks and presents the neural network system and the determination of physical parameters from the simulated operating data

  8. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  9. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  10. Investigation on the effect of the reservoir variables and operational parameters on SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi Kiasari, H.; Naderifar, A. [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Sedaee Sola, B. [University of Tehran (Iran, Islamic Republic of). Faculty of Engineering. Inst. of Petroleum Engineering], e-mail: sedaeesola@yahoo.com

    2010-04-15

    Steam injection is the most important thermal enhanced oil recovery method. One typical procedure is Steam- Assisted Gravity Drainage (SAGD), which is a promising recovery process to produce heavy oil and bitumen. The method ensures a stable displacement of steam at economical rates by using gravity as the driving force and a pair of horizontal wells for injection/production. There are numerous studies done on SAGD in conventional reservoirs, but the majority of them focus on the investigation of the process in microscopic scale. In this study, we investigate the SAGD process with a preheating period, using steam circulation in well pair on a field scale. The synthetic homogenous model was constructed by CMG and simulated using the STARS module. The effects of operational parameters, such as preheating period, vertical well spacing, well pair length, steam quality and production pressure, and reservoir variables, such as rock porosity and permeability, vertical-to-horizontal permeability ratio, thermal conductivity of the formation and rock heat capacity, on the SAGD performance were investigated. The results show that the preheating period affects mainly the initial stages of production. Due to preheating, the well pair communication with the higher vertical distances is also established; therefore, there was no considerable difference between oil productions in various well spacing cases. As steam quality increases, the oil production in later production times also increases. At shorter well pair, more steam can be injected per unit length of well, but, on the other hand, the production well recovers less heated oil area; therefore the well pair length should be optimized in all cases. By decreasing the production well bottom-hole pressure, more heated oil in near well region is produced; therefore, the injected steam raises more in the depleted area. The results of the simulations show that very low permeability leads to a fully unsuccessful SAGD process. In the

  11. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  12. Treatment of radioactive wastes by incineration; Tratamiento de desechos radiactivos por incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Priego C, E., E-mail: emmanuel.priego@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    Great part of the radioactive wastes of low and intermediate level generated during the nuclear fuel cycle, in laboratories and other sites where the radionuclides are used for the research in the industry, in medicine and other activities, are combustible wastes. The incineration of these radioactive wastes provides a very high reduction factor and at the same time converts the wastes in radioactive ashes and no-flammable residuals, chemically inert and much more homogeneous that the initial wastes. With the increment of the costs in the repositories and those every time but strict regulations, the incineration of radioactive wastes has been able to occupy an important place in the strategy of the wastes management. However, in a particular way, the incineration is a complex process of high temperature that demands the execution of safety and operation requirements very specific. (author)

  13. SHIRCO PILOT-SCALE INFRARED INCINERATION SYSTEM AT THE ROSE TOWNSHIP DEMODE ROAD SUPERFUND SITE

    Science.gov (United States)

    Under the Superfund Innovative Technology Evaluation or SITE Program, an evaluation was made of the Shirco Pilot-Scale Infrared Incineration System during 17 separate test runs under varying operating conditions. The tests were conducted at the Demode Road Superfund site in Ros...

  14. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  15. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  16. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  17. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  18. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.

    Science.gov (United States)

    Daneshvar, N; Oladegaragoze, A; Djafarzadeh, N

    2006-02-28

    Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.

  19. Exploitation of the FLK-60 slagging incinerator for different alpha waste streams and study of the feasibility of medium-level alpha-beta-gamma waste incineration in FLK-60

    International Nuclear Information System (INIS)

    Van de Voorde, N.; Taeymans, A.; Hennart, D.; Balleux, W.; Geenen, G.; Gijbels, J.

    1985-01-01

    The FLK-60 high temperature slagging incinerator and its peripherals were developed by SCK/CEN with the help of the Commission of the European Communities in the framework of contract no. EUR-017-76-7 WAS-B. This second contract, which covered the period between October 1980 and December 1982, aimed at gaining exploitation experience by running the FLK-60 installation with beta-gamma radioactive waste in semi-industrial conditions. At the end of those 27 months, the system was ready for exploitation in alpha-conditions with plutonium-containing materials. This report describes the various plant parameters during the 25 runs carried out in the framework of this contract and the results of characterization tests carried out on the final product and the secondary waste streams. In the meantime, typical operation balances are computed

  20. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  1. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  3. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  4. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  5. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20... § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed material by incineration only: (1) As authorized by paragraph (b) of this section; or (2) If the material...

  6. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  7. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  8. Residues from waste incineration. Final report. Rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2010-04-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (Author)

  9. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  10. Incineration plant for radioactive waste at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Baehr, W.; Hempelmann, W.; Krause, H.

    1977-02-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the flue gases are cleaned by ceramic filter candles. After passing the filtering system and cooling the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 ldrums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m 3 of combustible solids and about 60 m 3 organic solvents have been incinerated in the plant. The operating experiences are presented. (orig.) [de

  11. Automated Modal Parameter Estimation for Operational Modal Analysis of Large Systems

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Goursat, Maurice

    2007-01-01

    In this paper the problems of doing automatic modal parameter extraction and how to account for large number of data to process are considered. Two different approaches for obtaining the modal parameters automatically using OMA are presented: The Frequency Domain Decomposition (FDD) technique and...

  12. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    International Nuclear Information System (INIS)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-01-01

    Highlights: ► Residential waste diversion initiatives are more successful with organic waste. ► Using a incineration to manage part of the waste is better environmentally. ► Incineration leads to more power plant emission offsets. ► Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  13. Green, Eco, Innovative Design, and Manufacturing Technology of a 1-Ton per Batch Municipal Solid Waste Incinerator

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The thermal treatment of waste by incineration is considered an ultimate solution in order to get rid of waste properly by using the combustible properties of waste and transforming them into inert form and gaseous emission, with the main advantage of a huge reduction in mass and volume of treated waste, destruction of the dangerous components in waste, and obtaining green and clean energy from the exothermal reaction from the completed combustion process. In order to achieve the main goal of incineration, a good design, construction, supervision, and intensive operation and maintenance must be taken into account, especially for the small-scale incinerator. This research will deal with the green, innovative, and eco design and manufacturing technology of a 1-ton per batch municipal solid waste (MSW incinerator. The concept design of the incinerator will focus on the design of the feeding process where only one batch of waste will be discharged into the combustion chamber at one time instead of the semi-feed process, as found in the conventional incinerator. This will ease the operation of the operator and reduce the operating cost. Moreover, the innovative design includes the redesign of combustion air injection into either the primary or secondary combustion chamber in order to achieve the 3Ts of combustion (time, temperature. and turbulence. This design can eliminate the use of an auxiliary burner in the primary combustion chamber. Rethinking the innovative design of using recirculation hot flue gas for preheating of wet garbage in order to pre-dry the waste before combustion is also taken into account. The manufacturing process of the wall composition as well as other parts of the incinerator are also examined.

  14. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  15. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  16. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Science.gov (United States)

    2010-07-01

    ... Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 3 Table 3 to Subpart Ec of... Operating parameters to be monitored Minimum frequency Data measurement Data recording Control system Dry scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber...

  17. Structural parameter based modification of energy conscious ESPAR antenna system through optimization for WLAN’s dual-band operability

    CSIR Research Space (South Africa)

    Bembe, MJ

    2010-11-01

    Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...

  18. Operational parameters of a 2.0-MeV RFQ linac

    International Nuclear Information System (INIS)

    Sander, O.R.; Purser, F.O.; Rusthoi, D.P.

    1984-01-01

    After extensive upgrading, our radio-frequency quadrupole (RFQ) linac is again installed on the accelerator test stand (ATS). The measured parameters of the RFQ, such as the output transverse emittance, transmitted beam, average energy, and energy spread is presented

  19. DETERMINATION OF ACTIVATED SLUDGE MODEL ASDM PARAMETERS FOR WASTE WATER TREATMENT PLANT OPERATING IN THE SEQUENTIAL–FLOW TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Dariusz Zdebik

    2015-01-01

    Full Text Available This paper presents a method for calibration of activated sludge model with the use of computer program BioWin. Computer scheme has been developed on the basis of waste water treatment plant operating in the sequential – flow technology. For calibration of the activated sludge model data of influent and treated effluent from the existing object were used. As a result of conducted analysis was a change in biokinetic model and kinetic parameters parameters of wastewater treatment facilities. The presented method of study of the selected parameters impact on the activated sludge biokinetic model (including autotrophs maximum growth rate, the share of organic slurry in suspension general operational, efficiency secondary settling tanks can be used for conducting simulation studies of other treatment plants.

  20. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Todd [West Virginia Univ., Morgantown, WV (United States)

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.