WorldWideScience

Sample records for incineration bottom ashes

  1. Vitrification of bottom ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Xiao, Y; Oorsprong, M; Yang, Y; Voncken, J H L

    2008-01-01

    During incineration of municipal solid waste (MSW), various environmentally harmful elements and heavy metals are liberated either into bottom ash, or carried away with the off-gases and subsequently trapped in fly-ash. If these minor but harmful elements are not properly isolated and immobilized, it can lead to secondary environmental pollution to the air, soil and water. The stricter environmental regulations to be implemented in the near future in The Netherlands require a higher immobilization efficiency of the bottom ash treatment. In the present study, MSW incinerator bottom ash was vitrified at higher temperatures and the slag formed and metal recovered were examined. The behaviour of soluble elements that remain in the slag is evaluated by standard leaching test. The results obtained can provide a valuable route to treat the ashes from incinerators, and to make recycling and more efficient utilization of the bottom ash possible.

  2. Pretreatment and utilization of waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Astrup, Thomas

    2007-01-01

    Within recent years, researchers and authorities have had increasing focus on leaching properties from waste incineration bottom ashes. Researchers have investigated processes such as those related to carbonation, weathering, metal complexation, and leaching control. Most of these investigations...

  3. Aluminium alloys in municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  4. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    OpenAIRE

    k. louhab; H. Assas

    2006-01-01

    The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result sho...

  5. Glass phase in municipal and industrial waste incineration bottom ashes

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  6. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  7. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators.

    Science.gov (United States)

    Chou, Jing-Dong; Wey, Ming-Yen; Liang, Hsiu-Hao; Chang, Shih-Hsien

    2009-08-30

    Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate.

  8. Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in road construction

    OpenAIRE

    Todorovic, Jelena

    2006-01-01

    Municipal solid waste incineration (MSWI) bottom ash has the potential for utilisation in construction, e.g. as a road base material. Such an utilisation would decrease the amount of bottom ash to be landfilled. However, leachates generated from bottom ash could be concentrated with respect to salts and metals, causing environmental problems. The use of carbonation of as a method to decrease the leaching of inorganic pollutants from MSWI bottom ash has been studied. Field investigations and l...

  9. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  10. Formation of cement mortar with incineration municipal solid waste bottom ash

    Science.gov (United States)

    Jun, Ng Hooi; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Jin, Tan Soo

    2017-04-01

    Product of incineration municipal solid waste bottom ash was substitute to Portland cement in construction industry. This study investigated the changes of bottom ash in Portland cement by chemical and mineralogical testing. Various substitution of bottom ash (10%, 20%, 30%, and 40%) to Portland cement was investigated. The main purpose was to clarify the mechanisms behind the formation of the cement mortar with bottom ash particles. The result indicated that the chemical and mineralogical of the cement mortar incorporating bottom ash was not significantly changed with the substitution of 10-40% bottom ash. However, the use of bottom ash minimizes the main composition of cement mortar. Overall, it was found that there is significant potential to increase the utilization of bottom ash.

  11. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    Science.gov (United States)

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  12. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    Science.gov (United States)

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  13. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Directory of Open Access Journals (Sweden)

    M. Adama

    2016-01-01

    Full Text Available Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo and pollution load indices (PLI were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69, Pb (143.80, Cr (99.30, and Cd (7.54 in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  14. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    Science.gov (United States)

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  15. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    Science.gov (United States)

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  16. Effect of incinerator bottom-ash composition on the mechanical behavior of backfill material.

    Science.gov (United States)

    Lin, Chiou-Liang; Weng, Meng-Chia; Chang, Chih-Hung

    2012-12-30

    This study explores the influence of the chemical composition (SiO(2), CaO, Fe(2)O(3), and Al(2)O(3)) of incinerator bottom ash on its friction angle. Direct shear tests were performed to measure the strength of bottom ash with two distinctly different compositions. Then, an empirical equation was regressed to determine the correlation between each composition and the friction angle. The experimental results showed that the main constituent material of the incinerator bottom ash from general municipal wastes is SiO(2), and the friction angle is 48.04°-52.66°. The bottom ash from incineration plants treating both municipal wastes and general industrial wastes has a high content of iron-aluminum oxides, and its friction angle is 44.60°-52.52°. According to the multivariate regression analysis result, the friction angle of bottom ash of any composition is influenced mainly by the Fe(2)O(3) and Al(2)O(3) contents. This study used the friction angle of the bottom ash from four different incineration plants to validate the empirical equation, and found that the error between actual friction angles and the predicted values was -1.36% to 5.34%. Therefore, the regressed empirical equation in this study can be employed in engineering applications to preliminarily identify the backfill quality of incinerator bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2004-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC)

  18. Recovery Potential of Bottom Ash from Municipal Solid Waste Incineration

    OpenAIRE

    Kameníková, Petra

    2015-01-01

    This paper will present the composition of bottom ash determined in samples obtained from MSWI plant in Prague. The samples were first screened into fractions of grain sizes 0–2 mm, 2–4 mm, 4–6 mm, 6–8 mm, 8–10 mm, 10–15 mm, 15–20 mm and >20 mm. Each fraction, with the exception of fines bellow 2 mm, is manually sorted into glass, ceramics, magnetic particles, non-ferrous metals, unburned organics and the residual mineral fraction. It was found that the bottom ash contains in average 15–20 % ...

  19. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.

    Science.gov (United States)

    Forteza, R; Far, M; Seguí, C; Cerdá, V

    2004-01-01

    Incineration of municipal solid wastes (MSWs) produces by-products which can be broadly classified as bottom and fly ashes. Since MSW incineration started, possibilities other than landfilling the incineration residues have been sought; most initiatives in this sense tend to use these residues as aggregate substitute in pavements and other road construction elements. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. The study includes not only the specific aspects regarding its role as pavement element, but also the assessment of the environmental effects. Therefore, together with the determination of physical (moisture content, apparent and bulk densities, crystallinity, etc.) and engineering properties (particle size distribution, abrasion and impact resistance, etc.), full chemical characterization of the bottom ash and the study of leaching as a function of aging time have been undertaken. The results obtained indicate that the metal content of both the raw bottom ash and its leachates fulfill the environmental regulations provided that the bottom ash is stored for at least one month. Engineering properties of the bottom ash are close to those of natural aggregates and, thus, road-construction use of these residues seems to be feasible.

  20. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper

    2001-01-01

    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...... stream that may be utilized as a secondary road construction material. Scanning electron microscope analysis and grain size distribution analysis indicated that sintering of the particles did not occur. Batch leaching tests at liquid/solid 10 I/kg at a range of pH-values (6-10) quantified with respect...

  1. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.

    Science.gov (United States)

    Lin, Cheng-Fang; Wu, Chung-Hsin; Ho, Hsiu-Mai

    2006-01-01

    Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant sludge was dried and ground, and the bottom ash was subjected to magnetic separation to remove ferrous metals. Both sludge and bottom ash were ground and sieved to a size of bottom ash and the blocks were molded under a pressure of 110 kg/cm2. Thereafter, the molded blocks were sintered at temperatures of 900-1200 degrees C for 60-360 min. The compressive strength, permeability and water absorption rate of the sintered brick were examined and compared to relevant standards. The amount of bottom ash added in the mixture with water treatment sludge affects both the compressive strength and the permeability of the sintered bricks. The two effects are antonymous as higher bottom ash content will develop a beehive configuration and have more voids in the brick. It is concluded that a 20% weight content of bottom ash under a sintering condition of 1150 degrees C for 360 min can generate a brick with a compressive strength of 256 kg/cm2, a water absorption ratio of 2.78% and a permeability of 0.016 cm/s.

  2. Waste or substrate for metal hyperaccumulating plants - The potential of phytomining on waste incineration bottom ash.

    Science.gov (United States)

    Rosenkranz, Theresa; Kisser, Johannes; Wenzel, Walter W; Puschenreiter, Markus

    2017-01-01

    Phytomining could represent an innovative low-cost technology for the selective recovery of valuable trace elements from secondary resources. In this context the potential of phytomining from waste incineration bottom ash was tested in a pot experiment. Fresh bottom ash was acidified, leached to reduce salinity and amended with organic material to obtain a suitable substrate for plant growth. Two hyperaccumulator species, Alyssum serpyllifolium subsp. lusitanicum and Sedum plumbizincicola as well as three metal tolerant species, Brassica napus, B. juncea and Nicotiana tabacum were tested for their phytomining potential on the pre-treated and amended bottom ashes from municipal solid waste and hazardous waste incineration. The hyperaccumulators had severe difficulties to establish on the bottom ash and to produce sufficient biomass, likely due to salinity and Cu toxicity. Nevertheless, concentrations of Ni in A. serpyllifolium and Zn in S. plumbizincicola were high, but total metal removal was limited by the low biomass production and was clearly less than on metalliferous soils. The Brassica species proved to be more tolerant to salinity and high Cu concentrations and produced considerably higher biomass, but total metal removal was limited by rather low shoot concentrations. The observed limitations of the phytomining process along with currently low market prices of Ni and Zn suggest that further optimisation of the process is required in order to make phytomining economically feasible on the tested waste incineration bottom ashes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Aluminium recovery from waste incineration bottom ash, and its oxidation level.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario

    2013-09-01

    The recovery of aluminium (Al) scraps from waste incineration bottom ash is becoming a common practice in waste management. However, during the incineration process, Al in the waste undergoes oxidation processes that reduce its recycling potential. This article investigates the behaviour of Al scraps in the furnace of two selected grate-fired waste-to-energy plants and the amount recoverable from the bottom ash. About 21-23% of the Al fed to the furnace with the residual waste was recovered and potentially recycled from the bottom ash. Out of this amount, 76-87% was found in the bottom ash fraction above 5 mm and thus can be recovered with standard eddy current separation technology. These values depend on the characteristics and the mechanical strength of the Al items in the residual waste. Considering Al packaging materials, about 81% of the Al in cans can be recovered from the bottom ash as an ingot, but this amount decreases to 51% for trays, 27% for a mix of aluminium and poly-laminated foils and 47% for paper-laminated foils. This shows that the recovery of Al from the incineration residues increases proportionally to the thickness of the packaging.

  4. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Liu, Zhen-Shu; Li, Wen-Kai; Huang, Chun-Yi

    2014-05-01

    Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m2/g and 2-3.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q(2) [Si(OSi)2(OH)2], Q(3) [Si(OSi)3(OH)], and Q(4) [Si(OSi)4]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric Si-O stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb2+, Cu2+, Cd2+, and Cr2+) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2009-01-01

    The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of

  6. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash

    International Nuclear Information System (INIS)

    Liu, Zhen-Shu; Li, Wen-Kai; Huang, Chun-Yi

    2014-01-01

    Highlights: • The optimal alkaline agent for the extraction of silica from bottom ash was Na 2 CO 3 . • The pore sizes for the mesoporous silica synthesized from bottom ash were 2–3.8 nm. • The synthesized materials exhibited a hexagonal pore structure with a smaller order. • The materials have potential for the removal of heavy metals from aqueous solutions. - Abstract: Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m 2 /g and 2–3.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q 2 [Si(OSi) 2 (OH) 2 ], Q 3 [Si(OSi) 3 (OH)], and Q 4 [Si(OSi) 4 ]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric Si–O stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb 2+ , Cu 2+ , Cd 2+ , and Cr 2+ ) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions

  7. Biogas--municipal solid waste incinerator bottom ash interactions: sulphur compounds removal.

    Science.gov (United States)

    Ducom, Gaëlle; Radu-Tirnoveanu, Daniela; Pascual, Christophe; Benadda, Belkacem; Germain, Patrick

    2009-07-30

    This study focuses on a new way of reusing municipal solid waste incinerator bottom ash: landfill gas purification before energetic valorisation. A pilot plant was designed and operated on a landfill site located in France (Loire). One kilogram bottom ash is able to sequestrate more than 3.0 g of hydrogen sulphide, 44 mg of methyl mercaptan, and 86 mg of dimethyl sulphide. Hydrogen sulphide retention is probably due to acid-basic reactions conducting to sulphur mineralisation under the form of low solubility metal sulphides. The reaction medium is hydration water. The retention mechanism for methyl mercaptan is probably similar but dimethyl sulphide is most likely retained by physical adsorption. As methane is not retained by bottom ash, the landfill gas energetic content will not be lowered. There seems to be no appreciable difference in these results whether bottom ash is fresh or carbonated. These results are encouraging in the perspective of a field scale application of this biogas treatment process.

  8. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  9. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi

    2014-02-28

    Municipal solid waste incineration (MSWI) is widely used in Japan, through which large amount of incineration residues are produced. The recycle/reuse of the incineration residues is troubled by many factors. This paper studied the MSWI bottom ash with the principal focus on Cl. Both bulk analysis and microanalysis methods have been carried out. The bulk analysis disclosed a particle-size dependent pattern of the Cl content in the bottom ash and the insoluble Cl is essentially in the form of Friedel's salt (3CaO·Al(2)O(3)·CaCl(2)·10H(2)O). The microanalysis revealed that Cl preferentially exists in the quench phase of the individual bottom ash particle. Since Friedel's salt and the other quench products are thermally unstable, a series of thermal treatments were carried out to decompose such Cl-bearing phases. The experimental results showed the total Cl content in the MSWI bottom ash was reduced by 55.46% after a 4-h heating process at 1000°C. The removal of the soluble Cl (originally as alkali salts) by the thermal process was found to be more effective. However, the insoluble Cl content in the heated sample was barely lowered owing to the formation of calcium chlorocalumite (11CaO·7Al(2)O(3)·CaCl(2)) in the course of heating. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste.

    Science.gov (United States)

    Gidarakos, Evangelos; Petrantonaki, Maria; Anastasiadou, Kalliopi; Schramm, Karl-Werner

    2009-12-30

    The uncontrolled disposal of bottom ash from incineration units of hazardous and infected wastes in many countries causes significant scale damage, since it contaminates the soil as well as surface and underground waters, putting both the environment and the public health at risk. In view of the above, a study of bottom ash produced at a hospital medical waste incinerator (HMWI) in Greece was conducted, in order to detect the presence of heavy metals and therefore assess its toxicity; this led to conclusions on the possible contamination of the soil as well as surface and underground waters as a result of its disposal in landfills. The study was conducted at a typical general hospital with 500-bed capacity. About 880 kg of infectious waste coming from a general hospital with all medical departments are pyrolyticly incinerated at the HMWI every day. International literature contains many references to research that characterizes bottom ash as either dangerous, not dangerous, or inert, in an effort to diagnose its proper management and disposal. For this reason, this study focuses on the characterization of bottom ash. Samples were collected from a combustion chamber, over a period of 1 year, and a series of tests were conducted, including an analysis of particle size distribution, morphology, mineralogical and chemical composition, heavy metal leaching behavior and PCDD/F.

  11. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Christopoulos, Konstantinos; Mousios, Epameinontas; Gidarakos, Evangelos

    2012-03-15

    In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Characterization of Bottom and Fly Ashes Generated Co-incineration of Biomass with Automotive Shredder Residue

    Directory of Open Access Journals (Sweden)

    Othaman Muhamad Fazli

    2017-01-01

    Full Text Available One of the viable techniques to reduce land filling of automotive shredder residue is by co-incinerating them with biomass. This study focuses on characterization of bottom and fly ashes produced from the coincineration of the automotive shredded residue with oil palm biomass. The co-incineration was carried out in a pilot-scale fluidized bed incinerator. The oil palm biomass used was oil palm shell while the automotive shredded residue was obtained from a local recycling company. The characterization was done based on particle size distribution, morphology (SEM analysis and chemical composition (EDS analysis. In term of chemical composition the ashes contain C (Carbon, O (Oxygen, Si (Silicon, K (Potassium, Ca (Calcium and Fe (Ferum.

  13. Characteristics of residual organics in municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Lin, Yen-Ching; Yen, Jui-Hung; Lateef, Shaik Khaja; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2010-10-15

    Although heavy metals in bottom ash have been a primary issue in resource recovery of municipal solid waste incinerator residues in past decades, less studied are potentially toxic and odorous organic fractions that exist as they have not been completely oxidized during the mass burn process. Using supercritical fluid extraction (SFE) and soxtec extraction (SE) techniques, this study investigated the characteristics of un-oxidized organic residues contained in bottom ash from three municipal solid waste incinerators in Taiwan during 2008-2009. All together 99 organics were identified in bottom ash samples using gas chromatography-mass spectrometry (GC-MS). Among the identified organics, aromatic compounds were most frequently detected. No polycyclic aromatic hydrocarbons were extracted by SFE or SE. Several phthalates (e.g., phthalic acid isobutyl tridec-2-yn-1-yl ester, dibutyl phthalate and 2-butoxyethyl butyl benzene-1,2-dicarboxylate), organic phosphates (e.g., octicizer and phosphoric acid isodecyl diphenyl ester), and aromatics and amines including pyridine, quinoline derivatives, chloro- and cyano-organics were successfully extracted. Aromatic amines (e.g., 1-nitro-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylic acid diethylamide and 3-bromo-N-(4-bromo-2-chlorophenyl)-propanamide) and aromatic compounds (other than amines) (e.g., 7-chloro-4-methoxy-3-methylquinoline and 2,3-dihydro-N-hydroxy-4-methoxy-3,3-dimethyl indole-2-one) are probably the major odorous compounds in bottom ash. This work identifies organic pollutants in incinerated bottom ash that have received far less attention than their heavy metals counterpart. 2010 Elsevier B.V. All rights reserved.

  14. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash.

    Science.gov (United States)

    Rosenkranz, Theresa; Kidd, Petra; Puschenreiter, Markus

    2018-03-01

    Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Copper speciation in municipal solid waste incinerator bottom ash leachates; Kopparformer i lakvatten fraan energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Susanna; Gustafsson, Jon Petter [Royal Inst. of Tech., Stockholm (Sweden); Schaik, Joris van; Berggren Kleja, Dan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Hees, Patrick van [Oerebro Univ. (Sweden)

    2006-03-15

    The formation of copper (Cu) complexes with dissolved organic carbon (DOC) in bottom ash from municipal solid waste incineration (MSWI) may increase the total amount of Cu released but at the same time reduce its toxicity. In this study, DOC in a MSWI bottom ash leachate was characterized and the Cu-binding properties of different DOC fractions in the ash leachate and in a soil solution were studied. This knowledge may be used for improved environmental assessment of MSWI bottom ash in engineering applications. The Cu{sup 2+} activity at different pH values was measured potentiometrically using a Cu-ion selective electrode (Cu-ISE). Experimental copper complexation results were compared to speciation calculations made in Visual MINTEQ with the NICA-Donnan model and the Stockholm Humic Model (SHM). The MSWI bottom ash leachate contained a larger proportion of hydrophilic organic carbon than the investigated soil solution and other natural waters. The hydrophilic fraction of both samples showed Cu{sup 2+} binding properties similar to that of the bulk, cation-exchanged, leachate. For the ash leachate, the pH dependence of the Cu activity was not correctly captured by neither the SHM nor the NICA-Donnan model, but for the soil solution the model predictions of Cu speciation were in good agreement with the obtained results. The complex formation properties of the ash DOC appears to be less pH-dependent than what is assumed for DOC in natural waters. Hence, models calibrated for natural DOC may give inconsistent simulations of Cu-DOC complexation in MSWI bottom ash leachate. A Biotic Ligand Model for Daphnia Magna was used to provide an estimate of the copper concentrations at LC50 for a simulated bottom ash leachate. It was concluded that the Cu concentrations in certain bottom ash leachates are high enough to pose an ecotoxicological risk; however, after dilution and soil sorption, the risks for neighboring water bodies are most likely negligible. Three processes were

  16. Effect of leaching behaviour by quenching of bottom ash from MSW incineration.

    Science.gov (United States)

    Marchese, Franco; Genon, Giuseppe

    2011-10-01

    Bottom ashes (BA) obtained from a municipal solid waste incineration plant, have shown different pH and lead concentrations in leachate for different lines. In order to explain this behaviour, combustion tests were performed concerning the lines and the effect of the type of wastes. The BA obtained from the same waste has shown the same raw chemical composition, but different leachate characteristics for the different lines. The bottom ash from different wastes burned on the same line instead showed very similar leachate behaviour. The results suggest that the quality of leach ate depends on the plant and process conditions (in particular the ash quenching phase) and not on the composition of the waste. During ash quenching, the formation and dissolution of soluble alkalis depends on the washing ratio and on the residence time. A different washing degree leads to a different residual alkalinity in the bottom ash, and consequently to a different value of leachate pH with different metal releases. Therefore, with the practical aim of establishing the best conditions for the final disposal of bottom ash, a careful planning of this phase could be proposed as an alternative to a weathering process.

  17. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of bottom ash from two hospital waste incinerators in Rabat, Morocco.

    Science.gov (United States)

    Bakkali, Meriem E L; Bahri, Meriem; Gmouh, Said; Jaddi, Hassan; Bakkali, Mohammed; Laglaoui, Amin; Mzibri, Mohammed E L

    2013-12-01

    The uncontrolled disposal of bottom ash generated by the incineration units of hazardous and infected wastes in developed countries are the main cause of significant damage, such as contamination of the soil, as well as surface and underground waters, which may put both the environment and public health at risk. In Morocco, little information is available on the chemical properties of the resulting ashes. In this study, 16 hospital waste ash samples were collected from the incinerators of the two main hospitals in Rabat: Ibn Sina and Cheikh Zayd. A series of tests was conducted, including particle size distribution, mineralogical and chemical composition, and heavy metal leaching behaviour. The results showed that the samples were composed mainly of P2O5 (18%), SiO2 (17%), Na2O (16%), CaO (14%) and SO3 (10%). Moreover, chemical analysis clearly demonstrated that medical waste (MW) contains large amounts of waste generated by domestic activities in the hospital, with a lack of sorting system in the monitoring of MW. Furthermore, the ashes contained high concentrations of heavy metals such as zinc, lead, chromium and nickel with a vast range of 0.5-25071 mg/kg. Leaching tests showed that the extracted amounts of all the heavy metals were lower, with concentrations metal concentrations with the limit values set by the Council Decision 2003/33/EC allowed us to conclude that bottom ashes meet the waste acceptance criteria regarding these heavy metals.

  19. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.

    Science.gov (United States)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil; Holtze, Maria Sommer; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2014-09-01

    Municipal solid waste incineration (MSWI) plays an important role in many European waste management systems. However, increasing focus on resource criticality has raised concern regarding the possible loss of critical resources through MSWI. The primary form of solid output from waste incinerators is bottom ashes (BAs), which also have important resource potential. Based on a full-scale Danish recovery facility, detailed material and substance flow analyses (MFA and SFA) were carried out, in order to characterise the resource recovery potential of Danish BA: (i) based on historical and experimental data, all individual flows (representing different grain size fractions) within the recovery facility were quantified, (ii) the resource potential of ferrous (Fe) and non-ferrous (NFe) metals as well as rare earth elements (REE) was determined, (iii) recovery efficiencies were quantified for scrap metal and (iv) resource potential variability and recovery efficiencies were quantified based on a range of ashes from different incinerators. Recovery efficiencies for Fe and NFe reached 85% and 61%, respectively, with the resource potential of metals in BA before recovery being 7.2%ww for Fe and 2.2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations. The lack of REE enrichment in BAs indicated that the post-incineration recovery of these resources may not be a likely option with current technology. Based on these results, it is recommended to focus on limiting REE-containing products in waste for incineration and improving pre-incineration sorting initiatives for these elements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mechanical behavior of municipal solid waste incinerator bottom ash: Results from triaxial tests.

    Science.gov (United States)

    Le, Ngoc Hung; Abriak, Nor Edine; Binetruy, Christophe; Benzerzour, Mahfoud; Nguyen, Sy-Tuan

    2017-07-01

    Bottom ash resulting from the incineration of various domestic wastes can be viewed as a typical granular material. It is mainly used in civil engineering as a substitute for traditional natural aggregates. The purpose of this paper is to characterize their mechanical behavior and evaluate their mechanical properties for engineering applications. First, results of triaxial tests confirm that bottom ash behaves like dense sand. Second, the deformation and strength characteristics of bottom ash, such as the secant modulus, Poisson ratio, characteristic angle, dilation angle, effective cohesion and effective friction angle, are determined. It is found that these mechanical parameters are in close agreement with those of road aggregates and are influenced by the effective confining pressure. Third, the evolution of the deformation modulus according to the axial strain and the variation of the deviator stress according to the mean effective pressure are analyzed. Finally, a set of points of the yielding state is determined from triaxial tests to represent the shape of the yielding surface of bottom ash. Copyright © 2017. Published by Elsevier Ltd.

  1. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching.

    Science.gov (United States)

    Zomeren, André van; Comans, Rob N J

    2009-07-01

    The release of inorganic and organic contaminants from municipal solid waste incinerator (MSWI) bottom ash is controlled to a large extent by the release of dissolved organic carbon (DOC), and in particular by the reactive humic (HA) and fulvic acids (FA) subfractions of DOC. The properties of organic matter contributing to the release of DOC, HA and FA are, therefore, important for environmental risk assessment. In this study we have quantitatively measured the carbon speciation, and its relation with the leaching of Cu, in three fresh and carbonated MSWI bottom ash samples. Results show that up to only 25% of loss on ignition (LOI) consists of organic carbon (OC), while about 17% of OC in the three samples consists of HA and FA. Up to 50% of DOC in MSWI bottom ash leachates was identified as fulvic acid (FA). This value is substantially higher than previously estimated for these MSWI bottom ash samples and is consistent with the higher recovery of the new method that was applied. The results of this study imply that methods focusing on specific carbon fractions are more appropriate for assessment of environmentally relevant organic carbon species than the measurement of LOI.

  2. Sensor-based control in eddy current separation of incinerator bottom ash.

    Science.gov (United States)

    Rahman, Md Abdur; Bakker, M C M

    2013-06-01

    A sensor unit was placed online in the particle stream produced by an eddy current separator (ECS) to investigate its functionality in non-ferrous metals recovery. The targeted feed was the 1-6mm size fraction bottom ash from a municipal waste incinerator. The sensor unit was attached to the ECS splitter, where it counted in real-time metal and mineral particles and accurately measured the grade of the stream in the metals product. Influence of segregation (e.g. due to particle size or density) on the metals concentrate were detected and studied using the sensor data collected at different splitter distances. Tests were performed in the laboratory and in a bottom ash processing plant with two different types of ECS and two sources of bottom ash with different moisture content. The measured metal grades matched the manual analyses with errors 0%, 1.5% and 3.1% for moist, dry and very wet feed, respectively. For very wet feed the ECS metals recovery dropped, which was observed from the strongly reduced particle counts and the large changes in cumulative particle properties. The measured sample proved representative for the whole metals concentrate if it is collected at a representative position within the metals particle trajectory fan produced by the ECS. ECS-performance proved sensitively dependent on splitter distance, since a 10mm shift may result in 10% change in metal recovery and 18% change in grade. The main functionalities of the sensor unit are determined as online quality control and facilitation of automatic control over the ECS splitter distance. These functionalities translate in significant improvements in ECS metals recovery which in turn is linked to economic benefits, increased recycling rate of scrap metals and a further reduction of the ecological drawbacks of incinerator bottom ash. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Van Zomeren, André; Comans, Rob N J

    2004-07-15

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is a concern in many countries and may inhibit the beneficial reuse of this secondary material. The enhanced leaching of copper from three MSWI bottom ash samples by dissolved organic carbon (DOC) was investigated with specific attention for the nature of the organic ligands. A competitive ligand exchange-solvent extraction (CLE-SE) method was used to measure Cu binding to DOC. Two types of binding sites for Cu were identified and geochemical modeling showed that the organically bound fraction varied from 82% to 100% between pH 6.6 and 10.6. Model calculations showed that complexation by previously identified aliphatic and aromatic acids was unable to explain the enhanced Cu leaching from the MSWI residues. High-performance size-exclusion chromatography (HPSEC) and the standard extraction procedure to isolate and purify natural organic matter revealed that about 0.5% of DOC consists of humic acids and 14.3-25.6% consists of fulvic acids. Calculated Cu binding isotherms based on these natural organic compounds, and the nonideal competitive adsorption-Donnan (NICA-Donnan) model, provide an adequate description of the organic Cu complexation in the bottom ash leachates. The results show that fulvic acid-type components exist in MSWI bottom ash leachates and are likely responsible for the generally observed enhanced Cu leaching from these residues. These findings enable the use of geochemical speciation programs, which include models and intrinsic parameters for metal binding to natural organic matter, to predict Cu leaching from this widely produced waste material under variable environmental conditions (e.g., pH, ionic strength, and concentrations of competing metals). The identified role of fulvic acids in the leaching of Cu and possibly other heavy metals can also be used in the development of techniques to improve the environmental quality of MSWI bottom ash.

  4. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China.

    Science.gov (United States)

    Du, Yingzhe; Jin, Yuqi; Lu, Shengyong; Peng, Zheng; Li, Xiaodong; Yan, Jianhua

    2013-02-01

    Over the past decades in China, the number of medical waste incinerators (MWIs) has been rising rapidly, causing emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). In this study, samples of fly ash, ash deposits, and bottom ash from typical MWIs were analyzed for PCDD/Fs and their distribution characteristics. Results showed international toxic equivalent (I-TEQ) values in the range of 6.9-67 ng I-TEQ/g in fly ash and ash deposits, whereas the concentration in bottom ash was extremely low (only 1.33 pg I-TEQ/g), yet the generation of PCDD/Fs was mostly de novo synthesis in fly ash and ash deposits according to the ratio of PCDFs to PCDDs; the major distribution differences of PCDD/Fs in fly ash was manifested by the content of toxic furan 2,3,7,8-TCDF but other toxic PCDD/Fs showed similar distribution. Other findings are that 2,3,4,7,8-PeCDF had the most contribution to TEQ concentration, and that the most abundant toxic furan congener is 1,2,3,4,6,7,8-HpCDF. Correlation analysis showed that there was no significant correlation between PCDD/Fs concentration and several other physical and chemical parameters. This paper is of interest because it presents the emission performances of PCDD/Fs in ash from medical waste incineration in China. PCDD/F contents in fly ash and ash deposits vary between 6.9 and 67.3 ng I-TEQ/g. However, the concentration in bottom ash was extremely low (only 1.33 x 10(-3) ng I-TEQ/g). The fingerprints of PCDD/Fs in fly ash are almost similar, except for 2,3,7,8-TCDF. There is no marked correlation between PCDD/Fs and other physicochemical properties.

  5. New fired bricks based on municipal solid waste incinerator bottom ash.

    Science.gov (United States)

    Taurino, R; Karamanova, E; Barbieri, L; Atanasova-Vladimirova, S; Andreola, F; Karamanov, A

    2017-10-01

    The main objective of this work was to study the sintering process and technological properties of new fired bricks based on high amount of post-treated municipal solid waste incinerator bottom ash and refractory clay. In addition, the effect of the minor addition of flux (Na 2 CO 3 ) or reinforce (corundum) was also highlighted. Several methods were used to study the effect of compositions variations on the sintering process, structure and the mechanical characteristics of the test briquettes. Differential thermal analysis (TG/DTA) and dilatometry techniques were applied to study the thermal behaviour while scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and high-temperature X-ray diffraction were used to elucidate the structure and the phase composition. The mechanical characteristics were estimated by micro-indentation, strength and various physical tests (porosity, linear shrinkage and water absorption, etc). The results highlight the possibility to use very high amount of municipal solid waste incinerator bottom ashes in the production of new fired bricks with good performances at all levels. It is also shown that the addition of additives managed the final properties, affecting the crystal phase formation, porosity and greatly the strength of the samples.

  6. Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator.

    Science.gov (United States)

    Yasuhara, Akio; Katami, Takeo

    2007-01-01

    The leaching behavior of dioxins from landfill containing bottom ash and fly ash from municipal solid waste incineration has been investigated by leaching tests with pure water, non-ionic surfactant solutions, ethanol solutions, or acetic acid solutions as elution solvents for a large-scale cylindrical column packed with ash. Larger amounts of dioxins were eluted from both bottom ash and fly ash with ethanol solution and acetic acid solution than with pure water. Large quantities of dioxins were leached from fly ash but not bottom ash by non-ionic surfactant solutions. The patterns of distribution of the dioxin congeners in the leachates were very similar to those in the bottom ash or fly ash from which they were derived.

  7. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.

    Science.gov (United States)

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2010-09-01

    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate.

  8. Evaluation of leachate emissions from municipal solid waste incineration bottom ash and crushed rock used in road construction

    OpenAIRE

    Lidelöw, Sofia; Lagerkvist, Anders

    2005-01-01

    The use of municipal solid waste incineration (MSWI) bottom ash in road construction may possess a risk to the environment due to the release of e.g. salt and heavy metals. In this study, two years of leachate data from a test road built of MSWI bottom ash and crushed rock in northern Sweden were evaluated. It was found that Cu, Cr, Al, Na, and Cl- were leached in higher amounts from the bottom ash, while the release of Zn, Mg, Ba, and Ca was higher from the crushed rock. The difference betwe...

  9. Road soil retention of heavy metals leached from Municipal Solid Waste Incinerator bottom ash used in road construction

    OpenAIRE

    BOUVET, M

    2003-01-01

    Economic stakes of raw materials and harmful effects linked to waste landfill lead to the re-use of alternative materials like Municipal Solid Waste Incinerator (MSWI) bottom ash in road construction . MSWI bottom ash has a high heavy metal content, which can leach and infiltrate into the underlying soil, under the effect of rainfall infiltration through the road. The assessment of MSWI bottom ash re-use eco-compatibility implies to study the solubility and the retention of heavy metals in th...

  10. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.

    Science.gov (United States)

    Rendek, Eva; Ducom, Gaëlle; Germain, Patrick

    2006-01-16

    During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of upgrading some specific properties of the material with accelerated carbonation. Carbonation was performed by putting 4mm-sieved samples in a CO2 chamber. The CO2 pressure and the humidity of the samples were varied to optimize the reaction parameters. Unsieved material was also tested. Calcite formation resulting from accelerated carbonation was investigated by thermogravimetry and differential scanning calorimetry (TG/DSC) and metal leaching tests were performed. The volume of sequestrated CO2 was on average 12.5L/kg dry matter (DM) for unsieved material and 24 L/kg DM for 4mm-sieved samples. An ash humidity of 15% appeared to give the best results. The reaction was drastically accelerated at high pressure but it did not increase the volume of sequestrated CO2. Accelerated carbonation, like the natural phenomenon, reduces the dangerous nature of the material. It decreases the pH from 11.8 to 8.2 and causes Pb, Cr and Cd leaching to decrease. This process could reduce incinerator CO2 emissions by 0.5-1%.

  11. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases.

    Science.gov (United States)

    Wei, Yunmei; Shimaoka, Takayuki; Saffarzadeh, Amirhomayoun; Takahashi, Fumitake

    2011-03-15

    Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of heavy metals. The occurrence and uneven distribution of these heavy metals in bottom ash can increase the complexity of such residues in terms of long-term behavior upon landfilling or recycling. Bottom ashes sampled from three stoker-type incinerators in Japan were analyzed in this paper. This study presents detailed information on the mineralogical characterization of bottom ash constituents and the weathering behavior of these constituents by means of optical microscopy and scanning electron microscopy. It was revealed that bottom ash mainly consists of assorted silicate-based glass phases (48-54 wt% of ash) and mineral phases including melilites, pseudowollastonite, spinels, and metallic inclusions (Fe-P, Fe-S, Fe-Cu, Cu-Sn, Cu-Zn, Cu-S, and Cu-Pb dominated phases), as melt products formed during the incineration process. The compounds embedded in the glass matrix, e.g. spinels and metallic inclusions, played the most important role in concentration of heavy metals (Pb, Zn, Cu, Cr, Mn, Ni, etc.). Other phases such as refractory minerals and ceramics, frequently found in ash, were of less significance in terms of their influence on the involvement of heavy metals. Analysis of lab-scale artificially weathered and 10-year landfilled bottom ash samples revealed that secondary mineralization/alteration of the bottom ash constituents principally carbonation and glass evolution substantially decreased the potential risk of the heavy metals to the surrounding environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Size distribution and leaching characteristics of poly brominated diphenyl ethers (PBDEs) in the bottom ashes of municipal solid waste incinerators.

    Science.gov (United States)

    Lin, Yi-ming; Zhou, Shao-qi; Lee, Wen-Jhy; Wang, Lin-Chi; Chang-Chien, Guo-Ping; Lin, Wei-Chih

    2014-03-01

    The particle size distributions and leaching characteristics of polybrominated diphenyl ethers (PBDEs) in the bottom ashes of two Taiwanese municipal solid waste incinerators (MSWIs A and B) were investigated to evaluate PBDE leaching into the environment through reutilization of bottom ashes. The PBDE contents in the bottom ashes of the MSWIs (29.0-243 ng/g) could be two orders higher than those in rural and urban soils. The PBDE fraction of the bottom ashes was more distributed in larger particles (> 0.25 mm). Similar trends were found for the PBDE contents in the bottom ashes and their PBDE leaching concentrations, revealing that the elevated PBDE contents in the bottom ashes may lead to a higher PBDE leaching mass. The leaching of PBDEs is attributed to diffusion driven by the concentration gradient and effective surface area. The normalized leaching ratios (NLRs) of PBDEs for the bottom ashes of the MSWIs are about four orders greater than those of PBDE-related raw materials and products, and this may be due to their porous structures having much greater effective surface area. The elevated NLRs of PBDEs thus deserve more attention when bottom ashes are recycled and reutilized as construction materials.

  13. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the

  14. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data

    DEFF Research Database (Denmark)

    Gianfilippo, Martina Di; Costa, Giulia; Pantini, Sara

    2016-01-01

    not cause adverse environmental impacts, the specific properties of BA, in particular its leaching behavior, should be taken into account. This study focuses on the evaluation of potential environmental impacts associated with two different management options for BA from thermal treatment of Refuse Derived......The main characteristics and environmental properties of the bottom ash (BA) generated from thermal treatment of waste may vary significantly depending on the type of waste and thermal technology employed. Thus, to ensure that the strategies selected for the management of these residues do...... Fuel (RDF): landfilling and recycling as a filler for road sub bases. Two types of thermal treatment were considered: incineration and gasification. Potential environmental impacts were evaluated by life-cycle assessment (LCA) using the EASETECH model. Both non-toxicity related impact categories (i...

  15. Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions.

    Science.gov (United States)

    Van Gerven, T; Cooreman, H; Imbrechts, K; Hindrix, K; Vandecasteele, C

    2007-02-09

    Municipal solid waste incinerator (MSWI) bottom ash often cannot be recycled as construction material in Flanders, because leaching of Cu exceeds the limit value of 0.5mg/kg. Leaching of other components such as Mo and Sb is critical as well, but limit values for these elements are to date only informal. A treatment technique was investigated to lower pollutant leaching: extraction with solutions of organic complexants to remove Cu. Six different solutions were used, of which washing with citric acid and ammonium citrate decreases Cu leaching to below the limit value. Extraction was then performed with different concentrations of ammonium citrate. Subsequent washing of the extracted material with distilled water appears to be vital to remove all residual ammonium citrate. Extraction with a 0.2M solution of ammonium citrate followed by three washing steps decreases metal leaching to below the limit values.

  16. Development of an accelerated leaching method for incineration bottom ash correlated to toxicity characteristic leaching protocol.

    Science.gov (United States)

    Lin, Shengxuan; Zhou, Xuedong; Ge, Liya; Ng, Sum Huan; Zhou, Xiaodong; Chang, Victor Wei-Chung

    2016-10-01

    Heavy metals and some metalloids are the most significant inorganic contaminants specified in toxicity characteristic leaching procedure (TCLP) in determining the safety of landfills or further utilization. As a consequence, a great deal of efforts had been made on the development of miniaturized analytical devices, such as Microchip Electrophoresis (ME) and μTAS for on-site testing of heavy metals and metalloids to prevent spreading of those pollutants or decrease the reutilization period of waste materials such as incineration bottom ash. However, the bottleneck lied in the long and tedious conventional TCLP that requires 18 h of leaching. Without accelerating the TCLP process, the on-site testing of the waste material leachates was impossible. In this study, therefore, a new accelerated leaching method (ALM) combining ultrasonic assisted leaching with tumbling was developed to reduce the total leaching time from 18 h to 30 min. After leaching, the concentrations of heavy metals and metalloids were determined with ICP-MS or ICP-optical emission spectroscopy. No statistical significance between ALM and TCLP was observed for most heavy metals (i.e., cobalt, manganese, mercury, molybdenum, nickel, silver, strontium, and tin) and metalloids (i.e., arsenic and selenium). For the heavy metals with statistical significance, correlation factors derived between ALM and TCLP were 0.56, 0.20, 0.037, and 0.019 for barium, cadmium, chromium, and lead, respectively. Combined with appropriate analytical techniques (e.g., ME), the ALM can be applied to rapidly prepare the incineration bottom ash samples as well as other environmental samples for on-site determination of heavy metals and metalloids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Levels and patterns of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province, China.

    Science.gov (United States)

    Shen, Chaofeng; Tang, Xianjin; Yao, Jun; Shi, Dezhi; Fang, Jie; Khan, Muhammad Imran; Cheema, Sardar Alam; Chen, Yingxu

    2010-07-15

    Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were analyzed in bottom ash from municipal solid waste (MSW) incineration in six cities in Zhejiang province, where one-fourth of the MSW incinerators of China are located. Total PAH contents varied from 2222.53 to 6883.91 microg/kg. The patterns of PAHs were found to be very similar in all the samples, dominated by three-ring and four-ring PAHs. Total PCB concentrations in bottom ash ranged from 1.00 to 1.31 microg/kg, while the coplanar PCBs in the bottom ash were in the range of 0.08-0.52 microg/kg. Among PCB congeners, low chlorinated PCBs contributed to the majority of total PCBs. Generally, PAH concentrations in cities with fluidized bed incinerator were less than those in cities with grate furnace incinerator. PAH and PCB levels were affected by both plastic content in MSW incinerator feed and combustion efficiency. However, further study is required to investigate the effect of these two variables deeply, as well as other influencing factors. 2010 Elsevier B.V. All rights reserved.

  18. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany.

    Science.gov (United States)

    Holm, Olaf; Simon, Franz-Georg

    2017-01-01

    The industrial sector of bottom ash (BA) treatment from municipal solid waste incineration (MSWI) in Germany is currently changing. In order to increase the recovery rates of metals or to achieve a higher quality of mineral aggregates derived from BA, new procedures have been either implemented to existing plants or completely new treatment plants have been built recently. Three treatment trains, which are designated as entire sequences of selected processing techniques of BA, are introduced and compared. One treatment train is mainly characterized by usage of a high speed rotation accelerator whereas another is operating completely without crushing. In the third treatment train the BA is processed wet directly after incineration. The consequences for recovered metal fractions and the constitution of remaining mineral aggregates are discussed in the context of legislative and economical frameworks. Today the recycling or disposal options of mineral residues still have a high influence on the configuration and the operation mode of the treatment trains of BA despite of the high value of recovered metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill.

    Science.gov (United States)

    Yao, Jun; Chen, Luxi; Zhu, Huayue; Shen, Dongsheng; Qiu, Zhanhong

    2017-04-01

    Simulated landfill was operated for 508 days to investigate the effect of municipal solid waste incinerator (MSWI) bottom ash layer on the migration of nitrate, nitrite, and ammonia when it was used as the intermediate layer in the landfill. The result suggested that the MSWI bottom ash layer could capture the nitrate, nitrite, and ammonia from the leachate. The adsorption of the nitrate, nitrite, and ammonia on the MSWI bottom ash layer was saturated at the days 396, 34, and 97, respectively. Afterwards, the nitrogen species were desorbed from the MSWI bottom ash layer. Finally, the adsorption and desorption could reach the equilibrium. The amounts of adsorbed nitrate and nitrite on the MSWI bottom ash layer were 1685.09 and 7.48 mg, respectively, and the amount of the adsorbed and transformed ammonia was 13,773.19 mg, which was much higher than the desorbed. The water leaching test and synthetic precipitation leaching procedure (SPLP) results showed that the leachable nitrate, nitrite, and ammonia in the MSWI bottom ash were greatly increased after the landfill operation, suggesting that the adsorbed nitrogen could be finally leached out. Besides, the results also showed that MSWI bottom ash layer could affect the release of nitrate and ammonia at the initial stage of the landfill. However, it had little effect on the release of nitrite.

  20. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.

    Science.gov (United States)

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2013-02-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Resource Recovery Potential of the Bottom Ash from Municipal Solid Waste Incineration in the Czech Republic

    OpenAIRE

    Šyc, M. (Michal); Kameníková, P. (Petra); Svoboda, K. (Karel); Krausová, A. (Aneta); Pohořelý, M. (Michael); Zach, B. (Boleslav); Punčochář, M. (Miroslav)

    2015-01-01

    The paper presents composition of 5 bottom ash samples obtained from 3 Czech MSWI plants. Analyzed components were glass, ceramics, unburned organics, magnetic particles, non-ferrous metals and mineral fraction. The effects of bottom ash particle size on composition and distribution of above mentioned components were observed. Variation of bottom ash composition with respect to MSWI plant locality was found, particularly for glass and metals content. These results, together with additional an...

  2. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.

    Science.gov (United States)

    Yang, Shuo; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kawano, Takashi; Kakuta, Yoshitada

    2016-10-01

    Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.

  3. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    Science.gov (United States)

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. 2010 Elsevier Ltd. All rights reserved.

  4. Development process for the stabilization of incinerator bottom ash and sizing baghouse dust material

    International Nuclear Information System (INIS)

    Hunt, L.F.; Boehmer, A.M.

    1987-04-01

    EG ampersand G Idaho Inc. has initiated a program to develop safe, efficient, cost-effective treatment methods for the stabilization and subsequent disposal of some of the hazardous and mixed wastes generated at the Idaho National Engineering Laboratory (INEL). Lab-scale testing has shown that Extraction Procedure (EP) toxic wastes can be successfully stabilized by solidification, using various binders to produce nontoxic, stable waste forms for safe, long-term disposal. The purpose of this report is to present the results of drum-scale testing of WERF incinerator bottom ash and WERF sizing baghouse dust. The drum-scale test program was conducted to determine if a production procedure that would produce a waste form which was suitable for disposal as a low-level radioactive waste could be developed. The use of 71-gallon square drums for solidification processing were also evaluated. During the test program, eleven drums of ash material were solidified. All of the samples from all of the drums passed the EPA leach test criteria. Although there is a distinct weight addition associated with the solidification process, there is no relative volume increase. 4 refs., 6 figs., 8 tabs

  5. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data.

    Science.gov (United States)

    Di Gianfilippo, Martina; Costa, Giulia; Pantini, Sara; Allegrini, Elisa; Lombardi, Francesco; Astrup, Thomas Fruergaard

    2016-01-01

    The main characteristics and environmental properties of the bottom ash (BA) generated from thermal treatment of waste may vary significantly depending on the type of waste and thermal technology employed. Thus, to ensure that the strategies selected for the management of these residues do not cause adverse environmental impacts, the specific properties of BA, in particular its leaching behavior, should be taken into account. This study focuses on the evaluation of potential environmental impacts associated with two different management options for BA from thermal treatment of Refuse Derived Fuel (RDF): landfilling and recycling as a filler for road sub bases. Two types of thermal treatment were considered: incineration and gasification. Potential environmental impacts were evaluated by life-cycle assessment (LCA) using the EASETECH model. Both non-toxicity related impact categories (i.e. global warming and mineral abiotic resource depletion) and toxic impact categories (i.e. human toxicity and ecotoxicity) were assessed. The system boundaries included BA transport from the incineration/gasification plants to the landfills and road construction sites, leaching of potentially toxic metals from the BA, the avoided extraction, crushing, transport and leaching of virgin raw materials for the road scenarios, and material and energy consumption for the construction of the landfills. To provide a quantitative assessment of the leaching properties of the two types of BA, experimental leaching data were used to estimate the potential release from each of the two types of residues. Specific attention was placed on the sensitivity of leaching properties and the determination of emissions by leaching, including: leaching data selection, material properties and assumptions related to emission modeling. The LCA results showed that for both types of BA, landfilling was associated with the highest environmental impacts in the non-toxicity related categories. For the toxicity

  6. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2015-03-15

    Bottom ash, the main solid output from municipal solid waste incineration (MSWI), has significant potential for the recovery of resources such as scrap metals and aggregates. The utilisation of these resources ideally enables natural resources to be saved. However, the quality of the recovered scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal routes were compared: landfilling, road sub-base and aggregate in concrete, while specific leaching data were used as the basis for evaluating toxic impacts. The recovery and recycling of aluminium, ferrous, stainless steel and copper scrap were considered, and the importance of aluminium scrap quality, choice of marginal energy technologies and substitution rates between primary and secondary aluminium, stainless steel and ferrous products, were assessed and discussed. The modelling resulted in burdens to toxic impacts associated with metal recycling and leaching from aggregates during utilisation, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven point between the benefits of recycling and energy expended on sorting and upgrading the scrap. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size ash-water reactions and formation of the quench product in the bottom ash was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A lysimeter experimental study and numerical characterisation of the leaching of incinerator bottom ash waste.

    Science.gov (United States)

    Ahmed, Abdelkader T; Khalid, Hussain A; Ahmed, Ashraf A; Chen, Daoyi

    2010-01-01

    Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non

  9. Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals.

    Science.gov (United States)

    Anjum, Fozia; Shahid, Muhammad; Bukhari, ShaziaAnwer; Potgieter, J Herman

    2014-01-01

    The mineralogy, as well as elemental composition, of the incinerated hospital waste (HW) ashes are not well known and need to be investigated for the safe handling and disposal of such ash. A study was conducted to investigate the chemical composition, mineralogy and bioleaching of selected metals from incinerated HW bottom ash using Aspergillus niger under the combined effect ofultrasonic radiation. Different techniques were utilized to determine the elemental composition (Electron Dispersive X-ray Spectroscopy [EDX], atomic absorption spectrophotometry, inductively coupled plasma-optical emission spectroscopy, ultraviolet-visible light spectrophotometer) and mineralogy (X-ray Diffraction) of the raw sample, as well as the bioleached samples. Chemical leaching tests were performed to determine the effect of different organic acids on metals dissolution. Microbes were tested for acid production and leaching capabilities of selected metals from medical waste (MW) bottom ash. Wet chemical and EDX analyses showed that the ash was enriched with metallic elements like Na, K, Ca, Fe and Al with a concentration range of 22-115 (g/kg). Furthermore, the ash contained heavy metals such as Cu, Cr, Ni, Sn and Ti in the range of 0.51-21.74 (mg/kg). Citric and oxalic acids generated by fungi could be important leaching agents acting to dissolve these metals. Under ultrasonic treatment, metals dissolution by the acidic metabolites was at its maximum after just 9 d of leaching. The results showed that the dissolution of metals was much higher in citric and oxalic acid than with other acids. Extraction of metals from incinerated MW ash indicated that this ash may be a potential source of metals in the future.

  10. Hydrothermal solidification behavior of municipal solid waste incineration bottom ash without any additives.

    Science.gov (United States)

    Jing, Zhenzi; Fan, Xinwei; Zhou, Lei; Fan, Junjie; Zhang, Yi; Pan, Xiaohui; Ishida, Emile Hideki

    2013-05-01

    Municipal solid waste incineration (MSWI) bottom ash could be solidified with and without slaked lime (calcium hydroxide) addition by a hydrothermal method under steam pressure of 1.56 MPa at 200 °C for up to 72 h. Experimental results showed that CSH gel or tobermorite exerted a main influence on strength development, and without any additives CSH gel was easy to form, while slaked lime addition favored to form tobermorite. Tobermorite seemed to exert a larger effect on the strength development than CSH gel. Leaching results showed that the concentrations of heavy metals dissolved from the solidified specimens were effectively reduced after hydrothermal processing. The immobilization was mainly due to the tobermorite or CSH gel formation, and Pb2+ and Zn2+ seemed to be fixed more readily than Cr6+, which might be the reason that the structural Ca2+ within tobermorite or CSH gel was exchanged by Pb2+ and Zn2+ more easily than Cr6+. In addition, there existed a close relationship between leaching concentration and strength enhancement, and a higher strength seemed to exert a larger effect on immobilization of heavy metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash.

    Science.gov (United States)

    Bourtsalas, A; Vandeperre, L J; Grimes, S M; Themelis, N; Cheeseman, C R

    2015-11-01

    Incinerator bottom ash (IBA) is normally processed to extract metals and the coarse mineral fraction is used as secondary aggregate. This leaves significant quantities of fine material, typically less than 4mm, that is problematic as reuse options are limited. This work demonstrates that fine IBA can be mixed with glass and transformed by milling, calcining, pressing and sintering into high density ceramics. The addition of glass aids liquid phase sintering, milling increases sintering reactivity and calcining reduces volatile loss during firing. Calcining also changes the crystalline phases present from quartz (SiO2), calcite (CaCO3), gehlenite (Ca2Al2SiO7) and hematite (Fe2O3) to diopside (CaMgSi2O6), clinoenstatite (MgSiO3) and andradite (Ca3Fe2Si3O12). Calcined powders fired at 1080°C have high green density, low shrinkage (ceramics that have negligible water absorption. The transformation of the problematic fraction of IBA into a raw material suitable for the manufacture of ceramic tiles for use in urban paving and other applications is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    OpenAIRE

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the ...

  13. Leaching behaviour, mechanical and durability properties of mortar containing municipal incineration bottom ash

    Science.gov (United States)

    Morales Hernandez, Maria B.

    The review of municipal solid waste (MSW) management scheme has indicated that the amount of MSW sent to incineration plants will increase in the UK in coming years. Therefore, the amount of municipal solid waste incineration (MSWI) residues generated will increase significantly. MSWI residues are divided into MSWI fly ash (MSWI-FA) and MSWI bottom ash (MSWI-BA). MSWI-FA is classified as hazardous residue thereby requires special treatment before disposal. MSWI-BA is mostly disposed in landfill sites. MSWI-BA fraction with particle size diameter below approximately 2mm has low engineering properties and may have an adverse effect on the environment due to its high porosity, solubility and leachability of possible toxic compounds. This research programme has investigated new potential uses and leaching behaviour of mortar containing MSWI-BA with particle size diameters below 2.36mm. Fraction of MSWI-BA with particle size diameters (φ) below 2.36 mm (φ <2.36) was divided into different sub-fractions to evaluate their influence on compressive strength of concrete when used as partial replacement of cement or sand. MSWI-BA fraction with φ <212mum (fine fraction) and 212mum < φ2.36mm (coarse fraction) used as partial replacement of cement and sand respectively, showed higher compressive strength compared with the other fractions examined. In addition, replacing sand with the coarse fraction of MSWI-BA exhibited similar or higher strength than the reference mix. Examination of physical and chemical properties of the fine and coarse fractions of MSWI-BA unbound indicated that both fractions had potential to be used as replacement of cement or sand. However, the evaluation of their leaching behaviour suggested that they should be bound in cement-based systems to avoid leaching of potential toxic elements. Evaluation of physical, mechanical and sulfate resistance properties of mortars containing 15% of the fine fraction of MSWI-BA as a partial replacement of cement and

  14. Metallic elements occurrences within metallic fragments in the municipal waste incineration bottom ash

    Science.gov (United States)

    Kowalski, Piotr; Kasina, Monika; Michalik, Marek

    2017-04-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) is composed of grainy ash material, residual components and metallic fragments (from few µm up to 3-5 cm). Its mineral and chemical composition is related to the composition of the waste stream in the incinerator operational area. Wide use of thermal techniques in management of solid waste makes important the studies on valuable components and their distribution within the material in terms of their further processing. By using various valorization or extraction techniques it is possible to extend the range of its possible further application. To investigate metallic elements distribution within metallic fragments of the MSWI BA material produced in municipal waste incineration plant in Poland were collected in 2015 and 2016. BA and its components were investigated using spectroscopic methods of chemical analysis: ICP-OES, ICP-MS, LECO and EDS (used for microanalysis during SEM observations). BA is a material rich in Si (22.5 wt%), Ca (13.4 wt%), Fe (4 wt%), Al (5.2 wt%) and Na (3.5 wt%), composed of equal part of amorphous (silicate glass dominated) and crystalline phase (rich in silicates, aluminosilicates, oxides of non- and metallic elements and sulphates). The content of metallic elements (Al, Fe, Mg, Ti, Mn, Cr, Ni, Sc, Mo, Cu, Pb, Zn, Sn) is 11.5 wt% with domination of Al (5.2 wt%) and Fe (4 wt%) and elevated values of Mg (1 wt%), Ti (0.54 wt%), Cu (0.26 wt%) and Zn (0.27 wt%) (Kowalski et al., 2016). They were mostly concentrated in the form of metallic fragments, mainly as metallic inclusions in the size of 1-20 µm and separated metallic grains in the size of 50-300 µm. Metallic fragments present in the BA are characterized by their composition heterogeneity and various oxygen content. Fragments are rarely composed of single metallic element and usually in their composition up to few main elements dominated over others. The most common were Fe-, Al- and Zn-rich fragments forming respectively

  15. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki

    2012-12-01

    The weathering of municipal solid waste incineration (MSWI) residues consists of complicated phenomena. This makes it difficult to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash, which was relevant interactively to pH neutralization and formation of secondary minerals. In this study, mineralogical weathering indices for natural rock profiles were applied to fresh/landfilled MSWI bottom ash to investigate the relation of these weathering indices to landfill time and leaching concentrations of component elements. Tested mineralogical weathering indices were Weathering Potential Index (WPI), Ruxton ratio (R), Weathering Index of Parker (WIP), Vogt's Residual Index (V), Chemical Index of Alternation (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alternation (PIA), Silica-Titania Index (STI), Weathering Index of Miura (Wm), and Weatherability index of Hodder (Ks). Welch's t-test accepted at 0.2% of significance level that all weathering indices could distinguish fresh and landfilled MSWI bottom ash. However, R and STI showed contrasted results for landfilled bottom ash to theoretical expectation. WPI, WIP, Wm, and Ks had good linearity with reclamation time of landfilled MSWI bottom ash. Therefore, these four indices might be applicable as an indicator to identify fresh/weathered MSWI bottom ash and to estimate weathering time. Although WPI had weak correlation with leachate pH, other weathering indices had no significant correlation. In addition, all weathering indices could not explain leaching concentration of Al, Ca, Cu, and Zn quantitatively. Large difficulty to modify weathering indices correctly suggests that geochemical simulation including surface sorption, complexation with DOM, and other mechanisms seems to be the only way to describe leaching behaviors of major and trace elements in fresh/weathered MSWI bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives.

    Science.gov (United States)

    Zhen, Guangyin; Lu, Xueqin; Zhao, Youcai; Niu, Jing; Chai, Xiaoli; Su, Lianghu; Li, Yu-You; Liu, Yuan; Du, Jingru; Hojo, Toshimasa; Hu, Yong

    2013-11-15

    Potential reuse of dewatered sludge (DS) and municipal solid waste incineration (MSWI) bottom ash as components to develop controlled low-strength material (CLSM) was explored. The effects of DS:MSWI bottom ash:calcium sulfoaluminate (CS¯A) cement ratio and thermal treatment of MSWI bottom ash at 900 °C on the mechanical and microstructural properties of CLSM were intensively studied to optimize the process. Results showed DS and MSWI bottom ash could be utilized for making CLSM. The CLSM prepared with milled MSWI bottom ash gave higher unconfined compressive strength (UCS) of 2.0-6.2 MPa following 1 year of curing at 1.0:0.1:0.9 ≤ DS:MSWI bottom ash:CS¯A ≤ 1.0:0.8:0.2. However, the corresponding strengths for CLSM containing thermally treated MSWI bottom ash ranged from 0.7 to 4.6 MPa, decreasing 26-65%. The microstructural analysis by X-ray powder diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), as well as scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectroscopy (EDS) revealed that ettringite (C3A·3CS¯·H32, or AFt) crystals were the most important strength-producing constituents which grew into and filled the CLSM matrix pores. Milled MSWI bottom ash addition favored the formation of highly crystalline AFt phases and accordingly enhanced compressive strengths of CLSM specimens. In contrast, thermal treatment at 900 °C produced new phases such as gehlenite (Ca2Al2SiO7) and hydroxylapatite (Ca5(PO4)3(OH)), which deteriorated the pozzolanic activity of bottom ash and caused the strengths to decrease. Leaching tests evidenced that leachable substances from CLSM samples exhibited negligible health and environmental risks. The results of this study suggested that MSWI bottom ash can be effectively recycled together with DS in developing CLSM mixtures with restricted use of CS¯A cement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huyue; Long, Yuyang; Shen, Dongsheng

    2013-08-01

    Municipal solid waste incinerator (MSWI) bottom ash was size fractionated into six fractions, with the respective particle size of 8 mm. The contents and fractionation of Cu, Zn, Cd in the size fractionated MSWI bottom ash were investigated. The results showed the contents and fractionation of Cu, Zn and Cd varied among the different particle sizes, which were related to their thermodynamic characteristics. High content of Cu was found in the bottom ash with the particle size of 4 mm, due to its lithophilic property and the function of entrainment. The content of Zn showed a relatively even distribution among the various particles. The content of Cd showed a decreasing trend with the increase of the particle size, due to its high volatility. Besides, the carbonate bound fraction of Cd showed a decreasing trend with the increase of the particle size, while the carbonate bound fraction of Cu showed an increasing trend. The organic matter bound fraction of Cu increased when the particle size increased. The results also showed the fine ash contained a higher level of unstable Cd than the large ash, while the large ash had a higher level of unstable Cu comparatively. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A method for treating bottom ash

    NARCIS (Netherlands)

    Rem, P.C.; Van Craaikamp, H.; Berkhout, S.P.M.; Sierhuis, W.; Van Kooy, L.A.

    2007-01-01

    A method for treating bottom ash from a waste incineration plant. The invention relates in particular to a method for treating bottom ash from a domestic waste incineration plant. In accordance with the invention bottom ash having a size ranging up to 2 mm is treated by removing a previously

  19. Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash

    Science.gov (United States)

    Becquart, Frédéric; Abriak, Nor Edine

    2013-06-01

    Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

  20. Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction.

    Science.gov (United States)

    Lidelöw, S; Lagerkvist, A

    2007-01-01

    Three years of leachate emissions from municipal solid waste incineration bottom ash and crushed rock in a full-scale test road were evaluated. The impact of time, construction design, and climate on the emissions was studied, and the predicted release from standard leaching tests was compared with the measured release from the road. The main pollutants and their respective concentrations in leachate from the roadside slope were Al (12.8-85.3 mg l(-1)), Cr (2-125 microg l(-1)), and Cu (0.15-1.9 mg l(-1)) in ash leachate and Zn (1-780 microg l(-1)) in crushed rock leachate. From the ash, the initial Cl(-) release was high ( approximately 20 g l(-1)). After three years, the amount of Cu and Cl(-) was in the same range in both leachates, while that of Al and Cr still was more than one order of magnitude higher in ash leachate. Generally, the release was faster from material in the uncovered slopes than below the pavement. Whether the road was asphalted or not, however, had minor impacts on the leachate quality. During rain events, diluted leachates with respect to, e.g., salts were observed. The leaching tests failed to simulate field leaching from the crushed rock, whereas better agreement was observed for the ash. Comparisons of constituent release from bottom ash and conventional materials solely based on such tests should be avoided.

  1. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI).

    Science.gov (United States)

    Aberg, Annika; Kumpiene, Jurate; Ecke, Holger

    2006-02-15

    In autumn 2001, a full-scale test road was built with municipal solid waste incineration (MSWI) bottom ash at the Dåvamyran landfill, Umeå, Northern Sweden. Leachates were collected from asphalted sections with either bottom ash or gravel as filling material. In this research, 12 months of ash leachate sampling were evaluated with respect to emissions of contaminants such as trace metals and chlorides (Cl). The usefulness of regression models describing trace metal mobility from bottom ash was also tested as predictive tools for reusability applications of MSWI bottom ash. Cl, Cu, and Cr had the highest mobility (considering leachate concentrations) in the ash leachate, though concentrations of Cl and Cu decreased during the sampling period (Cl from 10,000 to 600 mg l(-1); Cu from 1600 to 500 microg l(-1)). An increased mobility of Cr during the autumns (about 3-4 times higher compared to the summer) was noted with a maximum value of nearly 70 microg l(-1) during autumn 2001. Pb showed a very low mobility over the entire year with leachate concentrations of around 3-4 microg l(-1). Chemical equilibrium calculations using Minteq indicated that several Cu minerals were oversaturated in the leachate, thus mineral precipitation could be responsible for declining amounts of Cu in the leachate. Adsorption to iron oxides was found to be a probable explanation for the low mobility of Pb. A reasonably good agreement between regression models and field values were achieved for Ni, Pb, Zn, and Cu, while the models for Cd and Cr were less promising. Even though a large part of the variation (R2=61-97%) in the leaching experiment could be explained by only pH and L/S, field data were much more scattered than expected from field pH.

  4. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.

    Science.gov (United States)

    Oehmig, Wesley N; Roessler, Justin G; Zhang, Jianye; Townsend, Timothy G

    2015-01-01

    The recovery of ferrous and non-ferrous metals from waste to energy (WTE) ash continues to advance as the sale of removed metals improves the economics of waste combustion. Published literature suggests that Fe and Fe oxides play a role in suppressing Pb leaching in the Toxicity Characteristic Leaching Procedure (TCLP); further removal of ferrous metals from WTE ashes may facilitate higher Pb leaching under the TCLP. Eight WTE bottom ash size-fractions, from three facilities, were evaluated to assess the effect of metallic Fe addition and ferrous metal removal on TCLP leaching. Metallic Fe addition was demonstrated to reduce Pb leaching; the removal of ferrous metals by magnet resulted in a decrease in total available Pb (mg/kg) in most ash samples, yet Pb leachability increased in 5 of 6 ash samples. The research points to two chemical mechanisms to explain these results: redox interactions between Pb and Fe and the sorption of soluble Pb onto Fe oxide surfaces, as well as the effect of the leachate pH before and after metals recovery. The findings presented here indicate that generators, processors, and regulators of ash should be aware of the impact ferrous metal removal may have on Pb leaching, as a substantial increase in leaching may have significant implications regarding the management of WTE ashes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Alteration of municipal solid waste incineration bottom ash focusing on the evolution of iron-rich constituents.

    Science.gov (United States)

    Wei, Yunmei; Shimaoka, Takayuki; Saffarzadeh, Amirhomayoun; Takahashi, Fumitake

    2011-01-01

    Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of Fe-rich constituents. The behaviors of these constituents, such as dissolution and precipitation, are quite important as they regulate the distribution of a series of ions between the liquid (percolated fluid) and solid (ash deposit) phases. This paper studied both fresh and weathered MSWI bottom ash from the mineralogical and geochemical viewpoint by utilizing optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and powder X-ray diffraction. The analysis results revealed that for the fresh bottom ash, iron preferentially existed in the chemical forms of spinel group (mainly Fe(3)O(4), and a series of Al- or Ti- substituted varieties), metallic inclusions (including Fe-P, Fe-S, Fe-Cu-Pb), hematite (Fe(2)O(3)) and unburned iron pieces. In the 1-20 years weathered bottom ash collected from a landfill site, interconversions among these Fe-rich constituents were identified. Consequently, numerous secondary products were developed, including goethite (α-FeOOH), lepidocrocite (γ-FeOOH), hematite, magnetite, wustite (FeO), Fe-Si-rich gel phase. Of all these transformation products, hydrous iron oxides were the most common secondary minerals. Quantitative chemical analysis of these secondary products by SEM/EDX disclosed a strong association between the newly formed hydrous iron oxides and heavy metals (e.g. Pb, Zn, Ni, and Cu). The results of this study suggest that the processes of natural weathering and secondary mineralization contribute to reduction of the potential risks of heavy metals to the surrounding environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    OpenAIRE

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (...

  7. Metal leachability, heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in fly and bottom ashes of a medical waste incineration facility.

    Science.gov (United States)

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Fiotakis, Konstantinos; Gotsis, George

    2008-06-01

    Medical waste from hospitals and other healthcare institutions has become an imperative environmental and public safety problem. Medical waste in Greece has become one of the most urgent environmental problems, because there are 14,000 tons produced annually, of which only a small proportion is incinerated. In the prefecture of Attica there is only one modern municipal medical waste incinerator (started 2004) burning selected infectious hospital waste (5-6 tons day(-1)). Fly and bottom residues (ashes) are collected and stored temporarily in barrels. High values of metal leachability prohibit the landfilling of these ashes, as imposed by EU directives. In the present study we determined quantitatively the heavy metals and other elements in the fly and bottom ashes of the medical waste incinerator, by inductively coupled plasma emission spectrometry (ICP) and by energy dispersive X-ray analysis (EDAX). Heavy metals, which are very toxic, such as Pb, Cd, Ni, Cr, Cu and Zn were found in high concentrations in both fly and bottom ashes. Metal leachability of fly and bottom ashes by water and kerosene was measured by ICP and the results showed that toxic metals in both ashes, such as Pb, Cr, Cd, Cu and Zn, have high leaching values. These values indicate that metals can become soluble and mobile if ash is deposited in landfills, thus restricting their burial according to EU regulations. Analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in fly and bottom ashes showed that their concentrations were very low. This is the first known study in Greece and the results showed that incineration of medical waste can be very effective in minimizing the most hazardous and infectious health-care waste. The presence of toxic metals with high leachability values remains an important draw back of incineration of medical waste and various methods of treating these residues to diminish leaching are been considered at present to overcome this serious technical

  8. Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Nithiya, Arumugam; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2018-03-01

    In the present research, municipal solid waste incineration (MSWI) bottom ash (BA) residues from three incinerators (N, K, and R) in Japan were collected for hydrogen gas generation purpose. The samples were split into four particle size fractions: (1) d≤0.6, (2) 0.6≤d≤1.0, (3) 1.0≤d≤2.0, and (4) 2.0≤d≤4.75mm for the characterization of metal aluminum, the relationship between the present metal aluminum and hydrogen gas production, and the influence of external metal aluminum on the enhancement of hydrogen gas. The batch experiments were performed for each BA fraction under agitated (200rpm) and non-agitated conditions at 40°C for 20days. The highest amount of hydrogen gas (cumulative) was collected under agitation condition that was 39.4, 10.0, and 8.4 L/kg of dry ash for N2, R2, and K2 (all fraction 2), respectively. To take the benefit of the BA high alkalinity (with initial pH over 12), 0.1 and 1g of household aluminum foil were added to the fractions 2 and 3. A Significantly larger amount of hydrogen gas was collected from each test. For 0.1g of aluminum foil, the cumulative amount of gas was in the range of 62 to 78 L/kg of dry ash and for 1g of aluminum foil the cumulative amount of hydrogen was in the range of 119-126 L/kg of dry ash. This indicated that the hydrogen gas yield was significantly a function of supplementary aluminum and the intrinsic alkaline environment of the BA residues rather than ash source or particle size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.

    Science.gov (United States)

    Dabo, David; Badreddine, Rabia; De Windt, Laurent; Drouadaine, Ivan

    2009-12-30

    The use of municipal solid waste incineration (MSWI) bottom ash for road and car-park construction is an appropriate solution to reduce their disposal and the consumption of natural materials. In addition to leaching tests, the environmental impact assessment of such a waste recycling scenario critically needs for reliable long-term field data. This paper addresses a 10-year pilot site where MSWI bottom ashes have been used as road aggregates in Northern France (oceanic temperate climate). The paper focuses on the long-term evolution of leachate chemistry and the mineralogical transformations of MSWI bottom ash over 10 years. Data interpretation is supported by geochemical modeling in terms of main pH-buffering processes. The leachate pH and concentrations in major elements (Ca, Na and Cl) as well as in Al and heavy metals (Cu, Pb and Zn) quickly drop during the first 2 years to asymptotically reach a set of minimum values over 10 years; similar to those of a reference road built with natural calcareous aggregates. SO(4) release makes exception with a slightly increasing trend over time. Carbonation induced by CO(2) inputs, which leads to the successive dissolution of portlandite, CSH and ettringite, is one of the main phenomenon responsible for the geochemical evolution of leachate. On the other hand, mineralogical observations and batch tests demonstrate a relative stability of the MSWI bottom ash inside the subbase layer. In particular, carbonation may be far to be completed and still in progress after 10 years. This is consistent with preferential rainwater flow and dilution at the road edges combined to diffusion inside the subbase layer.

  10. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay.

    Science.gov (United States)

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Ran, Cai-Ling

    2015-04-01

    The mutagenic potential of leachates derived from the bottom ash of a municipal solid waste incinerator in Taiwan were evaluated using an Ames Salmonella mutagenicity assay with three standard tester strains, TA98, TA100, and TA1535. Three types of leachants, leachant A (pH 4.93), leachant B (pH 2.88), and leachant C (deionized water, pH 6.0), were carried out according to toxicity characteristic leaching procedure (TCLP). Moreover, two types of bottom ash, nonsieved and sieved bottom ash (particle size bottom ash were all below the limits set by Taiwanese regulations. However, leachate A from nonsieved and bottom ash showed mutagenicity. Moreover, leachate A from bottom ash displayed stronger mutagenicity than that from nonsieved ash. The leachate A from bottom ash, that were diluted by 100-fold showed no mutagenicity. In conclusion, our results suggested that the chemical composition and mutagenic potential of leachates should be monitored to evaluate the safety of bottom ash. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Geotechnical engineering properties of incinerator ash mixes.

    Science.gov (United States)

    Muhunthan, B; Taha, R; Said, J

    2004-08-01

    The incineration of solid waste produces large quantities of bottom and fly ash. Landfilling has been the primary mode of disposal of these waste materials. Shortage in landfill space and the high cost of treatment have, however, prompted the search for alternative uses of these waste materials. This study presents an experimental program that was conducted to determine the engineering properties of incinerator ash mixes for use as construction materials. Incinerator ash mixes were tested as received and around optimum compacted conditions. Compaction curves, shear strength, and permeability values of fly ash, bottom ash, and their various blends were investigated. Bottom ash tends to achieve maximum dry density at much lower water content than does fly ash. The mixes displayed a change in their cohesion and friction angle values when one of the two mix components was altered or as a result of the addition of water. The permeability of bottom ash is quite comparable to that of sand. The permeability of fly ash lies in the range of those values obtained for silts and clays. A 100% bottom ash compacted at the optimum water content has a lower density value and yields a higher friction angle and cohesion values than most construction fills. This would encourage the use of bottom ash as a fill or embankment material because free drainage of water will prevent the buildup of pore water pressures.

  12. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.

    2010-01-01

    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  13. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration.

    Science.gov (United States)

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-11-02

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash.

  14. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    Directory of Open Access Journals (Sweden)

    Po-Wen Chen

    2016-11-01

    Full Text Available Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA. We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash.

  15. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration

    Science.gov (United States)

    Chen, Po-Wen; Liu, Zhen-Shu; Wun, Min-Jie; Kuo, Tai-Chen

    2016-01-01

    Two incinerators in Taiwan have recently attempted to reuse the fly and bottom ash that they produce, but the mutagenicity of these types of ash has not yet been assessed. Therefore, we evaluated the mutagenicity of the ash with the Ames mutagenicity assay using the TA98, TA100, and TA1535 bacterial strains. We obtained three leachates from three leachants of varying pH values using the toxicity characteristic leaching procedure test recommended by the Taiwan Environmental Protection Agency (Taiwan EPA). We then performed the Ames assay on the harvested leachates. To evaluate the possible relationship between the presence of heavy metals and mutagenicity, the concentrations of five heavy metals (Cd, Cr, Cu, Pb, and Zn) in the leachates were also determined. The concentrations of Cd and Cr in the most acidic leachate from the precipitator fly ash and the Cd concentration in the most acidic leachate from the boiler fly ash exceeded the recommended limits. Notably, none of the nine leachates extracted from the boiler, precipitator, or bottom ashes displayed mutagenic activity. This data partially affirms the safety of the fly and bottom ash produced by certain incinerators. Therefore, the biotoxicity of leachates from recycled ash should be routinely monitored before reusing the ash. PMID:27827867

  16. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Vadenbo, Carl; Boldrin, Alessio

    2015-01-01

    scrap metals may limit recycling potential, and the utilisation of aggregates may cause the release of toxic substances into the natural environment through leaching. A life cycle assessment (LCA) was applied to a full-scale MSWI bottom ash management and recovery system to identify environmental...... breakeven points beyond which the burdens of the recovery processes outweigh the environmental benefits from valorising metals and mineral aggregates. Experimental data for the quantity and quality of individual material fractions were used as a basis for LCA modelling. For the aggregates, three disposal......, while large savings were obtained in terms of non-toxic impacts. However, by varying the substitution rate for aluminium recycling between 0.35 and 0.05 (on the basis of aluminium scrap and secondary aluminium alloy market value), it was found that the current recovery system might reach a breakeven...

  17. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles

    Science.gov (United States)

    Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.

    2007-12-01

    Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.

  18. Evaluation of the leaching behavior of incineration bottom ash using seawater: A comparison with standard leaching tests.

    Science.gov (United States)

    Lin, Wenlin Yvonne; Heng, Kim Soon; Nguyen, Minh Quan; Ho, Jin Rui Ivan; Mohamed Noh, Omar Ahmad Bin; Zhou, Xue Dong; Liu, Alec; Ren, Fei; Wang, Jing-Yuan

    2017-04-01

    Batch and column tests were conducted on untreated incineration bottom ash (IBA) samples from two incineration plants in Singapore, using seawater as the leachant. The main objective of this study was to investigate the change in the leaching behavior of certain elements (i.e. As, Cd, Cr, Cu, Ni, Pb, Sb, Se and Zn) when IBA comes into contact with seawater. Such an investigation using seawater as leachant was not commonly carried out when investigating leaching behavior in IBA. The leaching tests were then carried out on the same IBA samples using DI water, as a comparison. Lower level of leaching was observed for Pb and Zn when seawater was used as the leachant. Cr and Sb showed significant cumulative release at Liquid-to-Solids (L/S) ratio 5 in the seawater column leaching. The influence of Dissolved Organic Carbon (DOC) on Cu leaching seems to decrease after L/S 2 when using seawater in the column test. Although the leaching behavior of IBA was affected when seawater was used, for the column test, there was no significant difference during the initial release when compared to DI water. The initial L/S fractions collected were important as the low L/S ratios represent the pore water concentration and the maximum output in an actual application. The results from this study would be useful for the future study on using IBA in marine applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Directory of Open Access Journals (Sweden)

    Qingna Kong

    2016-01-01

    Full Text Available Municipal solid waste incinerator (MSWI bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  20. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  1. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  2. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.

    Science.gov (United States)

    Hyks, Jiri; Astrup, Thomas

    2009-08-01

    Leaching of metals and Cl from fresh, naturally aged, and lab-scale aged bottom ashes generated during full-scale incineration experiments with different operational conditions (OC) and waste input (WI) was assessed. Although significant differences in the bulk contents of the generated bottom ashes were observed between the individual experiments, addition of 5.5 wt.% PVC, 11.1 wt.% chromated-copper-arsenate impregnated wood, 14.2 wt.% automotive shredder residue, 1.6 wt.% shoes, and 0.5 wt.% batteries to the normal municipal solid waste received at the incinerator (in six individual experiments) had no significant effect on metal leaching from the bottom ash. Likewise, changes in OC (furnace oxygen level and air distribution) could not be correlated to changes in leaching. The effects on metal leaching from ageing were generally larger than the effects from changes in OC and WI. Ash ageing caused a significant decrease in leaching of Cu, Zn, and Pb while leaching of Sb and particularly Cr increased. For Cl, a clear correlation between the bulk contents and leaching was observed for bottom ash generated in experiments with changes in WI. Comparison of leaching data obtained in this study with leaching from "typical" aged Danish bottom ash revealed no significant differences when the typical variations in leaching data over time and between different Danish incinerators were accounted. Generally, this indicates that metal leaching from bottom ash is not sensitive to limited changes in WI and OC as suggested in this paper, only Cl(-) leaching appeared to be affected.

  3. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-01-01

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm 3 , weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  4. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Monotonic aspects of the mechanical behaviour of bottom ash from municipal solid waste incineration and its potential use for road construction.

    Science.gov (United States)

    Becquart, Frederic; Bernard, Fabrice; Abriak, Nor Edine; Zentar, Rachid

    2009-04-01

    Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.

  6. Evaluation of the genotoxic, mutagenic and oxidant stress potentials of municipal solid waste incinerator bottom ash leachates.

    Science.gov (United States)

    Radetski, C M; Ferrari, B; Cotelle, S; Masfaraud, J-F; Ferard, J F

    2004-10-15

    Triplicate aqueous leachates of a municipal solid waste incineration bottom ash (MSWIBA) were produced according to a European standardised method. Leachates analysis showed relatively low concentrations (less than 1 mg.l(-1)) for four metals (iron, cadmium, lead and copper). No mutagenic activity was revealed after performing the Salmonella/microsome assay with and without microsomal activation. With the Vicia root tip micronucleus assay, a significant increase in micronucleated cells was observed between 3.4% and 100% leachate concentration. Significant and elevated antioxidant stress enzyme activities, e.g., superoxide dismutase (SOD), catalase (CAT), peroxidase (PER) and glutathione reductase (GR), were detected in Vicia root tissues even at the lowest tested leachate concentration (i.e., 0.3%), whereas this was not always the case in leaf tissues, which showed tissue specificity for the tested enzymes. At the lowest concentration (i.e., 0.3%), a higher increase was observed (respectively 197% and 45% compared to the control) for root glutathione reductase and peroxidase activities over those of other enzymes (superoxide dismutase and catalase). Our results suggest that MSWIBA aqueous leachates need to be formally tested with genotoxic sensitive tests before recycling and support the hypothesis that plant genotoxicity is related to the cellular production of reactive oxygen species (ROS).

  7. Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods.

    Science.gov (United States)

    Yin, Ke; Dou, Xiaomin; Ren, Fei; Chan, Wei-Ping; Chang, Victor Wei-Chung

    2018-02-15

    Bottom ashes generated from municipal solid waste incineration have gained increasing popularity as alternative construction materials, however, they contains elevated heavy metals posing a challenge for its free usage. Different leaching methods are developed to quantify leaching potential of incineration bottom ashes meanwhile guide its environmentally friendly application. Yet, there are diverse IBA applications while the in situ environment is always complicated, challenging its legislation. In this study, leaching tests were conveyed using batch and column leaching methods with seawater as opposed to deionized water, to unveil the metal leaching potential of IBA subjected to salty environment, which is commonly encountered when using IBA in land reclamation yet not well understood. Statistical analysis for different leaching methods suggested disparate performance between seawater and deionized water primarily ascribed to ionic strength. Impacts of leachant are metal-specific dependent on leaching methods and have a function of intrinsic characteristics of incineration bottom ashes. Leaching performances were further compared on additional perspectives, e.g. leaching approach and liquid to solid ratio, indicating sophisticated leaching potentials dominated by combined geochemistry. It is necessary to develop application-oriented leaching methods with corresponding leaching criteria to preclude discriminations between different applications, e.g., terrestrial applications vs. land reclamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Maresca, Alberto; Olsson, Mikael Emil

    2014-01-01

    .2%ww for NFe. Considerable non-recovered resource potential was found in fine fraction (below 2mm), where approximately 12% of the total NFe potential in the BA were left. REEs were detected in the ashes, but the levels were two or three orders of magnitude lower than typical ore concentrations...

  9. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  10. Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results.

    Science.gov (United States)

    Di Gianfilippo, Martina; Hyks, Jiri; Verginelli, Iason; Costa, Giulia; Hjelmar, Ole; Lombardi, Francesco

    2018-03-01

    Several types of standardized laboratory leaching tests have been developed during the past few decades to evaluate the leaching behaviour of waste materials as a function of different parameters, such as the pH of the eluate and the liquid to solid ratio. However, the link between the results of these tests and leaching data collected from the field (e.g. in disposal or reuse scenarios) is not always straightforward. In this work, we compare data obtained from an on-going large scale field trial, in which municipal solid waste incineration bottom ash is being tested as road sub-base material, with the results obtained from percolation column and pH-dependence laboratory leaching tests carried out on the bottom ash at the beginning of the test. The comparisons reported in this paper show that for soluble substances (e.g. Cl, K and SO 4 ), percolation column tests can provide a good indication of the release expected in the field with deviations usually within a factor of 3. For metals characterized by a solubility-controlled release, i.e. that depends more on eluate pH than the liquid to solid ratio applied, the results of pH-dependence tests describe more accurately the eluate concentration trends observed in the field with deviations that in most cases (around 80%) are within one order of magnitude (see e.g. Al and Cd). The differences between field and lab-scale data might be in part ascribed to the occurrence in the field of weathering reactions (e.g. carbonation) but also to microbial decomposition of organic matter that modifying leachate pH affect the solubility of several constituents (e.g. Ca, Ba and Cr). Besides, weathering reactions can result in enhanced adsorption of fulvic acids to iron/aluminum (hydr)oxides, leading to a decrease in the leaching of fulvic acids and hence of elements such as Cu, Ni and Pb that strongly depend on DOC leaching. Overall, this comparison shows that percolation column tests and pH-dependence tests can represent a reliable

  11. Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content.

    Czech Academy of Sciences Publication Activity Database

    Košnář, Z.; Mercl, F.; Perná, Ivana; Tlustoš, P.

    563-564, SEP 1 (2016), s. 53-61 ISSN 0048-9697 Institutional support: RVO:67985891 Keywords : PAHs * biomass combustion * ashes * incineration temperature * combustibles Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 4.900, year: 2016

  12. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  13. Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk.

    Science.gov (United States)

    Rigo, Chiarafrancesca; Zamengo, Luca; Rampazzo, Giancarlo; Argese, Emanuele

    2009-10-01

    Bottom ash from a municipal solid waste incinerator on a former contaminated site, the island of Sacca San Biagio (Lagoon of Venice), was examined in order to evaluate levels of pollutants and their potential mobility and availability. Heavy metal concentrations were determined and the actual contamination of the site was compared with national legislation on polluted sites. The site was mainly contaminated by zinc, copper and lead. Physico-chemical characterization of bottom ash was carried out by SEM (Scanning Electron Microscopy) with micro-analysis by EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffractometry), for information on newly formed minerals. SEM-EDS analysis revealed the presence of particles, compounds and clusters containing heavy metals and, in particular, the presence of barium sulfate, which was assumed to be a site-specific compound. Similarities between bottom ash and atmospheric PM10 collected on the adjacent island of Sacca Fisola were studied and a risk of aerodispersion of the fine fraction of ash was assumed. Lastly, in order to evaluate the potentially available fraction of metals (non-residual fraction) and the directly exchangeable fraction, two single extraction procedures with HCl and citric acid were carried out, respectively. Results showed a relatively low concentration of readily phyto-available metals, as well as the high concentrations found for some heavy metals (Cu, Pb, Zn) in the potentially mobilizable fraction.

  14. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.

    Science.gov (United States)

    Sormunen, Laura Annika; Kolisoja, Pauli

    2017-06-01

    The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base

  15. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    Science.gov (United States)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested

  16. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of idfferent carbon species

    NARCIS (Netherlands)

    Rocca, S.; Zomeren, van A.; Costa, G.; Dijkstra, J.J.; Comans, R.N.J.; Lombardi, F.

    2013-01-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA

  17. Assessing the effects of municipal solid waste incinerator bottom ash on the decomposition of biodegradable waste using a completely mixed anaerobic reactor.

    Science.gov (United States)

    Banks, Charles J; Lo, Huang-Mu

    2003-06-01

    Experimental lab scale anaerobic reactors were used to assess the effect of municipal solid waste incinerator (MSWI) bottom ash on the process of biodegradation of organic materials typical of those found in municipal solid waste (MSW). Three reactors were used in the trial and each of these received the same daily organic load of simulated MSW but varying loads of MSWI bottom ash. The reactors were monitored over a period of 200 days for pH, alkalinity, volatile acids, total organic carbon (TOC), biogas production, gas composition and heavy metals. The addition of ash appeared to have beneficial effects on the degradation process as there was an increase in gas production, alkalinity, and pH, coupled with a decrease in the TOC concentration of leachate when compared with a control reactor without MSWI ash addition. After 200 days operation, the alkalinity and gas production in the anaerobic reactor receiving 6g ash per day was twice that of the reactor receiving 3g of ash per day and four times that of the control reactor. A number of tests were carried out on the ash sample to investigate the possible reasons for enhancement of the biodegradative process. These included a shake flask batch leaching test using distilled water, determination of the acid neutralising capacity by titration curve, and the quantification of six heavy metals and four light metals. In the reactors receiving ash the concentrations of Ca, Na, K, Mg ions were found to be significantly higher and these may provide a higher alkalinity which could promote the digestion process. Soluble concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were in the range of 0.02-0.2, 0.01-2.5, 0.01-0.3, 0.01-1, 0.01-1.2, and 0.01-1 mgl(-1) respectively and at these concentrations it is unlikely that they would prove inhibitory to the digestion process.

  18. Influence of moisture content and temperature on degree of carbonation and the effect on Cu and Cr leaching from incineration bottom ash.

    Science.gov (United States)

    Lin, Wenlin Yvonne; Heng, Kim Soon; Sun, Xiaolong; Wang, Jing-Yuan

    2015-09-01

    This study investigated the influence of moisture content and temperature on the degree of carbonation of municipal solid waste (MSW) incineration bottom ash (IBA) from two different incineration plants in Singapore. The initial rate of carbonation was affected by the nominal moisture content used. Carbonation temperature seemed to play a part in changing the actual moisture content of IBA during carbonation, which in turn affected the degree of carbonation. Results showed that 2h of carbonation was sufficient for the samples to reach a relatively high degree of carbonation that was close to the degree of carbonation observed after 1week of carbonation. Both Cu and Cr leaching also showed significant reduction after only 2h of carbonation. Therefore, the optimum moisture content and temperature were selected based on 2h of carbonation. The optimum moisture content was 15% for both incineration plants while the optimum temperature was different for the two incineration plants, at 35°C and 50°C. The effect on Cu and Cr leaching from IBA after accelerated carbonation was evaluated as a function of carbonation time. Correlation coefficient, Pearson's R, was used to determine the dominant leaching mechanism. The reduction in Cu leaching was found to be contributed by both formation of carbonate mineral and reduction of DOC leaching. On the other hand, Cr leaching seemed to be dominantly controlled by pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    Science.gov (United States)

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  20. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2mm) and industrial powder wastes by cold-bonding pelletization.

    Science.gov (United States)

    Tang, P; Brouwers, H J H

    2017-04-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0-2mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination of these solid wastes, and the properties of these artificial aggregates are investigated and then compared with others' results reported in literature. Additionally, methods for improving the aggregate properties are suggested, and the corresponding experimental results show that increasing the BAF amount, higher binder content and addition of polypropylene fibres can improve the pellet properties (bulk density, crushing resistance, etc.). The mechanisms regarding to the improvement of the pellet properties are discussed. Furthermore, the leaching behaviours of contaminants from the produced aggregates are investigated and compared with Dutch environmental legislation. The application of these produced artificial lightweight aggregates are proposed according to their properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Variation of the phytotoxicity of municipal solid waste incinerator bottom ash on wheat (Triticum aestivum L.) seed germination with leaching conditions.

    Science.gov (United States)

    Phoungthong, Khamphe; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2016-03-01

    Municipal solid waste incinerator bottom ash (MSWIBA) has long been regarded as an alternative building material in the construction industry. However, the pollutants contained in the bottom ash could potentially leach out and contaminate the local environment, which presents an obstacle to the reuse of the materials. To evaluate the environmental feasibility of using MSWIBA as a recycled material in construction, the leaching derived ecotoxicity was assessed. The leaching behavior of MSWIBA under various conditions, including the extractant type, leaching time, liquid-to-solid (L/S) ratio, and leachate pH were investigated, and the phytotoxicity of these leachates on wheat (Triticum aestivum L.) seed germination was determined. Moreover, the correlation between the germination index and the concentrations of various chemical constituents in the MSWIBA leachates was assessed using multivariate statistics with principal component analysis and Pearson's correlation analysis. It was found that, heavy metal concentrations in the leachate were pH and L/S ratio dependent, but were less affected by leaching time. Heavy metals were the main pollutants present in wheat seeds. Heavy metals (especially Ba, Cr, Cu and Pb) had a substantial inhibitory effect on wheat seed germination and root elongation. To safely use MSWIBA in construction, the potential risk and ecotoxicity of leached materials must be addressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A two-stage treatment for Municipal Solid Waste Incineration (MSWI) bottom ash to remove agglomerated fine particles and leachable contaminants.

    Science.gov (United States)

    Alam, Qadeer; Florea, M V A; Schollbach, K; Brouwers, H J H

    2017-09-01

    In this lab study, a two-stage treatment was investigated to achieve the valorization of a municipal solid waste incineration (MSWI) bottom ash fraction below 4mm. This fraction of MSWI bottom ash (BA) is the most contaminated one, containing potentially toxic elements (Cu, Cr, Mo and Sb), chlorides and sulfates. The BA was treated for recycling by separating agglomerated fine particles (≤125µm) and soluble contaminants by using a sequence of sieving and washing. Initially, dry sieving was performed to obtain BA-S (≤125µm), BA-M (0.125-1mm) and BA-L (1-4mm) fractions from the original sample. The complete separation of fine particles cannot be achieved by conventional sieving, because they are bound in a cementitious matrix around larger BA grains. Subsequently, a washing treatment was performed to enhance the liberation of the agglomerated fine particles from the BA-M and BA-L fractions. These fine particles were found to be similar to the particles of BA-S fraction in term of chemical composition. Furthermore, the leaching behavior of Cr, Mo Sb, chlorides and sulfates was investigated using various washing parameters. The proposed treatment for the separation of agglomerated fine particles with dry sieving and washing (L/S 3, 60min) was successful in bringing the leaching of contaminants under the legal limit established by the Dutch environmental norms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fresh Bottom Ash Characteristics Dependence on Fractional Composition

    OpenAIRE

    Jurgita Seniūnaitė; Saulius Vasarevičius

    2017-01-01

    Waste incineration process generates two main by-products streams: fly ash and bottom ash. Bottom ash is composed of a variety of oxides, heavy metals and salts. Chemical materials distributed unevenly in different fractions of bottom ash. This study investigates the heavy metals (Pb, Cd) content dependence of bottom ash and fraction composition. Studies were performed with five different fractions (0–2 mm; 2–5.6 mm; 5.6–11.2 mm; 11.2–22,4 mm; 22.4–40 mm) of fresh bottom ash. After a one-step...

  4. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  5. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.

    Science.gov (United States)

    Inanc, Bulent; Inoue, Yuzo; Yamada, Masato; Ono, Yusaku; Nagamori, Masanao

    2007-03-22

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.

  6. Vitrified bottom ash slag from municipal solid waste incinerators - Phase relations of CaO-SiO2-Na20 oxide system

    NARCIS (Netherlands)

    Zhang, Z.; Xiao, Y.; Yang, Y.; Boom, R.; Voncken, J.H.L.

    2009-01-01

    Vitrification is considered to be an attractive technology for bottom ash treatment because it destroys the hazardous organics, contributes to immobilization of the heavy metals, and additionally it reduces drastically the volume. The main components of the vitrified bottom ash slag are SiO2 , CaO,

  7. Metal recovery from municipal solid waste incineration bottom ash (MSWIBA): state of the art, potential and environmental benefits

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Holtze, Maria S.; Astrup, Thomas Fruergaard

    Incineration has a central role in the waste management system in Denmark (e.g. 52% of the household waste) resulting in approximately 726000t of solid residues each year. However, the targets imposed by the Danish Waste Strategy and the increasing discussions about resource in waste raise an issue...... on resource losses through waste incineration. In this framework, this study provides actual data on the state of the art of the recovery of resource in MSWIBA in Denmark (i.e. metals), on the potential for further recovery and on the environmental benefits or burdens assessed through the Life Cycle...

  8. Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part I: The hydrology of Landfill Lostorf, Switzerland

    Science.gov (United States)

    Johnson, C. Annette; Richner, Gérald A.; Vitvar, Tomas; Schittli, Nina; Eberhard, Mark

    1998-10-01

    The objective of the investigation of the municipal solid waste incinerator (MSWI) bottom ash landfill, Landfill Lostorf, was to determine the residence time of water in the landfill and the flow paths through the landfill. Over a period of 22 months, measurements of rainfall, landfill discharge and leachate electrical conductivity were recorded and tracer experiments made. Over the yearly period 1995, approximately 50% of the incident rainfall was measured in the discharge. An analysis of single rain events showed that in winter, 90-100% of rainfall was expressed in the landfill discharge, whereas in summer months, the value was between 9 and 40% depending on the intensity of the rain event. The response to rainfall was rapid. Within 30-100 h, approximately 50% of water discharged in response to a rain event had left the landfill. The discharge was less than 4 l/min for approximately 50% of the measurement periods. Qualitative tracer studies with fluorescein, pyranine and iodide clearly showed the existence of preferential flow paths. This was further substantiated by quantitative tracer studies of single rain events using 18O/ 16O ratios and electrical conductivity measurements. The proportion of rainwater passing directly through the landfill was found to be between 20 and 80% in summer months and around 10% in winter months. The difference has been ascribed to the water content in the landfill. The average residence time of the water within the landfill has been estimated to be roughly 3 years and this water is the predominant component in the discharge over a yearly period.

  9. The Effects of Bottom Ash from MSWI Used as Mineral Additions in Concrete

    Directory of Open Access Journals (Sweden)

    Che Amat Roshazita

    2017-01-01

    Full Text Available Municipal solid waste incinerators (MSWI produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85–90 % of the solid product resulting from MSW combustion. The aimed of the present work is to study the effect of replacing partial of bottom ash were manufactured. Fresh and hardened properties of the concrete were compared in order to study the suitable cement-bottom ash replacement. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement. However at more than 10 % replacement, the addition of bottom ash greatly affected strength.

  10. Influence of bacteria on lanthanide and actinide transfer from specific soil components (humus, soil minerals and vitrified municipal solid waste incinerator bottom ash) to corn plants: Sr-Nd isotope evidence

    Energy Technology Data Exchange (ETDEWEB)

    Aouad, Georges [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Stille, Peter [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)]. E-mail: pstille@illite.u-strasbg.fr; Crovisier, Jean-Louis [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France); Geoffroy, Valerie A. [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Meyer, Jean-Marie [UMR 7156 Universite Louis-Pasteur/CNRS, Genetique Moleculaire, Genomique Microbiologie, Departement Micro-organisme, Genomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex (France); Lahd-Geagea, Majdi [Ecole et Observatoire des Sciences de la Terre, Centre de Geochimie de la Surface/CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg Cedex (France)

    2006-11-01

    Experiments have been performed to test the stability of vitrified municipal solid waste (MSW) incinerator bottom ash under the presence of bacteria (Pseudomonas aeruginosa) and plants (corn). The substratum used for the plant growth was a humus-rich soil mixed with vitrified waste. For the first time, information on the stability of waste glasses in the presence of bacteria and plants is given. Results show that inoculated plant samples contained always about two times higher lanthanide and actinide element concentrations. Bacteria support the element transfer since plants growing in inoculated environment developed a smaller root system but have higher trace element concentrations. Compared with the substratum, plants are light rare earth element (LREE) enriched. The vitrified bottom ash has to some extent been corroded by bacteria and plant activities as indicated by the presence of Nd (REE) and Sr from the vitrified waste in the plants. {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd isotope ratios of plants and soil components allow the identification of the corroded soil components and confirm that bacteria accelerate the assimilation of elements from the vitrified bottom ash. These findings are of importance for landfill disposal scenarios, and similar experiments should be performed in order to better constrain the processes of microbially mediated alteration of the MSW glasses in the biosphere.

  11. Fresh Bottom Ash Characteristics Dependence on Fractional Composition

    Directory of Open Access Journals (Sweden)

    Jurgita Seniūnaitė

    2017-09-01

    Full Text Available Waste incineration process generates two main by-products streams: fly ash and bottom ash. Bottom ash is composed of a variety of oxides, heavy metals and salts. Chemical materials distributed unevenly in different fractions of bottom ash. This study investigates the heavy metals (Pb, Cd content dependence of bottom ash and fraction composition. Studies were performed with five different fractions (0–2 mm; 2–5.6 mm; 5.6–11.2 mm; 11.2–22,4 mm; 22.4–40 mm of fresh bottom ash. After a one-step leaching test (distilled water was used as a solvent, was determinate, that highest concentrations of the lead (Pb (from 0.141 to 0.146 mg/l are leached from the smallest (0–2 mm 2–5.6 mm bottom ash fractions particles. Heavy metals concentration in these fractions eluates respectively was 2.83 and 2.91 times higher than the limit value of leaching. The highest concentration of cadmium (4.214 mg/l was determinate in 0–2 mm fraction bottom ash eluate. concentration of cadmium was 1.40 times higher than the limit value of leaching. It can be concluded that 0–2 mm; 2–5.6 mm fraction bottom ash can’t be used in civil engineering, without pre-treatment (eg. washing or aging.

  12. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  13. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  14. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  15. The Effects of Bottom Ash from MSWI Used as Mineral Additions in Concrete

    OpenAIRE

    Che Amat Roshazita; Ismail Khairul Nizar; Mohamed Noor Norazian; Mohamad Ibrahim Norlia

    2017-01-01

    Municipal solid waste incinerators (MSWI) produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85–90 % of the solid product resulting from MSW combustion. The aimed of the present work is to study the effect of replacing partial of bottom ash were manufactured. Fresh and hardened properties of the concrete were compared in order to study the suitable cement-bottom ash replacement. Bottom ash was found to have some reactivity, but without greatly aff...

  16. Study of slag content and properties after plasma melting of incineration ash

    Science.gov (United States)

    Park, Hyun-Seo

    2011-06-01

    The paper presents the investigation of plasma melting of the mixed bottom and fly incineration ash at various mixing ratios of the components. Chemical compound of the bottom and fly ash as well as the slag after its melting was analyzed by different methods, and the content of toxic components in them was determined. It is demonstrated that the direct disposal of the fly and bottom incineration ash may cause dioxin and heavy metal contamination of the environment. The influence of melted ash basicity on the resulting slag compound was studied. The mass balance of the melting process was defined. The tests were performed to determine the heavy-metals leaching from the ash and slag. It is also shown that the slag after plasma melting is dioxin-free and environmentally friendly.

  17. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  18. Formation of humic substances in weathered MSWI bottom ash.

    Science.gov (United States)

    Zhang, Haixia; Shimaoka, Takayuki

    2013-01-01

    The study aimed at evaluating the humic substances (HSs) content from municipal solid waste incinerator (MSWI) bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37°C and 50°C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na₄P₂O₇. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37°C and at 18th week under 50°C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50°C incubated condition compared with that incubated under 37°C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  19. Formation of Humic Substances in Weathered MSWI Bottom Ash

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2013-01-01

    Full Text Available The study aimed at evaluating the humic substances (HSs content from municipal solid waste incinerator (MSWI bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37∘C and 50∘C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37∘C and at 18th week under 50∘C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50∘C incubated condition compared with that incubated under 37∘C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  20. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    Science.gov (United States)

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna

  1. Acidic extraction and precipitation of heavy metals from biomass incinerator cyclone fly ash

    Directory of Open Access Journals (Sweden)

    Kröppl M.

    2013-04-01

    Full Text Available Biomass incineration is increasingly used for the generation of heat and/or electricity. After incineration two ash fractions remain. Bottom ashes (the coarser ash fraction can usually be used as fertilizing agent on fields as it contains valuable elements for soils and plants and only minor concentrations of heavy metals. Fly ashes (the finer ash fraction are in most cases disposed as their heavy metal concentrations are too high for a usage as soil enhancer. In this study highly heavy metal contaminated fly ash has been cleaned through extraction with hydrochloric acid. The heavy metals were removed from the extract by precipitation with sodium hydroxide. After the cleaning procedure the ash can be pelletized and be returned to the soils.

  2. Bioaccessibility and health risk of heavy metals in ash from the incineration of different e-waste residues.

    Science.gov (United States)

    Tao, Xiao-Qing; Shen, Dong-Sheng; Shentu, Jia-Li; Long, Yu-Yang; Feng, Yi-Jian; Shen, Chen-Chao

    2015-03-01

    Ash from incinerated e-waste dismantling residues (EDR) may cause significant health risks to people through ingestion, inhalation, and dermal contact exposure pathways. Ashes of four classified e-waste types generated by an incineration plant in Zhejiang, China were collected. Total contents and the bioaccessibilities of Cd, Cu, Ni, Pb, and Zn in ashes were measured to provide crucial information to evaluate the health risks for incinerator workers and children living in vicinity. Compared to raw e-waste in mixture, ash was metal-enriched by category incinerated. However, the physiologically based extraction test (PBET) indicates the bioaccessibilities of Ni, Pb, and Zn were less than 50 %. Obviously, bioaccessibilities need to be considered in noncancer risk estimate. Total and PBET-extractable contents of metal, except for Pb, were significantly correlated with the pH of the ash. Noncancer risks of ash from different incinerator parts decreased in the order bag filter ash (BFA) > cyclone separator ash (CFA) > bottom ash (BA). The hazard quotient for exposure to ash were decreased as ingestion > dermal contact > inhalation. Pb in ingested ash dominated (>80 %) noncancer risks, and children had high chronic risks from Pb (hazard index >10). Carcinogenic risks from exposure to ash were under the acceptable level (incinerated ash are made.

  3. Environmental assessment of the reuse of municipal solid waste incineration bottom ash in quarry backfilling; Evaluation environnementale de la valorisation de machefers d'incineration d'ordures menageres en remplissage de carriere

    Energy Technology Data Exchange (ETDEWEB)

    Brons-Laot, G.

    2002-10-15

    The leaching behaviour of three different MSWI bottom ashes-based materials containing hydraulic binders is assessed in the conditions specified by the quarry backfilling application. An adapted approach methodology is applied: - physical, mineralogical and chemical characterizations of materials, - use of parametric tests to determine the effect of main scenarios factors on the release, - chemical modelling based on mineralogical and experimental leaching data with geochemical calculation codes, - chemical reaction / transport coupled modelling. The main results demonstrate that: - the batch and dynamic tests allow to obtain enough data to model and to predict the long term behaviour, - the chemical modelling of the solid / liquid equilibrium permits the determination of the chemical reactions involved and the prediction of pollutants solubilization in different chemical contexts, - the new materials (source term) present a low environmental impact in the conditions specified by the considered scenarios. (author)

  4. Characterisation of MSWI bottom ash for potential use as subbase in Greenlandic road construction

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2012-01-01

    The waste management situation in Greenland needs to be improved. Most waste in towns is incinerated with only limited separation prior to incineration and the bottom ash residue is disposed of at uncontrolled disposal sites. The bottom ash could be a valuable resource within the expansion...... of infrastructure due to increased oil and mineral exploitation. Thus, in this study MSWI bottom ash from a Greenlandic incinerator was tested for possible reuse as subbase in road construction. The mechanical properties (grain size distribution, wear resistance and bearing capacity) showed that the bottom ash...... was acceptable for reuse after some small adjustments in the grain size distribution to prevent frost sensitivity. Results obtained from heavy metal content and heavy metal leaching complied with the Danish guideline values for reuse of waste materials in construction. Leaching of Cu and Cr was high from small...

  5. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios

    NARCIS (Netherlands)

    Rocca, S.; Zomeren, van A.; Costa, G.; Dijkstra, J.J.; Comans, R.N.J.; Lombardi, F.

    2012-01-01

    Thermal treatment of refuse derived fuel (RDF) in waste-to-energy (WtE) plants is considered a promising solution to reduce waste volumes for disposal, while improving material and energy recovery from waste. Incineration is commonly applied for the energetic valorisation of RDF, although RDF

  6. Cytotoxicity of municipal solid waste incinerator ash wastes toward mammalian kidney cell lines.

    Science.gov (United States)

    Huang, Wu-Jang; Tsai, Jia-Lin; Liao, Ming-Huei

    2008-05-01

    In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.

  7. Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox and Ames tests).

    Science.gov (United States)

    Mouchet, F; Gauthier, L; Mailhes, C; Jourdain, M J; Ferrier, V; Triffault, G; Devaux, A

    2006-02-15

    The management of contaminated soils and wastes is a matter of considerable human concern. The present study evaluates the genotoxic potential of aqueous extracts of two soils (leachates) and of bottom ash resulting from municipal solid waste incineration (MSWIBA percolate), using amphibian larvae (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic aromatic hydrocarbons and metals. MSWIBA was predominantly contaminated by metals. Two genotoxic endpoints were analysed in circulating erythrocytes taken from larvae: clastogenic and/or aneugenic effects (micronucleus induction) after 12 days of exposure and DNA-strand-breaking potency (comet assay) after 1 and 12 days of exposure. In addition, in vitro bacterial assays (Mutatox and Ames tests) were carried out and the results were compared with those of the amphibian test. Physicochemical analyses were also taken into account. Results obtained with the amphibians established the genotoxicity of the aqueous extracts and the comet assay revealed that they were genotoxic from the first day of exposure. The latter test could thus be considered as a genotoxicity-screening tool. Although genotoxicity persisted after 12 days' exposure, DNA damage decreased overall between days 1 and 12 in the MSWIBA percolate, in contrast to the soil leachates. Bacterial tests detected genotoxicity only for the leachate of soil A (Mutatox). The results confirm the ecotoxicological relevance of the amphibian model and underscore the importance of bioassays, as a complement to physico-chemical data, for risk evaluation.

  8. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    Science.gov (United States)

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  9. Bottom ash test section evaluation Erwinville, LA.

    Science.gov (United States)

    2009-02-01

    Bottom ash is a by-product of the energy industry and the residual of burning coal in a kiln : firing process. Bottom ash is black and the consistency of coarse sand with gravel clinker : traces. The product is used in other states as embankment mate...

  10. Chemical properties of heavy metals in typical hospital waste incinerator ashes in China.

    Science.gov (United States)

    Zhao, Lijuan; Zhang, Fu-Shen; Wang, Kaisheng; Zhu, Jianxin

    2009-03-01

    Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.

  11. Flowable Backfill Materials from Bottom Ash for Underground Pipeline

    Directory of Open Access Journals (Sweden)

    Kyung-Joong Lee

    2014-04-01

    Full Text Available The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%–45% of in-situ soil, 30% of bottom ash, 10%–20% of fly ash, 0%–3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus (E50 was (0.07–0.08 qu. The ranges of the internal friction angle and cohesion for mixtures were 36.5°–46.6° and 49.1–180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88–2.41 mm and horizontal deflection of 0.83–3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  12. Flowable Backfill Materials from Bottom Ash for Underground Pipeline.

    Science.gov (United States)

    Lee, Kyung-Joong; Kim, Seong-Kyum; Lee, Kwan-Ho

    2014-04-25

    The purpose of this study was to investigate the relationship between strength and strain in manufacturing controlled low strength materials to recycle incineration bottom ash. Laboratory tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. The optimum mixing ratios were 25%-45% of in-situ soil, 30% of bottom ash, 10%-20% of fly ash, 0%-3% of crumb rubber, 3% of cement, and 22% of water. Each mixture satisfied the standard specifications: a minimum 20 cm of flowability and 127 kPa of unconfined compressive strength. The average secant modulus ( E 50 ) was (0.07-0.08) q u . The ranges of the internal friction angle and cohesion for mixtures were 36.5°-46.6° and 49.1-180 kPa, respectively. The pH of all of the mixtures was over 12, which is strongly alkaline. Small-scale chamber tests for controlled low strength materials with bottom ash and recycled in-situ soil have been carried out. Vertical deflection of 0.88-2.41 mm and horizontal deflection of 0.83-3.72 mm were measured during backfilling. The vertical and horizontal deflections of controlled low strength materials were smaller than that of sand backfill.

  13. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash.

    Science.gov (United States)

    Lin, K L; Chang, C T

    2006-07-31

    This study investigated the composition and leaching characteristics of municipal solid waste incinerator (MSWI) ash and slag. The modified slags were characterized after the melting of MSWI ash mixtures at 1400 degrees C for 30 min. The ash mixtures were composed of different types of MSWI ash, including cyclone ash, scrubber ash and bottom ash, in various proportions. The results indicate that the Cd leaching concentration of the cyclone ash and the Pb leaching concentration of the scrubber ash reached 1.82 and 8.7 mg/L, respectively, which exceeds the ROC EPA's current regulatory thresholds, and can thus be classified as hazardous. The results of the analysis of the metal content and the leaching behavior of heavy metals, showed high concentrations of Cu and Zn, but a low leaching ratio of these metals. Concerning the characteristics of the modified slags, the X-ray diffraction patterns of the MSWI fly ash slag showed that it contained large amounts of glass. The toxicity characteristic leaching procedure (TCLP) leaching concentrations of the target metals of all the slags, met the ROC EPA's regulatory thresholds. The leaching concentrations of heavy metals in the F- and B1-slag were lower than those in the cyclone and the bottom ash, because there was a high amount of SiO(2), which formed a net-like structure in the bottom ash.

  14. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    Science.gov (United States)

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the

  15. Geochemical modelling and identification of leaching processes in MSWI bottom ash : implications for the short-term and long-term release of contaminants

    NARCIS (Netherlands)

    Meima, J.A.

    1997-01-01

    Municipal Solid Waste Incinerator (MSWI) bottom ash is the major residue that remains after the incineration of Municipal Solid Waste. The slag-like material is produced world-wide in very large and everincreasing quantities. In the past the bottom ash was usually disposed, nowadays it is

  16. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    International Nuclear Information System (INIS)

    Funari, Valerio; Meisel, Thomas; Braga, Roberto

    2016-01-01

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and 187 Os/ 188 Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of 187 Os/ 188 Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m 2 /a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m 2 /a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  17. Cr, Cu, Hg and Ni release from incineration bottom ash during utilization in land reclamation - based on lab-scale batch and column leaching experiments and a modeling study.

    Science.gov (United States)

    Yin, Ke; Chan, Wei Ping; Dou, Xiaomin; Ren, Fei; Wei-Chung Chang, Victor

    2018-04-01

    Incineration bottom ash (IBA) as potential material for land reclamation was investigated, based on leaching tests, sorption studies and simulation models. Based on batch and column leaching tests, Cr, Cu, Hg and Ni in the IBA leachates were measured as high as 510 μg/L, 20330 μg/L, 5.1 μg/L and 627 μg/L, respectively, presenting potential environmental risks. Sorption study was then performed with various concentrations of IBA leachates on sands and excavated materials. Partitioning coefficients of targeting metals were determined to be 6.5 (Cr), 18.4 (Cu), 16.6 (Hg), and 1.8 (Ni) for sands, while 17.4 (Cr), 13.6 (Cu), 67.1 (Hg), and 0.9 (Ni) for excavated materials, much lower than literature in favor of their transportation. Deterministic and Monte Carlo simulation was further performed under designated boundaries, combined with measured geotechnical parameters: density, porosity, permeability, partitioning coefficient, observed diffusivity, hydraulic gradient, etc., to quantitatively predict metals' fate during IBA land reclamation. Environmental risks were quantitatively unveiled in terms of predicted time of breakthrough for the targeting metals (comparing to US EPA criterion for maximum or continuous concentration). Sands were of little effects for all metals' breakthrough (1 month or less) under advection, while excavated materials sufficiently retained metals from thousands up to millions of years, under diffusion or advection. Permeability next to the IBA layer as the major risk-limiting factor, dominated transport of IBA leachates into the field. The current study provides discrimination of environmental risks associated with metals and a quantitative guidance of project design for IBA utilization in land reclamation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Coal Bottom Ash for Portland Cement Production

    Directory of Open Access Journals (Sweden)

    Cristina Argiz

    2017-01-01

    Full Text Available Because of industrialization growth, the amount of coal power plant wastes has increased very rapidly. Particularly, the disposal of coal bottom ash (CBA is becoming an increasing concern for many countries because of the increasing volume generated, the costs of operating landfill sites, and its potential hazardous effects. Therefore, new applications of coal bottom ash (CBA have become an interesting alternative to disposal. For instance, it could be used as a Portland cement constituent leading to more sustainable cement production by lowering energy consumption and raw material extracted from quarries. Coal fly and bottom ashes are formed together in the same boiler; however, the size and shape of these ashes are very different, and hence their effect on the chemical composition as well as on the mineralogical phases must be studied. Coal bottom ash was ground. Later, both ashes were compared from a physical, mechanical, and chemical point of view to evaluate the potential use of coal bottom ash as a new Portland cement constituent. Both ashes, produced by the same electrical power plant, generally present similar chemical composition and compressive strength and contribute to the refill of mortar capillary pores with the reaction products leading to a redistribution of the pore size.

  19. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  20. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  1. Characterization of MSWI Bottom Ash and Assessment of Resource Recovery Potential

    OpenAIRE

    Šyc, M. (Michal); Kameníková, P. (Petra); Krausová, A. (Aneta); Zach, B. (Boleslav); Pohořelý, M. (Michael); Svoboda, K. (Karel); Punčochář, M. (Miroslav)

    2015-01-01

    Bottom ash from municipal solid waste incineration contains valuable components that can be recycled as secondary materials, such as ferrous and non-ferrous metals, rare earth elements, glass etc. Metal-free mineral fraction is reusable in construction industry. The composition of bottom ash is highly dependent on the composition of incinerated waste but in average can be around 5–13 % ferrous metals, 2–5 % non-ferrous metals, 15–30 % glass and ceramics, 1–5 % unburned organics and 50–70 % mi...

  2. Geochemical modelling and identification of leaching processes in MSWI bottom ash : implications for the short-term and long-term release of contaminants

    OpenAIRE

    Meima, J.A.

    1997-01-01

    Municipal Solid Waste Incinerator (MSWI) bottom ash is the major residue that remains after the incineration of Municipal Solid Waste. The slag-like material is produced world-wide in very large and everincreasing quantities. In the past the bottom ash was usually disposed, nowadays it is increasingly being used as a construction material. Incineration concentrates the mineral components of the original waste, including elements of environmental concern such as heavy metals, oxyanions, and sa...

  3. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Xiang, Jun; Jin, Limei; Hu, Song; Su, Sheng; Qiu, Jianrong

    2013-07-01

    In this study we analyzed the characteristics of bottom and fly ashes from a municipal solid waste incinerator in China. The physical properties of particle size distribution and morphology were evaluated. At the chemical level, the chemical composition, heavy metal leaching behavior and BCR sequential extraction procedure (the Community Bureau of Reference, now the European Union 'Measurement and Testing Programme') were determined. The main mineralogical crystalline phases in raw and leached bottom and fly ashes were also identified. For the bottom ashes, the concentration of heavy metals showed a slight decrease with an increase in particle size, and most of the heavy metal concentrations in fly ashes were higher than those in bottom ashes. The results of the toxicity characteristic leaching procedure indicated that, among the metals, the concentrations of lead (Pb) and copper (Cu) in fly ash leachate exceeded thresholds, while the concentrations of studied heavy metals in bottom ash leachate were all below the regulatory limit. The BCR results indicated that more easily mobilized forms (acid exchangeable) were predominant for cadmium and zinc; in contrast, the largest amount of Pb, Cu and manganese were associated with iron/manganese oxide, organic matter/sulfide fractions, or were residual.

  4. Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants.

    Science.gov (United States)

    Chen, Hsiu-Ling; Chen, I-Ju; Chia, Tai-Pao

    2010-02-15

    Various environmental hazards and metals are liberated either into bottom ash or carried away with gases and subsequently trapped in fly ash. Many studies have reported an increase of DNA damage is related to hazardous exposure of municipal waste incinerators. By detecting DNA damage, we compared the DNA migration imposed in workers potentially exposed to hazardous substances, including PCDD/Fs, metals, and silica particles, at a bottom ash recovery plant and fly ash treatment plants in Taiwan. Higher tail moment (TMOM) was found in workers at fly ash treatment plants (7.55) than in the workers in bottom ash plants (2.64), as well as those in blue collar was higher than in white collar workers (5.72 vs. 3.95). Meanwhile, the significantly higher DNA damage was also shown in workers with high integrated exposure score than those with low. The air samplings for particle mass, Cr, and Al concentrations also showed the higher levels in fly ash treatment plants than in the workers in bottom ash plants. Meanwhile, the air samplings inside the two plants suggested that the particle size might be important to affect the workers inhaling the metal into the human body and finally caused to their DNA damage. The data concluded that an elevated DNA damage may be expected in workers at fly ash treatment plants than those at bottom ash plants; however, the occupational hazards in both types of plants, especially at different particle size interval, need more thorough assessment in future studies.

  5. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  6. EFFECT ON COMPRESSIVE STRENGTH OF CONCRETE WITH PARTIAL REPLACEMENT OF CEMENT BY MUNICIPAL SOLID WASTE INCINERATION ASH

    OpenAIRE

    V. Alivelu Mangamma

    2016-01-01

    The municipal solid waste incineration ash reduces are worldwide studied topic over the last decades, so that utilize the municipal solid waste is the one of the possibilities is to use MSWI in concrete production as it is done the bottom ash features the most convenient composition in concrete and it is a available in highest amounts among the MSWI ashes the bottom ash was used as partial replacement of cement of cement in concrete strength has to find ,if the prepared concrete will get suff...

  7. Penggunaan Bottom Ash Sebagai Pengganti Agregat Halus Pada Mortar Hvfa

    OpenAIRE

    Sulistio, Aldi Vincent; Wahjudi, Samuel; Hardjito, Djwantoro; Antoni, Antoni

    2016-01-01

    Bottom ash adalah material limbah PLTU yang melimpah dan kurang dimanfaatkan. Terdapat potensi pemanfaatan bottom ash sebagai agregat halus dalam campuran beton. Dalam penelitian ini, bottom ash diberi treatment ayak dan tumbuk untuk digunakan sebagai pengganti pasir dalam campuran beton. Hal pertama yang dilakukan adalah pengujian karateristik fisik dan kimiawi dari bottom ash. Dilakukan pengujian water content, sieve analysis, fineness modulus, dan berat isi dari pasir dan bottom ash yang d...

  8. Accelerated carbonation for treatment of MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; Van Gerven, T; Vandecasteele, C

    2006-09-01

    Leaching of heavy metals from MSWI bottom ash exceeds some of the Flemish limit values for recycling the material as granular construction application. In particular, leaching of Cu, Zn and Pb often exceeds the limit value, with Cu being the most critical. In order to recycle bottom ash, treatment is therefore required. The bottom ash studied was divided on-site into four fractions using a large-scale wet sieving installation: a sludge fraction (Ø 0-0.1mm), a sand fraction (Ø 0.1-2mm) and two gravel fractions (Ø 2-6 and 6-50mm). The two gravel fractions complied with the limit values after 3 months of natural ageing. The sand and sludge fraction did not reach the limit value for Cu. Four weeks of accelerated carbonation resulted in an important decrease of Cu leaching from these two fractions, although the limit value is still exceeded. In view of applying carbonation as one of the treatment methods in an integrated industrial application, two tests were additionally performed. The use of stack gas as carbonating medium was verified by setting up an accelerated carbonation experiment at the incineration plant. Also, the depth of carbonation was measured in a 10 cm thick sample of the sand fraction after different periods of treatment. After 3 months of natural ageing only the upper 4 cm underwent a significant carbonation, while after one week of accelerated carbonation the total sample was carbonated. A model was developed to predict these experimental results.

  9. Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum

    NARCIS (Netherlands)

    Dijkstra, J.J.; Zomeren, van A.; Meeussen, J.C.L.; Comans, R.N.J.

    2006-01-01

    The effect of accelerated aging of Municipal Solid Waste Incinerator (MSWI) bottom ash on the leaching of Cu and Mo was studied using a "multisurface" modeling approach, based on surface complexation to iron/aluminum (hydr) oxides, mineral dissolution/precipitation, and metal complexation by humic

  10. Process identification and model development of contaminant transport in MSWI bottom ash

    NARCIS (Netherlands)

    Dijkstra, J.J.; Sloot, van der H.A.; Comans, R.N.J.

    2002-01-01

    In this work we investigate to what extent we are able to predict experimental data on column leaching of heavy metals from municipal solid waste incinerator (MSWI) bottom ash, using the current knowledge on processes controlling aqueous heavy metal concentrations in combination with a

  11. Metal distribution characteristic of MSWI bottom ash in view of metal recovery.

    Science.gov (United States)

    Xia, Yi; He, Pinjing; Shao, Liming; Zhang, Hua

    2017-02-01

    Bottom ash is the major by-product of municipal solid waste incineration (MSWI), and is often reused as an engineering material, such as road-base aggregate. However, some metals (especially aluminum) in bottom ash can react with water and generate gas that could cause expansion and failure of products containing the ash; these metals must be removed before the ash is utilized. The size distribution and the chemical speciation of metals in the bottom ash from two Chinese MSWI plants were examined in this study, and the recovery potential of metals from the ash was evaluated. The metal concentrations in these bottom ashes were lower than that generated in other developed countries. Specifically, the contents of Al, Fe, Cu and Zn were 18.9-29.2, 25.5-32.3, 0.7-1.0 and 1.6-2.5g/kg, respectively. Moreover, 44.9-57.0wt.% of Al and 55.6-75.4wt.% of Fe were distributed in bottom ash particles smaller than 5mm. Similarly, 46.6-79.7wt.% of Cu and 42.9-74.2wt.% of Zn were concentrated in particles smaller than 3mm. The Fe in the bottom ash mainly existed as hematite, and its chemical speciation was considered to limit the recovery efficiency of magnetic separation. Copyright © 2016. Published by Elsevier B.V.

  12. Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash.

    Science.gov (United States)

    Lin, Kae-Long; Chen, Bor-Yann

    2006-11-02

    This feasibility study using Escherichia coli DH5alpha as a reporter microorganism tended to disclose toxicity ranking of various ashes of municipal solid waste incinerator (MSWI) in comparison with typical toxic chemicals for reusability in further applications. Previous study indicated that growth inhibition to bacterial cells occurred at concentrations above 0.156, 0.625 and 0.0195g/L for bottom ash (BA), cyclone ash (CA), scrubber ash (SA), respectively, suggesting the toxicity ranking of SA>BA>CA. This follow-up study clearly stated that compared to cadmium(II) and chromium(II) SA seemed to be the most toxic species to DH5alpha. Large amounts of supplemented lime (CaO) were used for neutralization of acid gas in incinerator, SA was thus contained high-levels of sulfate, chloride and nitrate salts. Therefore, compared to other ashes a marked increase in toxicity was observed in SA. Regarding soluble cations and anions in ashes, nitrite ion seemed to stimulate instead of repress cell growth. In contrast, nitrate ion showed so-called "sufficient challenge" characteristics for growth enhancement and inhibition at low and high concentration, respectively. Low solubility of metallic ions (e.g., Pb(II) and Cu(II)) in ashes likely resulted in low mobility in the environment and low risk to humans. The findings showed that toxicity attenuation of SA will be inevitably required as SA is even more toxic than Cr(II) and Cd(II).

  13. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  14. The potential impact of municipal solid waste incinerators ashes on the anthropogenic osmium budget

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Osmium release from Municipal Solid Waste Incinerators (MSWI), even if acknowledged to occur at least over the last fifteen years, remains overlooked in the majority of recent studies. We present the osmium concentration and {sup 187}Os/{sup 188}Os isotopic measurements of different kinds of bottom and fly ash samples from MSWI plants and reference materials of incinerator fly ash (BCR176 and BCR176R). The analysis of the unknown ash samples shows a relatively wide range of {sup 187}Os/{sup 188}Os ratios (0.24–0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). Osmium concentrations and isotopic signatures differ from those of other known Os sources, either natural or manmade, suggesting a mixture of both contributions in the MSWI feedstock material. Furthermore, the comparison between the BCR176 and the renewed BCR176R indicates a decrease in Os concentration of one order of magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency of Os-bearing waste. The estimated annual amount of Os from a typical incinerator (using average Os values and MSWI mass balance) is 13.4 g/a. The osmium potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng Os/m{sup 2}/a, considering a medium size country having 50 MSWI facilities; therefore much higher than the naturally transported osmium from continental dust in the atmosphere (about 1 pg Os/m{sup 2}/a). MSWI systems are considered one of the best options for municipal solid waste management in industrialised countries, but their contribution to the Os budget can be significant. - Highlights: • Bottom and fly ashes from municipal solid waste incinerators are investigated. • Their Os levels and Os isotopic signatures are discussed. • An estimate of Os release from incinerators and incinerated ashes is given. • Os contamination from incineration plants impacts the geochemical Os cycle.

  15. Distribution of chloride ion in MSWI bottom ash and de-chlorination performance.

    Science.gov (United States)

    Chen, Ching-Ho; Chiou, Ing-Jia

    2007-09-05

    When recycling bottom ash from municipal solid waste incinerators (MSWIs), salts and heavy metals contents must be considered; in particular, chloride ions must be addressed because they cause serious corrosion in metals. Therefore, only limited amounts of bottom ash can be utilized as a substitution for material or the bottom ash must be treated at high temperatures prior to use. These factors markedly decrease the applications of bottom ash. In addition to the distribution characteristics of chloride ions, this study also investigates the characteristics change before and after de-chlorination using a counter-flow pipe column and three different flow fluxes for different refuse incinerators as the experiment variables. Thus, this study attempts to determine the appropriate conditions for de-chlorination and an appropriate policy for use of bottom ash as concrete aggregate. The experimental results show that a negative correlation exists between the natural logarithm of the chloride ion concentration and particle size in bottom ash. Characteristics of de-chlorinated bottom ash, such as pH value, mud content, loss on ignition, chloride ion concentration, turbidity, and species intensity, all decrease, meaning that de-chlorination decreased chloride ion content and generates a cleaning effect. The per-unit-time efficiency of de-chlorination is highest in the high flux flow. When flow flux is 80 mL/min, the de-chlorination efficiency is >0.3%/h. However, the shortest time required for bottom ash de-chlorination does not reduce in proportion to the legally prescribed concentration of chloride ion.

  16. Hydrothermal treatment of MSWI bottom ash forming acid-resistant material.

    Science.gov (United States)

    Etoh, Jiro; Kawagoe, Takeshi; Shimaoka, Takayuki; Watanabe, Koichiro

    2009-03-01

    To recycle municipal solid waste incinerator (MSWI) bottom ash, synthesis of hydrothermal minerals from bottom ash was performed to stabilize heavy metals. MSWI bottom ash was mixed with SiO(2), Al(OH)(3), and Mg(OH)(2) so its chemical composition was similar to that of hydrothermal clay minerals. These solid specimens were mixed with water at a liquid/solid ratio of 5. The reaction temperature was 200 degrees C, and reactions were performed for 24-240h. Generation of kaolinite/smectite mixed-layer clay mineral was found in the samples after the reaction of the mixture of bottom ash, SiO(2), and Mg(OH)(2). Calcium silicate hydrate minerals such as tobermorite and xonotlite were also generated. X-ray powder diffraction suggested the presence of amorphous materials. Leaching tests at various pHs revealed that the concentration of heavy metals in the leachates from MSWI bottom ash hydrothermally treated with SiO(2) and Mg(OH)(2) was lower than that in leachates from non-treated bottom ash, especially under acid conditions. Hydrothermal treatment with modification of chemical composition may have potential for the recycling of MSWI bottom ash.

  17. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting.

    Science.gov (United States)

    Funari, Valerio; Bokhari, Syed Nadeem Hussain; Vigliotti, Luigi; Meisel, Thomas; Braga, Roberto

    2016-01-15

    Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP-MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2 g....../kg for zinc, 2,4 g/kg for lead, 1,7 g/kg for iron, and 7,9 g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91 mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash....

  19. Pemanfaatan Bottom Ash Dan Fly Ash Tipe C Sebagai Bahan Pengganti Dalam Pembuatan Paving Block

    OpenAIRE

    Klarens, Kevin; Indranata, Michael; Antoni, Antoni; Hardjito, Djwantoro

    2016-01-01

    PT. PLTU Paiton menghasilkan 7.5 ton fly ash dan 2.5 ton bottom ash setiap jam. Pemanfaatan bottom ash masih sangat minimal, sehingga mengakibatkkan timbunan bottom ash yang semakin meningkat, dan cendrung mencemari lingkungan dan kesehatan. Berdasarkan alasan tersebut maka perlu adanya USAha untuk memanfaatkan limbah batu bara, salah satunya melalui pembuatan paving block. Sampel tahap pertama terbuat dari campuran semen dan bottom ash (lolos ayakan 2 atau 5 mm) dengan perbandingan massa 1:3...

  20. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    Science.gov (United States)

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd

  1. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  2. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    is characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2 g...

  3. Ash deposit characterisation in a large-scale municipal waste-to-energy incineration plant.

    Science.gov (United States)

    Phongphiphat, Awassada; Ryu, Changkook; Finney, Karen N; Sharifi, Vida N; Swithenbank, Jim

    2011-02-15

    The deposition of ash - combustion residues - on superheaters and heat exchanger surfaces reduce their efficiency; this phenomenon was investigated for a large-scale waste-to-energy incineration facility. Over a period of six months, ash samples were collected from the plant, which included the bottom ash and deposits from the superheater, as well as flyash from the convective heat exchanger, the economiser and fabric filters. These were analysed for particle size, unburned carbon, elemental composition and surface morphology. Element partitioning was evident in the different combustion residues, as volatile metals, such as cadmium, antimony and arsenic, were found to be depleted in the bottom ash by the high combustion temperatures (1000+°C) and concentrated/enriched in the fabric filter ash (transferred by evaporation). Non-volatile elements by contrast were distributed equally in all locations (transported by particle entrainment). The heat exchanger deposits and fabric filter ash had elevated levels of alkali metals. 82% of flyash particles from the fabric filter were in the submicron range. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Conditioning of incinerator ash at the CEN, Cadarache

    International Nuclear Information System (INIS)

    Kertesz, C.; Courtois, C.

    1989-01-01

    The Cadarache Nuclear Research Centre (CEN) has several stocks of incinerator ash resulting from the treatment of low and medium level wastes. The ash is at present in temporary storage awaiting conditioning which would allow it to be stored as a surface site. Laboratory studies have been carried out to test various embedding matrices, such as hydraulic binders, bitumen, thermosetting plastic (epoxy) and, finally, a composite matrix of cement and epoxy resin. The cement-resin composite matrix has several advantages, including compatibility with the various types of ash tested, unlike cement alone, whose composition must be adapted to the nature of the ash (problems with phosphated ash resulting from incineration of tributyl phosphate), or epoxy resin, which may require pretreatment of the wastes. A characterization programme has been produced for the embedded ash in the cement-resin composite in order to obtain Andra approval for surface storage of the packages produced. The guiding principles of the programme are the characterization criteria defined in the Basic Safety Regulations and the Andra minimum characterization programme; it includes laboratory scale tests and a series of tests to be carried out on real packages (100 L drums). A pilot plant for embedding on a scale appropriate to the quantities of stored ash requiring conditioning is being set up. It is being commissioned for two purposes: (1) as an industrial tool, it will facilitate the resorption of existing and future stocks of ash; (2) as an R and D tool, it is designed to facilitate a change in embedding matrix by substitution of the cement-resin compound for epoxy resin or cement alone. This makes it possible to manufacture industrial embedded materials in three different matrices at a single installation. (author). 4 refs, 4 figs, 7 tabs

  5. Recycling MSWI bottom and fly ash as raw materials for Portland cement.

    Science.gov (United States)

    Pan, Jill R; Huang, Chihpin; Kuo, Jung-Jen; Lin, Sheng-Huan

    2008-01-01

    Municipal solid waste incineration (MSWI) ash is rich in heavy metals and salts. The disposal of MSWI ash without proper treatment may cause serious environmental problems. Recently, the local cement industry in Taiwan has played an important role in the management of solid wastes because it can utilize various kinds of wastes as either fuels or raw materials. The objective of this study is to assess the possibility of MSWI ash reuse as a raw material for cement production. The ash was first washed with water and acid to remove the chlorides, which could cause serious corrosion in the cement kiln. Various amounts of pre-washed ash were added to replace the clay component of the raw materials for cement production. The allowable limits of chloride in the fly ash and bottom ash were found to be 1.75% and 3.50% respectively. The results indicate that cement production can be a feasible alternative for MSWI ash management. It is also evident that the addition of either fly ash or bottom ash did not have any effect on the compressive strength of the clinker. Cement products conformed to the Chinese National Standard (CNS) of Type II Portland cement with one exception, the setting time of the clinker was much longer.

  6. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  7. Current Methods to Detoxify Fly Ash from Waste Incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hallgren, Christine; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2004-07-01

    Fly ash from waste incineration contains large amounts of heavy metals and dioxins, which will cause a significant disposal problem within the coming years. The amount of fly ash produced in Sweden is currently approximately 60,000 tons/y. New technological options for the decontamination and/or inertization of incinerator fly ash are being developed with the objective of rendering a product that can be reused or, at least, be deposited at standard landfill sites with no risk. Many of these technologies have been tested at industrial scale or in pilot projects. The proposed alternatives include: Thermal treatments; Immobilization/stabilization by cement based techniques; Wet chemical treatments (extractions, immobilizations); Microbiological treatments. Of these, thermal treatments are the most promising solution. Depending on the temperature thermal treatments are classified in two main types: 1) low temperature (below 600 deg C) thermal treatments and 2) high temperature (above 1200 deg C) thermal treatments (vitrification). Most dioxins can be successfully destroyed at temperatures up to 400 deg C under oxygen deficient conditions and at temperatures up to 600 deg C under oxidising conditions. However most heavy metals remain in the fly ash after low temperature treatment. At a temperature of 900 deg C most heavy metals can also be removed in a 10% HCl atmosphere by forming volatile metal chlorides (CT-Fluapur process). During vitrification processes the fly ash melts and forms an inert glassy slag. The product does not leach any significant amount of heavy metals and is free from dioxin. The volume of the fly ash is significantly reduced. The product can be land filled at low costs or used as construction material. The properties of the product depend on the cooling process and on additives such as sand, limestone or waste glass. A series of vitrification methods at industrial size or in pilot scale using different furnaces are studied. Among these, plasma

  8. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.

    Science.gov (United States)

    Lu, Chien-Hsing; Chuang, Kui-Hao

    2016-01-01

    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.

  9. Corrosion and mechanical performance of reinforced mortar and concrete made with MSWI bottom ash

    Directory of Open Access Journals (Sweden)

    Rita Ávila

    2017-07-01

    Full Text Available Electrochemical monitoring was performed to evaluate the influence of municipal solid waste incineration residues (MSWI made concrete, on reinforcement corrosion, using four different steel reinforce-ments grades, traditional carbon steel B-500-SD and three stainless steels, the austenite AISI 304, duplex AISI 2304, and lean-duplex AISI 2001, embedded in mortars manufactured using bottom ash as aggregates from the incineration of municipal solid waste (MSW, in partial and total substitution of natural aggregate. In addition, it has been studied the mechanical behaviour of the mortar and concrete matrix in the presence of MSWI aggre-gates. The use of MSWI bottom ash as an aggregate, results in a notable improvement of the resistance charac-teristics of conventional mortar and concrete, made out only of natural aggregate. Moreover, electrochemical measures show that the steels remain in passive state throughout all the exposure period (3 years.

  10. Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate.

    Science.gov (United States)

    Arickx, S; Van Gerven, T; Knaepkens, T; Hindrix, K; Evens, R; Vandecasteele, C

    2007-01-01

    The leaching of heavy metals, such as copper, from municipal solid waste incinerator (MSWI) bottom ash is of concern in many countries and may inhibit the beneficial reuse of this secondary material. Previous studies have focused on the role of dissolved organic carbon (DOC) on the leaching of copper. Recently, a study of the Energy Research Centre of The Netherlands (ECN) showed fulvic acid-type components to exist in the MSWI bottom ash leachates and to be likely responsible for the generally observed enhanced copper leaching. These findings were verified for a MSWI bottom ash (slashed circle 0.1-2 mm) fraction from an incinerator in Flanders. The filtered leachates were subjected to the IHSS fractionation procedure to identify and quantify the fractions of humic acid (HA), fulvic acid (FA) and hydrophilic organic carbon (Hi). The possible complexation of fulvic acid with other heavy metals (e.g., lead) was also investigated. The identified role of fulvic acids in the leaching of copper and other heavy metals can be used in the development of techniques to improve the environmental quality of MSWI bottom ash. Thermal treatment and extraction with a 0.2 M ammonium-citrate solution were optimized to reduce the leaching of copper and other heavy metals. The effect of these techniques on the different fractions of organic matter (HA, FA, Hi) was studied. However, due to the obvious drawbacks of the two techniques, research is focused on finding other (new) techniques to treat MSWI bottom ash. In view of this, particle size-based separation was performed to evaluate its effect on heavy metal leaching and on HA, FA and Hi in MSWI bottom ash leachates.

  11. A summary of the National Incinerator Testing and Evaluation Program ash characterization and solidification studies

    International Nuclear Information System (INIS)

    Sawell, S.E.; Constable, T.W.; Klicius, R.K.

    1991-01-01

    In 1984, Environment Canada established the National Incinerator Testing and Evaluation Program (NITEP) to examine the potential impact of municipal solid waste incineration on the environment. As a part of NITEP, the Wastewater Technology Center (WTC) evaluated the chemical properties and leachability of different types of ashes from various types of MSW incinerators using a battery of laboratory procedures. This paper presents a summary of results generated from the NITEP ash program. Emphasis is placed on the variability of ash characteristics based on ash type, incinerator technology and incinerator operating conditions, as well as major trends in leaching, such as the effect of pH on metal solubility. In addition, the results will be placed in context with the current Canadian federal guidelines and provincial regulations for ash disposal. Finally, the feasibility of solidification as a treatment technique for fly ash will also be discussed

  12. Numerical modelling of the generation and transport of heat in a bottom ash monofill.

    Science.gov (United States)

    Klein, R; Nestle, N; Niessner, R; Baumann, T

    2003-06-27

    Municipal solid waste is incinerated to reduce its volume, toxicity and reactivity. Several studies have shown that the resulting bottom ash has a high exothermic capacity. Temperature measurements in municipal solid waste incineration (MSWI) bottom ash landfills have found temperatures up to 90 degrees C. Such high temperatures may affect the stability of the landfill's flexible polymer membrane liner (FML) and may also lead to an accelerated desiccation of the clay barrier. The purpose of this study was to gain detailed knowledge of temperature development under several disposal conditions in relation to the rate of ash disposal, the variation of layer thickness, and the environmental conditions in a modern landfill. Based on this knowledge, a simulation was developed to predict temperature development. Temperature development was simulated using several storage periods prior to the deposition and several modes of emplacement. Both the storage time and the mode of emplacement have a significant influence on the temperature development at the sensitive base of the landfill. Without a preliminary storage of the fresh quenched bottom ash, high temperatures at the bottom of a landfill cannot be avoided.

  13. Solidification/stabilization of ash from medical waste incineration into geopolymers.

    Science.gov (United States)

    Tzanakos, Konstantinos; Mimilidou, Aliki; Anastasiadou, Kalliopi; Stratakis, Antonis; Gidarakos, Evangelos

    2014-10-01

    In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50°C for 24h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2-8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Leaching of solidified TRU-contaminated incinerator ash

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Colombo, P.

    1984-01-01

    Leach rate and cumulative fractional releases of plutonium were determined for a series of laboratory-scale waste forms containing transuranic (TRU) contaminated incinerator ash. The solidification agents from which these waste forms were produced are commercially available materials for radioactive waste disposal. The leachants simulate groundwaters with chemical compositions that are indiginous to different geological media proposed for repositories. In this study TRU-contaminated ash was incorporated into waste forms fabricated with portland type I cement, urea-formaldehyde, polyester-styrene or Pioneer 221 bitumen. The ash was generated at the dual-chamber incinerator at the Rocky Flats Plant. These waste forms contained between 1.25 x 10 -2 and 4.4 x 10 -2 Ci (depending on the solidification agent) of mixed TRU isotopes comprised primarily of 239 Pu and 240 Pu. Five leachant solutions were prepared consisting of: (1) demineralized water, (2) simulated brine, (3) simplified sodium-dominated groundwater (30 meq NaCl/liter), (4) simplified calcium-dominated groundwater (30 meq CaCl 2 /liter), and (5) simplified bicarbonate-dominated groundwater (30 meq NaHCO 3 /liter). Cumulative fractional releases were found to vary significantly with different leachants and solidification agents. In all cases waste forms leached in brine gave the lowest leach rates. Urea-formaldehyde had the greatest release of radionuclides while polyester-styrene and portland cement had approximately equivalent fractional releases. Cement cured for 210 days retained radionuclides three times more effectively than cement cured only 30 days

  15. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  16. Bottom Ash Waste Used in Different Construction Materials

    Science.gov (United States)

    Volokitin, G. G.; Skripnikova, N. K.; Volokitin, O. G.; Lutsenko, A. V.; Shekhovtsov, V. V.; Litvinova, V. A.; Semenovykh, M. A.

    2017-04-01

    The paper presents the investigations of the composition and properties of the bottom ash waste generated by Seversk thermal power plant of the Tomsk region. The compositions suggested for construction materials (fired and hydrothermal) are based on the bottom ash waste. Mechanical-and-physical and physicochemical properties of the produced specimens are investigated in this paper. Phase compositions are determined for fired materials based on the bottom ash waste, and a possibility of producing ash-based mineral wool is defined herein. The produced ash-containing fiber possesses a higher chemical resistance and performance characteristics due to its higher acidity index.

  17. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust.

    Science.gov (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris

    2015-09-01

    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (ceramic tiles that have potential for use in a range of industrial applications. © The Author(s) 2015.

  18. Dioxin and fly ash free incineration by ash pelletization and reburning.

    Science.gov (United States)

    Kobylecki, R P; Ohira, K; Ito, I; Fujiwara, N; Horio, M

    2001-11-01

    Dioxins (DXNs) in municipal waste incinerator fly ash were effectively reduced by pelletizing the mixture of ash, cement, and sodium phosphate and reburning the pellets in a laboratory scale bubbling fluidized bed (BFB) furnace. Three types of pellets--A, B and C, of various sizes and compositions were used in the experiments. The efficiency of DXN reduction in the pellet matrix was proportional to the incineration time, temperature, and degree of pellet incineration. At 700 degrees C and incineration time sufficient for a complete burnout, the efficiency of DXN reduction in the pellets of type A and C was found to be 99.9% and 99.7%, respectively. Correspondingly, the DXN concentration in the pellets decreased from 862 ng TEQ/kg to 0.9 ng TEQ/kg for pellets A and 2.2 ng TEQ/kg for pellets C. The residual concentration of coplanar polychlorinated biphenyls (coplanar PCBs) was below 0.2 ng TEQ/kg and 0.4 ng TEQ/kg, respectively. Assuming a tortuosity factor of tau = 3 and the reaction rate constants of 0.013 m/s (at 700 degrees C) and 0.025 m/s (at 800 degrees C), the experimental pellet incineration times were reasonably predicted by using the shrinking core model. Possible DXN evaporation from the pellets was also studied. The amount of DXNs in the flue gas captured by an impinger trap was less than 3% when the reactor was operated at 700 and 800 degrees C. The described method of fly ash pelletization and reburning seems to be a relatively easy and inexpensive way to reduce both the emission of DXNs and the amount of fly ash.

  19. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment.

    Science.gov (United States)

    Ilyas, A; Lovat, E; Persson, K M

    2014-12-01

    The municipal solid waste incineration bottom ash is being increasingly used to construct landfill covers in Sweden. In post-closure, owing to increased cover infiltration, the percolating water can add external organic matter to bottom ash. The addition and subsequent degradation of this external organic matter can affect metal mobility through complexation and change in redox conditions. However, the impacts of such external organic matter addition on bottom ash stability have not been fully evaluated yet. Therefore, the objective of this study was to evaluate the impact of external organic matter on bottom ash respiration and metal leaching. The samples of weathered bottom ash were mixed with oven dried and digested wastewater sludge (1%-5% by weight). The aerobic respiration activity (AT4), as well as the leaching of metals, was tested with the help of respiration and batch leaching tests. The respiration and heavy metal leaching increased linearly with the external organic matter addition. Based on the results, it was concluded that the external organic matter addition would negatively affect the quality of landfill cover drainage. © The Author(s) 2014.

  20. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  1. Quality assurance of MSWI bottom ash. Environmental properties; Kvalitetssaekring av slaggrus. Miljoemaessiga egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, Peter [Lund Univ. (Sweden). Dept. of Engineering Geology

    2006-04-15

    In Sweden several hundred tonnes of MSWI bottom ash are generated annually at 29 incineration plants for municipal solid waste. So far bottom ash has mainly been disposed in to landfills or used as cover material in landfills or in other construction works at landfills. A few applications of bottom ash in construction works outside landfills have been reported. A large problem for the market of bottom ash and other secondary materials outside Swedish waste treatment plants is the lack of roles and regulations for a non-polluting use. During 2002 Hartlen and Groenholm (HG) presented a proposal to a system to assure the quality of bottom ash after homogenization and stabilization. A quality assurance of environmental properties should be based on leaching tests. The aim of this project was to study how the control of environmental properties of bottom ash earlier described in e.g. a product information sheet should be worked out. The starting-point has been a control system for bottom ash developed by the Sysav company. Different leaching tests illustrate however different aspects of the environmental properties, e.g. short-term and long-term leaching. Limit and target values for different variables could affect both the possibilities to use bottom ash as well as the sampling from storage heaps. We have chosen to investigate: pH, availability and leached amount and the connection between these variables; the possibilities to use pH or the availability to assess both short-term and long term leaching properties; how the number of subsamples that should be collected from a storage heap is affected by different control variables and quality requirements; how bottom ash is stabilized by today's storage technology and how the technology could be improved. Our sample test of bottom ash from Swedish incineration plants indicates that the availability of elements such as Cd, Cu, Cr, Ni, Pb and Zn in bottom ash usually is below Sysav's target values. Extreme values

  2. The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste

    Science.gov (United States)

    Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.

    2017-11-01

    This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.

  3. A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica.

    Science.gov (United States)

    Bontempi, E; Zacco, A; Borgese, L; Gianoncelli, A; Ardesi, R; Depero, L E

    2010-11-01

    Municipal solid waste incineration (MSWI) is a straightforward way to manage waste, however the disposal of process byproducts, mainly bottom and fly ash, is still a problem, because of their hazardous contents. Fly ash is a byproduct of many other processes that involve combustion to produce energy. In this paper we present and discuss a new method for MSWI fly ash inertization, mainly based on the use of colloidal silica as a stabilization agent for metals. In the patented procedure, fly ash of different provenance can be used to produce an inert and non-hazardous material, that can be reused. In fact to make the recovery process more efficient, landfilling should be totally avoided. For this reason, to enhance the possibility of reuse, a washing process, for salts recovery, is proposed as a final step of the inertization procedure. The obtained inert material is called COSMOS (COlloidal Silica Medium to Obtain Safe inert), and it is composed of calcium carbonate, calcium sulfate, silicon oxide and a wide quantity of non-soluble amorphous compounds. COSMOS does not contain any corrosive salts. This makes it extremely interesting for cement industry applications with several other advantages, and environmental benefits. The new proposed inertization procedure appears very promising, because it allows MSWI fly ash to be considered a valuable resource. Thanks to the obtained results, a demonstration project, in the frame of LIFE+, has been funded by the European Commission (LIFE+ 2008 project ENV/IT/000434, ).

  4. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    2012r

    plastic density to decrease and bleeding to increase. Moreover, above 40% replacement of bottom ash, compressive strength, flexural strength, and modulus of elasticity decreased sharply. In addition, an increase in bottom ash content improved the drying shrinkage performance of the concrete. The research also.

  5. Controlled combustion tests and bottom ash analysis using household waste with varying composition.

    Science.gov (United States)

    Hu, Yanjun; Bakker, Maarten; Brem, Gerrit; Chen, Guanyi

    2011-02-01

    The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  7. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    International Nuclear Information System (INIS)

    Jaederstroem, Henrik; Bronson, Frazier

    2013-01-01

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and the uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)

  8. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd.

    Science.gov (United States)

    Tang, Jinfeng; Steenari, Britt-Marie

    2016-02-01

    Ash from municipal solid waste incineration (MSWI) may be quite cumbersome to handle. Some ash fractions contain organic pollutants, such as dioxins, as well as toxic metals. Additionally, some of the metals have a high value and are considered as critical to the industry. Recovery of copper, zinc and lead from MSWI ashes, for example, will not only provide valuable metals that would otherwise be landfilled but also give an ash residue with lower concentrations of toxic metals. In this work, fly ash and bottom ash from an MSWI facility was used for the study and optimization of metal leaching using different solutions (nitric acid, hydrochloric acid and sulfuric acid) and parameters (temperature, controlled pH value, leaching time, and liquid/solid ratio). It was found that hydrochloric acid is relatively efficient in solubilizing copper (68.2±6.3%) and zinc (80.8±5.3%) from the fly ash in less than 24h at 20°C. Efficient leaching of cadmium and lead (over 92% and 90% respectively) was also achieved. Bottom ash from the same combustion unit was also characterized and leached using acid. The metal yields were moderate and the leachates had a tendency to form a gelatinous precipitate, which indicates that the solutions were actually over-saturated with respect to some components. This gel formation will cause problems for further metal purification processes, e.g. solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    Municipal solid waste incineration (MSWI) fly ash, which has been treated electrodialytically for the removal of heavy metals, may have changed characteristics compared to untreated fly ash. In this study, MSWI fly ash was characterized with respect to leaching properties (pH static leaching...

  10. Conditioning of alpha and beta-gamma ashes of incinerator, obtained by radioactive wastes incinerating and encapsulation in several matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.

    1993-01-01

    In this final report, the work carried out, and the results, obtained on the ash incinerator conditioning study, by means of encapsulation in several matrices, are presented. Three encapsulation matrices were checked: - a ternary cement, containing OPC, blast furnace slag and flying ash, - a two component epoxide system, - an epoxide-cement compound matrix. Three ash categories were employed: - real alpha ash, coming from plutonium bearing wastes, - ash, from inactive combustible waste, obtained by treatment in an incinerator prototype, - ash coming from inactive waste incineration plant. Using three different matrices, the encapsulated form properties were determined: at the laboratory scale, the encapsulating formulation was established, and physico mechanical data were obtained, - on active encapsulated forms, containing a calculated amount of 238 Pu, a radiolysis study was performed in order to measure the composition and volume of the radiolytic gas flow, - at the industrial scale, a pilot plant operating the polyvalent encapsulating process, was designed and put into service. Bench-scale experiments were done, on alpha ash embedded forms using the modified sulphur cement matrix as embedding agent. 4 refs., 30 figs., 27 tabs

  11. Valorization of MSWI bottom ash for biogas desulfurization: Influence of biogas water content.

    Science.gov (United States)

    Fontseré Obis, Marta; Germain, Patrick; Troesch, Olivier; Spillemaecker, Michel; Benbelkacem, Hassen

    2017-02-01

    In this study an alternative valorization of Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) for H 2 S elimination from landfill biogas was evaluated. Emphasis was given to the influence of water content in biogas on H 2 S removal efficiency by BA. A small-scale pilot was developed and implemented in a landfill site located in France. A new biogas analyzer was used and allowed real-time continuous measurement of CH 4 , CO 2 , O 2 , H 2 S and H 2 O in raw and treated biogas. The H 2 S removal efficiency of bottom ash was evaluated for different inlet biogas humidities: from 4 to 24g water /m 3 . The biogas water content was found to greatly affect bottom ash efficiency regarding H 2 S removal. With humid inlet biogas the H 2 S removal was almost 3 times higher than with a dry inlet biogas. Best removal capacity obtained was 56gH 2 S/kgdryBA. A humid inlet biogas allows to conserve the bottom ash moisture content for a maximum H 2 S retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of incineration temperature on phosphorus availability in bio-ash from manure.

    Science.gov (United States)

    Thygesen, A M; Wernberg, O; Skou, E; Sommer, S G

    2011-04-01

    In the near future phosphorus (P) will be a limited resource in high demand. This will increase the incentives for recycling P in animal manure. In this study the dry-matter-rich fraction from slurry separation was incinerated and the P availability of the ash fraction examined. The aim was to adjust incineration temperature to support a high plant-availability of P in ash. The plant-availability of P was approximately halved when the incineration temperature was increased from 400 to 700 degrees C. This decrease in plant-availability was probably due to the formation of hydroxyapatite. Incineration temperatures should therefore be kept below 700 degrees C to ensure a high fertilizer efficiency of P in ash. This may conflict with the energy production, which is optimal at temperatures above 800 degrees C. An alternative to incineration may therefore be thermal gasification of the dry-matter-rich fraction, which can be carried out efficiently at lower temperatures.

  13. Volume reduction and solidification of radioactive waste incineration ash with waste glass

    International Nuclear Information System (INIS)

    Koyama, Hidemi; Kobayashi, Masayuki

    2007-01-01

    The low-level radioactive waste generated from research institutions and hospitals etc. is packed into a container and is kept. The volume reduced state or the unprocessed state by incineration or compression processing are used because neither landfill sites nor disposal methods have been fixed. Especially, because the bulk density is low, and it is easy to disperse, the low-level radioactive waste incineration ash incinerated for the volume reduction is a big issue in security, safety, stability in the inventory location. A safe and appropriate disposal processing method is desired. When the low temperature sintering method in the use of the glass bottle cullet was examined, volume reduction and stabilization of low-level radioactive waste incineration ash were verified. The proposed method is useful for the easy treatment of the low-level radioactive waste incineration ash. (author)

  14. Porous materials produced from incineration ash using thermal plasma technology.

    Science.gov (United States)

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  16. Penggunaan Bottom Ash Yang Telah Diolah Untuk Pembuatan Beton Hvfa Mutu Menengah

    OpenAIRE

    Christian, Yohanes; Wirananda, Andry; Antoni, Antoni; Hardjito, Djwantoro

    2017-01-01

    Bottom ash merupakan limbah pembakaran batu bara dari PLTU. Di Indonesia pemanfaatan bottom ash sebagai material konstruksi belum maksimal. Terdapat potensi penggunaan bottom ash sebagai pengganti agregat halus pada beton. Dalam penelitian ini, bottom ash akan diberikan treatment ayak dan tumbuk sebelum digunakan sebagai pengganti agregat halus pada beton high volume fly ash (HVFA). Pengujian awal dilakukan dengan menguji karakteristik dari pasir Lumajang dan bottom ash yang akan dipakai sepe...

  17. Problematic Incinerator Ash: A Case Study of Finding a Successful Treatment Approach

    International Nuclear Information System (INIS)

    Gering, K. L.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) produces incinerator flyash and bottom ash as a consequence of burning low-level radioactive waste materials at the Waste Experimental Reduction Facility (WERF). The incineration process greatly reduces original waste volumes but concentrates the metals that are present, such as toxic metals (most notably cadmium, lead, and antimony) and nuisance metals (e.g., zinc). Anion species also become predominant in flyash produced by INEEL incineration, where chloride and sulfate are at concentrations that can approach 15-20 wt% each. In addition, treatment of the WERF flyash is further complicated by a significant fraction of ignitables composed of carbon soot and various hydrocarbon species that have been measured in some cases at 30% net by Loss-on-Ignition tests. Bottom ash produced at the WERF site is generally much less toxic, if not nontoxic, as compared to the flyash. Due to the complex composition of the flyash material, stabilization attempts at the INEEL have been only partly successful, causing the effectiveness and viability of treatment methods to be revisited. Breakthroughs in flyash stabilization came in 1998 when more complete characterization data gave us further insight into the chemical and physical nature of the flyash. These breakthroughs were also facilitated by the use of a computer model for electrolytes that allowed us to simulate stabilization options prior to started laboratory studies. This paper summarizes efforts at the INEEL, spanning the past three years, that have focused on stabilizing flyash. A brief history of INEEL treatability studies is given, showing that the degree of effective flyash stabilization was proportional to the amount of meaningful characterization data that was available. Various binders have been used in these treatability studies, including Portland cement type I/II, Portland cement type V, JGC Super Cement (blast furnace slag cement), a Fluid Tech

  18. Optimized Metal Recovery from Fly Ash from Municipal Solid Waste Incineration

    OpenAIRE

    Weibel, Gisela

    2017-01-01

    Switzerland plays a pioneering role in sustainable waste management with a long tradition of waste incineration and the prohibition to landfill unburnt municipal solid waste since 2000. In recent years, the focus has been laid on further reduction of pollutants from incineration residues because the revised Swiss Waste Ordinance prescribes the recovery of metals from fly ash starting in 2021. Fly ash collected in the heat recovery section and the electrostatic precipitator contains high conce...

  19. Ash chemistry in MSW incineration plants: Advanced characterization and thermodynamic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Flemming J.; Laursen, Karin; Arvelakis, S. (and others)

    2004-07-15

    A number of ash samples where collected at four Danish municipal solid waste incineration (MSWI) plants. Samples of bottom ash/slag, 2nd-3rd pass ashes and ESP/E-filter ash were collected at the plants. The ashes were analyzed by a number of standard chemical analyses, and a number of advanced analytical techniques. The wet chemical analyses of the different ash fractions revealed that residual ash is formed on the grate by interaction of the main ash forming elements, Al, Ca, Fe and Si. Some of this ash is entrained from the grate and carried with the flue gas along the flue gas duct, where volatile species of K, Na, Pb, Zn, Cl and S starts to condense heterogeneously on the fly ash, thereby causing a dilution of the main ash forming elements. When compared plant-by-plant, the ash chemical analyses showed that the plant with the highest S-content in the fly ash is the one with the most often operational problems in relation to deposition, while a high Cl-content is indicative of a high corrosive potential. An existing Computer Controlled Scanning Electron Microscopy (CCSEM) algorithm was extended with chemical classes covering Pb- and Zn-rich phases. This has made it possible also to analyze MSW-derived ashes by use of CCSEM. Representative samples of 2nd-3rd pass and ESP/E-filter ashes from the four plants have been analyzed by Quantitative X-Ray Diffraction (QXRD) analysis. Only a few crystalline phases were identified: KCl, NaCl, CaSO{sub 4}, SiO{sub 2} and CaCO{sub 3} being the main ones. No crystalline phases containing Pb or Zn were identified by QXRD. A comparison between CCSEM and QXRD revealed the expected surface nature of the CCSEM analysis. Samples of 2nd-3rd pass and ESP/E-filter ash from the four plants where investigated for melting behavior in the Simultaneous Thermal Analyzer (STA). It was shown that it is possible to quantify the melting behavior of these ashes, and that the melting goes on in two steps (salts followed by silicates/oxides). The

  20. Characterisation and management of ash produced in the hospital waste incinerator of Athens, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Kougemitrou, Irene [Harokopio University of Athens, 70 El. Venizelou Str., 17671 Athens (Greece); Godelitsas, Athanasios, E-mail: agodel@geol.uoa.gr [University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Tsabaris, Christos [Hellenic Center of Marine Research, 19013 Anavyssos (Greece); Stathopoulos, Vassilis [Technological Educational Institute of Chalkida, 34400 Psahna (Greece); Papandreou, Andreas [CERECO S.A. Ceramics and Refractories Technological Development Company, 34100 Chalkida (Greece); Gamaletsos, Platon [University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Economou, George [Institute of Geology and Mineral Exploration, Olympic Village, 13677 Acharnai (Greece); Papadopoulos, Dimitris [APOTEFROTIRAS S.A., Ano Liossia, 19200 Elefsina (Greece)

    2011-03-15

    Bottom and fly ash samples (BASH and FASH) from the APOTEFROTIRAS S.A. medical waste incinerator (Athens, Greece) were investigated. Powder-XRD data and geochemical diagrams showed BASH to be an amorphous material, analogous to basaltic glass, and FASH consisting of crystalline compounds (mainly CaClOH). Bulk analyses by ICP-MS and point analyses by SEM-EDS indicated a high content of heavy metals, such as Fe, Cu and Cr, in both samples. However, BASH was highly enriched in Ni while FASH was additionally enriched in Zn and Pb. Gamma-ray measurements showed that the radioactivity of both ash samples, due to natural and artificial radionuclides ({sup 137}Cs, {sup 57}Co), was within the permissible levels recommended by IAEA. According to EN-type leaching tests, BASH was practically inert with regard to the mobility of the hazardous elements in aqueous media. FASH, however, showed a relatively high EN (and TCLP) leachability with regard to Pb and Zn. Finally, the stabilisation method, suggested for the treatment of FASH, included compression of the powder into briquettes using an appropriate machine and embedding the briquettes into pozzolanic cement blocks. After this treatment, TCLP and EN-type tests showed minimal release of Pb and Zn, thereby demonstrating a reliable management of ash waste.

  1. Characterisation and management of ash produced in the hospital waste incinerator of Athens, Greece

    International Nuclear Information System (INIS)

    Kougemitrou, Irene; Godelitsas, Athanasios; Tsabaris, Christos; Stathopoulos, Vassilis; Papandreou, Andreas; Gamaletsos, Platon; Economou, George; Papadopoulos, Dimitris

    2011-01-01

    Bottom and fly ash samples (BASH and FASH) from the APOTEFROTIRAS S.A. medical waste incinerator (Athens, Greece) were investigated. Powder-XRD data and geochemical diagrams showed BASH to be an amorphous material, analogous to basaltic glass, and FASH consisting of crystalline compounds (mainly CaClOH). Bulk analyses by ICP-MS and point analyses by SEM-EDS indicated a high content of heavy metals, such as Fe, Cu and Cr, in both samples. However, BASH was highly enriched in Ni while FASH was additionally enriched in Zn and Pb. Gamma-ray measurements showed that the radioactivity of both ash samples, due to natural and artificial radionuclides ( 137 Cs, 57 Co), was within the permissible levels recommended by IAEA. According to EN-type leaching tests, BASH was practically inert with regard to the mobility of the hazardous elements in aqueous media. FASH, however, showed a relatively high EN (and TCLP) leachability with regard to Pb and Zn. Finally, the stabilisation method, suggested for the treatment of FASH, included compression of the powder into briquettes using an appropriate machine and embedding the briquettes into pozzolanic cement blocks. After this treatment, TCLP and EN-type tests showed minimal release of Pb and Zn, thereby demonstrating a reliable management of ash waste.

  2. Effect of leachate solutions from fly ash bottom ash on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Kopsick, D.A.; Angino, E.E.

    1981-12-01

    Leaching experiments on fly ash and bottom ash for Ca, Mg, Na, K, Fe, Mn, Zn, Cu and Pb indicated a potential for contamination of ground- and surface-water supplies. Due to the variability in chemical composition of coals, it is difficult to make generalizations concerning the chemistry of leachate solutions from the ashes of the coals. A decrease in concentration with time of leaching was observed for all elements, except for Ca which was released at a constant rate. Fly ash from a Missouri coal generated a leachate enriched in Pb, Zn, Cu, Fe, Mn and Cd, reflective of the high Pb-Zn mineralization present in the surrounding area. With a pH of 3.0 this ash has the greatest potential for groundwater contamination. Conversely, leachates from Wyoming fly and bottom ashes exhibited low trace-metal concentrations. These same solutions were high in K, Na, Ca and Mg, and also showed strong pozzolanic behaviour, which will reduce the leachability of these ashes. In most instances, fly and bottom ash from Kentucky and Illinois coals yielded leachates intermediate in elemental composition to leachates of Missouri and Wyoming coal ashes. Leaching experiments indicate that it is not valid to predict the chemistry of leachates from fly and bottom ash based solely on the chemical composition of the ash. (16 refs.)

  3. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Directory of Open Access Journals (Sweden)

    Aneeta Mary Joseph

    2018-01-01

    Full Text Available Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  4. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View.

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn; De Belie, Nele

    2018-01-16

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  5. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn

    2018-01-01

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887

  6. Use of stabilized bottom ash for bound layers of road pavements.

    Science.gov (United States)

    Toraldo, Emanuele; Saponaro, Sabrina; Careghini, Alessandro; Mariani, Edoardo

    2013-05-30

    This paper reports about the lab scale results obtained by using stabilized bottom ash (SBA) from an Italian municipal solid waste incinerator as aggregates in cement-bound mixes and asphalt concretes for road pavements. The investigation focused on SBA content. From the road construction point of view, performance related to compaction, volumetric and mechanical properties were assessed. The environmental aspects were investigated performing leaching tests. The results suggested that SBA satisfied the environmental Italian law for reuse of non-hazardous waste but affected significantly the stress-strain behavior of the final products. Therefore a maximum percentage of 10% was suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.

    Science.gov (United States)

    Biganzoli, Laura; Ilyas, Aamir; Praagh, Martijn van; Persson, Kenneth M; Grosso, Mario

    2013-05-01

    Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10MNaOH at 1L/S ratio results in the release of 6-11l of H2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  9. Evaluating the use of waste-to-energy bottom ash as road construction materials : [summary].

    Science.gov (United States)

    2014-02-01

    Municipal solid waste incineration (MSWI) generates millions of tons of ash each year. In European and Asian countries, this ash has been recycled into road beds, asphalt paving, and concrete products encouraged and enforced by standards, managem...

  10. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A7 to A10

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.; Astrup, T.; Jensen, Peter A.; Nesterov, I.; Boejer, M.; Frandsen, F.; Dam-Johansen, K.; Hedegaard Madsen, O.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with the influence of kiln treatment on incineration bottom ash leaching; the influence of kiln treatment on corrosive species in deposits; operational strategy for rotary kiln; alkali/chloride release during refuse incineration on a grate. (Author)

  11. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material.

    Science.gov (United States)

    del Valle-Zermeño, R; Formosa, J; Chimenos, J M; Martínez, M; Fernández, A I

    2013-03-01

    The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The effect of the origin of MSWI bottom ash on the H2S elimination from landfill biogas.

    Science.gov (United States)

    Fontseré Obis, Marta; Germain, Patrick; Bouzahzah, Hassan; Richioud, Alain; Benbelkacem, Hassen

    2017-12-01

    Municipal Solid Waste Incineration (MSWI) Bottom Ash (BA) is a potential alternative adsorbent for biogas treatment due to its reactivity with hydrogen sulfide (H 2 S). The quality of BA depends however on the nature of the waste and the process technology of the waste incineration facility. To determine whether the origin of the BA could have an influence on its H 2 S elimination efficiency, comparative experimental tests were conducted in a landfill site with six bottom ashes from different MSW incinerators. Results showed that one of the BAs (A) had a much higher adsorption capacity than the rest (B-F), with 37g H 2 S/kg dry BA, compared to 11-16g H 2 S/kg dry BA for the other bottom ashes. Detailed physico-chemical analyses of the six BA were performed and complemented by principal component analysis to understand the different behaviors. BA iron content and specific surface area provided by the quench product stood out as key factors that promote the elimination of H 2 S. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.

    Science.gov (United States)

    Cornelis, Geert; Van Gerven, Tom; Vandecasteele, Carlo

    2012-02-01

    Development of treatment methods to reduce Sb leaching from municipal solid waste incinerator (MSWI) bottom ash, such as accelerated carbonation, is being complicated by insufficient understanding of Sb geochemistry. The leaching of antimonate (Sb(V)) and antimonite (Sb(III)) in MSWI bottom was studied as a function of pH and degree of carbonation. While total (Sb(V)+Sb(III)) leaching was lowest (1.2 mg kg(-1)) at the natural pH (i.e. 10.6) of uncarbonated bottom ash, HPLC-ICP-MS analysis showed that acidification and carbonation increased Sb(V) leaching, but decreased Sb(III) leaching, probably because Sb(III)(OH)(4)(-) became less stable. PHREEQC geochemical modelling suggested that Sb(V) concentrations approached equilibrium with the romeites, i.e. calcium antimonates, Ca(1.13)Sb(2)(OH)(0.26)·0.74H(2)O at pH=10.6 and Ca[Sb(OH)(6)](2) at pH=8. It is hypothesised that not interaction with ettringite but dissolution of romeite controls antimonate leaching in the pH range 8-11 in MSWI bottom ash, because while Ca is preferentially leached from romeite, the mineral structures containing more Ca at higher pH are less soluble. A model was proposed where acidification and carbonation both lead to lower Ca(2+) and/or hydroxyl concentration, which removes Ca(2+) and hydroxyls from the romeite structure and leads to comparably higher Sb(V) concentration in equilibrium with romeite. Sb solubility depends on pH and Ca(2+) availability in this model, which has implications for bottom ash valorisation and risk assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Influence of Fly Ash, Bottom Ash, and Light Expanded Clay Aggregate on Concrete

    Directory of Open Access Journals (Sweden)

    S. Sivakumar

    2015-01-01

    Full Text Available Invention of new methods in strengthening concrete is under work for decades. Developing countries like India use the extensive reinforced construction works materials such as fly ash and bottom ash and other ingredients in RCC construction. In the construction industry, major attention has been devoted to the use of fly ash and bottom ash as cement and fine aggregate replacements. In addition, light expanded clay aggregate has been introduced instead of coarse aggregate to make concrete have light weight. This paper presents the results of a real-time work carried out to form light weight concrete made with fly ash, bottom ash, and light expanded clay aggregate as mineral admixtures. Experimental investigation on concrete mix M20 is done by replacement of cement with fly ash, fine aggregate with bottom ash, and coarse aggregate with light expanded clay aggregate at the rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35% in each mix and their compressive strength and split tensile strength of concrete were discussed for 7, 28, and 56 days and flexural strength has been discussed for 7, 28, and 56 days depending on the optimum dosage of replacement in compressive strength and split tensile strength of concrete.

  15. Density and morphology studies on bottom ash and fly ash geopolymer brick

    Science.gov (United States)

    Deraman, Laila Mardiah; Abdullah, Mohd Mustafa Al Bakri; Ming, Liew Yun; Hussin, Kamarudin

    2017-04-01

    This paper studies the finding density and morphology analysis of geopolymer bricks using bottom ash and fly ash as a geopolymer raw material. The study has been conducted to produce bottom ash and fly ash geopolymer bricks by varying the ratio of fly ash/bottom ash, ratio solid/liquid and ratio sodium silicate (Na2SiO3)/ sodium hydroxide (NaOH) in the mix design. The compressive strength range between 3.8-4.5 Mpa was obtained in theprevious study [9]. The density and morphology analysis are done based on the optimum ratio selected from bottom ash/fly ash, solid/liquidand Na2SiO3/NaOH which is 1:2, 2.0 and 4.0 respectively for non-loading application brick. The morphology analysis of the bricks is closely related to the density recorded. The highest density shows the highest value of compressive strength and a denser microstructure of morphology.

  16. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    Science.gov (United States)

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  19. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  20. Workability and strength of lignite bottom ash geopolymer mortar.

    Science.gov (United States)

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars.

  1. MSWI Bottom Ash Characterization and Resource Recovery Potential Assessment.

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Kameníková, Petra; Krausová, Aneta; Zach, Boleslav; Pohořelý, Michael; Svoboda, Karel; Punčochář, Miroslav

    2015-01-01

    Roč. 2, č. 36 (2015), s. 79-84 ISSN 1640-4902 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : MSWI * bottom ash * metal recovery Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  2. Use of Unprocessed Coal Bottom Ash as Partial Fine Aggregate ...

    African Journals Online (AJOL)

    The research also shows that 20% is the optimum percentage replacement to achieve favorable strength and good strength development pattern as a normal concrete mix with time. Unprocessed bottom ash from FUEL power station can thus be used as fine aggregate replacement in concrete for that specific percentage ...

  3. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A1 to A3

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, I.; Jensen, Peter A.; Dam-Johansen, K.; Kloeft, H.; Boejer, M. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Esbjerg (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with incineration bottom ash leaching properties; design and construction of rotary kiln facility; manual to rotary kiln experiments. (Author)

  4. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A4 to A6

    Energy Technology Data Exchange (ETDEWEB)

    Kloeft, H.; Jensen, Peter A.; Nesterov, I.; Hyks, J.; Astrup, T. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with collection of slags for the rotary kiln experiments; overview of the thermal treatment experiments - phase 1; a journal paper with the title ''Quantification of leaching from waste incineration bottom ash treated in a rotary kiln

  5. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  6. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    Science.gov (United States)

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  7. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].

    Science.gov (United States)

    Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong

    2016-03-15

    Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.

  8. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    OpenAIRE

    Ramzi Hannan Nurul Izzati Raihan; Shahidan Shahiron; Ali Noorwirdawati; Maarof Mohamad Zulkhairi

    2017-01-01

    The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond). However, millions of tons of coal ash (bottom ash) waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material th...

  9. Analisis Sifat Listrik Komposit Polianilin (Pani) Terhadap Penambahan Bottom Ash Sebagai Elektroda Superkapasitor

    OpenAIRE

    Susmita, Ria; Muttaqin, Afdal

    2013-01-01

    Telah dilakukan pembuatan dan analisis sifat listrik elektroda superkapasitor berbahan dasar polimer PANi dengan penambahan bottom ash. Penelitian ini bertujuan untuk mempelajari sifat listrik polimer konduktif polianilin terhadap penambahan bottom ash dibawah pengaruh temperatur antara 308 K hingga 373 K. Sampel komposit PANi-bottom ash dibuat dalam bentuk tablet dengan ukuran tebal 0,324 cm, luas permukaan 1,3143 cm2 dan massa jenis ± 1,3624 g/cm3, dengan komposisi penambahan bottom ash 0 ...

  10. Incineration of a typical LWR combustible waste and analysis of the resulting ash

    International Nuclear Information System (INIS)

    Treat, R.L.; Lokken, R.O.; Schliebe, M.J.

    1983-05-01

    In this study 4540 kg (10,000 lb) of simulated nuclear power plant combustion wastes were burned in a controlled-air incinerators. The purpose of this work was to generate ashes suitable for solidification, the products of which will be analyzed to determine if they are suitable for disposal. Two different types of waste were burned: resin and simulated crud, and general trash (paper, plastics, wood, rubber, and cloth). Volume-reduction ratios (unburned waste: ash) were 13:1 and 22:1, respectively. Approximately 20% of the ash was lost due to adherence to incinerator walls and entrainment in the off-gas stream. Losses of the volatile species cesium and iodine were 79% and 100%, respectively. The ashes were not hygroscopic, but they exhibited a pH of 4.6 to 5.0 when water was added. Corrosion of mild steel drums would occur within this pH range. The ashes contained a significant quantity of clinkers haveing lengths as great as 20 cm (8 in.). Most of the clinkers were fully incinerated and easy to crush, suggesting that standard comminuting equipment should be effective in reducing the size of clinkers to allow their solidification with the fine ashes

  11. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  12. Influence of ammonia on leaching behaviors of incineration fly ash and its geochemical modeling

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Guan, Zhen Zhen; Chen, De Zhen

    2013-01-01

    of dissolved organic carbon (DOC) and metals from incineration fly ash in the pH range of 3.66-12.44 with an active ammonia spike. A geochemical modeling software Visual MINTEQ was adopted to calculate the chemical speciation of metals under the leaching conditions to reveal the mechanism behind the impacts...

  13. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Kirkelund, Gunvor M.; Jensen, Pernille E.

    2013-01-01

    Ashes from mono-incineration of sewage sludge (ISSA) generally contain high concentrations of phosphorous (P) and can be regarded as secondary P resources. ISSA has no direct value as fertilizer as P is not plant available. The present paper experimentally compares P extraction in acid from two d...

  14. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...

  15. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P......Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich....... A product with lower level of metallic impurities and comparable to wet process phosphoric acid (WPA) was eventually obtained from gasification SSA. Thus, gasification becomes an interesting alternative to incineration also in terms of P separation....

  16. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    International Nuclear Information System (INIS)

    Furth, A.J.; Burke, G.K.; Deutsch, W.L. Jr.

    1997-01-01

    The City of Philadelphia's Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980's, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m 2 area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m 2 landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing

  17. Glass-ceramic from mixtures of bottom ash and fly ash.

    Science.gov (United States)

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    Science.gov (United States)

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  19. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  20. New-Generation Aluminum Composite with Bottom Ash Industrial Waste

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    2018-02-01

    Industrial waste bottom ash (BA) from a pulverized coal combustion boiler containing hard wear-resistant particles was utilized in this study to form an aluminum composite through a liquid metallurgy route. Composites comprising 5 wt.% and 10 wt.% bottom ash were characterized for their physiochemical, microstructural, mechanical, as well as tribological properties, along with pure aluminum. Scanning electron microscopy (SEM) microstructure revealed uniform distribution of BA particles throughout the matrix of the composite, whereas x-ray diffraction (XRD) analysis confirmed presence of aluminosilicate phase. Addition of 10 wt.% BA improved the Brinell hardness number (BHN) from 13 to 19 and ultimate tensile strength (UTS) from 71 MPa to 87 MPa, whereas ductility was adversely reduced after 5% BA addition. Incorporation of BA particles resulted in reduced dry sliding wear rates examined up to 80 N load compared with aluminum. Hence, such composites having lower cost could be applied as significantly hard, wear-resistant materials in applications in the automotive industry.

  1. Some Durability Aspects of Ambient Cured Bottom Ash Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Saravanakumar R.

    2017-09-01

    Full Text Available The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC.

  2. Fluorination of incinerator ash by hydrofluorination or ammonium bifluoride fusion for plutonium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.D.; Gray, J.H.; Kent, S.J.; Apgar, S.A.

    1989-01-01

    Incinerator ash containing small quantities of plutonium has been accumulating across the defense complex for many years. Although the total Pu inventory is small, the ash is a nondiscardable residue which presents storage and accountability difficulties. The work discussed here is the result of a joint exploratory effort between members of Savannah River Laboratory and Los Alamos National Laboratory to compare two proposed pyrochemical pretreatments of incinerator ash prior to aqueous processing. These experiments attempted to determine the relative effectiveness of hydrofluorination and ammonium bifluoride fusion as head-end operations for a two step aqueous recovery method. The two pretreatments are being considered as possible second generation enhancements for the New Special Recovery Facility nearing operation at Savannah River Plant. Experimental results and potential engineering concerns are discussed. 3 figs.

  3. Evaluating the use of waste-to-energy bottom ash as road construction materials.

    Science.gov (United States)

    2014-02-01

    Current management practice, existing regulations, and environmental consequences of municipal solid : waste incineration (MSWI) ash utilization were comprehensively reviewed worldwide and nationwide : in the U.S. Efforts were made to physically and ...

  4. Investigation of Equilibrium and Thermodynamic parameters of Crystal Violet Adsorption onto Bottom Ash

    OpenAIRE

    , P.V. Nidheesh; , R. Gandhimathi; , S.T. Ramesh; , T.S. Anantha Singh

    2016-01-01

    In this work, batch adsorption experiments were carried out for removal crystal violet (CV) dye from aqueous solution using bottom ash as adsorbent. Effect of temperature, bottom ash dosage, agitation speed and pH on CV removal efŞciency by bottom ash was carried out. Removal of CV by bottom ash is an endothermic nature of adsorption. Batch isotherm study was carried out to Şnd the equilibrium capacity of bottom ash. The maximum removal was found to be 84.1, 90.5 and 97.33% at the dose of 1.1...

  5. Bioaccumulations of heavy metals in Ipomoea aquatica grown in bottom ash recycling wastewater.

    Science.gov (United States)

    Milla, Odette Varela; Rivera, Eva B; Huang, Wu-Jang

    2014-05-01

    A plant bioassay using hydroponically grown Ipomoea aquatica (water spinach) was applied to assess the phytotoxicity of untreated and treated wastewaters from a municipal solid waste incineration bottom ash recycling facility. The 50%-diluted, untreated wastewater exhibited acute toxicity (plants died within 24 hours). Highly diluted doses (3 and 6%) of both wastewater types displayed no significant differences when compared with the control. Treating the wastewater through sequential physical filtration and chemical precipitation processes decreased not only the dissolved solids content but also the pH and salt content. In addition, significant accumulations of Sr, Cr, and Sn were observed in the hydroponically grown I. aquatica plant tissues; in particular, the bioaccumulation of Sr in the leaves and roots was unexpectedly high.

  6. Effect of short-term natural weathering on MSWI and wood waste bottom ash leaching behaviour.

    Science.gov (United States)

    Gori, M; Bergfeldt, B; Pfrang-Stotz, G; Reichelt, J; Sirini, P

    2011-05-15

    Short term natural weathering was applied on municipal solid waste (MSW) and wood waste incinerator bottom ash (BA). The materials were analysed at different steps of treatment and characterized for chemical and mineralogical composition. Both short and long term leaching behaviour of main elements and heavy metals were investigated as well. Lead, zinc and copper were the main heavy metals to be released. After 12 weeks of treatment the concentration of leached zinc decreased. Lead concentration was not found to be influenced by pH and decreased only for the biomass samples. Weathering did not have beneficial effects on copper leaching, which was well described by complexation processes with DOC. The findings from the experimental campaign indicated that weathering reactions improved the mineral stability of the analysed materials but, in contrast with previous works, the treatment was not sufficient to guarantee pH stability and to comply with leaching law limits. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Heavy metal behavior in "Washing-Calcination-Changing with Bottom Ash" system for recycling of four types of fly ashes.

    Science.gov (United States)

    Zhu, Fenfen; Xiong, Yiqun; Wang, Yingying; Wei, Xiang; Zhu, Xuemei; Yan, Fawei

    2018-01-30

    The Washing-Calcination-Changing with Bottom Ash (WCCB) system, effective at reducing chloride, was proposed to treat fly ash (FA) from a municipal solid waste incinerator (MSWI) before recycling FA in cement kiln as raw material. This study analyzed the behavior of heavy metals in four types of FA during WCCB treatment via Tessier and X-ray absorption fine structure (XANES) method. One FA was from the bag filter of a typical MSWI in Beijing, China (CFA), and the other three were from Japan (RFA, CaFA, and NaFA). All the metals were reduced especially Pb, Cd, and Hg (38.4-82.4%, 21.8-34.7%, and 100%, respectively). Besides Cr almost all heavy metals were stabilized according to Tessier analysis. Cr should be given more attention in WCCB as the formation of exchangeable Cr in the final residue. XANES result indicated that PbCl 2 could be the main species of Pb in FA, while CaFA contains some PbO. The treated FAs contain PbCO 3 and PbO besides PbCl 2 . The Tessier results of Ni, Pb, Cd, Cr, and Cu showed that NaFA was better at heavy metal stabilization than the other FA, so NaHCO 3 is a more suitable neutralizer in WCCB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations.

    Science.gov (United States)

    Ginés, O; Chimenos, J M; Vizcarro, A; Formosa, J; Rosell, J R

    2009-09-30

    This paper reports the experimental results obtained after casting concrete formulated with different mix proportions of municipal solid waste incineration (MSWI) by-products, bottom ash (BA) and air pollution control fly ash (APCFA), as aggregates. Several tests were performed to determine the properties of the mixed proportions. Mechanical properties of the formulations, such as compressive strength, were also determined, and two different leaching tests were performed to study their environmental effects. Some suitable concrete formulations were obtained for the 95/5 and 90/10 BA/APCFA mix proportions. These formulations showed the highest compressive strength test results, above 15 MPa, and the lowest amount of released trace metals in reference to the leaching test. The leaching mechanisms involved in the release of trace metals for the best formulations were also studied, revealing that the washing-off process may play an important role. Given the experimental data it can be concluded that these concrete mix proportions are suitable for use as non-structural concrete.

  9. An ecotoxicological evaluation of aged bottom ash for use in constructions.

    Science.gov (United States)

    Stiernström, S; Enell, A; Wik, O; Borg, H; Breitholtz, M

    2014-01-01

    Municipal and Industrial Solid Waste Incineration (MISWI) bottom ash is mainly deposited in landfills, but natural resources and energy could be saved if these ash materials would be used in geotechnical constructions. To enable such usage, knowledge is needed on their potential environmental impact. The aim of this study was to evaluate the ecotoxicity of leachates from MISWI bottom ash, aged for five years, in an environmental relevant way using a sequential batch leaching method at the Liquid/Solid-ratio interval 1-3, and to test the leachates in a (sub)chronic ecotoxicity test. Also, the leachates were characterized chemically and with the technique of diffusive gradients in thin films (DGTs). By comparing established ecotoxicity data for each element with chemically analysed and labile concentrations in the leachates, potentially problematic elements were identified by calculating Hazard Quotients (HQ). Overall, our results show that the ecotoxicity was in general low and decreased with increased leaching. A strong correspondence between calculated HQs and observed toxicity over the full L/S range was observed for K. However, K will likely not be problematic from a long-term environmental perspective when using the ash, since it is a naturally occurring essential macro element which is not classified as ecotoxic in the chemical legislation. Although Cu was measured in total concentrations close to where a toxic response is expected, even at L/S 3, the DGT-analysis showed that less than 50% was present in a labile fraction, indicating that Cu is complexed by organic ligands which reduce its bioavailability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Paving Geopolimer Berbahan Dasar Bottom Ash dan Sugar Cane Bagasse Ash (SCBA

    Directory of Open Access Journals (Sweden)

    Achmad Freddya Eka Prasandha

    2015-12-01

    Full Text Available Abstrak— Penelitian ini berfokus pada pemanfaatan bottom ash sebagai bahan dasar pembuatan paving geopolimer. Diketahui bahwa bottom ash merupakan limbah hasil pembakaran batu bara yang jarang dimanfaatkan dibandingkan dengan fly ash. Selain itu digunakan SCBA (Sugar Cane Bagasse Ash sebagai sumber silika aktif untuk menambah kandungan silika pada bottom ash. Agregat atau filler pada paving geopolimer menggunakan abu batu, sedangkan untuk binder (pengikat menggunakan larutan alkali aktifator. Hasil pengujian menunjukkan bahwa semakin banyak penambahan berat SCBA pada paving geopolimer justru menurunkan kualitas dari paving tersebut. Dari pengujian kuat tekan paving diperoleh hasil kuat tekan maksimal pada umur 28 hari dengan penambahan berat SCBA 0%, yaitu sebesar 11.60 MPa. Nilai keausan paling besar terjadi pada paving dengan penambahan berat SCBA 35%, yaitu yaitu sebesar 3.12 mm/menit, sedangkan keausan paling kecil terjadi pada paving dengan penambahan berat SCBA 30% yaitu sebesar 0.72 mm/menit, terjadi ketimpangan nilai keausan paving dikarenakan benda uji terendam banjir sehingga menyebabkan perbedaan kualitas antar paving dalam pengujian keausan, sedangkan resapan air paving paling kecil terjadi pada paving dengan penambahan berat SCBA 0% yaitu sebesar 10.58%. Sehingga diperoleh kesimpulan akhir bahwa paving geopolimer tidak memenuhi persyaratan standar paving berdasarkan SNI 03-0691-1996 namun memenuhi syarat untuk dijadikan bata sebagai pasangan dinding kelas I berdasarkan SNI 03-0349-1989.

  11. Properties of cold-bonded lightweight artificial aggregate containing bottom ash with different curing regime

    Science.gov (United States)

    Mohamad Ibrahim, Norlia; Nizar Ismail, Khairul; Che Amat, Roshazita; Mohamad Ghazali, Mohamad Iqbal

    2018-03-01

    Cold-bonded pelletizing technique is frequently used in aggregate manufacturing process as it can minimise the energy consumption. It has contributed to both economical and environmental advantages because it helps to reduce the gas emissions problems. Bottom ash collected from municipal solid waste incineration (MSWI) plant was selected as raw material in this study and was utilised as a partial replacement for cement for artificial aggregate production. Several percentage of ash replacement was selected ranged from 10 to 50%. Aggregate pellets were subjected to different types of curing condition which is room-water (RW), room-room (RR), oven-room (OR) and oven-water (OW) condition. Properties of aggregate pellets were examined to obtain its density, water absorption, aggregate impact value (AIV) and specific gravity (SG). The results indicated that the most efficient curing regime is by exposing the aggregate in RW condition. The optimum aggregate was selected at 20% where it has satisfied the required density of 739.5kg/m3, and classified as strong aggregate with AIV 14. However, the water absorption of aggregate increased proportionately with the increment of ash content.

  12. Effect of addition of bottom ash on the rheological properties of fly ash slurry at varying temperature

    Science.gov (United States)

    Kumar, K.; Kumar, S.; Gupta, M.; Garg, H. C.

    2016-09-01

    Presently, fly ash is transporting through slurry pipeline in the thermal power plant. Aim of the present investigation is to examine the rheological behaviour of finer particle (fly ash) slurry suspension with and without addition of coarser particles (bottom ash). Mixture of fly and bottom ash is taken with proportion of 9:1, 8:2 and 7:3 (by weight). The temperature of slurry suspension is varying from 25 to 40°C at solid concentration 30 % (by weight). Rheological tests are conducted with the variation of shear rate from 100 to 300 sec-1 for all slurry samples. Addition of coarse particles of bottom ash in finer particles of fly ash slurry, leads to improve the rheological characteristics of slurry suspension. The addition of bottom ash can result substantial saving in energy consumption with reduction in relative viscosity.

  13. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  14. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    International Nuclear Information System (INIS)

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-01-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  15. The calcination process in a system for washing, calcinating, and converting treated municipal solid waste incinerator fly ash into raw material for the cement industry.

    Science.gov (United States)

    Zhu, Fenfen; Takaoka, Masaki; Oshita, Kazuyuki; Morisawa, Shinsuke

    2011-07-01

    Calcination is the second step in a washing-calcination-conversion system in which treated municipal solid waste incinerator fly ash and bottom ash can be reused as raw material in the cement industry and can decompose or stabilize hazardous compounds, reduce residue amounts, and alter residue characteristics. In this research, only fly ash is discussed. Chloride reduction is important if treated fly ash is to be reused in cement; however, the relationship between washed fly ash properties and chloride reduction by calcination is not well understood. This study used washed residues of three types of fly ash-raw fly ash (RFA) from the boiler or economizer of an incineration system, fly ash collected in a bag filter injected with calcium hydroxide (Ca(OH)2) for acid removal (CaFA), and fly ash collected in a bag filter injected with sodium bicarbonate (NaHCO3) for acid removal (NaFA)-in calcination experiments with varying temperature (400-1100 degrees C) and atmosphere (100% nitrogen [N2] at 25 mL/min or 10% oxygen [O2] [90% N2] at fluxes of 25, 50, and 75 mL/min). From the perspective of chloride reduction, heating to 1000 degrees C with 1-hr heating time, 1-hr holding time, and an atmosphere of 10% O2/90% N2 was most suitable for calcination. Under these conditions, chloride levels were reduced by 91, 52, and 96% in washed residues of RFA, CaFA, and NaFA, respectively. Among the washed residues, the weight of the washed residue of NaFA decreased the most.

  16. Electrodialytic upgrading of municipal waste incineration fly ash for reuse

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2012-01-01

    content of water soluble, mobile salts and heavy metals. It was shown that the mobility of salts and toxic elements can be significantly reduced by extraction with electrodialysis in stack [1, 2]; and that treated MSWI fly ash may potentially be utilized as a substitute for cement in concrete [3...

  17. Conditioning of alpha incinerator ash by means of embedding in different matrices

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Auffret, L.; Biagini, A.

    1990-01-01

    The programme of conditioning alpha incinerator ash coming from a MOX fuel fabrication plant - MELOX project - has several steps. The first one is the fabrication of embedding formulation representative ash. The following step is an embedding formulation study at laboratory scale, with a comparison between three embedding matrices i.e. cement, thermosetting epoxide resin, and an epoxide cement compound. To establish the confinment behavior, a study was done including leaching test and radiolysis of 238 Pu doped samples. At the industrial scale a polyvalent pilot plant called 'PICC' was put in service. The qualification of the polymer cement process is shown

  18. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.

    Science.gov (United States)

    Mostbauer, P; Lombardi, L; Olivieri, T; Lenz, S

    2014-01-01

    Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65-90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500-1000 kg of bottom ash and up to 9.2 Nm(3)/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 Nm(3)/(htBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. UASB Treatment of Methanolic Pulp Wastewater with Addition of Waste Starch and Incinerated Ash

    Science.gov (United States)

    Takahashi, Shintaro; Kobaysashi, Takuro; Li, Yu-You; Harada, Hideki

    The pulp wastewater consists mainly of methanol. It is expected to treat using upflow anaerobic sludge blanket (UASB) process. Paper manufactories also produce waste starch and incinerated ash. The integrated treating for these wastes is desirable. In this study, two UASB reactors were operated to treat pulp wastewater with addition of waste starch and with addition of incinerated ash, receptively. Continuous operations of a UASB reactor treating pulp wastewater with addition of waste starch (PS reactor) and a UASB reactor treating pulp wastewater with addition of incinerated ash (PA reactor) , were investigated at mesophilic conditions. The PS reactor performed well with an average 93.7% total CODCr and 97.3% soluble CODCr removal efficiency in average at a maximum volumetric loading rate (VLR) of 16.0 kgCOD/m3/d. The PA reactor was also successfully operated with an average 95.3% total CODCr and 97.5% soluble CODCr removal efficiency in average at a maximum VLR of 14.6 kgCOD/m3/d. Successfully developed granules were obtained after over 140 days of operation in both reactors, and the granules were 1 to 2 mm in mean diameter. Microbial analysis revealed the genus Methanomethylovorans was predominant in the granules of both reactors.

  20. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  1. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    Science.gov (United States)

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  2. Characterization of Bottom Ash from Czech Waste-to-Energy Plants.

    OpenAIRE

    Krausová, Aneta

    2016-01-01

    Our study summarizes the composition of bottom ash from two WtE plants in the Czech Republic. Bottom ash with particle size over 2 mm was characterized by combination of manual and mechanical analyses (e.g. magnetic separation, sieving, grinding, etc.). Bottom ash with particle size under 2 mm was analysed using scanning electron microscopy, to find its composition and to determine the form of comprised metals.

  3. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  4. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.

    Science.gov (United States)

    Ko, Ming-Sheng; Chen, Ying-Liang; Wei, Pei-Shou

    2013-03-01

    The municipal solid waste incinerators (MSWIs) in Taiwan generate about 300,000 tons of fly ash annually, which is mainly composed of calcium and silicon compounds, and has the potential for recycling. However, some heavy metals are present in the MSWI fly ash, and before recycling, they need to be removed or reduced to make the fly ash non-hazardous. Accordingly, the purpose of this study was to use a hydrocyclone for the separation of the components of the MSWI fly ash in order to obtain the recyclable portion. The results show that chloride salts can be removed from the fly ash during the hydrocyclone separation process. The presence of a dense medium (quartz sand in this study) is not only helpful for the removal of the salts, but also for the separation of the fly ash particles. After the dense-medium hydrocyclone separation process, heavy metals including Pb and Zn were concentrated in the fine particles so that the rest of the fly ash contained less heavy metal and became both non-hazardous and recyclable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.

  6. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...

  7. Studying the melting behaviour of fly ash from the incineration of MSW using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Frandsen, F. J.

    2008-01-01

    The purpose of the present study has been to investigate the melting behaviour of fly ashes from the incineration of MSW (municipal solid waste). Four fly ash samples from the Svendborg WtE (waste-to-energy) plant (2nd-3rd pass, super-heater, economizer, ESP), in Denmark, have been investigated...

  8. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent wa...

  9. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2005-01-01

    Electrodialytic remediation, an electrochemically assisted separation method, has previ-ously shown potential for removal of heavy metals from municipal solid waste incineration (MSWI) fly ashes. In this work electrodialytic remediation of MSWI fly ash using ammonium citrate as assisting agent...

  10. Characterization of cement and bitumen waste forms containing simulated low-level waste incinerator ash

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1984-08-01

    Incinerator ash from the combustion of general trash and ion exchange resins was immobilized in cement and bitumen. Tests were conducted on the resulting waste forms to provide a data base for the acceptability of actual low-level waste forms. The testing was done in accordance with the US Nuclear Regulatory Commission Technical Position on Waste Form. Bitumen had a measured compressive strength of 130 psi and a leachability index of 13 as measured with the ANS 16.1 leach test procedure. Cement demonstrated a compressive strength of 1400 psi and a leachability index of 7. Both waste forms easily exceed the minimum compressive strength of 50 psi and leachability index of 6 specified in the Technical Position. Irradiation to 10 8 Rad and exposure to 31 thermal cycles ranging from +60 0 ) to -30 0 C did not significantly impact these properties. Neither waste form supported bacterial or fungal growth as measured with ASTM G21 and G22 procedures. However, there is some indication of biodegradation due to co-metabolic processes. Concentration of organic complexants in leachates of the ash, cement and bitumen were too low to significantly affect the release of radionuclides from the waste forms. Neither bitumen nor cement containing incinerator ash caused any corrosion or degradation of potential container materials including steel, polyethylene and fiberglass. However, moist ash did cause corrosion of the steel

  11. Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment.

    Science.gov (United States)

    Liu, Yangsheng; Li, Yaqiong; Li, Xiaodong; Jiang, Yuping

    2008-01-01

    Bottom ash is the main solid residue (in weight) which is produced by municipal solid waste incineration (MSWI) facilities. This material is composed of a mineral matrix and may be used as secondary raw material for construction purpose. However, for this specific application the leaching behavior of the environmentally relevant elements under field conditions is different from the predicted behavior based on results obtained from the standardized leaching test. Therefore, a 70-day simulative experiment has been carried out in this study to investigate the release of major heavy metals (Cu and Pb) and polycyclic aromatic hydrocarbons (PAHs) from several particle fractions of bottom ash under a static leaching condition, where bottom ash was immersed in water at different initial pH values. Results showed that: (1) the leaching behavior of Cu and Pb was much similar with that depicted by the standardized leaching tests, and fit well with the solubility-controlling mechanism; (2) the sorption mechanism on the neoformed phases may control the solubility of Pb, whereas the dissolved organic carbon (DOC) may play an important role in the solubility of Cu; and (3) the leached PAHs were degraded during the later period of leaching process.

  12. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements

    DEFF Research Database (Denmark)

    Cai, Zuansi; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2003-01-01

    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filter in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration...... would teach during a 100-year period from a 0.5 m thick concrete stab exposed to water on one side. Leaching of the common ions Ca, Cl, Na and SO4 was increased 3-20 times from the specimens with chemically stabilised flue gas ashes from waste incineration. However, the quantities leached were still...... modest. These experiments suggest that FGA from waste incineration after Ferrox-treatment could be re-used in CTB without compromising the strength and teaching from the base layer....

  13. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  14. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A11 to A14

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard Madsen, O.; Boejer, M.; Jensen, Peter A.; Dam-Johansen, K.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with electrical efficiency by dividing the combustion products; release of potentially corrosive constituents from the grate; CFD modeling of grate with and without vertical divider. (Author)

  15. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction

    International Nuclear Information System (INIS)

    Wang, K.-S.; Lin, K.-L.; Lee, C.-H.

    2009-01-01

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 deg. C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91 wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe

  16. Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant

    Science.gov (United States)

    Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati

    2016-11-01

    The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.

  17. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

    International Nuclear Information System (INIS)

    Shi Huisheng; Kan Lili

    2009-01-01

    The characteristics of municipal solid waste incineration (MSWI) fly ash, surface leaching toxicity and successive leaching concentration of heavy metals from MSWI fly ash-cement hardened pastes were studied. And, the relationships between leaching concentrations of heavy metals and leaching time were also discussed. Experimental results showed that immobilization effect of cement on MSWI fly ash is good. Even if MSWI fly ash-cement hardened pastes were damaged, the leaching toxicity is still in a safety range. In early leaching stage, the surface leaching rate is relatively a little high, up to 10 -5 -10 -4 cm d -1 order of magnitude, in the later time of leaching, its rate rapidly declined, down to 10 -7 . Most of leached heavy metals are produced at early ages. The leaching concentration of heavy metals and leaching time has strong positive relationships. In factual utilizing circumstances, heavy metals' leaching from MSWI fly ash-cement hardened pastes is a very slow and gradually diluting process. The leaching toxicity of heavy metals is far lower than that of the National Standard of China, and minimum harmful matters can be contained and released in the environment. Reusing of MSWI fly ash as partial replacement for cement in concrete mixes is potentially feasible.

  18. Selective mobilization of critical elements in incineration ashes; Selektiv mobilisering av kritiska element hos energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Malin; Herrmann, Inga; Ecke, Holger [Luleaa Univ. of Technology (Sweden); Sjoeblom, Rolf [TEKEDO AB, Nykoeping (Sweden)

    2005-05-01

    In the project SMAK, the selective mobilization of critical elements in ashes was studied. Non-hazardous bottom ash from Daava kraftvaermeverk, Umeaa, and hazardous fly ash from Hoegdalenverket, Stockholm, line P6 were investigated. Sb, Mo, Cu, Cr and Cl{sup -} were identified as critical elements in the bottom ash since these elements exceeded the limit values for acceptance on landfills as inert waste according to the Council decision on acceptance criteria at landfills. Critical elements in the fly ash were Cr, Se, Pb and Cl{sup -}, these elements exceeded the limit values for acceptance on landfills as non-hazardous waste. The mobilization of the critical elements was studied in experiments performed according to a reduced 2{sup 6-1} factorial design with three centerpoints. Factors in the experiments were ultrasonic pre-treatment, pre-treatment with carbonation, L/S-ratio, pH, time and temperature. Empirical models of the mobilization were used to identify the optimal factor setting ensuring sufficient mobilization of critical elements, i.e. to achieve a solid residue meeting non-hazardous and inert landfill criteria for fly ash and bottom ash, respectively. No ultrasonic treatment, pre-treatment with carbonation, L/Sratio 5, pH 12, time 2h and temperature at 20 deg C were identified as optimal factor setting for the bottom ash. For the fly ash, no ultrasonic treatment, no pre-treatment with carbonation, L/S-ratio 5, pH 7, time 2h and temperature at 20 deg C were identified as optimal factor setting. The treatment with optimal factor settings did not change the classification according to the Council decision on acceptance criteria at landfills of neither ash. For the bottom ash, Sb, Mo and Cr exceeded the limit values for landfilling as inert waste according to the Council decision on acceptance criteria at landfills. Only Cr exceeded the limit value for landfilling the fly ash as non-hazardous waste. According to the Waste Decree (Avfallsfoerordningen) both

  19. Formation and degradation of PCDD/F in waste incineration ashes

    International Nuclear Information System (INIS)

    Lundin, Lisa

    2007-11-01

    The disposal of combustible wastes by incineration is a controversial issue that is strongly debated by both scientists and environmental activists due to the resulting emissions of noxious compounds, including (inter alia) polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), heavy metals and acid gases like sulfur dioxide. Currently available air pollution control devices are capable of effectively cleaning flue gases, and PCDD/F emissions to air from modern municipal solid waste (MSW) incinerators are low. However, the PCDD and PCDF end up in ash fractions that, in Sweden, are usually deposited in landfills. The European Union has recently set a maximum permitted total concentration of 15 μg TEQ/kg for PCDD/F species in waste. Fly ash from municipal solid waste (MSW) incineration containing PCDD/Fs at concentrations above this limit will have to be remediated to avoid disposing of them in landfills; an expensive and environmentally unfriendly option. Therefore, effective, reliable and cost-effective methods for degrading PCDD/F in fly ash are required, and a better understanding of the behavior of PCDDs and PCDFs during thermal treatment will be needed to develop them. In the studies this thesis is based upon both the formation and degradation of PCDDs and PCDFs in ashes from MSW incineration were studied. The main findings of the investigations regarding PCCD/F formation were: The concentrations of PCDD and PCDF in fly ash increased with reductions in the temperature in the post-combustion zone. The homologue profile in the ash changed when the temperature in the post-combustion zone changed. The final amounts of PCDD and PCDF present were affected by their rates of both formation and degradation, and the mechanisms involved differ between PCDDs and PCDFs. The main findings from the degradation studies were: The chemical composition of ash has a major impact on the degradation potential of PCDD and PCDF. The presence of oxygen during thermal

  20. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  1. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  2. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  3. Influence of bottom ash of palm oil on compressive strength of concrete

    Science.gov (United States)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  4. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash.

    Science.gov (United States)

    Sun, Wei-ling; Qu, Yan-zhi; Yu, Qing; Ni, Jin-ren

    2008-06-15

    Bottom ash, a power plant waste, was used to remove the organic pollutants in coking wastewater and papermaking wastewater. Particular attention was paid on the effect of bottom ash particle size and dosage on the removal of chemical oxygen demand (COD). UV-vis spectra, fluorescence excitation-emission matrix (FEEM) spectra, Fourier transform infrared (FTIR) spectra, and scanning electron microscopic (SEM) photographs were investigated to characterize the wastewaters and bottom ash. The results show that the COD removal efficiencies increase with decreasing particle sizes of bottom ash, and the COD removal efficiency for coking wastewater is much higher than that for papermaking wastewater due to its high percentage of particle organic carbon (POC). Different trends of COD removal efficiency with bottom ash dosage are also observed for coking and papermaking wastewaters because of their various POC concentrations. Significant variations are observed in the FEEM spectra of wastewaters after treatment by bottom ash. New excitation-emission peaks are found in FEEM spectra, and the fluorescence intensities of the peaks decrease. A new transmittance band in the region of 1400-1420 cm(-1) is observed in FTIR spectra of bottom ash after adsorption. The SEM photographs reveal that the surface of bottom ash particles varies evidently after adsorption.

  5. Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash

    International Nuclear Information System (INIS)

    Sun Weiling; Qu Yanzhi; Yu Qing; Ni Jinren

    2008-01-01

    Bottom ash, a power plant waste, was used to remove the organic pollutants in coking wastewater and papermaking wastewater. Particular attention was paid on the effect of bottom ash particle size and dosage on the removal of chemical oxygen demand (COD). UV-vis spectra, fluorescence excitation-emission matrix (FEEM) spectra, Fourier transform infrared (FTIR) spectra, and scanning electron microscopic (SEM) photographs were investigated to characterize the wastewaters and bottom ash. The results show that the COD removal efficiencies increase with decreasing particle sizes of bottom ash, and the COD removal efficiency for coking wastewater is much higher than that for papermaking wastewater due to its high percentage of particle organic carbon (POC). Different trends of COD removal efficiency with bottom ash dosage are also observed for coking and papermaking wastewaters because of their various POC concentrations. Significant variations are observed in the FEEM spectra of wastewaters after treatment by bottom ash. New excitation-emission peaks are found in FEEM spectra, and the fluorescence intensities of the peaks decrease. A new transmittance band in the region of 1400-1420 cm -1 is observed in FTIR spectra of bottom ash after adsorption. The SEM photographs reveal that the surface of bottom ash particles varies evidently after adsorption

  6. Synthesis and characterization of geopolymer from bottom ash and rice husk ash

    Science.gov (United States)

    Anggarini, Ufafa; Sukmana, Ndaru C.

    2016-02-01

    All Geopolymer (GP) has been synthesized from bottom ash and rice husk ash. This research aims to determine the effect of Si/Al ratio on geopolymer synthesis. Geopolymer was synthesized with various Si/Al ratio of 2, 3 and 4. The characterization result using XRD and SEM indicated that by using a different ratio of Si/A, it will produce geopolymer with varied structure and morphology. Diffractogram result shows that polymerization has been done for all samples (GP2, GP3, Gp4) with the presence of hump peak at 2θ = 27-35°. In GP4, no peak at 2θ = 18° indicating sodalite phase forming. Besides that, the morphology of geopolymer with a varied ratio of Si/Al shows that higher ratio will produce geopolymer with higher particle size. The highest compressive strength of geopolymer was obtained at a ratio of Si/Al = 4, with a maximum load of 12866 kgf.

  7. ASSESSMENT OF THE USE FOR FERTILISATION PURPOSES INCINERATION ASH PELLETS USING GASIFICATION BURNER LESTER

    Directory of Open Access Journals (Sweden)

    Marzena Gibczyńska

    2016-12-01

    Full Text Available The use of biomass in system energetics for the purpose of increasing the share of renewable energy sources in the overall energy mix by biomass and coal co-combustion is not an optimal solution in the light of previous experience in Poland. It is appropriate to develop local biomass market for energy purposes as a basis for future distributed energy generation based on biomass. This solution facilitates the use of ash from biomass combustion for plant fertilisation. The present paper concerns the assessment of the use of ash from combustion of pellets in an innovative gasifying pellet burner – LESTER type, for soil fertilisation. The paper presents the analysis of the content of macro- and microelements in ash against the chemical composition of pellets in relation to permissible contents in fertilisers. The content of phosphorus, potassium, calcium and magnesium in bottom and fly ash from combustion of wood pellet and rye straw in LESTER gasifying burner validates the use of this material for soil fertilisation purposes. However, due to low nitrogen content – comparable to that found in soil, the material is not to be considered as fertiliser supplying this macroelement to soil. The analysed bottom ash used for fertilisation meets the conditions set out in the Regulation of the Minister of Environment of 9 September 2002. However, fly ash should be used with considerable caution due to high content of iron, zinc and nickel. The yield of bottom ash is several times higher than that of fly ash, therefore the possibility of its use in the form of mixtures in adequate proportions should be considered.

  8. The starting up of a pilot plant for radioactive incinerator ash conditioning - results of two embedding campaigns

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Naud, G.M.

    1990-01-01

    A new pilot plant called 'PICC' designed for radioactive incinerator ash conditioning, by embedding in several matrices, was launched at the Nuclear Research Centre in Cadarache - France - in the middle of 1988. This polyvalent facility can work with the three following embedding products = cement, thermosetting epoxide resin and an epoxide-cement compound. The capacity per day of the plant is two 100 or 200 I drums of solidified ash form. Two embedding campaigns have been carried out on inactive ashes: the first is a cementation campaign, done on phosphated ash coming from incineration of spent tributylphosphate. The second is a polymer cement campaign done on simulated alpha ash coming from technological wastes. Description of the PICC and data on these two campaigns are given

  9. Corrosion of steel drums containing immobilized ion exchange-resins and incineration ashes

    International Nuclear Information System (INIS)

    Marotta, F.; Schulz Rodriguez, F.M.; Farina, Silvia B.; Duffo, Gustavo S.

    2009-01-01

    The Argentine Atomic Energy Commission (CNEA) is responsible for developing the management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The proposed model is a near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. The intermediate radioactive waste consists mostly in spent ionic exchange resins and filters from the nuclear power plants, research reactors and radioisotopes production facilities. The spent resins, as well as the incineration ashes, have to be immobilized before being stored to improve leach resistance of waste matrix and to maintain mechanical stability for safety requirements. Generally, cementation processes have been used as immobilization techniques for economical reasons as well as for being a simple operation. The immobilized resins and incineration ashes are thus contained in steel drums that, in turn, can undergo corrosion depending on the ionic content of the matrix. This work is a part of a systematic study of the corrosion susceptibility of steel drums in contact with immobilized cemented exchange-resins with different types and contents of aggressive species and incineration ashes. To this purpose, a special type of specimen was manufactured to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix are being monitored along time. The aggressive species studied were chloride ions (the main ionic species present in nature) and sulphate ions (produced during the radiolysis process of the cationic exchange-resins after cementation). Preliminary results show the strong effect of chloride on the corrosion susceptibility of the steel. Monitoring will continue for

  10. PEMBUATAN BIOBRIKET DARI LIMBAH BOTTOM ASH P L T U DENGAN BIOMASSA CANGKANG KOPI

    Directory of Open Access Journals (Sweden)

    Budi Gunawan

    2015-11-01

    Full Text Available ABSTRAK Tujuan dari penelitian ini adalah membuat biobriket dari bottom ash limbah batu bara PLTU PT Pura Barutama dengan biomassa cangkang kopi. Pengujian yang akan dilakukan meliputi; kadar karbon, kandungan sulfur oksida, kadar abu dan airnya. Metode pembuatan dengan mencampur bottom ash dengan bomassa cangkang kopi menggunakan pengikat tetes tebu. Variasi perbandingan antara bottom ash dan biomassa adalah; 50:50, 60:40 dan 70:30. Pengujian kadar karbon dan kandungan sulfur oksida menggunakan SEM (Scanning Electron Microscope. Hasil pengujian menggunakan menunjukkan pada komposisi bottom ash yang sedikit bisa menaikkan kadar karbon dan menurunkan kandungan sulfur oksida. Kadar karbon naik rata-rata 7.25%. Pada pengujian kadar air naik rata-rata 3.93%. Sedangkan pengujian kadar abu menunjukkan kenaikan rata-rata 11.09% Kata kunci: cangkang kopi, karbonisasi, biomassa, biobriket, bottom ash.

  11. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  12. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  13. Incineration

    International Nuclear Information System (INIS)

    Holmes, R.G.G.

    1988-01-01

    One of the methods of destroying organics in radwaste is incineration. This presentation will summarise some of the advantages and problems associated with incineration and will illustrate some of these points by discussing progress in an options study into methods of treating plutonium contaminated material waste, being carried out by British Nuclear Fuels plc. The wastes amenable for treatment, fall into two categories, low-level wastes and intermediate-level wastes. (author)

  14. Reuse potential of low-calcium bottom ash as aggregate through pelletization.

    Science.gov (United States)

    Geetha, S; Ramamurthy, K

    2010-01-01

    Coal combustion residues which include fly ash, bottom ash and boiler slag is one of the major pollutants as these residues require large land area for their disposal. Among these residues, utilization of bottom ash in the construction industry is very low. This paper explains the use of bottom ash through pelletization. Raw bottom ash could not be pelletized as such due to its coarseness. Though pulverized bottom ash could be pelletized, the pelletization efficiency was low, and the aggregates were too weak to withstand the handling stresses. To improve the pelletization efficiency, different clay and cementitious binders were used with bottom ash. The influence of different factors and their interaction effects were studied on the duration of pelletization process and the pelletization efficiency through fractional factorial design. Addition of binders facilitated conversion of low-calcium bottom ash into aggregates. To achieve maximum pelletization efficiency, the binder content and moisture requirements vary with type of binder. Addition of Ca(OH)(2) improved the (i) pelletization efficiency, (ii) reduced the duration of pelletization process from an average of 14-7 min, and (iii) reduced the binder dosage for a given pelletization efficiency. For aggregate with clay binders and cementitious binder, Ca(OH)(2) and binder dosage have significant effect in reducing the duration of pelletization process. 2010 Elsevier Ltd. All rights reserved.

  15. Geotechnical characterization of a Municipal Solid Waste Incineration Ash from a Michigan monofill.

    Science.gov (United States)

    Zekkos, Dimitrios; Kabalan, Mohammad; Syal, Sita Marie; Hambright, Matt; Sahadewa, Andhika

    2013-06-01

    A field and laboratory geotechnical characterization study of a Municipal Solid Waste Incineration Ash disposed of at the Carleton Farms monofill in Michigan was performed. Field characterization consisted of field observations, collection of four bulk samples and performance of shear wave velocity measurements at two locations. Laboratory characterization consisted of basic geotechnical characterization, i.e., grain size distribution, Atterberg limits, specific gravity tests, compaction tests as well as moisture and organic content assessment followed by direct shear and triaxial shear testing. The test results of this investigation are compared to results in the literature. The grain size distribution of the samples was found to be very similar and consistent with the grain size distribution data available in the literature, but the compaction characteristics were found to vary significantly. Specific gravities were also lower than specific gravities of silicic soils. Shear strengths were higher than typically reported for sandy soils, even for MSWI ash specimens at a loose state. Strain rate was not found to impact the shear resistance. Significant differences in triaxial shear were observed between a dry and a saturated specimen not only in terms of peak shear resistance, but also in terms of stress-strain response. In situ shear wave velocities ranged from 500 to 800 m/s at a depth of about 8m, to 1100-1200 m/s at a depth of 50 m. These high shear wave velocities are consistent with field observations indicating the formation of cemented blocks of ash with time, but this "ageing" process in MSWI ash is still not well understood and additional research is needed. An improved understanding of the long-term behavior of MSWI ash, including the effects of moisture and ash chemical composition on the ageing process, as well as the leaching characteristics of the material, may promote unbound utilization of the ash in civil infrastructure. Copyright © 2013 Elsevier

  16. Phosphate stabilization of flue gas ashes from waste incineration; Fosfatstabilisering av roekgasaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Kullberg, S. [Geodesign AB, Linkoeping (Sweden)

    1995-05-01

    This study deals with the immobilization of heavy metals and other elements in flue gas ashes from household waste incineration by the addition of phosphates to the ash. It also describes the FUDD-technique (FUnction-adapted Design and Deposition) for deposition of the stabilized ash. In this work, phosphates obtained from phosphoric acid have been added to ash in proportions of 2.8% and 3.7% by weight of ash. Phosphates have also been injected into the flue gases, in this case with proportions of 4.7% and 16.3%. The samples have been studied both in the field and in the laboratory in regard to compaction properties, permeability, chemical solid phase content, HCl in the flue gases, leaching of metals via batch tests, availability tests and column tests. In batch tests, the stabilized samples show an immobilization of most metals except cadmium. Lead has been reduced by 97.0-99.9%. Cadmium has been mobilized by a factor of 2-30 in this experiment. The best results are obtained with addition of phosphates to the flue gases. In the availability tests, with addition of phosphates to flue gases, all environmentally destructive metals except arsenic and nickel have been immobilized to varying degree. The reduction is greatest for lead, aluminium, copper, mercury and zinc. With the addition of phosphates to ash, aluminium, copper and lead have been immobilized. In opposite, arsenic, cobalt and nickel were mobilized. The addition of 4-5% phosphates in the flue gas reactor produced only a marginal effect on the HCl concentration in the flue gases. The use of phosphates increases the HF concentration by about 3 mg/Nm{sup 3}. The cost for phosphate stabilization have been estimated at SEK 110-220 per ton of ash including costs for stabilization equipment. 18 refs, 15 figs, 13 tabs

  17. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2017-04-01

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu 0 -alloy-phase and to a minor degree due to secondary precipitation (PbCl 2 ). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar

    Directory of Open Access Journals (Sweden)

    Ulewicz Małgorzata

    2017-01-01

    Full Text Available The preliminary results of fly and bottom ash mixture form combustion od biomass (80% of tree waste and 20% of palm kernel shells for the produce of ceramic mortars has been presented. Currently, bio- ash from fluidized bed are deposited in landfills. Use of this ash to production of cement mortar instead of sand will reduce the consumption of the mineral resources. The chemical composition of this waste materials was determined using X-ray fluorescence (spectrometer ARL Advant ‘XP. Cement mortar were made using CEM I 42.5 R. The ash were added in an amount 20% of cement weight (in different proportions of fly and bottom ash. The results showed, that the compressive strength (after 28 days of cement mortar containing ash is higher regardless of the type of ash mixture used. The highest compressive strength (increased by 7.0% compared to the control sample was found for cement mortars in which the ratio of fly ash to bottom ash was 10/90. This mortars also showed the highest frost resistance (after 150 cycles freezes and unfreeze. The largest decrease the compressive strength (over 18.7% after the frost resistance test. While cement mortars in which the ratio of fly ash to bottom ash was 90/10 showed the highest frost resistance (after 150 cycles freezes and unfreeze.

  19. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    Science.gov (United States)

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  20. Effect of COSMOS technologies in detoxifying municipal solid waste incineration fly ash, preliminary results

    Science.gov (United States)

    Piccinelli, Elsa; Lasagni, Marina; Collina, Elena; Bonaiti, Stefania; Bontempi, Elza

    2017-05-01

    This study investigates the effect of technologies for heavy metal stabilization on the concentration of PolyChlorinatedDibenzo-p-Dioxins (PCDD) and PolyChlorinatedDibenzoFurans (PCDF), abbreviated PCDD/F, in Municipal Solid Waste Incineration (MSWI) fly ash. We determined the variation of the Total Organic Carbon (TOC) and PCDD/F concentration between raw and stabilized material. The technologies, that already proved to be very promising for heavy metal entrapment, showed encouraging results also for PCDD/F detoxification. This result could be very impacting on the management of MSWI fly ash: at the best of our knowledge, there are no methods, in literature, that can provide good results in stabilization of heavy metals, and abatement of chlorinated organic pollutants contained in the same matrix.

  1. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    OpenAIRE

    Cieślik Ewelina; Konieczny Tomasz; Bobik Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures ...

  2. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique.

    Science.gov (United States)

    Tiwari, M; Sahu, S K; Bhangare, R C; Ajmal, P Y; Pandit, G G

    2014-08-01

    A total of 18 elements viz. Si, Al, Fe, Ca, Mg, K, Na, Sr, V, Zn, Mn, Cr, Cu, Pb, Ni, Co, As and Cd were analyzed in coal, fly ash and bottom ash samples collected across India using an EDXRF technique. Various indices such as element enrichment ratio, enrichment factor (with respect to crustal average) and mineral composition were calculated. Around 95% of mass was reconstructed using the concentration of elements in this study for fly and bottom ash. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lima, Ana Teresa; Pedersen, Anne Juul

    2006-01-01

    of the concrete. The Cl content in MSWI fly ash is also too high and will cause corrosion problems in reinforced concrete. The possibility of removing some of the unwanted heavy metals (Cu and Pb) together with Cl from an MSWI fly ash suspended in water using an electrodialytic separation method was investigated......The possibility of using fly ash from municipal solid waste incineration (MSWI) in, for example, concrete is considered. MSWI fly ash, however, has too high a concentration of heavy metals, which may cause leaching problems during use or problems with waste handling at the end of the lifetime...... that is least soluble. Hence electrodialytic treatment of the ash suspended in water is not a solution to improve the ash quality in terms of Pb. The water-soluble Cl content per unit weight of the original ash was 12.4%. The removal of water-soluble Cl was efficient and >98% of Cl was removed (calculated...

  4. Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash: a geoenvironmental perspective.

    Science.gov (United States)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Wei, Yunmei; Gardner, Kevin H; Musselman, Craig N

    2011-12-01

    Natural weathering processes are significant mechanisms that noticeably affect the fundamental nature of incineration ash residues. To provide a greater understanding of these processes, a MSWI (mono)landfill site in the north east of the US was selected as the target for systematic investigation of the natural weathering of bottom ash residues. Samples of various ages were collected from locations A (1 yr), B (10 yrs), C (13-14 yrs) and D (20 yrs) of the landfill in 2009. We investigated the phase transformation of the collected bottom ash particles, neoformation processes as well as the behavior and distribution of certain heavy metals (Cu, Pb, Zn, Ni, and Cr) in the neoformed phases using optical microscopy, SEM-EDX, and bulk examinations. at the preliminary stage, the waste metallic particles (Al, Fe, and Cu) and unstable minerals such as lime, portlandite, ettringite and hydrocalumite convert to oxide and hydroxide (hydrate) phases, calcite, alumina gel and gypsum. At the intermediate stage, the decomposition of melt products including magnetite spinels and metallic inclusions is triggered due to the partial dissolution of the melt glass. At the longer time horizon it is possible to track the breakdown of the glass phase, the extensive formation of calcite and anhydrite, Al-hydrates and more stable Fe-hydrates all through the older ash deposits. Among the dominant secondary phases, we propose the following order based on their direct metal uptake capacity: Fe-hydrates>Al-hydrates>calcite. Calcite was found to be the least effective phase for the direct sorption of heavy metals. Based on overall findings, a model is proposed that demonstrates the general trend of ash weathering in the landfill. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment.

    Science.gov (United States)

    Xuan, Dongxing; Poon, Chi Sun

    2018-02-15

    In order to reduce the leaching of pollutants and remove the Al and Zn/Al alloy from municipal solid waste incineration bottom ash (MSWIBA), an optimized alkaline pre-treatment procedure was developed in this study. The influences of alkaline conditions on the removal rate of Al and Zn/Al alloy were investigated, including [OH] - concentration, temperature, particle size, liquid/solid ratio and treatment duration. The experimental results showed that the optimized alkaline pre-treatment conditions to efficiently remove the Al and Zn/Al alloy was by using a minimum of 1.0mol/l [OH] - , at 55°C and with a minimal liquid/solid ratio of 5. The removal rate of Al and Zn/Al alloy followed an S-shape curve, in which the slow beginning stage was attributed to the protection of the oxidation layer and the quenched product around the Al and Al/Zn alloy. After 3h of the optimized alkaline pre-treatment, the leaching of Cr, Cu, Pb and Zn of the treated MSWIBA was reduced by more than 90% of that of the original MSWIBA. The alkali-silica reaction test further indicated that the expansion of concrete prepared with the pre-treated MSWIBA was significantly reduced and there was no macro-crack or spalling damage on the surface of the tested specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    Directory of Open Access Journals (Sweden)

    Wen-Bing Li

    2014-01-01

    Full Text Available The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI bottom ash (BA codisposed with municipal solid waste (MSW on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w, while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V and leachate recirculation.

  7. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    Science.gov (United States)

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  8. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw

    2016-07-01

    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  9. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash.

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-07-15

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO₂. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials' thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  10. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Science.gov (United States)

    Kalaw, Martin Ernesto; Culaba, Alvin; Hinode, Hirofumi; Kurniawan, Winarto; Gallardo, Susan; Promentilla, Michael Angelo

    2016-01-01

    Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC), which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1) their technical properties are comparable if not better; (2) they can be produced from industrial wastes; and (3) within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC) use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA) and coal bottom ash (CBA), and rice hull ash (RHA). The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF) for elemental and X-ray diffraction (XRD) for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI) were determined using thermogravimetric analysis (TGA) and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP) analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR), scanning

  11. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    Science.gov (United States)

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  13. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements

    DEFF Research Database (Denmark)

    Cai, Zuansi; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2003-01-01

    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filter in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration...... weeks. Cylinders (diameter 100 mm, length 150 mm) were drilled from these cubes for tank leaching experiments. Duplicate specimens were subject to compression strength testing and to tank leaching experiments. The compressive strength of the CTB fulfilled the Danish requirements for CTB, i.e. strength...... more than 5 MPa after 7 days. The tank leaching tests revealed that leaching of heavy metals was not significantly affected by the use of chemically stabilised flue gas ashes from waste incineration. Assuming that diffusion controls the leaching process it was calculated that less than 1% of the metals...

  14. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. © The Author(s) 2015.

  15. A feasibility study of municipal solid waste incineration fly ash utilisation in Estonia.

    Science.gov (United States)

    Berber, Hakan; Frey, Ruedi; Voronova, Viktoria; Koroljova, Arina

    2017-09-01

    The purpose of this paper is to discuss the alternative environmental management options for the utilisation of municipal solid waste (MSW) incineration fly ash (FA), which is generated at Iru Power Plant where MSW is incinerated in Estonia. To determine sustainable and economically feasible environmental management options for MSW incineration FA in Estonia, CO 2 sequestration with a further carbonation process was examined. A partial Cost & Benefit Analysis has been conducted to compare the carbonation process to the current situation. Two carbonation options were developed. Option 1 is to use carbonated FA in any other processes based on the waste-to-product principle. Option 2 is to send carbonated FA to the non-hazardous landfill in Tallinn, Estonia. Important parameters, such as Net Present Value (NPV), Internal Rate of Return (IRR), Benefit-Cost Ratio (BCR) and Break Even Point (BEP), have been calculated for carbonation options and the current case. In addition, a sensitivity analysis has been conducted to examine its robustness. The results showed that the best option is carbonation Option 1 with NPV of 9,209,662 EUR, IRR of 43%, BCR of 2.63 and BEP between 2018 and 2019. Both Options 1 and 2 constitute more sustainable and environmentally friendly management options compared to the current situation. It can be concluded that this preliminary feasibility study showed that running a carbonation plant may be profitable and sustainable for Estonia. Currently, there is no treatment technology for MSW incineration FA in Estonia and FA is sent to a neighbouring country for further utilisation. This is the first study to demonstrate FA management options with economic and environmental benefits.

  16. Sustainability assessment and prioritisation of bottom ash management in Macao.

    Science.gov (United States)

    Sou, W I; Chu, Andrea; Chiueh, P T

    2016-12-01

    In Macao, about 7200 t yr -1 of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions. © The Author(s) 2016.

  17. Monitoring of radioactive nuclides in incinerator fly ash and adsorption of Cs in simulated and actual eluate of the fly ash onto clay and soil

    International Nuclear Information System (INIS)

    Iwahana, Yuki; Koike, Yuya; Nakamura, Toshihiro

    2014-01-01

    Radioactive nuclides in the incinerator fly ash of municipal solid waste was determined and monitored. For leaching radioactive Cs from incinerating fly ash in reclaimed land, a modified No. 13 elution test and adsorption with stable Cs onto andosol were performed. The activity concentration of radioactive nuclides in incinerator fly ash was constant within the range of the activity concentration before the accident at Fukushima Daiichi Nuclear Power Station. The 134 Cs/ 137 Cs activity concentration ratio was almost equal to 1, corresponding to 137 Cs existing in environment before the accident. 40% of 137 Cs in incinerator fly ash eluted with the modified No. 13 elution test, and adsorption ratio of Cs + onto the andosol showed 90% as being the primary concentration was equal to or more than 5000 μg L −1 . In addition, the desorption results used for 5 types of solvent showed that desorption ratio of adsorbed Cs + from the soil was 3.6% at the maximum. Hence, it is anticipated that using a soil that is similar in composition to the andosol suppresses the leaching out of radioactive Cs from reclaimed land. (author)

  18. The use of bottom ash for replacing fine aggregate in concrete paving blocks

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash that results from coal burning for electrical generation is still much underutilized in Indonesia and it is necessary to increase the usage of this waste. The manufacture of paving blocks using bottom ash, which is normally associated with high water absorption due to its high porosity and carbon content, was examined in this study with the aim to increase the usage of this waste material. The study was done in three phases: (1 the mixture of cement and bottom ash passing sieves of 2 and 5 mm were done with ratios of 1:3, 1:4, and 1:5; from the best proportion, fly ash was used to replace the cement material from 10–80%, and (3 samples with 30% and 50% fly ash replacement ratios were used in combination with 5 mm and 10 mm sieved bottom ash. Compressive strength, water absorption, and abrasion resistance tests were conducted to assess the properties of the resultant paving block. From the result, bottom ash is used to replace natural sand in making paving blocks. By optimizing the particle packing density and using fly ash as a cement replacement, the compressive strength of paving blocks can exceed 40 MPa.

  19. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash.

    Science.gov (United States)

    Bayuseno, A P; Schmahl, W W

    2010-01-01

    This paper investigates the changes of mineralogical composition of bottom ash in the environment. The chemical and mineralogical bulk composition was determined by X-ray fluorescence (XRF) and X-ray powder diffraction (XRPD) Rietveld method. Single bottom ash particles were investigated by optical microscopy, scanning electron microscopy with quantitative energy-dispersive X-ray microanalysis (SEM/EDX) and electron probe micro analysis (EPMA). SEM/EDX and EPMA are valuable complement to bulk analysis and provide means for rapid and sensitive multi-elemental analysis of ash particles. The fresh bottom ash consists of amorphous (>30 wt.%) and major crystalline phases (>1 wt.%) such as silicates, oxides and carbonates. The mineral assemblage of the fresh bottom ash is clearly unstable and an aging process occurs by reaction towards an equilibrium mineral phase composition in the environmental conditions. The significant decrease of anhydrite and amorphous contents was observed in the aged bottom ash, leading to the formation of ettringite, hydrocalumite and rosenhahnite under atmospheric conditions. In the water-treated sample, the calcite contents increased significantly, but ettringite was altered by the dissolution and precipitation processes in part, to produce gypsum, while the remaining part reacted with chloride to form hydrocalumite. Gypsum and other Ca based minerals may take up substantial amounts of heavy metals and subsequently control leaching behaviour of bottom ash. 2010 Elsevier Ltd. All rights reserved.

  20. [Research on degradation of methylene blue by coal bottom ash-microwave irradiation method].

    Science.gov (United States)

    Wu, Shi-Wei; Li, Na; Li, Guang-Zhe; Li, Guo-De

    2010-05-01

    Coal bottom ash is rich in metals and transition metals, and with microwave irradiation these metals can effectively degradate organic matter. Methylene blue degradation by coal bottom ash-microwave irradiation mainly through hydroxyl radicals to degrade organic matter, and metals and rare metals in bottom ash can be used as a catalyst for deep oxidation of organic matter, can reduce processing costs, and reduce environmental pollution. In the present paper the main parameters including the amount of coal bottom ash, H2O2 dosage and time of microwave irradiation were investigated. The UV-visible spectra of methylene blue were determined. The results show that: under coal bottom ash and H2O2 microwave condition the degeneration rate of methylene blue was almost 100%. The dosage of coal ash can accelerate the reaction process, speeding up the degradation of methylene blue. The increase of H2O2 may provide more * OH and speed up the reaction process, but when up to a certain amount, the influence is weakened. The lengthening of microwave time may enhance the reaction temperature, and urge the methylene blue to degrade completely. For 0.125 g x L(-1) of methylene blue, by adding 1.0 g coal bottom ash, 5 mL H2O2 and under mesotherm microwave temperature for 4 min, the methylene blue can be all degradated.

  1. Mass-balance estimation of heavy metals and selected anions at a landfill receiving MSWI bottom ash and mixed construction wastes.

    Science.gov (United States)

    Oygard, Joar Karsten; Gjengedal, Elin; Måge, Amund

    2005-08-31

    An estimation of the heavy metal and anion mass-balance was made for municipal solid waste incinerator bottom ash deposited at a construction and industrial waste landfill. The mass-balance was found by comparing the content of metals and anions in the landfill leachate to the metal and anion content in the deposited bottom ash. The discharge of heavy metals ranged from 0.001% for Pb to 0.55% for Cr, which is approximately at the same level as in regular municipal solid waste (MSW) landfills. Landfilled organic material and silicates from construction waste might have contributed to the retention of metals. Chloride, and to a lesser extent sulphate, appeared to be readily released from the landfill. It was estimated that a mass corresponding to 80% of the Cl- and 18% of the SO(4)2- in the bottom ash was discharged annually. Low retention, especially of chloride, may lead to a rapid decline in the discharge of this ion in the future when the landfilling of bottom ash is discontinued.

  2. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  3. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators.

    Science.gov (United States)

    Ni, Peng; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the alkalinity and high concentration of potentially hazardous heavy metals, fly ash from a municipal solid waste (MSW) incinerator is classified as hazardous waste, which should be of particular concern. Physical and chemical characterizations of the contrasted fly ashes were investigated to explore the relation between leaching characteristics of heavy metals and physical properties of fly ashes. The results showed that CaClOH, NaCl, Ca(OH) 2 , KCl and SiO 2 were primary mineral compositions in the MSWI fly ashes, and the particle size distribution of fly ash ranged between 10 μm and 300 μm. The smaller the particle size distribution of fly ash, the larger the BET-specific surface area, which was beneficial to the leaching of heavy metals. As a result of various pores, it easily accumulated heavy metals as well. The leaching tests exhibited a high leachability of heavy metals and the leaching concentration of Pb in almost all of the fly ash samples went far beyond the Standard for Pollution Control on the Landfill Site of Municipal Solid Waste. Thereupon, it is necessary to establish proper disposal systems and management strategies for environmental protection based on the characteristics of MSW incineration (MSWI) fly ash in China.

  4. Metals accumulations during thermal processing of sewage sludge - characterization of bottom ash and air pollution control (APC) residues

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2016-04-01

    Due to increasing mass of sewage sludge, problems in its management have appeared. Over years sewage sludge was landfilled, however due to EU directives concerning environmental issues this option is no longer possible. This type of material is considered hazardous due to highly concentrated metals and harmful elements, toxic organic substances and biological components (e.g. parasites, microbes). Currently in Europe, incineration is considered to be the most reasonable method for sewage sludge treatment. As a result of sludge incineration significant amount of energy is recovered due to high calorific value of sewage sludge but bottom ash and APC residues are being produced. In this study we show the preliminary results of chemical and mineral analyses of both bottom ash and APC residues produced in fluidized bed boiler in sewage sludge incineration plant in Poland, with a special emphasis on metals which, as a part of incombustible fraction can accumulate in the residual materials after thermal processing. The bottom ash was a SiO2-P2O5-Fe2O3-CaO-Al2O3 dominated material. Main mineral phases identified in X-ray diffraction patterns were: quartz, feldspar, hematite, and phosphates (apatite and scholzite). The bottom ash was characterized by high content of Zn - 4472 mg kg-1, Cu - 665.5 mg kg-1, Pb - 138 mg kg-1, Ni - 119.5 mg kg-1, and interestingly high content of Au - 0.858 mg kg-1 The APC residues composition was dominated by soluble phases which represent more than 90% of the material. The XRD patterns indicated thenardite, halite, anhydrite, calcite and apatite as main mineral phases. The removal of soluble phases by dissolution in deionised water caused a significant mass reduction (ca. 3% of material remained on the filters). Calcite, apatite and quartz were main identified phases. The content of metals in insoluble material is relatively high: Zn - 6326 mg kg-1, Pb - 514.3 mg kg-1, Cu - 476.6 mg kg-1, Ni - 43.3 mg kg-1. The content of Cd, As, Se and Hg was

  5. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    Science.gov (United States)

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Treated bottom ash medium and method of arsenic removal from drinking water

    Science.gov (United States)

    Gadgil, Ashok

    2009-06-09

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  7. Effect of leachate solutions from fly and bottom ash on groundwater quality

    Science.gov (United States)

    Kopsick, Deborah A.; Angino, Ernest E.

    1981-12-01

    Leaching experiments on fly and bottom ash for Ca, Mg, Na, K, Fe, Mn, Zn, Cu and Pb indicated a potential for contamination of ground- and surface-water supplies. Due to the variability in chemical composition of coals, it is difficult to make generalizations concerning the chemistry of leachate solutions from the ashes of the coals. A decrease in concentration with time of leaching was observed for all elements, except for Ca which was released at a constant rate. Fly ash from a Missouri coal generated a leachate enriched in Pb, Zn, Cu, Fe, Mn and Cd, reflective of the high Pb/1bZn mineralization present in the surrounding area. With a pH of 3.0 this ash has the greatest potential for groundwater contamination. Conversely, leachates from Wyoming fly and bottom ashes exhibited low trace-metal concentrations. These same solutions were high in K, Na, Ca and Mg, and also showed strong pozzolanic behvior, which will reduce the leachability of these ashes. In most instances, fly and bottom ash from Kentucky and Illinois coals yielded leachates intermediate in elemental composition to leachates of Missouri and Wyoming coal ashes. Leaching experiments indicate that it is not valid to predict the chemistry of leachates from fly and bottom ash based solely on the chemical composition of the ash. From the limited number of parameters and sites examined in this study, it is clear that many of the problems related to leachates from fly and bottom ash and gob piles are site specific as well as specific to the source of coal burned. These results are, nevertheless, indicative of problems likely to be encountered in working with these materials.

  8. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system.

    Science.gov (United States)

    Mandal, A K; Sinha, O P

    2017-08-01

    The issues of disposal and environmental problems are increased by the generation of bottom ash from the thermal power plants day by day; hence, its recycling is required. The present study aimed to make thermal insulation blocks using as raw material bottom ash and iron ore slime as a binder and to characterize their engineering properties. Two different fineness values of bottom ash were considered with varying amounts of iron ore slime (0-10%) to make the blocks. Blocks were dried followed by firing at 1000, 1100 and 1200°C, respectively. Cold crushing strength, density and thermal conductivity of these fired blocks showed increasing behaviour with firing temperature, fineness of bottom ash and iron ore slime content. In contrast, a reverse trend was observed in the case of porosity. With increasing firing temperature, the formation of lower melting phases like iron silicate followed by iron aluminium silicate was observed, which imparts the strength inside the blocks. The coarser particles of bottom ash increase the interparticle spaces, which enhances the apparent porosity, resulting in higher thermal insulation property in the blocks. Blocks having better thermal insulation property could be possible to make effectively from coarse bottom ash by adding iron ore slime as a binder.

  9. Use of Coal Bottom Ash as Mechanical Stabiliser in Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Abdus Salaam Cadersa

    2014-01-01

    Full Text Available This paper presents the laboratory investigation work which forms part of a full scale research road project in Mauritius where coal bottom ash is used as mechanical stabiliser in a saprolitic subgrade soil. Three mixtures of subgrade soil and CBA were investigated in the laboratory, each containing varying percentages of coal bottom ash by weight (15%, 30%, and 40%, resp.. The laboratory research indicated that the mechanical properties of the subgrade soil are improved with the addition of bottom ash. Highest values for soaked and unsoaked CBR values were obtained for the mixture containing 30% by weight of bottom ash, which were 145% and 95%, respectively, as compared to 40% and 55% for the subgrade soil alone. Upon addition of coal bottom ash, a considerable decrease in swelling potential during soaking was observed for the mixture containing 40% by weight of CBA. The swell decreased from 0.17% for the subgrade soil alone to 0.04% for the mixture containing 40% by weight of CBA. Moreover, a CBA content of 30% resulted in a mix of intermediate plasticity as compared to the subgrade soil which is highly plastic. It is concluded that coal bottom ash can be used successfully as a mechanical stabilizer in the experimental subgrade soil by addition of 30 to 40% of CBA.

  10. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review.

    Science.gov (United States)

    Donatello, Shane; Cheeseman, Christopher R

    2013-11-01

    The drivers for increasing incineration of sewage sludge and the characteristics of the resulting incinerated sewage sludge ash (ISSA) are reviewed. It is estimated that approximately 1.7 milliontonnes of ISSA are produced annually world-wide and is likely to increase in the future. Although most ISSA is currently landfilled, various options have been investigated that allow recycling and beneficial resource recovery. These include the use of ISSA as a substitute for clay in sintered bricks, tiles and pavers, and as a raw material for the manufacture of lightweight aggregate. ISSA has also been used to form high density glass-ceramics. Significant research has investigated the potential use of ISSA in blended cements for use in mortars and concrete, and as a raw material for the production of Portland cement. However, all these applications represent a loss of the valuable phosphate content in ISSA, which is typically comparable to that of a low grade phosphate ore. ISSA has significant potential to be used as a secondary source of phosphate for the production of fertilisers and phosphoric acid. Resource efficient approaches to recycling will increasingly require phosphate recovery from ISSA, with the remaining residual fraction also considered a useful material, and therefore further research is required in this area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima.

    Science.gov (United States)

    Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro

    2017-11-01

    Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  14. Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and fly ash from Huainan, China.

    Science.gov (United States)

    Ruwei, Wang; Jiamei, Zhang; Jingjing, Liu; Liu, Guijian

    2013-08-01

    Fly ash and bottom ash samples were collected from a coal-fired power plant located in Anhui province, China. Mineral phases and morphologies of the samples were determined by X-ray diffraction and scanning electron microscopy, respectively. Sixteen polycyclic aromatic hydrocarbon (PAH; 16 compounds specified in United States Environmental Protection Agency Method 610) properties in ash samples were investigated. In fly ashes, ∑16PAH (total amount of 16 PAHs) and ∑CPAH (total amount of 8 carcinogenic PAHs) levels varied from 0.93 to 2.08 μg/g and from 0.26 to 0.87 μg/g, respectively. In bottom ashes, ∑16PAH and ∑CPAH levels varied from 2.83 to 5.32 and 1.76 to 3.76 μg/g, respectively. Fly ashes were dominated by medium molecular-weight PAHs and low molecular-weight PAHs, whereas bottom ashes were abundant in 5- and 6-ring PAH species. The CPAHs levels of some ashes, especially bottom ashes, are greater than the limits regulated by several countries, indicating that this type of coal combustion product requires special treatment before landfill. PAH levels and patterns in fly ash were evidently affected by particle size, and total organic content had a closer correlation with PAH content than particle size in bottom and fly ash, which may be due to unburned carbon existing in bottom ash.

  15. X-Ray Diffraction Analysis of Bottom Ash Waste after Plasma Treatment

    Science.gov (United States)

    Volokitin, G.; Abzaev, Yu; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.

    2017-04-01

    The paper deals with the plasma-chemical synthesis of melts produced from the bottom ash waste for the production of new construction materials with enhanced performance characteristics. Phase composition of the plasma-treated bottom ash waste is detected by the X-ray diffraction analysis. The bottom ash waste is a mixture of SiO2 minerals. The structure and phase composition of this mixture are investigated after the plasma treatment. The obtained results are compared with the original state of the mixture. The identification and the qualitative content of ash waste as a multi-phase system are complicated by the overlapped reflections and a possible existence of the intermediate amorphous phase.

  16. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.

    Science.gov (United States)

    Van Tran, A

    2008-07-01

    The effectiveness of the bottom ashes from biomass and coal-fired boilers in removing chemical oxygen demand (COD) and colorloads in effluents of a kraft pulp bleachery plant is investigated. The effluents tested are those of the sulfuric acid treatment (A stage) of a hardwood kraft pulp, and of the first acidic (chlorine or chlorine dioxide) and second alkaline (extraction) stages in the chlorine and elemental chlorine-free (ECF) bleaching lines of hardwood and softwood kraft pulps. The coal-fired boiler's bottom ashes are unable to remove either COD or color load in the bleached kraft pulp effluents. However, the bottom ashes of the biomass boiler are effective in removing COD and color loads of the acidic and alkaline effluents irrespective of the bleaching process or wood species. In particular, these ashes increase the pH of all the effluents examined.

  17. Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment.

    Science.gov (United States)

    Kitamura, Hiroki; Sawada, Takaya; Shimaoka, Takayuki; Takahashi, Fumitake

    2016-01-01

    Leaching behaviors of heavy metals contained in municipal solid waste incineration (MSWI) fly ash have been studied well. However, micro-characteristics of MSWI fly ash particles are still uncertain and might be non-negligible to describe their leaching behaviors. Therefore, this study investigated micro-characteristics of MSWI fly ash particles, especially their structural properties and impacts of chelate treatment on surface characteristics. According to SEM observations, raw fly ash particles could be categorized into four types based on their shapes. Because chelate treatment changed the surface of fly ash particles dramatically owing to secondary mineral formations like ettringite, two more types could be categorized for chelate-treated fly ash particles. Acid extraction experiments suggest that fly ash particles, tested in this study, consist of Si-base insoluble core structure, Al/Ca/Si-base semi-soluble matrices inside the body, and KCl/NaCl-base soluble aggregates on the surface. Scanning electron microscope (SEM) observations of the same fly ash particles during twice moistening treatments showed that KCl/NaCl moved under wet condition and concentrated at different places on the particle surface. However, element mobility depended on secondary mineral formations. When insoluble mineral like gypsum was generated and covered the particle surface, it inhibited element transfer under wet condition. Surface characteristics including secondary mineral formation of MSWI fly ash particles are likely non-negligible to describe trace element leaching behaviors.

  18. Solidification and Biotoxicity Assessment of Thermally Treated Municipal Solid Waste Incineration (MSWI) Fly Ash.

    Science.gov (United States)

    Gong, Bing; Deng, Yi; Yang, Yuanyi; Tan, Swee Ngin; Liu, Qianni; Yang, Weizhong

    2017-06-10

    In the present work, thermal treatment was used to stabilize municipal solid waste incineration (MSWI) fly ash, which was considered hazardous waste. Toxicity characteristic leaching procedure (TCLP) results indicated that, after the thermal process, the leaching concentrations of Pb, Cu, and Zn decreased from 8.08 to 0.16 mg/L, 0.12 to 0.017 mg/L and 0.39 to 0.1 mg/L, respectively, which well met the limits in GB5085.3-2007 and GB16689-2008. Thermal treatment showed a negative effect on the leachability of Cr with concentrations increasing from 0.1 to 1.28 mg/L; nevertheless, it was still under the limitations. XRD analysis suggested that, after thermal treatments, CaO was newly generated. CaO was a main contribution to higher Cr leaching concentrations owing to the formation of Cr (VI)-compounds such as CaCrO₄. SEM/EDS tests revealed that particle adhesion, agglomeration, and grain growth happened during the thermal process and thus diminished the leachability of Pb, Cu, and Zn, but these processes had no significant influence on the leaching of Cr. A microbial assay demonstrated that all thermally treated samples yet possessed strong bactericidal activity according to optical density (OD) test results. Among all samples, the OD value of raw fly ash (RFA) was lowest followed by FA700-10, FA900-10, and FA1100-10 in an increasing order, which indicated that the sequence of the biotoxicity for these samples was RFA > FA700-10 > FA900-10 > FA1100-10. This preliminary study indicated that, apart from TCLP criteria, the biotoxicity assessment was indispensable for evaluating the effect of thermal treatment for MSWI fly ash.

  19. Review: Application of coal bottom ash as aggregate replacement in highway embankment, acoustic absorbing wall and asphalt mixtures

    Science.gov (United States)

    Afiza Mohammed, Syakirah; Rehan Karim, Mohamed

    2017-06-01

    Worldwide annual production of coal bottom ash waste was increased in the last decade and is being dumped on landfill over the years. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. There is a pressing and on-going need to develop new recycling methods for coal bottom ash. The utilization of coal bottom ash in highway engineering is one of the options to reduce the environmental problems related to the disposal of bottom ash. The present review describe the physical and chemical properties of coal bottom ash waste and its current application as highway embankment material, as acoustic absorbing material and as aggregate replacement in asphalt mixtures. The purpose of this review is to stimulate and promote the effective recycling of coal bottom ash in highway engineering industry.

  20. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Science.gov (United States)

    Robert, C. G.; Ayob, A.; Zaki, M. F. Muhammad; Razali, M. E.; Lew, E. V.; Hong, P. Y.

    2018-03-01

    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  1. Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Robert C.G.

    2018-01-01

    Full Text Available Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA and bottom ash (BA mixtures with difference component percentage treated with sodium lauryl sulphate (SLS and polyvinyl alcohol (PVA at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties.

  2. Reducing Heavy Metal Element from Coal Bottom Ash by Using Citric Acid Leaching Treatment

    Directory of Open Access Journals (Sweden)

    Yahya Ahmad Asyari

    2017-01-01

    Full Text Available Coal ash is the residue that is produced during coal combustion for instance fly ash, bottom ash or boiler slag which was primarily produced from the combustion of coal. With growth in coal burning power station, huge amount of coal bottom ash (CBA considered as hazardous material which are normally disposed in an on-site disposal system without any commercialization purpose. Previous researchers have studied the extraction of silica from agricultural wastes such as palm ash and rice husk ash (RHA and CBA by using leaching treatment method. In this study, the weaker acid, citric acid solution was used to replace the strong acid in leaching treatment process. Result showed that the heavy metal content such as Copper (Cu, Zinc (Zn and Lead (Pb can be decrease. Meanwhile the silica can be extracted up to 44% from coal bottom ash using citric acid leaching treatment under the optimum reaction time of 60 minutes with solution temperature of 60°C and concentration of citric acid more than 2%.

  3. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  5. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  6. Pengaruh Campuran Kadar Bottom Ash Dan Lama Perendaman Air Laut Terhadap Pola, Lebar Dan Kedalaman Retak Pada Balok

    OpenAIRE

    Dimas P G, Dwi Yulianto; S, Roland Martin; N, Christin Remayanti

    2014-01-01

    Dari pengujian ini didapatkan bahwa terdapat pengaruh variasi campuran bottom ash dimana nilai kuat tekan yang paling tinggi terjadi pada campuran bottom ash 10%. Demikian juga halnya dengan hasil pengamatan pola retak, dimana hingga terjadi kegagalan geser pada balok uji dengan keruntuhan geser. Hal ini terjadi pada balok beton dengan keruntuhan geser perendaman 28 hari campuran bottom ash 10%. Perbedaan kemunculan retak awal pada benda uji dengan keruntuhan geser perendaman 14 hari menunjuk...

  7. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    Science.gov (United States)

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-06

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of

  8. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill.

    Science.gov (United States)

    Gwenzi, Willis; Gora, Dorcas; Chaukura, Nhamo; Tauro, Tonny

    2016-03-01

    Bottom ash from open-burning of municipal waste practised in developing countries poses a risk of heavy metal leaching into groundwater. Compared to incineration ash, there is limited information on heavy metal leaching from open-burning ash and soil from non-engineered landfills. Batch and column experiments were conducted to address three specific objectives; (1) to determine aqua regia extractable concentrations of heavy metals in fresh ash, old ash and soil from beneath the landfill, (2) to determine the relationship between heavy metal leaching, initial and final pH of leaching solution, and aqua regia extractable concentrations, and (3) to determine the breakthrough curves of heavy metals in ashes and soil. Aqua regia extractable concentrations of Cd, Zn, Mn, Cu, Ni and Pb were significantly higher (p ashes than soil beneath landfill and uncontaminated soil (control). Increasing initial solution pH from 5 and 7 to 9 significantly reduced the mobility of Pb, Zn and Cu but not Cd whose mobility peaked at pH 7 and 9. Concentrations of desorbed heavy metals were not correlated with aqua regia extractable concentrations. Final pH of leachate rebounded to close to original pH of the material, suggesting a putative high buffering capacity for all materials. Both batch and column leaching showed that concentrations of leached heavy metals were disproportionately lower (ash and soil from the waste dump into groundwater was low. The high pH and the presence of Zn, Fe, Mn and Cu make ash an ideal low-cost liming material and source of micronutrients particularly on acidic soils prevalent in sub-Saharan Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The analysis of mechanical properties of non autoclaved aerated concrete with the substitution of fly ash and bottom ash

    Science.gov (United States)

    Karolina, R.; Muhammad, F.

    2018-02-01

    Based on PP. No.85 of 1999 on the management of hazardous and toxic (B3), fly ash and bottom ash wastes are categorized into B3 waste because there are heavy metal oxide contents that can pollute the environment. One form of environmental rescue that can be applied is to utilize waste fly ash and bottom ash in the manufacture of concrete. In this research, fly ash and bottom ash waste are used as substitution of cement and fine aggregate to make lightweight concrete. The purpose of this research is to know the mechanical properties of non-autoclaved aerated lightweight concrete (NAAC) with FA and BA substitution to cement and fine aggregate which is expected to improve the quality of concrete. The NAAC lightweight concrete in this study is divided into 4 categories: normal NAAC lightweight concrete, NAAC lightweight NAAC substituted concrete with FA, NAAC lightweight concrete substituted with BA, and NAAC combined light weight from FA and BA with variations of 10%, 20% And 30%. The test specimen used in cylindrical shape, which was tested at the age of 28 days, amounted to 90 pieces and consisted of 10 variations. Each variation amounted to 9 samples. Based on the test results with FA and BA substitutions of 10%, 20%, and 30%, the highest compressive strength was achieved in samples with FA 30% of 12.687 MPa, maximum tensile strength achieved in samples with FA 30% of 1,540 MPa, The highest absorption was achieved in normal NAAC of 5.66%. Based on the weight of the contents of all samples, samples can be categorized in lightweight concrete, since the weight of the contents is less than 1900 kg / m3.

  10. Feasibility Of Making Concrete Using Lignite Coal Bottom Ash As Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Thandavamoorthy T. S.

    2015-09-01

    Full Text Available Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80-90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.

  11. Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy. Part II. Process analysis

    Science.gov (United States)

    Panne, U.; Clara, M.; Haisch, C.; Niessner, R.

    1998-12-01

    Laser-induced plasma spectroscopy (LIPS) is employed for in situ and on-line process analysis of major glass constituents during a vitrification process for fly and bottom ashes from waste incineration. The system is based on an Nd:YAG laser for plasma ignition, while the elemental emissions from the plasma are detected time-resolved by an intensified multichannel analyzer. The perpendicular, single axis, imaging optics allow a remote sensing of the composition of the hot glass melt. Taking into account the plasma characteristics for calibration, good agreement between the LIPS analysis and the established reference analysis is achieved for the concentration ratios of SiO 2, Al 2O 3, and CaO. In addition, LIPS is applied to the analysis of aerosols generated by homogeneous nucleation during the heating-up of the investigated fly ashes. A distinctive temperature dependence of the heavy metal concentration of the aerosols is observed.

  12. Pemanfaatan limbah abu terbang (fly ash) , abu dasar (bottom ash) batubara dan limbah padat (sludge) industri karet sebagai bahan campuran pada pembuatan batako

    OpenAIRE

    Faisal, Hendri

    2012-01-01

    Brick-making research has been conducted from a mixture of fly ash as a cement mixed with aggregate materials based bottom ash and sludge, and sand, where fly ash and cement used as an adhesive matrix. The percentage addition of fly ash is 10%, 20%, 30%, 40% and 50% of initial weight of cement. The percentage addition of bottom ash and sludge as an aggregate is 5%, 10%, 15%, 20% and 25% of initial weight of sand with the time of hardening for 28 days. Parameter tests performed include: metals...

  13. The Laconia, New Hampshire bottom ash paving project: Volume 3, Physical Performance Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Bottom ash is the principal waste stream from the combustion of municipal solid waste (MSW). It is comprised of grate ash (97%), the slag material discharged at the end of the grate system, and grate sifting (3%), the material that melts or falls through the grate structure. This project was conducted to demonstrate the feasibility of using municipal solid waste grate ash as an aggregate substitute in the construction of a pavement binder course for a portion of Rt. 3 in Laconia, New Hampshire. The research was conducted over a two year period during 1993 and 1994. This study is the culmination of an earlier two year characterization study between 1990 and 1992 that documented the physical and environmental characteristics of the bottom ash as it was produced at the Concord, N.H. waste-to-energy (@) facility and used in an asphaltic binder course. Together, these two studies provide a complete evaluation of the potential for using grate ash or bottom ash in asphalt binder course or as recycled asphalt pavement (RAP) in base courses in pavements.

  14. Testing the possibility for reusing mswi bottom ash in Greenlandic road construction

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Jørgensen, Anders Stuhr; Villumsen, Arne

    2012-01-01

    , which can influence the quality of MWSI residues. About 15,000 tons MSWI bottom ash is produced annually in Greenland and is disposed of at the open disposal sites without leachate collection or encapsulation. The MSWI bottom ash could have value as a secondary resource in construction work in Greenland...... requirements (a grain size distribution, wear resistance, visual fraction analysis and bearing capacity) for reuse as fill material in road construction [2]. Environmental classification based on heavy metal content and leachability was also investigated. The tests showed that it will not be possible to use...

  15. Solidification of Simulated Radioactive Incineration Ash by Alkali-activated Slag Composite Cement

    International Nuclear Information System (INIS)

    Li changcheng; Cui Qi; Zhao Yanhong; Pan Sheqi

    2010-01-01

    Simulated radioactive incineration ash (SRIA) was solidified by alkali-activated slag composite cement (AASCC) modified by metakaolin, zeolite, and polymer emulsion powder. The results show that the performance of solidified waste form containing 40% SRIA meets the requirements of GB 14569.1-93. The lowest leaching rate of Cs + on 42nd days reaches 1.32 x 10 -4 cm/d (GB 7023-86,25 degree C), cumulative leach percentage is only 0.041 cm. Also, the lowest 28 days compressive strength of solidified waste form is 45.6 MPa, and later strength growth is still high. The fast setting characteristic of AASCC overcomes effectively the disadvantageous influence caused by some components in SRIA on hydration of cement. The compressive strength of solidified waste is enhanced remarkably, and the ability of immobilizing radionuclide ions is also improved. This is mainly due to synergistic effect between metakaolin and zeolite. Polymer modification also improves the performance of solidified waste form significantly. The three-dimensional polymer network structure formed by emulsion powder in solidified waste form enhances its toughness and impact resistance, and the durability is improved by reducing interconnected pores and optimizing pore structure. However,it also results in reduction in compressive strength. Thus, it is concluded that the suitable dosage percentage is 5%. (authors)

  16. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.-C. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Chang, F.-C. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: d90541003@ntu.edu.tw; Lo, S.-L. [Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Lee, M.-Y. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China); Wang, C.-F. [Department of Atomic Science, National Tsing Hua University, 101, Sec. 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Lin, J.-D. [Department of Civil Engineering, National Central University, 300 Jhongda Road, Jhongli 320, Taiwan (China)

    2007-06-01

    In this study, artificial lightweight aggregate (LWA) manufactured from recycled resources was investigated. Residues from mining, fly ash from an incinerator and heavy metal sludge from an electronic waste water plant were mixed into raw aggregate pellets and fed into a tunnel kiln to be sintered and finally cooled rapidly. Various feeding and sintering temperatures were employed to examine their impact on the extent of vitrification on the aggregate surface. Microstructural analysis and toxicity characteristic leaching procedure (TCLP) were also performed. The results show that the optimum condition of LWA fabrication is sintering at 1150 deg. C for 15 min with raw aggregate pellets fed at 750 deg. C. The rapidly vitrified surface envelops the gas produced with the increase in internal temperature and cooling by spraying water prevents the aggregates from binding together, thus forming LWA with specific gravity of 0.6. LWA produced by sintering in tunnel kiln shows good vitrified surface, low water absorption rate below 5%, and low cylindrical compressive strength of 4.3 MPa. In addition, only trace amounts of heavy metals were detected, making the LWA non-hazardous for construction use.

  17. Cylindrical Electrolyser Enhanced Electrokinetic Remediation of Municipal Solid Waste Incineration Fly Ashes

    Science.gov (United States)

    Huang, Tao; Zhou, Lulu; Tao, Junjun; Liu, Longfei

    2018-01-01

    The paper discusses enhancement and efficiency of removing spiked heavy metal (HM) contaminants from the municipal solid waste incineration (MSWI) fly ashes in the cylindrical electrolyser device. The characterization parameters of the electrolyte solution pH, electric current, electrical conductivity, voltage gradient were discussed after the experiment. The chemical speciation of HMs was analysed between the original samples and remediated ones by BCR sequential extraction. The detoxification efficiencies of Zn, Pb, Cu and Cd in the column-uniform device were compared with that in the traditional rectangular apparatus. The pH value changed smoothly with small amplitude of oscillation in general in cathode and anode compartments except the initial break. The electrical current rapidly increased on the first day of the experiment and steadily declined after that and the electrical conductivity presented a clear rising trend. The residual partition of detoxified samples were obviously lifted which was much higher than the analysis data of the raw materials. The pH and the electrical conductivity in sample region were distributed more uniformly and the blind area was effectively eliminated in the electrolytic cells which was indirectly validated by the contrastive detoxification result of the spiked HMs between the rectangular and cylindrical devices.

  18. Carbonation of municipal solid waste incineration electrostatic precipitator fly ashes in solution.

    Science.gov (United States)

    De Boom, Aurore; Aubert, Jean-Emmanuel; Degrez, Marc

    2014-05-01

    Carbonation was applied to a Pb- and Zn-contaminated fraction of municipal solid waste incineration electrofilter fly ashes in order to reduce heavy metal leaching. Carbonation tests were performed in solution, by Na2CO3 addition or CO2 bubbling, and were compared with washing (with water only). The injection of CO2 during the washing did not modify the mineralogy, but the addition of Na2CO3 induced the reaction with anhydrite, forming calcite. Microprobe analyses showed that Pb and Zn contamination was rather diffuse and that the various treatments had no effect on Pb and Zn speciation in the residues. The leaching tests indicated that carbonation using Na2CO3 was successful because it gave a residue that could be considered as non-hazardous material. With CO2 bubbling, Pb and Zn leaching was strongly decreased compared with material washed with water alone, but the amount of chromium extracted became higher than the non-hazardous waste limits for landfilling.

  19. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  20. Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time.

    Science.gov (United States)

    Del Valle-Zermeño, R; Gómez-Manrique, J; Giro-Paloma, J; Formosa, J; Chimenos, J M

    2017-03-01

    Differences during the last 15years in materials' composition in Municipal Solid Waste Incineration (MSWI) regarding bottom ash (BA) were assessed as a function of particle size (>16, 8-16, 4-8, 2-4, 1-2 and 0-1mm). After sieving, fractions >2mm were carefully washed in order to separate fine particles adhering to bigger particles. The characterization took into account five types of materials: glass (primary and secondary), ceramics (natural and synthetic), non-ferrous metals, ferrous metals and unburned organic matter. The evaluation was performed through a visual (>2mm) and chemical (0-2mm) classification. Results showed that total weight of glass in the particles over 16mm has decreased with respect to 1999. Moreover, the content of glass (primary and secondary) in BA was estimated to be 60.8wt%, with 26.4wt% corresponding to primary glass in >2mm size fractions. Unlike 1999, in which glass was the predominant material, ceramics are currently the major phase in bottom ash (BA) coarse fractions. As for the metals, respect to 1999, results showed a slight increase in all size fractions. The greatest content (>22wt%) of ferromagnetic was observed for the 2-4mm size fraction while the non-ferrous type was almost non-existent in particles over 16mm, remaining below 10wt% for the rest fractions. In the finest fractions (metals corresponded to metallic aluminium. The results from the chemical characterization also indicated that the finest fractions contributed significantly to the total heavy metals content, especially for Pb, Zn, Cu, Mn and Ti. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    International Nuclear Information System (INIS)

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-01-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced

  2. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  3. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele

    2013-08-12

    In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  4. Quality criteria for bottom ashes for civil construction. Part II Technical characteristics of bottom ashes; Kvalitetskriterier foer bottenaskor till vaegoch anlaeggningsbyggnad. Etapp II Bottenaskors tekniska egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, Bo von; Loorents, Karl-Johan; Ekvall, Annika; Arvidsson, Haakan [SP Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-01-15

    This report is the presentation of the second of two stages. This stage deals mainly with the testing of three different types of ashes and the evaluation and suitability of the chosen test methods. The project only relates to the technical aspects of ashes. The report is written in such a way that both ash owners (e.g. Energy companies) and those who build roads and constructions will find it meaningful. All test methods that are used for traditional materials (gravel and crushed rock) is not fitting for ashes. New test methods for some properties that will be tested must therefore be presented, tested practically and evaluated. The project encompasses both road and construction building but has a focus on road construction since there the highest and comprising demands are defined. Three bottom ashes of different types have been studied regarding some tenfold mechanical/physical parameters, essential for the functionality of the ash as a construction material. An important conclusion is that ash is from a functionality and characterisation point of view, an undefined concept that encloses materials with widely different properties. Despite that only three ashes have been looked into the range of results are varying large for some properties. This is especially true for the loose bulk density, water absorption and grain size distribution. It is also clear that some of the standard test methods for aggregates need to be exchanged by other methods, which are more adapted to alternative materials. One such example is water absorption, a property that further influences frost resistance, frost heave and such. All the proposed test methods that been used in the project is considered fitting for its purpose. The test methods can be divided into two categories the ones that yield easy assessable results and those that yield results hard to appraise. To the first group belong grain size distribution, loose bulk density, thermal conductivity, permeability and frost heave

  5. Bioleaching of fly ash from municipal solid waste incineration using kitchen waste saccharified solution as culture medium

    International Nuclear Information System (INIS)

    Wei, S.; Juan, W.; Qunhui, W.

    2013-01-01

    Summary: Reduced sugar in saccharified solution from kitchen waste was used as the carbon source. Domesticated A. niger AS 3.879C , which can withstand 20% of kitchen waste, was used as the inoculum in the bioleaching process of municipal solid waste incineration fly ash. The effect of reduced sugar concentration, fly ash concentration, and medium volume on the heavy metal extraction and yield of fly ash as well as the optimum bioleaching conditions; the inoculation amount of AS 3 .879C 1% (v/v), reduced sugar concentration of 80 g/l, fly ash concentration of 20 g/l, medium volume of 200 ml, and the addition of fly ash (20 g/l) after culturing for 4 days at 30 degree C and 140 r/min were obtained. Under the optimum condition, the extraction yield of the seven tested heavy metals are in the order of Cd > Zn > Cu > Mn > Pb > Cr > Fe; the extraction yield of Cd and Zn reached 88.7% and 73.1% respectively. Fly ash satisfied the Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes (GB 18598-2001) after heavy metal extraction. (author)

  6. Leaching kinetics of bottom ash waste as a source of calcium ions.

    Science.gov (United States)

    Koech, Lawrence; Everson, Ray; Neomagus, Hein; Rutto, Hilary

    2015-02-01

    Bottom ash is a waste material from coal-fired power plants, and it is known to contain elements that are potentially toxic at high concentration levels when disposed in landfills. This study investigates the use of bottom ash as a partial substitute sorbent for wet flue gas desulfurization (FGD) processes by focusing on its leaching kinetics in adipic acid. This was studied basing on the shrinking core model that was applied to the experimental data obtained by the authors presented at the International Conference on Industrial, Manufacturing, Automation and Mechanical Engineering, Johannesburg, South Africa, November 27-28, 2013) on dissolution of bottom ash. The leaching rate constant was obtained from different reaction variables, namely, temperature, pH, acid concentration, and solid-to-liquid ratio, that could affect the leaching process. The solid sample of bottom ash was characterized at different leaching periods using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that solid-to-liquid ratio had a significant effect on the leaching rate constant when compared with other variables. The leaching kinetics showed that diffusion through the product layer was the rate-controlling step during leaching, and the activation energy for the process was found to be 18.92 kJ/mol.

  7. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  8. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  9. Dielectric properties of MSWI bottom ash for non-invasive monitoring of moisture.

    Science.gov (United States)

    Ilyas, Aamir; Persson, Magnus; van Praagh, Martijn

    2013-08-01

    The dielectric procperties of MSWI bottom ash as a function of volumetric water content (VWC) are reported in this paper. The objective was to aid the development of microwave based non-invasive emission monitoring and control system for various bottom ash applications. The dielectric measurements were made, on a 1.5-year-old bottom ash, with an electrical network analyzer in microwave range (300 MHz-1.5 GHz). The VWC of the samples ranged between 0.05 and 0.40 m(3) m(-3). The relationship between the dielectric permittivity and the VWC was modeled with an empirical model and a physically based Birchak model (BM). The results showed that a linear relationship existed between the permittivity and the VWC at higher water contents (>0.25 m(3) m(-3)). However, at lower water contents (bottom ash. The permittivity measurement, with the current method, was not affected by high salt concentrations (10 and 20 dS/m). The empirical model, as compared to BM, provided the best fit between the actual and the predicted water content. The root mean square error (RMSE) values were 0.008-0.010 and 0.06-0.09 m(3) m(-3) for the empirical and the Birchak model, respectively.

  10. Material Analysis of Bottom Ash from Waste-to-Energy Plants.

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Krausová, Aneta; Kameníková, Petra; Šomplák, R.; Pavlas, M.; Zach, Boleslav; Pohořelý, Michael; Svoboda, Karel; Punčochář, Miroslav

    2018-01-01

    Roč. 73, MAR 2018 (2018), s. 360-366 ISSN 0956-053X R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : bottom ash * urban mining * metals recovery Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 4.030, year: 2016

  11. Major and trace elements in coal bottom ash at different oxy coal combustion conditions

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-09-01

    Full Text Available This paper presents a detailed study on the effect of temperature on the concentration of 27 major and trace elements in bottom ash generated from oxy fuel-combustion. The major elements are Na, Mg, Al, K, Ca and Fe and the minor and trace elements...

  12. Utilization of Coal Bottom Ash a Low-Cost Adsorbent for the Removal Acid Red 114 Dye

    Directory of Open Access Journals (Sweden)

    Kuntari Kuntari

    2017-02-01

    Full Text Available A research about adsorption of acid red 114 using coal bottom ash has been conducted. This research was aimed to examine the ability of coal bottom ash in acid red 114 adsorption. Some adsorption parameters i.e. dosage adsorbent, contact time and pH medium were examined in the adsorption processes. The characterization of coal bottom ash was determined using X-Ray Diffraction. Acid red 114 concentration is measured by using UV-Visible spectrophotometer. The adsorption percentage of acid red 114 on the coal bottom ash is 91.2% at pH 1.5; contact time 80 min, acid red 114 concentration 10 mg/L for every 1.5 g bottom ash.

  13. Synthesis of Zeolites Prepared from Coal Bottom Ash: Influence of Time, Temperature and NaOH Concentration

    OpenAIRE

    Matsinhe,J. V.; Macuvele,D. L.P.; Santos,E.S.W.; Moreira,J. C.; Uamusse, M. M.; Muller,L.; Martins,G. J.M.; Riella,H. G.

    2017-01-01

    Nowadays, the main application of coal mine in the world is to produce energy through thermoelectric power plants. Energy generation is always associated with the production of enormous amounts of ashes, both bottom and fly ashes. The main objective of this work is to study the effect of time, temperate and concentration on Synthetic zeolites produced from utilizing minerals of coal bottom ash. However, for the factor significance analysis, factorial planning of two levels and three factors w...

  14. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan

    2012-01-01

    Highlights: ► No research has been done to examine effect of electron beam irradiation on leaching behavior of heavy metals in fly ash. ► Electron beam irradiation on fly ash had significant effect on heavy metal leaching. ► Leaching potential of heavy metals in fly ash differed among metal species tested (Pb, Zn, Cu). ► Metal forms in the ash were analyzed to explain the difference. ► The difference could be explained by metal form change. - Abstract: Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3 mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of

  15. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  16. Copper leaching of MSWI bottom ash co-disposed with refuse: effect of short-term accelerated weathering.

    Science.gov (United States)

    Su, Lianghu; Guo, Guangzhai; Shi, Xinlong; Zuo, Minyu; Niu, Dongjie; Zhao, Aihua; Zhao, Youcai

    2013-06-01

    Co-disposal of refuse with municipal solid waste incinerator (MSWI) bottom ash (IBA) either multi-layered as landfill cover or mixed with refuse could pose additional risk to the environment because of enhanced leaching of heavy metals, especially Cu. This study applied short-term accelerated weathering to IBA, and monitored the mineralogical and chemical properties of IBA during the weathering process. Cu extractability of the weathered IBA was then evaluated using standard leaching protocols (i.e. SPLP and TCLP) and co-disposal leaching procedure. The results showed that weathering had little or no beneficial effect on Cu leaching in SPLP and TCLP, which can be explained by the adsorption and complexation of Cu with DOM. However, the Cu leaching of weathered IBA was reduced significantly when situated in fresh simulated landfill leachate. This was attributed to weakening Cu complexation with fulvic acid or hydrophilic fractions and/or intensifying Cu absorption to neoformed hydr(oxide) minerals in weathered IBA. The amount of total leaching Cu and Cu in free or labile complex fraction (the fraction with the highest mobility and bio-toxicity) of the 408-h weathered IBA were remarkably decreased by 86.3% and 97.6% in the 15-day co-disposal leaching test. Accelerated weathering of IBA may be an effective pretreatment method to decrease Cu leaching prior to its co-disposal with refuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Determination of hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in waste incineration fly ash using ultrasonic extraction followed by column cleanup and GC-MS analysis.

    Science.gov (United States)

    Zhang, Haiyan; Jiang, Lei; Zhou, Xin; Zeng, Tao; He, Zhiqiao; Huang, Xinwen; Chen, Jianmeng; Song, Shuang

    2018-03-01

    Hexachlorobutadiene (HCBD) was listed as a new controlling persistent organic pollutant in the Stockholm Convention because of its wide industrial applications and potential genotoxicity and carcinogenicity. However, only limited information exists on the release of HCBD from unintentional sources, such as waste incineration. Identification and quantification of HCBD in fly ash, one of the major outputs of waste incineration, is imperative. This work presents a simple method for determining HCBD in waste incineration fly ash based on ultrasonic extraction coupled with a silica gel-Florisil column cleanup followed by gas chromatography-mass spectrometry detection. Two typical persistent organic pollutants, pentachlorobenzene (PeCB) and hexachlorobenzene (HCB), were measured simultaneously. The parameters that influence the extraction efficiency and the quality of instrument detection were studied. Under the optimum experimental conditions, high sensitivity (detection limit 0.25-0.53 ng g -1 ), acceptable recoveries (64.0-71.4%) at spiking levels of 5-500 ng g -1 , and good repeatability [relative standard deviation (n = 3) of 14% or less] were achieved for all target analytes. The validation of this method was performed by analysis of six real fly ash samples from different waste incinerators in eastern China. The concentrations of HCBD detected in these samples (1.39-97.6 ng g -1 ) were comparable to those of PeCB (1.22-150 ng g -1 ) and HCB (0.82-120 ng g -1 ), indicating that the residual HCBD as well as PeCB and HCB in waste incineration fly ash should not be ignored. The results confirm for the first time that waste incineration is an unintentional source of HCBD in China. Graphical abstract An analytical method for hexachlorobutadiene, pentachlorobenzene, and hexachlorobenzene in fly ash from waste incineration. GC-MS gas chromatography-mass spectrometry, Ph-d10 phenanthrene-d 10 .

  18. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2005-01-01

    It has been recommended that meat-and-bone meal (MBM) be incinerated at 850 degrees C for at least 2 s and the ashes and slag disposed of in controlled landfills, to dispose of animal-derived proteins. Most commonly, the MBM is incinerated in cement works or coal-fired power plants and the ashes ...

  19. Preliminary Examination of the System Fly Ash-Bottom Ash-Flue Gas Desulphurization Gypsum-Portland Cement-Water for Road Construction

    Directory of Open Access Journals (Sweden)

    R. Tokalic

    2013-01-01

    Full Text Available This paper describes an investigation into the use of three power plant wastes: fly ash, flue gas desulphurization gypsum, and bottom ash for subbase layers in road construction. Two kinds of mixtures of these wastes with Portland cement and water were made: first with fly ash consisting of coarser particles (<1.651 mm and second with fly ash consisting of smaller particles (<0.42 mm. The mass ratio of fly ash-Portland cement-flue gas desulphurization gypsum-bottom ash was the same (3 : 1 : 1 : 5 in both mixtures. For both mixtures, the compressive strength, the mineralogical composition, and the leaching characteristics were determined at different times, 7 and 28 days, after preparation. The obtained results showed that both mixtures could find a potential use for subbase layers in road construction.

  20. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil

    International Nuclear Information System (INIS)

    Maneerung, Thawatchai; Kawi, Sibudjing; Wang, Chi-Hwa

    2015-01-01

    Highlights: • CaO catalyst was successfully developed from wood gasification bottom ash. • CaCO 3 in bottom ash can be converted to CaO catalyst by calcination. • CaO catalysts derived from bottom ash exhibited high activity towards transesterification. • CaO catalysts derived from bottom ash can be reutilized up to four times. - Abstract: The main aim of this research is to develop environmentally and economically benign heterogeneous catalysts for biodiesel production via transesterification of palm oil. For this propose, calcium oxide (CaO) catalyst has been developed from bottom ash waste arising from woody biomass gasification. Calcium carbonate was found to be the main component in bottom ash and can be transformed into the active CaO catalyst by simple calcination at 800 °C without any chemical treatment. The obtained CaO catalysts exhibit high biodiesel production activity, over 90% yield of methyl ester can be achieved at the optimized reaction condition. Experimental kinetic data fit well the pseudo-first order kinetic model. The activation energy (E a ) of the transesterification reaction was calculated to be 83.9 kJ mol −1 . Moreover, the CaO catalysts derived from woody biomass gasification bottom ash can be reutilized up to four times, offering the efficient and low-cost CaO catalysts which could make biodiesel production process more economic and environmental friendly

  1. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Science.gov (United States)

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  2. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    Science.gov (United States)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  3. Review of coal bottom ash and coconut shell in the production of concrete

    Science.gov (United States)

    Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.

    2018-04-01

    Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.

  4. Caracterização das cinzas de incineração de resíduos industriais e de serviços de saúde Characterization of incineration ashes of industrial and hospital solid waste

    Directory of Open Access Journals (Sweden)

    Maristela Lopes Silva

    2008-01-01

    Full Text Available Three ash samples from an incinerator in Belo Horizonte (Brazil were physically and chemically characterized. The chemical composition of the ashes was not always the same, neither in terms of the chemical species nor in terms of the quantities of those that are common to the three ashes. The ashes called CF1 and CF3D contain heavy metals above the detection limits of the analytical methods and the zinc concentration is high enough to justify treatment of the ashes. For these ashes, a high loss on ignition was found, indicating that the process of incineration might present failures.

  5. A Review: The Effect of Grinded Coal Bottom Ash on Concrete

    Directory of Open Access Journals (Sweden)

    Basirun Nurul Fasihah

    2017-01-01

    Full Text Available This paper offers a review on the use of grinded coal bottom ash (CBA on the concrete properties as demonstrated by strength test and microstructure test. Amount of CBA from power plant station was disposed in landfill because of the particle shape had a rough particles. By finding an alternative way to gain its surface area by grinding and used as replacement material as cement replacement may give a good side feedback on the strength and morphology of concrete. Most of the prior works studied on the grinded fly ash and grinded rice husk ash. The study on the influence of grinded CBA on the properties of concrete still limited and need more attention Therefore, the review on the effect of grinded CBA on the strength and microstructure of concrete are discussed.

  6. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Directory of Open Access Journals (Sweden)

    Na Wei

    2015-05-01

    Full Text Available Lightweight aggregate (LWA production with sewage sludge and municipal solid waste incineration (MSWI fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  7. Leachability of heavy metals from lightweight aggregates made with sewage sludge and municipal solid waste incineration fly ash.

    Science.gov (United States)

    Wei, Na

    2015-05-07

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

  8. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  9. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-09-01

    Full Text Available -1 International Conference of Coal Science and Technology, State College, Pennysylvania, USA, 29 September- 3 October 2013 Microwave-assisted synthesis of geopolymers from fluidised bed gasifier bottom ash B.O. Oboirien1, B.C. North1 and E. R. Sadiku2... 1CSIR Materials Science and Manufacturing, PO Box, 395, Pretoria 0001, South Africa boboiriencsir.co.za 2Tshwane University of Technology, Department of Polymer Technology, Pretoria South Africa Abstract Fluidised bed gasification (FBG...

  11. Removal of Mn(II) from the acid mine wastewaters using coal fired bottom ash

    Science.gov (United States)

    Mahidin, M.; Sulaiman, T. N.; Muslim, A.; Gani, A.

    2017-06-01

    Acid mine wastewater (AMW), the wastewater from mining activities which has low pH about 3-5 and contains hazardous heavy metals such as Cu, Fe, Mn, Zn, Pb, etc. Those heavy metals pollution is of prime concern from the environmental view point. Among the heavy metals, Mn occupies the third position in the AMW from one the iron ore mining company in Aceh, Indonesia. In this study, the possibility use of bottom ash from coal fired boiler of steam power plants for the removal of Mn(II) in AMW has been investigated. Experimental has been conducted as follows. Activation of bottom ash was done both by physical and chemical treatments through heating at 270 °C and washing with NaOH activator 0.5 and 1 M. Adsorption test contains two parts observation; preliminary and primary experiments. Preliminary study is addressed to select the best condition of three independent variables i.e.: pH of AMW (3 & 7), bottom ash particle size (40, 60 & 100 mesh) and initial Mn(II) concentrations (100 & 600 mg/l). AMW used was synthetics wastewater. It was found that the best value for NaOH is 1 M, pH is 7, particle size is 100 meshes and initial Mn(II) concentration is 600 mg/l from the adsorption efficiency point of view. The maximum adsorption capacity (q e) is 63.7 mg/g with the efficiency of 85%.

  12. The influence of fly and bottom ash deposition on the quality of Kastela Bay sediments

    Science.gov (United States)

    Orescanin, Visnja; Barisic, Delko; Lovrencic, Ivanka; Mikelic, Luka; Rozmaric-Macefat, Martina; Pavlovic, Gordana; Lulic, Stipe

    2005-11-01

    The objective of this study was chemical and radiological characterization of Kastela Bay sediments exposed to numerous anthropogenic sources like deposition of fly and bottom ash enriched in radionuclides and heavy metals, chemical plant, cement plant, iron plant, shipyard, electroplating facility, untreated industrial and domestic waste waters as well as heavy traffic. Totally, 33 samples of the mixture of fly and bottom ash, 12 sediment cores ranging from 0 to 40 cm and nine surface sediment samples were analyzed. Enrichment in heavy metals in the mixture of fly and bottom ash was ranging from 1.5 to 36 times compared to flysch soil while 226Ra and 238U were up to 50 times enriched compared to average activities characteristic for surrounding soils developed on the Middle and Upper Eocene flysch. Maximum 238U activity was approximately 32 times higher and 226Ra approximately 40 times higher in the Kastela Bay sediment compared to mean value determined for Adriatic sediments. The highest enrichment in sediment cores compared to background values were found for Zn (35.6 times), Pb (16 times), Cr (9.1 times) and Ni (4 times)

  13. Smelting Reduction of Bottom Ash in Presence of Liquid Steel Bath for Recovery of Aluminium

    Science.gov (United States)

    Mandal, A. K.; Sinha, O. P.

    For the recovery of aluminium from industrial waste bottom ash, a new concept was developed for smelting reduction in presence of metal solvent bath. Nitrogen plasma arc was generated by passing current and nitrogen gas through a hollow graphite electrode. Nitrogen plasma generated heat for reduction as well as melting under inert atmosphere inside the furnace. Pellets containing 50%bottom ash, 50% iron slime and charcoal were fed in the plasma zone above the liquid steel bath which was acted as for the absorption of reduced metals after reduction of oxides present in the wastes. Due to the immediate absorption of aluminium in the liquid steel bath after subsequent reduction from waste, vaporization loss of aluminium metal got minimized. The percent recovery of aluminium were determined in case of different exposure time, types of arcing and plasma gas etc. Maximum recovery of aluminium was recovered upto 21% with 30 minute exposure of pellets containing 50% bottom ash and 50% iron slime. It was observed that aluminum, could be recovered effectively from the wastes.

  14. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    International Nuclear Information System (INIS)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-01

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  15. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: strontium.

    Science.gov (United States)

    Huang, Wu-Jang; Tang, Hsing-Chuan; Lin, Kae-Long; Liao, Ming-Huei

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  16. An emerging pollutant contributing to the cytotoxicity of MSWI ash wastes: Strontium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wu-Jang, E-mail: wjhuang@mail.npust.edu.tw [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Tang, Hsing-Chuan [Department of Environmental Engineering and Science, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China); Lin, Kae-Long [Department of Environmental Engineering, National I-Lan University, 260 I-Lan, Taiwan (China); Liao, Ming-Huei [Department of Veterinary Medicine, National Ping-Tung University of Science and Technology, 912 Ping-Tung, Taiwan (China)

    2010-01-15

    In this study, we used the multiple toxicity characteristic leaching procedure to test the long-term leaching behavior of bottom ash, scrubber residue, and baghouse ash from a municipal solid waste incinerator (MSWI). We used the short-term viability percentage of African green monkey kidney cells (Vero cells) as a bioindicator to investigate the cytotoxicity of the leachates from the MSWI ash wastes. We found that strontium was a significant contributor to the cytotoxicity of the bottom ash.

  17. Obtention and characterization of ceramic products with addition of the mineral coal bottom ashes from thermoelectric power plants

    International Nuclear Information System (INIS)

    Kniess, C.T.; Prates, P.B.; Brys, M.; Martins, G.J.; Riella, H.G.; Bernardin, A.

    2011-01-01

    The physical, chemical and mineralogical properties of mineral coal bottom ash derived from thermoelectric power plants are compatible with various raw materials used in ceramic industries, which indicates a possibility of partial or fully substitution of raw materials by this residue. This work intends to obtain and characterize ceramic products with additions of different percentages of bottom ash coal. For this, was used a commercial ceramic body (CI) made by an industry in the state of Santa Catarina. The formulations of the ceramics products were obtained by the mixture design (planning network Simplex). The byproduct of coal bottom ash was found to be an attractive raw material source of SiO 2 and Al 2 O 3 to obtain ceramic materials. Was demonstrated the possibility of developing a ceramic materials classified as semi-porous (6 10) with additions of up to 20% of coal bottom ash in the composition of the ceramic body. (author)

  18. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.

    Science.gov (United States)

    Kim, Gil Won; Ho, Adrian; Kim, Pil Joo; Kim, Sang Yoon

    2016-09-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to mitigate CH4 emissions, as well as to prevent water infiltration using vegetation on landfill cover soils. In our previous studies, bottom ash from coal-fired power plants was selected among several industrial residues (blast furnace slag, bottom ash, construction waste, steel manufacture slag, stone powder sludge, and waste gypsum) as the best additive for ET cover systems, with the highest mechanical performance achieved for a 35% (wtwt(-1)) bottom ash content in soil. In this study, to evaluate the field applicability of bottom ash mixed soil as ET cover, four sets of lysimeters (height 1.2m×width 2m×length 6m) were constructed in 2007, and four different treatments were installed: (i) soil+bottom ash (35% wtwt(-1)) (SB); (ii) soil+compost (2% wtwt(-1), approximately corresponding to 40Mgha(-1) in arable field scale) (SC); (iii) soil+bottom ash+compost (SBC); and (iv) soil only as the control (S). The effects of bottom ash mixing in ET cover soil on CH4 oxidation potential and vegetation growth were evaluated in a pilot ET cover system in the 5th year after installation by pilot experiments using the treatments. Our results showed that soil properties were significantly improved by bottom ash mixing, resulting in higher plant growth. Bottom ash addition significantly increased the CH4 oxidation potential of the ET cover soil, mainly due to improved organic matter and available copper concentration, enhancing methanotrophic abundances in soil amended with bottom ash. Conclusively, bottom ash could be a good alternative as a soil additive in the ET cover system to improve vegetation growth and mitigate CH4 emission impact in the waste landfill system. Copyright © 2016

  19. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants.

    Science.gov (United States)

    Raclavská, Helena; Corsaro, Agnieszka; Hartmann-Koval, Silvie; Juchelková, Dagmar

    2017-12-01

    The management of an increasing amount of municipal waste via incineration has been gaining traction. Fly ash as a by-product of incineration of municipal solid waste is considered a hazardous waste due to the elevated content of various elements. The enrichment and distribution of 24 elements in fly ash from three wastes incinerators were evaluated. Two coarse (>100 μm and sieve (12-16, 16-23, 23-34, 34-49, and 49-100 μm) particle size fractions separated on a cyclosizer system were analyzed. An enhancement in the enrichment factor was observed in all samples for the majority of elements in >100 μm range compared with sieve particle size ranges. These variations were attributed primarily to: (i) the vaporization and condensation mechanisms, (ii) the different design of incineration plants, (iii) incineration properties, (iv) the type of material being incinerated, and (v) the affinity of elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  1. Chemical sequential extraction of heavy metals and sulphur in bottom ash and in fly ash from a pulp and paper mill complex.

    Science.gov (United States)

    Nurmesniemi, Hannu; Pöykiö, Risto; Kuokkanen, Toivo; Rämö, Jaakko

    2008-08-01

    A five-stage sequential extraction procedure was used to determine the distribution of 11 metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, Ni, Ba), and sulphur (S) in bottom ash and in fly ash from a fluidized bed co-combustion (i.e. wood and peat) boiler of Stora Enso Oyj Oulu Mill at Oulu, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O); (2) exchangeable fraction (CH3COOH); (3) easily reduced fraction (NH2OH-HCl); (4) oxidizable fraction (H2O2 + CH3COONH4); and (5) residual fraction (HF + HNO3 + HCl). Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, this fraction is the non-mobile fraction and is potentially the least harmful. The Ca concentrations of 29.3 g kg(-1) (dry weight) in bottom ash and of 68.5 g kg(-1) (dry weight) in fly ash were correspondingly approximately 18 and 43 times higher than the average value of 1.6 g kg(-1) (dry weight) in arable land in Central Finland. The ashes were strongly alkaline pH (approximately 12) and had a liming effects of 9.3% (bottom ash) and 13% (fly ash) expressed as Ca equivalents (dry weight). The elevated Ca concentrations indicate that the ashes are potential agents for soil remediation and for improving soil fertility. The pH and liming effect values indicate that the ashes also have a pH buffering capacity. From the environmental point of view, it is notable that the heavy metal concentrations in both types of ash were lower than the Finnish criteria for ash utilization.

  2. Analysis of trace elements in power plant and industrial incinerator fly ashes by instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Al-Areqi, Wadeeah M.; Amran Abdul Majid; Sukiman Sarmani

    2008-01-01

    An elemental analysis of fly ash samples from Selangor and Perak coal-fired power plants and an industrial incinerator from Negeri Sembilan were carried out using instrumental neutron activation analysis (INAA). All samples were irradiated at the Malaysian Nuclear Agency laboratory PUSPATI Reactor for 6 hours and later counted at the Nuclear Science Program, UKM using an HPGe detector with a relative efficiency of 10% and resolution of 1.8 KeV (FWHM) at 1.33 MeV. International Atomic Energy Agency (IAEA) coal fly ash 1633a reference material (SRM) was used as a standard for quantitative analysis. A total of 11 elements (i.e. As, Ba, Ca, Ce, Cr, Co, Fe, Hf, Sc, Th and U) were determined in all three types of fly ashes. The concentration range of environmentally concern elements, As and Cr in the Selangor coal-fired power plant samples are 11.17 - 23.24 and 160.28 - 867.97 μg.g -1 respectively. The concentration range of radioactive elements U and Th are 4.79 - 10.29 and 14.6 - 61.29 μg.g -1 respectively, and the concentration range of Co, Hf, Fe, Sc, Ba, Ce, Ca are 11.88-83.61, 3.24 - 10.48, 30338 - 53885, 16.62 - 28.48, 178.97 - 8491, 127.41 - 217.2 and 10447 -20647 μg.g -1 respectively. The concentration range of As, Cr, U, Th in the Perak samples were found to be 22.16 - 48.38, 44.37 - 74.78, 4.18 - 6.85, 8.71 - 11.43 μg.g -1 respectively, whereas the concentration range of Co, Fe, Sc, Ba, Ce and Ca are 23.21 -29.66, 54621 - 71099, 30.9 - 31.77, 100.34 - 116.61 and 11533 -16423 μg.g -1 respectively. Differences exist in the elemental concentrations of both power plant fly ash samples due to the different feed coal and combustion temperature used. The concentration of Cr, Th and Ce in the Selangor fly ash samples was generally higher compared to the samples obtained from the Perak power plant. This study also shows that only As and Ca were detected in the Negeri Sembilan samples with the concentration ranging from 36.66 - 98.67 and 31709.10 - 45606 μg.g -1

  3. Characterization of municipal solid waste incineration fly ash before and after electrodialytic treatment

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Gardner, Kevin H.

    2003-01-01

    metals had been removed from the ash during the electrodialytic treatment, the leachability of several of the residual metals had actually increased. The increased leachability was most probably caused by mineral dissolution and chelating of metals by residual citrate in the ash. Ammonium citrate had...... of the highly soluble minerals sylvite (KCl) and halite (NaCl). Indications of formation of secondary minerals (Ca-sulphates, ettringite) and precipitation of Ca-citrate in the treated ashes were also seen. SEM investigations confirmed a changed morphology in the treated ashes; probably due to crystallization...... of secondary minerals....

  4. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    Directory of Open Access Journals (Sweden)

    Menéndez, E.

    2013-12-01

    Full Text Available The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins.La eliminación de subproductos del carbón supone problemas ambientales y económicos en todo el mundo por lo que la reutilización y valorización de los mismos se ha convertido en un tema importante en las últimas décadas. Mientras que las cenizas volantes se han utilizado en aplicaciones de alto valor y se han desarrollado productos de construcción en los que se ha utilizado esta ceniza como adición al cemento, no se ha sido permitido la utilización de la ceniza de fondo como en cementos. Este artículo examina las propiedades químicas y físicas de las cenizas volantes y de fondo procedentes de dos centrales termoeléctricas con el objetivo de compararlas y analizar la potencial utilización de la ceniza de fondo como adición al cemento. Se han estudiado también las propiedades mecánicas de morteros de cemento fabricados con distintos porcentajes de ambas cenizas como

  5. Consolidated Incineration Facility waste burn test. Final report

    International Nuclear Information System (INIS)

    Burns, D.B.

    1995-01-01

    The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency's (EPA's) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes

  6. Analysis and interpretation of the leaching behaviour of waste thermal treatment bottom ash by batch and column tests.

    Science.gov (United States)

    Di Gianfilippo, Martina; Costa, Giulia; Verginelli, Iason; Gavasci, Renato; Lombardi, Francesco

    2016-10-01

    This paper investigates the leaching behaviour of specific types of waste thermal treatment bottom ash (BA) as a function of both pH and the liquid-to-solid ratio (L/S). Specifically, column percolation tests and different types of batch tests (including pH-dependence) were applied to BA produced by hospital waste incineration (HW-I), Refuse Derived Fuel (RDF) gasification (RDF-G) and RDF incineration (RDF-I). The results of these tests were interpreted applying an integrated graphical and modelling approach aimed at identifying the main mechanisms (solubility, availability or time-controlled dissolution and diffusion) governing the release of specific constituents from each type of BA. The final aim of this work was in fact to gain insight on the information that can be provided by the leaching tests applied, and hence on which ones may be more suitable to apply for assessing the leaching concentrations expected in the field. The results of the leaching tests showed that the three samples of analysed BA presented differences of orders of magnitude in their leaching behaviour, especially as a function of pH, but also in terms of the L/S. These were mainly related to the differences in mineralogy of the samples. In addition, for the same type of bottom ash, the comparison between the results of batch and percolation column tests, expressed in terms of cumulative release, showed that for some constituents (e.g. Mg for HW-I BA and Cu for RDF-G BA) differences of over one order of magnitude were obtained due to variations in pH and DOC release. Similarly, the eluate concentrations observed in the percolation tests, for most of the investigated elements, were not directly comparable with the results of the pH-dependence tests. In particular, in some cases the percolation test results showed eluate concentrations of some constituents (e.g. K and Ca in HW-I BA) of up to one order of magnitude higher than the values obtained from the pH-dependence experiments at the same p

  7. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    Science.gov (United States)

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis.

    Science.gov (United States)

    Jeguirim, Mejdi; Kraiem, Nesrine; Lajili, Marzouk; Guizani, Chamseddine; Zorpas, Antonis; Leva, Yann; Michelin, Laure; Josien, Ludovic; Limousy, Lionel

    2017-04-01

    This paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust. The physico-chemical properties of the produced pellets were analysed using different analytical techniques, and a particular attention was paid to their mineral contents. Combustion tests were performed in 12-kW domestic boiler. The particle matter (PM) emission was characterised through the particle number and mass quantification for different particle size. The bottom ash composition and size distribution were also characterised. Molar balance and chemometric analyses were performed to identify the correlation between the mineral contents and PM and bottom ash characteristics. The performed analyses indicate that K, Na, S and Cl are released partially or completely during combustion tests. In contrast, Ca, Mg, Si, P, Al, Fe and Mn are retained in the bottom ash. The chemometric analyses indicate that, in addition to the operating conditions and the pellet ash contents, K and Si concentrations have a significant effect on the PM emissions as well as on the agglomeration of bottom ash.

  9. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2005-01-01

    It has been recommended that meat-and-bone meal (MBM) be incinerated at 850 degrees C for at least 2 s and the ashes and slag disposed of in controlled landfills, to dispose of animal-derived proteins. Most commonly, the MBM is incinerated in cement works or coal-fired power plants and the ashes...... in controlied landfills and the feasibility of use of the ash by the phosphate and fertilizer industries. We assumed that all specified risk material (SRM) and MBM produced in Denmark would be incinerated in this gas-fired power plant. Based on observations in 2001, we assumed that, on average, six (range: 0...

  10. Mercury Levels In Fly Ash And Apc Residue From Municipal Solid Waste Incineration Before And After Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Dias-Ferreira, Celia; Kirkelund, Gunvor Marie; Jensen, Pernille Erland

    2016-01-01

    Fly ash (FA) and Air Pollution Control (APC) residues collected from three municipal solid waste incinerators (MSWI) in Denmark and Greenland were treated by electrodialytic remediation at pilot scale for 8 to 10 h. The original residues and the treated material were analysed for mercury (Hg......) in order to assess the influence of the electrodialytic treatment on the concentrations of this element. Mercury levels varied with the MSWI residue, ranging from 0.41 mg kg−1 in FA sample from electrostatic precipitator (ESP) to 8.38 mg kg−1 in MSWI residues from a semi-dry system with lime and activated...... carbon. Two distinct behaviours were observed for mercury as a result of the electrodialytic treatment. This element became enriched in the MSWI residues from the semi-dry system with activated carbon, whereas it decreased in ESP’s and cyclone’s FA. This work presents for the first time information about...

  11. Agglomeration potential of TiO2in synthetic leachates made from the fly ash of different incinerated wastes.

    Science.gov (United States)

    He, Xu; Mitrano, Denise M; Nowack, Bernd; Bahk, Yeon Kyoung; Figi, Renato; Schreiner, Claudia; Bürki, Melanie; Wang, Jing

    2017-04-01

    Material flow studies have shown that a large fraction of the engineered nanoparticles used in products end up in municipal waste. In many countries, this municipal waste is incinerated before landfilling. However, the behavior of engineered nanoparticles (ENPs) in the leachates of incinerated wastes has not been investigated so far. In this study, TiO 2 ENPs were spiked into synthetic landfill leachates made from different types of fly ash from three waste incineration plants. The synthetic leachates were prepared by standard protocols and two types of modified procedures with much higher dilution ratios that resulted in reduced ionic strength. The pH of the synthetic leachates was adjusted in a wide range (i.e. pH 3 to 11) to understand the effects of pH on agglomeration. The experimental results indicated that agglomeration of TiO 2 in the synthetic landfill leachate simultaneously depend on ionic strength, ionic composition and pH. However, when the ionic strength was high, the effects of the other two factors were masked. The zeta potential of the particles was directly related to the size of the TiO 2 agglomerates formed. The samples with an absolute zeta potential value < 10 mV were less stable, with the size of TiO 2 agglomerates in excess of 1500 nm. It can be deduced from this study that TiO 2 ENPs deposited in the landfill may be favored to form agglomerates and ultimately settle from the water percolating through the landfill and thus remain in the landfill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash.

    Science.gov (United States)

    Yakubu, Yahaya; Zhou, Jun; Ping, Duan; Shu, Zhu; Chen, Yun

    2018-02-01

    Fly ash (FA), a product of municipal solid waste incineration (MSWI), has been classified as a kind of hazardous waste due to its high content of heavy metals. FA may be reused in the construction industry or disposed of at landfill sites, and thus poses threats to both the environment and human health. This study sought to establish a scientific basis for accurate selection of suitable pH storage conditions for the FA. We evaluated the potential of MSWI FA sample from the Xinghuo waste incineration power plant, Wuhan, to solidify/stabilize the heavy metal (Cu, Pb, Zn, Cr, Cd, As and Mn) contents, when leached under different pH conditions. The concentration of a heavy metal in the leachate was assumed to inversely reflect the extent of its solidification/stabilization (S/S). The study findings showed that the raw FA contained higher levels of the heavy metals, which were above the acceptable limits. Extremely acidic conditions favoured heavy metal leaching compared to extremely alkaline conditions. The extent of S/S of heavy metals was generally very low under highly acidic conditions (pH ≤ 4), but increased with increasing pH. All the metals solidified/stabilized in pH media of 5-11, except Zn which was detected in the entire pH range. We conclude that changing landfill conditions which can affect the pH environment, will increase heavy metal leaching when the pH ≤ 4. As a result, waste which was initially classified as non-hazardous may later pose harmful risks to both humans and the environment alike. We propose pH of 5-11 as the optimum pH range for the treatment, reuse, and disposal of the ash sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.

    Science.gov (United States)

    Okada, Takashi; Tomikawa, Hiroki

    2013-03-01

    In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of Bottom Ash and Fly Ash as a Susceptor Material on The Properties of Aluminium Based Composites Prepared by Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Wan Muhammad Wan Nur Azrina Binti

    2017-01-01

    Full Text Available The use of aluminium as a single material in automotive applications is not suitable without a mixture with reinforcement materials that can support the properties at high temperature. In this study, aluminium based composite were prepared with weight percentage of SiC reinforcement, varying from 5 to 20 wt%. Aluminium powder and reinforcement materials were mixed using ball milling machine with speed of 100 rpm for 2 hours. The powder mixture were then compressed at pressure 4 tonnes with 5 minutes holding time. The compact samples were sintered using microwave sintering technique. Microwave sintering techniques in this study using two different types of susceptor materials that are bottom ash and fly ash. Sintered aluminium based composites using bottom ash susceptor material involving the sintering temperature of 526 °C for 30 minutes whereas for the samples sintered using fly ash susceptor material, involving a temperature of 523 °C for 15 minutes. From the result, the sintered samples using fly ash susceptor material, showed higher density with a value of 2.1933 g/cm3 compared to bottom ash 2.0002 g/cm3 and having the higher hardness value 72.1315 HV compared to bottom ash 50.0511HV. The using of fly ash could affect the heating rate during the sintering process which could influence the properties of aluminium based composites. In conclusion, the type of susceptor could affect the physical and mechanical properties of aluminum-based composite reinforced with silicon carbide.

  15. Sound absorption coefficient of coal bottom ash concrete for railway application

    Science.gov (United States)

    Ramzi Hannan, N. I. R.; Shahidan, S.; Maarof, Z.; Ali, N.; Abdullah, S. R.; Ibrahim, M. H. Wan

    2017-11-01

    A porous concrete able to reduce the sound wave that pass through it. When a sound waves strike a material, a portion of the sound energy was reflected back and another portion of the sound energy was absorbed by the material while the rest was transmitted. The larger portion of the sound wave being absorbed, the lower the noise level able to be lowered. This study is to investigate the sound absorption coefficient of coal bottom ash (CBA) concrete compared to the sound absorption coefficient of normal concrete by carried out the impedance tube test. Hence, this paper presents the result of the impedance tube test of the CBA concrete and normal concrete.

  16. Leaching from waste incineration bottom ashes treated in a rotary kiln

    DEFF Research Database (Denmark)

    Hyks, Jiri; Nesterov, Igor; Mogensen, Erhardt

    2011-01-01

    their detection limits; no effects of the thermal treatment on leachability of these metals were observed. The leaching of Cl, dissolved organic carbon (DOC), Cu and Pb decreased by at least one order of magnitude after the thermal treatment. This could be explained by evaporation (Cl) and by a better burnout...

  17. Cesium distribution and phases in proxy experiments on the incineration of radioactively contaminated waste from the Fukushima area

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Kakuta, Yoshitada; Kawano, Takashi

    2014-01-01

    After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident. - Highlights: • Behavior of cesium in the waste incineration residues was investigated. • Bottom ash products were synthesized through combusting of stable cesium salts and RDF. • Microscopic and microanalytical techniques were applied. • Cesium distribution and phases were identified in bottom ash products. • Cesium is entrapped in silicate glass, minerals and metal-sulfide phases of bottom ash

  18. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    International Nuclear Information System (INIS)

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-01-01

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO 2 . Earlier studies have indicated that PuO 2 has the fluorite structure of CaF 2 and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO 2 . The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO 2 will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some

  19. Heavy Metal Concentrations around a Hospital Incinerator and a ...

    African Journals Online (AJOL)

    Studies to determine the concentrations of heavy metals in the surrounding soils and bottom ash of a hospital incinerator and a municipal dumpsite were carried out in Ibadan City, South-West Nigeria from November 2010 to January 2011. Samples were analyzed for Pb, Fe, Cu, Zn, Cr and Ni using Flame Atomic Absorption ...

  20. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    Directory of Open Access Journals (Sweden)

    Laura Benassi

    2015-10-01

    Full Text Available A new technology was recently developed for municipal solid waste incineration (MSWI fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA, an agricultural byproduct material (COSMOS-RICE project. The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste.

  1. Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

    Science.gov (United States)

    Benassi, Laura; Franchi, Federica; Catina, Daniele; Cioffi, Flavio; Rodella, Nicola; Borgese, Laura; Pasquali, Michela; Depero, Laura E.; Bontempi, Elza

    2015-01-01

    A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applications to produce “green composites”. In this work, for the first time, a process for pre-treatment of rice husk, before its use in the stabilization of heavy metals, based on the employment of Instant Pressure Drop technology (DIC) was tested. The aim of this work is to verify the influence of the pre-treatment on the efficiency on heavy metals stabilization in the COSMOS-RICE technology. DIC technique is based on a thermomechanical effect induced by an abrupt transition from high steam pressure to a vacuum, to produce changes in the material. Two different DIC pre-treatments were selected and thermal annealing at different temperatures were performed on rice husk. The resulting RHAs were employed to obtain COSMOS-RICE samples, and the stabilization procedure was tested on the MSWI fly ash. In the frame of this work, some thermal treatments were also realized in O2-limiting conditions, to test the effect of charcoal obtained from RHA on the stabilization procedure. The results of this work show that the application of DIC technology into existing treatment cycles of some waste materials should be investigated in more details to offer the possibility to stabilize and reuse waste. PMID:28793605

  2. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    Science.gov (United States)

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  3. Mercury and toxic metals in ash from combustion and incineration processes; Mercurio y metales toxicos en cenizas provenientes de procesos de combustion e incineracion

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V.; Amador, M.A.; Torres, M.; Figueroa, J. de J. [Universidad Autonomo-Metropolitana-Azcapotzalco, Reynosa (Mexico)

    2003-07-01

    In Mexico, most of the ashes from combustion and incineration process were not appropriately disposed, they are either left on industrial yards and cliffs or thrown away in open spaces and then carried by the wind to places where they can harm population, affect aquatic environment or soils. For prevention and control, the knowledge on the concentration of trace elements in waste ashes is necessary. In this study, several oxidation methods for digestion of ashes followed by inductively coupled plasma emission spectrometry were evaluated. Hg, Cd, Cr, Cu, Ni, Pb and V were determined in ashes from coal and fuel oil combustion, as well as in ashes from the incineration of municipal, water treatment sludge, and medical wastes. Results showed important concentrations of different trace elements in the ashes. This suggests that adequate disposal of these wastes should be mandatory. On the other hand, concentration of trace elements in the leachates indicated that these wastes are not toxic and they could be disposed in sanitary landfill. 23 refs.

  4. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers

    International Nuclear Information System (INIS)

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F.; Cifuentes, Héctor

    2013-01-01

    Highlights: • The particle size of bottom ash influenced the acoustic behavior of the barrier. • The best sound absorption coefficients were measured for larger particle sizes. • The maximum noise absorption is displaced to lower frequencies for higher thickness. • A noise barrier was designed with better properties than commercial products. • Recycling products from bottom ash no present leaching and radioactivity problems. - Abstract: The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk

  5. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash.

    Science.gov (United States)

    Chen, Chen; Li, Qin; Shen, Lifeng; Zhai, Jianping

    2012-06-01

    This paper presents a study on geopolymer bricks manufactured using bottom ash from circulating fluidized bed combustion (CFBC). The alkali activators used for synthesis were sodium silicate, sodium hydroxide, and potassium hydroxide and lithium hydroxide solutions. The study included the impact of alkali activator on compressive strength. The reaction products were analysed by XRD, FT-IR and SEM/EDS. The compressive strength of bricks was dependent on the modulus of the sodium silicate activator and the type and concentration of alkali activator. The highest compressive strength could be gained when the modulus was 1.5, and the value could reach 16.1 MPa (7 d after manufacture) and 21.9 MPa (28 d after manufacture). Under pure alkaline systems, the compressive strength was in the order of 10 M KOH > 10 M NaOH > 5 M LiOH > 5 M KOH > 5 M NaOH. Quartz was the only crystalline phase in the original bottom ash, and no new crystalline phase was found after the reaction. The main product of reaction was amorphous alkali aluminosilicate gel and a small amount of crystalline phase was also found by SEM.

  6. Conversion of coal-fired bottom ash to fuel and construction materials.

    Science.gov (United States)

    Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha

    2017-07-01

    In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.

  7. Effects of Coal Combustion Additives on the Forms and Recovery of Uranium in Coal Bottom Ash

    Science.gov (United States)

    Tang, Ye; Li, Yilian

    2017-04-01

    Recovering uranium from uranium-rich coal ash is an important way to utilize unconventional uranium resource. Although it might be expected that the uranium in residual form would prevent uranium recovery from coal ash, raising the recovery rate in way of controlling residual uranium has not yet been studied. In this study, three different kinds of combustion promoting additives were investigated by coal combustion experiments, in order to decrease the proportion of residual-form uranium in ash and increase the acid leaching rate. Analytical procedures included Tessier sequential extraction, acidleaching, and characterization(ICP-MS, XRF, BET and SEM-EDS). It was showed that the effects of additives in reducing residual uranium were as the following order: alkaline earth metal compounds > transition metal compounds> alkali metal compounds. Adding alkali metal additives(KCl, NaCl, K2CO3, Na2CO3) raised the percentage of residual uranium largely. Additionally, one transition metal additive(Fe2O3) reached a decreasing amplitude of 5.15%, while the other two additives(MnO2 and Fe3O4)made the rates increased. However, coal combustion with alkaline earth metal compounds mixed had target effects. Among this kind of additives(Ca(OH)2, CaCO3, CaO, CaCl2), CaCO3displayed the best effect on restricting the rising proportion of residual uranium by 18%. Moreover, the leaching recovery research indicated that CaCO3 could raise the recovery rate by 10.8%. The XRF profiles supported that the CaCO3 could lower the concentration of SiO2 in the bottom ash from 79.76% to 49.69%. Besides, The BET and SEM revealed that the decomposition of CaCO3 brought about a variation of surface structures and area, which promoted the contact between the leaching agent and bottom ash. The uranium content increase was determined by ICP-MS and EDS. These findings suggest that CaCO3 could be a favorable additive for the controlling of residual uranium and improvement of uranium recovery rates. Key words

  8. Optimization of fly ash and bottom ash substitution against paving block manufacture according to SNI 03-0691-1996

    Science.gov (United States)

    Karolina, R.; Syahrizal; Bahri, N.

    2018-02-01

    The waste of coal burning has a very negative impact on the environment if the waste is not managed as well as possible. The remaining waste of coal combustion consists of fly ash and bottom ash. FA and BA can be developed into substitution materials in the process of making paving blocks. The purpose of this study was to determine the quality of paving block in accordance with SK SNI 03-0691-1996 with optimization in the use of FA and BA. This study uses a 351 paving block sample size of 20x10x6 cm. Paving blocks are divided by 4 categories, namely normal paving block, paving block with FA substitution, BA substitution and combination of FA-BA with each variation 0%, 25%, 50%, 75% and 100%. Each variation amounted to 27 samples. Paving block quality measurement is done through 4 tests: absorption, compressive strength, sodium sulphate resistance and Los Angeles tests. The result of the test shows the absorption of normal paving block is 3,229%, paving block with 25% FA is 3,889%, paving block with 50% BA is 5,560% and paving block with 25% FA-BA combination is 5,794%. Compressive strength in normal paving block is 25,50 MPa, paving block with 25% FA is 25,28 MPa, paving block with 25% BA is equal to 27,61 MPa and paving block with 25% FA-BA is 26, 00 MPa. In testing of sodium sulfate resistance, almost all test specimens are eligible except for paving block with 50% FA and 75% FA. In the test of wear resistance, no specimen is eligible according to SK SNI 03-0691-1996. The comparison of the strength of the test specimen can be seen in substitution with 25% BA which reaches maximum strength.

  9. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  10. Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers.

    Science.gov (United States)

    Arenas, Celia; Leiva, Carlos; Vilches, Luis F; Cifuentes, Héctor

    2013-11-01

    The present study aims to determine and evaluate the applicability of a new product consisting of coal bottom ash mixed with Portland cement in the application of highway noise barriers. In order to effectively recycle the bottom ash, the influence of the grain particle size of bottom ash, the thickness of the panel and the combination of different layers with various particle sizes have been studied, as well as some environmental properties including leachability (EN-12457-4, NEN-7345) and radioactivity tests. Based on the obtained results, the acoustic properties of the final composite material were similar or even better than those found in porous concrete used for the same application. According to this study, the material produced presented no environmental risk. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Use of ash from the incineration of firewood and sawdust into clayey ceramic

    International Nuclear Information System (INIS)

    Rossi, D.P.; Monteiro, S.N.; Vieira, C.M.F.

    2011-01-01

    This work has as its objective to evaluate the effect of the incorporation of a type of waste, ash obtained from burning eucalyptus firewood and sawdust, in the physical and mechanical properties of red ceramic. The waste was characterized by DTA/TG and XRF. Formulations were prepared with incorporation of the waste in amounts up to 10 wt.%, into a kaolinitic clayey body. Rectangular specimens were prepared by uniaxial mold-press at 20 MPa and then fired at 650 and 950 deg C. The evaluated physical and mechanical properties were: linear shrinkage, water absorption and flexural rupture strength. The microstructure of the fired ceramics was evaluated by optical microscopy. The results showed that the ash has an high amount of weight loss during the firing, being predominantly composed of quartz and calcium compounds. The incorporation of the ash increased the water absorption and abruptly decreased the mechanical strength of the ceramic at the investigated temperatures for all amount of incorporated ash. (author)

  12. Dechlorination Ability of Municipal Waste Incineration Fly Ash for Polychlorinated Phenols

    Czech Academy of Sciences Publication Activity Database

    Vlková, Leona; Pekárek, Vladimír; Pacáková, V.; Karban, Jindřich; Bureš, M.; Štulík, K.

    2004-01-01

    Roč. 56, č. 10 (2004), s. 935-942 ISSN 0045-6535 R&D Projects: GA AV ČR IAA4072206; GA MŠk 1P04OE156 Institutional research plan: CEZ:AV0Z4072921 Keywords : chlorophenols * de novo synthesis * fly ash Subject RIV: CC - Organic Chemistry Impact factor: 2.359, year: 2004

  13. Dehalogenation Potential of Municipal Waste Incineration Fly Ash. I. General Principles

    Czech Academy of Sciences Publication Activity Database

    Pekárek, Vladimír; Karban, Jindřich; Fišerová, Eva; Bureš, M.; Pacáková, V.; Večerníková, Eva

    2003-01-01

    Roč. 10, č. 1 (2003), s. 39-43 ISSN 0944-1344 R&D Projects: GA AV ČR IAA4072206 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z4072921 Keywords : dechlorination * fly ash * hexachlorobenzene Subject RIV: CC - Organic Chemistry Impact factor: 1.216, year: 2003

  14. The use of the bottom ashes and of the steelmaking slags in the manufacturing technologies of the building materials

    Directory of Open Access Journals (Sweden)

    L. G. Popescu

    2016-07-01

    Full Text Available The energetic and metallurgy industries of Romania represent the main waste sources significant from the point of quantitative view: the bottom ashes and the blast furnace and secondary metallurgical slags. Starting from the knowledge of the main chemical-physical properties of these two types of industrial wastes, there were inquired the exploitation possibilities in the technological practice, by using in the manufacturing of some building materials, for which these wastes represent the exclusive raw material source. The experiments considered the granular aggregate properties of the bottom ash and of the blast furnace slag, completed by the hydraulic binder of the secondary metallurgical slag, after the fine crushing.

  15. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  16. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan.

    Science.gov (United States)

    Yang, Renbo; Liao, Wing-Ping; Wu, Pin-Han

    2012-08-15

    Approximately 19.2% of Taiwan's municipal solid waste (MSW) that passes through incineration disposal is converted into ashes (including bottom ash and fly ash). Although bottom ash can pass nearly all of the standards of the toxicity characteristic leaching procedure (TCLP), its high chloride content makes its reuse limited; it generally cannot be used as a fine aggregate material in concrete applications. This research examined washing four types of bottom ash (BA) and fly ash (FA) with water to reduce their chloride content. The optimal water intensity for washing pretreated bottom ash was found to be 7-8L of water per kg of bottom ash, and the optimal water intensity for washing untreated fly ash was found to be 20-25 L of water per kg of fly ash. Based on regression analyses of the chloride concentrations of the leachates and their electrical conductivity (EC) values, each MSW incineration plant has its own ash characteristics as well as a specific regression line in bottom or fly ash leachate. Clearly, it is possible to monitor the EC values of the leachates online by estimation from regression equations to determine the chloride concentrations in the leachates. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Generation and distribution of PAHs in the process of medical waste incineration.

    Science.gov (United States)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  19. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.

    Science.gov (United States)

    Obiri, S; Ansa-Asare, O D; Mohammed, S; Darko, H F; Dartey, A G

    2016-10-01

    Recycling of e-waste using informal or crude techniques poses serious health risk not only to the workers but also to the environment as whole. It is against this background that this paper sought to measure health risk faced by informal e-waste workers from exposure to toxicants such as lead, cadmium, chromium, copper, arsenic, tin, zinc and cobalt via oral and dermal contact with bottom ash and soil. Using random sampling techniques, 3 separate sites each (where burning and manual dismantling of e-wastes are usually carried) were identified, and a total of 402 samples were collected. The samples were analysed using standard methods for chemical analysis prescribed by the American Water Works Association (AWWA). Concentrations of Pb, Cd, Cr, Cu, As, Sn, Zn and Co in bottom ash samples from location ASH1 are 5388 ± 0.02 mg/kg (Pb), 2.39 ± 0.01 mg/kg (Cd), 42 ± 0.05 mg/kg (Cr), 7940 ± 0.01 mg/kg (Cu), 20 ± 0.07 mg/kg (As), 225 ± 0.04 mg/kg (Sn), 276 ± 0.04 mg/kg (Zn) and 123 ± 0.04 mg/kg (Co), while concentrations of the aforementioned toxicants in soil samples at location ASG1 are as follows: 1685 ± 0.14 mg/kg (Pb), 26.89 ± 0.30 mg/kg (Cd), 36.86 ± 0.02 mg/kg (Cr), 1427 ± 0.08 mg/kg (Cu), 1622 ± 0.12 mg/kg (As), 234 ± 0.25 mg/kg (Sn), 783 ± 0.31 mg/kg (Zn) and 135 ± 0.01 mg/kg (Co); used as input parameters in assessing health risk faced by workers. The results of cancer health risk faced by e-waste workers due to accidental ingestion of As in bottom ash at ASH1 is 4.3 × 10 -3 (CTE) and 6.5 × 10 -2 (RME), i.e. approximately 4 out of 1000 e-waste workers are likely to suffer from cancer-related diseases via central tendency exposure (CTE parameters), and 7 out of every 100 e-waste worker is also likely to suffer from cancer cases by reasonable maximum exposure (RME) parameters, respectively. The cancer health risk results for the other sampling sites were found to have exceeded the acceptable

  20. Recovery of Multi-Metallic Components from Bottom Ash by Smelting Reduction Under Plasma Environment

    Science.gov (United States)

    Mandal, Arup Kumar; Sinha, Om Prakash

    2016-02-01

    A new concept for maintaining inert atmosphere with high temperature ~1973 K (1700 °C) inside the furnace during smelting reduction was described, in which recovery of metallic values from wastes was done in the presence of metal bath which acts as a solvent. Nitrogen plasma arc was generated by passing current and nitrogen gas through a hollow graphite electrode. In this way, the heat for reduction reactions and melting of metal and slag phases under inert atmosphere was maintained. The mixture of bottom ash and carbonaceous reducing agent was fed in the form of pellets near the plasma zone above the liquid iron bath, used for the absorption of reduced metals after reduction of oxides present in the wastes. Percent recovery of metallic values and different consumption parameters were calculated. It was observed that aluminum, iron, and silicon could be recovered effectively from the wastes.

  1. Material analysis of Bottom ash from waste-to-energy plants.

    Science.gov (United States)

    Šyc, Michal; Krausová, Aneta; Kameníková, Petra; Šomplák, Radovan; Pavlas, Martin; Zach, Boleslav; Pohořelý, Michael; Svoboda, Karel; Punčochář, Miroslav

    2018-03-01

    Bottom ash (BA) from waste-to-energy (WtE) plants contains valuable components, particularly ferrous (Fe) and non-ferrous (NFe) metals, which can be recovered. To assess the resource recovery potential of BA in the Czech Republic, it was necessary to obtain its detailed material composition. This paper presents the material composition of BA samples from all three Czech WtE plants. It was found that the BA contained 9.2-22.7% glass, 1.8-5.1% ceramics and porcelain, 0.2-1.0% unburnt organic matter, 10.2-16.3% magnetic fraction, 6.1-11.0% Fe scrap, and 1.3-2.8% NFe metals (in dry matter). The contents of individual components were also studied with respect to the BA granulometry and character of the WtE waste collection area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hazard remediation and recycling of tea industry and paper mill bottom ash through vermiconversion.

    Science.gov (United States)

    Goswami, Linee; Patel, Arbind Kumar; Dutta, Ganesh; Bhattacharyya, Pradip; Gogoi, Nirmali; Bhattacharya, Satya Sundar

    2013-07-01

    Considerable amount of bottom ash (BA) is produced by tea and paper factories in Northeast India. This significantly deteriorates soil and surface water quality through rapid acidification, releasing sulfur compounds and heavy metals. The present investigation endeavoured to convert this waste to organic manure through vermicomposting by Eisenia fetida. Substantial increment in bioavailability of N, P, K, Fe, Mn and Zn along with remarkable decline in toxic metal like Cr due to vermicomposting was noteworthy. Furthermore, vermicomposted mixtures of Tea Factory BA (TFBA) or Paper Mill BA (PMBA) with organic matter (OM) attributed profuse pod yield of French Bean (Phaseolus vulgaris L.). Hence, bioconversion of TFBA and PMBA is highly feasible through vermicomposting and the converted materials can be utilized as potential organic fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals

    International Nuclear Information System (INIS)

    Boca Santa, Rozineide A. Antunes; Soares, Cíntia; Riella, Humberto Gracher

    2016-01-01

    Highlights: • Geopolymers from bottom ash and metakaolin (BA/M). • Solidification/immobilization (S/I) waste of heavy metals. • Activators: Sodium hydroxide (NaOH), potassium hydroxide (KOH) and sodium silicate (Na 2 SiO 3 ). - Abstract: Geopolymers are produced using alkali-activated aluminosilicates, either as waste or natural material obtained from various sources. This study synthesized geopolymers from bottom ash and metakaolin (BA/M) in a 2:1 wt ratio to test the solidification/immobilization (S/I) properties of heavy metals in geopolymer matrices, since there is very little research using BA in this type of matrices. Therefore, a decision was made to use more than 65% of BA in geopolymer synthesis with and without the addition of heavy metals. The S/I tests with metals used 10, 15 and 30 ml of a waste solution after pickling of printed circuit boards containing metals, including Pb, Cr, Cu, Fe, Sn, As and Ni, in different proportions. As alkali activator, the NaOH and KOH were used in the concentrations of 8 and 12 M in the composition of Na 2 SiO 3 in 1:2 vol ratios. To test S/I efficiency, tests were conducted to obtain the leached and solubilized extract. The analysis was carried out through X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and compressive strength tests. The geopolymer showed a high degree of S/I of the metals; in some samples, the results reached nearly 100%.

  4. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  5. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Boca Santa, Rozineide A. Antunes, E-mail: roosebs@gmail.com; Soares, Cíntia; Riella, Humberto Gracher

    2016-11-15

    Highlights: • Geopolymers from bottom ash and metakaolin (BA/M). • Solidification/immobilization (S/I) waste of heavy metals. • Activators: Sodium hydroxide (NaOH), potassium hydroxide (KOH) and sodium silicate (Na{sub 2}SiO{sub 3}). - Abstract: Geopolymers are produced using alkali-activated aluminosilicates, either as waste or natural material obtained from various sources. This study synthesized geopolymers from bottom ash and metakaolin (BA/M) in a 2:1 wt ratio to test the solidification/immobilization (S/I) properties of heavy metals in geopolymer matrices, since there is very little research using BA in this type of matrices. Therefore, a decision was made to use more than 65% of BA in geopolymer synthesis with and without the addition of heavy metals. The S/I tests with metals used 10, 15 and 30 ml of a waste solution after pickling of printed circuit boards containing metals, including Pb, Cr, Cu, Fe, Sn, As and Ni, in different proportions. As alkali activator, the NaOH and KOH were used in the concentrations of 8 and 12 M in the composition of Na{sub 2}SiO{sub 3} in 1:2 vol ratios. To test S/I efficiency, tests were conducted to obtain the leached and solubilized extract. The analysis was carried out through X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and compressive strength tests. The geopolymer showed a high degree of S/I of the metals; in some samples, the results reached nearly 100%.

  6. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes.

    Science.gov (United States)

    Xu, Hui; Li, Qin; Shen, Lifeng; Wang, Wei; Zhai, Jianping

    2010-03-15

    Circulating fluidized bed combustion (CFBC) bottom ashes (CBAs) are a class of calcined aluminosilicate wastes with a unique thermal history. While landfill disposal of hazardous element-containing CBAs poses serious challenge, these wastes have long been neglected as source materials for geopolymer production. In this paper, geopolymerization of ground CBAs was investigated. Reactivity of the CBAs was analyzed by respective dissolution of the ashes in 2, 5, and 10N NaOH and KOH solutions. Geopolymer pastes were prepared by activating the CBAs by a series of alkalis hydroxides and/or sodium silicate solutions. Samples were cured at 40 degrees C for 168 h, giving a highest compressive strength of 52.9 MPa. Of the optimal specimen, characterization was conducted by TG-DTA, SEM, XRD, as well as FTIR analyses, and thermal stability was determined in terms of compressive strength evolution via exposure to 800 or 1050 degrees C followed by three cooling regimes, i.e. cooling in air, cooling in the furnace, and immerging in water. The results show that CBAs could serve as favorable source materials for thermostable geopolymers, which hold a promise to replace ordinary Portland cement (OPC) and organic polymers in a variety of applications, especially where fire hazards are of great concern. (c) 2009 Elsevier B.V. All rights reserved.

  7. Recyclability of bottom ash mixed with dredged soils according to the transportation distance and mixing ratio thro