WorldWideScience

Sample records for incident spectral solar

  1. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  2. Spectrally-engineered solar thermal photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  3. Solar Spectral Irradiance and Climate

    Science.gov (United States)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  4. Data on incident solar energy

    Science.gov (United States)

    Thekaekara, M. P.

    1974-01-01

    Instrumentation for solar irradiance monitoring, and radiation scales are discussed in a survey of incident solar energy data. The absolute accuracy and intrinsic reliability of the values of the solar constant and zero air mass solar spectrum proposed by the Institute of Environmental Sciences as an ASTM standard are evaluated. Extraterrestrial observations are used for deriving solar irradiance data at ground level for widely varying atmospheric parameters, with special reference to air pollution. The effects of diffuse sky radiance and those of varying slopes of the solar energy collecting surface are examined. Average values of solar energy available at different locations in the United States are included.

  5. SSBUV middle ultraviolet solar spectral irradiance measurements

    Science.gov (United States)

    Cebula, Richard P.; Hilsenrath, Ernest

    1994-01-01

    The Shuttle Solar Backscatter Ultraviolet (SSBUV) instrument performs multiple solar spectral irradiance measurements in the wavelength region 200 to 400 nm at 1.1 nm resolution during yearly Space Shuttle flights. Solar spectral irradiance observations from the first three SSBUV Shuttle flights, October 1989, October 1990, and August 1991, are compared with one another and with solar measurements made by the NOAA-11 SBUV/2 instrument. The repeated SSBUV solar spectral observations, which agree to within plus or minus 1-2 percent from 200 to 400 nm, are valuable not only as a means of validating and calibrating the satellite-based solar irradiance measurements, but also as a distinct set of stand-alone solar measurements for monitoring long-term changes in the solar spectral irradiance, which are important for ozone photochemistry.

  6. Spectrally selective solar energy materials

    International Nuclear Information System (INIS)

    Sikkens, M.

    1981-01-01

    The performance and properties of spectrally selective materials are considered and, in particular, the selective absorption of solar radiation by free electrons is discussed, both in a homogeneous material in which these electrons are strongly scattered, and in a composite material consisting of small metal particles in a dielectric host. Such materials can be used as selective absorbers if they are deposited as a thin film onto a metal substrate, the latter providing the required low emittance. This type of selective surfaces is produced by reactive sputtering of Ni in an Ar/CH 4 gas mixture. This method can yield Ni films with a considerable carbon concentration. The carbon concentration can be varied over a wide range by adjusting the partial methane pressure. The associated experimental techniques are discussed. As the carbon concentration increases, the structure of the films changes from a Ni phase in which carbon is dissolved, via an intermediate Ni 3 C phase into an amorphous carbon phase with a high electrical resistivity in which small nickel particles are embedded. Both mechanisms of selective absorption by free electrons are observed and are found to be well described by rather simple models. The best selectivity is obtained at high carbon concentrations where the films consist of nickel particles in carbon. Depending on the film thickness and the substrate material, the solar absorptance varies between 0.78 and 0.90, while the thermal emittance varies between 0.025 and 0.04. Since the films are found to be stable at 400 0 C in vacuum, it appears that these films are good candidates for application in photothermal solar energy conversion at temperature levels around 200 0 C and higher. (Auth.)

  7. Spectral converters and luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Scudo, Petra F.; Abbondanza, Luigi; Fusco, Roberto; Caccianotti, Luciano [Eni S.p.A, Research Center for Non-Conventional Energies - Istituto ENI Donegani, Via G.Fauser 4, 28100 Novara (Italy)

    2010-07-15

    In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of luminescent solar concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and provide specific examples of application of this principle to the development of solar concentration devices. (author)

  8. Solar spectral irradiance changes during cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  9. Outdoor spectral solar radiation variations and their relationship to photovoltaic device performance

    International Nuclear Information System (INIS)

    Riordan, C.; Hulstrom, R.

    1990-01-01

    Every photovoltaic device (PV cell or module) has a characteristic response to light at different wavelengths (blue, green, red, near-infrared) called the spectral response of the device. When a PV device is operating outdoors in natural sunlight, it is responding to incident light of different wavelengths from the sun, or spectral solar radiation. To optimize the response of a PC device to outdoor conditions and to understand its performance, one must characterize the spectral content of the incident solar radiation. In this paper, the authors describe the nature of spectral solar radiation, how and why it varies, and how this variation impacts on the performance of a PV device. The authors identify techniques and data that are available or needed to study the sensitivity of PV device performance to variations in spectral solar radiation and conclude with current areas of investigation

  10. Incident spectral irradiance in the Arctic Basin during the summer and fall

    Science.gov (United States)

    Grenfell, Thomas C.; Perovich, Donald K.

    2008-06-01

    Calibrated values of incident spectral irradiance are reported from the Healy Oden Transarctic Experiment during August and September 2005. Spectra were obtained for a wide range of solar zenith angles, cloud conditions, and surface types to provide basic data for regional shortwave radiative energy balance calculations as well as climate model parameterization and validation. Supervised principal component analysis on the spectral continuum showed that three principal components explain over 99% of the variance resulting from darkening across the solar spectrum with increasing cloud cover by volume scattering, from stronger attenuation in the solar infrared relative to visible wavelengths by H2O, and from Rayleigh scattering. Comparison of the observations with the atmospheric radiation model SBDART showed that good agreement was obtained varying only the cloud optical depth. Applying the model, we showed how the surface albedo affects incident spectral irradiance under clear as well as cloudy skies, and we obtained a quantitative estimate of the visual effects of "water sky" and "ice blink." We also determined the spectral albedo of the atmosphere for a dense arctic stratus cloud deck decoupled from the influence of the underlying surface. Incident spectral irradiances were integrated numerically and compared with calibrated pyranometer observations. Agreement was within 5% for cases where the cloud transparency and incident irradiance did not fluctuate strongly over the 10-min pyranometer recording intervals. A new set of values for total albedo for clear versus cloudy conditions at high and low Sun angles is presented for six prominent arctic surface types.

  11. Application of digital micromirror devices for spectral-response characterization of solar cells and photovoltaics

    Science.gov (United States)

    Fong, Alexandre Y.

    2010-02-01

    A key parameter in evaluating the performance of photovoltaic (PV) solar cells is characterization of electrical response to various incident source spectra. Conventional techniques utilize monochromators that emit single band-passes across a spectral region of interest. Since many solar cells respond differently at different broadband source light levels, a white bias light source that raises the overall light level to simulate the sun's broadband emission is typically introduced. However, such sources cannot render realistic solar continua. We present some initial results demonstrating how a spectrally-dispersed broadband source modulated with Texas Instruments' Digital Light Projection (DLP®) technology can be used to more faithfully synthesize solar spectra for this application.

  12. Solar spectral irradiance variability in cycle 24: observations and models

    Science.gov (United States)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  13. Solar spectral irradiance variability in cycle 24: observations and models

    Directory of Open Access Journals (Sweden)

    Marchenko Sergey V.

    2016-01-01

    Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.

  14. Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting

    OpenAIRE

    Cao, Feng; Tang, Lu; Sun, Tianyi; Ren, Zhifeng; Huang, Yi; Boriskina, Svetlana V; Chen, Gang

    2016-01-01

    The promising quad-band solar spectral splitter incorporates the properties of the optical filter and the spectrally selective solar thermal absorber can direct PV band to PV modules and absorb thermal band energy for thermal process with low thermal losses. It provides a new strategy for spectral splitting and offers potential ways for hybrid PVT system design.

  15. Calculation of the Performance of Solar Cells With Spectral Down Shifters Using Realistic Outdoor Solar Spectra

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2007-01-01

    Spectral down converters and shifters have been proposed as a good means to enhance the efficiency of underlying solar cells. In this paper, we focus on the simulation of the outdoor performance of solar cells with spectral down shifters, i.e., multicrystalline silicon solar cells with semiconductor

  16. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  17. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  18. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  19. Simulating performance of solar cells with spectral downshifting layers

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2008-01-01

    In order to estimate the performance of solar cells with downshifters under realistic irradiation conditions we used spectral distributions as they may be found outdoors. The spectral distributions were generated on a minutely basis by means of the spectrum simulation model SEDES2, using minutely

  20. Luminescent Spectral Conversion to Improve the Performance of Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Hosseini, Zahra; Taghavinia, Nima; Wei-Guang Diau, Eric

    2017-12-06

    Relative to the broadband solar spectrum, a narrow range of spectral absorption of photovoltaic (PV) devices is considered an important determinant that the efficiency of light harvesting of these devices is less than unity. Having the narrowest spectral response to solar radiation among all PV devices, dye-sensitized solar cells (DSSCs) suffer severely from this loss. Luminescent spectral conversion provides a mechanism to manipulate and to adapt the incident solar spectrum by converting, through photoluminescence, the energies of solar photons into those that are more effectively captured by a PV device. This mechanism is particularly helpful for DSSCs because there is much flexibility in both the choice of the light-harvesting materials and the architecture of the DSSC. Here we review and discuss recent advances in the field of luminescent spectral conversion for DSSCs. The focus is on the architectural design of DSSCs, and the complications, advantages and new functionalities offered by each of their configurations are discussed. The loss mechanisms are examined and important parameters governing the spectral conversion mechanism of a DSSC are introduced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solar cell angle of incidence corrections

    Science.gov (United States)

    Burger, Dale R.; Mueller, Robert L.

    1995-01-01

    Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees

  2. UARS Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Level 3BS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected solar...

  3. Modelling rotational and cyclical spectral solar irradiance variations

    Science.gov (United States)

    Unruh, Yvonne

    Solar irradiance changes are highly wavelength dependent: solar-cycle variations in the UV can be on the order of tens of percent, while changes in the visible are typically only of the order of one or two permille. With the launch of a number of instruments to measure spectral solar irradiance, we are now for a first time in a good position to explore the changing solar irradiance over a large range of wavelengths and to test our irradiance models as well as some of their underlying assumptions. I will introduce some of the current modelling approaches and present model-data comparisons, using the SATIRE irradiance model and SORCE/SIM measurements as an example. I will conclude by highlighting a number of outstanding questions regarding the modelling of spectral irradiance and current approaches to address these.

  4. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  5. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  6. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters.

    Science.gov (United States)

    Huang, Xiaoyong; Han, Sanyang; Huang, Wei; Liu, Xiaogang

    2013-01-07

    Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.

  7. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    Science.gov (United States)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload

  8. Solar Rotational Modulations of Spectral Irradiance and Correlations with the Variability of Total Solar Irradiance

    Science.gov (United States)

    Lee, Jae N.; Cahalan, Robert F.; Wu, Dong L.

    2016-01-01

    Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI) and compare them with the corresponding changes of total solar irradiance (TSI). Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003-2013. Methods: The SORCE (Solar Radiation and Climate Experiment) and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics)/SEE (Solar EUV Experiment) measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition) method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS) and near infrared (NIR) are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV) exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  9. Solar rotational modulations of spectral irradiance and correlations with the variability of total solar irradiance

    Directory of Open Access Journals (Sweden)

    Lee Jae N.

    2016-01-01

    Full Text Available Aims: We characterize the solar rotational modulations of spectral solar irradiance (SSI and compare them with the corresponding changes of total solar irradiance (TSI. Solar rotational modulations of TSI and SSI at wavelengths between 120 and 1600 nm are identified over one hundred Carrington rotational cycles during 2003–2013. Methods: The SORCE (Solar Radiation and Climate Experiment and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/SEE (Solar EUV Experiment measured and SATIRE-S modeled solar irradiances are analyzed using the EEMD (Ensemble Empirical Mode Decomposition method to determine the phase and amplitude of 27-day solar rotational variation in TSI and SSI. Results: The mode decomposition clearly identifies 27-day solar rotational variations in SSI between 120 and 1600 nm, and there is a robust wavelength dependence in the phase of the rotational mode relative to that of TSI. The rotational modes of visible (VIS and near infrared (NIR are in phase with the mode of TSI, but the phase of the rotational mode of ultraviolet (UV exhibits differences from that of TSI. While it is questionable that the VIS to NIR portion of the solar spectrum has yet been observed with sufficient accuracy and precision to determine the 11-year solar cycle variations, the temporal variations over one hundred cycles of 27-day solar rotation, independent of the two solar cycles in which they are embedded, show distinct solar rotational modulations at each wavelength.

  10. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  11. NESSY: NLTE spectral synthesis code for solar and stellar atmospheres

    Science.gov (United States)

    Tagirov, R. V.; Shapiro, A. I.; Schmutz, W.

    2017-07-01

    Context. Physics-based models of solar and stellar magnetically-driven variability are based on the calculation of synthetic spectra for various surface magnetic features as well as quiet regions, which are a function of their position on the solar or stellar disc. Such calculations are performed with radiative transfer codes tailored for modeling broad spectral intervals. Aims: We aim to present the NLTE Spectral SYnthesis code (NESSY), which can be used for modeling of the entire (UV-visible-IR and radio) spectra of solar and stellar magnetic features and quiet regions. Methods: NESSY is a further development of the COde for Solar Irradiance (COSI), in which we have implemented an accelerated Λ-iteration (ALI) scheme for co-moving frame (CMF) line radiation transfer based on a new estimate of the local approximate Λ-operator. Results: We show that the new version of the code performs substantially faster than the previous one and yields a reliable calculation of the entire solar spectrum. This calculation is in a good agreement with the available observations.

  12. New observation strategies for the solar UV spectral irradiance

    Directory of Open Access Journals (Sweden)

    Kretzschmar Matthieu

    2012-09-01

    Full Text Available Many applications in space weather and in space situational awareness require continuous solar spectral irradiance measurements in the UV, and to a lesser degree in the visible band. Most space-borne solar radiometers are made out of two different parts: (i a front filter that selects the passband and (ii a detector that is usually based on silicon technology. Both are prone to degradation, which may be caused either by the degradation of the filter coating due to local deposition or to structural changes, or by the degradation of the silicon detector by solar radiative and energetic particle fluxes. In this study, we provide a theoretical analysis of the filter degradation that is caused by structural changes such as pinholes; contamination-induced degradation will not be considered. We then propose a new instrumental concept, which is expected to overcome, at least partially, these problems. We show how most of the solar UV spectrum can be reconstructed from the measurement of only five spectral bands. This instrumental concept outperforms present spectrometers in terms of degradation. This new concept in addition overcomes the need for silicon-based detectors, which are replaced by wide band gap material detectors. Front filters, which can contribute to in-flight degradation, therefore are not required, except for the extreme-UV (EUV range. With a small weight and a low telemetry, this concept may also have applications in solar physics, in astrophysics and in planetology.

  13. Prostate cancer incidence in Australia correlates inversely with solar radiation.

    Science.gov (United States)

    Loke, Tim W; Seyfi, Doruk; Sevfi, Doruk; Khadra, Mohamed

    2011-11-01

    What's known on the subject? and What does the study add? Increased sun exposure and blood levels of vitamin D have been postulated to be protective against prostate cancer. This is controversial. We investigated the relationship between prostate cancer incidence and solar radiation in non-urban Australia, and found a lower incidence in regions receiving more sunlight. In landmark ecological studies, prostate cancer mortality rates have been shown to be inversely related to ultraviolet radiation exposure. Investigators have hypothesised that ultraviolet radiation acts by increasing production of vitamin D, which inhibits prostate cancer cells in vitro. However, analyses of serum levels of vitamin D in men with prostate cancer have failed to support this hypothesis. This study has found an inverse correlation between solar radiation and prostate cancer incidence in Australia. Our population (previously unstudied) represents the third group to exhibit this correlation. Significantly, the demographics and climate of Australia differ markedly from those of previous studies conducted on men in the United Kingdom and the United States. • To ascertain if prostate cancer incidence rates correlate with solar radiation among non-urban populations of men in Australia. • Local government areas from each state and territory were selected using explicit criteria. Urban areas were excluded from analysis. • For each local government area, prostate cancer incidence rates and averaged long-term solar radiation were obtained. • The strength of the association between prostate cancer incidence and solar radiation was determined. • Among 70 local government areas of Australia, age-standardized prostate cancer incidence rates for the period 1998-2007 correlated inversely with daily solar radiation averaged over the last two decades. •  There exists an association between less solar radiation and higher prostate cancer incidence in Australia. © 2011 THE AUTHORS. BJU

  14. Spectral Trends of Solar Bursts at Sub-THz Frequencies

    Science.gov (United States)

    Fernandes, L. O. T.; Kaufmann, P.; Correia, E.; Giménez de Castro, C. G.; Kudaka, A. S.; Marun, A.; Pereyra, P.; Raulin, J.-P.; Valio, A. B. M.

    2017-01-01

    Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012 - 2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5 - 40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.

  15. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    Science.gov (United States)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.

  16. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    Science.gov (United States)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  17. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  18. Spectral broadening of planetary radar signals by the solar wind

    International Nuclear Information System (INIS)

    Harmon, J.K.; Coles, W.A.

    1983-01-01

    The microturbulence spectrum of the solar wind is estimated using the spectral broadening of planetary radar signals. Observations were made with the two radars (12.6 cm and 70 cm) at Arecibo Observatory during the 1979 and 1981 superior conjunctions of Venus. These observations, which span the solar distance range of 5.4 to 25.5 R/sub sun/, are the first of their type to be reported. The data are consistent with earlier observations where comparisons can be made. The flattening of the high-frequency portion of the spectrum near the Sun reported by Woo and Armstrong is confirmed. In one case clear evidence for an inner scale in the vicinity of 2 km is found. Two transients, 1979 August 15 and 1981 April 24-25, with rather different characteristics were observed

  19. Solar spectral irradiance and summary outputs using excel.

    Science.gov (United States)

    Diffey, Brian

    2015-01-01

    The development of an Excel spreadsheet is described that calculates solar spectral irradiance between 290-3000 nm on an unshaded, horizontal surface under a cloudless sky at sea level, together with summary outputs such as global UV index, illuminance and percentage of energy in different wavebands. A deliberate goal of the project was to adopt the principle of Ockham's razor and to develop a model that is as simple as it can be commensurate with delivering results of adequate accuracy. Consequently, just four inputs are required-geographical latitude, month, day of month and time of day-resulting in a spreadsheet that is easily usable by anyone with an interest in sunlight and solar power irrespective of their background. The accuracy of the calculated data is sufficient for many applications where knowledge of the ultraviolet, visible and infrared levels in sunlight is of interest. © 2015 The American Society of Photobiology.

  20. UARS Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Level 3BS V022 (UARSU3BS) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected solar...

  1. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  2. Flash spectral imaging for optical metrology of solar cells

    Science.gov (United States)

    Ho, Jian Wei; Koh, Jessica Li Jian; Wong, Johnson Kai Chi; Raj, Samuel; Janssen, Eric; Aberle, Armin G.

    2017-08-01

    Flash spectral imaging of full area (156 mm by 156 mm) silicon solar wafers and cells is realized in a setup integrating pseudo-monochromatic LEDs over the wavelength range of 370 to 1050 nm and a high-resolution monochrome camera. The captured information allows the computation of sample reflectance as a function of wavelength and coordinates, thereby constituting a spectral reflectance map. The derived values match that obtained from monochromator-based measurements. Optical inspection is then based on the characteristic reflectance of surface features at optimally contrasting wavelengths. The technique reveals otherwise hidden stains and anti-reflection coating (ARC) non-uniformities, and enable more selective visualization of grains in multicrystalline Si wafers. Optical contrast enhancement of metallization significantly improves accuracy of metal detection. The high effective resolution of the monochrome camera also allows fine metallization patterns to be measured. The rapid succession of flash-and-image-capture at each wavelength makes the reported optical metrology technique amenable in photovoltaic manufacturing for solar wafers/cells sorting, monitoring and optimization of processes.

  3. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  4. SORCE XPS Level 3 Solar Spectral Irradiance Daily Means V010

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) Daily Data Product SOR3XPSD contains solar XUV irradiances in the 0.1 to 27 nm range, as well...

  5. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators

    Science.gov (United States)

    Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten

    2017-08-01

    Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.

  6. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    Science.gov (United States)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  7. Continuing the Total and Spectral Solar Irradiance Climate Data Record

    Science.gov (United States)

    Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.

    2017-12-01

    Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the

  8. Solar Spectral Irradiance Variations in 240 - 1600 nm During the Recent Solar Cycles 21 - 23

    Science.gov (United States)

    Pagaran, J.; Weber, M.; Deland, M. T.; Floyd, L. E.; Burrows, J. P.

    2011-08-01

    Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 - 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data

  9. Designing spectrally-selective mirrors for use in luminescent solar concentrators

    Science.gov (United States)

    Connell, Ryan; Pinnell, Christian; Ferry, Vivian E.

    2018-02-01

    Spectrally-selective mirrors improve the performance of luminescent solar concentrators (LSCs) by trapping emitted light within the waveguide. However, this beneficial property comes with a spectral restriction on incident sunlight that enters the concentrator. Especially for luminophores with overlap between the absorption and emission bands, design of the spectrally-selective mirrors requires a tradeoff between transmission of incident sunlight and trapping of luminescent photons. In this paper, we explore how the design of a spectrally-selective top mirror changes for LSCs containing luminophores of varying loading fractions, quantum yield, and overlap between the absorption and emission spectra, as well as LSCs with different back reflectors and lateral sizes. Using CdSe/CdS core/shell nanocrystals as the luminophore, we find that specific conditions favor different mirror designs. Mirrors designed to trap luminescent light have higher predicted performance than mirrors designed for sunlight transmission when the luminophore quantum yield is greater than 0.85, the luminophore optical density is less than 1.4 at 450 nm, the lateral size of the concentrator is greater than 10 cm, or there is low overlap between the luminophore absorption and emission. Mirrors optimized for either transmission or luminescence trapping have comparable performance for quantum yields less than 0.85, and the other conditions favor mirrors optimized for light transmission. For a LSC with unity quantum yield, a lateral size of 1 m × 1 m, and a mirror designed to trap luminescent light, a concentration factor of 37× is possible, as compared to 10× for a LSC with an open top. This research indicates the importance of tailoring the design of the spectrally-selective top mirror to the properties of the luminophore and LSC.

  10. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    Science.gov (United States)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  11. Solar ultraviolet irradiance and cancer incidence and mortality.

    Science.gov (United States)

    Grant, William B

    2014-01-01

    The solar ultraviolet-B (UVB)/vitamin D/cancer hypothesis was proposed by the brothers Cedric and Frank Garland in 1980. In 2002, the list was increased to 15 types of cancer using data in the 1999 version of the atlas of cancer mortality rates in the United States. Ecological studies of cancer incidence and/or mortality rates with respect to indices of solar UVB doses have also been reported for Australia, China, France, Japan, and Spain with largely similar findings. In addition, several studies using nonmelanoma skin cancer as the index of solar UVB dose have found reduced internal cancer incidence and/or mortality rates, especially in sunny countries. A study of cancer incidence with respect to 54 categories of occupation in five Nordic countries, using lip cancer less lung cancer as the UVB index, found this index inversely correlated with 14 types of internal cancers for males and four for females. Observational studies with respect to UVB doses and serum 25-hydroxyvitamin D [25(OH)D] concentrations also support the hypothesis. Hill's criteria for causality in a biological system to assess whether solar UVB and vitamin D can be considered causal in reducing risk of cancer. The primary criteria for this analysis include strength of association, consistent findings in different populations, biological gradient, plausibility (e.g., mechanisms), and experimental verification (e.g., randomized controlled trials). The totality of evidence is judged to satisfy the criteria very well for breast and colorectal cancer, and moderately well for several other types of cancer.

  12. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  13. Incidence of Debris Discs Around FGK Stars in the Solar Neighbourhood

    Science.gov (United States)

    Montesinos, B.; Eiroa, C.; Krivov, A. V.; Marshall, J. P.; Pilbratt, G. L.; Liseau, R.; Mora, A.; Maldonado, J.; Wolf, S.; Ertel, S.; hide

    2016-01-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighborhood. Methods. The full sample of 177 FGK stars with d approx. less than 20 pc proposed for the DUst around NEarby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 micrometers were obtained, and were complemented in some cases with data at 70 micrometers and at 250, 350, and 500 micrometer SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analyzed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d approx. less than 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26(+0.21/-0.14) (6 objects with excesses out of 23 F stars), 0.21(+0.17/-0.11) (7 out of 33 G stars), and 0.20(+0.14/-0.09) (10 out of 49 K stars); the fraction for all three spectral types together is 0.22(+0.08/-0.07) (23 out of 105 stars).The uncertainties correspond to a 95 confidence level. The medians of the upper limits of L(sub dust)/L(sub *) for each spectral type are 7.8 x 10(exp -7) (F), 1.4 x 10(exp -6) (G), and 2.2 x 10(exp -6) (K); the lowest values are around 4.0 x 10(exp -7). The incidence of debris

  14. Discrete Spectral Local Measurement Method for Testing Solar Concentrators

    Directory of Open Access Journals (Sweden)

    Huifu Zhao

    2012-01-01

    Full Text Available In order to compensate for the inconvenience and instability of outdoor photovoltaic concentration test system which are caused by the weather changes, we design an indoor concentration test system with a large caliber and a high parallelism, and then verify its feasibility and scientificity. Furthermore, we propose a new concentration test method: the discrete spectral local measurement method. A two-stage Fresnel concentration system is selected as the test object. The indoor and the outdoor concentration experiments are compared. The results show that the outdoor concentration efficiency of the two-stage Fresnel concentration system is 85.56%, while the indoor is 85.45%. The two experimental results are so close that we can verify the scientificity and feasibility of the indoor concentration test system. The light divergence angle of the indoor concentration test system is 0.267° which also matches with sunlight divergence angle. The indoor concentration test system with large diameter (145 mm, simple structure, and low cost will have broad applications in solar concentration field.

  15. Higher values of spectral response, absorption coefficient and external quantum efficiency of solar cell in the form of pyramids

    Science.gov (United States)

    Hamel, A.

    2017-05-01

    This paper presents a study on spectral response, absorption coefficient and external quantum efficiency of solar cell in the form of pyramid [1, 2]. We investigate to what extent and under what conditions we want to take advantage of ray incidence Seven times [3, 4]. It is found that these analyses can be used to determine the optimal surface texture which provides the best light trapping for solar cells in terms of the total internal reflection occurring in the high-index medium at incidence angles larger than the nominal critical angle [3-9]. One of the main contributions of this paper is the analysis and quantification of the influence of the opening between the heads of the two closest pyramids in textured surface for solar cells and its application on the photovoltaic parameters. In this model we show that the material can have seven successive incident ray absorptions instead of five currently, where we changed the direction of the reflected ray, by identifying and install the angle between the two neighbouring pyramids, the incidence angle, the opening between the heads of the two closest pyramids and their height. Thus, with an angle between the two neighbouring pyramid fixed at 12° and for angle of incidence fixed at 84°. For these values of the angle between the two neighbouring pyramids and incidence angle, the opening between the heads of the two closest pyramids fixed at 2.10 μm for a pyramid height of 10 μm. This leads to the largest possible increase in optical efficiency, such as spectral response, Absorption Coefficient and External Quantum Efficiency. The results are in good agreement with the available literature.

  16. Spectral signature of ultraviolet solar irradiance in Zacatecas

    Energy Technology Data Exchange (ETDEWEB)

    Pinedo V, J. L; Mireles G, F; Rios M, C; Quirino T, L. L; Davila R, J. I [Universidad Autonoma de Zacatecas, Zacatecas, Zacatecas (Mexico)

    2006-10-15

    This study presents an analysis of the global ultraviolet spectral irradiance (290-400 nm) registered in Zacatecas, a city near the Tropic of Cancer, located at 2500 m above sea level, latitude of 22 degrees N and longitude of 102 degrees W. The spectra have been measured using a Bentham radiometer with a 0.5 nm step in wavelength. The measurements show relatively high levels of ultraviolet irradiance (UV), which may be characteristic of areas close to the Tropic of Cancer. Faced with an increase of the incidence of skin cancer among the population of Zacatecas, these measurements highlight that a damage prevention plan is required. [Spanish] En este trabajo se presenta un analisis de la radiacion espectral global ultravioleta (290-400 nm) registrada en Zacatecas, una ciudad vecina al tropico de cancer, situada a 2500 m sobre el nivel del mar, latitud de 22 grados N y longitud de 102 grados O. Los espectros correspondientes han sido medidos mediante un espectroradiometro Bentham con un paso de 0.5 nm de longitud de onda. Las mediciones muestran niveles de radiacion ultravioleta (UV) relativamente elevados, que pueden ser caracteristicos de las zonas vecinas al tropico de cancer. Frente al aumento de incidencia de cancer en la piel en la poblacion del estado de Zacatecas, estas mediciones ponen en relieve la necesidad de formular un plan preventivo de danos.

  17. Solar Spectral Proxy Irradiance from GOES (SSPRING: a model for solar EUV irradiance

    Directory of Open Access Journals (Sweden)

    Suess Katherine

    2016-01-01

    Full Text Available Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED and Solar Dynamics Observatory (SDO missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index from the SOlar Radiation and Climate Experiment (SORCE as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1–50 nm range, and between 74% and 95% for the 50–105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM. These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  18. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V013

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  19. NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Climate Data Record (CDR) contains solar spectral irradiance (SSI) as a function of time and wavelength created with the Naval Research Laboratory model for...

  20. SAFARI 2000 Solar Spectral Flux Radiometer Data, Southern Africa, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Solar Spectral Flux Radiometer (SSFR) was deployed on the University of Washington CV-580 during the dry season component of the Southern African...

  1. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V020

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  2. SORCE SIM Level 3 Solar Spectral Irradiance Daily Means V022

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SIM Solar Spectral Irradiance (SSI) data product SOR3SIMD is constructed using measurements from the SIM instruments, which are combined into merged daily...

  3. SORCE SOLSTICE MUV Level 3 Solar Spectral Irradiance Daily Means V012

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Mid-UV Solar Spectral Irradiance (SSI) data product SOR3SOLMUVD is constructed using measurements from the SOLSTICE MUV instrument, which are...

  4. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V012

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  5. SORCE SOLSTICE MUV Level 3 Solar Spectral Irradiance Daily Means V013

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Mid-UV Solar Spectral Irradiance (SSI) data product SOR3SOLMUVD is constructed using measurements from the SOLSTICE MUV instrument, which are...

  6. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V014

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  7. SAFARI 2000 Solar Spectral Flux Radiometer Data, Southern Africa, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar Spectral Flux Radiometer (SSFR) was deployed on the University of Washington CV-580 during the dry season component of the Southern African Regional...

  8. Miroirs multicouches C/SI a incidence normale pour la region spectrale 25-40 nanometres

    Science.gov (United States)

    Grigonis, Marius

    Nous avons propose la nouvelle combinaison de materiaux, C/Si, pour la fabrication de miroirs multicouches a incidence normale dans la region spectrale 25-40 nm. Les resultats experimentaux montrent que cette combinaison possede une reflectivite d'environ ~25% dans la region spectrale 25-33 nm et une reflectivite d'environ ~23% dans la region spectrale 33-40 nm. Ces valeurs de reflectivite sont les plus grandes obtenues jusqu'a maintenant dans la region spectrale 25-40 nm. Les miroirs multicouches ont ete par la suite caracterises par microscopie electronique a transmission, par diverses techniques de diffraction des rayons X et par spectroscopies d'electrons AES et ESCA. La resistance des miroirs aux temperatures elevees a ete egalement etudiee. Les resultats fournis par les methodes de caracterisation indiquent que cette combinaison possede des caracteristiques tres prometteuses pour son application comme miroir pour les rayons X mous.

  9. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  10. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  11. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  12. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  13. SORCE XPS Level 3 Solar Spectral Irradiance 6-Hour Means V011 (SOR3XPS6) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) 6-Hour Data Product SOR3XPS6 contains solar extreme ultraviolet irradiances in the 0.1 to 27 nm...

  14. SORCE XPS Level 3 Solar Spectral Irradiance Daily Means V011 (SOR3XPSD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE XUV Photometer System (XPS) Solar Spectral Irradiance (SSI) Daily Data Product SOR3XPSD contains solar extreme ultraviolet irradiances in the 0.1 to 27 nm...

  15. Solar Spectral Irradiance Reconstruction over 9 Millennia from a Composite 14C and 10Be Series

    Science.gov (United States)

    Wu, C. J.; Usoskin, I. G.; Krivova, N.; Kovaltsov, G.; Solanki, S. K.

    2017-12-01

    The Sun is the main external energy source to the Earth and thus the knowledge of solar variability on different time scales is important for understanding the solar influence on the terrestrial atmosphere and climate. The overall energy input and its spectral distribution are described by the total (TSI) and spectral (SSI) solar irradiance, respectively. Direct measurements of the solar irradiance provide information on solar variability on the decadal and shorter time scales, while the sunspot number record covers four centuries. On yet longer time scales only indirect proxies can be used, such as the concentrations of the cosmogenic isotopes 10Be and 14C in terrestrial archives. These isotopes are produced in the terrestrial atmosphere by impinging cosmic rays, whose flux is modulated by solar activity. Therefore the isotope data retrieved from various natural archives around the globe show a very high degree of similarity reflecting changes in the solar activity. Nevertheless, significant short-term deviations can be observed due to the different geochemical production processes and local climatic conditions. We will present the newest TSI/SSI reconstruction over the last 9000 years based on a new consistent composite multi-isotope proxy series. The solar irradiance reconstruction reveals the global and robust pattern of solar variability in the past.

  16. The temperature dependence of the spectral and efficiency behavior of Si solar cell under low concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shaltout, M.A. Mosalam; Rahoma, U.A.; Sabry, M. [National Research Inst. of Astronomy and Geophysics, Cairo (Egypt); El-Nicklawy, M.M.; Hassan, A.F. [Helwan Univ., Physics Dept., Cairo (Egypt)

    2000-12-01

    Relative spectral response of monocrystalline silicon solar cell is measured at different cell temperatures. At room temperature, the spectral response is found to have its maximum peak in the infrared (IR) range (800-1100 nm). By increasing the cell temperature, modification in the shape of the spectral response is observed and a shift of the peak towards the IR part of the spectrum is found. This behavior is of special importance that the temperature of highly illuminated thin film coated solar cells will be elevated. Other cell parameters as maximum power, fill factor, and cell efficiency are also studied at five illumination levels, viz., 1154, 1329, 1740, 2812, and 4010 W/m{sup 2} and temperature ranging from -3 to 90degC. (Author)

  17. The Influence of the Solar Coronal Radiation on Coronal Plasma Structures, I: Determination of the Incident Coronal Radiation

    Science.gov (United States)

    Brown, Gerrard M.; Labrosse, Nicolas

    2018-02-01

    Coronal structures receive radiation not only from the solar disc, but also from the corona. This height-dependent incident radiation plays a crucial role in the excitation and the ionisation of the illuminated plasma. The aim of this article is to present a method for computing the detailed incident radiation coming from the solar corona, which is perceived at a point located at an arbitrary height. The coronal radiation is calculated by integrating the radiation received at a point in the corona over all of the corona visible from this point. The emission from the corona at all wavelengths of interest is computed using atomic data provided by CHIANTI. We obtain the spectrum illuminating points located at varying heights in the corona at wavelengths between 100 and 912 Å when photons can ionise H or He atoms and ions in their ground states. As expected, individual spectral lines will contribute most at the height within the corona where the local temperature is closest to their formation temperature. As there are many spectral lines produced by many ions, the coronal intensity cannot be assumed to vary in the same way at all wavelengths and so must be calculated for each separate height that is to be considered. This code can be used to compute the spectrum from the corona illuminating a point at any given height above the solar surface. This brings a necessary improvement to models where an accurate determination of the excitation and ionisation states of coronal plasma structures is crucial.

  18. A solar radio dynamic spectrograph with flexible temporal-spectral resolution

    Science.gov (United States)

    Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao

    2017-09-01

    Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1-32 k) and time cadences (5 ms-10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms-10 s) and spectral (3 kHz˜320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.

  19. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    Science.gov (United States)

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  1. Spectral line formation and oscillations in the solar chromosphere

    International Nuclear Information System (INIS)

    Gouttebroze, Pierre.

    1980-09-01

    This thesis is dedicated to two kind of models: the firsts, of semi-empiric type, seek to represent the vertical structure of the solar atmosphere and are treated in chapter II thru V. The others, of rather theoretical nature, have the ambition to simulate the oscillations of the chromosphere and are treated in chapter VI to X [fr

  2. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  3. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  4. Artifact Interpretation of Spectral Response Measurements on Two-Terminal Multijunction Solar Cells

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2016-01-01

    Multijunction solar cells promise higher power-conversion efficiency than the single-junction. With respect to two-terminal devices, an accurate measurement of the spectral response requires a delicate adjustment of the light- and voltage-biasing; otherwise it can result in artifacts in the data and

  5. Prediction of solar activity on the basis of spectral characteristics of sunspot number

    Directory of Open Access Journals (Sweden)

    E. Echer

    2004-06-01

    Full Text Available Prediction of solar activity strength for solar cycles 23 and 24 is performed on the basis of extrapolation of sunspot number spectral components. Sunspot number data during 1933-1996 periods (solar cycles 17-22 are searched for periodicities by iterative regression. The periods significant at the 95% confidence level were used in a sum of sine series to reconstruct sunspot series, to predict the strength of solar cycles 23 and 24. The maximum peak of solar cycles is adequately predicted (cycle 21: 158±13.2 against an observed peak of 155.4; cycle 22: 178<±13.2 against 157.6 observed. Solar cycle 23 was predicted to have a peak in 2000 with maximum amplitude of 125±13.2, in good agreement with the 119.6 observed. The minimum of solar cycle 23 is predicted to occur around 2007-2008. For solar cycle 24, the maximum is predicted to occur in 2012 (115±13.2 or 2013 (117±13.2 and this shall be a very weak solar cycle.

  6. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    Science.gov (United States)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  7. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  8. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  9. Atmospheric impacts on climatic variability of surface incident solar radiation

    Directory of Open Access Journals (Sweden)

    K. C. Wang

    2012-10-01

    Full Text Available The Earth's climate is driven by surface incident solar radiation (Rs. Direct measurements have shown that Rs has undergone significant decadal variations. However, a large fraction of the global land surface is not covered by these observations. Satellite-derived Rs has a good global coverage but is of low accuracy in its depiction of decadal variability. This paper shows that daily to decadal variations of Rs, from both aerosols and cloud properties, can be accurately estimated using globally available measurements of Sunshine Duration (SunDu. In particular, SunDu shows that since the late 1980's Rs has brightened over Europe due to decreases in aerosols but dimmed over China due to their increases. We found that variation of cloud cover determines Rs at a monthly scale but that aerosols determine the variability of Rs at a decadal time scale, in particular, over Europe and China. Because of its global availability and long-term history, SunDu can provide an accurate and continuous proxy record of Rs, filling in values for the blank areas that are not covered by direct measurements. Compared to its direct measurement, Rs from SunDu appears to be less sensitive to instrument replacement and calibration, and shows that the widely reported sharp increase in Rs during the early 1990s in China was a result of instrument replacement. By merging direct measurements collected by Global Energy Budget Archive with those derived from SunDu, we obtained a good coverage of Rs over the Northern Hemisphere. From this data, the average increase of Rs from 1982 to 2008 is estimated to be 0.87 W m−2 per decade.

  10. PROBING THE SOLAR ATMOSPHERE USING OSCILLATIONS OF INFRARED CO SPECTRAL LINES

    International Nuclear Information System (INIS)

    Penn, M. J.; Schad, T.; Cox, E.

    2011-01-01

    Oscillations were observed across the whole solar disk using the Doppler shift and line center intensity of spectral lines from the CO molecule near 4666 nm with the National Solar Observatory's McMath/Pierce solar telescope. Power, coherence, and phase spectra were examined, and diagnostic diagrams reveal power ridges at the solar global mode frequencies to show that these oscillations are solar p-modes. The phase was used to determine the height of formation of the CO lines by comparison with the IR continuum intensity phase shifts as measured in Kopp et al.; we find that the CO line formation height varies from 425 km μ > 0.5. The velocity power spectra show that while the sum of the background and p-mode power increases with height in the solar atmosphere as seen in previous work, the power in the p-modes only (background subtracted) decreases with height. The CO line center intensity weakens in regions of stronger magnetic fields, as does the p-mode oscillation power. Across most of the solar surface the phase shift is larger than the expected value of 90 0 for an adiabatic atmosphere. We fit the phase spectra at different disk positions with a simple atmospheric model to determine that the acoustic cutoff frequency is about 4.5 mHz with only small variations, but that the thermal relaxation frequency drops significantly from 2.7 to 0 mHz at these heights in the solar atmosphere.

  11. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R. F.; Rind, D. H.; Jonas, J.; Pilewskie, P.; Harder, J. W.; Krivova, N.

    2014-12-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  12. The spectral appearance of solar-type collapsing protostellar clouds

    International Nuclear Information System (INIS)

    Bertout, C.; Yorke, H.W.

    1978-04-01

    In this paper, we review the spectral properties of collapsing protostellar clouds, based on radiative transfer computations in hydrodynamic protostar models. In the first section, the basic results of protostar evolution computations in spherically symmetric and axially symmetry geometries, as they pertain to the appearance of protostars, are briefly reviewed. In the second section, we discuss the continuum appearance of spherically symmetric protostars with various masses. Also, we present recent results for the continuum appearance of an axially symmetric protostellar cloud. The third section deals with the line formation problem and describes preliminary results for a OH molecule in an axially symmetric collapsing cloud. Then we review recent theoretical and observational results obtained for the last evolutionary phase of protostars, known as the YY Orionis phase, when the stellar core first becomes visible in the optical range. Some of the new results and conclusions presented here can be summarized as follows: Rotating collapsing clouds are in general less luminous and cooler than corresponding non-rotating clouds - due to the longer evolutionary time scale. Nevertheless, high resolution studies (resolution [de

  13. Observed Variability of the Solar Mg II h Spectral Line

    Science.gov (United States)

    Schmit, D.; Bryans, P.; De Pontieu, B.; McIntosh, S.; Leenaarts, J.; Carlsson, M.

    2015-10-01

    The Mg ii h&k doublet are two of the primary spectral lines observed by the Sun-pointing Interface Region Imaging Spectrograph (IRIS). These lines are tracers of the magnetic and thermal environment that spans from the photosphere to the upper chromosphere. We use a double-Gaussian model to fit the Mg ii h profile for a full-Sun mosaic data set taken on 2014 August 24. We use the ensemble of high-quality profile fits to conduct a statistical study on the variability of the line profile as it relates the magnetic structure, dynamics, and center-to-limb viewing angle. The average internetwork profile contains a deeply reversed core and is weakly asymmetric at h2. In the internetwork, we find a strong correlation between h3 wavelength and profile asymmetry as well as h1 width and h2 width. The average reversal depth of the h3 core is inversely related to the magnetic field. Plage and sunspots exhibit many profiles that do not contain a reversal. These profiles also occur infrequently in the internetwork. We see indications of magnetically aligned structures in plage and network in statistics associated with the line core, but these structures are not clear or extended in the internetwork. The center-to-limb variations are compared to predictions of semi-empirical model atmospheres. We measure a pronounced limb darkening in the line core that is not predicted by the model. The aim of this work is to provide a comprehensive measurement baseline and preliminary analysis on the observed structure and formation of the Mg ii profiles observed by IRIS.

  14. A Different View of Solar Spectral Irradiance Variations: Modeling Total Energy over Six-Month Intervals.

    Science.gov (United States)

    Woods, Thomas N; Snow, Martin; Harder, Jerald; Chapman, Gary; Cookson, Angela

    A different approach to studying solar spectral irradiance (SSI) variations, without the need for long-term (multi-year) instrument degradation corrections, is examining the total energy of the irradiance variation during 6-month periods. This duration is selected because a solar active region typically appears suddenly and then takes 5 to 7 months to decay and disperse back into the quiet-Sun network. The solar outburst energy, which is defined as the irradiance integrated over the 6-month period and thus includes the energy from all phases of active region evolution, could be considered the primary cause for the irradiance variations. Because solar cycle variation is the consequence of multiple active region outbursts, understanding the energy spectral variation may provide a reasonable estimate of the variations for the 11-year solar activity cycle. The moderate-term (6-month) variations from the Solar Radiation and Climate Experiment (SORCE) instruments can be decomposed into positive (in-phase with solar cycle) and negative (out-of-phase) contributions by modeling the variations using the San Fernando Observatory (SFO) facular excess and sunspot deficit proxies, respectively. These excess and deficit variations are fit over 6-month intervals every 2 months over the mission, and these fitted variations are then integrated over time for the 6-month energy. The dominant component indicates which wavelengths are in-phase and which are out-of-phase with solar activity. The results from this study indicate out-of-phase variations for the 1400 - 1600 nm range, with all other wavelengths having in-phase variations.

  15. Pulse Analysis Spectroradiometer System for Measuring the Spectral Distribution of Flash Solar Simulators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, A. M.; Myers, D. R.

    2008-07-01

    Flashing artificial light sources are used extensively in photovoltaic module performance testing and plant production lines. There are several means of attempting to measure the spectral distribution of a flash of light; however, many of these approaches generally capture the entire pulse energy. We report here on the design and performance of a system to capture the waveform of flash at individual wavelengths of light. Any period within the flash duration can be selected, over which to integrate the flux intensity at each wavelength. The resulting spectral distribution is compared with the reference spectrum, resulting in a solar simulator classification.

  16. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  17. Recent variability of the solar spectral irradiance and its impact on climate modelling

    Science.gov (United States)

    Ermolli, I.; Matthes, K.; Dudok de Wit, T.; Krivova, N. A.; Tourpali, K.; Weber, M.; Unruh, Y. C.; Gray, L.; Langematz, U.; Pilewskie, P.; Rozanov, E.; Schmutz, W.; Shapiro, A.; Solanki, S. K.; Woods, T. N.

    2013-04-01

    The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE

  18. Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques

    Science.gov (United States)

    Scafetta, Nicola

    2014-12-01

    During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations. Also the Earth's climate seems to present a signature of multiple astronomical harmonics. Herein I address some critiques claiming that planetary harmonics would not appear in the data. I will show that careful and improved analysis of the available data do support the planetary theory of solar and climate variation also in the critiqued cases. In particular, I show that: (1) high-resolution cosmogenic 10Be and 14C solar activity proxy records both during the Holocene and during the Marine Interglacial Stage 9.3 (MIS 9.3), 325-336 kyear ago, present four common spectral peaks (confidence level ⪆95 %) at about 103, 115, 130 and 150 years (this is the frequency band that generates Maunder and Dalton like grand solar minima) that can be deduced from a simple solar model based on a generic non-linear coupling between planetary and solar harmonics; (2) time-frequency analysis and advanced minimum variance distortion-less response (MVDR) magnitude squared coherence analysis confirm the existence of persistent astronomical harmonics in the climate records at the decadal and multidecadal scales when used with an appropriate window lenght ( L≈110 years) to guarantee a sufficient spectral resolution to solve at least the major astronomical harmonics. The optimum theoretical window length deducible from astronomical considerations alone is, however, L⪆178.4 years because the planetary frequencies are harmonics of such a period. However, this length is larger than the available 164-year temperature signal. Thus, the best coherence test can be currently made only using a single window as long as the temperature instrumental record and comparing directly the temperature and astronomical spectra as done in Scafetta (J. Atmos. Sol. Terr. Phys. 72(13):951-970, 2010) and reconfirmed here. The existence of a spectral coherence between planetary, solar and climatic

  19. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-01-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm 2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400–800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems. (paper)

  20. Making of a solar spectral irradiance dataset I: observations, uncertainties, and methods

    Directory of Open Access Journals (Sweden)

    Schöll Micha

    2016-01-01

    Full Text Available Context. Changes in the spectral solar irradiance (SSI are a key driver of the variability of the Earth’s environment, strongly affecting the upper atmosphere, but also impacting climate. However, its measurements have been sparse and of different quality. The “First European Comprehensive Solar Irradiance Data Exploitation project” (SOLID aims at merging the complete set of European irradiance data, complemented by archive data that include data from non-European missions. Aims. As part of SOLID, we present all available space-based SSI measurements, reference spectra, and relevant proxies in a unified format with regular temporal re-gridding, interpolation, gap-filling as well as associated uncertainty estimations. Methods. We apply a coherent methodology to all available SSI datasets. Our pipeline approach consists of the pre-processing of the data, the interpolation of missing data by utilizing the spectral coherency of SSI, the temporal re-gridding of the data, an instrumental outlier detection routine, and a proxy-based interpolation for missing and flagged values. In particular, to detect instrumental outliers, we combine an autoregressive model with proxy data. We independently estimate the precision and stability of each individual dataset and flag all changes due to processing in an accompanying quality mask. Results. We present a unified database of solar activity records with accompanying meta-data and uncertainties. Conclusions. This dataset can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous SSI record.

  1. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V015 (SOR3SOLFUVD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  2. SORCE SOLSTICE MUV Level 3 Solar Spectral Irradiance Daily Means V015 (SOR3SOLMUVD) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Mid-UV Solar Spectral Irradiance (SSI) data product SOR3SOLMUVD is constructed using measurements from the SOLSTICE MUV instrument, which are...

  3. A Compact Solar Spectral Irradiance Monitor for Future Small Satellite and CubeSat Science Opportunities

    Science.gov (United States)

    Richard, E. C.; Harber, D.; Snow, M. A.; Harder, J. W.

    2013-12-01

    Accurate and continuous measurements of solar spectral irradiance (SSI) is recognized as being increasingly important to advancing our understanding of the solar influence on Earth's climate. For example, the magnitude of SSI UV variability has significant implications, both directly and indirectly, for the response of the stratosphere and mesosphere, whereas the visible and near infrared SSI variability influences the radiative balance, thermal structure, and dynamics of the lower atmosphere and ocean layers. Recent SSI measurements are providing critical inputs in evaluating and improving present climate models, however they are not yet of sufficient accuracy to stand alone without overlapping records - gaps in the observational record, caused by future mission delays or early failures of existing missions, effectively destroy our ability to link records from different instruments into a continuous, long-term climate quality record. Recent advancements in calibration facilities and techniques make it now possible to improve significantly the accuracy and traceability of future SSI observations and assure quantification of uncertainty as input to increasingly more sophisticated climate models. The goal of the proposed compact SSI monitor is to cover 200-2400 nm with the required SI-traceable accuracy and on-orbit stability to meet the solar input measurement requirements defined in the Earth Science Decadal Survey for establishing benchmark climate records. Building upon our experiences and resources from the Total and Spectral Solar Irradiance Sensor (TSIS) program, the instrument will reduce the cost, size, and characterization and calibration schedule of a solar spectral irradiance monitor with SI-traceable absolute calibration at the 0.2% uncertainty level (k=1) while maintaining 100 ppm relative stability. System level performance characterizations and final end-to-end absolute irradiance calibration will be accomplished with the LASP Spectral Radiometer

  4. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.

    Science.gov (United States)

    Zhou, Renjia; Zheng, Ying; Qian, Lei; Yang, Yixing; Holloway, Paul H; Xue, Jiangeng

    2012-06-07

    Hybrid organic-inorganic solar cells, as an alternative to all-organic solar cells, have received significant attention for their potential advantages in combining the solution-processability and versatility of organic materials with high charge mobility and environmental stability of inorganic semiconductors. Here we report efficient and air-stable hybrid organic-inorganic solar cells with broad spectral sensitivity based on a low-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and spherical CdSe nanoparticles. The solvents used for depositing the hybrid PCPDTBT:CdSe active layer were shown to strongly influence the film morphology, and subsequently the photovoltaic performance of the resulted solar cells. Appropriate post-deposition annealing of the hybrid film was also shown to improve the solar cell efficiency. The inclusion of a thin ZnO nanoparticle layer between the active layer and the metal cathode leads to a significant increase in device efficiency especially at long wavelengths, due to a combination of optical and electronic effects including more optimal light absorption in the active layer and elimination of unwanted hole leakage into the cathode. Overall, maximum power conversion efficiencies up to 3.7 ± 0.2% and spectral sensitivity extending above 800 nm were achieved in such PCPDTBT:CdSe nanosphere hybrid solar cells. Furthermore, the devices with a ZnO nanoparticle layer retained ∼70% of the original efficiency after storage under ambient laboratory conditions for over 60 days without any encapsulation.

  5. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    Science.gov (United States)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  6. New Solar Soft X-Ray (SXR) Spectral Irradiance Measurements Bridge the SDO and RHESSI Spectral Gap to Study Flare Energetics

    Science.gov (United States)

    Woods, T. N.; Jones, A.; Mason, J.; Moore, C.; Eparvier, F.; Caspi, A.; Chamberlin, P.

    2016-10-01

    The extreme ultraviolet (EUV) spectrum is rich in many different emission lines that reveal plasma characteristics concerning active region evolution and explosive energy release during coronal eruptions. Solar EUV imagers, such as SDO AIA, provide insight into the location, thermal structure, and dynamics of the coronal eruptions and associated flares. In addition, the solar EUV spectral irradiance from SDO EVE, with its higher spectral resolution, provides more detailed thermal evolution of the eruption and has better characterized some aspects of the eruptions such as relationship of coronal dimming and mass loss and post-eruption coronal loop cooling. Complementary to SDO are hard x-ray (HXR) measurements by RHESSI that have clarified the initiation of energy release from magnetic reconnection in the corona. New solar soft x-ray (SXR) spectral irradiance from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is now bridging this spectral gap between SDO EUV and RHESSI HXR observations. MinXSS-1 was deployed from the ISS in May 2016 for a 1-year mission, and MinXSS-2 is being launched in October 2016 for a 5-year mission. The energy release during solar flares is expected to peak in the SXR and thus the SXR has been monitored with GOES broadband photometers for decades, but there has been very limited SXR spectral measurements. With the new and unique MinXSS measurements of the SXR spectral variability during flares, coupled with solar SXR images from Hinode, EUV data from SDO, and HXR data from RHESSI, the processes for releasing energy during an eruption and affecting post-eruption thermal evolution can be explored in more detail. Furthermore, the new SXR spectral irradiance measurements can help improve the accuracy of broad band SXR measurements by GOES XRS, SDO EVE ESP, and XPS aboard TIMED and SORCE. Such improvements can lead to better understanding the solar impacts in Earth's ionosphere and thermosphere and how they might affect some of our space

  7. Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales

    Science.gov (United States)

    Unruh, Y. C.; Krivova, N. A.; Solanki, S. K.; Harder, J. W.; Kopp, G.

    2008-07-01

    Aims: We test the reliability of the observed and calculated spectral irradiance variations between 200 and 1600 nm over a time span of three solar rotations in 2004. Methods: We compare our model calculations to spectral irradiance observations taken with SORCE/SIM, SoHO/VIRGO, and UARS/SUSIM. The calculations assume LTE and are based on the SATIRE (Spectral And Total Irradiance REconstruction) model. We analyse the variability as a function of wavelength and present time series in a number of selected wavelength regions covering the UV to the NIR. We also show the facular and spot contributions to the total calculated variability. Results: In most wavelength regions, the variability agrees well between all sets of observations and the model calculations. The model does particularly well between 400 and 1300 nm, but fails below 220 nm, as well as for some of the strong NUV lines. Our calculations clearly show the shift from faculae-dominated variability in the NUV to spot-dominated variability above approximately 400 nm. We also discuss some of the remaining problems, such as the low sensitivity of SUSIM and SORCE for wavelengths between approximately 310 and 350 nm, where currently the model calculations still provide the best estimates of solar variability.

  8. Retrieving the solar EUV spectrum from a reduced set of spectral lines

    Directory of Open Access Journals (Sweden)

    T. D. de Wit

    2005-11-01

    Full Text Available The solar EUV irradiance is a key input for thermospheric and ionospheric models. Difficulties in continuously measuring the calibrated spectrum has prompted the use of various surrogate quantities. Although most proxies correlate quite well with the spectral variability, their use for modelling purposes becomes increasingly unsatisfactory. A different and data-driven approach is considered here, in which the EUV spectrum is reconstructed from a linear combination of a few, calibrated and carefully selected spectral lines. This approach is based on a statistical analysis of the temporal variability of EUV spectra, as recorded by the TIMED satellite. A basic set of lines is extracted, from which the salient features of the spectral variability can be reconstructed. The best results are achieved with a selection of 5 to 8 of these lines. This study focuses on the methodology for selecting these lines, which can also be used for instrument specification and provides new insight into the comparison of solar proxies against the EUV irradiance.

  9. Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence

    Science.gov (United States)

    Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.

    2018-03-01

    The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.

  10. Spectral solar irradiance and some optical properties for various polluted atmospheres

    International Nuclear Information System (INIS)

    Jacovides, Constantinos P.; Asimakopoulos, Demosthenis N.; Steven, Michael D.

    2000-01-01

    Using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995, the influence of gaseous pollutants and aerosol on the spectral radiant energy distribution was investigated. It was found that spectral measurements exhibited variations based on various polluted urban atmospheric conditions as determined via gaseous pollutants record analysis. The relative attenuations cause by gaseous pollutants and aerosol can exceed 27%, 17% and 16% in the global ultraviolet, visible and near-infrared portions of the solar spectrum respectively, as compared to 'background' values. In contrast, an enhancement of the near-infrared diffuse component by 66%, was observed, while in visible and ultraviolet bands the relative increases reached 54% and 21% respectively. Experimental total Rayleigh-corrected and spectral aerosol optical depths were retrieved, representing differences in polluted air over the Athens atmosphere. The diffuse component accounts for more than 80% of the total radiation field under high polluted atmosphere. The observed differences of solar radiation between the Athens center and at a nearby suburban site are a manifestation of contrasting air properties provided mainly by automotive traffic. (Author)

  11. On the Role of Solar Wind Discontinuities in the ULF Power Spectral Density at the Earth's Outer Radiation Belt: a Case Study

    Science.gov (United States)

    Lago, A.; Alves, L. R.; Braga, C. R.; Mendonca, R. R. S.; Jauer, P. R.; Medeiros, C.; Souza, V. M. C. E. S.; Mendes, O., Jr.; Marchezi, J.; da Silva, L.; Vieira, L.; Rockenbach, M.; Sibeck, D. G.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C.

    2016-12-01

    The solar wind incident upon the Earth's magnetosphere can produce either enhancement, depletion or no change in the flux of relativistic electrons at the outer radiation belt. During geomagnetic storms progress, solar wind parameters may change significantly, and occasionally relativistic electron fluxes at the outer radiation belt show dropouts in a range of energy and L-shells. Wave-particle interactions observed within the Van Allen belts have been claimed to play a significant role in energetic particle flux changes. The relation between changes on the solar wind parameters and the radiation belt is still a hot topic nowadays, particularly the role played by the solar wind on sudden electron flux decreases. The twin satellite Van Allen Probes measured a relativistic electron flux dropout concurrent to broad band Ultra-low frequency (ULF) waves, i.e. from 1 mHz to 10 Hz, on October 2, 2013. Magnetic field and plasma data from both ACE and WIND satellites allowed the characterization of this event as being an interplanetary coronal mass ejection in conjunction with shock. The interaction of this event with the Earth's magnetosphere was modeled using a global magnetohydrodynamic simulation and the magnetic field perturbation deep in magnetosphere could be analyzed from the model outputs. Results show the contribution of time-varying solar wind parameters to the generation of ULF waves. The power spectral densities, as a function of L-shell, were evaluated considering changes in the input parameters, e.g. magnitude and duration of dynamic pressure and magnetic field. The modeled power spectral densities are compared with Van Allen Probes data. The results provide us a clue on the solar wind characteristics that might be able to drive ULF waves in the inner magnetosphere, and also which wave modes are expected to be excited under a specific solar wind driving.

  12. Effects of Nonuniform Incident Illumination on the Thermal Performance of a Concentrating Triple Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Fahad Al-Amri

    2014-01-01

    Full Text Available A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i adding new receiver plate with higher surface area or (ii using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution. Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.

  13. Prototype of Cryogenic Solar Absolute Radiometer and Transfer Radiometer for On-Board Calibration of Spectral Earth Imager

    Science.gov (United States)

    Zajiczek, L.; Winkler, R.; Hobson, T.; Green, P.; Fox, N.

    2018-02-01

    We describe a prototype calibration system for the Traceable Radiometry Underpinning Terrestrial- and Helio-Studies (TRUTHS) satellite mission. We outline the design and testing of key system components, including the Cryogenic Solar Absolute Radiometer (CSAR). CSAR is designed to make Total Solar Irradiance (TSI) measurements with a standard uncertainty of < 0.01 % and provide SI-traceable calibration of a hyperspectral Earth imager (EI) over the wavelength range 320 nm – 2450 nm. The EI is designed to make Solar Spectral Irradiance (SSI) and spectral radiance measurements with a standard uncertainty of < 0.3 %.

  14. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  15. A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata; Khan, Mohammad Ryyan; Chavali, Raghu Vamsi; Silverman, Timothy J.; Kottantharayil, Anil; Vasi, Juzer; Alam, Muhammad Ashraful

    2016-11-21

    For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminate the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.

  16. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  17. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  18. Ion-Scale Spectral Break in the Normal Plasma Beta Range in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, X.; Tu, C.-Y.; He, J.-S.; Wang, L.-H.

    2018-01-01

    The spectral break (fb) of magnetic fluctuations at the ion scale in the solar wind is considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable two are related respectively to proton thermal gyroradius ρi and proton inertial length di. The corresponding frequencies of them are fρi=VSW/(2πρi) and fdi=VSW/(2πdi), respectively, where VSW is the solar wind speed. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar value when plasma beta β ˜ 1. Here we do a statistical study to see if the two ratios fb/fρi and fb/fdi have different dependence on β in the solar wind turbulence with 0.1 fdi is statistically not dependent on β, and the average value of it is 0.48 ± 0.06. However, fb/fρi increases with increasing β clearly and is significantly smaller than fb/fdi when β fdi, and the influence of β could be negligible in the studied β range. It indicates a preference of the dissipation mechanism associated with di in the solar wind with 0.1 < β < 0.8. Further theoretical studies are needed to give detailed explanation.

  19. Spectral reflectance properties of black chrome for use as a solar selective coating

    Science.gov (United States)

    Mcdonald, G. E.

    1974-01-01

    The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. Black chrome electroplated coating has high absorbtance in the solar spectrum and low emissivity in the 250 F blackbody thermal spectrum. The spectral reflectance properties of a commercially prepared black chrome on steel have been measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.

  20. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  1. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  2. A large-area, LED-based spectral response measurement system for solar PV device characterization

    Science.gov (United States)

    Hamadani, Behrang; Roller, John; Yoon, Howard; Dougherty, Brian

    2012-02-01

    Accurate and reliable measurement of the spectral responsivity (SR) of a solar cell is an important step in evaluating the electrical performance of competing photovoltaic (PV) technologies. We have investigated ways to measure the spectral responsivity, and hence the external quantum efficiency, of solar cells using measurement techniques that employ light emitting diodes (LEDs). Our setup includes one or more plates of compactly-installed, high-powered LEDs each containing up to 32 different LEDs that span the wavelength range of 375 nm to 1200 nm. Each LED plate is placed at the entrance of a tapered, highly reflective light guide for light mixing and large-area projection. Two unique measurement techniques have been investigated at NIST. The first technique consists of an LED sweep algorithm where a pulsed signal is applied to a given LED and the photogenerated current from the device under test is recorded using a lock-in technique. In the second SR technique, 32 variable-frequency, pulsed signals are applied to all LEDs at the same time, while recording the photogenerated current by a spectrum analyzer in the frequency domain. We will describe the uniqueness and advantages offered by each technique in detail and compare the accuracy of the two methods. A scheme for providing light bias and its impact on the SR measurements will be reported.

  3. Imaging Grating Spectrometer (I-GRASP) for Solar Soft X-Ray Spectral Measurements in Critically Under-Observed 0.5 - 7 nm Spectral Range

    Science.gov (United States)

    Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.

    2016-12-01

    We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.

  4. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-01-01

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  5. Fresnel lens solar concentrator design and spectral distribution on focus surface

    Science.gov (United States)

    Shen, Zuo Chun; Lu, Yu; Lu, Jian Ye

    2011-09-01

    It is necessary to analysize the spectral distribution of sun light on focal spot as well as its condenser ratio, both in the study of the different quantum efficiency of photoelectric materials and the different spectral absorption coefficient for the laser medium. Based on the absorption spectrum of Cr/Nd:YAG ceramic, this paper addresses itself to the study of convex Fresnel lens focus solar light and choose spectrum. Set Parameters which are used for the design of Fresnel lens such as the ring width, height the focal length as well as the design of spectrum can be changed and the spectral ditribution on focal plane can be controlled. By way of simulation, a method through which is the best optical design for matching Cr/Nd:YAG ceramic absorption spectrum can be found. The maximum absorb power density in six optimum design is 288.5 W/cm2, which is 3.2-18.5% higher than absorb power density in six initial design based on purpose of obtaining the maximum power density.

  6. The Herschel/HIFI unbiased spectral survey of the solar-mass protostar IRAS16293

    Science.gov (United States)

    Bottinelli, S.; Caux, E.; Cecarelli, C.; Kahane, C.

    2012-03-01

    Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high-mass protostars, very little data exist on low-mass protostars, with only one such ground-based survey carried out towards this kind of object. However, since low-mass protostars are believed to resemble our own Sun's progenitor, the information provided by spectral surveys is crucial in order to uncover the birth mechanisms of low-mass stars and hence of our Sun. To help fill up this gap in our understanding, we carried out an almost complete spectral survey towards the solar-type protostar IRAS16293-2422 with the HIFI instrument onboard Herschel. The observations covered a range of about 700 GHz, in which a few hundreds lines were detected with more than 3σ confidence interval certainty and identified. All the detected lines which were free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Contrarily to what is observed in the millimeter range, no lines from complex organic molecules have been observed. In this work, we characterize the different components of IRAS16293-2422 (a known binary at least) by analyzing the numerous emission and absorption lines identified.

  7. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  8. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Science.gov (United States)

    Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.

    2017-03-01

    We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  9. Effect of front and rear incident proton irradiation on silicon solar cells

    Science.gov (United States)

    Anspaugh, Bruce; Kachare, Ram

    1987-01-01

    Four solar cell types of current manufacture were irradiated through the front and rear surfaces with protons in the energy range between 1 and 10 MeV. The solar cell parameters varied for this study were cell thickness and back surface field (BSF) vs. no BSF. Some cells were irradiated at normal incidence and an equal number were irradiated with simulated isotropic fluences. The solar cell electrical characteristics were measured under simulated AM0 illumination after each fluence. Using the normal incidence data, proton damage coefficients were computed for all four types of cells for both normal and omnidirectional radiation fields. These were found to compare well with the omnidirectional damage coefficients derived directly from the rear-incidence radiation data. Similarly, the rear-incidence omnidirectional radiation data were used to compute appropriate damage coefficients. A method for calculating the effect of a spectrum of energies is derived from these calculations. It is suitable for calculating the degradation of cells in space when they have minimal rear-surface shielding.

  10. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells.

    Science.gov (United States)

    Kinoshita, Takumi; Nonomura, Kazuteru; Jeon, Nam Joong; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-05

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  11. High spectral response heteroleptic ruthenium (II) complexes as ...

    Indian Academy of Sciences (India)

    better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar .... High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells. 39 ..... electrolyte increases the exchange reaction between I- and I3. − which in turn ...

  12. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. I. FE, O, AND SEED MATERIAL

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Mccomas, D. J.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); Li, G. [CSPAR, University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [Department of Physics and Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2016-01-10

    We have surveyed ∼0.1–100 MeV nucleon{sup −1} O and Fe fluence spectra during 46 isolated, large gradual SEP events observed at ACE during solar cycles 23 and 24. Most SEP spectra are well represented by the four-parameter Band function with a normalization constant, low-energy spectral slope, high-energy spectral slope, and break energy. The O and Fe spectral slopes are similar and most spectra steepen above the break energy, probably due to common acceleration and transport processes affecting different ion species. SEP spectra above the break energies depend on the origin of the seed population; larger contributions of suprathermal flare material result in higher Fe/O ratios and flatter spectra at higher energies. SEP events with steeper O spectra at low energies and higher break energies are associated with slower coronal mass ejections (CMEs), while those associated with fast (>2000 km s{sup −1}) CMEs and ground level enhancements have harder or flatter spectra at low and high energies, and O break energies between ∼1 and 10 MeV nucleon{sup −1}. The latter events are enriched in {sup 3}He and higher-energy Fe, and have Fe spectra that rollover at significantly lower energies compared with O, probably because Fe ions with smaller Q/M ratios can escape from the distant shock more easily than O ions with larger Q/M ratios. We conclude that SEP spectral properties result from many complex and competing effects, namely Q/M-dependent scattering, shock properties, and the origin of the seed populations, all of which must be taken into account to develop a comprehensive picture of CME-driven shock acceleration of large gradual SEP events.

  13. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); McComas, D. J. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [University of New Hampshire, 8 College Road, Durham NH 03824 (United States)

    2016-09-10

    We fit ∼0.1–500 MeV nucleon{sup −1} H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ {sub a} and γ {sub b}, and break energy E {sub B}, and derive the low-energy spectral slope γ {sub 1}. We find that: (1) γ {sub a}, γ {sub 1}, and γ {sub b} are species-independent and the spectra steepen with increasing energy; (2) E {sub B} decreases systematically with decreasing Q/M scaling as (Q/M){sup α}; (3) α varies between ∼0.2–3 and is well correlated with the ∼0.16–0.23 MeV nucleon{sup −1} Fe/O; (4) in most events, α < 1.4, γ {sub b}– γ {sub a} > 3, and O E {sub B} increases with γ {sub b}– γ {sub a}; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and {sup 3}He/{sup 4}He ratios are enriched, α ≥ 1.4, γ {sub b}– γ {sub a} < 3, and E {sub B} decreases with γ {sub b}– γ {sub a}. The species-independence of γ {sub a}, γ {sub 1}, and γ {sub b} and the Q/M dependence of E {sub B} within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ {sub 1}, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E {sub B} is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  14. On the causes of spectral enhancements in solar wind power spectra

    Science.gov (United States)

    Unti, T.; Russell, C. T.

    1976-01-01

    Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).

  15. Accurate measurements of solar spectral irradiance between 4000-10000 cm-1

    Science.gov (United States)

    Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.

    2017-12-01

    The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.

  16. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  17. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Eckart, M. E.; Smith, Adams; Bailey, C. N.; Bandler, S. R.; Chevenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2012-01-01

    We are developing small pitch transition-edge sensor (TES) X-ray detectors optimized for solar astronomy. These devices are fabricated on thick Si substrates with embedded Cu heat-sink layer. We use 35 x 35 square micrometers Mo/Au TESs with 4.5 micrometer thick Au absorbers. We have tested devices with different geometric absorber stem contact areas with the TES and surrounding substrate area. This allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between thc stem contact area and a broadening in the spectral line shape indicative of athermal phonon loss. When the contact area is minimized we have obtained exceptional broadband spectral resolution of 1.28 plus or minus 0.03 eV at an energy of 1.5 keV, 1.58 plus or minus 0.07 eV at 5.9 keV and 1.96 plus or minus 0.08 eV at 8 keV. The linearity in the measured gain scale is understood in the context of the longitudinal proximity effect from the electrical bias leads resulting in transition characteristics that are strongly dependent upon TES size.

  18. Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference

    Directory of Open Access Journals (Sweden)

    Ball William T.

    2014-01-01

    Full Text Available We investigate the relationship between spectral solar irradiance (SSI and ozone in the tropical upper stratosphere. We find that solar cycle (SC changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number of individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, although this might be possible by the inclusion of other external constraints. Our methodology has the potential, using wider datasets, to provide better understanding of both variations in SSI and the atmospheric response.

  19. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  20. High-spectral-resolution Observations of the Solar Chromosphere and Corona

    Science.gov (United States)

    Pasachoff, Jay M.; Bruck, M. A.

    2007-05-01

    We continue to reduce high-spectral-resolution observations of the solar chromosphere from the Swedish 1-m Solar Telescope (SST) and TRACE; and, at the 29 March 2006 total solar eclipse, of the solar corona in the [Fe XIV] green line and the [Fe X] red line. (a) The SST observations in 2006 used the SOUP Lyot filter to observe H-alpha limb spicules in five positions with 128 milliangstrom resolution for velocity imaging with several cameras to allow restoration of even noisy images. One camera is near H-alpha, providing high S/N images for extracting wavefront information. The other is deliberately defocused for Phase Diversity information. We use Multi-Object Multi-Frame Blind Deconvolution (MOMFBD; momfbd.org), assisted by Michiel Van Noort and Mats Löfdahl (Royal Swedish Academy of Sciences) and the CfA Hinode center. Simultaneous TRACE observations show spicules in emission and, silhouetted against the EUV corona, in absorption. (b) Our Fabry-Perot 2006-eclipse coronal spectra were taken with David Rust's (JHUAPL) 0.16 angstrom Y-cut lithium-niobate filter. With Rust and Matthew Noble, the etalon was stepped across the red coronal line every 0.22 angstrom. We present the profile and Doppler shifts of the [Fe X] line. (c) We collected simultaneous 10 Hz observations in the red and green coronal lines at the 2006 eclipse, with the goal of detecting high-frequency intensity oscillations ( 1 Hz), which can be relevant to coronal heating, and to confirm previous results. We present FFT and wavelet analysis of the aligned data. We thank Bryce Babcock and Steven Souza (Williams) for their eclipse collaboration. We acknowledge grants NNG04GK44G, NNG04GE48G, and NN05GG75G from NASA Planetary Astronomy. The eclipse observations were supported by NSF grant ATM-0552116 from the Solar Terrrestrial Program of the Atmospheres Sciences Division. Additional eclipse support was received from National Geographic's Committee on Research and Exploration and Williams's Rob Spring

  1. Use of spectral decomposition technique for delineation of channels at Solar gas discovery, offshore West Nile Delta, Egypt

    Directory of Open Access Journals (Sweden)

    Adel A.A. Othman

    2016-03-01

    In this paper, spectral decomposition technique is applied to the imaging and mapping of bed thickness, geologic discontinuities and channel delineation at Solar discovery. From the study, two distinctively different channels (gas bearing “Red channel” and water bearing “Yellow channel” were delineated in the area, and are proven by the drilled well, and some stratigraphic features are identified.

  2. Solar thermal drying of apricots: Effect of spectrally-selective cabinet materials on drying rate and quality metrics (abstract)

    Science.gov (United States)

    Solar thermal (ST) drying is currently not in widespread commercial use due to concerns about slow drying rates and poor product quality. ST dryer cabinets could be constructed from spectrally-selective materials (materials which transmit only certain sunlight wavelength bands), but these types of ...

  3. ESTIMATION OF TOTAL SOLAR RADIATION INCIDENT ON AN INCLINED SURFACE OF A SOUTH-FACING GREENHOUSE ROOF

    Directory of Open Access Journals (Sweden)

    RONOH E.K.

    2017-12-01

    Full Text Available Solar radiation is the driving force for the surface energy balance in buildings such as greenhouses. Greenhouses are generally tilted towards the sun in order to maximize the solar irradiance on the surfaces. Precise computation of the solar radiation received on these surfaces assumes an important role in the energy simulation. It is practical to calculate the total solar irradiance on inclined surfaces based on the solar global and diffuse radiation intensities on horizontal surfaces. This study focused on estimating the total solar radiation incident on inclined greenhouse roof surfaces. In this work, a south-facing thermal box inclined at 26.5° from the horizontal was used for solar radiation measurements. Additionally, recorded solar radiation data were retrieved for the study location and used to develop an empirical correlation. The conversion factors for the beam, the diffuse and the reflected solar radiation components were essential in the prediction of the total solar radiation incident on the tilted surface. The measured solar radiation data were then compared with the simulated data. The model performance was assessed using both graphical and statistical methods. Overall, locally calibrated data led to a satisfactory improvement in estimation of the total solar radiation on an inclined surface.

  4. Study and Simulation of the Density of the Incident Solar Flux on the Walls of a Building in Adrar, Algeria

    Directory of Open Access Journals (Sweden)

    A. Oudrane

    2017-10-01

    Full Text Available In this work, we studied the effect of external climatic conditions on the evolution of the daily solar flux incident on the walls of a building located at Adrar region in the South of Algeria. This building is designed for heating or air conditioning applications. Numerical simulations allowed to compare the variation of the incident solar flux over a full day on the south, east, north and west walls of the building to the values of the solar flux on a horizontal wall (the outer ceiling. The horizontal global solar flux is calculated using a Gaussian sinusoidal function. The simulations were carried out in the case of a building located in a desert zone. The results of the numerical simulation showed the effect of the orientation of the building on the evolution of the incident daily solar flux.

  5. Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å

    Science.gov (United States)

    Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.

    2018-03-01

    Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral

  6. Reconstruction of the solar spectral UV irradiance for nowcasting of the middle atmosphere state on the basis of LYRA measurements

    Directory of Open Access Journals (Sweden)

    T. Egorova

    2008-06-01

    Full Text Available The LYRA instrument onboard ESA PROBA2 satellite will provide 6-hourly solar irradiance at the Lyman-alpha (121.6 nm and the Herzberg continuum (~200–220 nm wavelength range. Because the nowcasting of the neutral and ionic state of the middle atmosphere requires the solar irradiance for the wide spectral range (120–680 nm we have developed the statistical tool for the reconstruction of the full spectrum from the LYRA measurements. The accuracy of the reconstructed irradiance has been evaluated with 1-D transient radiative-convective model with neutral and ion chemistry using the daily solar spectral irradiance measured with SUSIM and SOLSTICE instruments onboard UARS satellite. We compared the results of transient 1-year long model simulations for 2000 driven by the observed and reconstructed solar irradiance and showed that the reconstruction of the full spectrum using linear regression equation based on the solar irradiance in two LYRA channels can be successfully used for nowcasting of the middle atmosphere. We have also identified conditions when the proposed approach does not yield spectral reconstruction with sufficient accuracy.

  7. New Instruments for Spectrally-Resolved Solar Soft X-ray Observations from CubeSats, and Larger Missions

    Science.gov (United States)

    Caspi, A.; Shih, A.; Warren, H. P.; DeForest, C. E.; Woods, T. N.

    2015-12-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics and evolution of these energetic processes; spatially-resolved measurements are critical for understanding energy transport. A better understanding of the thermal plasma informs our interpretation of hard X-ray (HXR) observations of nonthermal particles, improving our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-SDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. An X123-CdTe cadmium-telluride detector is also included for ~5-100 keV HXR spectroscopy with ~0.5-1 keV FWHM resolution. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a pinhole aperture and X-ray transmission diffraction grating to provide full-Sun imaging from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. We discuss scaled versions of these instruments, with greater sensitivity and dynamic range, and significantly improved spectral and spatial resolutions for the imager, for deployment on larger platforms such as Small Explorer missions.

  8. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Kanayama, K.; Endo, N.; Koromohara, K.; Takayama, H. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  9. Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM

    Directory of Open Access Journals (Sweden)

    Wen Guoyong

    2017-01-01

    Full Text Available We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor based, the other the SATIRE (Spectral And Total Irradiance REconstruction modeled, as inputs to the GISS (Goddard Institute for Space Studies GCMAM (Global Climate Middle Atmosphere Model to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm and total solar irradiance (TSI. From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of ~0.1 °C to SATIRE solar forcing compared to ~0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.

  10. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    International Nuclear Information System (INIS)

    Rodríguez, J.A.; Fortes, M.; Alberte, C.; Vetter, M.; Andreu, J.

    2013-01-01

    Highlights: ► Spectral response equipment for measuring a-Si:H solar cells in a few seconds. ► Equipment based on 16 LEDs with simultaneous illumination of the solar cell. ► The current generated by each LED is analyzed by a Fast Fourier Transform. ► Cheap equipment without lock-in technology for the current measurement. ► Measurement error vs. conventional measurement less than 1% in J sc . - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2–4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  11. Cosensitization with Vat-Based Organic Dyes for Enhanced Spectral Response of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Hosseinnezhad, Mozhgan

    2017-04-01

    Cosensitization using two organic dyes with supplementary absorption spectra on a photoelectrode is an effective method for improving the photovoltaic properties of dye-sensitized solar cells. Two organic dyes based on indigo and thioindigo have been synthesized, purified, and used to sensitize solar cells with spectral response extending across the entire visible region. To improve their photoelectric properties, different molar ratios were investigated, yielding total efficiency of 6.17% at dye 1:dye 2 = 4:6. The effect of the concentration of Cheno antiaggregation agent on the performance of the dye-sensitized solar cells was also considered. The results demonstrate that higher conversion efficiency ( η = 6.82%) was achieved with 10 × 10-3 M Cheno. Finally, the performance of cosensitized solar cells was measured at different temperatures between 10°C and 50°C. The results indicated that J sc decreased with increasing temperature, directly affecting the conversion efficiency.

  12. Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2016-11-01

    A high-efficiency solar thermophotovoltaic (STPV) system has been demonstrated using spectrally selective planar absorber/emitter systems and a GaSb TPV cell. In this study, a novel approach for designing the STPV system based on the efficiency of unidirectional radiative heat transfer has been introduced. To achieve high extraction and photovoltaic conversion efficiencies, the spectrally selective absorber/emitter based on a coherent perfect absorber composed of a thin molybdenum layer sandwiched between hafnium layers was applied. The extraction efficiency was further investigated with respect to the absorber/emitter area ratio. The experimental efficiency of STPV reached 5.1% with the area ratio of 2.3.

  13. Determination of tropospheric aerosol characteristics by spectral measurements of solar radiation using a compact, stand-alone spectroradiometer.

    Science.gov (United States)

    Manago, Naohiro; Kuze, Hiroaki

    2010-03-10

    We developed a method for characterizing atmospheric properties from ground-based, spectral measurements of direct and scattered solar radiation under clear sky conditions. A compact spectroradiometer is employed for radiation measurement in the wavelength range between 350 and 1050 nm with a resolution of 10 nm. Spectral matching of measured and simulated spectra yields a set of optical parameters that describe optical characteristics of tropospheric aerosols. We utilize the radiative transfer code MODTRAN4 for constructing realistic atmospheric models. Details of the system calibration, analysis procedure, and the results of its performance test are described.

  14. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A Comprehensive Study of Chelyabinsk Meteorite: Physical, Mineralogical, Spectral Properties and Solar System Orbit

    Science.gov (United States)

    Gritsevich, Maria; Kohout, T.; Grokhovsky, V.; Yakovlev, G.; Lyytinen, E.; Vinnikov, V.; Haloda, J.; Halodova, P.; Michallik, R.; Penttilä, A.; Muinonen, K.; Peltoniemi, J.; Lupovka, V.; Dmitriev, V.

    2013-10-01

    On February 15, 2013, at 9:22 am, an exceptionally bright and long duration fireball was observed by many eyewitnesses in the Chelyabinsk region, Russia. A strong shock wave associated with the fireball caused significant damage such as destroyed windows and parts of buildings in Chelyabinsk and the surrounding territories. A number of video records of the event are available and have been used to reconstruct atmospheric trajectory, velocity, deceleration rate, and parent asteroid Apollo-type orbit in the Solar System. Two types of meteorite material are present among recovered fragments of the Chelyabinsk meteorite. These are described as the light-colored and dark-colored lithology. Both types are of LL5 composition with the dark-colored one being an impact-melt shocked to a higher level. Based on the magnetic susceptibility measurements, the Chelyabinsk meteorite is richer in metallic iron as compared to other LL chondrites. The measured bulk and grain densities and the porosity closely resemble other LL chondrites. Shock darkening does not have a significant effect on the material physical properties, but causes a decrease of reflectance and decrease in silicate absorption bands in the reflectance spectra. This is similar to the space weathering effects observed on asteroids. However, no spectral slope change similar to space weathering is observed as a result of shock-darkening. Thus, it is possible that some dark asteroids with invisible silicate absorption bands may be composed of relatively fresh shock darkened chondritic material.

  16. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  17. High spectral resolution measurements of a solar flare hard X-ray burst

    International Nuclear Information System (INIS)

    Lin, R.P.; Schwartz, R.A.; NASA, Goddard Space Flight Center, Greenbelt, MD)

    1987-01-01

    Observations are reported of an intense solar flare hard X-ray burst on June 27, 1980, made with a balloon-borne array of liquid nitrogen-cooled Ge detector which provided unprecedented spectral resolution (no more than 1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 0.1-1 billion K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting about 3-15 sec, which have a hard spectrum and a break energy of 30-65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 kev to at least 100 keV through the event. The double power-law shape indicates that DC electric field acceleration, similar to that occurring in the earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. 39 references

  18. A New SATIRE-S Spectral Solar Irradiance Reconstruction for Solar Cycles 21-23 and Its Implications for Stratospheric Ozone*

    Science.gov (United States)

    Ball, William T.; Krivova, Natalie A.; Unruh, Yvonne C.; Haigh, Joanna D.; Solanki, Sami K.

    2014-11-01

    We present a revised and extended total and spectral solar irradiance (SSI) reconstruction, which includes a wavelength-dependent uncertainty estimate, spanning the last three solar cycles using the SATIRE-S model. The SSI reconstruction covers wavelengths between 115 and 160,000 nm and all dates between August 1974 and October 2009. This represents the first full-wavelength SATIRE-S reconstruction to cover the last three solar cycles without data gaps and with an uncertainty estimate. SATIRE-S is compared with the NRLSSI model and SORCE/SOLSTICE ultraviolet (UV) observations. SATIRE-S displays similar cycle behaviour to NRLSSI for wavelengths below 242 nm and almost twice the variability between 242 and 310 nm. During the decline of last solar cycle, between 2003 and 2008, SSI from SORCE/SOLSTICE version 12 and 10 typically displays more than three times the variability of SATIRE-S between 200 and 300 nm. All three datasets are used to model changes in stratospheric ozone within a 2D atmospheric model for a decline from high solar activity to solar minimum. The different flux changes result in different modelled ozone trends. Using NRLSSI leads to a decline in mesospheric ozone, while SATIRE-S and SORCE/SOLSTICE result in an increase. Recent publications have highlighted increases in mesospheric ozone when considering version 10 SORCE/SOLSTICE irradiances. The recalibrated SORCE/SOLSTICE version 12 irradiances result in a much smaller mesospheric ozone response than when using version 10 and now similar in magnitude to SATIRE-S. This shows that current knowledge of variations in spectral irradiance is not sufficient to warrant robust conclusions concerning the impact of solar variability on the atmosphere and climate.

  19. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  20. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    Science.gov (United States)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  1. Solution-Processed Environmentally Friendly Ag2S Colloidal Quantum Dot Solar Cells with Broad Spectral Absorption

    Directory of Open Access Journals (Sweden)

    Viktor A. Öberg

    2017-10-01

    Full Text Available A facile heat-up synthesis route is used to synthesize environmentally friendly Ag2S colloidal quantum dots (CQDs that are applied as light absorbing material in solid state p-i-n junction solar cell devices. The as-synthesized Ag2S CQDs have an average size of around 3.5 nm and exhibit broad light absorption covering ultraviolet, visible, and near infrared wavelength regions. The solar cell devices are constructed with a device architecture of FTO/TiO2/Ag2S CQDs/hole transport material (HTM /Au using a solution-processed approach. Different HTMs, N2,N2,N2′,N2′,N7,N7,N7′,N7′-octakis(4-methoxyphenyl-9,9′-spirobi(9H-fluorene-2,2′,7,7′ tetramine (spiro-OMeTAD, poly(3-hexylthiophene-2,5-diyl (P3HT, and poly((2,3-bis(3-octyloxyphenyl-5,8-quinoxalinediyl-2,5-thiophenediyl TQ1 are studied for maximizing the device photovoltaic performance. The solar cell device with P3HT as a hole transport material gives the highest performance and the solar cell exhibit broad spectral absorption. These results indicate that Ag2S CQD have high potential for utilization as environmentally friendly light absorbing materials for solar cell application and that the hole transport material is critical to maximize the solar cell photovoltaic performance.

  2. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  3. Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle

    Science.gov (United States)

    Asrar, G.; Kanemasu, E. T.; Yoshida, M.

    1985-01-01

    The influence of management practices and solar illumination angle on the leaf area index (LAI) was estimated from measurements of wheat canopy reflectance evaluated by two methods, a regression formula and an indirect technique. The date of planting and the time of irrigation in relation to the stage of plant growth were found to have significant effects on the development of leaves in spring wheat. A reduction in soil moisture adversely affected both the duration and magnitude of the maximum LAI for late planting dates. In general, water stress during vegetative stages resulted in a reduction in maximum LAI, while water stress during the reproductive period shortened the duration of green LAI in spring wheat. Canopy geometry and solar angle also affected the spectral properties of the canopies, and hence the estimated LAI. Increase in solar zenith angles resulted in a general increase in estimated LAI obtained from both methods.

  4. Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A., E-mail: jose.rodriguez@tsolar.eu [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain); Fortes, M. [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Alberte, C.; Vetter, M.; Andreu, J. [Dept. Technology, Development and Innovation, T-Solar Global S.A., Parque Tecnologico de Galicia, Avda. de Vigo 5, E-32900 San Cibrao das Vinas (Ourense) (Spain)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Spectral response equipment for measuring a-Si:H solar cells in a few seconds. Black-Right-Pointing-Pointer Equipment based on 16 LEDs with simultaneous illumination of the solar cell. Black-Right-Pointing-Pointer The current generated by each LED is analyzed by a Fast Fourier Transform. Black-Right-Pointing-Pointer Cheap equipment without lock-in technology for the current measurement. Black-Right-Pointing-Pointer Measurement error vs. conventional measurement less than 1% in J{sub sc}. - Abstract: An important requirement for a very fast spectral response measurement system is the simultaneous illumination of the solar cell at multiple well defined wavelengths. Nowadays this can be done by means of light emitting diodes (LEDs) available for a multitude of wavelengths. For the purpose to measure the spectral response (SR) of amorphous silicon solar cells a detailed characterization of LEDs emitting in the wavelength range from 300 nm to 800 nm was performed. In the here developed equipment the LED illumination is modulated in the frequency range from 100 Hz to 200 Hz and the current generated by each LED is analyzed by a Fast Fourier Transform (FFT) to determine the current component corresponding to each wavelength. The equipment provides a signal to noise ratio of 2-4 orders of magnitude for individual wavelengths resulting in a precise measurement of the SR over the whole wavelength range. The difference of the short circuit current determined from the SR is less than 1% in comparison to a conventional system with monochromator.

  5. Solar ultraviolet radiation in Syria measurements and relationship with skin cancer incidence

    International Nuclear Information System (INIS)

    Othman, I; Baydon, S.A.; Dawood, S.

    1994-11-01

    Seasonal variations of solar UVB (285-320) and UVA (320-400) were measured in three sites in Syria (33-37 N sup O) for two years: 1992-1993. UVB measurements were performed using polysulphone films and Robertson-Berger meter, while UVA measurements were done by NVA intensity meter. Two sets of measurements were carried out : - Maximal daily doses three times a week (every other day) - Diurnal variations from sun-rise to sun-set every two hours twice a month (every fortnight). The biological consequences of ultraviolet radiation withreference to some epidemiological data of skin cancer incidence in Syria since 1980 were discussed .(author). 36 refs., 21 figs., 11 tabs

  6. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology

    International Nuclear Information System (INIS)

    Ju, Xing; Xu, Chao; Han, Xue; Du, Xiaoze; Wei, Gaosheng; Yang, Yongping

    2017-01-01

    Highlights: • A review on spectral beam splitting (SBS) CPVT technologies is presented. • SBS methods including interference, liquid absorptive and other filters are discussed. • The researches of SBS CPVTs are reviewed comprehensively and summarized. • Recent research status and system performance characteristics are analysed. • Suggestions on the development of SBS CPVT technologies are proposed. - Abstract: This article presents a review on the research and development of spectral beam splitting concentrated photovoltaic/thermal (SBS CPVT) hybrid solar systems. The investigations on the SBS CPVT hybrid technologies had begun in the 1980s and were aimed at complete utilization of the solar irradiation over the whole solar spectrum using both PV cells and thermal absorbers. Several different SBS approaches were employed to achieve better conversion efficiencies, including the interference filter, liquid absorptive filter, holographic filter, luminescent filter, diffractive filter, combined interference and liquid absorptive filter, combined liquid and solid absorptive filter, and photovoltaics itself as a solid absorptive filter. The SBS CPVT systems were proposed or assembled in various system configurations for numerous purposes, such as domestic hot water, thermochemical reaction, hydrogen production, or even power generation. These researches and developments are comprehensively reviewed in this article, and the advantages and disadvantages of different SBS methods are presented and concluded. This paper also aims to provide a global point of view on research trends, market potential, technical obstacles, and the future work required for the development of SBS CPVT technology.

  7. Fourier-Transform Photocurrent Spectroscopy for a fast and highly sensitive spectral characterization of organic and hybrid solar cells

    International Nuclear Information System (INIS)

    Vandewal, K.; Goris, L.; Haeldermans, I.; Nesladek, M.; Haenen, K.; Wagner, P.; Manca, J.V.

    2008-01-01

    Two modes of Fourier-Transform Photocurrent Spectroscopy (FTPS) are presented for a fast and sensitive determination of photocurrent spectra of organic and dye sensitized solar cells. Furthermore, FTPS allows to spectrally resolve sub-bandgap absorption phenomena in P3HT, in organic P3HT:PCBM bulk heterojunctions and in hybrid P3HT/TiO 2 solar cells. The sub-bandgap absorption in the P3HT:PCBM blend is dominated by a band due to the formation of a ground-state charge-transfer complex between the polymer and PCBM. In P3HT/TiO 2 junctions such a charge-transfer complex band is not observed. Long-lived light induced sub-bandgap states appear in pure P3HT and in P3HT/TiO 2 junctions after irradiation with E > 1.9 eV

  8. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  9. Spectral properties of water ice and contaminants. [of importance to remote sensing of ice in solar system

    Science.gov (United States)

    Lucey, P. G.; Clark, R. N.

    1985-01-01

    For remote sensing studies of ices in the solar system, it is important to understand the optical properties of water ice, and mixtures of ice and particulate materials. The present paper has the objective to review the current understanding of the spectral properties of ice, and mixtures of ice and particulates. The review is to provide a basis for the understanding of the remote sensing of ice. It is found that reflectance spectra of ice-soil intimate mixtures are complex, nonlinear functions of the optical and physical properties of the components which comprise the surface.

  10. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels

    International Nuclear Information System (INIS)

    Lubitz, William David

    2011-01-01

    Hourly typical meteorological year (TMY3) data was utilized with the Perez radiation model to simulate solar radiation on fixed, azimuth tracking and two axis tracking surfaces at 217 geographically diverse temperate latitude sites across the contiguous United States of America. The optimum tilt angle for maximizing annual irradiation on a fixed south-facing panel varied from being equal to the latitude at low-latitude, high clearness sites, to up to 14 o less than the latitude at a north-western coastal site with very low clearness index. Across the United States, the optimum tilt angle for an azimuth tracking panel was found to be on average 19 o closer to vertical than the optimum tilt angle for a fixed, south-facing panel at the same site. Azimuth tracking increased annual solar irradiation incident on a surface by an average of 29% relative to a fixed south-facing surface at optimum tilt angle. Two axis tracking resulted in an average irradiation increase of 34% relative to the fixed surface. Introduction of manual surface tilt changes during the year produced a greater impact for non-tracking surfaces than it did for azimuth tracking surfaces. Even monthly tilt changes only resulted in an average annual irradiation increase of 5% for fixed panels and 1% for azimuth tracked surfaces, relative to using a single optimized tilt angle in each case. In practice, the decision whether to manually tilt panels requires balancing the added cost in labor and the panel support versus the extra energy generation and the cost value of that energy. A spreadsheet file is available that gives individual results for each of the 217 simulated sites.

  11. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  12. CuO-PANI nanostructure with tunable spectral selectivity for solar selective coating application

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L., E-mail: cind@nitt.edu; Prabhu, S., E-mail: sprabhuk@gmail.com

    2016-08-15

    Highlights: • CuO-PANI nanostructure has been reported as the solar selective absorber coating. • Solar selectivity and efficiency of the coatings have been evaluated. • PANI provides a surface texture favourable for multiple reflection. - Abstract: CuO-PANI nanostructure has been demonstrated as the solar selective absorber coating for the first time. The effortless chemical methods and easily scalable techniques such as precipitation, in-situ polymerization and spray coating were adopted for the fabrication of CuO nanorods and CuO-PANI nanostructures for solar application. The synthesis was carried out without using any template. The morphology and phase structure of fabricated CuO nanorods and CuO-PANI nanostructure coatings were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction analysis. The energy dispersive X-ray spectra and elemental mapping confirm the presence of the chosen elements in the nanostructure. The solar absorptance (α{sub s}), thermal emittance (ε{sub t}) and selectivity (ξ) of the nanostructure coatings on glass substrate were optimized to 0.94, 0.01 and 94 respectively by changing the polyaniline content on the surface of the CuO nanorods. The efficiency of the solar selective coatings were evaluated. The optimized solar absorber coating of CuO-PANI nanostructure is highly promising for its selective optical properties.

  13. The SATIRE-S model and why getting solar cycle spectral irradiance trends correct is so important

    Science.gov (United States)

    Ball, William; Haigh, Joanna; Krivova, Natalie; Unruh, Yvonne; Solanki, Sami

    2014-05-01

    There is currently a wide range of potential spectral solar irradiance (SSI) solar cycle (SC) amplitudes suggested by observations and models. Therefore, SSI SC changes are still not fully understood. The magnitude of the SC flux changes has a direct impact upon the temperature and chemistry of the Earth's atmosphere. To contribute to an understanding of the solar-climate connection, it is critical that we, as the solar community, communicate effectively with the climate community, providing uncertainties in SSI data and assessments of possible SSI options. We present the SATIRE-S reconstruction in the context of these SSI datasets. SATIRE-S is a physically based, consistent SSI reconstruction over the last three solar cycles. It shows different SC spectral variability at all wavelengths compared to the NRLSSI model, widely used in climate research. Most-importantly, SC changes in the ultra-violet (UV) can be twice as large in SATIRE-S as NRLSSI. Typically NRLSSI provides a lower limit of SC SSI UV variability. SORCE satellite observations provide SC magnitudes at the upper limit of variability, exceeding that of SATIRE-S by a factor of three at some UV wavelengths. There is currently no way to be certain if any of these three SSI datasets, or others, is correct. We also present the SSI datasets in terms of their impact on stratospheric ozone, within a 2D atmospheric model, as an example of why it is important to get SC changes correct. Using NRLSSI results in the 2D atmospheric model, we see a decrease in ozone concentration at all altitudes from solar maximum to minimum. SATIRE-S and SORCE/SOLSTICE observations instead show an increase in ozone concentration in the mesosphere. The magnitude of the increase in the mesosphere when using SOLSTICE also depends greatly upon the version of the data, which means that studies using different data versions of SOLSTICE may lead to different conclusions. These results highlight why an accurate understanding of SC SSI

  14. Solar power conversion system with directionally- and spectrally-selective properties based on a reflective cavity

    Science.gov (United States)

    Boriskina, Svetlana; Kraemer, Daniel; McEnaney, Kenneth; Weinstein, Lee A.; Chen, Gang

    2018-03-13

    Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.

  15. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  16. Designing a dual-mode broadband solar spectral converter: The example of Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+}-tridoped perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li-Tian; Wu, Xuan-Ming; Wang, Ting; Chen, Dong-Ju; Deng, Chao; Meng, Jian-Xin, E-mail: tmjx@jnu.edu.cn; Cao, Li-Wei

    2016-07-15

    A promising dual-mode broadband solar spectral converter CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} was successfully developed by solid-stated reaction. The structure, photoluminescence (PL), photoluminescence excitation (PLE) and diffuse reflectance (DR) spectra in the UV–vis–NIR region have been systematically investigated. The results show that the as-prepared samples simultaneously exhibit two distinct spectral converting patterns, nonlinear quantum-cutting (QC) involving Bi{sup 3+}–Ti{sup 4+} metal-to-metal charge transfer state (BT-MMCTs) → Yb{sup 3+}: {sup 2}F{sub 5/2} + Yb{sup 3+}: {sup 2}F{sub 5/2} and linear downshift (DS) involving Cr{sup 3+}: {sup 4}T{sub 2} → Yb{sup 3+}: {sup 2}F{sub 5/2}. It deduces that the nonlinear QC is based on a cooperative energy transfer (CET) process while the linear DS belongs to a dipole–dipole mechanism. With the present converter, broadband UV–vis (300–700 nm) photons, which are not fully utilized by the existing c-Si solar cells, can be efficiently harvested and converted into ∼1000 nm NIR photons via the dual-mode mechanism. Moreover, not only the PLE spectrum of CaTiO{sub 3}: Bi{sup 3+}, Cr{sup 3+}, Yb{sup 3+} matched well with that of the solar radiation, but also its NIR emission peak position fell well over the spectral response of the commercial crystalline Si (c-Si) solar cells. This as-prepared dual-mode solar spectral converter with multiple advantages can simultaneously realize high quantum yield and broadband conversion, which offers a new and effective way to boost the conversion efficiency of c-Si solar cells. We believe this novel design of dual-mode solar spectral converters can inspire a direction for the synthesis of more advanced UV–vis–NIR phosphors that can be used in Si solar cells. - Highlights: • A dual-mode broadband solar spectral converter is designed and developed. • The energy transfer mechanism relies on quantum-cutting as well as downshift. • The PLE

  17. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008 (SSBUVIRR) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  18. Review on the solar spectral variability in the EUV for space weather purposes

    Directory of Open Access Journals (Sweden)

    J. Lilensten

    2008-02-01

    Full Text Available The solar XUV-EUV flux is the main energy source in the terrestrial diurnal thermosphere: it produces ionization, dissociation, excitation and heating. Accurate knowledge of this flux is of prime importance for space weather. We first list the space weather applications that require nowcasting and forecasting of the solar XUV-EUV flux. We then review present models and discuss how they account for the variability of the solar spectrum. We show why the measurement of the full spectrum is difficult, and why it is illusory to retrieve it from its atmospheric effects. We then address the problem of determining a set of observations that are adapted for space weather purposes, in the frame of ionospheric studies. Finally, we review the existing and future space experiments that are devoted to the observation of the solar XUV-EUV spectrum.

  19. A correlation model to compute the incidence angle modifier and to estimate its effect on collectible solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Armenta-Deu, C. (Universidad Complutense de Madrid (ES). Facultad Fisicas); Lukac, B. (University of T. and C. Zilina (CS))

    1991-01-01

    The radiation transmittance and absorptance of materials vary according to the angle of incidence of the incoming solar radiation. Therefore, the efficiency of most solar converters (thermal or photovoltaic) is a function of the sun's position through the angle of incidence. This problem may be taken account of by the Incidence Angle Modifier, which is considered in this paper. An analytic expression for the incidence angle modifier, based on meteorological data or on geographic and geometric parameters, has been developed; this expression includes the effect of beam and diffuse radiation as well as the global influence. A comparison between measured data and these computed from our model has given a very good correlation, the results being within {+-}3% for horizontal and titled planes, and within {+-}7% for vertical surfaces, on average. The method also computes the collectible solar energy within a 5% error for thresholds up to 300Wm{sup -2}. The method has been validated for more than 30 locations in south and west Europe. (author).

  20. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  1. Solar ultraviolet-B exposure and cancer incidence and mortality in the United States, 1993–2002

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2006-11-01

    Full Text Available Abstract Background An inverse relationship between solar ultraviolet-B (UV-B exposure and non-skin cancer mortality has long been reported. Vitamin D, acquired primarily through exposure to the sun via the skin, is believed to inhibit tumor development and growth and reduce mortality for certain cancers. Methods We extend the analysis of this relationship to include cancer incidence as well as mortality, using higher quality and higher resolution data sets than have typically been available. Over three million incident cancer cases between 1998 and 2002 and three million cancer deaths between 1993 and 2002 in the continental United States were regressed against daily satellite-measured solar UV-B levels, adjusting for numerous confounders. Relative risks of reduced solar UV-B exposure were calculated for thirty-two different cancer sites. Results For non-Hispanic whites, an inverse relationship between solar UV-B exposure and cancer incidence and mortality was observed for ten sites: bladder, colon, Hodgkin lymphoma, myeloma, other biliary, prostate, rectum, stomach, uterus, and vulva. Weaker evidence of an inverse relationship was observed for six sites: breast, kidney, leukemia, non-Hodgkin lymphoma, pancreas, and small intestine. For three sites, inverse relationships were seen that varied markedly by sex: esophagus (stronger in males than females, gallbladder (stronger in females than males, and thyroid (only seen in females. No association was found for bone and joint, brain, larynx, liver, nasal cavity, ovary, soft tissue, male thyroid, and miscellaneous cancers. A positive association between solar UV-B exposure and cancer mortality and incidence was found for anus, cervix, oral cavity, melanoma, and other non-epithelial skin cancer. Conclusion This paper adds to the mounting evidence for the influential role of solar UV-B exposure on cancer, particularly for some of the less-well studied digestive cancers. The relative risks for cancer

  2. Validation of the spectral mismatch correction factor using an LED-based solar simulator

    DEFF Research Database (Denmark)

    Riedel, Nicholas; Santamaria Lancia, Adrian Alejo; Thorsteinsson, Sune

    -halide light sources provide. In this work we will use an EcoSun10L LED module tester from Ecoprogetti to perform short circuit current (ISC) measurements under various class A, B and C spectra. We will apply a spectral mismatch correction to the measured ISC under each test spectrum per IEC 60904-7. In all...... scenarios, a small area mono-Si cell is used the reference cell and a similar mono-Si cell is used as the PV device under test (DUT). Finally, we quantify the variation of the DUT’s measured and spectrally corrected Isc under the class A, B and C test spectra....

  3. Can we use the ozone response in a CCM to say which solar spectral irradiance is most likely correct?

    Science.gov (United States)

    Ball, William; Rozanov, Eugene; Shapiro, Anna

    2015-04-01

    Ozone plays a key role in the temperature structure of the Earth's atmosphere and absorbs damaging ultraviolet (UV) solar radiation. Evidence suggests that variations in stratospheric ozone resulting from changes in solar UV output may have an important role to play in weather over the North Atlantic and Europe on decadal timescales through a "top-down" coupling with the troposphere. However, the magnitude of the stratospheric response to the Sun over the 11-year solar cycle (SC) depends primarily on how much the UV changes. SC UV changes differ significantly between different observational instruments and the observations and models. The substantial disagreements between existing SSI datasets lead to different atmospheric responses when they are used in climate models and, therefore, we still cannot fully understand and simulate the ozone variability. We use the SOCOL chemistry-climate model, in specified dynamics mode, to calculate the atmospheric response from using different spectral irradiance from the SATIRE-S and NRLSSI models and with SORCE observations and a constant Sun. We compare the ozone and hydroxl results from these runs with observations to try to determine which SSI dataset is most likely to be correct. This is important to get a better understanding of which SSI dataset should be used in climate modelling and what magnitude of UV variability the Sun has. This will lead to a better understanding of the Sun's influence upon our climate and weather.

  4. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain)

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the match of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.

  5. 3d Approach Of Spectral Response For A Bifacial Silicon Solar Cell ...

    African Journals Online (AJOL)

    Losses in emitter region and external magnetic field are also being taken into account in order to perfect the description of measured spectral response. Then the new analytical expressions of carrier, photocurrent and short circuit densities are produced for front side and rear side illuminations. Homemade software based ...

  6. Measuring the iron spectral opacity in solar conditions using a double ablation front scheme

    Energy Technology Data Exchange (ETDEWEB)

    Colaitis, A. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Ducret, J. E. [Centre Lasers Intenses et Applications, Talence (France); CEA/DRF/IRFU/DAp, CEA Saclay (France); Turck-Chieze, S [CEA/DRF/IRFU/DAp, CEA Saclay (France); Pennec, M L [CEA/DRF/IRFU/DAp, CEA Saclay (France); CEA/DIF, Arpajon (France); Blancard, C [CEA/DIF, Arpajon (France)

    2018-01-22

    We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.

  7. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Science.gov (United States)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff

  8. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2017-09-01

    Full Text Available The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow. Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C.In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S, λ2 = 1650 nm (sensitive to τ, and λ3 = 2100 nm (sensitive to reff, C are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012 were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice

  9. Assessment of performances of sun zenith angle and altitude parameterisations of atmospheric radiative transfer for spectral surface downwelling solar irradiance

    Science.gov (United States)

    Wald, L.; Blanc, Ph.

    2010-09-01

    Satellite-derived assessments of surface downwelling solar irradiance are more and more used by engineering companies in solar energy. Performances are judged satisfactory for the time being. Nevertheless, requests for more accuracy are increasing, in particular in the spectral definition and in the decomposition of the global radiation into direct and diffuse radiations. One approach to reach this goal is to improve both the modelling of the radiative transfer and the quality of the inputs describing the optical state. Within their joint project Heliosat-4, DLR and MINES ParisTech have adopted this approach to create advanced databases of solar irradiance succeeding to the current ones HelioClim and SolEMi. Regarding the model, we have opted for libRadtran, a well-known model of proven quality. As many similar models, running libRadtran is very time-consuming when it comes to process millions or more pixels or grid cells. This is incompatible with real-time operational process. One may adopt the abacus approach, or look-up tables, to overcome the problem. The model is run for a limited number of cases, covering the whole range of values taken by the various inputs of the model. Abaci are such constructed. For each real case, the irradiance value is computed by interpolating within the abaci. In this way, real-time can be envisioned. Nevertheless, the computation of the abaci themselves requires large computing capabilities. In addition, searching the abaci to find the values to interpolate can be time-consuming as the abaci are very large: several millions of values in total. Moreover, it raises the extrapolation problem of parameter out-of-range during the utilisation of the abaci. Parameterisation, when possible, is a means to reduce the amount of computations to be made and subsequently, the computation effort to create the abaci, the size of the abaci, the extrapolation and the searching time. It describes in analytical manner and with a few parameters the

  10. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Czech Academy of Sciences Publication Activity Database

    Labrosse, N.; Heinzel, Petr; Vial, J. C.; Kucera, T.; Parenti, S.; Gunár, Stanislav; Schmieder, B.; Kilper, G.

    2010-01-01

    Roč. 151, č. 4 (2010), s. 243-332 ISSN 0038-6308 R&D Projects: GA ČR GA205/07/1100 Grant - others:ESA(XE) ESA-PECS project No. 98030 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar prominences * spectroscopy * radiative transfer Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.433, year: 2010

  11. Influence of the spectral distribution of a solar simulator and of the outer diffuse radiation in the estimation of the optical yield of a thermal solar receiver; Influencia de la distribucion espectral de un simulador solar y de la radiacion difusa exterior en la estimacion del rendimiento optico de un captador solar termico

    Energy Technology Data Exchange (ETDEWEB)

    Sallaberry, F.; Garcia de Jalon, A.; Ramirez, L.; Olano, X.; Bernad, I.; Erice, R.

    2008-07-01

    In this paper we will show the results of the analysis of factors that influence the estimation of optical efficiency of solar thermal collectors testes according to the European standard UNE-EN 12975-2. Indoor tests with solar simulator involve control of the spectrum of its lamps to ensure that the difference with the Sun one does not change the optical efficiency {eta}{sub 0} of the collector. For outdoor tests, the diffuse radiation should be control as well. In the laboratory (LCS) of CENER, solar collectors tests are done according to part 6.1 of the standard UNE{sub E}N 12975-2 in continuous solar simulator. This study estimated the spectral correction applied to the estimation of optical efficiency of some solar collectors, with different selective materials. Likewise, we will weight the influence of terms related to diffuse radiation and spectral distribution. (Author)

  12. Radiation Dose Assessments of Solar Particle Events with Spectral Representation at High Energies for the Improvement of Radiation Protection

    Science.gov (United States)

    Kim, Myung-Hee; Atwell, William; Tylka, Allan J.; Dietrich, William F.; Cucinotta, Francis A.

    2010-01-01

    For radiation dose assessments of major solar particle events (SPEs), spectral functional forms of SPEs have been made by fitting available satellite measurements up to approx.100 MeV. However, very high-energy protons (above 500 MeV) have been observed with neutron monitors (NMs) in ground level enhancements (GLEs), which generally present the most severe radiation hazards to astronauts. Due to technical difficulties in converting NM data into absolutely normalized fluence measurements, those functional forms were made with little or no use of NM data. A new analysis of NM data has found that a double power law in rigidity (the so-called Band function) generally provides a satisfactory representation of the combined satellite and NM data from approx.10 MeV to approx.10 GeV in major SPEs (Tylka & Dietrich 2009). We use the Band function fits to re-assess human exposures from large SPEs. Using different spectral representations of large SPEs, variations of exposure levels were compared. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  13. Albedos and spectral signatures determination and it connection to geological processes: Simile between Earth and other solar system bodies

    Science.gov (United States)

    Suarez, J.; Ochoa, L.; Saavedra, F.

    2017-07-01

    Remote sensing has always been the best investigation tool for planetary sciences. In this research have been used data of Surface albedo, electromagnetic spectra and satelital imagery in search of understanding glacier dynamics in some bodies of the solar system, and how it's related to their compositions and associated geological processes, this methodology is very common in icy moons studies. Through analytic software's some albedos map's and geomorphological analysis were made that allow interpretation of different types of ice in the glacier's and it's interaction with other materials, almost all the images were worked in the visible and infrared ranges of the spectrum; spectral data were later used to connect the reflectance whit chemical and reologic properties of the compounds studied. It have been concluded that the albedo analysis is an effective tool to differentiate materials in the bodies surfaces, but the application of spectral data is necessary to know the exact compounds of the glaciers and to have a better understanding of the icy bodies.

  14. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  15. Observational study on the fine structure and dynamics of a solar jet. II. Energy release process revealed by spectral analysis

    Science.gov (United States)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-01-01

    We report on a solar jet phenomenon associated with the C5.4 class flare on 2014 November 11. The data of the jet was provided by the Solar Dynamics Observatory, the X-Ray Telescope (XRT) aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss all the processes of the observed phenomena, including energy storage, event trigger, and energy release. In this paper, we focus on the energy release process of the observed jet, and mainly describe our spectral analysis on the Hα data of DST to investigate the internal structure of the Hα jet and its temporal evolution. This analysis reveals that in the physical quantity distributions of the Hα jet, such as line-of-sight velocity and optical thickness, there is a significant gradient in the direction crossing the jet. We interpret this internal structure as the consequence of the migration of the energy release site, based on the idea of ubiquitous reconnection. Moreover, by measuring the horizontal flow of the fine structures in the jet, we succeeded in deriving the three-dimensional velocity field and the line-of-sight acceleration field of the Hα jet. The analysis result indicates that part of the ejecta in the Hα jet experienced additional acceleration after it had been ejected from the lower atmosphere. This secondary acceleration was found to occur in the vicinity of the intersection between the trajectories of the Hα jet and the X-ray jet observed by Hinode/XRT. We propose that a fundamental cause of this phenomenon is magnetic reconnection involving the plasmoid in the observed jet.

  16. POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Šafránková, J.; Němeček, Z.; Němec, F.; Přech, L.; Chen, C. H. K.; Zastenker, G. N.

    2016-01-01

    This paper analyzes solar wind power spectra of bulk and thermal speed fluctuations that are computed with a time resolution of 32 ms in the frequency range of 0.001–2 Hz. The analysis uses measurements of the Bright Monitor of the Solar Wind on board the Spektr-R spacecraft that are limited to 570 km s 1 bulk speed. The statistics, based on more than 42,000 individual spectra, show that: (1) the spectra of bulk and thermal speeds can be fitted by two power-law segments; (2) despite their large variations, the parameters characterizing frequency spectrum fits computed on each particular time interval are very similar for both quantities; (3) the median slopes of the bulk and thermal speeds of the segment attributed to the MHD scale are 1.43 and 1.38, respectively, whereas they are 3.08 and 2.43 in the kinetic range; (4) the kinetic range slopes of bulk and thermal speed spectra become equal when either the ion density or magnetic field strength are high; (5) the break between MHD and kinetic scales seems to be controlled by the ion β parameter; (6) the best scaling parameter for bulk and thermal speed variations is a sum of the inertial length and proton thermal gyroradius; and (7) the above conclusions can be applied to the density variations if the background magnetic field is very low.

  17. Grazing incidence X-ray fluorescence analysis of buried interfaces in periodically structured crystalline silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Eisenhauer, David; Preidel, Veit; Becker, Christiane; Pollakowski, Beatrix; Beckhoff, Burkhard; Baumann, Jonas; Kanngiesser, Birgit; Amkreutz, Daniel; Rech, Bernd; Back, Franziska; Rudigier-Voigt, Eveline

    2015-01-01

    We present grazing incidence X-ray fluorescence (GIXRF) experiments on 3D periodically textured interfaces of liquid phase crystallized silicon thin-film solar cells on glass. The influence of functional layers (SiO x or SiO x /SiC x ) - placed between glass substrate and silicon during crystallization - on the final carbon and oxygen contaminations inside the silicon was analyzed. Baring of the buried structured silicon surface prior to GIXRF measurement was achieved by removal of the original nano-imprinted glass substrate by wet-chemical etching. A broad angle of incidence distribution was determined for the X-ray radiation impinging on this textured surface. Optical simulations were performed in order to estimate the incident radiation intensity on the structured surface profile considering total reflection and attenuation effects. The results indicate a much lower contamination level for SiO x compared to the SiO x /SiC x interlayers, and about 25% increased contamination when comparing structured with planar silicon layers, both correlating with the corresponding solar cell performances. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  19. Correlation between the time-series of air temperature and incident solar radiation at Port Harcourt, Nigeria

    International Nuclear Information System (INIS)

    Adjepong, S.K.; Okujagu, C.

    1987-12-01

    We present the preliminary results of an investigation of the correlation between the temporal variations of the time-series of ground air temperature and incident solar radiation recorded at Port Harcourt (lat. 4 deg. 51' N, long. 7 deg. 01' E), Nigeria, during a five-year period (1981 through 1985). Computed cross-correlation functions of the daily time-series reveal correlation at time lags which are approximate harmonics of the 27-day solar rotation cycle. The cross-correlation function of the mean monthly series shows correlation at a time lag of 12 months implying a dominant annual-cycle component in the variation of either series. (author). 12 refs, 2 figs

  20. On the Incidence of Wise Infrared Excess Among Solar Analog, Twin, and Sibling Stars

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, A. D.; Martins, B. L. Canto; Lima Jr, J. E.; Silva, D. Freire da; Medeiros, J. R. De [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal, RN, 59072-970 (Brazil); Leão, I. C. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Freitas, D. B. de, E-mail: dgerson@fisica.ufrn.br [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900, Fortaleza, Ceará (Brazil)

    2017-03-01

    This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22 μ m bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer ( WISE ) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12 μ m and/or 22 μ m excesses at the 3 σ level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29 solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4 μ m) and W2 (4.6 μ m) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence.

  1. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  2. Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells

    Science.gov (United States)

    Vlasov, A. S.; Khvostikov, V. P.; Karlina, L. B.; Sorokina, S. V.; Potapovich, N. S.; Shvarts, M. Z.; Timoshina, N. Kh.; Lantratov, V. M.; Mintairov, S. A.; Kalyuzhnyi, N. A.; Marukhina, E. P.; Andreev, V. M.

    2013-07-01

    A concentrator photovoltaic module with sunlight spectral splitting by Fresnel lens and dichroic filters is developed. The photoelectric conversion efficiency of such a module is estimated at a level of 49.4% when three single-junction cells are used and may reach 48.5-50.6% when a tandem two-junction cell is combined with narrow-band cells. Single-junction AlGaAs, GaAs, GaSb, and InGa(P)As solar sells are fabricated by zinc diffusion from the vapor phase into an n-type epitaxial layer. GaInP/GaAs cascade solar cells are prepared by MOS hydride epitaxy. The overall efficiency of the three single-junction solar cells developed for the spectral-splitting module is 38.1% (AM1.5D) at concentration ratio K c = 200x. The combination of the solar cells with the cascade structure demonstrates an efficiency of 37.9% at concentrations of 400-800 suns. The parameters of the spectral-splitting photovoltaic module are measured. The photovoltaic efficiency of this module reaches 24.7% in the case of three single-junction cells and 27.9% when the two-junction and single-junction cells are combined.

  3. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    Directory of Open Access Journals (Sweden)

    Claire Marionnet

    2014-12-01

    Full Text Available The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV rays (UVA, 320–400 nm and UVB, 280–320 nm. The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1 the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2 description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3 analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  4. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection.

    Science.gov (United States)

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-12-23

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320-400 nm and UVB, 280-320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  5. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    Science.gov (United States)

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  6. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  7. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations

    Science.gov (United States)

    Yeo, K. L.; Krivova, N. A.; Solanki, S. K.; Glassmeier, K. H.

    2014-10-01

    Context. Total and spectral solar irradiance are key parameters in the assessment of solar influence on changes in the Earth's climate. Aims: We present a reconstruction of daily solar irradiance obtained using the SATIRE-S model spanning 1974 to 2013 based on full-disc observations from the KPVT, SoHO/MDI, and SDO/HMI. Methods: SATIRE-S ascribes variation in solar irradiance on timescales greater than a day to photospheric magnetism. The solar spectrum is reconstructed from the apparent surface coverage of bright magnetic features and sunspots in the daily data using the modelled intensity spectra of these magnetic structures. We cross-calibrated the various data sets, harmonizing the model input so as to yield a single consistent time series as the output. Results: The model replicates 92% (R2 = 0.916) of the variability in the PMOD TSI composite including the secular decline between the 1996 and 2008 solar cycle minima. The model also reproduces most of the variability in observed Lyman-α irradiance and the Mg II index. The ultraviolet solar irradiance measurements from the UARS and SORCE missions are mutually consistent up to about 180 nm before they start to exhibit discrepant rotational and cyclical variability, indicative of unresolved instrumental effects. As a result, the agreement between model and measurement, while relatively good below 180 nm, starts to deteriorate above this wavelength. As with earlier similar investigations, the reconstruction cannot reproduce the overall trends in SORCE/SIM SSI. We argue, from the lack of clear solar cycle modulation in the SIM record and the inconsistency between the total flux recorded by the instrument and TSI, that unaccounted instrumental trends are present. Conclusions: The daily solar irradiance time series is consistent with observations from multiple sources, demonstrating its validity and utility for climate models. It also provides further evidence that photospheric magnetism is the prime driver of

  8. Discrimination and quantification of contamination and implanted solar wind in Genesis collector shards using grazing incidence synchrotron x-ray techniques: Initial results

    International Nuclear Information System (INIS)

    Kitts, K.; Sutton, S.; Eng, P.; Ghose, S.; Burnett, D.

    2006-01-01

    Grazing incidence X-ray fluorescence is a non-destructive technique that can differentiate the embedded solar wind component from surface contamination and collector background in the Genesis shards. Initial solar Fe abundance in D30554 is 8 x 10 12 /cm 2 . Accurate knowledge of the composition of the Sun provides a baseline, which allows an understanding of how the solar system has evolved over time and how solar processes and solar wind mechanics behave. Unfortunately, the errors in photospheric abundances are too large for many planetary science problems and this hampers our understanding of these different processes. Analyses of solar wind implanted in meteorites or lunar soils have provided more precise data but alteration processes on these bodies may complicate such information. In response to this need for pristine solar wind samples, NASA developed and launched the Genesis Probe. Unfortunately, the probe smashed into the Utah desert shattering the 300 collector plates into 15,000+ pieces all of which are now coated in a both a fine terrestrial dust and Si and Ge powder from the disrupted collectors themselves. The solar wind penetration depth is 100-200 nm and the superposed contamination layers are typically 40-50 nm. Stringent cleaning regimes have the potential of removing the solar wind itself. The best solution is to have sufficient spatial resolution to separately analyze the surface contamination and penetrated solar wind. To that end, three Genesis collector array shards and their appropriate flight spares were characterized via grazing incidence x-ray fluorescence and x-ray reflectivity. The goals were (1) to evaluate the various cleaning methods used to eliminate contamination, (2) to identify the collector substrates most suited for this technique, (3) to determine whether the solar wind signature could be deconvolved from the collector background signature, and (4) to measure the relative abundances of Ca to Ge in the embedded solar wind.

  9. Self-Optimizing Photoelectrochemical Growth of Nanopatterned Se–Te Films in Response to the Spectral Distribution of Incident Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Carim, Azhar I. [Division of Chemistry and Chemical; Batara, Nicolas A. [Division of Chemistry and Chemical; Premkumar, Anjali [Division of Chemistry and Chemical; Atwater, Harry A. [Division of Chemistry and Chemical; Lewis, Nathan S. [Division of Chemistry and Chemical

    2015-09-02

    Photoelectrochemical growth of Se–Te films spontaneously produces highly ordered, nanoscale lamellar morphologies with periodicities that can be tuned by varying the illumination wavelength during deposition. This phenomenon has been characterized further herein by determining the morphologies of photoelectrodeposited Se–Te films in response to tailored spectral illumination profiles. Se–Te films grown under illumination from four different sources, having similar average wavelengths but having spectral bandwidths that spanned several orders of magnitude, all nevertheless produced similar structures which had a single, common periodicity as quantitatively identified via Fourier analysis. Film deposition using simultaneous illumination from two narrowband sources, which differed in average wavelength by several hundred nanometers, resulted in a structure with only a single periodicity intermediate between the periods observed when either source alone was used. This single periodicity could be varied by manipulating the relative intensity of the two sources. An iterative model that combined full-wave electromagnetic effects with Monte Carlo growth simulations, and that considered only the fundamental light-material interactions during deposition, was in accord with the morphologies observed experimentally. Simulations of light absorption and concentration in idealized lamellar arrays, in conjunction with all of the available data, additionally indicated that a self-optimization of the periodicity of the nanoscale pattern, resulting in the maximization of the anisotropy of interfacial light absorption in the three-dimensional structure, is consistent with the observed growth process of such films.

  10. Earth Reflected Solar Radiation Incident upon an Arbitrarily Oriented Spinning Flat Plate

    Science.gov (United States)

    Cunningham, Fred G.

    1963-01-01

    A general derivation is given for the earth reflected solar radiation input to a flat plate--a solar cell paddle, for example--which is spinning about an axis coincident with the axis of symmetry of the satellite to which it is affixed. The resulting equations are written for the general case so that arbitrary orientations of the spin axis with respect to the earth-satellite line and arbitrary orientations of the normal to the plate with respect to the spin axis can be treated. No attempt is made to perform the resulting integrations because of the complexity of the equations; nor is there any attempt to delineate the integration limits for the general case. However, the equations governing these limits are given. The appendixes contain: the results, in graphical form, of two representative examples; the general computer program for the calculation is given in Fortran notation; and the results of a calculation of the distribution of albedo energy on the proposed Echo II satellite. The value of the mean solar constant used is 1.395 times 10 (sup 4) ergs per centimeters-squared per second; the mean albedo of the earth is assumed to be 0.34; and the earth is assumed to be a diffuse reflector.

  11. High spectral response heteroleptic ruthenium (II) complexes as ...

    Indian Academy of Sciences (India)

    Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) ...

  12. Core and Wing Densities of Asymmetric Coronal Spectral Profiles: Implications for the Mass Supply of the Solar Corona

    Science.gov (United States)

    Patsourakos, S.; Klimchuk, J. A.; Young, P. R.

    2014-01-01

    Recent solar spectroscopic observations have shown that coronal spectral lines can exhibit asymmetric profiles, with enhanced emissions at their blue wings. These asymmetries correspond to rapidly upflowing plasmas at speeds exceeding approximately equal to 50 km per sec. Here, we perform a study of the density of the rapidly upflowing material and compare it with that of the line core that corresponds to the bulk of the plasma. For this task, we use spectroscopic observations of several active regions taken by the Extreme Ultraviolet Imaging Spectrometer of the Hinode mission. The density sensitive ratio of the Fe(sub XIV) lines at 264.78 and 274.20 Angstroms is used to determine wing and core densities.We compute the ratio of the blue wing density to the core density and find that most values are of order unity. This is consistent with the predictions for coronal nanoflares if most of the observed coronal mass is supplied by chromospheric evaporation driven by the nanoflares. However, much larger blue wing-to-core density ratios are predicted if most of the coronal mass is supplied by heated material ejected with type II spicules. Our measurements do not rule out a spicule origin for the blue wing emission, but they argue against spicules being a primary source of the hot plasma in the corona. We note that only about 40% of the pixels where line blends could be safely ignored have blue wing asymmetries in both Fe(sub XIV) lines. Anticipated sub-arcsecond spatial resolution spectroscopic observations in future missions could shed more light on the origin of blue, red, and mixed asymmetries.

  13. Investigation of spectral distribution and variation of irradiance with the passage time of CSI lamps which constitute a solar simulator; Solar simulator ni shiyosuru CSI lamp no supekutoru bunpu, hosha shodo no keiji henka ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Yamada, T.; Noguchi, T. [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Study was made on time-variation of the performance of CSI lamps for solar simulators. In order to accurately evaluate the standard heat collection performance of solar systems in a room, MITI installed an artificial solar light source in the Solar Techno-Center of Japan Quality Assurance Organization for trial use and evaluation. CSI lamp is superior in durability, and can simulate the solar light in the daytime. The light source is composed of 72 metal halide lamps of 1kW arranged in a plane of 3.5times3.5m. The study result on time-variation of a spectral distribution and irradiance by intermittent switching of lamps showed a sufficient durability of 2000h. To ensure the accuracy of a solar heat collector measurement system enough, periodic calibration is being carried out using reference goods. To ensure the reliability and stability for a switching system, periodic maintenance of a power source, stabilizer and electric system is also being carried out in addition to CSI lamps. The stable irradiance and accuracy are being kept by such maintenance and periodic exchange of lamps. 6 figs., 4 tabs.

  14. Improving Solar Soft X-Ray (SXR) Irradiance Results from Broadband Photometers with New SXR Spectral Measurements from a CubeSat

    Science.gov (United States)

    Woods, T. N.; Caspi, A.; Chamberlin, P. C.; Didkovsky, L. V.; Eparvier, F. G.; Jones, A. R.; Mason, J. P.; Moore, C. S.; Solomon, S. C.; Viereck, R. A.

    2016-12-01

    There are four decades of broadband soft X-ray (SXR) measurements, but these measurements cannot directly quantify the varying contributions of emission lines (bound-bound) amongst the thermal radiative recombination (free-bound) and thermal and non-thermal bremsstrahlung (free-free) continua. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat mission, that was deployed into orbit in May 2016, was designed to directly measure the SXR spectra to improve the understanding of flare energetics and for studying the SXR radiation impacts in Earth's ionosphere. The broadband SXR measurements include the two bands of 1.6-25 keV (0.05-0.8 nm) by the GOES X-Ray Sensor (XRS) since the 1970s and the even broader band of 0.2-12 keV (0.1-7 nm) from several missions, including the Yohkoh Soft X-ray Telescope (SXT, 1991-2001), Student Nitric Oxide Experiment (SNOE, 1998-2002), Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED, 2002-present), the Solar Radiation and Climate Experiment (SORCE, 2003-present), and the Solar Dynamics Observatory (SDO, 2010-present). These broadband SXR measurements have been helpful for resolving some differences between ionosphere models and measurements, but differences remain in understanding solar SXR spectral distribution and atmospheric photoelectron flux. The lack of spectral resolution in the SXR range is thought to be the culprit for most of these disagreements and is thus an underlying motivation for the MinXSS CubeSat mission. The new solar SXR spectra in the range of 0.5 to 30 keV (0.04 - 2.5 nm) from MinXSS, along with how they can improve the accuracy of the broadband SXR photometer measurements, will be presented.

  15. An intense charge transfer broadband sensitized near-infrared emitting CaLaGa3S3O:Yb3+ phosphor suitable for solar spectral convertor.

    Science.gov (United States)

    Zhang, Gongguo; Liu, Chunmeng; Wang, Jing; Kuang, Xiaojun; Su, Qiang

    2011-11-21

    A near-infrared (NIR) phosphor, CaLaGa(3)S(6)O:Yb(3+), is developed as a promising solar spectral convertor for Si solar cells. The structure, photoluminescence excitation and emission spectra, concentration effect are investigated. The results show that CaLaGa(3)S(6)O:Yb(3+) has an efficient broad absorption band dominating around the 345 nm ascribing to the charge transfer state (CTS) of Yb(3+)-S(2-) and exhibits an intense NIR emission of Yb(3+) between 920 and 1150 nm, perfectly matching the maximum spectral response of Si solar cells. The NIR emission intensity of CaLaGa(3)S(6)O:Yb(3+) is 12 times as intense as that of a NIR quantum cutting phosphor Ca(2)BO(3)Cl:Ce(3+), Tb(3+), Yb(3+) (CBC) upon 4f-5d excitation of Ce(3+). These results demonstrate that the allowed CTS of Yb(3+)-S(2-) with high absorption cross-section can be an efficient and direct sensitizer harvesting UV-blue photons and greatly enhancing the NIR emission of Yb(3+) ion. © 2011 Optical Society of America

  16. Unstructured-Mesh Terrain Analysis and Incident Solar Radiation for Continuous Hydrologic Modeling in Mountain Watersheds

    Directory of Open Access Journals (Sweden)

    Hernan A. Moreno

    2018-03-01

    Full Text Available This article presents a methodology for estimating total incoming solar radiation from Triangular Irregular Network (TIN topographic meshes. The algorithm also computes terrain slope degree and aspect (slope orientation and accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes its slope and aspect while spherical trigonometry allows computing a unit vector defining the position of the sun at each hour and day of the year. Sky view fraction, useful to determine diffuse and backscattered radiation, is computed for each TIN element at prescribed azimuth intervals targeting the steepest elevation gradient. A comparison between the sun zenith angle and the steepest gradient allows deciding whether or not the pivot element is shaded. Finally, remote albedo is computed from the sky view fraction complementary functions for observed albedo values of the surrounding terrain. The sensitivity of the different radiative components to seasonal changes in atmospheric transmissivitties and surrounding albedo is tested in a mountainous watershed in Wyoming. This methodology represents an improvement on the current algorithms to compute terrain and radiation values on unstructured-mesh terrain models. All terrain-related features (e.g., slope, aspect, sky view fraction can be pre-computed and stored for easy access into a subsequent, progressive-in-time, numerical simulation.

  17. Influência do ângulo de incidência nos ganhos de calor solar através de materiais transparentes

    Directory of Open Access Journals (Sweden)

    Joaquim Pizzutti dos Santos

    Full Text Available Este trabalho apresenta uma equação genérica que relaciona a variação do Fator Solar com o ângulo de incidência. As curvas resultantes desta variação, para vidros e outros materiais transparentes, foram obtidas a partir de experimentos de espectrofotometria para reflexão e transmissão, realizados para diferentes ângulos de incidência. Desta forma, foram identificados grupos de materiais com comportamento semelhante de variação do Fator Solar em função do ângulo. Para cada um dos grupos foi definido um material de referência, com valores de Fator Solar representando o comportamento médio do grupo. Para estes materiais foram obtidas equações gerais da curva de variação do Fator Solar, que permite calcular o ganho de calor solar total considerando a variação do ângulo de incidência da radiação ao longo de um período de tempo. O valor desses ganhos para qualquer material do mesmo grupo pode ser obtido aplicando um coeficiente de correção, que é o valor do Fator Solar para a incidência normal do material considerado. Os valores para esse coeficiente são propostos neste trabalho para um grande número de materiais ou podem ser obtidos a partir de catálogos.

  18. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    Science.gov (United States)

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  19. Estimation of incident solar radiation on the roof of the cultural and sports university centre of the Foundation University Los Libertadores

    International Nuclear Information System (INIS)

    Jiménez, S A; Carrillo, V M; Rátiva, L C

    2016-01-01

    This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively. (paper)

  20. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. II. IN THREE SOURCES OF A FLARING LOOP

    International Nuclear Information System (INIS)

    Huang Guangli; Li Jianping

    2011-01-01

    Based on the spatially resolvable data of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Nobeyama Radio Heliograph (NoRH), co-analysis of solar hard X-ray and microwave spectral evolution is performed in three separate sources located in one looptop (LT) and two footpoints (FPs) of a huge flaring loop in the 2003 October 24 flare. The RHESSI image spectral evolution in 10-100 keV is always fitted by the well-known soft-hard-soft (SHS) pattern in the three sources. When the total energy is divided into four intervals similar to the Yohkoh/Hard X-ray Telescope, i.e., 12.5-32.5 keV, 32.5-52.5 keV, 52.5-72.5 keV, and 72.5-97.5 keV, the SHS pattern in lower energies is converted gradually to the hard-soft-hard (HSH) pattern in higher energies in all three sources. However, the break energy in the LT and the northeast FP (∼32.5 keV) is evidently smaller than that in the southwest FP (∼72.5 keV). Regarding microwave spectral evolution of the NoRH data, the well-known soft-hard-harder pattern appeared in the southwest FP, while the HSH pattern coexisted in the LT and the northeast FP. The different features of the hard X-ray and microwave spectral evolutions in the three sources may be explained by the loop-loop interaction with another huge loop in the LT and with a compact loop in the northeast FP, where the trapping effect is much stronger than that in the southwest FP. The comparison between the LT and FP spectral indices suggests that the radiation mechanism of X-rays may be quite different in different energy intervals and sources. The calculated electron spectral indices from the predicted mechanisms of X-rays gradually become closer to those from the microwave data with increasing X-ray energies.

  1. Spectral calibration of filters and detectors of solar EUV telescope for 13.2 nm for the TESIS experiment

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Shestov, S.V.; Pertsov, A.A.; Reva, A.A.; Zuev, S.Yu.; Lopatin, A.Ya.; Luchin, V.I.; Zhou, Kh.; Khuo, T.

    2008-01-01

    The full-sun EUV telescope for 13.2 nm spectral band for the TESIS experiment is designed to produce images of hot coronal plasma (T ∼ 10 MK). Calibration process of optical elements is presented. Spectral transmission of multilayer Zr/Si filters, sensitivity and radiation tolerance of CCD detector have been measured. Peak transmission of EUV filters in working, spectral band reaches 40-50% (filters with 50 and 55 layers are used), spectral dependence of transmission is close to calculated one. Transmission of filters in white light is equal to (1-2)x10 -6 . Sensitivity of CCD ranges from 0.01 to 0.1 ADC units per photon, radiation tolerance is better than 10 9 rad [ru

  2. Aerosol Characterization at PSA from Spectral and Broadband Measurements of Solar Radiation; Caracterizacion de los Aerosoles en la PSA a partir de Medidas Espectrales y de Banda Ancha de Radiacion Solar

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, P.; Polo, J.; Campos, A.; Espinar, B.

    2006-07-01

    When passing through the atmosphere, the solar radiation suffers extinction processes with and intensity that depends on the atmosphere state. Some of the attenuation mechanisms, in particular those oflicht scattering, are spectrally selective, and thus, the solar spectrum at the earth's surface can change drastically from one place to another. This fact can be used on the determination of some of the Earth atmosphere components. The case of aerosol turbidity has a particular interest due to its high variability. In mis work different methodologies for aerosol characterization are presented, Aerosol optical depth, turbidity and Angstrom exponent are determined by them. Moreover, a comparison among the different methods is established and two heat haze events occurring during summer in PSA (Tabernas) are analyzed. (Author) 18 refs.

  3. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.

    2017-05-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.

  4. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds

    Directory of Open Access Journals (Sweden)

    I. Fountoulakis

    2016-03-01

    Full Text Available In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994–2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC, aerosol optical depth (AOD and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7–9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.

  5. Si Microwire Array Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Spurgeon, Joshua M.; Warren, Emily L.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.

    2010-01-01

    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J{sub sc}) of up to 24 mA cm{sup -2}, and fill factors >65% and employed Al{sub 2}O{sub 3} dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN{sub x}:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J{sub sc}. Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J{sub sc} of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements.

  6. Controlling adverse and beneficial effects of solar UV radiation by wearing suitable clothes - spectral transmission of different kinds of fabrics.

    Science.gov (United States)

    Sobolewski, Piotr S; Krzyścin, Janusz W; Jarosławski, Janusz; Wink, Jakub; Lesiak, Aleksandra; Narbutt, Joanna

    2014-11-01

    Humans should avoid prolonged exposure to the Sun during the warm subperiod of the year with naturally high solar UV level. One of the known recommendations to avoid excessive UV radiation is wearing clothes with UV protection additives. However there is an important question: how do we get an adequate solar UV radiation, which maintains a healthy status of vitamin D, without facing overexposure risks? It is found that some kind of 100% cotton knitted fabric, used in the production of normal daily clothing, has ∼15% transmittance of solar UV. Model studies show that a garment made of this fabric allows larger synthesis of vitamin D3 in human body without the erythema risks (skin redness). Thus the adequate level of vitamin D could be attained safely by a person exposing only small part of the body (face, palms) during the period (May-August) of the year. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Estimation of spectral reflectance of snow from IRS-1D LISS-III ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of the Indian Remote Sensing Satellite. The model computes spectral reflectances from satellite- based radiance measurements and includes the effect of the terrain topography on the incident solar radiation. The terrain slope and its aspect are generated from the digital elevation model of the region. The analysis carried ...

  8. Solar Spectral and Module Temperature Influence on the Outdoor Performance of Thin Film PV Modules Deployed on a Sunny Inland Site

    Directory of Open Access Journals (Sweden)

    G. Nofuentes

    2013-01-01

    Full Text Available This work aims at analysing the influence of both module temperature and solar spectrum distribution on the outdoor performance of the following thin film technologies: hydrogenated amorphous silicon (a-Si:H, cadmium telluride (CdTe, copper indium gallium selenide sulfide (CIGS, and hydrogenated amorphous silicon/hydrogenated microcrystalline silicon hetero-junction (a-Si:H/μc-Si:H. A 12-month experimental campaign carried out in a sunny inland site in which a module of each one of these technologies was tested and measured outdoors has provided the necessary empirical data. Results show that module temperature exerts a limited influence on the performance of the tested a-Si:H, CdTe, and a-Si:H/μc-Si:H modules. In contrast, the outdoor behaviour of the CIGS module is the most affected by its temperature. Blue-rich spectra enhance the outdoor behaviour of the a-Si:H and a-Si:H/μc-Si:H modules while it is the other way round for the CIGS module. However, the CdTe specimen shows little sensitivity to the solar spectrum distribution. Anyway, spectral effects are scarcely relevant on an annual basis, ranging from gains for the CIGS module (1.5% to losses for the a-Si:H module (1.0%. However, the seasonal impact of the spectrum shape is more noticeable in these two materials; indeed, spectral issues may cause performance gains or losses of up to some 4% when winter and summer periods are considered.

  9. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements

    International Nuclear Information System (INIS)

    Vorontsov, Sergei V.; Jefferies, Stuart M.

    2013-01-01

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  10. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vorontsov, Sergei V. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Jefferies, Stuart M., E-mail: S.V.Vorontsov@qmul.ac.uk, E-mail: stuartj@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 34 Ohia Ku Street, Pukalani, HI 96768 (United States)

    2013-11-20

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  11. Magnetic fields in proton solar flare of X17.2/4B class according to data of simultaneous measurements in a few spectral lines

    Science.gov (United States)

    Lozitsky, V.; Lozitska, N.

    2017-06-01

    Spectral-polarized magnetic field measurements in solar flare of 28 October 2003 of X17.2/4B class are compared in six FeI lines and in Hα line. Observations were carried out on Echelle spectrograph of horizontal solar telescope of Astronomical Observatory of Taras Shevchenko National University of Kyiv. Presented data relate to peak phase of flare and a place of photosphere outside sunspots where effective (average) magnetic field in FeI 6302.5 line was about 100 G and had S polarity. Measured splitting of emissive peaks in cores of strong FeI lines of 15th multiplet correspond to stronger fields, in range 550-700 G and S polarity too. Noticeablre splitting of emissive peaks (11-20 mÅ) were found also in Fe I 5434.527 line with effective Lande factor geff = -0.014. Value of this splitting and its sign indicate the existence of extremely strong fields of 25-50 kG of opposite (N) polarity which had negative Doppler velocities (lifting of plasma) on level of 1.7-2.2 km/sec. Magnetic field according to Hα line was 300 G and N polarity. Presented results indicate the essential inhomogeneity of magnetic field in flare volume which include the opposite polarities along the line of sight and wide range of effective magnetic fields.

  12. Solar holography

    Science.gov (United States)

    Ludman, Jacques E.; Riccobono, Juanita R.; Caulfield, H. John; Upton, Timothy D.

    2002-07-01

    A solar photovoltaic energy collection system using a reflection hologram is described herein. The system uses a single-axis tracking system in conjunction with a spectral- splitting holographic element. The hologram accurately focuses the desired regions of the solar spectrum to match the bandgaps of two ro more different solar cells, while diverting unused IR wavelengths away. Other applications for solar holography include daylighting and greenhouses.

  13. complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) ...

  14. Comparison of the solar spectral ultraviolet irradiance in motor vehicles with windows in an open and closed position

    Science.gov (United States)

    Kimlin, M. G.; Parisi, A. V.; Carter, B. D.; Turnbull, D.

    2002-06-01

    The solar ultraviolet (UV) spectrum was measured by a spectroradiometer located inside two common Australian vehicles: a family wagon and a four-wheel-drive vehicle. The entrance optics of the spectroradiometer was orientated, in turn, on a horizontal plane, towards the driver and passenger windows and towards the windshield. UV spectra were recorded when the vehicles' windows were in an open and closed position. For a typical Australian family wagon, on a horizontal plane inside the vehicle, closing the windows decreased, the total UV irradiance by a factor of 3.2, whilst in a four-wheel drive the irradiance decreased by a factor of 2.1. In order to reduce the likelihood of developing of UV-related eye and skin disorders, drivers should use appropriate UV protection whilst driving a vehicle with the windows in an open position. Results gained from this research provide new findings on the exposure of humans to UV in a vehicle.

  15. Calculation of heat balance considering the reflection, refraction of incident ray and salt diffusion on solar pad; Hikari no hansha kussetsu oyobi shio no kakusan wo koryoshita solar pond no netsukeisan

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K.; Li, X.; Baba, H.; Endo, N. [Kitami Institute of Technology, (Japan)

    1997-11-25

    In calculating heat balance of solar pond, calculation was made considering things except quality of the incident ray and physical properties of pond water which were conventionally considered. The real optical path length was determined from the reflection ratio of ray on the water surface based on the refraction ratio of pond water and the locus of water transmitted ray in order to calculate a total transmission rate. The rate of absorption of monochromatic lights composing of solar light in their going through the media is different by wavelength, and therefore, calculation was made in each monochromatic light. As to four kinds of salt water solution, NaCl, KCl, MgCl2 and CaCl2, these phenomena seen in solar pond are taken in, and a total transmission rate based on reality can be calculated by the wavelength integration method. Moreover, in the salt gradient layer, there are gradients in both concentration and temperature, and thermal physical values of each layer change. Accordingly, mass transfer and thermal transfer by both gradients were considered at the same time. An analytic solution was introduced which analyzes salt diffusion in the temperature field in the gradient layer and determines the concentration distribution. By these, concentration and physical values of each layer were calculated according to phenomena, and thermal balance of each layer of the solar pond was able to be accurately calculated. 6 refs., 5 figs., 2 tabs.

  16. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  17. Dependence on the incident light power of the internal electric fields in a GaAs p-i-n solar cell according to bright photoreflectance spectroscopy

    Science.gov (United States)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Lee, Sang Jun

    2016-07-01

    Bright photoreflectance (BPR) spectroscopy at room temperature is used to examine the internal electric fields in a GaAs p-i-n solar cell for their dependence on the incident light power. Electric fields are observed at 30 µW and 100 µW of incident light. With increasing power, the strengths of the two electric fields are reduced due to the photovoltage effect. The electric field observed at 30 µW is assigned to the p-i interface, which is close to the surface. The other electric field is due to the i-n interface because the incident light penetrates deeper as the light power is increased. The electric field strength of 35.6 kV/cm at the p-i interface is lower than that of 42.9 kV/cm at the i-n interface at 500 µW of light power because the photovoltage effect is proportional to the number of photo-generated carriers, which is reduced as the distance from the surface increases. When the incident light power is similar to the excitation beam power, the electric fields at the p-i interface are saturated.

  18. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  19. Profiles of spectral lines, magnetic fields and thermodynamical conditions in the X17.2/4B solar flare of October 28, 2003

    Science.gov (United States)

    Lozitsky, V. G.; Baranovsky, E. A.; Lozitska, N. I.; Tarashchuk, V. P.

    2018-03-01

    We analyse the peak phase of the exclusively powerful solar proton flare of October 28, 2003 which had originated in the active region NOAA 0486. For studying the physical conditions in the flare, we used twelve spectral lines including lines from FeI, FeII, and the Hα, Hβ, Hγ, Hδ lines observed with the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of the Taras Shevchenko National University of Kyiv. We found that this flare had a unique Balmer decrement, with the record ratio I (Hβ) / I(Hα) = 1.68 of Hβ and Hα intensities, which is unprecedented for all flares observed. In a place outside sunspots, the effective magnetic field measured by splitting `center of gravity' I ± V profiles was found within the range of 0-200 G in the middle photosphere, till 1200 G in the upper photosphere and the temperature minimum zone and up to 500 G in the chromosphere. The essential broadening of the FeI 5250.2 line versus the FeI 5247.1 one was found indicating the presence of a strong (800-1100 G) `turbulent' field in the middle photosphere. A semi-empirical model of the chromosphere constructed using the algorithms in PANDORA code has an interesting peculiarity, namely, three discrete layers with an increased concentration and / or temperature, including a very dense and thin layer with the following parameters: the concentration of hydrogen nH = 1018 cm3, the thickness Δh = 3-5 km, and a height of h ≈ 1200 km above the photosphere.

  20. Radical-Scavenging Activity of a Sunscreen Enriched by Antioxidants Providing Protection in the Whole Solar Spectral Range.

    Science.gov (United States)

    Souza, Carla; Maia Campos, Patrícia; Schanzer, Sabine; Albrecht, Stephanie; Lohan, Silke B; Lademann, Jürgen; Darvin, Maxim E; Meinke, Martina C

    2017-01-01

    The main reason for extrinsic skin aging is the negative action of free radicals. The formation of free radicals in the skin has been associated with ultraviolet (UV) exposure and also to visible (VIS) and near-infrared (NIR) irradiations. The aim of the present study was to evaluate the efficacy of a sunscreen in the whole solar range. The radical-scavenging activity of a sunscreen in the UV, VIS, and NIR ranges was evaluated using electron paramagnetic resonance spectroscopy. Ex vivo penetration profiles were determined using confocal Raman microscopy on porcine ear skin at different time points after application. Compared to the untreated skin, the sunscreen decreased the skin radical formation in the UV and VIS regions. Additional protection in the VIS and NIR ranges was observed for the sunscreen containing antioxidants (AO). The penetration depth of the cream was less than 11.2 ± 3.0 µm for all time points. A sunscreen containing AO improved the photoprotection in the VIS and NIR ranges. The sunscreen was retained in the stratum corneum. Therefore, these results show the possibility of the development of effective and safer sunscreen products. © 2017 S. Karger AG, Basel.

  1. The measurement and analysis of normal incidence solar UVB radiation and its application to the photoclimatherapy protocol for psoriasis at the Dead Sea, Israel.

    Science.gov (United States)

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-01-01

    The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  2. Theoretical Insight into the Spectral Characteristics of Fe(II-Based Complexes for Dye-Sensitized Solar Cells—Part I: Polypyridyl Ancillary Ligands

    Directory of Open Access Journals (Sweden)

    Xiaoqing Lu

    2011-01-01

    Full Text Available The design of light-absorbent dyes with cheaper, safer, and more sustainable materials is one of the key issues for the future development of dye-sensitized solar cells (DSSCs. We report herein a theoretical investigation on a series of polypyridyl Fe(II-based complexes of FeL2(SCN2, [FeL3]2+, [FeL′(SCN3]-, [FeL′2]2+, and FeL′′(SCN2 (L = 2,2′-bipyridyl-4,4′-dicarboxylic acid, L′ = 2,2′,2″-terpyridyl-4,4′,4″-tricarboxylic acid, L″ = 4,4‴-dimethyl-2,2′ : 6′,2″ :6″,2‴-quaterpyridyl-4′,4″-biscarboxylic acid by density functional theory (DFT and time-dependent DFT (TD-DFT. Molecular geometries, electronic structures, and optical absorption spectra are predicted in both the gas phase and methyl cyanide (MeCN solution. Our results show that polypyridyl Fe(II-based complexes display multitransition characters of Fe → polypyridine metal-to-ligand charge transfer and ligand-to-ligand charge transfer in the range of 350–800 nm. Structural optimizations by choosing different polypyridyl ancillary ligands lead to alterations of the molecular orbital energies, oscillator strength, and spectral response range. Compared with Ru(II sensitizers, Fe(II-based complexes show similar characteristics and improving trend of optical absorption spectra along with the introduction of different polypyridyl ancillary ligands.

  3. The behavior of temperature in photovoltaic panels efficiency at different levels of incidence of solar radiance associated with temperature; O comportamento da temperatura na eficiencia de paineis fotovoltaicos em diferentes niveis de incidencia da radiancia solar associado a temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger N.; Jesus, Manoel M.A.; Tarricone, Georgia [Universidade Tecnologica Federal do Paran (UTFPR), Apucarana, PR (Brazil)], email: rogernmichels@utfpr.edu.br; Gnoatto, Estor; Kavanagh, Edward [Universidade Tecnologica Federal do Paran (UTFPR), Medianeira, PR (Brazil)

    2011-07-01

    The efficiency of photovoltaic panels is related to factors of construction of the cell, as well as external factors. One of the external factors, which negatively affects the efficiency of photovoltaic panels, is the temperature. This work analyzes the influence of temperature on the efficiency of photovoltaic panels, with different levels of incidence of solar radiation (500, 700, 900 and 1000 Wm{sup -2}). The photovoltaic system, composed of photovoltaic panels and a positive displacement pump was installed at the Federal Technological University of Parana in the city of Medianeira. Data were collected during the period of one year, but only data from clear days were used, which did not occur to the influence of shading of clouds on the values obtained. Observed in this work, the temperature increase in photovoltaic panels, makes the efficiency decreases due to the decrease of voltage and power. (author)

  4. Absolute sensitivity calibration from 20 A to 430 A of a grazing incidence spectrometer with a multi-element spectral detector

    International Nuclear Information System (INIS)

    Terry, J.L.; Manning, H.L.; Marmar, E.S.

    1986-07-01

    Two methods which together allow sensitivity calibration from 20 A to 430 A are described in detail. The first method, useful up to 120 A, uses a low power source to generate Kα x-rays which are alternately viewed by an absolute detector (a proportional counter) and the spectrometer. The second method extends that calibration to 430 A. It relies on the 2:1 brightness ratio of bright doublet lines from impurity ions which have a single outer shell electron and which are present in hot, magnetically confined plasmas. It requires that the absolute sensitivity of the spectrometer be known at one wavelength point, and in practice requires a multi-element spectral detector

  5. Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples

    Science.gov (United States)

    Nostell, Per; Roos, Arne; Rönnow, Daniel

    1999-05-01

    A multipurpose instrument for the measurement of reflectance and transmittance versus angle of incidence for both specular and diffuse samples in the solar wavelength range has been constructed and evaluated. The instrument operates in the single-beam mode and uses a common light source for three experimental setups. Two integrating spheres, 20 cm in diameter, are used for diffuse transmittance and reflectance measurements. The transmittance sphere can be turned around an axis through the sample to vary the angle of incidence. The reflectance sphere uses a center mounted sample and a special feature is the position of the detector, which is mounted on the sample holder at the center of the sphere. This way the detector always sees the same part of the sphere wall and no light can reach the detector directly from the sample. The third setup is an absolute instrument for specular samples. It uses a small averaging sphere as a detector. The detector is mounted on an arm which rotates around the center of the sample, and it can thus pick up both the reflected and transmitted beams including all multiply reflected components. The averaging sphere detector is insensitive to small side shifts of the detected beams and no multiple reflections between detector and optical system occur. In this report a number of calibration procedures are presented for the three experimental setups and models for the calculation of correct transmittance and reflectance values from measured data are presented. It is shown that for integrating sphere measurements, the geometry of the sphere and the diffusivity of the sample as well as the sphere wall reflectance and port losses are important factors that influence the result. For the center mounted configuration these factors are particularly important and special emphasis is given to the evaluation of the reflectance sphere model. All three instrument setups are calibrated using certified reference materials and nonscattering mirrors and

  6. UV Filtering of Dye-Sensitized Solar Cells: The Effects of Varying the UV Cut-Off upon Cell Performance and Incident Photon-to-Electron Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE. Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.

  7. Effect of altitude on solar UVR and spectral and spatial variations of UV irradiances measured inWagrain, Austria in winter

    DEFF Research Database (Denmark)

    Baczynska, Katarzyna A; Pearson, Andy J; O'Hagan, John B

    2013-01-01

    Ultraviolet radiation spectral irradiance was measured at different altitudes on horizontal and tilted planes in different azimuth directions on cloudless days in Austria, in March 2010, within the Impact of Climatic and Environmental factors on Personal Ultraviolet Radiation Exposure project...

  8. Spectral sensitization of TiO2 by new hemicyanine dyes in dye solar cell yielding enhanced photovoltage: Probing chain length effect on performance

    International Nuclear Information System (INIS)

    Fadadu, Kishan B.; Soni, Saurabh S.

    2013-01-01

    Graphical abstract: New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. We have achieved remarkable photovoltage and overall performance of DSSC. Highlights: ► New hemicyanine dyes based on indolenine moiety were utilized as light harvesting materials in dye sensitized solar cell. ► Chain lengths of the molecules were varied in order to study its effect of chain length on the performance of DSSC. ► Electron transfer kinetic of the solar cell was studied and it was found that the chain length changes the electron transfer kinetic. -- Abstract: New hemicyanine dyes having indole nucleus with different alkyl chain length were synthesized and characterized using 1 H NMR and mass spectroscopy. These dyes were used to sensitize the TiO 2 film in dye sensitized solar cell. Nanocrystalline dye solar cells were fabricated and characterized using various electrochemical techniques. It has been found that the alkyl chain length present in the dye molecules greatly affects the overall performance of dye solar cell. Molecules having longer alkyl chain are having better sensitizers which enhance V oc to significant extent. Chain length dependent performance was further investigated using Tafel polarization and impedance method. Hemicyanine dye having hexyl chain has outperformed by attaining 2.9% solar to electricity conversion efficiency

  9. An automatic measuring system for mapping of spectral and angular dependence of direct and diffuse solar radiation; Et automatisk maalesystem for kartlegging av vinkel- og spektralfordeling av direkte og diffus solstraaling

    Energy Technology Data Exchange (ETDEWEB)

    Grandum, Oddbjoern

    1997-12-31

    In optimizing solar systems, it is necessary to know the spectral and angular dependence of the radiation. The general nonlinear character of most solar energy systems accentuates this. This thesis describes a spectroradiometer that will measure both the direct component of the solar radiation and the angular dependence of the diffuse component. Radiation from a selected part of the sky is transported through a movable set of tube sections on to a stationary set of three monochromators with detectors. The beam transport system may effectively be looked upon as a single long tube aimed at a particular spot in the sky. The half value of the effective opening angle is 1.3{sup o} for diffuse radiation and 2.8{sup o} for direct radiation. The whole measurement process is controlled and operated by a PC and normally runs without manual attention. The instrument is built into a caravan. The thesis describes in detail the experimental apparatus, calibration and measurement accuracies. To map the diffuse radiation, one divides the sky into 26 sectors of equal solid angle. A complete measurement cycle is then made at a random point within each sector. These measurements are modelled by fitting to spherical harmonics, enforcing symmetry around the solar direction and the horizontal plane. The direct radiation is measured separately. Also the circumsolar sector is given special treatment. The measurements are routinely checked against global radiation measured in parallel by a standard pyranometer, and direct solar radiation by a pyrheliometer. An extensive improvement programme is being planned for the instrument, including the use of a photomultiplier tube to measure the UV part of the spectrum, a diode array for the 400-1100 nm range, and use of a Ge diode for the 1000-1900 nm range. 78 refs., 90 figs., 31 tabs.

  10. Photon management in thin-film solar cells; Photon-Management in Duennschicht-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Fahr, Stephan

    2011-11-22

    In this thesis procedures were presented, which modify the propagation of the incident light in such a way that by this the efficiency of thin-film solar cells is increased. The strength of the presented numerical studies lies thereby in the rigorous solution of Maxwell's equations. Fundamental statements concerning the lay-out of an ideal texture could be made, which for present thin-film solar cells over the whole relevant spectral range both suppresses reflection losses and leads to an elongation of the effective path. Object of the thesis was also the design of a spectral- and angular-selective filter, which confines the acceptance angle of a solar cell with the aim of an improved absorption in the long-wave spectral region. Furthermore also tandem cells on the base of amorphous and microcrystalline silicon were studied.

  11. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  12. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    Science.gov (United States)

    2014-09-01

    fitted with a Xe bulb and fiber-optic light guide fixture. The absolute spectral irradiance and power output of the solar simulator was captured with a...dye-sensitized solar cell (DSSC), invented by Michael Grätzel and Brian O’Regan in 1991 (1). As described in their original Nature paper “A Low-Cost...The co-sensitizer dye, an equimolar mix of the two dyes, offered the broadest and highest absorbance of incident light , and thus was used as the

  13. Plasma Beta Dependence of the Ion-scale Spectral Break of Solar Wind Turbulence: High-resolution 2D Hybrid Simulations

    Czech Academy of Sciences Publication Activity Database

    Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr

    2016-01-01

    Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  14. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    Science.gov (United States)

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  15. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  16. SPECTRAL DEPENDENT ELECTRICAL CHARACTERISTICS OF ...

    African Journals Online (AJOL)

    ABSTRACT: The illuminated current-voltage characteristics of thin film a-Si:H. p-i-n solar cells were measured for the visible and near infrared spectral regions. The fill factor, the conversion efficiency, the open circuit Voltage and the short circuit current were compared to the parameters of crystalline silicon pit-junction.

  17. Measurements of spectral snow albedo at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Wuttke

    2006-03-01

    Full Text Available Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional component of the snow reflectivity for direct incidence, combined with a slightly mislevelled sensor and the snow surface not being perfectly horizontal. A possible explanation for an observed decline in albedo is an increase in snow grain size. The theoretically predicted increase in albedo with increasing solar zenith angle (SZA could not be observed. This is explained by the small range of SZA during albedo measurements, combined with the effect of changing snow conditions outweighing the effect of changing SZA. The measured spectral albedo serves as input for radiative transfer models, describing radiation conditions in Antarctica.

  18. Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects

    Science.gov (United States)

    Clark, R. N.

    1981-01-01

    The spectral reflectance of water frost and frost on ice as a function of temperature and grain size is presented with 1-1/2% spectral resolution in the 0.65- to 2.5-micron wavelength region. The well-known 2.0-, 1.65-, and 1.5-micron solid water absorption bands are precisely defined along with the little studied 1.25-micron band and the previously unidentified (in reflectance) 1.04-, 0.90-, and 0.81-micron absorption bands. The 1.5-microns band complex is quantitatively analyzed using a nonlinear least squares algorithm to resolve the band into four Gaussian components as a function of grain size and temperature. It is found that the 1.65-micron component, which was thought to be a good temperature sensor, is highly grain-size dependent and poorly suited to temperature sensing. Another Gaussian component appears to show a dependence of width on grain size while being independent of temperature. The relative apparent band depths are different for frost layers on ice than for thick layers of frost and may explain the apparent band depths seen in many planetary reflectance spectra.

  19. Spectral reflectance data of a high temperature stable solar selective coating based on MoSi2–Si3N4

    Directory of Open Access Journals (Sweden)

    D. Hernández-Pinilla

    2016-06-01

    Full Text Available Data of optical performance, thermal stability and ageing are given for solar selective coatings (SSC based on a novel MoSi2–Si3N4 absorbing composite. SSC have been prepared as multilayer stacks formed by silver as metallic infrared reflector, a double layer composite and an antireflective layer (doi: 10.1016/j.solmat.2016.04.001 [1]. Spectroscopic reflectance data corresponding to the optical performance of samples after moderate vacuum annealing at temperatures up to 600 °C and after ageing test of more than 200 h with several heating–cooling cycles are shown here.

  20. Calibration corrections of solar tower flux density measurements

    International Nuclear Information System (INIS)

    Ulmer, Steffen; Luepfert, Eckhard; Pfaender, Markus; Buck, Reiner

    2004-01-01

    The PSA flux density measuring system PROHERMES measures the concentrated solar radiation in the entrance aperture of solar tower receivers with a white rotating bar as target and a CCD-camera taking images. The calibration is done with commercial flux gauges placed in the measurement plane. To improve the calibration of the system and to reveal systematic errors, measurements are performed with two different types of commercial flux gauges (Thermogage sensors with and without quartz window) and a large custom-made calorimeter used as reference. The comparison shows that the sensors without quartz window measure about 5-8% higher and the sensors with quartz window about 100% higher. This error is explained with the differences in the spectral composition of the radiation and different angles of incidence between the manufacturer calibration and the solar measurements and corrections are proposed. Spectral changes of the sunlight during the day and year can affect the measurements by more than 10%. By selecting a correction filter adapted to the camera sensitivity, this influence can be reduced to less than 2.5%. Due to the reflective properties of the target coating, changes in angle of incidence can affect the measurements. In standard solar field conditions, this error is less than 0.5%, but for special conditions a correction of the systematic error of up to 8% is proposed

  1. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  2. Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells

    KAUST Repository

    Jiao, Chongjun

    2011-07-15

    Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs. © 2011 American Chemical Society.

  3. Spectral Pollution

    OpenAIRE

    Davies, E B; Plum, M

    2003-01-01

    We discuss the problems arising when computing eigenvalues of self-adjoint operators which lie in a gap between two parts of the essential spectrum. Spectral pollution, i.e. the apparent existence of eigenvalues in numerical computations, when no such eigenvalues actually exist, is commonplace in problems arising in applied mathematics. We describe a geometrically inspired method which avoids this difficulty, and show that it yields the same results as an algorithm of Zimmermann and Mertins.

  4. Training of an incidence of radiation on surfaces by vectorial representation; Didactica del analisis de la incidencia de radiacion solar mediante una representacion vectorial

    Energy Technology Data Exchange (ETDEWEB)

    Luis, F. J. de; Perez-Garcia, M.; Barbero, F. J.; Batlles, F. J.

    2004-07-01

    This work gathers and it exposes a set of educational contents extracted from the general bibliography and from the own experience in Engineering studies and courses on the application of a vector representation to the description of the apparent movement of the sun, the shading evaluation and the incidence of radiation on surfaces. (Author)

  5. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  6. Models of Solar Irradiance Variations: Current Status

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Models of Solar Irradiance Variations: Current Status. Natalie A. ... Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas ... Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany.

  7. Frequency agile solar radiotelescope

    Science.gov (United States)

    Bastian, Tim S.

    2003-02-01

    The Frequency Agile Solar Radiotelescope (FASR) is a solar-dedicated, ground based, interferometric array optimized to perform broadband imaging spectroscopy from ~ 0.1-30+ GHz. It will do so with the angular, spectral, and temporal resolution required to exploit radio emission from the Sun as a diagnostic of the wide variety of astrophysical processes that occur there. FASR represents a major advance over existing radioheliographs, and is expected to remain the world's premier solar radio instrument for two decades or more after completion. FASR will be a versatile and powerful instrument, providing unique data to a broad users community. Solar, solar-terrestrial, and space physicists will exploit FASR to attack a broad science program, including problems of fundamental interest: coronal magnetography, solar flares and particle acceleration, drivers of space weather, and the thermal structure and dynamics of the solar atmosphere. A design study and implementation planning are underway. Recent progress is reviewed here.

  8. Calibration of EOS multispectral imaging sensors and solar irradiance variability

    Science.gov (United States)

    Mecherikunnel, Ann

    1991-01-01

    Earth Observation System (EOS) optical multispectral imaging sensors provide images of the earth at various spectral and spatial resolutions, in the visible (VIS) and infrared (IR) regions of the solar spectrum. Accurate knowledge of extraterrestrial solar spectral irradiance and its variations with time, are needed to trace sensor calibration in space, and for the development of terrestrial atmospheric models needed in data validation. A brief review of the extraterrestrial solar VIS/IR spectral irradiance available in the literature will be reviewed, and the need to develop an extraterrestrial solar spectral irradiance for the EOS studies will be pointed out. The solar calibration of the Earth Radiation Budget Experiments (ERBE), earth-viewing sensors will be discussed. Observed variations in the solar constant (solar irradiance, at the mean sun-earth distance of one astronomical unit, integrated over all wavelengths), and solar spectral irradiance with solar activity and its implications for EOS studies also will be discussed.

  9. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  10. Solar Power System Design for the Solar Probe+ Mission

    Science.gov (United States)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  11. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  12. Tandem luminescent solar concentrators based on engineered quantum dots

    Science.gov (United States)

    Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.

    2018-02-01

    Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

  13. [Hygiene and the spectral energtic light pattern].

    Science.gov (United States)

    Kaptsov, V A; Deynego, V N; SoshMn, N P; Ulasyuk, V N

    There are considered methodological bases of multicriteria synthesis of a spectral energetic pattern for the evaluation of the excessive share of blue and red light in the spectrum of artificial energy sources. The basis of this methodology is relied upon on the hygienic approach to the spectrum analysis of solar and led light. Relying upon on "photobiological paradox of vision" according to M. A. Ostrovsky, conditions of "melanopsin cross" and mechanisms of adverse impact of light on vision, all the spectral-energy characteristics of solar light were divided into subspaces. The border between them became a spectral energy pattern for the evaluation of artificial sources on the security of their impact on eye and human health according to criteria of the excessive dose of blue or red light. On two examples there was shown the effectiveness and clarity of this estimation with the using of the spectral energetic pattern of light.

  14. Intensity Conserving Spectral Fitting

    Science.gov (United States)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2015-01-01

    The detailed shapes of spectral line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. Detection of asymmetries in solar coronal emission lines is one example. Removal of line blends is another. We have developed an iterative procedure that corrects for this effect. It can be used with any fitting function, but we employ a cubic spline in a new analysis routine called Intensity Conserving Spline Interpolation (ICSI). As the name implies, it conserves the observed intensity within each wavelength bin, which ordinary fits do not. Given the rapid convergence, speed of computation, and ease of use, we suggest that ICSI be made a standard component of the processing pipeline for spectroscopic data.

  15. ISSSR Tutorial 1: Introduction to Spectral Remote Sensing

    Science.gov (United States)

    1994-08-01

    frequencies can undergo conversion to thermal energy, a process of broad-band absorption, as in solar heating of the earth, solar cookers , and...but show 14 wb-match in its reflected solar spectral signature. 2. RADIATION - THE CARRIER OF INFORMATION 2.1 BASIC CHARACTERISTICS Until 1819...thermal infrared domain and the need for different types of detectors. Although there is stili a solar component, the amount is small eompared to the 0A

  16. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  17. Observational capabilities of solar satellite "Coronas-Photon"

    Science.gov (United States)

    Kotov, Yu.

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT

  18. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  19. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    Science.gov (United States)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  20. Comparação de produtos de radiação solar incidente à superfície para a América do Sul Product comparison of solar radiation incident surface for South America

    Directory of Open Access Journals (Sweden)

    Lucía Iracema Chipponelli Pinto

    2010-12-01

    Full Text Available Para algumas aplicações meteorológicas, o conhecimento da radiação solar incidente à superfície (Sin é muito importante. Métodos convencionais de medida deste fluxo são pontuais e, portanto, representativos de pequenas áreas. Por outro lado, os satélites meteorológicos possibilitam uma cobertura regular de todo o globo terrestre, proporcionando estimativas de fluxos radiativos sobre grandes áreas com resolução espacial do sensor (apenas alguns quilômetros. Além disso, produtos de reanálise fornecem estimativas alternativas de Sin, que precisam ser adequadamente validadas. Este trabalho compara quatro bancos de dados de radiação solar incidente para a América do Sul: três produtos provenientes de reanálise (NCEP/NCAR, ERA-40 e Eta/CPTEC e o produto gerado pelo algoritmo GL1.2, que produz estimativas da Sin a partir do conjunto de imagens do satélite GOES. Os resultados mostram que os campos de radiação solar incidente dos produtos de reanálise do NCEP/NCAR, ERA-40 e as estimativas do satélite GOES apresentam valores médios mensais bem próximos para todos os biomas e bacias estudados. Já a reanálise do Eta/CPTEC apresentou valores bem mais elevados para à radiação sobre a América do Sul, tanto para a média anual como nas médias mensais analisadas.For some meteorological applications, knowledge of incoming solar radiation at surface level (Sin is very important. Conventional measurements of this flux by individual sensors are representative of small areas only. On the other hand, meteorological satellites allow a regular cover of the entire globe, providing estimates of radiative fluxes over wide areas, within the spatial resolution of the sensor (a few km. In addition, reanalysis products provide alternative Sin estimates that must be adequately validated. This work compares four long-term Sin databases for South America: three reanalysis products (NCEP/NCAR, ERA-40 e Eta/CPTEC and the database produced by

  1. Solar ultraviolet radiation incident upon reef snorkelers determined by consideration of the partial immersion of dosimeters in the natural ocean environment

    International Nuclear Information System (INIS)

    Downs, Nathan; Parisi, Alfio; Schouten, Peter

    2011-01-01

    Reef snorkelling is potentially a high-risk activity for persons visiting tropical and sub-tropical waters due to possible overexposure to solar ultraviolet radiation (UVR). Measurements and modelled estimates of the UVR received by human subjects are presented for a 10° latitudinal gradient of Australia's Great Barrier Reef and some Melanesian Islands (15°S to 25°S). A technique is described to measure the erythemally effective UVR received by the neck and the lower back. Measurements were made by application of a hybrid in-air and submerged calibration for polysulphone dosimeters. Measured exposures were used to model UVR exposure distributions at a number of popular snorkelling sites. A total of 11 snorkelling trials were held between 29 September 2009 and 26 January 2010. Exposures measured to the back and expressed relative to the horizontal plane ambient UVR have shown there to be some variation in the UVR distribution, with the neck receiving the greatest proportion of ambient UVR (0.56 ± 0.14 (1σ)), followed by the lower back (0.36 ± 0.14 (1σ)). Similarly high UVR exposures were determined at neck and lower back sites for different seasons, different times of day and over the latitudinal range of the study

  2. Wheelchair incidents

    NARCIS (Netherlands)

    Drongelen AW van; Roszek B; Hilbers-Modderman ESM; Kallewaard M; Wassenaar C; LGM

    2002-01-01

    This RIVM study was performed to gain insight into wheelchair-related incidents with powered and manual wheelchairs reported to the USA FDA, the British MDA and the Dutch Center for Quality and Usability Research of Technical Aids (KBOH). The data in the databases do not indicate that incidents with

  3. Efeito da solarização e biofumigação, durante o outono, na incidência de murcha-bacteriana e produtividade da batata Effect of soil solarization and biofumigation during autumn on bacterial wilt incidence and potato yield

    Directory of Open Access Journals (Sweden)

    Mírian Josefina Baptista

    2006-03-01

    Full Text Available A murcha-bacteriana causada por Ralstonia solanacearum é uma das principais doenças da cultura da batata. A solarização tem sido estudada como opção para a desinfestação do solo e tem potencial para o controle da murcha bacteriana. A técnica é indicada para uso nas estações quentes do ano pois depende de condições climáticas adequadas. Devido ao período de plantio de determinadas culturas, é interessante avaliar o uso da solarização em outras épocas do ano e associada a outras técnicas para garantir sua eficiência. A biofumigação é a desinfestação do solo através da adição de matéria orgânica que, durante sua decomposição, libera substâncias tóxicas aos fitopatógenos. Neste trabalho avaliou-se durante o outono (maio a junho os efeitos da adição de cama de aves (biofumigação e da solarização na incidência natural da murcha-bacteriana e na produtividade da batata, através dos tratamentos: adição de cama de aves (20 t/ha, uréia (100 kg/ha, aplicação de brometo de metila e solo sem tratamento (testemunha, todos solarizados ou não solarizados. Avaliou-se a produção de tubérculos totais e comerciais e, a partir da incidência de murcha-bacteriana, foi feito o cálculo da área abaixo da curva de progresso da doença (AACPD. Na área infestada, apenas o uso do brometo de metila proporcionou reduções significativas na incidência da murcha-bacteriana. No entanto, a aplicação de brometo de metila e a adição de cama de aves em associação com a solarização possibilitaram produção significativamente maior de tubérculos de batata em relação à testemunha. Os efeitos da solarização associada à biofumigação com cama de aves sobre a produtividade da batata em área infestada com R. solanacearum devem ser melhor investigados.Bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases of the potato. Soil solarization has been studied as an option for soilborne

  4. Performance of spectral fitting methods for vegetation fluorescence quantification

    NARCIS (Netherlands)

    Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.

    2010-01-01

    The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance

  5. A simple model of space radiation damage in GaAs solar cells

    Science.gov (United States)

    Wilson, J. W.; Stith, J. J.; Stock, L. V.

    1983-01-01

    A simple model is derived for the radiation damage of shallow junction gallium arsenide (GaAs) solar cells. Reasonable agreement is found between the model and specific experimental studies of radiation effects with electron and proton beams. In particular, the extreme sensitivity of the cell to protons stopping near the cell junction is predicted by the model. The equivalent fluence concept is of questionable validity for monoenergetic proton beams. Angular factors are quite important in establishing the cell sensitivity to incident particle types and energies. A fluence of isotropic incidence 1 MeV electrons (assuming infinite backing) is equivalent to four times the fluence of normal incidence 1 MeV electrons. Spectral factors common to the space radiations are considered, and cover glass thickness required to minimize the initial damage for a typical cell configuration is calculated. Rough equivalence between the geosynchronous environment and an equivalent 1 MeV electron fluence (normal incidence) is established.

  6. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  7. Spectral splitting for thermal management in photovoltaic cells

    Science.gov (United States)

    Apostoleris, Harry; Chiou, Yu-Cheng; Chiesa, Matteo; Almansouri, Ibraheem

    2017-09-01

    Spectral splitting is widely employed as a way to divide light between different solar cells or processes to optimize energy conversion. Well-understood but less explored is the use of spectrum splitting or filtering to combat solar cell heating. This has impacts both on cell performance and on the surrounding environment. In this manuscript we explore the design of spectral filtering systems that can improve the thermal and power-conversion performance of commercial PV modules.

  8. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  9. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard sili...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance.......We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...

  10. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The average solar wind density, velocity and temperature measured at the Earth's orbit show specific decadal variations and trends, which are of the order of the first tens per cent during the last three solar cycles. Statistical, spectral and correlation characteristics of the solar wind are reviewed with the ...

  11. Photovoltaic yield: correction method for the mismatch between the solar spectrum and the reference ASTMG AM1.5G spectrum

    Directory of Open Access Journals (Sweden)

    Mambrini Thomas

    2015-01-01

    Full Text Available We propose a method for a spectral correction of the predicted PV yield and we show the importance of the spectral mismatch on the solar cell. Indeed, currently predicted PV yield are made considering solar irradiation, ambient temperature, incidence angle and partially (or not the solar spectrum. However, the solar spectrum is not always the same. It varies depending on the site location, atmospheric conditions, time of the day...This may impact the photovoltaic solar cells differently according to their technology (crystalline Silicon, thin film, multi-junctions... This paper presents a method for calculating the correction of the short-circuit current of a photovoltaic cell due to the mismatch of the solar spectrum with the reference ASTM AM1.5G spectrum, for a specific site, throughout the year, using monthly data of AERONET (AErosol RObotic NETwork established by NASA and CNRS and the model SMARTS (simple model for atmospheric transmission of sunshine developed by the NREL. We applied this correction method on the site of Palaiseau (France, 48.7°N, 2.2°E, 156 m, close to our laboratory, just for comparison and the example of Blida (Algeria, 36°N, 2°E, 230 m is given for one year. This example illustrates the importance of this spectral correction to better estimate the photovoltaic yield. To be more precise, instead of modeling the solar spectral distribution, one can measure it with a spectro-radiometer, and then, derive the spectral mismatch correction. Some of our typical measurements are presented in this paper.

  12. Fabrication of MWCNT/NiO nanocomposite thin films for optically selective solar absorbers

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-07-01

    Full Text Available This presentation explores solar thermal energy for harnessing solar energy for thermal energy (heat). Solar thermal collectors for water heating use a spectrally selective surface that absorb sunlight and convert it to heat. The presentation also...

  13. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  14. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  15. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Desarrollo de vegetación y radiación solar que incide en laderas de la sierra de Béjar, Salamanca (España

    Directory of Open Access Journals (Sweden)

    Santa Regina, I.

    2000-12-01

    Full Text Available A detailed study was carried out about the vegetation and solar radiation on hillside grounds of the Sierra de Béjar according to its characteristic orientation and slope for a better exploitation of its ecological resources. Chorologically the area is located in carpetano-ibérico-leonesa province, bejarano-gredense section, bejarano-tormantino subsector. Its topography presents great contrasts, alternating great ondulations with high slopes. For as, in this area there was a three bioclimatic grounds: supramediterranean, oromediterranean and crioromediterranean. At heights from 1500 m onwards, the lowest values for average radiation in slopes oriented N, NE, NEN, NON, and NO have been estimated (186.9 cal.cm-2.year-1 in winter, 246.8 cal.cm-2.year-1 in autumn, 486.5 cal.cm-2.year-1 in spring, and 543.0 cal.cm-2.year-1 in summer. A greater plant aerial biomass develops, mainly due to the establishing of Pinus pinaster and P. sylvestris forests. The highest average radiation values for the study area have been detected in orientations S, SE, SES, SOS and SO (246.8 cal.cm-2.year-1 in winter, 303.4 cal.cm-2.year-1 in autumn, 515.2 cal.cm-2.year-1 in spring, and 582.6 cal.cm-2.year-1 in summer; vegetation development is scarce mostly represented by shrub Cytisus purgans, and soils are shallow. Heights about 1300 m present smoother slopes, and intermediate average radiation values have been measured (212.0 cal.cm-2.year-1 in winter, 242.2 cal.cm-2.year-1 in autumn, 513.2 cal.cm-2.year-1 in spring, and 580.5 in summer; the dominant vegetation is mainly Quercus pyrenaica, and below that height Castanea sativa woods are established.

    [fr]
    L'étude réalisée porte sur

  18. Incidents analysis

    International Nuclear Information System (INIS)

    Francois, P.

    1996-01-01

    We undertook a study programme at the end of 1991. To start with, we performed some exploratory studies aimed at learning some preliminary lessons on this type of analysis: Assessment of the interest of probabilistic incident analysis; possibility of using PSA scenarios; skills and resources required. At the same time, EPN created a working group whose assignment was to define a new approach for analysis of incidents on NPPs. This working group gave thought to both aspects of Operating Feedback that EPN wished to improve: Analysis of significant incidents; analysis of potential consequences. We took part in the work of this group, and for the second aspects, we proposed a method based on an adaptation of the event-tree method in order to establish a link between existing PSA models and actual incidents. Since PSA provides an exhaustive database of accident scenarios applicable to the two most common types of units in France, they are obviously of interest for this sort of analysis. With this method we performed some incident analyses, and at the same time explores some methods employed abroad, particularly ASP (Accident Sequence Precursor, a method used by the NRC). Early in 1994 EDF began a systematic analysis programme. The first, transient phase will set up methods and an organizational structure. 7 figs

  19. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  20. An empirical spectral bandwidth model for superior conjunction. [spacecraft communication

    Science.gov (United States)

    Rockwell, R. S.

    1978-01-01

    The downlink signal from spacecraft in superior solar conjunction phases suffers a great reduction in signal-to-noise ratio. Responsible in large part for this effect is the line broadening of the signal spectrum. An analytic empirical expression was developed for spectral bandwidth as a function of heliocentric distance from 1 to 20 solar radii. The study is based on spectral broadening data obtained from the superior conjunctions of Helios 1 (1975), Helios 2 (1976), and Pioneer 6 (1968). The empirical fit is based in part on a function describing the electron content in the solar corona.

  1. The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 3: Quantification of the mid- and near-infrared water vapor continuum in the 2500 to 7800 cm−1 spectral range under atmospheric conditions

    Directory of Open Access Journals (Sweden)

    A. Reichert

    2016-09-01

    Full Text Available We present a first quantification of the near-infrared (NIR water vapor continuum absorption from an atmospheric radiative closure experiment carried out at the Zugspitze (47.42° N, 10.98° E; 2964 m a.s.l.. Continuum quantification is achieved via radiative closure using radiometrically calibrated solar Fourier transform infrared (FTIR absorption spectra covering the 2500 to 7800 cm−1 spectral range. The dry atmospheric conditions at the Zugspitze site (IWV 1.4 to 3.3 mm enable continuum quantification even within water vapor absorption bands, while upper limits for continuum absorption can be provided in the centers of window regions. Throughout 75 % of the 2500 to 7800 cm−1 spectral range, the Zugspitze results agree within our estimated uncertainty with the widely used MT_CKD 2.5.2 model (Mlawer et al., 2012. In the wings of water vapor absorption bands, our measurements indicate about 2–5 times stronger continuum absorption than MT_CKD, namely in the 2800 to 3000 cm−1 and 4100 to 4200 cm−1 spectral ranges. The measurements are consistent with the laboratory measurements of Mondelain et al. (2015, which rely on cavity ring-down spectroscopy (CDRS, and the calorimetric–interferometric measurements of Bicknell et al. (2006. Compared to the recent FTIR laboratory studies of Ptashnik et al. (2012, 2013, our measurements are consistent within the estimated errors throughout most of the spectral range. However, in the wings of water vapor absorption bands our measurements indicate typically 2–3 times weaker continuum absorption under atmospheric conditions, namely in the 3200 to 3400, 4050 to 4200, and 6950 to 7050 cm−1 spectral regions.

  2. Solar-Geophysical Data Number 562, June 1991. Part 1 (prompt reports). Data for May, April 1991, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-06-01

    The contents include: Detailed index for 1990-1991; Data for May 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for April 1991--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Solar radio emission March-April 1991, Geomagnetic indices February-March 1991, Solar active regions errata March 1991

  3. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  4. Solar powered Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  5. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  6. solaR: Solar Radiation and Photovoltaic Systems with R

    OpenAIRE

    Oscar Perpiñan Lamigueiro

    2012-01-01

    The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-c...

  7. Solar-Geophysical Data Number 564, August 1991. Part 1 (Prompt reports). Data for July, June 1991, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1991-08-01

    The contents include: Detailed index for 1990-1991; Data for July 1991--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Stanford mean solar magnetic field; Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices

  8. A synthetic method of solar spectrum based on LED

    Science.gov (United States)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  9. Samba Solar; Samba Solar

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, Charles W.

    2012-07-01

    Brazil, the biggest country of the South American subcontinent, has discovered the power of solar energy. Brazil recently introduced net metering of solar power plants and started to open the power supply grid to PV systems. The market has great potential as Brazil is the world's sixth biggest national economy.

  10. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.S.; Cui, Y.; Hara, K. [National Institute of Advanced Industrial, Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Dan-oh, Y.; Kasada, C.; Shinpo, A. [Hayashibara Biochemical Laboratories, Inc., Okayama (Japan)

    2007-04-20

    A new coumarin dye for use in dye-sensitized solar cells (DSSCs) is reported. It exhibits near-unity light harvesting efficiency and incident photon-to-electron conversion efficiency over a wide spectral region in 6 {mu}m transparent TiO{sub 2} films. DSSCs based on this metal-free organic dye show long-term stability and power-conversion efficiencies of around 6 % under continuous light-soaking stress for up to 1000 h. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Thin film and multilayer optics for XUV spectral domain (1 nm to 60 nm)

    International Nuclear Information System (INIS)

    Delmotte, Franck

    2010-02-01

    The XUV spectral domain (1-60 nm wavelength range) has experienced rapid growth in recent years. On one side, the sources (synchrotron radiation, harmonic generation, x-ray laser, free-electron laser...) require ever more efficient optics, on the other hand, applications (diagnostics of hot plasma, solar physics, x-ray microscopy, EUV lithography, x-ray analysis...) provide new constraints on the design of multilayer stacks. The multilayer mirrors are the only way to achieve efficient optics operating at non-grazing incidence angles in this spectral range. Our work within the team XUV Optics at Laboratoire Charles Fabry de l'Institut d'Optique focuses on the study of materials in thin layers correlated to the study of optical properties of multilayers. The objective is to achieve new multilayer components previously unavailable in the XUV domain, through a better understanding of physical phenomena in these nano-layer stacks. We show through several examples of how we have managed both to improve the performance of multilayer mirrors in a broad spectral range, and secondly, to develop new optical functions: beam splitters, broadband mirrors, dual-band mirrors or phase compensation mirrors. (author)

  12. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  13. The Marshall Grazing Incidence X-ray Spectrometer

    Science.gov (United States)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  14. Solar Surface Convection

    Directory of Open Access Journals (Sweden)

    Nordlund Åke

    2009-04-01

    Full Text Available We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.The properties of convection at the main energy carrying (granular scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc. of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with

  15. Solar-Geophysical Data Number 545, January 1990. Part 1 (prompt reports). Data for December, November 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-01-01

    Contents include: detailed index for 1989; data for December 1989--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for November 1989--solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data--geomagnetic indices September-October 1989, solar-active regions-carrington rotation 1821 October 1989

  16. Solar-Geophysical Data Number 539, July 1989. Part 1 (prompt reports). Data for June, May 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-07-01

    Contents include: detailed index for 1988-1989; data for June 1989 -- IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for May 1989 -- solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data -- solar radio emission (Nancay 169-MHz solar interferometric chart, May 1989)

  17. Solar-Geophysical Data Number 551, July 1990. Part 1 (prompt reports). Data for June, May 1990 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-07-01

    ;Contents: Detailed index for 1989-1990; Data for June 1990--Solar-terrestrial environment, IUWDS alert periods (Advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for May 1990--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Geomagnetic indices February-April 1990--sudden commencements/solar flare effects

  18. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  19. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  20. Upconverter solar cells: materials and applications

    NARCIS (Netherlands)

    de Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I.

    2011-01-01

    Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower

  1. Solar Cookers.

    Science.gov (United States)

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  2. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations

    Science.gov (United States)

    Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; Bramstedt, K.; Hilbig, T.; Thiéblemont, R.; Marchand, M.; Lefèvre, F.; Sarkissian, A.; Bekki, S.

    2018-03-01

    Context. Since April 5, 2008 and up to February 15, 2017, the SOLar SPECtrometer (SOLSPEC) instrument of the SOLAR payload on board the International Space Station (ISS) has performed accurate measurements of solar spectral irradiance (SSI) from the middle ultraviolet to the infrared (165 to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and the impact of solar variability on climate. In particular, a new reference solar spectrum (SOLAR-ISS) is established in April 2008 during the solar minima of cycles 23-24 thanks to revised engineering corrections, improved calibrations, and advanced procedures to account for thermal and aging corrections of the SOLAR/SOLSPEC instrument. Aims: The main objective of this article is to present a new high-resolution solar spectrum with a mean absolute uncertainty of 1.26% at 1σ from 165 to 3000 nm. This solar spectrum is based on solar observations of the SOLAR/SOLSPEC space-based instrument. Methods: The SOLAR/SOLSPEC instrument consists of three separate double monochromators that use concave holographic gratings to cover the middle ultraviolet (UV), visible (VIS), and infrared (IR) domains. Our best ultraviolet, visible, and infrared spectra are merged into a single absolute solar spectrum covering the 165-3000 nm domain. The resulting solar spectrum has a spectral resolution varying between 0.6 and 9.5 nm in the 165-3000 nm wavelength range. We build a new solar reference spectrum (SOLAR-ISS) by constraining existing high-resolution spectra to SOLAR/SOLSPEC observed spectrum. For that purpose, we account for the difference of resolution between the two spectra using the SOLAR/SOLSPEC instrumental slit functions. Results: Using SOLAR/SOLSPEC data, a new solar spectrum covering the 165-3000 nm wavelength range is built and is representative of the 2008 solar minimum. It has a resolution better than 0.1 nm below 1000 nm and 1 nm in the 1000-3000 nm wavelength range. The new

  3. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  4. The solar element

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... and astronomers in the period until the spring of 1895, when William Ramsay serendipitously found the gas in uranium minerals? The hypothetical element helium was fairly well known, yet Ramsay's discovery owed little or nothing to Lockyer's solar element. Indeed, for a brief while it was thought that the two...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....

  5. Spectral Analysis of Burgundy Pinot Noir Grape Harvest Dates

    Science.gov (United States)

    Rahim, K.; Thomson, D. J.

    2009-05-01

    We perform an analysis of Burgundy pinot noir grape harvest dates. This annual record reports the annual grape harvest date in days after September 1st, which has been used in summer temperature reconstructions. We perform spectral analysis and dynamic spectral analysis of the data where we find evidence of coherence indicating solar influence. Specifically we find structure in the dynamic spectra indicating solar influence, and there is evidence of the non-stationary structure associated with Seuss cycles as seen in other historical temperature data.

  6. Influence of solvents on properties of solar selective coatings

    Indian Academy of Sciences (India)

    Solar selective coatings for solar thermal flat-plate collectors consisting of crystalline copper oxides and amorphous nickel oxide composites were obtained by robotic spray pyrolyzed deposition. The parameters were optimized for increased spectral selectivity (): high solar absorptance and low thermal emittance.

  7. Influence of solvents on properties of solar selective coatings ...

    Indian Academy of Sciences (India)

    Abstract. Solar selective coatings for solar thermal flat-plate collectors consisting of crystalline copper oxides and amorphous nickel oxide composites were obtained by robotic spray pyrolyzed deposition. The parameters were opti- mized for increased spectral selectivity (S): high solar absorptance and low thermal ...

  8. Influence of solvents on properties of solar selective coatings ...

    Indian Academy of Sciences (India)

    Solar selective coatings for solar thermal flat-plate collectors consisting of crystalline copper oxides and amorphous nickel oxide composites were obtained by robotic spray pyrolyzed deposition. The parameters were optimized for increased spectral selectivity (): high solar absorptance and low thermal emittance.

  9. Testing a solar-blind pyrometer

    Science.gov (United States)

    Ballestrín, J.; Marzo, A.; Cañadas, I.; Rodríguez, J.

    2010-12-01

    Surface temperatures are key parameters in many concentrated solar radiation applications. Pyrometric temperature measurement of solar irradiated material surfaces is the alternative to contact measurement techniques, which are inadequate for measuring the temperatures of such surfaces. However, reflected solar radiation is an important uncertainty variable in this non-contact methodology. A promising method for eliminating this solar perturbation is by using centred passband filters on the atmospheric solar absorption bands, creating solar-blind pyrometric systems. A commercial pyrometer has been tested in the wavelength band at around 1.4 µm in the solar furnace at Plataforma Solar de Almería, showing its advantages and limitations. An estimation of temperature measurement uncertainty for a real case is presented with theory and experiment in agreement: the higher the temperature, the lower the uncertainty. Another experiment has shown that the pyrometer measures temperature properly even through quartz windows in this spectral range.

  10. Spectrally resolved longitudinal spatial coherence inteferometry

    Science.gov (United States)

    Woodard, Ethan R.; Kudenov, Michael W.

    2017-05-01

    We present an alternative imaging technique using spectrally resolved longitudinal spatial coherence interferometry to encode a scene's angular information onto the source's power spectrum. Fourier transformation of the spectrally resolved channeled spectrum output yields a measurement of the incident scene's angular spectrum. Theory for the spectrally resolved interferometric technique is detailed, demonstrating analogies to conventional Fourier transform spectroscopy. An experimental proof of concept system and results are presented using an angularly-dependent Fabry-Perot interferometer-based optical design for successful reconstruction of one-dimensional sinusoidal angular spectra. Discussion for a potential future application of the technique, in which polarization information is encoded onto the source's power spectrum is also given.

  11. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  12. Extreme ultraviolet spectral irradiance measurements since 1946

    Science.gov (United States)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial

  13. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  14. An Accurate Method for Computing the Absorption of Solar Radiation by Water Vapor

    Science.gov (United States)

    Chou, M. D.

    1980-01-01

    The method is based upon molecular line parameters and makes use of a far wing scaling approximation and k distribution approach previously applied to the computation of the infrared cooling rate due to water vapor. Taking into account the wave number dependence of the incident solar flux, the solar heating rate is computed for the entire water vapor spectrum and for individual absorption bands. The accuracy of the method is tested against line by line calculations. The method introduces a maximum error of 0.06 C/day. The method has the additional advantage over previous methods in that it can be applied to any portion of the spectral region containing the water vapor bands. The integrated absorptances and line intensities computed from the molecular line parameters were compared with laboratory measurements. The comparison reveals that, among the three different sources, absorptance is the largest for the laboratory measurements.

  15. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  16. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  17. [Skin cancer incidence in Zacatecas].

    Science.gov (United States)

    Pinedo-Vega, José Luis; Castañeda-López, Rosalba; Dávila-Rangel, J Ignacio; Mireles-García, Fernando; Ríos-Martínez, Carlos; López-Saucedo, Adrián

    2014-01-01

    Skin cancer is the most frequent cancer related to ultraviolet radiation. The aim was to estimate the incidence of skin cancer type, melanoma and non-melanoma in Zacatecas, Mexico. An epidemiological study was carried out during the period from 2008 to 2012. The data were obtained from the Instituto Mexicano del Seguro Social (IMSS), Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Secretaría de Salud de Zacatecas (SSZ) and a private source, the Centro Médico Alameda. The incidence and the global prevalence were estimated. We studied 958 skin cancer cases, histopathologically confirmed. The cases were distributed as: 63.6 % basal cell carcinomas, 25.8 % squamous cell carcinomas, and 10.6 % melanoma. Significantly higher proportions were observed in women in the basal cell carcinomas (60.4 %) and squamous cell carcinomas (53.4 %). However, in the case of melanoma, the major proportion was observed in men (55.9 %). The more frequent skin cancer location was the face and for basal cell carcinoma was the nose (53 %); for squamous cell carcinomas were the lips (36 %), and for melanoma it was also the nose (40 %). The skin cancer incidence was estimated in 20 cases for each 100 000 inhabitants. Linear regression analysis showed that the skin cancer is increasing at an annual rate of 10.5 %. The anatomical location indicates that solar UV radiation is a risk factor, since the face is the zone with major exposure to solar radiation.

  18. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  19. OMI/Aura Level 1B Solar Irradiances V003 (OML1BIRR) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI Level 1B solar irradiance product is the radiometrically calibrated and geolocated measurements of the UV and Visible channels of the spectral solar...

  20. UARS Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected...

  1. A rapid method of estimating the solar irradiance spectra with potential lighting applications

    NARCIS (Netherlands)

    Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G

    2016-01-01

    Diverse solar irradiance spectra can be observed under different conditions of time, date, location, weather, etc. Since the solar irradiance spectrum is required by certain scientific and engineering applications, obtaining accurate spectral data is essential. Measurements by spectrophotometers are

  2. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  3. Unmixing of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  4. Spectral downshifting in MBO3:Nd3+ (M=Y, La) phosphor

    Science.gov (United States)

    Omanwar, S. K.; Sawala, N. S.

    2017-11-01

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd3+ doped YBO3 and LaBO3 phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd3+ doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology.

  5. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  6. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    into the charge transport mechanism and trap distribution in these composites [3]. An advantage of investigating solar cell technology based on organic materials rather than silicon is that silicon photovoltaics requires high-purity silicon, whereas the material demands of organic technology are not nearly so strict. Work by researchers in Denmark and Germany highlights the simplicity and tolerance to ambient conditions of organic photovoltaic fabrication in the demonstration of a nanostructured polymer solar cell made from a thermocleavable polymer material and zinc oxide nanoparticles. All the manipulations during device preparation could be carried out in air at around 20 °C and 35% humidity [4]. A possible route to enhancing cell performance is through the improvment of the transport efficiency. Researchers in Taiwan demonstrate how effectively this can be implemented in a hybrid device comprising TiO2 nanorods and poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) [5]. In addition, inorganic semiconductor nanocrystals that have tunable optical bandgaps can be combined with organic semiconductors for the fabrication of hybrid photovoltaic devices with broad spectral sensitivity. A collaboration of researchers in the UK and the US has now developed a near-infrared sensitive hybrid photovoltaic system with PbS nanocrystals and C60. The reported improvement in device performance is attributed to increased carrier mobility of the PbS nanocrystal film [6]. In this issue, Patrick G Nicholson and Fernando A Castro from the National Physical Laboratory in the UK present a topical review on the principles and techniques for the characterization of organic photovoltaics [7]. The review presents a comprehensive picture of the current state-of-the-art understanding of the working mechanisms behind organic solar cells, and also describes electronic morphological considerations relevant to optimizing the devices, as well as different nanoscale techniques for

  7. Solar-Geophysical Data Number 571, March 1992. Part 1 (prompt reports). Data for February, January 1992 and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1992-03-01

    The contents include: Detailed index for 1991-1992; Data for February 1992--Solar-terrestrial environment, IUWDS alert periods (advance and worldwide), Solar activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field; Data for January 1992--Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic ray measurements by neutron monitor, Geomagnetic indices; Late data--Cosmic rays Climax and Huancayo Jul-Dec 91, Sudden Commencements Jun-Aug 91, and Geomagnetic indices Dec 91

  8. High Resolution Spectral Analysis

    Science.gov (United States)

    2006-10-25

    liable methods for high resolution spectral analysis of multivariable processes, as well as to distance measures for quantitative assessment of...called "modern nonlinear spectral analysis methods " [27]. An alternative way to reconstruct /„(#), based on Tn, is the periodogram/correlogram f{6...eie). A homotopy method was proposed in [8, 9] leading to a differential equation for A(T) in a homotopy variable r. If the statistics are consistent

  9. Radio data and computer simulations for shock waves generated by solar flares

    International Nuclear Information System (INIS)

    Maxwell, A.; Dryer, M.

    1980-01-01

    Solar radio bursts of spectral type II provide a prime diagnostic for the passage of shock waves, generated by solar flares, through the solar corona. In this investigation the authors compare radio data on the shocks with computer simulations for the propagation of fast-mode MHD shocks through the solar corona. (Auth.)

  10. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  11. Solar-Geophysical Data Number 546, February 1990. Part 1 (prompt reports). data for January 1990, December 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1990-02-01

    Contents include: detailed index for 1989-1990; data for January 1990--solar-terrestrial environment, IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field; data for December 1989--solar-active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices; late data--cosmic-ray measurements by neutron monitor, reprint of halftone-page Kitt Peak solar magnetic field synoptic chart November 1989

  12. Spectrally Selective Materials For Architectural and Photo-thermal ...

    African Journals Online (AJOL)

    The concept of spectal selectivity of solar radiation is discussed with reference to its application in architecture and photothermal uses. A brief account of spectrally selective materials being investigated presently is also given. UNISWA Research Journal of Agriculture, Science and Technology Vol. 4 (1) 2000: pp 5-9 ...

  13. Structural and spectral properties of 4-phenoxyphthalonitrile dye ...

    Indian Academy of Sciences (India)

    Structural and spectral properties of 4-phenoxyphthalonitrile dye sensitizer for solar cell applications ... electronic structures, polarizabilities and hyperpolarizabilities of organic dye sensitizer 4-phenoxyphthalonitrile was studied based on ab initio HF and density functional theory (DFT) using the hybrid functional B3LYP.

  14. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  15. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  16. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  17. Spectral signature selection for mapping unvegetated soils

    Science.gov (United States)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  18. Transparent Solar Concentrator for Flat Panel Display

    Science.gov (United States)

    Yeh, Chia-Hung; Chang, Fuh-Yu; Young, Hong-Tsu; Hsieh, Tsung-Yen; Chang, Chia-Hsiung

    2012-06-01

    A new concept of the transparent solar concentrator for flat panel display is experimentally demonstrated without adversely affecting the visual effects. The solar concentrator is based on a solar light-guide plate with micro prisms, not only increasing the absorption area of solar energy but also enhancing the conversion efficiency. The incident light is guided by the designed solar light-guide plate according to the total internal reflection (TIR), and converted into electrical power by photovoltaic solar cells. The designed transparent solar concentrator was made and measured with high transparency, namely 94.8%. The developed solar energy system for display can store energy and supply the bias voltage to light on two light-emitting diodes (LEDs) successfully.

  19. Solar Neutrinos

    OpenAIRE

    Antonelli, V.; Miramonti, L.; Peña Garay, Carlos; Serenelli, A.

    2013-01-01

    The study of solar neutrinos has given since ever a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and offering at the same time relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in...

  20. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  1. Buying Solar.

    Science.gov (United States)

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  2. Solar Special

    International Nuclear Information System (INIS)

    Van Roekel, A.; Osborne, J.; Schroeter, S.; De Jong, R.; De Saint Jacob, Y.

    2009-01-01

    Solar power is growing much faster than most policymakers and analysts realise. As costs come down and feed-in tariffs go up across Europe, a number of countries have started in pursuit of market leader Germany. But in Germany criticism is growing of the multi-billion-euro support schemes that keep the solar industry booming. In this section of the magazine several articles are dedicated to developments in solar energy in Europe. The first article is an overview story on the strong growing global market for solar cells, mainly thanks to subsidy schemes. The second article is on the position of foreign companies in the solar market in Italy. Article number three is dedicated to the conditions for solar technology companies to establish themselves in the German state of Saxony. Also the fifth article deals with the development of solar cells in Saxony: scientists, plant manufacturers and module producers in Saxony are working on new technologies that can be used to produce solar electricity cost-effectively. The goal is to bring the price down to match that of conventionally generated electricity within the next few years. The sixth article deals with the the solar power market in Belgium, which may be overheated or 'oversubsidized'. Article seven is on France, which used to be a pioneer in solar technology, but now produces only a fraction of the solar output of market leader Germany. However, new attractive feed-in-tariffs are changing the solar landscape drastically

  3. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  4. DFT/TD-DFT characterization of conjugational electronic structures and spectral properties of materials based on thieno[3,2-b][1]benzothiophene for organic photovoltaic and solar cell applications

    Directory of Open Access Journals (Sweden)

    Mohamed Bourass

    2017-07-01

    Full Text Available In this work, a theoretical study on five organic π-conjugated molecules based on thieno[3,2-b][1]benzothiophene using together quantum methods, density functional theory (DFT and its derivative time dependent-density functional theory (TD-DFT is reported. Different electron side groups were introduced as a bridge to investigate their effects on the electronic structure; The HOMO, LUMO, chemical hardness (η, chemical potential (μ, electronegativity (χ, electrophilicity power (ω, reorganization energy total (λtotal, open circuit voltage (Voc, the gap energy and NBO analysis of these compounds have been reported and discussed in this paper. Thus, our aim is to explore their electronic and spectroscopic properties on the basis of the DFT quantum chemical calculations, and at the same time, we are interested to make an idea on the parameters influencing the photovoltaic efficiency toward a better understanding of the structure–property relationships. The calculated results of these compounds reveal that C4, C5, with thiophene and thienopyrazine as a bridge group respectively, can be used as a potential donor of electron in organic Bulk Heterojunction solar cells (BHJ, due to its best electronic and optical properties and good photovoltaic parameters. The study of electronic, optical and structural properties of these compounds could help to design more efficient functional photovoltaic organic materials.

  5. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    Science.gov (United States)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  6. Solar-Geophysical Data Number 538, June 1989. Part 1 (prompt reports). Data for May, April 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-06-01

    Contents include: detailed index for 1988-1989; data for May 1989--(IUWDS alert periods (advance and worldwide), solar activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for April 1989--(solar-active regions, sudden ionospheric disturbances, solar radio-spectral observations, geomagnetic indices, radio-propagation indices); late data--(solar active regions--H-alpha synoptic charts 1813 March 1989, solar radio emission--Nancay 169-Mhz solar interferometric chart April 1989, cosmic rays climax and Huancayo--March 1989, geomagnetic indices-sudden commencements/solar flare effects February 1989)

  7. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  8. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  9. Solar System Observations with JWST

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  10. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  11. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  12. Survey of quantitative data on the solar energy and its spectra distribution

    Science.gov (United States)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  13. ANGULAR SPACE – TIME RELATIONS IN SOLAR RADIATION

    African Journals Online (AJOL)

    ES Obe

    1979-03-01

    Mar 1, 1979 ... The analyses are educational adaptations of engineering mechanics to this growing field of heliotechnoloy. NOTATION [1] α = solar altitude angle β = surface tilt angle, towards Equator +β, away from Equator -β γ = solar azimuth angle, clockwise from. North δ. = solar declination angle θ, i = incidence angle ...

  14. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS -1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  15. Maximizing Tandem Solar Cell Power Extraction Using a Three-Terminal Design

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deceglie, Michael G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienacker, Michael [Institute for Solar Energy Research Hamelin; Peibst, Robby [Institute for Solar Energy Research Hamelin

    2018-04-09

    Tandem or multijunction solar cells can greatly increase the efficiency of solar energy conversion by absorbing different energies of the incident solar illumination in semiconductors with different band-gaps, which can operate more efficiently than a single absorber. Many different designs of tandem cells based on high efficiency top cells and Si bottom cells have been proposed, and there is ongoing debate as to whether the sub-cells should be wired in series (to create a tandem device with two terminals) or operated independently (four terminals). An alternative cell configuration that combines some of the strengths of both is a three-terminal device consisting of a top cell optically in series with a modified interdigitated back contact (IBC) Si cell featuring a conductive top contact. Such a configuration can enable improved energy yield while only requiring external wiring on the front and back of the solar cell stack. In this paper, we investigate the operation of three terminal tandems in detail using technology computer aided design (TCAD) device physics simulations. Using III-V top cells as an example case, we show how the addition of a third terminal can deliver comparable power output to a four terminal device, and substantially more power than a two-terminal device, while also enabling power injection and extraction between the two sub-circuits under a variety of spectral conditions.

  16. Laboratory study of the spectrum of highly ionized calcium in the 100-250 A range applied to solar flare diagnostics

    Science.gov (United States)

    Lippmann, S.; Finkenthal, M.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Yu, T. L.; Bhatia, A. K.

    1987-01-01

    Calcium was introduced into the TEXT tokamak, and its spectral emission was recorded in the 50-360 A range by an absolutely calibrated grazing incidence spectrometer. These observations of highly ionized species of calcium at known conditions of plasma electron temperature and density allow testing of line brightness ratio predictions based on theoretical values of temperature-dependent electron excitation rates. The confirmation of the expected ratios in Be I-like to O I-like calcium allows more confident use of these ratios as a density diagnostic of remote astrophysical sources such as solar flares.

  17. A Simple Spectral Observer

    Directory of Open Access Journals (Sweden)

    Lizeth Torres

    2018-05-01

    Full Text Available The principal aim of a spectral observer is twofold: the reconstruction of a signal of time via state estimation and the decomposition of such a signal into the frequencies that make it up. A spectral observer can be catalogued as an online algorithm for time-frequency analysis because is a method that can compute on the fly the Fourier transform (FT of a signal, without having the entire signal available from the start. In this regard, this paper presents a novel spectral observer with an adjustable constant gain for reconstructing a given signal by means of the recursive identification of the coefficients of a Fourier series. The reconstruction or estimation of a signal in the context of this work means to find the coefficients of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The design procedure of the spectral observer is presented along with the following applications: (1 the reconstruction of a simple periodical signal, (2 the approximation of both a square and a triangular signal, (3 the edge detection in signals by using the Fourier coefficients, (4 the fitting of the historical Bitcoin market data from 1 December 2014 to 8 January 2018 and (5 the estimation of a input force acting upon a Duffing oscillator. To round out this paper, we present a detailed discussion about the results of the applications as well as a comparative analysis of the proposed spectral observer vis-à-vis the Short Time Fourier Transform (STFT, which is a well-known method for time-frequency analysis.

  18. UARS Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS V018 (UARSO3BS) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected...

  19. Periodogram analysis of sunspot numbers and the relation with solar activities

    Science.gov (United States)

    Hady, Ahmed A.

    1995-01-01

    The time series of average monthly sunspot numbers during 1900-1992 is studied by using power spectral analysis. This prediction method is used to study the sunspot periodicities relations between its, and with the other periodicities by solar activities. There are periodicities (between few days and 5 years) overwhelm on the mean solar cycle. ( 11 year cycle). These periodicities have the same relation with variations of solar constant and solar radiation reaching the Earth's atmosphere in the last solar cycle. These periods are related to the solar magnetic activity and to the modulation of solar features due to solar rotation.

  20. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  1. Predicting the incidence of human campylobacteriosis in Finland with time series analysis.

    Science.gov (United States)

    Sumi, Ayako; Hemilä, Harri; Mise, Keiji; Kobayashi, Nobumichi

    2009-08-01

    Human campylobacteriosis is a common bacterial cause of gastrointestinal infections. In this study, we tested whether spectral analysis based on the maximum entropy method (MEM) is useful in predicting the incidence of campylobacteriosis in five provinces in Finland, which has been accumulating good quality incidence data under the surveillance program for water- and food-borne infections. On the basis of the spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data in the years 2000-2005. The optimum least squares fitting (LSF) curve calculated by using the periodic modes reproduced the underlying variation of the incidence data. We extrapolated the LSF curve to the years 2006 and 2007 and predicted the incidence of campylobacteriosis. Our study suggests that MEM spectral analysis allows us to model temporal variations of the disease incidence with multiple periodic modes much more effectively than using the Fourier model, which has been previously used for modeling seasonally varying incidence data.

  2. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  3. Nanoparticles for solar spectrum conversion

    Science.gov (United States)

    van Sark, Wilfried G. J. H. M.; Meijerink, Andries; Schropp, Ruud E. I.

    2010-08-01

    We review the use of nanometer-sized particles (including quantum dots) in the conversion of parts of the solar spectrum incident on solar cells to more usable regions. The modification of the solar spectrum ideally would lead to a narrowbanded incident spectrum at a center wavelength corresponding to an energy that is slightly larger than the band gap of the semiconductor material employed in the solar cell, which would lead to an enhancement of the overall solar energy conversion efficiency. Modification of the spectrum requires down and/or up conversion or shifting of the spectrum, meaning that the energy of photons is modified either to lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss down and up conversion and shifting by quantum dots, luminescent dyes, and lanthanide compounds, and assess their potential in contributing to ultimately lowering the cost per kWh of solar generated power.

  4. Solar magnetohydrodynamics

    International Nuclear Information System (INIS)

    Priest, E.R.

    1982-01-01

    The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)

  5. Design and Optimization of Copper Indium Gallium Selenide Solar Cells for Lightweight Battlefield Application

    Science.gov (United States)

    2014-06-01

    Photoelectric affect in solar cells , from [15]. ...................................................18 Figure 14. Solar spectral irradiance versus wavelength...depicted in Figure 13. Figure 13. Photoelectric affect in solar cells , from [15]. An in-depth explanation of solar cell losses is found in [20...the load. Since the window layer is on top of the solar cell , it needs to be transparent to the light spectrum that is required for photoelectric

  6. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  7. Contribution of strong discontinuities to the power spectrum of the solar wind.

    Science.gov (United States)

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  8. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  9. The spectral irradiance traceability chain at PTB

    International Nuclear Information System (INIS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-01-01

    by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer’s spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  10. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  11. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  12. Context Dependent Spectral Unmixing

    Science.gov (United States)

    2014-08-01

    remote sensing [1–13]. It is also used in food safety [14–17], pharmaceutical process monitoring and quality control [18–22], as well as in biomedical...23,24], industrial [25], biometric [26] and forensic applications [27]. Hyperspectral sensors capture both the spatial and spectral information of a...imagery,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 58–69, 2002. [12] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile , L. Bruzzone, G

  13. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  14. Spectral distributions and symmetries

    International Nuclear Information System (INIS)

    Quesne, C.

    1980-01-01

    As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information

  15. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  16. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Wilson, J.F.; Sherwood, D.G.

    1982-01-01

    A mechanical spectral shift reactor comprises a reactive core having fuel assemblies accommodating both water displacer elements and neutron absorbing control rods for selectively changing the volume of water-moderator in the core. The fuel assemblies with displacer and control rods are arranged in alternating fashion so that one displacer element drive mechanism may move displacer elements in more than one fuel assembly without interfering with the movement of control rods of a corresponding control rod drive mechanisms. (author)

  17. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  18. UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    Science.gov (United States)

    Yeo, K. L.; Ball, W. T.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Morrill, J.

    2015-08-01

    Total solar irradiance and UV spectral solar irradiance has been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The Naval Research Laboratory Solar Spectral Irradiance (NRLSSI) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modeling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on Upper Atmosphere Research Satellite/Solar Ultraviolet Spectral Irradiance Monitor measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies.

  19. Space Weathering Radiation Environment of the Inner Solar System from the Virtual Energetic Particle Observatory

    Science.gov (United States)

    Cooper, J. F.; Papitashvili, N. E.

    2016-12-01

    The surfaces of Mercury, the Moon, the moons of Mars, the asteroids, and other small bodies of the inner solar system have been directly weathered for millions to billions of years by solar wind, energetic particle, and solar ultraviolet irradiation. Surface regolith layers to meters in depth are formed by impacts of smaller bodies and micrometeoroids. Sample return missions to small bodies, such as Osiris-REx to the asteroid Bennu, are intended to recover information on the early history of solar system formation, but must contend with the long-term space weathering effects that perturb the original structure and composition of the affected bodies. Solar wind plasma ions at keV energies penetrate only to sub-micron depths, while more energetic solar & heliospheric particles up to MeV energies reach centimeter depths, and higher-energy galactic cosmic rays to GeV energies fully penetrate through the impact regolith. The weathering effects vary with energy and penetration depth from ion implantation and erosive sputtering at solar wind energies to chemical and structural evolution driven by MeV - GeV particles. The energy versus depth dependence of such effects is weighted by the differential flux distributions of the incident particles as measured near the orbits of the affected bodies over long periods of time. Our Virtual Energetic Particle Observatory (http://vepo.gsfc.nasa.gov/) enables simultaneous access to multiple data sets from 1973 through the present in the form of differential flux spectral plots and downloadable data tables. The most continuous VEPO coverage exists for geospace data sources at 1 AU from the Interplanetary Monitoring Platform 8 (IMP-8), launched in 1973, through the present 1-AU constellation including the ACE, WIND, SOHO, and Stereo-A/B spacecraft. Other mission data, e.g. more occasionally from Pioneer-10/11, Helios-1/2, Voyager-1/2, and Ulysses, extend heliospheric coverage from the orbit of Mercury to that of Mars, the asteroid belt

  20. Solar Extreme UV radiation and quark nugget dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C. V6T 1Z1 (Canada)

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  1. Predicting spectral and PAR light attenuation in Greenlandic coastal waters

    DEFF Research Database (Denmark)

    Murray, Ciarán; Markager, Stiig; Stedmon, Colin

    The spectral quality and penetration of light are key parameters controlling the productivity of Greenlandic fjords. Solar elevation and sea ice play an important role, but during the increasing ice free period and summer months in particular, light is also regulated by water constituents. We...... (CDOM), phytoplankton pigments and inorganic particles. These differences are due in part to hydrography and to the sources of meltwater: respectively, fjord-terminating and land-terminating glaciers. We present a model to explain the variation in spectral and PAR irradiance in terms of the variation...

  2. MCFRS Incidents by Station

    Data.gov (United States)

    Montgomery County of Maryland — This dataset contains the monthly summary data indicating incident occurred in each fire station response area. The summary data is the incident count broken down by...

  3. Police Incident Reports Written

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — This table contains incident reports filed with the Chapel Hill Police Department. Multiple incidents may have been reported at the same time. The most serious...

  4. Solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wendel, W.

    1977-03-03

    A solar collector is described. The absorber consists of a plate onto which the light is focussed through lenses. The heat is transported from the absorber to the heat accumulator via metallic heat conductors. In case of insufficient solar radiation, the heat transport from the collector to the accumulator may be interrupted by a disconnecting switch. The casing consists of Eternit.

  5. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  6. Solar cooking

    Science.gov (United States)

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  7. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  8. Properties of Flux Tubes and the Relation with Solar Irradiance ...

    Indian Academy of Sciences (India)

    tribpo

    Temporal evolution of the emergent radiation of a vertical cut through the solar atmosphere using a 2D MHD model of the solar granulation (Gadun et al. 2000). The x axis covers roughly 4 Mm. As expected, these simulations show an increased contrast in the core of a spectral line (right panel) compared to the continuum ...

  9. Incident Information Management Tool

    CERN Document Server

    Pejovic, Vladimir

    2015-01-01

    Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-­‐based tool for incident tracking is presented.

  10. Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane

    International Nuclear Information System (INIS)

    He Xiaoming; Boehm, Robert F.

    2009-01-01

    A solar water splitting cell composed of WO 3 , Polymer Electrolyte Membrane (PEM) and Pt was constructed for producing hydrogen from deionized water in sunlight. Spectral responsivity measurements under various temperatures and bias voltages were conducted for the cell using the Incident Photon to Current Efficiency (IPCE) method. For comparison, a known WO 3 Photo Electro Chemical (PEC) cell containing H 3 PO 4 electrolyte, WO 3 /H 3 PO 4 /Pt, was tested using the same test method. The WO 3 /PEM-H 2 O/Pt cell showed better Quantum Efficiency (QE) performance compared to that obtained from the cell with the chemical electrolyte. For the first time, spectral responsivity of photo water splitting process without bias power was unveiled in the new WO 3 cell, demonstrating the self-sustained photo electrolysis capability. Bias voltage effect on Solar to Hydrogen (STH) conversion efficiency was dramatic in the range from 0.2 V to 1.2 V and suppressions of STH were observed when high bias voltages were applied. In addition, a strong temperature effect on the energy conversion efficiency at high bias voltage was observed in the cell containing PEM-H 2 O, revealing that the STH at 54 °C is nearly five times that at 14 °C.

  11. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  12. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  13. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  14. Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency.

    Science.gov (United States)

    Ubomba-Jaswa, Eunice; Navntoft, Christian; Polo-López, M Inmaculada; Fernandez-Ibáñez, Pilar; McGuigan, Kevin G

    2009-05-01

    The effect of solar UV-A irradiance and solar UV-A dose on the inactivation of Escherichia coli K-12 using solar disinfection (SODIS) was studied. E. coli K-12 was seeded in natural well-water contained in borosilicate glass tubes and exposed to sunlight at different irradiances and doses of solar UV radiation. In addition, E. coli K-12 was also inoculated into poly(ethylene) terephthalate (PET) bottles and in a continuous flow system (10 L min(-1)) to determine the effect of an interrupted and uninterrupted solar dose on inactivation. Results showed that inactivation from approximately 10(6) CFU mL(-1) to below the detection level (4 CFU/mL) for E. coli K-12, is a function of the total uninterrupted dose delivered to the bacteria and that the minimum dose should be >108 kJ m(-2) for the conditions described (spectral range of 0.295-0.385 microm). For complete inactivation to below the limit of detection, this dose needs to be received regardless of the incident solar UV intensity and needs to be delivered in a continuous and uninterrupted manner. This is illustrated by a continuous flow system in which bacteria were not fully inactivated (residual viable concentration approximately 10(2) CFU/mL) even after 5 h of exposure to strong sunlight and a cumulative dose of >108 kJ m(-2). This has serious implications for attempts to scale-up solar disinfection through the use of re-circulatory continuous flow reactors.

  15. Solar radiation concentrators paired with multijunction photoelectric converters in ground-based solar power plants (Part II)

    Science.gov (United States)

    Ionova, E. A.; Ulanov, M. V.; Davidyuk, N. Yu.; Sadchikov, N. A.

    2017-04-01

    The present work is devoted to determining the conditions of the joint operation of photoelectric converter-solar concentrator pairs, which are used in solar power plants with concentrators. Three-cascade photoconverters based on A3B5 materials with different distributions of solar radiation in spectral ranges are studied. Concentrators of solar radiation are designed as the Fresnel lenses with silicon-on-glass structure. Refractive lens profile fabricated on the basis of Wacker RT604 silicone rubber is characterized by significant changes in refractive index with temperature. The effect of geometric parameters of the Fresnel lenses and their operating temperature on characteristics of solar radiation concentration in specified spectral intervals have been examined. The parameters of concentrators being paired with a photoelectric converter, which may ensure the efficient functioning of the solar power plant, have been calculated.

  16. Solar flares as harbinger of new physics

    CERN Document Server

    Zioutas, K; Semertzidis, Y.; Papaevangelou, T.; Georgiopoulou, E.; Gardikiotis, A.; Dafni, T.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.; Dafni, T.

    2011-01-01

    This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.

  17. QCD spectral sum rules

    CERN Document Server

    Narison, Stéphan

    The aim of the book is to give an introduction to the method of QCD Spectral Sum Rules and to review its developments. After some general introductory remarks, Chiral Symmetry, the Historical Developments of the Sum Rules and the necessary materials for perturbative QCD including the MS regularization and renormalization schemes are discussed. The book also gives a critical review and some improvements of the wide uses of the QSSR in Hadron Physics and QSSR beyond the Standard Hadron Phenomenology. The author has participated actively in this field since 1978 just before the expanding success

  18. On spectral pollution

    International Nuclear Information System (INIS)

    Llobet, X.; Appert, K.; Bondeson, A.; Vaclavik, J.

    1990-01-01

    Finite difference and finite element approximations of eigenvalue problems, under certain circumstances exhibit spectral pollution, i.e. the appearance of eigenvalues that do not converge to the correct value when the mesh density is increased. In the present paper this phenomenon is investigated in a homogeneous case by means of discrete dispersion relations: the polluting modes belong to a branch of the dispersion relation that is strongly distorted by the discretization method employed, or to a new, spurious branch. The analysis is applied to finite difference methods and to finite element methods, and some indications about how to avoiding polluting schemes are given. (author) 5 figs., 10 refs

  19. MEPSOCON project: Calibration of Radiometers for High Solar Irradiance; Proyecto MEPSOCON: Calibracion de Radiometros de Alta Irradiancia Solar

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.; Rodriguez-Alonso, M.

    2006-07-01

    The development of central receiver solar plants is a currently emerging field into renewable energies. For several years various receiver prototypes have been evaluated at the Plataforma Solar de Almeria (PSA). The measurement of the incident solar power on the receiver aperture is fundamental to the estimation of its efficiency. Many factors interfere with this measurement and consequently accuracy is very low. This uncertainty is transmitted to the design of the final solar plant and thereby to its price. The sensors used for this measurement are of small size in comparison with the receiver apertures, therefore different systems are necessary to obtain the incident solar power on the receiver aperture from the individual radiometer measurements. This report presents calibration procedures for the sensor used on the measurement of high solar irradiance and the analysis of the different factors affecting the incident power measurement to significantly reduce its uncertainty. (Author) 16 refs.

  20. Reconstruction of solar UV irradiance since 1974

    Science.gov (United States)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  1. Solar neutrinos

    International Nuclear Information System (INIS)

    Schatzman, E.

    1983-01-01

    The solar energy is produced by a series of nuclear reactions taking place in the deep interior of the sun. Some of these reactions produce neutrinos which may be detected, the proper detection system being available. The results of the Davis experiment (with 37 Cl) are given, showing a deficiency in the solar neutrino flux. The relevant explanation is either a property of the neutrino or an important change in the physics of the solar models. The prospect of a new experiment (with 71 Ga) is important as it will decide which of the two explanations is correct [fr

  2. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  3. Methods and systems for concentrated solar power

    Science.gov (United States)

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  4. Seismic Constraints on Interior Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  5. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  6. Solar energetic particles and radio burst emission

    Science.gov (United States)

    Miteva, Rositsa; Samwel, Susan W.; Krupar, Vratislav

    2017-12-01

    We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996-2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection) we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  7. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun

    2018-01-01

    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  8. A nanophotonic solar thermophotovoltaic device

    Science.gov (United States)

    Lenert, Andrej; Bierman, David M.; Nam, Youngsuk; Chan, Walker R.; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  9. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... characterized. Spectral responses are measured and in two types of measured GaAs solar cells (with Au and Ag nanoparticles) there was no clear efficiency enhancement in the NIR spectral range. In the case of Au nanoparticles it could be explained in similar way to the absorption data: the effect being broad...... cells spectral response to longer wavelengths, through possibly cheap and simple technologies: EBL can be substituted by colloidal solutions implementation and electroless plating is not expensive and results to be effective within a broad set of parameters (size, shape, density). Another application...

  10. Solar radiation in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Jerzy Dera

    2010-12-01

    Full Text Available The influx of solar radiation to the Baltic Sea and its penetration into its waters is described on the basis of selected results of optical and bio-optical studies in the Baltic published by various authors during the past ca 50 years. The variability in the natural irradiance of this sea is illustrated on time scales from short-term fluctuations occurring during a single day to differences in mean monthly values over a period of many years. Data on variability of the proportions between UV, VIS and IR energy in the light reaching the sea surface are also discussed.Long-term monthly mean values of the incident solar radiation flux at the surface of the Baltic Proper are given; they were obtained from meteorological and solar radiation measurements and model approximations. The transmittances of these mean monthly radiation fluxes across the surface of the Baltic are given, as are the typical energyand spectral characteristics of the underwater irradiance, its attenuation with depth in the sea and the associated euphotic zone depths, as well as typical ranges of variability of these characteristics in different Baltic basins. Some of these characteristics are illustrated by typical empirical data. These mean values are not fully representative, however, because with the sole use of classical in situ measurement methods from on board research vessels in the Baltic, it has not been possible to gather a sufficientlyrepresentative set of empirical data that would adequately reflect the variability of the optical characteristics of all the basins of this sea. The article goes on to introduce the statistical model of vertical distributions of chlorophyll a concentration in the Baltic and the bio-optical model of Baltic Case 2 waters, the use of which contribute very significantly to this description of the optical characteristics and will enable this data set to be hugely expanded to include all the Baltic basins. This opportunity is presented by the

  11. Spectral clustering for water body spectral types analysis

    Science.gov (United States)

    Huang, Leping; Li, Shijin; Wang, Lingli; Chen, Deqing

    2017-11-01

    In order to study the spectral types of water body in the whole country, the key issue of reservoir research is to obtain and to analyze the information of water body in the reservoir quantitatively and accurately. A new type of weight matrix is constructed by utilizing the spectral features and spatial features of the spectra from GF-1 remote sensing images comprehensively. Then an improved spectral clustering algorithm is proposed based on this weight matrix to cluster representative reservoirs in China. According to the internal clustering validity index which called Davies-Bouldin(DB) index, the best clustering number 7 is obtained. Compared with two clustering algorithms, the spectral clustering algorithm based only on spectral features and the K-means algorithm based on spectral features and spatial features, simulation results demonstrate that the proposed spectral clustering algorithm based on spectral features and spatial features has a higher clustering accuracy, which can better reflect the spatial clustering characteristics of representative reservoirs in various provinces in China - similar spectral properties and adjacent geographical locations.

  12. Solar chulha

    Science.gov (United States)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  13. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  14. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  15. Solar chulha

    Energy Technology Data Exchange (ETDEWEB)

    Jadhao, P. H. [Department of Physics J.D. Institute of Engg. & Tech. Yavatmal (India); Patrikar, S. R. [Department of Physics VNIT, Nagpur (India)

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  16. Solar Neutrinos

    OpenAIRE

    Pallavicini, Marco

    2009-01-01

    The status of solar neutrino experiments and their implications for both nonstandard astrophysics ({\\it e.g.,} cool sun models) and nonstandard neutrino properties ({\\it e.g.,} MSW conversions) are discussed. Assuming that all of the experiments are correct, the relative rates observed by Kamiokande and Homestake are hard to account for by a purely astrophysical solution, while MSW conversions can describe all of the data. Assuming the standard solar model, there are two allowed regions for M...

  17. Solar radio bursts with spectral fine structures in preflares

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; Tan, B.-L.; Karlický, Marian; Mészárosová, Hana; Huang, J.; Tan, C.M.; Simoes, P.J.A.

    2015-01-01

    Roč. 799, č. 1 (2015), 30/1-30/13 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : Sun corona * Sun flares * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  18. Solar generation

    International Nuclear Information System (INIS)

    Villeneuve, J.

    2012-01-01

    Solar energy might become the main energy resource for mankind in the next 50 years. The author describes the assets of photovoltaic energy and helio-thermodynamics and reviews the conditions required for such a future. The first condition is an integrated approach for the development of solar energy in buildings, it means to develop in parallel the use of low-power appliances, to insulate buildings, to use daylight. Secondly to find an efficient solution to store solar energy. In the building sector this solution could be the use of solar energy (through solar panels) and geothermal heat pump to be able to recover in winter the calories caught in summer and stored in the ground. In a warmer and warmer world, the production of cold from solar calories has the advantage of sparing electricity and to make the demand for calories corresponding with the peak of the resource. A graph shows that the expected cost of photovoltaic electricity in 2020 will be half the 2011 cost and will correspond to the retail price of electricity. (A.C.)

  19. Spectral Automorphisms in Quantum Logics

    Science.gov (United States)

    Ivanov, Alexandru; Caragheorgheopol, Dan

    2010-12-01

    In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.

  20. Solar-Geophysical Data Number 535, March 1989. Part 1 (prompt reports). Data for February, January 1989, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.

    1989-03-01

    Contentsinclude: detailed index for 1988-1989; data for february 1989 (IUWDS alert periods (advance and worldwide), solar-activity indices, solar flares, solar radio emission, Stanford mean solar magnetic field); data for January 1989 (solar active regions, sudden ionospheric disturbances, solar radio spectral observations, cosmic-ray measurements by neutron monitor, geomagnetic indices, radio-propagation indices); late data (solar-active regions-- H-alpha synoptic charts 1806-1808 (September-November 1988), cosmic-ray measurements by neutron monitor--thule, December 1988, geomagnetic indices -- sudden commencements/solar flare effects December 1988)

  1. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  2. Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Miriam Israelowitz

    2014-01-01

    Full Text Available Nanoparticle (NP arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal’s free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost-effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage ϕ of 7% is observed. Scanning electron microscopy of interface morphologies revealed that for low ϕ, particles are well separated, resulting in broadband PE. At higher ϕ, formation of particle strings and clusters causes red-shifting of the PE peak and a narrower spectral response.

  3. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    Science.gov (United States)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  4. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  5. Spectral Theory of Chemical Bonding

    National Research Council Canada - National Science Library

    Langhoff, P. W; Boatz, J. A; Hinde, R. J; Sheehy, J. A

    2004-01-01

    New theoretical methods are reported for obtaining the binding energies of molecules and other chemical aggregates employing the spectral eigenstates and related properties of their atomic constituents...

  6. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  7. Spectral response data for development of cool coloured tile coverings

    Science.gov (United States)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  8. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  9. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  10. Science Goals and First Light Analysis from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat

    Science.gov (United States)

    Caspi, Amir; Woods, Thomas N.; Warren, Harry; Chamberlin, Phillip C.; Jones, Andrew; Mason, James; McTiernan, James; Moore, Christopher; Palo, Scott; Solomon, Stanley

    2016-05-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a 3U CubeSat with deployment from the ISS planned in Q2 2016. Its goal is to measure the solar soft X-ray (SXR) spectral irradiance, an observational signature of hot plasma in the solar corona. Over the last few decades, there have been very few spectrally resolved observations from ~0.2 to ~4 keV (~0.3-6 nm). This range is sensitive to high-temperature plasma and contains many spectral lines (e.g., Mg, Si, Fe, S, Ar), the abundances of which probe plasma transport and provide valuable constraints on plasma heating mechanisms during both flares and quiescence. This solar SXR emission is primarily absorbed in the E-region of Earth's ionosphere, and the subsequently driven dynamical processes are still poorly understood, in large part because the energy distribution of the incident SXRs is not yet well characterized.MinXSS flies a miniature commercial off-the-shelf soft X-ray (SXR) spectrometer, the Amptek X123-SDD. The silicon drift detector has 0.5 mm fully depleted thickness and a 25 mm^2 physical area, with a ~16 micron Be entrance window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar SXRs from ~0.5 to 30 keV with ~0.15 keV FWHM resolution. MinXSS also includes a broadband SXR photometer, providing an integrated intensity over a similar energy range for comparison, cross-calibration, and additional data, especially useful during more intense flares at the upper end of the X123 dynamic range.We present the MinXSS science goals for studying hot plasma in the solar corona, including impulsive flare heating and quiescent coronal heating, and the impact of the resultant SXR emission on Earth's ionosphere, thermosphere, and mesosphere. We present analysis of MinXSS first light results (depending on deployment date from the ISS), as well as modeling and predictions of future observations over the MinXSS 6-12 month mission lifetime.

  11. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  12. Food dehydration by solar energy.

    Science.gov (United States)

    Bolin, H R; Salunkhe, D K

    1982-01-01

    Solar driers that are currently being investigated for drying of agricultural products can be divided into two major divisions, depending upon how they transfer the incident solar energy to the product to be dried. These two divisions are direct and indirect drying, with some work also being done on combination drying procedures. In direct solar driers, the product to be dried is usually either inside a tent, greenhouse, or a glass-topped box, where the product to be dried is heated by the direct rays from the sun and the moist air is removed by ambient wind movement. These dryers do accelerate moisture loss rate and the product is usually safe from inclement weather. These dryers usually do not require fans for forced air circulation. With indirect drying, the opposite is true, where most require powered fans for forced air circulation. With this type of dryer, both flatplate and inflated tube solar heat absorbers are used, with each offering certain advantages. Also, combination dryers have been built that utilize both direct and indirect principles. Product evaluation of solar dried foods indicate that in most cases the physical properties, flavor, and vitamin A and C retention were as good as, or better than, conventional dried foods. The economics of the solar systems indicate that most drying procedures are economically feasible for use in small-scale operations only, with the exception of grain drying.

  13. Solar-climatic statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Bray, R.E.

    1979-02-01

    The Solar-Climatic Statistical Study was performed to provide statistical information on the expected future availability of solar and wind power at various nationwide sites. Historic data (SOLMET), at 26 National Weather Service stations reporting hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Information of this nature are intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems. Presented in this volume are probability estimates of solar insolation and wind power, alone and in combination, occurring and persisting at or above specified thresholds, for up to one week, for each of the 26 SOLMET stations. Diurnal variations of wind power were also considered. Selected probability data for each station are presented graphically, and comprehensive plots for all stations are provided on a set of microfiche included in a folder in the back of this volume.

  14. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  15. The high-resolution extraterrestrial solar spectrum (QASUMEFTS determined from ground-based solar irradiance measurements

    Directory of Open Access Journals (Sweden)

    J. Gröbner

    2017-09-01

    Full Text Available A high-resolution extraterrestrial solar spectrum has been determined from ground-based measurements of direct solar spectral irradiance (SSI over the wavelength range from 300 to 500 nm using the Langley-plot technique. The measurements were obtained at the Izaña Atmospheric Research Centre from the Agencia Estatal de Meteorología, Tenerife, Spain, during the period 12 to 24 September 2016. This solar spectrum (QASUMEFTS was combined from medium-resolution (bandpass of 0.86 nm measurements of the QASUME (Quality Assurance of Spectral Ultraviolet Measurements in Europe spectroradiometer in the wavelength range from 300 to 500 nm and high-resolution measurements (0.025 nm from a Fourier transform spectroradiometer (FTS over the wavelength range from 305 to 380 nm. The Kitt Peak solar flux atlas was used to extend this high-resolution solar spectrum to 500 nm. The expanded uncertainties of this solar spectrum are 2 % between 310 and 500 nm and 4 % at 300 nm. The comparison of this solar spectrum with solar spectra measured in space (top of the atmosphere gave very good agreements in some cases, while in some other cases discrepancies of up to 5 % were observed. The QASUMEFTS solar spectrum represents a benchmark dataset with uncertainties lower than anything previously published. The metrological traceability of the measurements to the International System of Units (SI is assured by an unbroken chain of calibrations leading to the primary spectral irradiance standard of the Physikalisch-Technische Bundesanstalt in Germany.

  16. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...... exactly implies phase as well as group-velocity matching between the input soliton and tunneled soliton, namely a soliton phase matching condition. Examples in realistic photonic crystal fibers are also presented....

  17. Acute incidents during anaesthesia

    African Journals Online (AJOL)

    Incidents can occur during induction, maintenance and emergence from anaesthesia. The following acute critical incidents are discussed in this article: • Anaphylaxis. • Aspiration ..... Already used in South Africa and Malawi, a scale-up of the technique is under way in Tanzania, Rwanda and Ghana. The report found that.

  18. Effect of soil solarization associated with organic ammendments on the reduction of sclerotia viability

    Directory of Open Access Journals (Sweden)

    Geisiane Alves Rocha

    2016-08-01

    Full Text Available Soil solarization is potentially a promising technique for soilborn pathogens control in Brazil´s Midwest, since the weather, is warm most of the year and the incidence of solar radiation is high, especially in the dry season. The objective of this study was to evaluate the effect of soil solarization with and without organic material in the survival of sclerotia of Sclerotinia sclerotiorum and Sclerotium rolfsii. The pre-moistened soil was packed in transparent polyethylene bags and received the following treatments: “solarized, solarized + eucalyptus leaves”, “solarized + cabbage leaves”, “solarized + poultry litter”, “open bags in the sun” and “open bags in the shade”. Solarized treatments reached higher temperatures compared to non-solarized. In survival for the two pathogens, a greater control after 14 days of solarization, the treatments with the lowest percentage of germination of sclerotia were “solarized + eucalyptus” and “solarized + cabbage”.

  19. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles...... and the incidence angle modifier were measured for a flat-plate solar collector with the two cover plates. The collector efficiency was increased by 4–6%-points due to the antireflection surfaces, depending on the incidence angle. The thermal advantage with using a glass cover with antireflection surfaces...... was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated by detailed...

  20. Lanthanum hexaboride for solar energy applications.

    Science.gov (United States)

    Sani, Elisa; Mercatelli, Luca; Meucci, Marco; Zoli, Luca; Sciti, Diletta

    2017-04-06

    We investigate the optical properties of LaB 6 - based materials, as possible candidates for solid absorbers in Concentrating Solar Power (CSP) systems. Bulk LaB 6 materials were thermally consolidated by hot pressing starting from commercial powders. To assess the solar absorbance and spectral selectivity properties, room-temperature hemispherical reflectance spectra were measured from the ultraviolet to the mid-infrared, considering different compositions, porosities and surface roughnesses. Thermal emittance at around 1100 K has been measured. Experimental results showed that LaB 6 can have a solar absorbance comparable to that of the most advanced solar absorber material in actual plants such as Silicon Carbide, with a higher spectral selectivity. Moreover, LaB 6 has also the appealing characteristics to be a thermionic material, so that it could act at the same time both as direct high-temperature solar absorber and as electron source, significantly reducing system complexity in future concentrating solar thermionic systems and bringing a real innovation in this field.

  1. Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Noboru [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nguyen Anh, Linh; Kambayashi, Toshio [Nagaoka University of Technology (Japan)

    2010-03-15

    One approach to improve the efficiency of electricity generation of solar cells is to use a luminescent/fluorescent dye that absorbs a part of the spectrum of incident light and then simultaneously emits down-shifted light that matches the spectral response of the solar cells. In this study, the authors numerically simulated the escaping energy losses of isotropic diffuse down-shifted light emitted by luminescent dyes doped in micro/nanostructured solar cell systems. The simulation was accomplished by using the two-dimensional total-field finite-difference time-domain (FDTD) method, which simulates not only reflection and refraction but also diffraction. Two simulation models - one based on a V-grooved luminescent down-shifting (LDS) layer and the other based on a planar luminescent solar concentrator (LSC) - were used, and the size effects of the LDS layer and LSC, effect of doping position on the escaping energy loss, and angle dependency of the escaping energy loss were clarified. For the V-grooved LDS layer, the escaping loss was found to be less than 10% in the wavelength range of 400-1170 nm when the height and width of the V-groove were 360 and 424 nm, respectively. This value of the escaping loss is less than half of that calculated from ray optics, which simulates only reflection and refraction. A planar LSC with a thickness of 300 nm and a length in the submicron range also exhibited smaller escaping loss than a conventional-sized one. Furthermore, the authors confirmed that the reflectance of the micro/nanostructured solar cell systems is lower than the theoretical ray optical reflectance of an air-PMMA-Flat Si layer. This indicates that doping luminescent dyes in such micro/nanostructured solar cell systems potentially improves the light trapping efficiency of down-shifted diffuse light emitted by the luminescent dyes. (author)

  2. Visible-Near Infrared (VNIR) and Shortwave Infrared (SWIR) Spectral Variability of Urban Materials

    Science.gov (United States)

    2013-03-01

    Spectrometry) The theory behind hyperspectral remote sensing is that the reflected solar radiation from Earth surfaces can be measured in hundreds of...INFRARED (VNIR) AND SHORTWAVE INFRARED (SWIR) SPECTRAL VARIABILITY OF URBAN MATERIALS by Kenneth G Fairbarn Jr March 2013 Thesis Advisor...2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE VISIBLE–NEAR INFRARED (VNIR) AND SHORTWAVE INFRARED (SWIR) SPECTRAL

  3. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  4. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  5. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  6. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  7. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  8. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the topological vertex formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV formula, and Mumford formula.

  9. Spectral imagery collection experiment

    Science.gov (United States)

    Romano, Joao M.; Rosario, Dalton; Farley, Vincent; Sohr, Brian

    2010-04-01

    The Spectral and Polarimetric Imagery Collection Experiment (SPICE) is a collaborative effort between the US Army ARDEC and ARL for the collection of mid-wave and long-wave infrared imagery using hyperspectral, polarimetric, and broadband sensors. The objective of the program is to collect a comprehensive database of the different modalities over the course of 1 to 2 years to capture sensor performance over a wide variety of adverse weather conditions, diurnal, and seasonal changes inherent to Picatinny's northern New Jersey location. Using the Precision Armament Laboratory (PAL) tower at Picatinny Arsenal, the sensors will autonomously collect the desired data around the clock at different ranges where surrogate 2S3 Self-Propelled Howitzer targets are positioned at different viewing perspectives at 549 and 1280m from the sensor location. The collected database will allow for: 1) Understand of signature variability under the different weather conditions; 2) Development of robust algorithms; 3) Development of new sensors; 4) Evaluation of hyperspectral and polarimetric technologies; and 5) Evaluation of fusing the different sensor modalities. In this paper, we will present the SPICE data collection objectives, the ongoing effort, the sensors that are currently deployed, and how this work will assist researches on the development and evaluation of sensors, algorithms, and fusion applications.

  10. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    Science.gov (United States)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  11. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  12. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  13. Fast DPCM scheme for lossless compression of aurora spectral images

    Science.gov (United States)

    Kong, Wanqiu; Wu, Jiaji

    2016-10-01

    Aurora has abundant information to be stored. Aurora spectral image electronically preserves spectral information and visual observation of aurora during a period to be studied later. These images are helpful for the research of earth-solar activities and to understand the aurora phenomenon itself. However, the images are produced with a quite high sampling frequency, which leads to the challenging transmission load. In order to solve the problem, lossless compression turns out to be required. Indeed, each frame of aurora spectral images differs from the classical natural image and also from the frame of hyperspectral image. Existing lossless compression algorithms are not quite applicable. On the other hand, the key of compression is to decorrelate between pixels. We consider exploiting a DPCM-based scheme for the lossless compression because DPCM is effective for decorrelation. Such scheme makes use of two-dimensional redundancy both in the spatial and spectral domain with a relatively low complexity. Besides, we also parallel it for a faster computation speed. All codes are implemented on a structure consists of nested for loops of which the outer and the inner loops are respectively designed for spectral and spatial decorrelation. And the parallel version is represented on CPU platform using different numbers of cores. Experimental results show that compared to traditional lossless compression methods, the DPCM scheme has great advantage in compression gain and meets the requirement of real-time transmission. Besides, the parallel version has expected computation performance with a high CPU utilization.

  14. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  15. LADAR Performance Simulations with a High Spectral Resolution Atmospheric Transmittance and Radiance Model-LEEDR

    Science.gov (United States)

    2012-03-01

    and service has made my life possible. Most of all, I am especially grateful for the love and patience of my wife who sustained me with a positive...attitude through the late nights and stressful moments. May every moment together be cherished as we experience life together as a family...American Society for Testing and Materials (ASTM) 2000 extraterrestrial solar spectra is used for the solar spectral irradiance at the top of the

  16. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... which is a laboratory teaching tool developed at Transylvania University of Brasov. Using this platform, solar cells can be characterized under various illumination, temperature and angle of light incidence. Additionally, the SolarLab platform includes guided exercises and intuitive graphical user...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  17. CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY (CESM (REVIEW

    Directory of Open Access Journals (Sweden)

    N. I. Rozhkova

    2015-01-01

    Full Text Available The problem of early diagnosis of a breast cancer is extremely actual. Growth of incidence at women from 19 to 39 years increased for 34% over the last 10 years. It defines need of acceleration of development and deployment of the latest technologies of identification of the earliest symptoms of diseases. The x-ray mammography is the conducting method among of all radiological methods of diagnostics. Nevertheless a number of restrictions of method reduces its efficiency. The technologies increasing informational content of x-ray mammography – the leading method of screening – due to use of artificial contrasting and advantages of digital technologies are constantly developed. In this review it is described works, in which the authors having clinical experience of application of CESM – contrastenhanced spectral mammography on representative group of women. Positive sides and restrictions of new technology in comparison with mammography, ultrasonography and MRT are shown in this article.

  18. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  19. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  20. Solar Power for Near Sun, High-Temperature Missions

    Science.gov (United States)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  1. Spectral Knowledge (SK-UTALCA): Software for Exploratory Analysis of High-Resolution Spectral Reflectance Data on Plant Breeding.

    Science.gov (United States)

    Lobos, Gustavo A; Poblete-Echeverría, Carlos

    2016-01-01

    This article describes public, free software that provides efficient exploratory analysis of high-resolution spectral reflectance data. Spectral reflectance data can suffer from problems such as poor signal to noise ratios in various wavebands or invalid measurements due to changes in incoming solar radiation or operator fatigue leading to poor orientation of sensors. Thus, exploratory data analysis is essential to identify appropriate data for further analyses. This software overcomes the problem that analysis tools such as Excel are cumbersome to use for the high number of wavelengths and samples typically acquired in these studies. The software, Spectral Knowledge (SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other studies such as precision agriculture, crop protection, ecophysiology plant nutrition, and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop characteristics to spectral data and the software is loaded with 255 SRIs which can be applied quickly to the data. This article describes the architecture and functions of SK-UTALCA and the features of the data that led to the development of each of its modules.

  2. XUV spectral observations with two-wavelength laser irradiation

    Science.gov (United States)

    Burkhalter, P. G.; Apruzese, J. P.; Seely, J. F.; Brown, C. M.; Newman, D. A.

    1988-08-01

    XUV diagnostic equipment was designed and utilized on the OMEGA target chamber at the University of Rochester to study high atomic number plasma generation by two-wavelength laser excitation. Spectral data were collected from silver tracer dot targets irradiated with 1/3 TW of 0.35-μm laser light of the multiple-beam OMEGA laser and the single synchronized 1.06-μm beam of the GDL laser for generating energetic electrons. XUV spectral data in the 30-300-Å region were obtained with both a 3-m grazing incidence spectrograph and a compact 1-m grazing incidence spectrograph designed for reentrant mounting in the OMEGA chamber. High-resolution x-ray spectra were acquired in the 3.6-4.2-Å region with a dual, flat-diffraction crystal spectrograph. A low-resolution x-ray spectrum of silver was recorded with a curved mica spectrograph. Some x-ray spectral lines appeared only when both OMEGA and GDL beams were used. These were identified as 2p-3s,3d transitions in F-like Ag xxxix. F-, Na-, and Mg-like lines were found in the grazing incidence spectra, with F-like lines appearing only with 1.06-μm irradiation.

  3. Solar system

    CERN Document Server

    Bell, Samantha

    2018-01-01

    "Using the new Next Generation Science Standards (NGSS), the My World of Science series provides the earliest readers with background on key STEM concepts. Solar System explores basic planetary astronomy in a simple, engaging way that will help readers develop word recognition and reading skills. Includes a glossary and index."-- Provided by publisher.

  4. Solar Neutrinos

    OpenAIRE

    Bellini, G.; Ianni, A.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  5. Solar Neutrinos

    Indian Academy of Sciences (India)

    Solar Neutrinos. Revathi Ananthakrishnan. 1. Introduction. The neutrino, which means the little neutral one in Ital- ian, is a very special elementary particle. It is a spin half, chargeless and almost . massless particle and therefore eluded detection for a long time. However, the sun is a rich source of neutrinos and physicists ...

  6. Solar Power

    Science.gov (United States)

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  7. Critical incident stress management.

    Science.gov (United States)

    Lim, J J; Childs, J; Gonsalves, K

    2000-10-01

    Recent studies have indicated implementation of the CISM Program has impacted and reduced the cost of workers' compensation claims for stress related conditions and the number of lost work days (Ott, 1997; Western Management Consultants, 1996). Occupational health professionals need to be ready to develop and implement a comprehensive critical incident stress management process in anticipation of a major event. The ability to organize, lead, or administer critical incident stress debriefings for affected employees is a key role for the occupational health professional. Familiarity with these concepts and the ability to identify a critical incident enhances value to the business by mitigating the stress and impact to the workplace. Critical Incident Stress Management Systems have the potential for decreasing stress and restoring employees to normal life function--a win/win situation for both the employees and the organization.

  8. Marine Animal Incident Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Large whale stranding, death, ship strike and entanglement incidents are all recorded to monitor the health of each population and track anthropogenic factors that...

  9. Police Incident Blotter (Archive)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Police Blotter Archive contains crime incident data after it has been validated and processed to meet Uniform Crime Reporting (UCR) standards, published on a...

  10. Prediction of Safety Incidents

    Data.gov (United States)

    National Aeronautics and Space Administration — Safety incidents, including injuries, property damage and mission failures, cost NASA and contractors thousands of dollars in direct and indirect costs. This project...

  11. 2011 Japanese Nuclear Incident

    Science.gov (United States)

    EPA’s RadNet system monitored the environmental radiation levels in the United States and parts of the Pacific following the Japanese Nuclear Incident. Learn about EPA’s response and view historical laboratory data and news releases.

  12. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  13. The nature of solar brightness variations

    Science.gov (United States)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  14. Information Security Incident Management

    Directory of Open Access Journals (Sweden)

    D. I. Persanov

    2010-03-01

    Full Text Available The present report highlights the points of information security incident management in an enterprise. Some aspects of the incident and event classification are given. The author presents his view of the process scheme over the monitoring and processing information security events. Also, the report determines a few critical points of the listed process and gives the practical recommendations over its development and optimization.

  15. Thermal analysis of solar dryers | Assefa | Zede Journal

    African Journals Online (AJOL)

    Results of the system simulation are presented in graphical fonn suitable for system pe1formance detennination. From the incident solar flux, ambient air temperature and solar collector parameters, the average yearly values of useful energy, the collector outlet air-temperature and air volume flow-rate are also predicted and ...

  16. Facility for assessing spectral normal emittance of solid materials at high temperature.

    Science.gov (United States)

    Mercatelli, Luca; Meucci, Marco; Sani, Elisa

    2015-10-10

    Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 μm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 μm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.

  17. JPSS-1 VIIRS RSB sensor spectral response calibration and its applications

    Science.gov (United States)

    Zeng, Jinan; Butler, Jim; Xiong, Xiaoxiong; Schwarting, Tom; Mcintire, Jeff; Ji, Qiang; Oudrari, Hassan

    2017-09-01

    We present system-level responsivity calibration results of the visible and near infrared channels of JPSS-1 VIIRS in the reflective solar band (RSB) from bands M1( 412 nm) to M7 (865 nm). A monochromator-based method based on the Spectral Measurement Assembly (SpMA), and a laser-based calibration method based on Travelling-Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (T-SIRCUS) were applied with different illumination methods to obtain the relative and absolute spectral responses (RSR and ASR). The spectral features of RSR for each band are verified by comparing to the component-level spectral transmittance of the VIIRS bandpass filters. Variation of RSR results of a single pixel/detector with respect to the band-averaged for each band is also investigated. Utilization of RSR results from SpMA and T-SIRCUS with different illumination methods as well as the component transmittance results enables us to recognize optical and electrical cross-talk from out-of-band, which is estimated at about 3 %. We also attempted to use the ASRs from T-SIRCUS to validate the gain coefficients derived from an independent radiometric calibration test using a broadband source. Three spectral shapes of flat spectral radiance, Tungsten lamp, and solar emission are used to simulate different scenarios for baseline, pre-launch calibration, and on-orbit calibration to verify the radiometric coefficients with the more accurate NIST-traceable calibration.

  18. The Ultraviolet Spectral Morphology of a Sample of B Supergiants in the Small Magellanic Cloud

    Science.gov (United States)

    McNeil, R. C.; Borchers, A. L.; Sonneborn, G.; Fahey, R. P.

    1995-05-01

    A study of the ultraviolet spectra of a sample of B supergiants in the Small Magellanic Cloud is being undertaken as a means of addressing some questions about the nature and evolution of massive stars. All spectra are new or archival low-dispersion SWP spectra (1200International Ultraviolet Explorer. As a first step in this study, the ultraviolet spectral morphology of approximately 50 program stars is being examined for consistency with their published spectral classifications. Analysis includes a tabulation of ultraviolet spectral features, evaluation of their variation with spectral type and luminosity class, and comparison with IUE spectral sequences of standard stars. The data analysis was performed at the IUE Data Analysis Center at Goddard Space Flight Center. Partial support of this work by NASA and Northern Kentucky University through the Joint Ventures (JOVE) program, and support of the Laboratory for Astronomy and Solar Physics at GSFC, is gratefully acknowledged.

  19. Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars

    Science.gov (United States)

    Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng

    2017-09-01

    Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance

  20. Solar-Geophysical Data Number 517, September 1987. Part 1 (prompt reports). Data for August, July 1987, and late data

    International Nuclear Information System (INIS)

    Coffey, H.E.; McKinnon, J.A.

    1987-09-01

    Contents include: Detailed index for 1986-1987; Data for August 1987--(IUWDS alert periods (advance and worldwide), Solar-activity indices, Solar flares, Solar radio emission, Stanford mean solar magnetic field); Data for July 1987--(Solar active regions, Sudden ionospheric disturbances, Solar radio spectral observations, Cosmic-ray measurements by neutron monitor, Geomagnetic indices, Radio propagation indices); Late data--(Solar radio emission July 1987, Pioneer XII interplanetary magnetic-field magnitudes, Cosmic-ray neutron monitor Thule June 1987, Geomagnetic indices, Calcium plage data December 1986-January 1987)