Development of 52 inches last stage blade for steam turbines
International Nuclear Information System (INIS)
Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao
1986-01-01
The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)
Size of silicon strip sensor from 6 inch wafer (right) compared to that from a 4 inch wafer (left).
Honma, Alan
1999-01-01
Silicon strip sensors made from 6 inch wafers will allow for much larger surface area coverage at a reduced cost per unit surface area. A prototype sensor of size 8cm x 11cm made by Hamamatsu from a 6 inch wafer is shown next to a traditional 6cm x 6cm sensor from a 4 inch wafer.
Bassan, Milan S; Sundaralingam, Praka; Fanning, Scott B; Lau, James; Menon, Jayaram; Ong, Evan; Rerknimitr, Rungsun; Seo, Dong-Wan; Teo, Eng Kiong; Wang, Hsiu-Po; Reddy, D Nageshwar; Goh, Khean Lee; Bourke, Michael J
2018-06-01
Wire-guided biliary cannulation has been demonstrated to improve cannulation rates and reduce post-ERCP pancreatitis (PEP), but the impact of wire caliber has not been studied. This study compares successful cannulation rates and ERCP adverse events by using a 0.025-inch and 0.035-inch guidewire. A randomized, single blinded, prospective, multicenter trial at 9 high-volume tertiary-care referral centers in the Asia-Pacific region was performed. Patients with an intact papilla and conventional anatomy who did not have malignancy in the head of the pancreas or ampulla and were undergoing ERCP were recruited. ERCP was performed by using a standardized cannulation algorithm, and patients were randomized to either a 0.025-inch or 0.035-inch guidewire. The primary outcomes of the study were successful wire-guided cannulation and the incidence of PEP. Overall successful cannulation and ERCP adverse events also were studied. A total of 710 patients were enrolled in the study. The primary wire-guided biliary cannulation rate was similar in 0.025-inch and 0.035-inch wire groups (80.7% vs 80.3%; P = .90). The rate of PEP between the 0.025-inch and the 0.035-inch wire groups did not differ significantly (7.8% vs 9.3%; P = .51). No differences were noted in secondary outcomes. Similar rates of successful cannulation and PEP were demonstrated in the use of 0.025-inch and 0.035-inch guidewires. (Clinical trial registration number: NCT01408264.). Copyright © 2018. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Singh, S.K.
2002-01-01
The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass M A in the axial vector form factor is discussed
Energy Technology Data Exchange (ETDEWEB)
Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards
2003-07-22
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
1971-01-01
The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.
83-inch cyclotron research program. Final report
International Nuclear Information System (INIS)
Parkinson, W.C.
1983-07-01
In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan
SAFT 4{1/2} inch nickel hydrogen battery cells
Energy Technology Data Exchange (ETDEWEB)
Duquesne, D.; Lacout, B.; Sennet, A. [SAFT Advanced Batteries, Poitiers (France)
1995-12-31
SAFT Advanced Batteries has now produced over 400 high capacity 4{1/2} inch Nickel Hydrogen Battery Cells for flight programs. The 4.5 inch diameter, rabbit-ear cell design is designed to provide the anticipated energy required at the lowest practical weight. SAFT has incorporated into the design of the dry-powder nickel electrode, truly hermetic ceramic to metal seals, qualified terminal feedthroughs, high reliability mechanical design, composite pure platinum negative electrode, and zircar separator, plus more than 25 years experience in aerospace nickel cell technology, resulting in a 4{1/2} inch configuration with the 3{1/2} inch cell design carryover heritage. General performance requirements for GEO missions that SAFT cells meet are 15 years in orbit lifetime, 80% DOD, low mass to energy ratios, and flexible capacity by modifying number of electrodes in the stack. This design is qualified for geostationary orbits based on SAFT`s 3{1/2} inch qualification heritage, design verification, and cycling performed by customer Space Systems/LORAL in support of the INTELSAT VIIA and N-STAR flight programs.
Neutron electromagnetic form factors
International Nuclear Information System (INIS)
Finn, J.M.; Madey, R.; Eden, T.; Markowitz, P.; Rutt, P.M.; Beard, K.; Anderson, B.D.; Baldwin, A.R.; Keane, D.; Manley, D.M.; Watson, J.W.; Zhang, W.M.; Kowalski, S.; Bertozzi, W.; Dodson, G.; Farkhondeh, M.; Dow, K.; Korsch, W.; Tieger, D.; Turchinetz, W.; Weinstein, L.; Gross, F.; Mougey, J.; Ulmer, P.; Whitney, R.; Reichelt, T.; Chang, C.C.; Kelly, J.J.; Payerle, T.; Cameron, J.; Ni, B.; Spraker, M.; Barkhuff, D.; Lourie, R.; Verst, S.V.; Hyde-Wright, C.; Jiang, W.-D.; Flanders, B.; Pella, P.; Arenhoevel, H.
1992-01-01
Nucleon form factors provide fundamental input for nuclear structure and quark models. Current knowledge of neutron form factors, particularly the electric form factor of the neutron, is insufficient to meet these needs. Developments of high-duty-factor accelerators and polarization-transfer techniques permit new experiments that promise results with small sensitivities to nuclear models. We review the current status of the field, our own work at the MIT/Bates linear accelerator, and future experimental efforts
It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to
Electromagnetic form factors of hadrons
International Nuclear Information System (INIS)
Zidell, V.S.
1976-01-01
A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated
Electromagnetic Hadronic Form-Factors
International Nuclear Information System (INIS)
Edwards, Robert G.
2005-01-01
We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks
Energy Technology Data Exchange (ETDEWEB)
MORGAN, R.G.
1999-06-23
The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rate which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. Five four-inch drain valves are located in the north and south loadout pits (NLOP and SLOP), the weasel pit, the technical viewing pit, and the discharge chute pit. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations indicate that only the valve's bonnet and stem are exposed above the basin concrete floor for the twelve-inch drain valve and that much less of the valve's bonnet and stem are exposed above the basin concrete floor for the five four-inch drain valves. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this analysis are to: (1) evaluate the likelihood of damaging the three twelve-inch drain valves located along the north wall of the main basin and the five four-inch drain valves located in the pits from a seismic initiating event, and (2) determine the likelihood of exceeding a specific consequence (initial leak rate) from a damaged valve. The analysis process is a risk-based uncertainty analysis where each variable is modeled using available information and engineering judgement. The uncertainty associated with each variable is represented by a probability distribution (probability density function). Uncertainty exists because of the inherent
International Nuclear Information System (INIS)
Aiello, S.; Giordano, V.; Leonora, E.
2015-01-01
Large area photomultipliers are widely used in neutrino and astro-particle detectors to measure Cherenkov light in media like water or ice. The key element of these detectors are the so-called 'optical module', which consists of a photodetector enclosed in a transparent pressure-resistant container to protect it and ensure good light transmission. KM3NeT collaboration aims to construct an underwater 'hybrid' neutrino telescope by using two models detection unit. The 'tower' detection unit will be composed of large area 10-inch photomultipliers tube enclosed into 13-inch glass vessel sphere. In the 'string' detection unit instead, the light detector will be the 'digital optical module' (DOM) a glass vessel of 17-inch with 31 photomultipliers of 3- inch diameter looking upwards and downwards. The choice of two different kinds of photomultipliers, obliges us to investigate their main characteristics. Noise pulses at the anode of each photomultiplier strongly affect the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, pre-pulses, delayed pulses, and after-pulses. The contribution to noise pulses due to the presence of the external glass vessels was also studied. Moreover the presence of the Earth's magnetic field should modify quantities like gain and transit time spread in photomultipliers and we will deeply investigate on this. (authors)
Electroweak form factors of the Skyrmion
International Nuclear Information System (INIS)
Braaten, E.; Sze-Man Tse; Willcox, C.
1986-01-01
The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations
TRASYS form factor matrix normalization
Tsuyuki, Glenn T.
1992-01-01
A method has been developed for adjusting a TRASYS enclosure form factor matrix to unity. This approach is not limited to closed geometries, and in fact, it is primarily intended for use with open geometries. The purpose of this approach is to prevent optimistic form factors to space. In this method, nodal form factor sums are calculated within 0.05 of unity using TRASYS, although deviations as large as 0.10 may be acceptable, and then, a process is employed to distribute the difference amongst the nodes. A specific example has been analyzed with this method, and a comparison was performed with a standard approach for calculating radiation conductors. In this comparison, hot and cold case temperatures were determined. Exterior nodes exhibited temperature differences as large as 7 C and 3 C for the hot and cold cases, respectively when compared with the standard approach, while interior nodes demonstrated temperature differences from 0 C to 5 C. These results indicate that temperature predictions can be artificially biased if the form factor computation error is lumped into the individual form factors to space.
Form factors in (HI,HI') direct reactions
International Nuclear Information System (INIS)
Chu, Y.H.
1981-01-01
Using the semiclassical theory, the inelastic transition form factors are analyzed. For the first order form factors, we find that: (i) In the strong absorption limit, the Austern-Blair theory is a good approximation to the inelastic form factor--even in highly mismatched reactions. (ii) In weak to moderate absorption, the amplitude of the inelastic form factor oscillates due to overlapping potential resonances. The internal part of the form factor can be expressed in a simple form, which may easily be used to analyze heavy-ion inelastic scattering. (iii) In the presence of an isolated resonance, the inelastic form factor is enhanced greatly at the resonance due to multiple reflections inside the potential well. The second order form factors contain two terms, i.e. the one-step direct process (OSD) term and the two-step process (TS) term. It is found that: (i) In the strong absorption limit, OSD and TS form factors are equally important and interfere destructively near the grazing angular momentum. The Austern-Blair theory gives satisfactory results for well-matched reactions. The angular distributions of the mutual and double excitations are out of phase compared with that of the single excitation. (ii) For the weak absorption case, the internal part of the TS form factor is so enhanced that the OSD form factor can simply be neglected. The internal TS form factor can be parameterized in a form proportional to the internal-wave elastic Smatrix, where the angular distribution shows characteristically refractive phenomenon
Celiac Disease: Four Inches and Seven Pounds...
... Disease" Articles Celiac Disease Changes Everything / What is Celiac Disease? / Symptoms, Diagnosis & Treatment / Four Inches and Seven Pounds… / Learning to Live Well with Celiac Disease / Living Gluten-Free Spring 2015 Issue: Volume 10 ...
International Nuclear Information System (INIS)
Desplanques, B.
1987-01-01
Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr
Chou-Yang model and PHI form factor
Energy Technology Data Exchange (ETDEWEB)
Fazal-e-Aleem; Saleem, M.; Rafique, M.
1988-03-01
By using the deduced differential cross-section data for PHIp elastic scattering at 175 GeV/c in the Chou-Yang model, the PHI form factor has been computed and parametrized. Then in conjunction with the proton form factor this form factor is used in the pristine Chou-Yang model to obtain differential cross-section data at Fermilab energies. The theoretical results agree with the experimental measurements, endorsing the conjecture that the hadronic form factor of neutral particle is proportional to its magnetic form factor.
Torque expression of 0.018 and 0.022 inch conventional brackets
Sifakakis, I.; Pandis, N.; Makou, M.; Eliades, T.; Katsaros, C.; Bourauel, C.
2013-01-01
The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond(R) Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch.
Heavy meson form factors from QCD
International Nuclear Information System (INIS)
Falk, A.F.; Georgi, H.; Grinstein, B.
1990-01-01
We calculate the leading QCD radiative corrections to the relations which follow from the decoupling of the heavy quark spin as the quark mass goes infinity and from the symmetry between systems with different heavy quarks. One of the effects we calculate gives the leading q 2 -dependence of the form factor of a heavy quark, which in turn dominates the q 2 -dependence of the form factors of bound states of the heavy quark with light quarks. This, combined with the normalization of the form factor provided by symmetry, gives us a first principles calculation of the heavy meson (or baryon) form factors in the limit of very large heavy quark mass. (orig.)
Make Projects Small Form Factor PCs
Wessels, Duane
2006-01-01
Shoebox sized and smaller, small-form-factor PCs can pack as much computing muscle as a full-sized desktop computer. They consumer less power, have few or no moving parts, and are very quiet. Whether you plan to use one as a standalone PC or want to embed it in your next hacking project, a small-form-factor PC can be a lot of fun to build. Make Projects: Small Form Factor PCs is the only book available that shows you how to build small-form-factor PCs -- from kits and from scratch -- that are more interesting and more personalized than what a full-sized PC can give you. Included in the book
Test procedure for the Master-Lee and the modified Champion four inch hydraulic cutters
International Nuclear Information System (INIS)
Crystal, J.B.
1995-01-01
The Master-Lee and the modified Champion 4 Inch hydraulic cutters are being retested to gather and document information related to the following: determine if the Master-Lee cutters will cut the trunnions of an Aluminum fuel canister and a Stainless Steel fuel canister; determine if the Master-Lee cutters will cut 1 1/2 inch diameter fire hose; determine if the modified Champion 4 inch blade will cut sections of piping; and determine the effectiveness of the centering device for the Champion 4 Inch cutters. Determining the limitations of the hydraulic cutter will aid in the process of debris removal in the K-Basin. Based on a previous test, the cutters were returned to the manufacturer for modifications. The modifications to the Champion 4 Inch Cutter and further testing of the Master-Lee Cutter are the subjects of these feature tests
Am/Cm TTR testing - 3/8-inch glass beads evaluation in CIM5
International Nuclear Information System (INIS)
Witt, D. C.
2000-01-01
To facilitate the procurement and handling of the glass former for Am/Cm vitrification in the F-Canyon MPPF, 1/4 inch and 3/8 inch diameter glass beads were purchased from Corning for evaluation in the 5 inch Cylindrical Induction Melter (CIM5). Prior to evaluating the beads in the CIM5, tests were conducted in the Drain Tube Test Stand (DTTS) with 1/4 inch beads, 3/8 inch beads, and a 50/50 mixture to identify any process concerns. Results of the DTTS tests are summarized in Attachment 1. A somewhat larger volume expansion was experienced in all three DTTS runs as compared to a standard run using cullet. Further testing of the use of glass beads in the CIM5 was requested by the Design Authority as Task 1.02 of Technical Task Request 99-MNSS/SE-006. Since the Technical Task Plan was not yet approved, the completion of this task was conducted under an authorization request approved by the SRTC Laboratory Director, S. Wood. This request is included as Attachment 2
Asymptotics of Heavy-Meson Form Factors
Grozin, A.G.; Grozin, Andrey G.; Neubert, Matthias
1997-01-01
Using methods developed for hard exclusive QCD processes, we calculate the asymptotic behaviour of heavy-meson form factors at large recoil. It is determined by the leading- and subleading-twist meson wave functions. For $1\\ll |v\\cdot v'|\\ll m_Q/\\Lambda$, the form factors are dominated by the Isgur--Wise function, which is determined by the interference between the wave functions of leading and subleading twist. At $|v\\cdot v'|\\gg m_Q/\\Lambda$, they are dominated by two functions arising at order $1/m_Q$ in the heavy-quark expansion, which are determined by the leading-twist wave function alone. The sum of these contributions describes the form factors in the whole region $|v\\cdot v'|\\gg 1$. As a consequence, there is an exact zero in the form factor for the scattering of longitudinally polarized $B^*$ mesons at some value $v\\cdot v'\\sim m_b/\\Lambda$, and an approximate zero in the form factor of $B$ mesons in the timelike region ($v\\cdot v'\\sim -m_b/\\Lambda$). We obtain the evolution equations and sum rules ...
Disconnected electromagnetic form factors
International Nuclear Information System (INIS)
Wilcox, Walter
2001-01-01
Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors
Magnetic form factors of the trinucleons
Energy Technology Data Exchange (ETDEWEB)
Schiavilla, R; Pandharipande, V R; Riska, Dan-Olof
1989-11-01
The magnetic form factors of ^{3}H and ^{3}He are calculated with the Monte Carlo method from variational ground-state wave functions obtained for the Argonne and Urbana two- and three-nucleon interactions. The electromagnetic current operator contains one- and two-body terms that are constructed so as to satisfy the continuity equation with the two-nucleon potential in the Hamiltonian. The results obtained with the Argonne two-nucleon interaction are in overall agreement with the empirical values. It appears that the remaining theoretical uncertainty, in the calculation of these form factors from a given interaction model, is dominated by that in the electromagnetic form factors of the nucleon. It is found that the isovector magnetic form factors are rather sensitive to the details of the isospin-dependent tensor force, and they are much better reproduced with the Argonne than the Urbana potential. The isoscalar magnetic form factors appear to be sensitive to the spin-orbit interactions, and are better reproduced with the Urbana potential. The Argonne potential has a stronger τ1∙τ2 tensor force, while the Urbana one has a shorter-range spin-orbit interaction.
Measurement of the pion form factor
International Nuclear Information System (INIS)
Dally, E.; Hauptman, J.; May, C.
1977-01-01
The pion form factor has been measured in the momentum transfer range of 0.03( 2 by scattering pions from atomic electrons in a liquid hydrogen target. The pion form factor is defined to be the elastic scattering cross section divided by that predicted for a point pion. The experiment has been performed in a 100 GeV/c negative pion beam incident on a 50 cm liquid hydrogen target at Fermi laboratory. The corrected form factor equals 0.33+-0.06 f 2 . Vector dominance predicts 0.40 f 2
Charge-symmetry-breaking nucleon form factors
International Nuclear Information System (INIS)
Kubis, Bastian
2011-01-01
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon’s strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for 4 He.
Charge-symmetry-breaking nucleon form factors
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian, E-mail: kubis@hiskp.uni-bonn.de [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics (Germany)
2011-11-15
A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for {sup 4}He.
Calculation of nucleon electromagnetic form factors
International Nuclear Information System (INIS)
Renner, D.B.; Brower, R.; Dolgov, D.; Eicker, N.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Schilling, K.
2003-01-01
The formalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit
Electromagnetic form factors in the light-front dynamics
International Nuclear Information System (INIS)
Karmanov, V.A.; Smirnov, A.V.
1992-01-01
It is shown that the electromagnetic vertex of a nucleus (and of any bound system), expressed through the wave function in the light-front dynamics at relativistic values of momentum transfer, contains a contribution of nonphysical form factors which increases the total number of invariant form factors (for the deuteron from 3 up to 11). This fact explains an ambiguity in the form factors calculated previously. The physical and nonphysical form factors are covariantly separated. Explicit expressions for physical form factors of systems with spin 0, 1/2 and 1 through the vertex functions are obtained. (orig.)
Nucleon Form Factors Using Spin Degrees of Freedom
International Nuclear Information System (INIS)
Jones, Mark
2002-01-01
An overview of recent measurements of the neutron and proton electromagnetic form factors from double polarization experiments. Spin observables are sensitive to the product of nucleon form factor which allows access to the small nucleon electric form factors
Operational maneuvers and pipelines activities repairs for the 32 inches scraper tool recovering
Energy Technology Data Exchange (ETDEWEB)
Valdivia, Jose; Salguero, Luis; Villanueva, Pedro [Compania Operadora del Gas Amazonas, Lima (Peru)
2009-07-01
Transportadora de Gas del Peru and the Compania Operadora de Gas del Amazonas, responsible companies of the transport, operation and maintenance of the pipelines who transport natural gas and natural gas liquids respectively of the Camisea Project - Peru, following the internal policies and the maintenance plan of the pipeline transportation system was planned the activities for the internal pipeline inspection of these activities for 729.3 Km of natural gas pipeline covering diameters of 32 inches, 24 inches and 18 inches. After the first run of the cleaning tool, was scheduled the launch of the dummy scraper (scraper tool) along to the first 210 Km of the 32 inches natural gas pipeline , given changes in elevation along the trace and the low flow of transport. This scraper tool could not reach the final destination. After many series operational maneuvers as venting, creation of differential pressure in valves, the scraper tool only reach the first 75 Km of the trace. After an exhaustive analysis of trending pressure variations, it was concluded that this scraper showed intermittent progress of short durations, concluding that this scraper had not reach the next check point. In this way was decided to conduct operational maneuvers in order to locate, relocated and retrieve the scrapper tool from de 32 inches natural gas pipeline. (author)
Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc
Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo
2004-07-01
We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.
Baryon electromagnetic form factors at BESIII
Directory of Open Access Journals (Sweden)
Dbeyssi Alaa
2017-01-01
Full Text Available Electromagnetic form factors are fundamental quantities which parameterize the electric and magnetic structure of hadrons. This contribution reports on the measurements of baryon electromagnetic form factors at the BESIII experiment in Beijing. The Beijing e+e− collider BEPCII is a double-ring symmetric collider running at √s between 2.0 and 4.6 GeV. Baryon electromagnetic form factors can be measured at BESIII in direct e+e−-annihilation and in initial state radiation processes. Based on the data collected by the BESIII detector at 12 center of mass energies between 2.23 and 3.67 GeV, the e+e− → p̄p cross section and the time-like proton form factor is measured. Preliminary results from the analysis of the initial state radiation process e+e− → p̄pγ using a data set of 7.408 fb−1 collected at center-of-mass energies between 3.773 and 4.6 GeV, are also presented. The cross section for e+e−→Λ¯Λ${e^ + }{e^ - } \\to \\bar \\Lambda \\Lambda $ is measured based on 40.5 pb−1 data collected at 4 energy points from the threshold up to 3.08 GeV. Preliminary results on the total cross section and the Λ effective form factor are shown. Ongoing analysis based on the high luminosity energy scan from 2015 and from radiative return at different √s are also described.
On form factors of boundary changing operators
Energy Technology Data Exchange (ETDEWEB)
Bajnok, Z., E-mail: bajnok.zoltan@wigner.mta.hu [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary); Hollo, L., E-mail: hollo.laszlo@wigner.mta.hu [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics, P.O.B. 49, H-1525 Budapest 114 (Hungary); Laboratoire de Physique Théorique, École Normale Supérieure, 24, rue Lhomond, 75005 Paris (France)
2016-04-15
We develop a form factor bootstrap program to determine the matrix elements of local, boundary condition changing operators. We propose axioms for these form factors and determine their solutions in the free boson and Lee–Yang models. The sudden change in the boundary condition, caused by an operator insertion, can be interpreted as a local quench and the form factors provide the overlap of any state before the quench with any outgoing state after the quench.
Electromagnetic form factors of a massive neutrino
International Nuclear Information System (INIS)
Dvornikov, M.S.; Studenikin, A.I.
2004-01-01
Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary R ξ gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino. Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form factors as well as for the transitional electric dipole moment
Hadronic form factors in kaon photoproduction
Energy Technology Data Exchange (ETDEWEB)
Syukurilla, L., E-mail: tmart@fisika.ui.ac.id; Mart, T., E-mail: tmart@fisika.ui.ac.id [Department Fisika, FMIPA, Universitas Indonesia, Depok, 164242 (Indonesia)
2014-09-25
We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the KΛN vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.
The pion form factor from first principles
International Nuclear Information System (INIS)
Heide, J. van der
2004-01-01
We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the 'Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass
Zeros in the electromagnetic and hadronic form factors
International Nuclear Information System (INIS)
Martini, A.F.; Menon, M.J.; Montanha, J.
2004-01-01
We discuss the evidences for the existence of zeros in the electric and in the hadronic form factors of the proton. We show that the shape of both form factors are similar, but there is indication that the hadronic form factors can depend on the energy. (author)
Comparison of silicon strip tracker module size using large sensors from 6 inch wafers
Honma, Alan
1999-01-01
Two large silicon strip sensor made from 6 inch wafers are placed next to each other to simulate the size of a CMS outer silicon tracker module. On the left is a prototype 2 sensor CMS inner endcap silicon tracker module made from 4 inch wafers.
Color-kinematic duality for form factors
International Nuclear Information System (INIS)
Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang
2012-12-01
Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.
Color-kinematic duality for form factors
Energy Technology Data Exchange (ETDEWEB)
Boels, Rutger H.; Kniehl, Bernd A.; Tarasov, Oleg V.; Yang, Gang [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2012-12-15
Recently a powerful duality between color and kinematics has been proposed for integrands of scattering amplitudes in quite general gauge theories. In this paper the duality proposal is extended to the more general class of gauge theory observables formed by form factors. After a discussion of the general setup the existence of the duality is verified in two and three loop examples in four dimensional maximally supersymmetric Yang-Mills theory which involve the stress energy tensor multiplet. In these cases the duality reproduces known results in a particularly transparent and uniform way. As a non-trivial application we obtain a very simple form of the integrand of the four-loop two-point (Sudakov) form factor which passes a large set of unitarity cut checks.
MesonNet Workshop on Meson Transition Form Factors
Eidelman, S; Hanhart, C; Kubis, B; Kupsc, A; Leupold, S; Moskal, P; Schadmand, S
2012-01-01
The mini-proceedings of the Workshop on Meson Transition Form Factors held in Cracow from May 29th to 30th, 2012 introduce the meson transition form factor project with special emphasis on the interrelations between the various form factors (on-shell, single off-shell, double off-shell). Short summaries of the talks presented at the workshop follow.
ECR heavy-ion source for the LBL 88-inch cyclotron
International Nuclear Information System (INIS)
Clark, D.J.; Kalnins, J.G.; Lyneis, C.M.
1983-03-01
An Electron Cyclotron Resonance (ECR) heavy-ion source is under construction at the LBL 88-Inch Cyclotron. This source will produce very-high-charge-state heavy ions, such as 0 8 + and Ar 12 + , which will increase cyclotron energies by a factor of 2-4, up to A = 80. It is a two-stage source using room-temperature coils, a permanent-magnet sextupole, and a 6-9 GHz microwave system. Design features include adjustable first-to-second-stage plasma coupling, a variable second-stage mirror ratio, high-conductance radial pumping of the second stage, and a beam-diagnostic system. A remotely movable extraction electrode will optimize extraction efficiency. The project includes construction of a transport line and improvements to the cyclotron axial-injection system. The construction period is expected to be two years
The longest faun tail forming dreadlocks with underlying spina bifida occulta.
Brar, Balvinder Kaur; Mahajan, Bharat Bhushan; Mittal, Jyotisterna
2013-04-15
Spina bifida is a developmental anomaly characterized by defective closure of the bony encasement of the spinal cord through which the spinal cord and meninges may or may not protrude. We report a rare case of a very long faun tail, which was in the form of a 20 inch long tail originating from the lumbosacral area in a rhomboidal pattern, measuring 10 x 8 inches. The case is being reported for its rare presentation of a 20 inch long faun tail with underlying spina bifida occulta.
Form factors in the projected linear chiral sigma model
International Nuclear Information System (INIS)
Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.
1990-01-01
Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)
Absorptive form factors for high-energy electron diffraction
International Nuclear Information System (INIS)
Bird, D.M.; King, Q.A.
1990-01-01
The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)
Molecular form factors in X-ray crystallography
Groenewegen, P.P.M.; Feil, D.
1969-01-01
The calculation of molecular form factors from ab initio molecular electronic wavefunctions is discussed, and a scheme for application to X-ray diffraction structure analysis is given. The method is used to calculate the form factor of the NH+4 molecular ion from three accurate molecular
Hadron form factors in the constituent quark model
International Nuclear Information System (INIS)
Cardarelli, F.; Salme', G.; Simula, S.; Pace, E.
1998-01-01
Hadron electromagnetic form factors are evaluated in a light-front constituent quark model based on the eigenfunctions of a mass operator, including in the q-q interaction a confining term and a one-gluon-exchange term (OGE). The spin-dependent part of the interaction plays an essential role for obtaining both a proper fit of the experimental nucleon electromagnetic form factors and the faster than dipole decrease of the magnetic N-P 33 (1232) transition form factor. The effects of the D wave, produced by the tensor part of the OGE interaction, on the quadrupole and Coulomb N-P 33 (1232) transition form factors have been found to be negligible. (author)
Dispersive analysis of the pion transition form factor
Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.
2014-11-01
We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.
Chiral analysis of baryon form factors
Energy Technology Data Exchange (ETDEWEB)
Gail, T.A.
2007-11-08
This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)
Weak form factors of beauty baryons
International Nuclear Information System (INIS)
Ivanov, M.A.; Lyubovitskij, V.E.
1992-01-01
Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs
Hadronic Form Factors in Asymptotically Free Field Theories
Gross, D. J.; Treiman, S. B.
1974-01-01
The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.
Pseudoscalar form factors in tau-neutrino nucleon scattering
International Nuclear Information System (INIS)
Hagiwara, K.; Mawatari, K.; Yokoya, H.
2004-01-01
We investigate the pseudoscalar transition form factors of nucleon for quasi-elastic scattering and Δ resonance production in tau-neutrino nucleon scattering via the charged current interactions. Although the pseudoscalar form factors play an important role for the τ production in neutrino-nucleon scattering, these are not known well. In this Letter, we examine their effects in quasi-elastic scattering and Δ resonance production and find that the cross section, Q 2 distribution, and spin polarization of the produced τ ± leptons are quite sensitive to the pseudoscalar form factors
Calculation of pion form factor
International Nuclear Information System (INIS)
Vahedi, N.; Amirarjomand, S.
1975-09-01
The pion form factor is calculated using the structure function Wsub(2), which incorporates kinematical constraints, threshold behaviour and scaling. The Bloom-Gilman sum rule is used and only the two leading Regge trajectories are taken into account
Factorization of heavy-to-light form factors in soft-collinear effective theory
Beneke, Martin; Feldmann, Th.
2004-01-01
Heavy-to-light transition form factors at large recoil energy of the light meson have been conjectured to obey a factorization formula, where the set of form factors is reduced to a smaller number of universal form factors up to hard-scattering corrections. In this paper we extend our previous investigation of heavy-to-light currents in soft-collinear effective theory to final states with invariant mass Lambda^2 as is appropriate to exclusive B meson decays. The effective theory contains soft modes and two collinear modes with virtualities of order m_b*Lambda (`hard-collinear') and Lambda^2. Integrating out the hard-collinear modes results in the hard spectator-scattering contributions to exclusive B decays. We discuss the representation of heavy-to-light currents in the effective theory after integrating out the hard-collinear scale, and show that the previously conjectured factorization formula is valid to all orders in perturbation theory. The naive factorization of matrix elements in the effective theory ...
Hadron collisions and the fifth form factor
International Nuclear Information System (INIS)
Dokshitzer, Yu.L.; Marchesini, G.
2005-01-01
Logarithmically enhanced effects due to radiation of soft gluons at large angles in 2->2 QCD scattering processes are treated in terms of the ''fifth form factor'' that accompanies the four collinear singular Sudakov form factors attached to incoming and outgoing hard partons. Unexpected symmetry under exchange of internal and external variables of the problem is pointed out for the anomalous dimension that governs soft gluon effects in hard gluon-gluon scattering
Strange mesonic transition form factor
International Nuclear Information System (INIS)
Goity, J.L.; Musolf, M.J.
1996-01-01
The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society
Strange nucleon electromagnetic form factors from lattice QCD
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Avilés-Casco, A. Vaquero
2018-05-01
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are nonzero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.
Dispersive analysis of the pion transition form factor
Energy Technology Data Exchange (ETDEWEB)
Hoferichter, M. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Kubis, B.; Niecknig, F.; Schneider, S.P. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Leupold, S. [Uppsala Universitet, Institutionen foer fysik och astronomi, Box 516, Uppsala (Sweden)
2014-11-15
We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the e{sup +}e{sup -} → 3π cross section, generalizing previous studies on ω, φ → 3π decays and γπ → ππ scattering, and verify our result by comparing to e{sup +}e{sup -} → π{sup 0}γ data. We perform the analytic continuation to the space-like region, predicting the poorlyconstrained space-like transition form factor below 1 GeV, and extract the slope of the form factor at vanishing momentum transfer a{sub π} = (30.7 ± 0.6) x 10{sup -3}. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon. (orig.)
Comments on electromagnetic form factors of the nucleon
International Nuclear Information System (INIS)
Sachs, R.G.; Wali, K.C.
1989-01-01
This paper draws the concept of nucleon form factors further to consider the electromagnetic aspect based on the magnetic moment of the nucleon. These are seen as valid physical interpretations of form factors in electron-nucleon interactions. A linear combination of two functions, associated with charge radius, is derived, which agreed well with experimental results. The paper also expands the specific form to include relativistic cases and consider appropriate frames of reference. (UK)
Nucleon mass difference and off-shell form factors
International Nuclear Information System (INIS)
Kimel, I.
1981-08-01
The use of off-shell form factors in calculating the proton-neutron mass difference is advocated. These form factors appear in a Cottingham rotated Born-like expression for the mass difference and could lead to a good value for Δ = M sub(p) - M sub(n). (Author) [pt
Electromagnetic form factors at large momenta from lattice QCD
Chambers, A. J.; Dragos, J.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Somfleth, K.; Stüben, H.; Young, R. D.; Zanotti, J. M.; Qcdsf/Ukqcd/Cssm Collaborations
2017-12-01
Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavors of degenerate mass quarks corresponding to mπ≈470 MeV . We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2 , with results for the ratio of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with experimental results.
Surface sensitivity of nuclear-knock-out form factors
International Nuclear Information System (INIS)
Fratamico, G.
1984-01-01
A numerical calculation has been performed to investigate the sensitivity of nuclear-knock-out form factors to nuclear-surface behaviour of bound-state wave functions. The result of our investigation suggests that one can extract the bound-state behaviour at the surface from experimental information on nuclear-knock-out form factors
Effects of an electromagnetic quark form factor on meson properties
International Nuclear Information System (INIS)
Silvestre-Brac, B.
2002-01-01
A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data
Energy Technology Data Exchange (ETDEWEB)
Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); MacQuigg, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-12-15
This document addresses the incidental reflector reactivity worth of containerized maintenance/housekeeping fluids for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze containerized maintenance/housekeeping fluids which will be analyzed as water that may be present under normal conditions of an operation. The reactivity worth is compared to the reactivity worth due to I-inch of close-fitting 4n water reflection and I-inch of close-fitting radial water reflection. Both have been used to bound incidental reflection by 2-liter bottles in criticality safety evaluations. The conclusion is that, when the maintenance/housekeeping fluids are containerized the reactivity increase from a configuration which is bounding of normal conditions (up to eight bottles modeled with 2-liters of solution at varying diameter) is bound by I-inch of close fitting 4n water relection.
The heavy quark form factors at two loops
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nikhef, Amsterdam (Netherlands). Theory Group
2017-12-15
We compute the two-loop QCD corrections to the heavy quark form factors in case of the vector, axial-vector, scalar and pseudo-scalar currents up to second order in the dimensional parameter ε=(4-D)/2. These terms are required in the renormalization of the higher order corrections to these form factors.
12-inch x-ray image intensifier with thin metal input window
Energy Technology Data Exchange (ETDEWEB)
Obata, Yoshiharu; Anno, Hidero; Harao, Norio [Toshiba Corp., Kawasaki, Kanagawa (Japan)
1982-08-01
Borosilicate glass has been used for X-ray input window of image intensifiers (I.I.) up to now. Now two new types of 12-inch metal I.I., RT12301C and RT12302C, have been developed. They use convex 1-mm aluminum (instead of 5-mm borosilicate glass) for the input window. Adopting a high-performance penta-electronic lens and a new type of light guide CsI film, these intensifiers have greatly improved contrast, quantum detection efficiency (QDE) and resolution capability. In spite of low dosage, image quality equivalent to that in the conventional direct radiograph is obtained through combined use of the new-type 12-inch metal I.I. with 0.3-mm small-focal-spot X-ray tube. Great contribution to digital radiography is expected of this I.I.
Pion transition form factor in k{sub T} factorization
Energy Technology Data Exchange (ETDEWEB)
Li, Hsiang-nan [Academica Sinica, Taipei, Taiwan (China). Inst. of Physics; Tsing-Hua Univ., Hsinchu, Taiwan (China). Dept. of Phyiscs; National Cheng-Kung Univ., Tainan, Taiwan (China). Dept. of Physics; National Cheng-Chi Univ, Taipei, Taiwan (China). Inst. of Applied Physics; Mishima, Satoshi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-07-15
It has been pointed out that the recent BaBar data on the {pi}{gamma}{sup *} {yields} {gamma} transition form factor F{sub {pi}}{sub {gamma}}(Q{sup 2}) at low (high) momentum transfer squared Q{sup 2} indicate an asymptotic (flat) pion distribution amplitude. These seemingly contradictory observations can be reconciled in the k{sub T} factorization theorem: the increase of the measured Q{sup 2}FF{sub {pi}}{sub {gamma}}(Q{sup 2}) for Q{sup 2} > 10 GeV{sup 2} is explained by convoluting a k{sub T} dependent hard kernel with a flat pion distribution amplitude, k{sub T} being a parton transverse momentum. The low Q{sup 2} data are accommodated by including the resummation of {alpha}{sub s} ln{sup 2}x, x being a parton momentum fraction, which provides a stronger suppression at the endpoints of x. The next-to-leading-order correction to the pion transition form factor is found to be less than 20% in the considered range of Q{sup 2}. (orig.)
Electromagnetic form factors of composite systems
International Nuclear Information System (INIS)
Nowak, E.J.
1978-01-01
Electromagnetic form factors are examined for a spin-zero, two-body composite system with emphasis on the case of small momentum transfer and/or deep (relativistic) binding. Perturbation theory calculations are first performed using spin-zero and then spin-one-half constituents. A dispersion representation of the bound-state vertex function is conjectured first for scalar and then for fermion constituents. Then a relativistic effective range approximation (RERA) is developed for each case and applied to the calculation of the electromagnetic form factor. The approach is applied to the study of the charge radii of the K 0 and K + mesons. The K/sub l3/ form factor is calculated in the fermion constituent RERA model, and restrictions are imposed on the model parameters from available experimental data. With these restrictions the limits 0.24fm less than or equal to √[abs. value ( 2 >/sub K 0 /)] less than or equal to = 0.36fm and 0.66fm less than or equal to = √( 2 >/sub K + /) less than or equal to 0.79fm are obtained for the kaon charge radii, and -.22 less than or equal to xi less than or equal to -.13 is found for the ratio of the neutral to charged kaon charge radius squared
The connected prescription for form factors in twistor space
Energy Technology Data Exchange (ETDEWEB)
Brandhuber, A.; Hughes, E.; Panerai, R.; Spence, B.; Travaglini, G. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)
2016-11-23
We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in N=4 super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.
Form factors of the finite quantum XY-chain
International Nuclear Information System (INIS)
Iorgov, Nikolai
2011-01-01
Explicit factorized formulas for the matrix elements (form factors) of the spin operators σ x and σ y between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov τ (2) -model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.
Paramagnetic form factors from itinerant electron theory
International Nuclear Information System (INIS)
Cooke, J.F.; Liu, S.H.; Liu, A.J.
1985-01-01
Elastic neutron scattering experiments performed over the past two decades have provided accurate information about the magnetic form factors of paramagnetic transition metals. These measurements have traditionally been analyzed in terms of an atomic-like theory. There are, however, some cases where this procedure does not work, and there remains the overall conceptual problem of using an atomistic theory for systems where the unpaired-spin electrons are itinerant. We have recently developed computer codes for efficiently evaluating the induced magnetic form factors of fcc and bcc itinerant electron paramagnets. Results for the orbital and spin contributions have been obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands. By using calculated spin enhancement parameters, we find reasonable agreement between theory and neutron form factor data. In addition, these zero parameter calculations yield predictions for the bulk susceptibility on an absolute scale which are in reasonable agreement with experiment in all treated cases except palladium
Asymptotical behaviour of pion electromagnetic form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1978-01-01
In the framework of the renormalizable quantum field theory a new approach is developed to the investigation of asymptotical behaviour of two-particle bound state electromagnetic form factor. It is shown that the behaviour of the pion EM form factor in quantum chromodynamics at sufficiently large momentum transfers is controlled by the short-distance dynamics only. The formula is obtained which expresses the asymptotical behaviour of the pion form factor in terms of the fundamental constants of the theory
Model of separated form factors for unilamellar vesicles
International Nuclear Information System (INIS)
Kiselev, M.A.; Aksenov, V.L.; Lesieur, P.; Lombardo, D.; Kiselev, A.M.
2001-01-01
A new model of separated form factors is proposed for the evaluation of small-angle neutron scattering curves from large unilamellar vesicles. The validity of the model was checked via comparison with the model of a hollow sphere. The model of separated form factors and the hollow sphere model give a reasonable agreement in the evaluation of vesicle parameters
ELECTROMAGENTIC FORM FACTORS OF THE PROTON AND NEUTRON
Energy Technology Data Exchange (ETDEWEB)
Griffy, T. A.; Hofstadter, R.; Hughes, E. B.; Janssens, T.; Yearian, M. R.
1963-06-15
Proton form factors in the four-momentum-transfer range q/sup 2/ = 4.6 to 32.0 f/sup -2/ and neutron form factors in the range q/sup 2/ = 2.5 to 10.0 f/ sup -2/ are measured by means of electron elastic scattering by protons and electron inelastic scattering by deuterons. (T.F.H.)
17 CFR 201.152 - Filing of papers: Form.
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Filing of papers: Form. 201... PRACTICE Rules of Practice General Rules § 201.152 Filing of papers: Form. (a) Specifications. Papers filed... white paper measuring 81/2×11 inches, except that, to the extent that the reduction of larger documents...
Anomaly, mixing and transition form factors of pseudoscalar mesons
International Nuclear Information System (INIS)
Klopot, Yaroslav; Oganesian, Armen; Teryaev, Oleg
2011-01-01
We derive the exact non-perturbative QCD sum rule for the transition form factors of η and η ′ using the dispersive representation of axial anomaly. This sum rule allows to express the transition form factors entirely in terms of meson decay constants. Using this sum rule several mixing schemes were analyzed and compared to recent experimental data. A good agreement with experimental data on η,η ′ transition form factors in the range from real to highly virtual photons was obtained.
Parallel Integer Factorization Using Quadratic Forms
National Research Council Canada - National Science Library
McMath, Stephen S
2005-01-01
.... In 1975, Daniel Shanks used class group infrastructure to modify the Morrison-Brillhart algorithm and develop Square Forms Factorization, but he never published his work on this algorithm or provided...
Baryon form factors at high momentum transfer and generalized parton distributions
International Nuclear Information System (INIS)
Stoler, Paul
2002-01-01
Nucleon form factors at high momentum transfer t are treated in the framework of generalized parton distributions (GPD's). The possibility of obtaining information about parton high transverse momentum components by application of GPD's to form factors is discussed. This is illustrated by applying an ad hoc 2-body parton wave function to elastic nucleon form factors F 1 and F 2 , the N→Δ transition magnetic form factor G M * , and the wide angle Compton scattering form factor R 1
Anomaly, mixing and transition form factors of pseudoscalar mesons
Energy Technology Data Exchange (ETDEWEB)
Klopot, Yaroslav, E-mail: klopot@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation); Oganesian, Armen, E-mail: armen@itep.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Teryaev, Oleg, E-mail: teryaev@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna 141980 (Russian Federation)
2011-10-15
We derive the exact non-perturbative QCD sum rule for the transition form factors of {eta} and {eta}{sup Prime} using the dispersive representation of axial anomaly. This sum rule allows to express the transition form factors entirely in terms of meson decay constants. Using this sum rule several mixing schemes were analyzed and compared to recent experimental data. A good agreement with experimental data on {eta},{eta}{sup Prime} transition form factors in the range from real to highly virtual photons was obtained.
Two-body form factors at high Q2
International Nuclear Information System (INIS)
Gross, F.; Keister, B.D.
1983-02-01
The charge form factor of a scalar deuteron at high momentum transfer is examined in a model employing scalar nucleons and mesons. With an eye toward establishing consistency criteria for more realistic calculations, several aspects of the model are examined in detail: the role of nucleon and meson singularities in the one-loop impulse diagram, the role of positive-and negative-energy nucleons, and the relationship to time-ordered perturbation theory. It is found that at large Q 2 (1) the form factor is dominated by a term in which the spectator nucleon is on the mass shell, and (2) the meson singularity structure of the d-n-p vertex function is unimportant in determining the overall high-Q 2 behaviour of the form factor
Fabrication of 0.5-inch diameter FBR mixed oxide fuel pellets
International Nuclear Information System (INIS)
Rasmussen, D.E.; Benecke, M.W.; McCord, R.B.
1979-01-01
Large diameter (0.535 inch) mixed oxide fuel pellets for Fast Breeder Reactor application were successfully fabricated by the cold-press-and-sinter technique. Enriched UO 2 , PuO 2 -UO 2 , and PuO 2 -ThO 2 compositions were fabricated into nominally 90% theoretical density pellets for the UO 2 and PuO 2 -UO 2 compositions, and 88% and 93% T.D. for the PuO 2 -ThO 2 compositions. Some processing adjustments were required to achieve satisfactory pellet quality and density. Furnace heating rate was reduced from 200 to 50 0 C/h for the organic binder burnout cycle for the large, 0.535-inch diameter pellets to eliminate pellet cracking during sintering. Additional preslugging steps and die wall lubrication during pressing were used to eliminate pressing cracks in the PuO 2 -ThO 2 pellets
The QCD form factor of massive quarks and applications
International Nuclear Information System (INIS)
Moch, S.
2009-11-01
We review the electromagnetic form factor of heavy quarks with emphasis on the QCD radiative corrections at two-loop order in the perturbative expansion. We discuss important properties of the heavy-quark form factor such as its exponentiation in the high-energy limit and its role in QCD factorization theorems for massive n-parton amplitudes. (orig.)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Belushkin, M.
2007-09-29
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the {pi}{pi}, K anti K and the {rho}{pi} continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Dispersion-theoretical analysis of the nucleon electromagnetic form factors
International Nuclear Information System (INIS)
Belushkin, M.
2007-01-01
The structure of the proton and the neutron is of fundamental importance for the study of the strong interaction dynamics over a wide range of momentum transfers. The nucleon form factors encode information on the internal structure of the nucleon as probed by the electromagnetic interaction, and, to a certain extent, reflect the charge and magnetisation distributions within the proton and the neutron. In this thesis we report on our investigation of the electromagnetic form factors of the proton and the neutron with dispersion relation techniques, including known experimental input on the ππ, K anti K and the ρπ continua and perturbative QCD constraints. We include new experimental data on the pion form factor and the nucleon form factors in our simultaneous analysis of all four form factors in both the space- and the timelike regions for all momentum transfers, and perform Monte- Carlo sampling in order to obtain theoretical uncertainty bands. Finally, we discuss the implications of our results on the pion cloud of the nucleon, the nucleon radii and the Okubo-Zweig-Iizuka rule, and present our results of a model-independent approach to estimating two-photon effects in elastic electron-proton scattering. (orig.)
Classical limit of diagonal form factors and HHL correlators
Energy Technology Data Exchange (ETDEWEB)
Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)
2017-01-16
We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Skyrme-model πNN form factor and nucleon-nucleon interaction
International Nuclear Information System (INIS)
Holzwarth, G.; Machleidt, R.
1997-01-01
We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society
Testing of one-inch UF{sub 6} cylinder valves under simulated fire conditions
Energy Technology Data Exchange (ETDEWEB)
Elliott, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
Accurate computational models which predict the behavior of UF{sub 6} cylinders exposed to fires are required to validate existing firefighting and emergency response procedures. Since the cylinder valve is a factor in the containment provided by the UF{sub 6} cylinder, its behavior under fire conditions has been a necessary assumption in the development of such models. Consequently, test data is needed to substantiate these assumptions. Several studies cited in this document provide data related to the behavior of a 1-inch UF{sub 6} cylinder valve in fire situations. To acquire additional data, a series of tests were conducted at the Paducah Gaseous Diffusion Plant (PGDP) under a unique set of test conditions. This document describes this testing and the resulting data.
Child seat belt guidelines: Examining the 4 feet 9 inches rule as the standard.
Morse, Amber M; Aitken, Mary E; Mullins, Samantha H; Miller, Beverly K; Pomtree, Mindy M; Ulloa, Erin M; Montgomery, Jeffrey S; Saylors, Marie E
2017-08-01
Current American Academy of Pediatrics recommendations regarding transition from child safety/booster seat to adult safety belt use indicate that children should be at least 4 feet 9 inches, 8 years old, or 80 pounds. Proper fit in the vehicle seat, assessed with a five-point fit test, should also be met. Although most children reach 4 feet 9 inches around age 8 years, each child and vehicle presents a unique combination; thus a child may not fit appropriately in all vehicle types using only the 4 feet 9 inches requirement. We enrolled children, aged 7 years to 12 years, into our study. Height, weight, and demographic data were obtained. A Child Passenger Safety Technician then performed the five-point fit test in each of a uniform lineup of five vehicles. Data were collected on fit in the standard vehicle seat and also in a booster seat. We set 90% as the threshold proportion of children who meet all criteria for proper fit to validate current recommendations of a height of 4 feet 9 inches. Data were collected on 388 children. The percentage of 90% proper fit was met in the compact car and small sport-utility vehicle (SUV). However, only 80 (77%) of 104 students (p vehicles (large SUVs and trucks). This emphasizes the need for evaluation of fit by a trained personnel and/or development of standard back seat dimensions in all vehicles for maximum safety. Epidemiologic study, level III; Therapeutic study, level V.
Worcester 1 Inch Solenoid-Actuated Gas-Operated VPS System Ball Valve
International Nuclear Information System (INIS)
VAN KATWIJK, C.
2000-01-01
1 inch Gas-operated full-port ball valve incorporates a solenoid and limit switches as integral parts of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS
Perturbative QCD and electromagnetic form factors
International Nuclear Information System (INIS)
Carlson, C.E.; Gross, F.
1987-01-01
We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs
Evaluation of E2 form factor = 24Mg
International Nuclear Information System (INIS)
Marinelli, J.R.; Moreira, J.R.
1988-11-01
Longitudinal and transverse electron scattering form factors for the 2 + state at 1.37 Mev of the 24 Mg nucleus was evaluated with rotational model wavefunctions. Four different approaches were used for the transverse E2 form factor: PHF, cranking model, ridig rotor and irrotational flow. For the nuclear intrinsic wavefunction, the Nilsson model was assumed in all approaches yielding the calculation of the form factor in PWBA and DWBA. The results are discussed and compared with a recent measurement performed with 180 0 electron scattered from this state. The DWBA calculation, taking into account first order corrections shows that PHF and irrotational flow models give the best agreements with the available data and compete in quality with more complex calculation performed under the 'shell model' approach. (author) [pt
Asymptotic behavior of composite-particle form factors and the renormalization group
International Nuclear Information System (INIS)
Duncan, A.; Mueller, A.H.
1980-01-01
Composite-particle form factors are studied in the limit of large momentum transfer Q. It is shown that in models with spinor constituents and either scalar or gauge vector gluons, the meson electromagnetic form factor factorizes at large Q 2 and is given by independent light-cone expansions on the initial and final meson legs. The coefficient functions are shown to satisfy a Callan-Symanzik equation. When specialized to quantum chromodynamics, this equation leads to the asymptotic formula of Brodsky and Lepage for the pion electromagnetic form factor. The nucleon form factors G/sub M/(Q 2 ), G/sub E/(Q 2 ) are also considered. It is shown that momentum flows which contribute to subdominant logarithms in G/sub M/(Q 2 ) vitiate a conventional renormalization-group interpretation for this form factor. For large Q 2 , the electric form factor G/sub E/(Q 2 ) fails to factorize, so that a renormalization-group treatment seems even more unlikely in this case
Form factors and QCD in spacelike and timelike region
International Nuclear Information System (INIS)
A.P. Bakulev; A.V. Radyushkin; N.G. Stefanis
2000-01-01
The authors analyze the basic hard exclusive processes: πγ * γ-transition, pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 > 0 of the relevant momentum transfers. They describe the construction of the timelike version of the coupling constant α s . They show that due to the analytic continuation of the collinear logarithms each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. They found no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, they use a QCD sum rule inspired model and show that there are non-canceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region
Form factors and QCD in spacelike and timelike regions
International Nuclear Information System (INIS)
Bakulev, A. P.; Radyushkin, A. V.; Stefanis, N. G.
2000-01-01
We analyze the basic hard exclusive processes, the πγ * γ-transition and the pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 >0 of the relevant momentum transfers. We describe the construction of the timelike version of the coupling constant α s . We show that due to the analytic continuation of the collinear logarithms, each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. We find no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, we use a QCD sum rule inspired model and show that there are noncanceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region
Energy Technology Data Exchange (ETDEWEB)
Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)
1994-04-01
It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.
Up- and Down-Quark Contributions to the Nucleon Form Factors
Directory of Open Access Journals (Sweden)
Qattan I. A.
2014-03-01
Full Text Available Recent measurements of the neutron s electric to magnetic form factors ratio, Rn = µnGnE/GnM, up to 3.4 (GeV/c2 combined with existing Rp = µpGpE/GpM measurements in the same Q2 range allowed, for the first time, a separation of the up- and downquark contributions to the form factors at high Q2, as presented by Cates, et al.. Our analysis expands on the original work by including additional form factor data, applying two-photon exchange (TPE corrections, and accounting for the uncertainties associated with all of the form factor measurements.
From quarks and gluons to baryon form factors.
Eichmann, Gernot
2012-04-01
I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.
Electric Form Factor of the Neutron
Feuerbach, Robert
2007-10-01
Recent polarization-based precision measurements of the nucleons' elastic electric form factors have led to surprising results. The measurement of the ratio of the proton's electromagnetic form factors, μpGE^p/GM^p, was found to drop nearly linearly with Q^2 out to at least 5 GeV^2, inconsistent with the older Rosenbluth-type experiments. A recent measurement of GE^n, the neutron's electric form-factor saw GE^n does not fall off as quickly as commonly expected up to Q^2 1.5 GeV^2. Extending this study, a precision measurement of GE^n up to Q^2=3.5 GeV^2 was completed in Hall A at Jefferson Lab. The ratio GE^n/GM^n was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off polarized neutrons in the reaction ^3He(e,e' n). The experiment took full advantage of the electron beam, recent target developments, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a geometrically matched neutron detector observed the struck neutron. Preliminary results from this measurement will be discussed and compared to modern calculations of GE^n.
Heavy-to-light form factors for non-relativistic bound states
International Nuclear Information System (INIS)
Bell, G.; Feldmann, Th.
2007-01-01
We investigate transition form factors between non-relativistic QCD bound states at large recoil energy. Assuming the decaying quark to be much heavier than its decay product, the relativistic dynamics can be treated according to the factorization formula for heavy-to-light form factors obtained from the heavy-quark expansion in QCD. The non-relativistic expansion determines the bound-state wave functions to be Coulomb-like. As a consequence, one can explicitly calculate the so-called 'soft-overlap' contribution to the transition form factor
On form factors and correlation functions in twistor space
International Nuclear Information System (INIS)
Koster, Laura; Mitev, Vladimir; Staudacher, Matthias; Wilhelm, Matthias
2017-01-01
In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N k MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.
On form factors and correlation functions in twistor space
Energy Technology Data Exchange (ETDEWEB)
Koster, Laura [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Mitev, Vladimir [PRISMA Cluster of Excellence, Institut für Physik, WA THEP,Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Staudacher, Matthias [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Wilhelm, Matthias [Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark)
2017-03-24
In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N{sup k}MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.
Conformal symmetry and pion form factor: Soft and hard contributions
International Nuclear Information System (INIS)
Choi, Ho-Meoyng; Ji, Chueng-Ryong
2006-01-01
We discuss a constraint of conformal symmetry in the analysis of the pion form factor. The usual power-law behavior of the form factor obtained in the perturbative QCD analysis can also be attained by taking negligible quark masses in the nonperturbative quark model analysis, confirming the recent AdS/CFT correspondence. We analyze the transition from soft to hard contributions in the pion form factor considering a momentum-dependent dynamical quark mass from an appreciable constituent quark mass at low momentum region to a negligible current quark mass at high momentum region. We find a correlation between the shape of nonperturbative quark distribution amplitude and the amount of soft and hard contributions to the pion form factor
Child seat belt guidelines: Examining the 4 feet 9 inches rule as the standard.
Morse, Amber M; Aitken, Mary E; Mullins, Samantha H; Miller, Beverly K; Pomtree, Mindy M; Ulloa, Erin M; Montgomery, Jeffrey S; Saylors, Marie E
2017-11-01
Current American Academy of Pediatrics recommendations regarding transition from child safety/booster seat to adult safety belt use indicate that children should be at least 4 feet 9 inches, 8 years old, or 80 pounds. Proper fit in the vehicle seat, assessed with a five-point fit test, should also be met. Although most children reach 4 feet 9 inches around age 8 years, each child and vehicle presents a unique combination; thus a child may not fit appropriately in all vehicle types using only the 4 feet 9 inches requirement. We enrolled children, aged 7 years to 12 years, into our study. Height, weight, and demographic data were obtained. A Child Passenger Safety Technician then performed the five-point fit test in each of a uniform lineup of five vehicles. Data were collected on fit in the standard vehicle seat and also in a booster seat. We set 90% as the threshold proportion of children who meet all criteria for proper fit to validate current recommendations of a height of 4 feet 9 inches. Data were collected on 388 children. The percentage of 90% proper fit was met in the compact car and small sport-utility vehicle (SUV). However, only 80 (77%) of 104 students (p guidelines for an adult seat belt do not meet safety requirements for fit, especially in larger, commonly used vehicles (large SUVs and trucks). This emphasizes the need for evaluation of fit by a trained personnel and/or development of standard back seat dimensions in all vehicles for maximum safety. Epidemiologic level 1.
Current algebra constraints on K13 form factors
International Nuclear Information System (INIS)
Simmons, L.D.
1975-01-01
New theoretical constraints on the divergence form factor in K 13 decays are derived. The assumptions underlying the derivation are presented. The constraints on the divergence form factor are derived and summarized in the form of a theorem. It is shown that the finiteness of the leakage charge is a natural consequence of the parallelΔI vectorparallel = 1 / 2 rule. The Lorentz invariance of current algebra sum rules is discussed. The theorem is rederived within the context of the conserved vector current hypothesis. Finally, the implications of the present work are noted with attention being paid to both the theoretical and experimental consequences
Project W320 52-inch diameter equipment container load test: Test report
International Nuclear Information System (INIS)
Bellomy, J.R.
1995-01-01
This test report summarizes testing activities and documents the results of the load tests performed on-site and off-site to structural qualify the 52-inch equipment containers designed and fabricated under Project W-320
Electromagnetic form factors at large momenta from lattice QCD
International Nuclear Information System (INIS)
Chambers, Alexander J.; Dragos, J.; Michigan State Univ., East Lansing, MI; Horsley, R.
2017-01-01
Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to m_π∼470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV"2, with results for G_E/G_M in the proton agreeing well with experimental results.
Hyperon decay form factors in chiral perturbation theory
International Nuclear Information System (INIS)
Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.
2007-01-01
We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )
241-SY-101 strain concentration factor development via nonlinear analysis. Volume 1 of 1
International Nuclear Information System (INIS)
1997-01-01
The 241-SY-101 waste storage tank at the Hanford-Site has been known to accumulate and release significant quantities of hydrogen gas. An analysis was performed to assess the tank's structural integrity when subjected to postulated hydrogen deflagration loads. The analysis addressed many nonlinearities and appealed to a strain-based failure criteria. The model used to predict the global response of the tank was not refined enough to confidently predict local peak strains. Strain concentration factors were applied at structural discontinuities that were based on steel-lined reinforced-concrete containment studies. The discontinuities included large penetrations, small penetrations, springline geometries, stud/liner connections, and the 1/2 inch to 3/8 inch liner thickness transition. The only tank specific strain concentration factor applied in the evaluation was for the 1/2 inch to 3/8 inch liner thickness change in the dome. Review of the tank drawings reveals the possibility that a 4 inches Sch. 40 pipe penetrates the dome thickness transition region. It is not obvious how to combine the strain concentration factors for a small penetration with that of a thickness transition to arrive at a composite strain concentration factor. It is the goal of this effort to make an approximate determination of the relative significance of the 4 inch penetration and the 1/2 inch to 3/8 inch thickness transition in the 241-SY-101 dome geometry. This is accomplished by performing a parametric study with three general finite-element models. The first represents the thickness transition only, the second represents a 4 inch penetration only, and the third combines the thickness transition with a penetration model
Form factor expansion for thermal correlators
Pozsgay, B.; Takács, G.
2010-01-01
We consider finite temperature correlation functions in massive integrable quantum field theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms
Covariance dynamics and symmetries, and hadron form factors
International Nuclear Information System (INIS)
Bhagwat, M.S.; Cloet, I.C.; Roberts, C.D.
2007-01-01
We summarize applications of Dyson-Schwinger equations to the theory and phenomenology of hadrons. Some exact results for pseudoscalar mesons are highlighted with details relating to the U A (1) problem. We describe inferences from the gap equation relating to the radius of convergence for expansions of observables in the current-quark mass. We recapitulate upon studies of nucleon electromagnetic form factors, providing a comparison of the ln-weighted ratios of Pauli and Dirac form factors for the neutron and proton.
Deuteron form factor measurements at low momentum transfers
Directory of Open Access Journals (Sweden)
Schlimme B. S.
2016-01-01
Full Text Available A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.
Worcester 1 Inch Solenoid-Actuated Gas Operated SCHe System Valves
International Nuclear Information System (INIS)
VAN KATWIJK, C.
2000-01-01
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab
2016-10-14
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.
Helicity non-conserving form factor of the proton
Energy Technology Data Exchange (ETDEWEB)
Voutier, E.; Furget, C.; Knox, S. [Universite Joseph Fourier, Grenoble (France)] [and others
1994-04-01
The study of the hadron structure in the high Q{sup 2} range contributes to the understanding of the mechanisms responsible for the confinement of quarks and gluons. Among the numerous experimental candidates sensitive to these mechanisms, the helicity non-conserving form factor of the proton is a privileged observable since it is controlled by non-perturbative effects. The authors investigate here the feasibility of high Q{sup 2} measurements of this form factor by means of the recoil polarization method in the context of the CEBAF 8 GeV facility. For that purpose, they discuss the development of a high energy proton polarimeter, based on the H({rvec p},pp) elastic scattering, to be placed at the focal plane of a new hadron spectrometer. It is shown that this experimental method significantly improves the knowledge of the helicity non-conserving form factor of the proton up to 10 GeV{sup 2}/c{sup 2}.
Health physics challenges involved with opening a "seventeen-inch" concrete waste vault.
Sullivan, Patrick T; Pizzulli, Michelle
2005-05-01
This paper describes the various activities involved with opening a sealed legacy "Seventeen-inch" concrete vault and the health physics challenges and solutions employed. As part of a legacy waste stream that was removed from the former Hazardous Waste Management Facility at Brookhaven National Laboratory, the "Seventeen-inch" concrete vault labeled 1-95 was moved to the new Waste Management Facility for ultimate disposal. Because the vault contained 239Pu foils with a total activity in excess of the transuranic waste limits, the foils needed to be removed and repackaged for disposal. Conventional diamond wire saws could not be used because of facility constraints, so this project relied mainly on manual techniques. The planning and engineering controls put in place enabled personnel to open the vault and remove the waste while keeping dose as low as reasonably achievable.
Analytic properties of form factors in strictly confining models
International Nuclear Information System (INIS)
Csikor, F.
1979-12-01
An argument is presented showing that strict confinement implies the possible existence of an (unwanted) branch point at q 2 =0 in the form factors. In case of a bag extended to infinity in the relative time, the branch point is certainly there (provided that the form factor is non zero at q 2 =0). (author)
Master integrals for the four-loop Sudakov form factor
International Nuclear Information System (INIS)
Boels, Rutger; Kniehl, Bernd A.; Yang, Gang; Chinese Academy of Sciences, Beijing
2015-08-01
The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for N=4 SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.
Model for next-to-leading order threshold resummed form factors
International Nuclear Information System (INIS)
Aglietti, Ugo; Ricciardi, Giulia
2004-01-01
We present a model for next-to-leading order resummed threshold form factors based on a timelike coupling recently introduced in the framework of small x physics. Improved expressions for the form factors in N-space are obtained which are not plagued by Landau-pole singularities, as the included absorptive effects - usually neglected - act as regulators. The physical reason is that, because of faster decay of gluon jets, there is not enough resolution time to observe the Landau pole. Our form factors reduce to the standard ones when the absorptive parts related to the coupling are neglected. The inverse transform from N-space to x-space can be done directly without any prescription and we obtain analytical expressions for the form factors, which are well defined in all x-space
MLEP-Fail calibration for 1/8 inch thick cast plate of 17-4 steel.
Energy Technology Data Exchange (ETDEWEB)
Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
The purpose of the work presented in this memo was to calibrate the Sierra material model Multilinear Elastic-Plastic Hardening Model with Failure (MLEP-Fail) for 1/8 inch thick cast plate of 17-4 steel. The calibration approach is essentially the same as that recently used in a previous memo using data from smooth and notched tensile specimens. The notched specimens were manufactured with three notch radii R = 1=8, 1/32 and 1/64 inches. The dimensions of the smooth and notched specimens are given in the prints in Appendix A. Two cast plates, Plate 3 and Plate 4, with nominally identical properties were considered.
Normalization Of Thermal-Radiation Form-Factor Matrix
Tsuyuki, Glenn T.
1994-01-01
Report describes algorithm that adjusts form-factor matrix in TRASYS computer program, which calculates intraspacecraft radiative interchange among various surfaces and environmental heat loading from sources such as sun.
Simple parametrization of nucleon form factors
International Nuclear Information System (INIS)
Kelly, J.J.
2004-01-01
This Brief Report provides simple parametrizations of the nucleon electromagnetic form factors using functions of Q 2 that are consistent with dimensional scaling at high Q 2 . Good fits require only four parameters each for G Ep , G Mp , and G Mn and only two for G En
Data on the electromagnetic pion form factor and p-wave
International Nuclear Information System (INIS)
Dubnicka, S.; Meshcheryakov, V.A.; Milko, J.
1980-01-01
The pion form factor absolute value data (free of the omega meson contribution) are unified with the P-wave isovector ππ phase shift. The resultant real and imaginary parts of the pion form factor are described by means of the Pade approximation. All the data, which involve the pion form factor experimental points from the range of momenta - 0.8432 GeV 2 2 , the pion charge radius, and the P-wave isovector ππ phase shift in the elastic region (including also the generally accepted value of the scattering length) are mutually consistent. The data themselves through the Pade approximation reveal that the aforementioned consistency can be achieved only if the pion form factor left-hand cut from the second Riemann sheet is taken into account. Almost in all of the considered Pade approximations one stable pion form factor zero is found in the space-like region, which might indicate the existence of a diffraction minimum in the differential cross section for elastic e - π scattering as a consequence of the constituent structure of the pion like in the case of the electron elastic scattering on nuclei
The B → D*lv form factor at zero recoil
International Nuclear Information System (INIS)
Simone, J.N.; Hashimoto, S.; El-Khadra, A.X.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.
2000-01-01
We describe a model independent lattice QCD method for determining the deviation from unity for h A1 (1), the B → D*lv form factor at zero recoil. We extend the double ratio method previously used to determine the B → Dlv form factor. The bulk of statistical and systematic errors cancel in the double ratios we consider, yielding form factors which promise to reduce present theoretical uncertainties in the determination of parallel V cb parallel. We present results from a prototype calculation at a single lattice spacing corresponding to β = 5.7
Nucleon electromagnetic form factors from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Koutsou, G.; Negele, J. W.; Tsapalis, A.
2006-01-01
We evaluate the isovector nucleon electromagnetic form factors in quenched and unquenched QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at β=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the unquenched theory we use two degenerate flavors of dynamical Wilson fermions on a lattice of spatial size 1.9 fm at β=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. that unquenching effects are small for the pion masses considered in this work. We compare our lattice results to the isovector part of the experimentally measured form factors
Nucleon form factors. Probing the chiral limit
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2006-10-15
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
Nucleon form factors. Probing the chiral limit
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2006-10-01
The electromagnetic form factors provide important hints for the internal structure of the nucleon and continue to be of major interest for experimentalists. For an intermediate range of momentum transfers the form factors can be calculated on the lattice. However, reliability of the results is limited by systematic errors due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet unaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with Nf=2, non-perturbatively O(a)-improved Wilson fermions at very small quark masses down to 340 MeV pion mass, where we start to probe the relevant quark mass region. (orig.)
Small Form Factor RFID Applicator, Phase I
National Aeronautics and Space Administration — The proposed development of a small form factor Astrobee dedicated RFID label applicator will allow current and future free flying vehicles to place RFID labels...
The 52-inch last-stage blades for steam turbines
International Nuclear Information System (INIS)
Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shin-ichiro; Ogata, Hisao
1986-01-01
The last-stage blades (LSB) of steam turbines are one of the most important components determining the plant's maximum capacity and efficiency. The development of LSBs necessitates high-technology including advanced methods of analyses and verifications as well as ample accumulation of technical data. The 52-inch LSB recently developed by Toshiba has raised nuclear power plant's capacity up to 1,300 ∼ 1,800 MW, has effected compact design of turbine units, and has improved thermal efficiency, keeping high reliability. (author)
Finite volume form factors in the presence of integrable defects
International Nuclear Information System (INIS)
Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.
2014-01-01
We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found
Electron form factors of deformable nuclei
International Nuclear Information System (INIS)
Tartakovskii, V.K.; Isupov, V.Yu.
1988-01-01
Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons
Measurement of the Charged Pion Electromagnetic Form Factor
International Nuclear Information System (INIS)
J. Volmer; David Abbott; H. Anklin; Chris Armstrong; John Arrington; K. Assamagan; Steven Avery; Oliver K. Baker; Henk Blok; C. Bochna; Ed Brash; Herbert Breuer; Nicholas Chant; Jim Dunne; Tom Eden; Rolf Ent; David Gaskell; Ron Gilman; Kenneth Gustafsson; Wendy Hinton; Garth Huber; Hal Jackson; Mark K. Jones; Cynthia Keppel; P.H. Kim; Wooyoung Kim; Andi Klein; Doug Koltenuk; Meme Liang; George Lolos; Allison Lung; David Mack; D. McKee; David Meekins; Joseph Mitchell; H. Mkrtchian; B. Mueller; Gabriel Niculescu; Ioana Niculescu; D. Pitz; D. Potterveld; Liming Qin; Juerg Reinhold; I.K. Shin; Stepan Stepanyan; V. Tadevosian; L.G. Tang; R.L.J. van der Meer; K. Vansyoc; D. Van Westrum; Bill Vulcan; Stephen Wood; Chen Yan; W.X. Zhao; Beni Zihlmann
2001-01-01
Separated longitudinal and transverse structure functions for the reaction 1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6 (GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion charge form factor were extracted from the longitudinal cross section by using a recently developed Regge model. The results indicate that the pion form factor in this region is larger than previously assumed and is consistent with a monopole parameterization fitted to very low Q2 elastic data
Master integrals for the four-loop Sudakov form factor
Directory of Open Access Journals (Sweden)
Rutger H. Boels
2016-01-01
Full Text Available The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally (N=4 supersymmetric Yang–Mills theory (SYM in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work for N=4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP identities using a modified version of Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The appearing master integrals are cross-checked using independent algebraic-geometry techniques explored in the Mint package. The latter results provide the basis of master integrals applicable to generic form factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of the four-loop non-planar cusp anomalous dimension in N=4 SYM and beyond are identified.
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi
2007-10-01
There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.
Two-loop SL(2) form factors and maximal transcendentality
International Nuclear Information System (INIS)
Loebbert, Florian; Sieg, Christoph; Wilhelm, Matthias; Yang, Gang
2016-01-01
Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand’s numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.
Two-loop SL(2) form factors and maximal transcendentality
Energy Technology Data Exchange (ETDEWEB)
Loebbert, Florian [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Sieg, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Wilhelm, Matthias [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark); Yang, Gang [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-12-19
Form factors of composite operators in the SL(2) sector of N=4 SYM theory are studied up to two loops via the on-shell unitarity method. The non-compactness of this subsector implies the novel feature and technical challenge of an unlimited number of loop momenta in the integrand’s numerator. At one loop, we derive the full minimal form factor to all orders in the dimensional regularisation parameter. At two loops, we construct the complete integrand for composite operators with an arbitrary number of covariant derivatives, and we obtain the remainder functions as well as the dilatation operator for composite operators with up to three covariant derivatives. The remainder functions reveal curious patterns suggesting a hidden maximal uniform transcendentality for the full form factor. Finally, we speculate about an extension of these patterns to QCD.
Electromagnetic form factors of the Ω- in lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Korzec, T.; Koutsou, G.; Negele, J. W.; Proestos, Y.
2010-01-01
We present results on the omega baryon (Ω - ) electromagnetic form factors using N f =2+1 domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain-wall fermions with those of a mixed-action (hybrid) approach, which combines domain-wall valence quarks on staggered sea quarks, for a pion mass of about 350 MeV. We pay particular attention in the evaluation of the subdominant electric quadrupole form factor to sufficient accuracy to exclude a zero value, by constructing a sequential source that isolates it from the dominant form factors. The Ω - magnetic moment, μ Ω - , and the electric charge and magnetic radius, E0/M1 2 >, are extracted for these pion masses. The electric quadrupole moment is determined for the first time using dynamical quarks.
Artist autonomy in a digital era: The case of Nine Inch Nails
Directory of Open Access Journals (Sweden)
Steven C. Brown
2012-09-01
Full Text Available A 2009 presentation by Michael Masnick (CEO and founder of insight company Floor64 entitled ‘How Trent Reznor and Nine Inch Nails represent the Future of the Music Business’ brought the success of the business models employed by Reznor in distributing Nine Inch Nails’ music into the spotlight. The present review provides a comprehensive timeline of the band circa 2005-2010, evaluating the success of the distribution methods employed in accordance with Masnick’s (2009 proposed business model of connecting with fans and providing them with a reason to buy. The model is conceptualised in the wider context in which Reznor’s distribution methods take place (including a brief consideration of Radiohead’s much cited pay-what-you- want model, addressing the perceived gaps in the model by exploring the involvement of musical preferences; age and consumer purchasing behavior and fan worship. Implications are discussed concerning the applicability of the model for new and emerging bands.
Electromagnetic and axial-vector form factors of the quarks and nucleon
Dahiya, Harleen; Randhawa, Monika
2017-11-01
In light of the improved precision of the experimental measurements and enormous theoretical progress, the nucleon form factors have been evaluated with an aim to understand how the static properties and dynamical behavior of nucleons emerge from the theory of strong interactions between quarks. We have analyzed the vector and axial-vector nucleon form factors (GE,Mp,n(Q2) and GAp,n(Q2)) using the spin observables in the chiral constituent quark model (χCQM) which has made a significant contribution to the unraveling of the internal structure of the nucleon in the nonperturbative regime. We have also presented a comprehensive analysis of the flavor decomposition of the form factors (GEq(Q2), GMq(Q2) and GAq(Q2) for q = u,d,s) within the framework of χCQM with emphasis on the extraction of the strangeness form factors which are fundamental to determine the spin structure and test the chiral symmetry breaking effects in the nucleon. The Q2 dependence of the vector and axial-vector form factors of the nucleon has been studied using the conventional dipole form of parametrization. The results are in agreement with the available experimental data.
Effects of the d-state quarks on the nucleon electric form factors
International Nuclear Information System (INIS)
Oh, Y.J.; Kong, K.J.; Cheon, I.T.
1987-11-01
Considering the d-orbital excitation of a quark in the bag, we calculate the nucleon electric form factors in the cloudy bag model. In these calculations, we have taken into account the πNN, πΔN and πγ form factors though neglecting the c.m. correction. It turns out that the neutron charge form factor is very sensitive to the d-state quark admixture in the overall region of the momentum transfer but the proton charge form factor remains unchanged. Taking the d-state quark admixture in the intermediate state baryons, we can obtain the nucleon rms radii in remarkable agreement with the experimental values. We also investigate the roles of Δ particles in the nucleon charge form factors. (author). 20 refs, 10 figs
Factorization and pion form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1979-01-01
The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory
DEVELOPMENT OF A NINE INCH DIAMETER, MACH 5.5, MONORAIL, ROCKET SLED.
A nine inch diameter monorail rocket sled was designed, fabricated and tested at Holloman Air Force Base. The vehicle was designed to allow easy...replacement of appendages which were subject to severe aerodynamic heating and/or high wear rates. The monorail vehicle as described was shown to be
Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium
Erickson, Wayne D.
1960-01-01
The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.
A measurement of the space-like pion electromagnetic form factor
International Nuclear Information System (INIS)
Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Triggiani, G.; Codino, A.; Enorini, M.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.
1986-01-01
The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/c) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar result to the naive pole form, and conclude π 2 >=0.439±0.008 fm 2 . (orig.)
The Nucleon Axial Form Factor and Staggered Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Meyer, Aaron Scott [Chicago U.
2017-01-01
The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very same nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence
Nucleon quark structure and strong meson-nucleon form factors
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.
1987-01-01
The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model
Low-energy analysis of the nucleon electromagnetic form factors
International Nuclear Information System (INIS)
Kubis, Bastian.; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q 2 ≅0.4 GeV 2
Proton electromagnetic form factors: present status and future perspectives at PANDA
Directory of Open Access Journals (Sweden)
Tomasi-Gustafsson E.
2015-01-01
Full Text Available Data and models on electromagnetic proton form factors are reviewed, highlighting the contribution foreseen by the PANDA collaboration. Electromagnetic hadron form factors contain essential information on the internal structure of hadrons. Precise and surprising data have been obtained at electron accelerators, applying the polarization method in electron-proton elastic scattering. At electron-positron colliders, using initial state radiation, BABAR measured proton time-like form factors in a wide time-like kinematical region and the BESIII collaboration will measure very precisely proton and neutron form factors in the threshold region. In the next future an antiproton beam with momentum up to 15 GeV/c will be available at FAIR (Darmstadt. Measurements of the reaction p̅ + p → e+ + e− by the PANDA collaboration will contribute to the individual determination of electric and magnetic form factors in the time-like region of momentum transfer squared, as well as to their first determination in the unphysical region (below the kinematical threshold, through the reaction p̅ + p → e+ + e− + π0. From the discussion on feasibility studies at PANDA, we focus on the consequences of such measurements in view of an unified description of form factors in the full kinematical region. We present models which have the necessary analytical requirements and apply to the data in the whole kinematical region.
The NE11 experiment at SLAC and the neutron form factors
International Nuclear Information System (INIS)
Stuart, L.M.; Lung, A.; Bosted, P.E.
1993-05-01
The neutron electromagnetic form factors G En and G Mn , which reflect the charge and magnetization distributions within the neutron, are of fundamental importance for understanding nucleon structure, and are necessary for calculations of processes involving the electromagnetic interaction with complex nuclei. These quantities are functions of Q 2 , the four-momentum transfer squared. SLAC experiment NE11 has measured these form factors out to a Q 2 of 4.0 (GeV/c) 2 with high precision, and the results have been recently published. This paper provides some additional details on the extraction of G Mn and G En from the NE11 measurements. Several formalisms have been developed over the years which attempt to understand the nucleon form factors using basic physical principles. Vector Meson Dominance (VMD) models are based on superpositions of photon couplings to various vector mesons. These models generally involve free parameters which are fit to form factor data at low Q 2 , and are not expected to be valid at high Q 2 . For asymptotically large Q 2 , dimensional scaling methods and perturbative Quantum Chromodynamics (pQCD) predict form factor behavior at large Q 2 , but they do not make absolute magnitude predictions. To describe the form factor behavior at intermediate values of Q 2 , a hybrid model by Gari and Kruempelmann (GK) uses VMD constraints at low Q 2 and pQCD constraints at high Q 2 . Free parameters in the model are adjusted to fit existing form factor data. Other approaches include the use of QCD sum rules to make absolute predictions, diquark models, and relativistic constituent quark models
The Factors of Forming the National HR-Management Model
Directory of Open Access Journals (Sweden)
Elena P. Kostenko
2017-12-01
Full Text Available There are some factors considered in this article, which influence the forming of national HR-management model. The group-forming criterion is the nature of factors, that determine the system of HR-management as a system of corporate culture values, norms and rules of organizational behavior, ways of realization some important managing functions and dominating approaches to make decisions. This article shows that the plurality of combinations in different factors leads to forming the unique HR-management model. The geoclimatic factor influences the principles of the labor organization (orientation primarily on individual or collective forms of labor, attitude to the management experience of other countries, attitude to resources, etc., the distribution of labor resources, the level of labor mobility, and the psychosocial type of employee. Models of man's labor behavior are constituted In the process of historical development. Attention is focused on the formation of a national HR-model, such as the conducted socio-economic policy, the characteristics of the institutional environment, economic goals and priorities of the country's development, the level of development and the nature of the national productive forces and economic structures. Much attention was paid to the analysis of the historically formed value system and labor traditions, which influence the approaches to HR-management. As far as religion influences the model of person’s inclusion in labor, motives of labor behavior, management culture of a certain employee, preferred payment etc., we examined how the main traditional religions (Christianity, Islam, Judaism, Buddhism, Confucianism, Hinduism influence the HR-management system in different countries.
Two neutron transfer form factor for the reaction 42Ca(p,t)40Ca
International Nuclear Information System (INIS)
Meyer, R.H.
1978-01-01
In an attempt to better interpret experimental data concerning the two-neutron pickup process 42 Ca(p,t) 40 Ca, a detailed study of the form factors associated with the reaction is carried out. A set of coupled integro-differential equations describing these form factors is derived, starting from a microscopic, model-independent Hamiltonian. These equations allow contributions to the form factors from hole terms as well as from the particle and so-called ''continuum'' states, which were previously studied. An approximate solution of the form factor equations is obtained by neglecting the coupling terms and expressing the form factor in terms of a set of Sturmian states. Form factors for the transition to the 40 Ca ground state (O 1 + ) are calculated using various sets of Sturmian states. The inclusion of hole states is found to have a major effect upon both the shape of the form factor and the size of the related cross section. Finally, a comparison is made between the O 1 + form factors calculated using Sturmian states and a O 1 + form factor obtained using Sturmian states and a O 1 + form factor obtained using the coexistence model. It is found that a form factor based on Sturmian particle and hole states is very similar to the form factor obtained from the coexistence model calculation
Describing the nucleon electromagnetic form factors at high momentum transfers
International Nuclear Information System (INIS)
Theussl, L.; Desplanques, B.; Silvestre-Brac, B.; Varga, K.
1999-01-01
Electromagnetic form factors of the nucleon are calculated within the framework of a non-relativistic constituent-quark model. The emphasis is put on the reliability and accuracy of present day numerical methods used to solve the three-body problem. The high-q 2 behaviour of the form factors is determined by the form of the wave function at short distances and, due to the small absolute values that one deals with, an accurate solution is essential. Refs. 5, figs. 2 (author)
Nucleon electromagnetic form factors using lattice simulations at the physical point
International Nuclear Information System (INIS)
Alexandrou, C.; Cyprus Univ., Nicosia; Constantinou, M.; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G.; Jansen, K.; Vaquero Aviles-Casco, A.
2017-01-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Nucleon electromagnetic form factors using lattice simulations at the physical point
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M. [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, K.; Kallidonis, C.; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Vaquero Aviles-Casco, A. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy
2017-09-20
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z-expansion we extract the nucleon electric and magnetic radii, as well as, the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Meson widths and form factor at intermediate momentum transfer in nonperturbative QCD
International Nuclear Information System (INIS)
Ioffe, B.L.; Smilga, A.V.
1982-01-01
A general method is proposed for the QCD based calculations of form factors at intermediate momentum transfer Q 2 and of the partial widths of the low-lying meson resonances. The basic idea is to use the QCD sum rules for the vertex functions. With this method the pion electromagnetic form factor along with electromagnetic form factors of rho- and A 1 mesons and transition form factors γπ → A 1 at 0.5 2 2 are calculated. The widths rho+2π and A 1 → rhoπ are also determined. +.he results are in a good agreement with experiment
Computation of 3D form factors in complex environments
International Nuclear Information System (INIS)
Coulon, N.
1989-01-01
The calculation of radiant interchange among opaque surfaces in a complex environment poses the general problem of determining the visible and hidden parts of the environment. In many thermal engineering applications, surfaces are separated by radiatively non-participating media and may be idealized as diffuse emitters and reflectors. Consenquently the net radiant energy fluxes are intimately related to purely geometrical quantities called form factors, that take into account hidden parts: the problem is reduced to the form factor evaluation. This paper presents the method developed for the computation of 3D form factors in the finite-element module of the system TRIO, which is a general computer code for thermal and fluid flow analysis. The method is derived from an algorithm devised for synthetic image generation. A comparison is performed with the standard contour integration method also implemented and suited to convex geometries. Several illustrative examples of finite-element thermal calculations in radiating enclosures are given
Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering
Wieske, Joseph
2017-09-01
When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.
Backlund, S. J.; Rossen, J. N.
1971-01-01
A parametric study of ballistic modifications to the 120 inch diameter solid propellant rocket engine which forms part of the Air Force Titan 3 system is presented. 576 separate designs were defined and 24 were selected for detailed analysis. Detailed design descriptions, ballistic performance, and mass property data were prepared for each design. It was determined that a relatively simple change in design parameters could provide a wide range of solid propellant rocket engine ballistic characteristics for future launch vehicle applications.
Nucleon electromagnetic form factors with Wilson fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-10-01
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Light meson form factors at high Q2 from lattice QCD
Koponen, Jonna; Zimermmane-Santos, André; Davies, Christine; Lepage, G. Peter; Lytle, Andrew
2018-03-01
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a 'heavy pion' made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check. Warning, no authors found for 2018EPJWC.17506016.
Constraints on the ωπ form factor from analyticity and unitarity
International Nuclear Information System (INIS)
Ananthanarayan, B.; Caprini, I.; Kubis, B.
2014-01-01
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic ωπ form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the ωπ form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV. (orig.)
Constraints on the ωπ form factor from analyticity and unitarity
Energy Technology Data Exchange (ETDEWEB)
Ananthanarayan, B. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India); Caprini, I. [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, Magurele (Romania); Kubis, B. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany)
2014-12-01
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic ωπ form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the ωπ form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV. (orig.)
Strange mesons and kaon-to-pion transition form factors from holography
International Nuclear Information System (INIS)
Abidin, Zainul; Carlson, Carl E.
2009-01-01
We present a calculation of the K l3 transition form factors using the AdS/QCD correspondence. We also solidify and extend our ability to calculate quantities in the flavor-broken versions of AdS/QCD. The normalization of the form factors is a crucial ingredient for extracting |V us | from data, and the results obtained here agree well with results from chiral perturbation theory and lattice gauge theory. The slopes and curvature of the form factors agree well with the data, and with what results are available from other methods of calculation.
bin Pet, Mokhtar; Sihes, Ahmad Johari Hj
2015-01-01
This study aims to examine the external factors of form six teachers who can influence thinking domain form six teachers in their teaching. This study was conducted using a quantitative approach using questionnaires. A total of 300 form six teacher schools in Johor were chosen as respondents. The findings were obtained as student background…
Strangeness Vector and Axial-Vector Form Factors of the Nucleon
Directory of Open Access Journals (Sweden)
Pate Stephen
2014-03-01
Full Text Available A revised global fit of electroweak ep and vp elastic scattering data has been performed, with the goal of determining the strange quark contribution to the vector and axial-vector form factors of the nucleon in the momentum-transfer range 0 < Q2 < 1 GeV2. The two vector (electric and magnetic form factors GsE(Q2 and GsM(Q2 are strongly constrained by ep elastic scattering data, while the major source of information on the axial-vector form factor GsA(Q2 is vp scattering data. Combining the two kinds of data into a single global fit makes possible additional precision in the determination of these form factors, and provides a unique way to determine the strange quark contribution to the nucleon spin, ΔS , independently of leptonic deep-inelastic scattering. The fit makes use of data from the BNL-E734, SAMPLE, HAPPEx, G0, and PVA4 experiments; we will also compare the result of the fit with recent data from MiniBooNE, and anticipate how this fit can be improved when new data from MicroBooNE become available.
Form factors of heavy mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Shifman, M A; Vysotsky, M I [Moskovskii Inst. Theoreticheskoj i Ehksperimental' noj Fiziki (USSR)
1981-08-10
We discuss logarithmic corrections to form factors of mesons built from heavy quarks. The reactions e/sup +/e/sup -/ ..-->.. etasub(c)..gamma.. and H ..-->.. J/psi..gamma.. are considered as an example. A novel feature as compared to the well-studied problem of the pion form factor is the existence of transitions between the quark-antiquark state canti c and the gluonic one. O(..cap alpha..sub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms (..cap alpha..sub(s)ln(Q/sup 2//m/sup 2/sub(c)))sup(n) is summed up with the help of the operator technique. Apart from results already known for quark operators, we use some new results referring to gluon operator and their mixing with those made from quarks. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second is based on conformal symmetry considerations.
Form factors of heavy mesons in QCD
International Nuclear Information System (INIS)
Shifman, M.A.; Vysotsky, M.I.
1980-01-01
Logarithmic corrections to form factors of mesons built from heavy quarks are dirived in the framework of quantum chromodynamics. The reactions e + e - → etasub(c)γ and H → J/PSIγ are considered as an example. A novel feature as compared to the well studied problem of the pion form factor is the existence of the transformations between the quark-antiquark state c anti c and the gluonic one. O(αsub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms is summed up with the help of the operator technique. Apart from already known results for quark operators some new results referring to gluon operators and their mixing with the quark ones are used. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second derivation is based on conformal symmetry considerations
Feasibility studies of time-like proton electromagnetic form factors at PANDA-FAIR
Energy Technology Data Exchange (ETDEWEB)
Dbeyssi, Alaa; Capozza, Luigi; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Mora Espi, Maria Carmen; Noll, Oliver; Rodriguez Pineiro, David; Valente, Roserio; Zambrana, Manuel; Zimmermann, Iris [Helmholtz-Institut Mainz, Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz, Mainz (Germany); Institute of Nuclear Physics, Mainz (Germany); PRISMA Cluster of Excellence, Mainz (Germany); Marchand, Dominique; Tomasi-Gustafsson, Egle; Wang, Ying [Institut de Physique Nucleaire, Orsay (France); Collaboration: PANDA-Collaboration
2015-07-01
Electromagnetic form factors are fundamental quantities which describe the intrinsic electric and magnetic distributions of hadrons. Time-like proton form factors are experimentally accessible through the annihilation processes anti p+p <-> e{sup +}+e{sup -}. Their measurement in the time-like region had been limited by the low statistics achieved by the experiments. This contribution reports on the results of Monte Carlo simulations for future measurements of electromagnetic proton form factors at PANDA (antiProton ANnihilation at DArmstadt). In frame of the PANDARoot software, the statistical precision at which the proton form factors will be determined is estimated. The signal (anti p+p → e{sup +}+e{sup -}) identification and the suppression of the main background process (anti p+p → π{sup +}+π{sup -}) are studied. Different methods have been used and/or developed to generate and analyse the processes of interest. The results show that time-like proton form factors will be measured at PANDA with unprecedented statistical accuracy.
Future Measurements of the Nucleon Elastic Electromagnetic Form Factors at Jefferson Lab
Gilfoyle, Gerard
2018-01-01
The elastic, electromagnetic form factors are fundamental observables that describe the internal structure of protons, neutrons, and atomic nuclei. Jefferson Lab in the United States has completed the 12 GeV Upgrade that will open new opportunities to study the form factors. A campaign to measure all four nucleon form factors (electric and magnetic ones for both proton and neutron) has been approved consisting of seven experiments in Halls A, B, and C. The increased energy of the electron beam will extend the range of precision measurements to higher Q2 for all four form factors together. This combination of measurements will allow for the decomposition of the results into their quark components and guide the development of a QCD-based understanding of nuclei in the non-perturbative regime. I will present more details on the 12 GeV Upgrade, the methods used to measure the form factors, and what we may learn.
How well do we know the electromagnetic form factors of the proton?
International Nuclear Information System (INIS)
Arrington, J.
2003-01-01
Several experiments have extracted proton electromagnetic form factors from elastic cross section measurements using the Rosenbluth technique. Global analyses of these measurements indicate approximate scaling of the electric and magnetic form factors (μ p G E p /G M p ≅1), in contrast to recent polarization transfer measurements from Jefferson Lab. We present here a global reanalysis of the cross section data aimed at understanding the disagreement between the Rosenbluth extraction and the polarization transfer data. We find that the individual cross section measurements are self-consistent, and that the new global analysis yields results that are still inconsistent with polarization measurements. This discrepancy indicates a fundamental problem in one of the two techniques, or a significant error in polarization transfer or cross section measurements. An error in the polarization data would imply a large error in the extracted electric form factor, while an error in the cross sections implies an uncertainty in the extracted form factors, even if the form factor ratio is measured exactly
Charge form factors and alpha-cluster internal structure of 12C
International Nuclear Information System (INIS)
Luk'yanov, V.K.; Zemlyanaya, E.V.; Kadrev, D.N.; Antonov, A.N.; Spasova, K.; Anagnostatos, G.S.; Ginis, P.; Giapitzakis, J.
1999-01-01
The transition densities and form factors of 0 + , 2 + , and 3 - states in 12 C are calculated in alpha-cluster model using the triangle frame with clusters in the vertices. The wave functions of nucleons in the alpha clusters are taken as they were obtained in the framework of the models used for the description of the 4 He form factor and momentum distribution which are based on the one-body density matrix construction. They contain effects of the short-range NN correlations, as well as the d-shell admixtures in 4 He. Calculations and the comparison with the experimental data show that visible effects on the form and magnitude of the 12 C form factors take place, especially at relatively large momentum transfers
Remarks on electromagnetic form factors of hadrons in the quark model
International Nuclear Information System (INIS)
Vainshtein, A.I.; Zakharov, V.I.
1977-01-01
Relations between the transversal and longitudinal parts of elastic and quasielastic form factors are studied within the quark model. It is shown that for an even number of the constituent quarks the longitudinal part dominates while for an odd number the transversal part is the largest one. Consequences form this result are considered for deuteron form factor and for matrix elements of the electromagnetic transitions between π, rho, A 1 mesons
Virtual photons in the pion form factors and the energy-momentum tensor
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: ulf-g.meissner@fz-juelich.de
2000-05-22
We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector as well as the charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii.
Virtual photons in the pion form factors and the energy-momentum tensor
International Nuclear Information System (INIS)
Kubis, Bastian; Meissner, Ulf-G.
2000-01-01
We evaluate the vector and scalar form factor of the pion in the presence of virtual photons at next-to-leading order in two-flavor chiral perturbation theory. We also consider the scalar and tensor pion form factors of the energy-momentum tensor. We find that the intrinsic electromagnetic corrections are very small for the vector as well as the charged pion scalar form factor. The scalar radius of the neutral pion is reduced by two percent. We perform infrared regularization by considering electron-positron annihilation into pions and the decay of a light Higgs boson into a pion pair. We discuss the detector resolution dependent contributions to the various form factors and pion radii
Perturbative corrections to B → D form factors in QCD
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
The neutron electric form factor to Q² = 1.45 (GeV/c)²
Energy Technology Data Exchange (ETDEWEB)
Plaster, Bradley [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2004-02-01
The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q^{2}, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q^{2} values of 0.45, 1.13, and 1.45 (GeV/c)^{2}, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.
Constraints on the ωπ Form Factor from Analyticity and Unitarity
Ananthanarayan, B.; Caprini, Irinel; Kubis, Bastian
Form factors are important low-energy quantities and an accurate knowledge of these sheds light on the strong interactions. A variety of methods based on general principles have been developed to use information known in different energy regimes to constrain them in regions where experimental information needs to be tested precisely. Here we review our recent work on the electromagnetic ωπ form factor in a model-independent framework known as the method of unitarity bounds, partly motivated by the discre-pancies noted recently between the theoretical calculations of the form factor based on dispersion relations and certain experimental data measured from the decay ω → π0γ*. We have applied a modified dispersive formalism, which uses as input the discontinuity of the ωπ form factor calculated by unitarity below the ωπ threshold and an integral constraint on the square of its modulus above this threshold. The latter constraint was obtained by exploiting unitarity and the positivity of the spectral function of a QCD correlator, computed on the spacelike axis by operator product expansion and perturbative QCD. An alternative constraint is obtained by using data available at higher energies for evaluating an integral of the modulus squared with a suitable weight function. From these conditions we derived upper and lower bounds on the modulus of the ωπ form factor in the region below the ωπ threshold. The results confirm the existence of a disagreement between dispersion theory and experimental data on the ωπ form factor around 0:6 GeV, including those from NA60 published in 2016.
The three-loop form factor in N=4 super Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Gehrmann, Thomas [Universitaet Zuerich (Switzerland); Henn, Johannes [IAS Princeton (United States); Huber, Tobias [Universitaet Siegen (Germany)
2012-07-01
We present the calculation of the Sudakov form factor in N=4 super Yang-Mills theory to the three-loop order. At leading colour, the latter is expressed in terms of planar and non-planar loop integrals. We show that it is possible to choose a representation in which each loop integral has uniform transcendentality in the Riemann {zeta}-function. We comment on the expected exponentiation of the infrared divergences and the values of the three-loop cusp and collinear anomalous dimensions in dimensional regularisation. We also compare the form factor in N=4 super Yang-Mills to the leading transcendentality pieces of the quark and gluon form factor in QCD. Finally, we investigate the ultraviolet properties of the form factor in D>4 dimensions.
From form factors to generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus
2013-06-15
I present an extraction of generalized parton distributions from selected data on the electromagnetic nucleon form factors. The extracted distributions can in particular be used to quantify the contribution to the proton spin from the total angular momentum carried by valence quarks, as well as their transverse spatial distribution inside the proton.
Form factors and other measures of strangeness in the nucleon
International Nuclear Information System (INIS)
Diehl, M.; Feldmann, T.; Kroll, P.
2007-11-01
We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F s 1 (t), which describes the distribution of strangeness in transverse position space. (orig.)
Meson form factors and covariant three-dimensional formulation of composite model
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1978-01-01
An approach is developed which is applied in the framework of the relativistic quark model to obtain explicit expressions for meson form factors in terms of covariant wave functions of the two-quark system. These wave functions obey the two-particle quasipotential equation in which the relative motion of quarks is singled out in a covariant way. The exact form of the wave functions is found using the transition to the relativistic configurational representation with the help of the harmonic analysis on the Lorentz group instead of the usual Fourier expansion and then solving the relativistic difference equation thus obtained. The expressions found for form factors are transformed into the three-dimensional covariant form which is a direct geometrical relativistic generalization of analogous expressions of the nonrelativistic quantum mechanics and provides the decrease of the meson form factor by the Fsub(π)(t) approximately t -1 law as -t infinity, in the Coulomb field
Iso-vector form factors of the delta and nucleon in QCD sum rules
International Nuclear Information System (INIS)
Ozpineci, A.
2012-01-01
Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector Δ→N transition form factor calculations in QCD Sum Rules are presented.
Helium Compton Form Factor Measurements at CLAS
Energy Technology Data Exchange (ETDEWEB)
Voutier, Eric J.-M. [Laboratoire de Physique Subatomique et Cosmologie
2013-07-01
The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.
Cryogenic vacuum pumping at the LBL 88-inch cyclotron
International Nuclear Information System (INIS)
Elo, D.; Morris, D.; Clark, D.J.; Gough, R.A.
1978-09-01
A cryogenic vacuum pumping panel has been in operation at the 88-inch cyclotron since 1974. The nude pumping panel is located in the acceleration chamber. The pumping surface consists of tubing cooled to 20 0 K by a closed loop helium refrigeration system. The pumping surfaces are shielded from radiation heat loads and water vapors by liquid nitrogen cooled baffles. The panel was designed for an average pumping speed of 14,000 liters/sec. for air. This approximately tripled the total effective pumping on the acceleration chamber from the existing diffusion pumped system, significantly reducing charge exchange losses of heavy ions during acceleration. Design, installation and performance characteristics are described
Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter
International Nuclear Information System (INIS)
Imrich, K.J.
2000-01-01
A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture
The spin-dependent neutralino-nucleus form factor for 127I
International Nuclear Information System (INIS)
Ressell, M.T.
1996-01-01
We present the results of detailed shell model calculations of the spin-dependent elastic form factor for the nucleus 127 I. the calculations were performed in extremely large model spaces which adequately describe the configuration mixing in this nucleus. Good agreement between the calculated and experimental values of the magnetic moment are found. Other nuclear observables are also compared to experiment. The dependence of the form factor upon the model space and effective interaction is discussed
Form factors and other measures of strangeness in the nucleon
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Feldmann, T. [Siegen Univ. (Germany). Theoretische Physik I; Kroll, P. [Bergische Univ., Wuppertal (Germany). Fachbereich Physik
2007-11-15
We discuss the phenomenology of strange-quark dynamics in the nucleon, based on experimental and theoretical results for electroweak form factors and for parton densities. In particular, we construct a model for the generalized parton distribution that relates the asymmetry s(x)- anti s(x) between the longitudinal momentum distributions of strange quarks and antiquarks with the form factor F{sup s}{sub 1}(t), which describes the distribution of strangeness in transverse position space. (orig.)
Form factors for semileptonic Bs→Klν decays in lattice QCD
International Nuclear Information System (INIS)
Bahr, Felix Tobias
2015-01-01
We present an exploratory study of the calculation of the form factor f + (q 2 ) for the semileptonic decay B s →Klν in large-volume lattice QCD simulations with two dynamical sea quark flavours using O(a) improved Wilson fermions. We discuss the computation of relevant two- and three-point functions and consider complementary methods how these can be combined to obtain the form factor. In particular, we put forward the strategy of a combined fit in which data of all correlators enter and which has as fit parameters energies and amplitudes of the correlators and the form factor. The b quark is treated in HQET; our present analysis focuses on the static limit. Meanwhile, we have developed the code and performed the measurements of all needed O(1/m h ) corrections which will be used as soon as their coefficients will have been computed by the ALPHA collaboration. In order to be able to measure the form factor at the same value of the momentum transfer q 2 on all ensembles, we impose twisted boundary conditions on the s and b quarks that allow for a free tuning of the quark momenta and thus of q 2 . We perform measurements on a subset of N f =2 CLS gauge configurations, obtaining the form factor at three different lattice spacings and roughly the same pion mass of about 330 MeV. Using these, we carry out a continuum extrapolation and observe that it is relatively flat in a 2 . A measurement at a different pion mass indicates that quark mass effects are small. We compare our continuum value of the form factor with recently published results of other collaborations and observe a good agreement.
Electromagnetic form factors of the ρ meson in light cone QCD sum rules
International Nuclear Information System (INIS)
Aliev, T.M.; Savci, M.
2004-01-01
We investigate the electromagnetic form factors of the ρ meson in light cone QCD sum rules. We find that the ratio of the magnetic and charge form factors is larger than 2 at all values of Q 2 (Q 2 ≥0.5 GeV 2 ). The values of the individual form factors at fixed values of Q 2 predicted by the light cone QCD sum rules are quite different compared to the results of other approaches. These results can be checked in the future, when more precise data on ρ meson form factors is available
Counting and tensorial properties of twist-two helicity-flip nucleon form factors
International Nuclear Information System (INIS)
Chen Zhang; Ji Xiangdong
2005-01-01
We perform a systematic analysis on the off-forward matrix elements of the twist-two quark and gluon helicity-flip operators. By matching the allowed quantum numbers and their crossing channel counterparts (a method developed by Ji and Lebed), we systematically count the number of independent nucleon form factors in off-forward scattering of matrix elements of these quark and gluon spin-flip operators. In particular, we find that the numbers of independent nucleon form factors of twist-two, helicity-flip quark (gluon) operators are 2n-1 (2n-5) if n is odd, and 2n-2 (2n-6) if n is even, with n≥2 (n≥4). We also analyze and write down the tensorial/Lorentz structure and kinematic factors of the expansion of these operators' matrix elements in terms of the independent form factors. These generalized form factors define the off-forward quark and gluon helicity-flip distributions in the literature
Interim results: fines recycle testing using the 4-inch diameter primary graphite burner
International Nuclear Information System (INIS)
Palmer, W.B.
1975-05-01
The results of twenty-two HTGR primary burner runs in which graphite fines were recycled pneumatically to the 4-inch diameter pilot-plant primary fluidized-bed burner are described. The result of the tests showed that zero fines accumulation can easily be achieved while operating at plant equivalent burn rates. (U.S.)
Recoil of the pion-surrounded nucleon bag and axial form factors
International Nuclear Information System (INIS)
Klabucar, D.; Picek, I.
1984-03-01
A recent method of boosting the bag is extended to the pion-surrounded nucleon bag and developed for the calculation of low-energy nucleon form factors. The usefulness of the method is illustrated by the induced pseudoscalar form factor where both the inclusion of the pion field and the non-vanishing momentum transfer are necessary. (Auth.)
Form factors and radiation widths of the giant multipole resonances
International Nuclear Information System (INIS)
Denisov, V.Yu.
1990-01-01
Simple analytic relations for the form factors of inelastic electron scattering in the Born approximation and radiation widths of the isovector and isoscalar giant multipole resonances are derived. The dynamic relationship between the volume and surface density vibrations were taken into account in this calculation. The form factors in the Born approximation were found to be in satisfactory agreement with experimental data in the region of small transferred momenta. The radiation widths of isoscalar multipole resonances increase when the number of nucleons increase as A 1/3 , and for isovector resonances this dependence has the form f(A)A 1/3 , where f(A) is a slowly increasing function of A. Radiation widths well fit the experimental data
Nucleon form factors, generalized parton distributions and quark angular momentum
International Nuclear Information System (INIS)
Diehl, Markus; Kroll, Peter; Regensburg Univ.
2013-02-01
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale μ=2 GeV to be J u v =0.230 +0.009 -0.024 and J d v =-0.004 +0.010 -0.016 .
Constraints on the [Formula: see text] form factor from analyticity and unitarity.
Ananthanarayan, B; Caprini, I; Kubis, B
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic [Formula: see text] form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the [Formula: see text] form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around [Formula: see text].
Energy Technology Data Exchange (ETDEWEB)
Kubis, Bastian. E-mail: b.kubis@fz-juelich.de; Meissner, Ulf-G. E-mail: Ulf-G.Meissner@fz-juelich.de
2001-01-01
We analyze the electromagnetic form factors of the nucleon to fourth order in relativistic baryon chiral perturbation theory. We employ the recently proposed infrared regularization scheme and show that the convergence of the chiral expansion is improved as compared to the heavy-fermion approach. We also discuss the inclusion of vector mesons and obtain an accurate description of all four-nucleon form factors for momentum transfer squared up to Q{sup 2}{approx_equal}0.4 GeV{sup 2}.
Towards a dispersive determination of the pion transition form factor
Leupold, Stefan; Hoferichter, Martin; Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.
2018-01-01
We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.
Towards a dispersive determination of the pion transition form factor
Directory of Open Access Journals (Sweden)
Leupold Stefan
2018-01-01
Full Text Available We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.
Nucleon form factors, generalized parton distributions and quark angular momentum
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kroll, Peter [Bergische Univ., Wuppertal (Germany). Fachbereich Physik; Regensburg Univ. (Germany). Institut fuer Theoretische Physik
2013-02-15
We extract the individual contributions from u and d quarks to the Dirac and Pauli form factors of the proton, after a critical examination of the available measurements of electromagnetic nucleon form factors. From this data we determine generalized parton distributions for valence quarks, assuming a particular form for their functional dependence. The result allows us to study various aspects of nucleon structure in the valence region. In particular, we evaluate Ji's sum rule and estimate the total angular momentum carried by valence quarks at the scale {mu}=2 GeV to be J{sup u}{sub v}=0.230{sup +0.009}{sub -0.024} and J{sup d}{sub v}=-0.004{sup +0.010}{sub -0.016}.
Baryon form factors in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)
Elastic form factors at higher CEBAF energies
Energy Technology Data Exchange (ETDEWEB)
Petratos, G.G. [Kent State Univ., OH (United States)
1994-04-01
The prospects for elastic scattering from few body systems with higher beam energies at CEBAF is presented. The deuteron and{sup 3}He elastic structure functions A(Q{sup 2}) can be measured at sufficiently high momentum transfers to study the transition between the conventional meson-nucleon and the constituent quark-gluon descriptions. Possible improvements in the proton magnetic form factor data are also presented.
Form factor of some types of toroidal solenoids
International Nuclear Information System (INIS)
Koryavko, V.I.; Litvinenko, Yu.A.
1979-01-01
Obtained were the type of dependence between consumed power and formed field for toroidal helical-wound solenoids and the expression for the form factor analogous to the Fabry coefficient for cylindrical solenoids. Determined were optimum dimensions of the helical winding of ''forceless'' toroidal solenoids satisfying the condition of the formation of maximum field at minimum consumed power. Investigations also covered some types of conventional toroidal solenoids. Presented in the paper diagrams permitted to chose dimensions of the considered toroidal solenoids according to their consumed power and winding material volume
Strange and charge symmetry violating electromagnetic form factors of the nucleon
International Nuclear Information System (INIS)
Shanahan, P.E.
2016-01-01
We summarise recent work based on lattice QCD simulations of the electromagnetic form factors of the octet baryons from the CSSM/QCDSF/UKQCD collaborations. After an analysis of the simulation results using techniques to approach the infinite volume limit and the physical pseudoscalar masses at non-zero momentum transfer, the extrapolated proton and neutron form factors are found to be in excellent agreement with those extracted from experiment. Given the success of these calculations, we describe how the strange electromagnetic form factors may be estimated from these results under the same assumption of charge symmetry used in experimental determinations of those quantities. Motivated by the necessity of that assumption, we explore a method for determining the size of charge symmetry breaking effects using the same lattice results. (author)
Development and characterization of a CCD camera system for use on six-inch manipulator systems
International Nuclear Information System (INIS)
Logory, L.M.; Bell, P.M.; Conder, A.D.; Lee, F.D.
1996-01-01
The Lawrence Livermore National Laboratory has designed, constructed, and fielded a compact CCD camera system for use on the Six Inch Manipulator (SIM) at the Nova laser facility. The camera system has been designed to directly replace the 35 mm film packages on all active SIM-based diagnostics. The unit's electronic package is constructed for small size and high thermal conductivity using proprietary printed circuit board technology, thus reducing the size of the overall camera and improving its performance when operated within the vacuum environment of the Nova laser target chamber. The camera has been calibrated and found to yield a linear response, with superior dynamic range and signal-to-noise levels as compared to T-Max 3200 optic film, while providing real-time access to the data. Limiting factors related to fielding such devices on Nova will be discussed, in addition to planned improvements of the current design
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
International Nuclear Information System (INIS)
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
2017-01-01
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden); Jefferson Lab, Newport News, VA (United States); Leupold, Stefan; Perotti, Elisabetta [Uppsala Universitet, Institutionen foer Fysik och Astronomi (Sweden)
2017-06-15
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR). (orig.)
Pion form factor within QCD instanton vacuum model
International Nuclear Information System (INIS)
Dorokhov, A.E.
1997-01-01
Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)
Maximilien Brice
2004-01-01
Two members of the CERN HPD team present their babies. André Braem (left) holds in his hands a 5-inch glass HPD, while a ceramic HPD for medical applications is shown by Christian Joram. The large detector in the middle is a 10-inch HPD developed for an astrophysics experiment.
Relativistic form factors for hadrons with quark-model wave functions
International Nuclear Information System (INIS)
Stanley, D.P.; Robson, D.
1982-01-01
The relationship between relativistic form factors and quark-potential-model wave functions is examined using an improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an effective hadron mass which varies as the square root of the number of quark constituents. The effective mass is calculated using the rest-frame wave functions from the mean-square momentum along the direction of the momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion, proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the quark model but a full description requires the inclusion of a small component of a pion ''cloud'' configuration. The problematic connection between the sizes of hadrons deduced from form factors and the ''measured'' values of average transverse momenta is reconciled in the present model
SU(3) breaking in hyperon transition vector form factors
International Nuclear Information System (INIS)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Rakow, P.E.L.
2015-08-01
We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p 4 ) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q 2 =-(M B 1 -M B 2 ) 2 , which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ - →n and Ξ 0 →Σ + transition form factors. Hence we determine lattice-informed values of f 1 at the physical point. This work constitutes progress towards the precise determination of vertical stroke V us vertical stroke from hyperon semileptonic decays.
Understanding the forming and performance of aluminum beverage cans through finite element modelling
International Nuclear Information System (INIS)
MacEwen, S.R.; Langille, A.; Hamstra, P.; Wu, P-D.; Savoie, J.; Nardini, D.
2000-01-01
The past decade has witnessed major changes in the aluminum beverage can business, for both the canmakers and the suppliers of aluminum sheet. The major driving force for change was 'light-weighting', with the gauge of can body stock decreasing from 0.0124inches to 0.0102inches or less at present. The resulting reduction in weight of a can had to be achieved without compromise to the performance of the can, as defined by dome reversal pressure, axial buckle load and drop resistance. Furthermore, the fundamentals of the draw-and- iron process used to manufacture cans had to remain essentially unchanged, despite the new problems arising from downgauging. This presentation will demonstrate how finite element modeling of can forming processes and can performance tests has assisted in understanding the interaction of the tooling with the sheet and how the workhardening and residual stresses produced by the forming operations affect subsequent performance. The roles of sheet characterization and model validation will be discussed for several of the major canmaking steps, including cup draw and redraw and the forming of the bottom profile. (author)
On the large-Q2 behavior of the pion transition form factor
Directory of Open Access Journals (Sweden)
Gernot Eichmann
2017-11-01
Full Text Available We study the transition of non-perturbative to perturbative QCD in situations with possible violations of scaling limits. To this end we consider the singly- and doubly-virtual pion transition form factor π0→γγ at all momentum scales of symmetric and asymmetric photon momenta within the Dyson–Schwinger/Bethe–Salpeter approach. For the doubly virtual form factor we find good agreement with perturbative asymptotic scaling laws. For the singly-virtual form factor our results agree with the Belle data. At very large off-shell photon momenta we identify a mechanism that introduces quantitative modifications to Efremov–Radyushkin–Brodsky–Lepage scaling.
1/mQ corrections to form factors and extraction of |Vcb|
International Nuclear Information System (INIS)
Liu, J.; Chao, K.
1997-01-01
Form factors for 0 - →0 - and 0 - →1 - mesonic transitions in the heavy quark limit and the 1/m Q corrections are analyzed model independently within the Bethe-Salpeter (BS) formalism. The analysis shows that the BS formalism has spin-flavor symmetry in the heavy quark limit and respects Luke's theorem when the 1/m Q corrections are taken into account. All form factors for B→D (*) transitions beyond the zero recoil point are estimated in a relativistic constituent quark model based on the BS formalism. Using these form factors we calculate the branching ratios for the semileptonic decays B→D (*) l + ν l and extract the Cabibbo-Kobayashi-Maskawa matrix element |V cb |. We get |V cb |=0.042±0.003 which is consistent with the current world average. copyright 1997 The American Physical Society
Form factors of Ising spin and disorder fields on the Poincare disc
International Nuclear Information System (INIS)
Doyon, Benjamin
2004-01-01
Using recent results concerning form factors of certain scaling fields in the massive Dirac theory on the Poincare disc, we find expressions for the form factors of Ising spin and disorder fields in the massive Majorana theory on the Poincare disc. In particular, we verify that these recent results agree with the factorization properties of the fields in the Dirac theory representing tensor products of spin and of disorder fields in the Majorana theory
Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine
2013-03-01
water-cooled rotating detonation engine ( RDE ) run on hydrogen and air. The change in water temperature as it cooled the engine was used to find the...a quick-response resistance temperature detector (RTD) was used in an uncooled RDE of similar dimension to the cooled RDE to estimate the transient...double-checking my design calculations, providing his experience with cooling the 3-inch RDE , and for providing technical expertise in regard to the
Form factors and structure functions of hadrons in parton model
International Nuclear Information System (INIS)
Volkonskij, N.Yu.
1979-01-01
The hadron charge form factors and their relation to the deep-inelastic lepton-production structure functions in the regions of asymptotically high and small momentum transfer Q 2 are studied. The nucleon and pion charge radii are calculated. The results of calculations are in good agreement with the experimental data. The K- and D-meson charge radii are estimated. In the region of asymptotically high Q 2 the possibility of Drell-Yan-West relation violation is analyzed. It is shown, that for pseudoscalar mesons this relation is violated. The relation between the proton and neutron form factor asymptotics is obtained
Relativistic form factors for clusters with nonrelativistic wave functions
International Nuclear Information System (INIS)
Mitra, A.N.; Kumari, I.
1977-01-01
Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2
Overview of factors affecting the leachability of nuclear waste forms
International Nuclear Information System (INIS)
Stone, J.A.
1980-01-01
An overview of various factors that affect the leachability of nuclear waste forms is presented. The factors affect primarily the leaching system (temperature, for example), the leachant (pH, for example), or the solid being leached (surface condition, for example). A qualitative understanding exists of the major factors affecting leaching, but further studies are needed to establish leaching mechanisms and develop predictive models. 67 refs
Measurement of the form factor ratios in semileptonic decays of charm mesons
International Nuclear Information System (INIS)
R. Zaliznyak
1999-01-01
I have measured the form factor ratios r 2 = A 2 (0)/A 1 (0) and r V = V (0)/A 1 (0) in the semileptonic charm meson decay D + → (anti K) *0 e + ν e from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D + → (anti K) *0 e + ν e . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D + → (anti K) *0 e + ν e , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π - beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D + → (anti K) *0 e + ν e decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D + → (anti K) *0 e + ν e events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r 2 = 0.71 ± 0.08 ± 0.09 and r V = 1.84 ± 0.11 ± 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good
Form factors in quantum integrable models with GL(3)-invariant R-matrix
Energy Technology Data Exchange (ETDEWEB)
Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)
2014-04-15
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.
Single-Spin Polarization Effects and the Determination of Timelike Proton Form Factors
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-10-24
We show that measurements of the proton's polarization in e{sup +}e{sup -} {yields} p{bar p} strongly discriminate between analytic forms of models which fit the proton form factors in the spacelike region. In particular, the single-spin asymmetry normal to the scattering plane measures the relative phase difference between the timelike G{sub E} and G{sub M} form factors. The expected proton polarization in the timelike region is large, of order of several tens of percent.
Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY
Goswami, A.
2016-11-01
In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.
Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY
Directory of Open Access Journals (Sweden)
Goswami A.
2016-01-01
Full Text Available In this work we present a study of the Dalitz decay η → γe+e−. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it’s decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.
Electromagnetic transition form factor of the η meson with WASA-at-COSY
Energy Technology Data Exchange (ETDEWEB)
Goswami, Ankita [Indian Institute of Technology Indore, Indore (India); Collaboration: WASA-at-COSY-Collaboration
2015-07-01
The aim of this work is to measure the transition form factor of the η meson. The transition form factor describes the internal structure of a particle. The precise determination of the transition form factor of the η meson is possible through the η→γe{sup +} e{sup -} Dalitz decay. When a particle is point-like then its decay rate can be calculated within QED. However, the complex structure of the particle modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. η mesons are produced using the reaction pp→ppη at a beam kinetic energy of 1.4 GeV at the COSY accelerator of Forschungszentrum Juelich and decay particles of the η meson are detected with the WASA detector. In the higher invariant mass region recent theoretical calculations slightly deviate from the the data. With the high statistics dataset we expect precise results in the higher invariant mass region. The status of the analysis is reported.
Sine-Gordon breather form factors and quantum field equations
International Nuclear Information System (INIS)
Babujian, H; Karowski, M
2002-01-01
Using the results of previous investigations on sine-Gordon form factors, exact expressions of all breather matrix elements are obtained for several operators: all powers of the fundamental Bose field, general exponentials of it, the energy-momentum tensor and all higher currents. Formulae for the asymptotic behaviour of bosonic form factors are presented which are motivated by Weinberg's power counting theorem in perturbation theory. It is found that the quantum sine-Gordon field equation holds, and an exact relation between the 'bare' mass and the renormalized mass is obtained. Also a quantum version of a classical relation for the trace of the energy-momentum is proved. The eigenvalue problem for all higher conserved charges is solved. All results are compared with perturbative Feynman graph expansions and full agreement is found
New large-Nc relations for the electromagnetic nucleon-to-Δ form factors
International Nuclear Information System (INIS)
Vladimir Pascalutsa; Marc Vanderhaeghen
2006-01-01
We establish relations which express the three N → Δ transition form factors in terms of the nucleon form factors. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. We show that these relations provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers. They also provide constraints for the N → Δ GPDs
Extrapolation of π-meson form factor, zeros in the analyticity domain
International Nuclear Information System (INIS)
Morozov, P.T.
1978-01-01
The problem of a stable extrapolation from the cut to an arbitrary interior of the analyticity domain for the pion form factor is formulated and solved. As it is shown a stable solution can be derived if module representations with the Karleman weight function are used as the analyticity conditions. The case when the form factor has zeros is discussed. If there are zeros in the complex plane they must be taken into account when determining the extrapolation function
Numerical study of the lattice meson form factor
International Nuclear Information System (INIS)
Woloshyn, R.M.; Kobos, A.M.
1986-01-01
The electric form factor of the pseudo-Goldstone meson (the generic pion) is calculated in quenched lattice quantum chromodynamics with SU(2) color. Charge radii are calculated for different values of the bare-quark mass. The results are in agreement with the physically reasonable expectation that heavier quarks have distributions of smaller radius
NO PLIF imaging in the CUBRC 48-inch shock tunnel
Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.
2012-12-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.
NO PLIF imaging in the CUBRC 48-inch shock tunnel
Energy Technology Data Exchange (ETDEWEB)
Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D.V.; Lempert, W.R. [The Ohio State University, Departments of Mechanical and Aerospace Engineering, Columbus, OH (United States); Miller, J.D.; Meyer, T.R. [Iowa State University, Department of Mechanical Engineering, Ames, IA (United States); Parker, R.; Wadham, T.; Holden, M. [CUBRC, Buffalo, NY (United States); Danehy, P.M. [NASA Langley Research Center, Hampton, VA (United States)
2012-12-15
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single {proportional_to}10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs. (orig.)
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
International Nuclear Information System (INIS)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.
2014-03-01
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.
High energy approximations for nuclear knockout form factors at small momentum transfer
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1985-01-01
We obtain an explicit approximate expression for the nucleon knockout form factor at small momentum transfer induced by a scalar probe in a single particle model in terms of the momentum space bound state wave function. Our form preserves the orthogonality constraint without using explicitly the final state scattering wave function. We examine the leading large momentum behavior of the momentum space wave function and of correction terms to our expression for the form factor in the case where the bound state is an s state
Structural reinforcement of a {theta}16 inches tee made during operation with composite material
Energy Technology Data Exchange (ETDEWEB)
Beim, Andre [Tresca Engenharia Ltda., Sao Paulo, SP (Brazil); Vilani, Eduardo Cesar [Rust Engenharia Ltda., Diadema, SP (Brazil)
2009-07-01
An industrial installation went through a turnaround to increase capacity. A tie-in line had to be made for this, and a 16 inches diameter branch was required to be made on an existing 16 inches pipe. The joining of these elements resulted in a 'tee' that was supposed to receive a reinforcement plate. This reinforcement plate was not installed before the plant start-up. Code calculations and a finite element stress analysis showed that reinforcement was necessary. The only viable solution was the application of a composite material reinforcement, designed to substitute the missing reinforcement plate, and reduce the stresses to allowable levels. A new finite element stress analysis was made to determine the required thickness of this reinforcement. The first part of this work shows the results of the finite element stress analysis. Figures with stress contours of the analyses show the results. The second part shows the details of the installation of the reinforcement, which was made during normal operation of the plant. Pictures illustrate the main steps of the installation procedure. (author)
Revisiting the pion's scalar form factor in chiral perturbation theory
Juttner, Andreas
2012-01-01
The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.
Analytical and unitary approach in mesons electromagnetic form factor applications
International Nuclear Information System (INIS)
Liptaj, A.
2010-07-01
In the dissertation thesis we address several topics related to the domain of particle physics. All of them represent interesting open problems that can be connected to the elastic or transition electromagnetic form factors of mesons, the form factors being the main objects of our interest. Our ambition is to contribute to the solution of these problems and use for that purpose known analytic properties of the form factors and the unitarity condition. These two tools are very powerful in the low energy domain (such as bound states of partons), where the perturbative QCD looses its validity. This is the motivation for construction of the unitary and analytic (U and A) models of studied form factors, that enable us to get the majority of our results. We use the U and A model to evaluate the contribution of the processes e"+e"- → Pγ, P = π"0, η, η to the muon magnetic anomaly a_μ in the lowest order of the hadronic vacuum polarization. For the contribution a_μ"h"a"d","L"O (π"+π"-) we demonstrate, that the use of the model leads to a dramatic error reduction with respect to the results of other authors. We also get a shift in the central value in the 'correct' direction, that brings the theoretical value closer to the experimental one. This results encourages us to use the model also for the evaluation of a_μ"h"a"d","L"O (P_γ). These contributions are smaller, however the precision of the experiment makes their evaluation necessary. We further use the U and A model of the transition form factors of π"0, η and η"' mesons to predict the partial decay widths of these particles Γ_π_"0_→_γ_γ and Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ. In this way we make an independent cross check of the PDG table values. We find an agreement in the case of Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ, even a smaller uncertainty for Γ_η_"'_→_γ_γ. In the case of Γ_π_"0_→_γ_γ we find a disagreement that points to an interesting problem. We wonder whether it could be
Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions
International Nuclear Information System (INIS)
Ahmed, S.
1977-04-01
Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given
Holographic estimate of the meson cloud contribution to nucleon axial form factor
Ramalho, G.
2018-04-01
We use light-front holography to estimate the valence quark and the meson cloud contributions to the nucleon axial form factor. The free couplings of the holographic model are determined by the empirical data and by the information extracted from lattice QCD. The holographic model provides a good description of the empirical data when we consider a meson cloud mixture of about 30% in the physical nucleon state. The estimate of the valence quark contribution to the nucleon axial form factor compares well with the lattice QCD data for small pion masses. Our estimate of the meson cloud contribution to the nucleon axial form factor has a slower falloff with the square momentum transfer compared to typical estimates from quark models with meson cloud dressing.
Quark-flavor mixing and the nucleon strangeness form factors
International Nuclear Information System (INIS)
Ito, H.
1995-01-01
We have calculated the strangeness form factors of the nucleon G E s (Q), G M s (Q) and G A s (Q) and the electromagnetic form factors G E N (Q) as well, by using a relativistic constituent quark model of the nucleon wave function on the light-cone. Octet of Goldstone bosons (π, K, η) are assumed to induce the SU flavor mixing among the light constituent quarks; d-→K+s →d for example, and this mechanism induces the strangeness content in the nucleon. To calculate the meson-loop corrections to the electroweak couplings of constituent quarks, we have employed two models of the quark-meson vertex; (1) composite model of the Goldstone bosons (2) and (3) chiral quark Lagrangian. The loop momenta are regulated in a gauge-invariant way for both models
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
Energy Technology Data Exchange (ETDEWEB)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations
2014-03-15
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.
Measurement of the pion form factor at higher energies
Energy Technology Data Exchange (ETDEWEB)
Mack, D.J. [CEBAF, Newport News, VA (United States)
1994-04-01
One of the strongest arguments for increasing the nominal CEBAF beam energy to equal or exceed 6 GeV is that one would be able to make quality high Q{sup 2} measurements of the charged pion form factor.
The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT
Energy Technology Data Exchange (ETDEWEB)
Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.
Neutral π decay and transition form-factor in the light-cone
International Nuclear Information System (INIS)
Tomio, L.; Melo, J.P.B.C. De; Frederico, T.
2001-01-01
Full text: Considering phenomenological wave-functions in the light-cone, we obtain the neutral pion (π 0 ) decay and the electromagnetic transition form-factor. The form-factor is obtained from the one-loop quark-diagrams projected on the null plane. By studying different models for the π 0 → γ * γ process, it is found out a strong model sensitivity of the π 0 width. This result suggests that such observable should be used as an important constraint to the model wave function. The relativistic approach to the wave-function based only on constituents quarks is possible in the light-cone due to the suppression of pair creation process. This property arises from the particular choice of the light-cone coordinates. Also the center of mass coordinate is easily separated. In specific processes involving a bound-state, the internal loop-momentum is integrated first in the light-cone energy, then the wave-function of the bound-state appears naturally. This procedure is the essence of the diagrammatic approach that was applied to obtain the weak decay constant and electromagnetic form-factor of the charged pion. In this reference, it was used one-loop dia- grams, the triangle diagram for the form-factor and the bubble diagram which expresses the Partial Conservation of the Axial Current (PCAC). The integration over the light-cone energy in the triangle diagram is per- formed and the asymptotic wave-function of the bound quark-antiquark pair is replaced by phenomenological pion wave-functions. We use three distinct model wave-functions: the Gaussian; the hydrogen-atom; and the wave-function model. This last model has the two characteristics that one believes belongs to Quantum Chromodynamics, i.e., confinement and short distance one gluon exchange. The Gaussian model has only the property of confinement and the Hydrogen model mimics the one gluon exchange at short distances. It is observed that the neutral pion radius presents a correlation with the quark mass. The
Generation of truncated recombinant form of tumor necrosis factor ...
African Journals Online (AJOL)
7. Original Research Article. Generation of truncated recombinant form of tumor necrosis factor ... as 6×His tagged using E.coli BL21 (DE3) expression system. The protein was ... proapoptotic signaling cascade through TNFR1. [5] which is ...
Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach
Energy Technology Data Exchange (ETDEWEB)
Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer
2010-12-01
We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.
Meson Transition Form Factors in Light-Front Holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.
2011-06-22
We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.
Design of a 18F production system at ORNL 86-inch cyclotron
International Nuclear Information System (INIS)
Shaeffer, M.C.; Barreto, F.; Datesh, J.R.; Goldstein, B.R.
1977-01-01
A target system for the production of 18 F by proton bombardment of H 2 18 O was designed for the ORNL 86-inch cyclotron facility. The system consists of concentric titanium and aluminum cylinders. Oxygen-18-enriched H 2 O circulates through the inner titanium cylinder and through an external heat exchanger with cooling water flowing in the annulus. Yields of 5.0 curies are expected for a 250-μA proton beam current and 24-min irradiation time
Nucleon form factors on the lattice with light dynamical fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-09-01
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon form factors on the lattice with light dynamical fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-09-15
The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Form factors of ηc in light-front quark model
International Nuclear Information System (INIS)
Geng, Chao-Qiang; Lih, Chong-Chung
2013-01-01
We study the form factors of the η c meson in the light-front quark model. We explicitly show that the transition form factor of η c → γ * γ as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of η c is found to be f η c = 230.5 +52.2 -61.0 and 303.6 +115.2 -116.4 MeV for η c ∝ c anti c by using two η c → γγ decay widths of 5.3 ± 0.5 and 7.2 ± 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)
Applicability of perturbative QCD and NLO power corrections for the pion form factor
International Nuclear Information System (INIS)
Yeh Tsungwen
2002-01-01
As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function
Evaluation of 3 Inch SN-219 Failure and S and SX Tank Farm Saltwell Piping
International Nuclear Information System (INIS)
ELSEN, J.J.
2000-01-01
Evaluation of direct buried piping currently in use or designated for future Saltwell pumping in S and SX Farms. Documented evaluation of failed S-103 saltwell pumping transfer line 3 inch SN-219. This evaluation is intended to reflect current status of Saltwell piping, when taken in context with referenced documents
Cutting through form factors and cross sections of non-protected operators in N=4 SYM
International Nuclear Information System (INIS)
Nandan, Dhritiman; Sieg, Christoph; Wilhelm, Matthias; Yang, Gang
2015-01-01
We study the form factors of the Konishi operator, the prime example of non-protected operators in N=4 SYM theory, via the on-shell unitarity method. Since the Konishi operator is not protected by supersymmetry, its form factors share many features with amplitudes in QCD, such as the occurrence of rational terms and of UV divergences that require renormalization. A subtle point is that this operator depends on the spacetime dimension. This requires a modification when calculating its form factors via the on-shell unitarity method. We derive a rigorous prescription that implements this modification to all loop orders and obtain the two-point form factor up to two-loop order and the three-point form factor to one-loop order. From these form factors, we construct an IR-finite cross-section-type quantity, namely the inclusive decay rate of the (off-shell) Konishi operator to any final (on-shell) state. Via the optical theorem, it is connected to the imaginary part of the two-point correlation function. We extract the Konishi anomalous dimension up to two-loop order from it.
A new alignment procedure for the South African Astronomical Observatory's 74-inch telescope
Crause, Lisa A.; Booth, John A.; Doss, David; Loubser, Egan; O'Connor, James E.; Sass, Craig; Sickafoose, Amanda A.; Worters, Hannah L.
2016-07-01
Considerable effort has gone into improving the performance and reliability of the SAAO's 74-inch telescope. This included replacing the telescope encoders, refining the pointing model and increasing the telescope throughput. The latter involved re-aluminising the primary and formulating a procedure to ensure optimal alignment of the telescope mirrors. To this end, we developed the necessary hardware and techniques to ensure that such alignment is achieved and maintained, particularly following re-aluminising of the mirrors. In essence, the procedure involves: placing a Taylor Hobson Alignment Telescope on the mechanical rotation axis of the 74-inch (which we define to be the optical axis, since the Cassegrain instruments attach to the associated turntable), then adjusting the tip/tilt of the secondary mirror to get it onto that axis and, lastly, adjusting the tip/tilt of the primary mirror to eliminate coma. An eyepiece (or wavefront camera) is installed at the Cassegrain port for this final step since comatic star images indicate the need to tip/tilt the primary mirror to align it to the secondary. Tuning out any brightness gradients seen in an out-of-focus image of a bright star may also be used for feedback when adjusting the tip/tilt of the primary mirror to null coma.
Forms and factors of peer violence and victimisation
Directory of Open Access Journals (Sweden)
Dinić Bojana
2014-01-01
Full Text Available The main aim of this study was to explore the latent structure of violence and victimisation based on the factor analysis of the Peer Violence and Victimisation Questionnaire (PVVQ, as well as to examine the correlates of violence and victimisation. The sample included 649 secondary school students (61.8% male from the urban area. Besides the PVVQ, the Aggressiveness questionnaire AVDH was administered. Based on parallel analysis, three factors were extracted in the violence domain, as well as in the victimisation domain of the PVVQ. The factors were interpreted as a physical, verbal and relational form of violence and victimisation, which is in line with common classifications. The correlations of those forms with the aggressiveness dimensions were positive. The relationships with gender, school grade and school achievement referred to the importance of interaction effects between the mentioned characteristics of students and the tendency towards violence or being exposed to it. The main result is that boys from lower school grades and students with lower school achievement in general, are more prone to manifesting physical violence and more often are the target of physical violence. These groups of students are the target groups for preventive programs. The resulting effects indicated the complexity of the violence phenomenon and pointed to the need to consider the wider context of student’s characteristics in the determination of violence. [Projekat Ministarstva nauke Republike Srbije, br. 179037 i br. 179053
On form factors of the conjugated field in the non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
48 CFR 247.372 - DD Form 1654, Evaluation of Transportation Cost Factors.
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false DD Form 1654, Evaluation... Transportation in Supply Contracts 247.372 DD Form 1654, Evaluation of Transportation Cost Factors. Contracting personnel may use the DD Form 1654 to furnish information to the transportation office for development of...
Interaction between droplets in a ternary microemulsion evaluated by the relative form factor method
International Nuclear Information System (INIS)
Nagao, Michihiro; Seto, Hideki; Yamada, Norifumi L.
2007-01-01
This paper describes the concentration dependence of the interaction between water droplets coated by a surfactant monolayer using the contrast variation small-angle neutron scattering technique. In the first part, we explain the idea of how to extract a relatively model free structure factor from the scattering data, which is called the relative form factor method. In the second part, the experimental results for the shape of the droplets (form factor) are described. In the third part the relatively model free structure factor is shown, and finally the concentration dependence of the interaction potential between droplets is discussed. The result indicates the validity of the relative form factor method, and the importance of the estimation of the model free structure factor to discuss the nature of structure formation in microemulsion systems
B→ππ form factors from light-cone sum rules with B-meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Cheng, Shan; Khodjamirian, Alexander [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Department Physik, Universität Siegen,Walter-Flex-Strasse 3, 57068 Siegen (Germany); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2017-05-30
We study B→ππ form factors using QCD light-cone sum rules with B-meson distribution amplitudes. These form factors describe the semileptonic decay B→ππℓν̄{sub ℓ}, and constitute an essential input in B→ππℓ{sup +}ℓ{sup −} and B→πππ decays. We employ the correlation functions where a dipion isospin-one state is interpolated by the vector light-quark current. We obtain sum rules where convolutions of the P-wave B̄{sup 0}→π{sup +}π{sup 0} form factors with the timelike pion vector form factor are related to universal B-meson distribution amplitudes. These sum rules are valid in the kinematic regime where the dipion state has a large energy and a low invariant mass, and reproduce analytically the known light-cone sum rules for B→ρ form factors in the limit of ρ-dominance and zero width, thus providing a systematics for so far unaccounted corrections to B→ρ transitions. Using data for the pion vector form factor, we estimate finite-width effects and the contribution of excited ρ-resonances to the B→ππ form factors. We find that these contributions amount up to ∼20% in the small dipion mass region where they can be effectively regarded as a nonresonant (P-wave) background to the B→ρ transition.
Electromagnetic and Scalar Pion form factor in the Kroll-Lee-Zumino model
International Nuclear Information System (INIS)
Dominguez, C.A.; Jottar, J.I.; Loewe, M.; Willers, B.
2009-01-01
The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used at the one loop level to compute vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. These corrections, together with the one-loop vacuum polarization contribution, imply a resulting electromagnetic pion form factor in excellent agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O(g 2 ). The KLZ model is also used to compute the scalar radius of the pion at the one loop level, finding π 2 > S =0.40fm 2 . This value implies for the low energy constant of chiral perturbation theory l-bar 4 =3.4
Sudakov resummation for subleading SCET currents and heavy-to-light form factors
International Nuclear Information System (INIS)
Hill, Richard J.; Becher, Thomas; Lee, Seung J.; Neubert, Matthias
2004-01-01
The hard-scattering contributions to heavy-to-light form factors at large recoil are studied systematically in soft-collinear effective theory (SCET). Large logarithms arising from multiple energy scales are re-summed by matching QCD onto SCET in two stages via an intermediate effective theory. Anomalous dimensions in the intermediate theory are computed, and their form is shown to be constrained by conformal symmetry. Renormalization-group evolution equations are solved to give a complete leading-order analysis of the hard-scattering contributions, in which all single and double logarithms are re-summed. In two cases, spin-symmetry relations for the soft-overlap contributions to form factors are shown not to be broken at any order in perturbation theory by hard-scattering corrections. One-loop matching calculations in the two effective theories are performed in sample cases, for which the relative importance of renormalization-group evolution and matching corrections is investigated. The asymptotic behavior of Sudakov logarithms appearing in the coefficient functions of the soft-overlap and hard-scattering contributions to form factors is analyzed. (author)
Spontaneous magnetization of quantum XY-chain from finite chain form-factor
International Nuclear Information System (INIS)
Iorgov, N.Z.
2010-01-01
Using the explicit factorized formulas for matrix elements (form-factors) of the spin operators between vectors of the Hamiltonian of a finite quantum XY-chain in a transverse field, the spontaneous magnetization for σ x and σ y is re-derived in a simple way.
Measurement of the proton form factor ratio at low momentum transfer
Energy Technology Data Exchange (ETDEWEB)
Friedman, Moshe [Hebrew Univ. of Jerusalem (Israel)
2016-08-01
Experiment E08-007-II measured the proton elastic form factor ratio μG_{E}=G_{M} in the momentum transfer range of Q^{2} ~ 0.02 - 0.08 GeV^{2}, the lowest ever measured by polarization transfer techniques. The experiment was performed at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH_{3} target. The asymmetries between the cross section of positive and negative helicity states of the beam were determined. These asymmetries can be used to determine the form factor ratio. In this thesis, we present the asymmetry analysis of the experiment, discuss the main challenges and show preliminary results for part of the data. Preliminary asymmetries indicate an increase in the form factor ratio above unity. However, a complete analysis is required before any conclusion can be made. Further analysis is ongoing, and final asymmetry results and form factor extraction is expected during 2017. We also present first results for ^{14}N asymmetries for elastic and quasi-elastic scattering. The measured asymmetries are in agreement with the shell model approximation, within the low accuracy of the measurement. A change in the asymmetry sign between the elastic and the quasi-elastic processes is seen, and should motivate further theoretical studies. These experimental asymmetries will also be useful for systematic studies of other experiments using polarized NH_{3} targets.
Production of exotic beams at the LBL 88-Inch Cyclotron by the ISOL method
International Nuclear Information System (INIS)
1990-04-01
The Users of the LBL 88-Inch Cyclotron are preparing a proposal to produce exotic, i.e., radioactive beams. The facility will consist of a high-current 30 MeV cyclotron to generate the radioactive nuclei, an ECR source that can be coupled to different production targets, and the 88-Inch Cyclotron to accelerate the radioactive ions. Thus, the basic concept is that of the double cyclotron system pioneered at Louvain-la-Neuve, although the initial emphasis will be on producing a variety of light proton-rich beams at energies up to 10 MeV/A. At this workshop we wish to outline what is being planned, to invite comments and suggestions, and, especially, to encourage participation. We believe that this facility will be an important step toward establishing the scientific and technical basis for a National High Intensity Facility. This can be achieved through active participation by members of the radioactive beam (RB) community in (1) experiments with high quality radioactive beams of moderate intensity and, (2) R ampersand D on high beam-power targets and highly efficient ion sources. 5 refs., 4 figs
Form factors and charge radii in a quantum chromodynamics ...
Indian Academy of Sciences (India)
tic form factors and charge radii of D, Ds,B,Bs and Bc mesons in a quantum chromodynamics. (QCD)-inspired ... as pointed out in [12,13], one can expect a similar success here too. .... 0 were large and the formalism failed to account for large ...
Measurement of the $\\Lambda_{b}^{0}$ Decay Form Factor
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M
2004-01-01
The form factor of Lambda_b^0 baryons is estimated using 3.46 10^6 hadronic Z decays collected by the DELPHI experiment between 1992 and 1995. Charmed Lambda_c^+ baryons fully reconstructed in the pK-pi+, pK0_S, and Lambda pi+pi+pi- modes, are associated to a lepton with opposite charge in order to select Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l decays. From a combined likelihood and event rate fit to the distribution of the Isgur-Wise variable w, and using the Heavy Quark Effective Theory (HQET), the slope of the b-baryon form factor is measured to be: rho-hat^2 = 2.03 +/- 0.46 (stat) ^{+0.72}_{-1.00} (syst). The exclusive semileptonic branching fraction Br(Lambda_b^0 -> Lambda_c^+ l^- anti-nu_l) can be derived from rho-hat^2 and is found to be (5.0^{+1.1}_{-0.8} (stat) ^{+1.6}_{-1.2} (syst))%. Limits on other branching fractions are also obtained.
Proton Form Factors And Related Processes in BaBar by ISR
Energy Technology Data Exchange (ETDEWEB)
Ferroli, R.B.; /Enrico Fermi Ctr., Rome /INFN, Rome
2007-02-12
BaBar has measured with unprecedented accuracy e{sup +}e{sup -} {yields} p{bar p} from the threshold up to Q{sub p{bar p}}{sup 2} {approx} 20 GeV{sup 2}/c{sup 4}, finding out an unexpected cross section, with plateaux and drops. In particular it is well established a sharp drop near threshold, where evidence for structures in multihadronic channels has also been found. Other unexpected and spectacular features of the Nucleon form factors are reminded, the behavior of space-like G{sub E}{sup p}/G{sub M}{sup p} and the neutron time-like form factors.
Recent Studies of Nucleon Electromagnetic Form Factors
International Nuclear Information System (INIS)
Gilad, Shalev
2010-01-01
The electromagnetic form factors of nucleons are fundamental quantities in nucleon structure. As such, they have been studied extensively both theoretically and experimentally. Significant progress has been made with new measurements at Jlab, MAMI and MIT-Bates, with emphases on expanding the momentum-transfer range and on higher precision. In this paper, we describe the status of this field and present new results from measurements at both low and high momentum transfers. We also compare the experimental data to model predictions, and mention possible implications of the new results to other fields.
Axial nucleon form factors from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Constantinou, M.; Guichon, P.; Jansen, K.; Korzec, T.
2011-01-01
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
Neutron charge radius and the neutron electric form factor
International Nuclear Information System (INIS)
Gentile, T. R.; Crawford, C. B.
2011-01-01
For nearly forty years, the Galster parametrization has been employed to fit existing data for the neutron electric form factor, G E n , vs the square of the four-momentum transfer, Q 2 . Typically this parametrization is constrained to be consistent with experimental data for the neutron charge radius. However, we find that the Galster form does not have sufficient freedom to accommodate reasonable values of the radius without constraining or compromising the fit. In addition, the G E n data are now at sufficient precision to motivate a two-parameter fit (or three parameters if we include thermal neutron data). Here we present a modified form of a two-dipole parametrization that allows this freedom and fits both G E n (including recent data at both low and high four-momentum transfer) and the charge radius well with simple, well-defined parameters. Analysis reveals that the Galster form is essentially a two-parameter approximation to the two-dipole form but becomes degenerate if we try to extend it naturally to three parameters.
Thermodynamic limit of particle-hole form factors in the massless XXZ Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Kitanine, N. [Univ. de Bourgogne (France). IMB, UMR 5584 du CNRS; Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maillet, J.M.; Terras, V. [ENS Lyon (France). UMR 5672 du CNRS, Lab. de Physique; Slavnov, N.A. [Steklov Mathematical Inst., Moscow (Russian Federation)
2011-03-15
We study the thermodynamic limit of the particle-hole form factors of the XXZ Heisenberg chain in the massless regime. We show that, in this limit, such form factors decrease as an explicitly computed power-law in the system size. Moreover, the corresponding amplitudes can be obtained as a product of a ''smooth'' and a ''discrete'' part: the former depends continuously on the rapidities of the particles and holes, whereas the latter has an additional explicit dependence on the set of integer numbers that label each excited state in the associated logarithmic Bethe equations. We also show that special form factors corresponding to zero-energy excitations lying on the Fermi surface decrease as a power-law in the system size with the same critical exponents as in the longdistance asymptotic behavior of the related two-point correlation functions. The methods we develop in this article are rather general and can be applied to other massless integrable models associated to the six-vertex R-matrix and having determinant representations for their form factors. (orig.)
50 CFR Figure 12 to Part 223 - Escape Opening & Cover Dimensions for 71-inch TED
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Escape Opening & Cover Dimensions for 71-inch TED 12 Figure 12 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 12 Figure 12 to...
Sulkosky, V.; Jin, G.; Long, E.; Zhang, Y.-W.; Mihovilovic, M.; Kelleher, A.; Anderson, B.; Higinbotham, D. W.; Širca, S.; Allada, K.; Annand, J. R. M.; Averett, T.; Bertozzi, W.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chudakov, E.; De Leo, R.; Deng, X.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, J.-O.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H.-J.; Luo, W.; Markowitz, P.; Meekins, D.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Qui, X.; Riordan, S.; Saha, A.; Sawatzky, B.; Shabestari, M.; Shahinyan, A.; Shoenrock, B.; John, J. St.; Subedi, R.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.; Jefferson Lab Hall A Collaboration
2017-12-01
Background: Measurements of the neutron charge form factor, GEn, are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GEn with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c ) 2 . This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3He ⃗(e ⃗,e') was measured at Jefferson Laboratory. The neutron electric form factor, GEn, was extracted at Q2=0.98 (GeV/c ) 2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q2 is high enough that the sensitivity to GEn is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, GEn, was determined to be 0.0414 ±0.0077 (stat)±0.0022 (syst) , providing the first high-precision inclusive extraction of the neutron's charge form factor. Conclusions: The use of the inclusive quasielastic 3He ⃗(e ⃗,e') with a four-momentum transfer near 1 (GeV/c ) 2 has been used to provide a unique measurement of GEn. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.
Measurement of the form factor ratios in semileptonic decays of charm mesons
Energy Technology Data Exchange (ETDEWEB)
Zaliznyak, Renata [Stanford Univ., CA (United States)
1998-05-01
I have measured the form factor ratios r_{2} = A_{2} (0)/A_{1} (0) and r_{V} = V (0)/A_{1} (0) in the semileptonic charm meson decay D^{+} → $\\bar{K}$^{*0} e^{+}v_{e} from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D^{+} → $\\bar{K}$^{*0} e^{+} v_{e} . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D^{+} → $\\bar{K}$^{*0} e^{+} v_{e} , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π^{-} beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D^{+} → $\\bar{K}$^{*0} e^{+} v_{e} decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D^{+} → $\\bar{K}$^{*0} e^{+}v_{e} events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r_{2} = 0.71 ± 0.08 ± 0.09 and r_{V} = 1.84 ± 0.11 ±} 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good.
Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium
Zhu, Ruilin
2018-06-01
We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.
Factor XII-independent activation of the bradykinin-forming cascade
DEFF Research Database (Denmark)
Joseph, Kusumam; Tholanikunnel, Baby G; Bygum, Anette
2013-01-01
and assayed for kallikrein formation. C1-INH was removed from factor XII-deficient plasma by means of immunoadsorption. RESULTS: We demonstrate that prekallikrein-HK will activate to kallikrein in phosphate-containing buffers and that the rate is further accelerated on addition of heat shock protein 90...... the prekallikrein-HK complex to prevent HK cleavage either by prekallikrein or by prekallikrein-HK autoactivation to generate kallikrein. In patients with hereditary angioedema, kallikrein and bradykinin formation can occur without invoking factor XII activation, although the kallikrein formed can rapidly activate...
Development of a 10-inch HPD with integrated readout electronics
Braem, André; Joram, C; Séguinot, Jacques; Weilhammer, Peter; Giunta, M; Malakhov, N; Menzione, A; Pegna, R; Piccioli, A; Raffaelli, F; Sartori, G
2003-01-01
A round 10-in. diameter Hybrid Photodiode (HPD) with spherical entrance window is under development for Cherenkov imaging applications in cosmic ray astronomy. The HPD adopts the fountain focusing electron optics, which, as already demonstrated in the 5 inch Pad HPD, allows for a linear demagnification of the image over practically the full tube diameter. Self-triggering front-end electronics providing also sparse readout capability, has been tested. High-efficiency Rb//2Te cathodes have been produced on a UV extended borosilicate glass windows with very thin conductive underlayers of Indium Tin Oxide. We report on the design of the 10- in. HPD, the fabrication procedure and first tests of a 5-in. HPD with Rb//2Te photocathode and 2048 channels.
Remote target removal for the Oak Ridge 86-inch Cyclotron
International Nuclear Information System (INIS)
Walls, A.A.
1982-01-01
A remotely operated target remover has been plaed in operation at the 86-Inch Cyclotron located in Oak Ridge. The system provides for the remote removal of a target from inside the cyclotron, loading it into a cask, and the removal of the cask from the 1.5 m (5-ft) shielding walls. The remote system consists of multiple electrical and pneumatically operated equipment which is designed for controlled step-by-step operation, operated with an electrical control panel, and monitored by a television system. The target remover has reduced the radiation exposures to operating personnel at the facility and has increased the effective operating time. The system is fast, requires a minimum of skill to operate, and has demonstrated both reliability and durability
Coverlayer fabrication for small form factor optical disks
Kim, Jong-Hwan; Lee, Seung-Won; Kim, Jin-Hong
2004-09-01
Two different coverlayers made of UV resin and coversheet were prepared for small form factor optical disks. Thin coverlayer of 10 mm and thick coverlayer of 80 mm were fabricated for flying optical head and non-flying optical head, respectively. Thickness uniformity was analyzed for both coverlayers, and new designs to diminish a ski-jump phenomenon were suggested. Mechanical properties of protective film made of UV resin were investigated.
First thin AC-coupled silicon strip sensors on 8-inch wafers
Energy Technology Data Exchange (ETDEWEB)
Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)
2016-09-11
The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.
Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head
Vassilakos, Gregory J.
2014-01-01
Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.
Thermal cycling and vibration response for PREPP concrete waste forms
International Nuclear Information System (INIS)
Nielson, R.M.; Welch, J.M.
1983-06-01
The Process Experimental Pilot Plant (PREPP) will process those transuranic wastes which do not satisfy the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. Since these wastes will contain considerable quantities of combustible materials, incineration will be an integral part of the treatment process. Four basic types of PREPP ash wastes have been identified. The four types are designated high metal box waste, combustible waste, average waste, and inorganic sludge. In this process, the output of the incinerator is a mixture of ash and shredded noncombustible material (principally metals) which is separated into two sizes, -1/4 inch (under-size waste) and reverse arrow 1/4 inch (oversize waste). These wastes are solidified with hydraulic cement in 55-gallon drums. Simulated PREPP waste forms prepared by Colorado School of Mines Research Institute were subjected to thermal cycling and vibration testing to demonstrate compliance with the WIPP immobilization criterion. Although actual storage and transport conditions are expected to vary somewhat from those utilized in the testing protocol, the generation of only very small amounts of particulate suggests that the immobilization criterion should be routinely met for similar waste form formulations and production procedures. However, the behavior of waste forms containing significant quantities of off-gas scrubber sludge or considerably higher waste loadings may differ. Limited thermal cycling and vibration testing of prototype waste forms should be conducted if the final formulations or production methods used for actual waste forms differ appreciably from those tested in this study. If such testing is conducted, consideration should be given to designing the experiment to accommodate a larger number of thermal cycles more representative of the duration of storage expected
1/M corrections to baryonic form factors in the quark model
International Nuclear Information System (INIS)
Cheng, H.; Tseng, B.
1996-01-01
Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. Contrary to previous similar work in the literature, our quark model results do satisfy the constraints imposed by heavy quark symmetry for heavy-heavy baryon transitions at the symmetric point v·v'=1 and are in agreement with the predictions of the heavy quark effective theory for antitriplet-antitriplet heavy baryon form factors at zero recoil evaluated to order 1/m Q . Furthermore, the quark model approach has the merit that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q 2 . Assuming a dipole q 2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic, and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions, which is unfortunately overlooked in most literature, is very crucial towards an agreement between theory and experiment for the semileptonic decay Λ c →Λe + ν e . Predictions for the decay modes Λ b →J/ψΛ, Λ c →pφ, Λ b →Λγ, Ξ b →Ξγ, and for the semileptonic decays of Λ b , Ξ b, c, and Ω b are presented. copyright 1996 The American Physical Society
Infrared photons and gluons and the electromagnetic quark form factor
International Nuclear Information System (INIS)
Scholz, B.
1982-01-01
A method for a consistent treatment of the infrared behaviour of QED and QCD is presented. As an application of the method the calculation of the electromagnetic quark form factor is discussed. (M.F.W.)
Analysis of the J /ψ →π0γ* transition form factor
Kubis, Bastian; Niecknig, Franz
2015-02-01
In view of the first measurement of the branching fraction for J /ψ →π0e+e- by the BESIII collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.
Bethe Ansatz and exact form factors of the O(N) Gross Neveu-model
International Nuclear Information System (INIS)
Babujian, Hrachya M.; Foerster, Angela; Karowski, Michael
2016-01-01
We apply previous results on the O(N) Bethe Ansatz http://dx.doi.org/10.1088/1751-8113/45/5/055207, http://arxiv.org/abs/1204.3479, http://dx.doi.org/10.1007/JHEP11(2013)089 to construct a general form factor formula for the O(N) Gross-Neveu model. We examine this formula for several operators, such as the energy momentum, the spin-field and the current. We also compare these results with the 1/N expansion of this model and obtain full agreement. We discuss bound state form factors, in particular for the three particle form factor of the field. In addition for the two particle case we prove a recursion relation for the K-functions of the higher level Bethe Ansatz.
Charge symmetry violation in the electromagnetic form factors of the proton
International Nuclear Information System (INIS)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.
2015-03-01
Experimental tests of QCD through its predictions for the strange-quark content of the proton have been drastically restricted by our lack of knowledge of the violation of charge symmetry (CSV). We find unexpectedly tiny CSV in the proton's electromagnetic form factors by performing the first extraction of these quantities based on an analysis of lattice QCD data. The resulting values are an order of magnitude smaller than current bounds on proton strangeness from parity violating electron-proton scattering experiments. This result paves the way for a new generation of experimental measurements of the proton's strange form factors to challenge the predictions of QCD.
Light Cone Sum Rules for gamma*N ->Delta Transition Form Factors
Energy Technology Data Exchange (ETDEWEB)
V.M. Braun; A. Lenz; G. Peters; A. Radyushkin
2006-02-01
A theoretical framework is suggested for the calculation of {gamma}* N {yields} {Delta} transition form factors using the light-cone sum rule approach. Leading-order sum rules are derived and compared with the existing experimental data. We find that the transition form factors in a several GeV region are dominated by the ''soft'' contributions that can be thought of as overlap integrals of the valence components of the hadron wave functions. The ''minus'' components of the quark fields contribute significantly to the result, which can be reinterpreted as large contributions of the quark orbital angular momentum.
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
An experimental survey of the factors that affect leaching from low-level radioactive waste forms
International Nuclear Information System (INIS)
Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.
1988-09-01
This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs
International Nuclear Information System (INIS)
Vassilaros, M.G.; Hays, R.A.; Gudas, J.P.
1985-01-01
J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. The tests were performed at 550 0 F, 300 0 F and room temperature. The results of the J-integral tests indicate that the Jsub(Ic) of the base plate ranged from 4400 to 6100 in lbs/in 2 at 550 0 F. The Jsub(Ic) values for the tests performed at 300 0 F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that Jsub(Ic) was greater than 8000 in lb/in 2 . The J-integral tests performed on the weld metal specimens indicate that the Jsub(Ic) values ranged from 930 to 2150 in lbs/in 2 at 550 0 F. The Jsub(Ic) values of the weld metal specimens tested at 300 0 F and room temperature were 2300 and 3000 in lbs/in 2 respectively. One HAZ specimen was tested at 550 0 F and found to have a Jsub(Ic) value of 2980 in lbs/in 2 which indicates that the HAZ is an average of the base metal and weld metal toughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding. The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550 0 F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these tests indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack. (orig.)
Form factors and excitations of topological solitons
International Nuclear Information System (INIS)
Weir, David J.; Rajantie, Arttu
2011-01-01
We show how the interaction properties of topological solitons in quantum field theory can be calculated with lattice Monte Carlo simulations. Topologically nontrivial field configurations are key to understanding the nature of the QCD vacuum through, for example, the dual superconductor picture. Techniques that we have developed to understand the excitations and form factors of topological solitons, such as kinks and 't Hooft-Polyakov monopoles, should be equally applicable to chromoelectric flux tubes. We review our results for simple topological solitons and their agreement with exact results, then discuss our progress towards studying objects of interest to high energy physics.
Medium modifications of nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Horikawa, T. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp
2005-11-28
We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.
Neutron electric form factor via recoil polarimetry
International Nuclear Information System (INIS)
Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu
2003-01-01
The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2
Full scale ambient water flow tests of a 10-inch emergency release coupling for LNG transfer
Putte, L.J. van der; Webber, T.; Bokhorst, E. van; Revell, C.
2016-01-01
For LNG transfer in ship-to-ship and ship-to-shore configurations emergency release couplings (F.RC) in combination with loading arms and multi-composite hoses are applied In view of a demand for increasing transfer flow rates in offshore LNG applications a 10-inch ERC has been developed intended
Effects of Velocity-Dependent Force on the Magnetic Form Factors of Odd-Z Nuclei
International Nuclear Information System (INIS)
Tie-Kuang, Dong; Zhong-Zhou, Ren
2008-01-01
We investigate the effects of the velocity-dependent force on the magnetic form factors and magnetic moments of odd-Z nuclei. The form factors are calculated with the harmonic-oscillator wavefunctions. It is found that the contributions of the velocity-dependent force manifest themselves in the very large momentum transfer region (q ≥ 4fm- 1 ). In the low and medium q region the contributions of the velocity-dependent force are very small compared with those without this force. However, in the high-q region the contributions of the velocity-dependent force are larger than the normal form factors. The diffraction structures beyond the existing experimental data are found after the contributions of the velocity-dependent force are included. The formula of the correction to the single particle magnetic moment due to the velocity-dependent force is reproduced exactly in the long-wavelength limit (q = 0) of the M1 form factor
Beam-scanning system for determination of beam profiles and form factors in merged-beam experiments
International Nuclear Information System (INIS)
Keyser, C.J.; Froelich, H.R.; Mitchell, J.B.A.; McGowan, J.W.
1979-01-01
A beam-scanning system for a merged electron-ion beam experiment is described. This system is used to determine the horizontal and vertical beam profiles and the form factors at three different locations along the axis of the beams. Design details of the wedge-shaped scanners and the electronic circuit for obtaining beam profiles and form factors are described. The form factor derivation for merged beams is given and an expression in terms of measured quantities is derived. (author)
Measurement of weak meson form factors in spacelike regions
Brene, N
1973-01-01
With the construction of high energy, high intensity accelerators (NAL & CERN, SPS) investigation of neutrino scattering on virtual pions, a la Chew-Low, becomes experimentally possible. The process nu +N to mu /sup -/+K+ Delta is analysed to extract the usual K/sub l3/ form factor(s) for spacelike momentum transfer. A model calculation suggests that f/sub +/(T) can be determined reasonably well from a triple differential cross section, whereas only rough information on f /sub -/(T) may be obtained from the transverse polarization of the muon. The experiment proposed requires scanning of several millions of bubble chamber pictures. (14 refs).
Electromagnetic form factors and vertex constants for 6Li
International Nuclear Information System (INIS)
Blokhintsev, L.D.; Shvarts, I.A.
1977-01-01
It has been assumed that the main contribution to the rapidly changing part of the charge form factor of 6 Li provides the amplitude of the triangle diagram containing virtual lines of deuteron and α particle. The vertex constant G 2 for the 6 Li→α+d decay is expressed through the nuclear charge radii for 6 Li, d, and α. Taking into account coulomb interaction in the vertex of the 6 Li→α+d reaction increases G 2 by about a factor of two. The account of virtuality of a deuteron cluster also leads to an increase in G 2
NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel
Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.;
2011-01-01
Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.
Extraction of the bare form factors for the semi-leptonic Bs decays
International Nuclear Information System (INIS)
Bahr, F.; Banerjee, D.; Koren, M.; Simma, H.; Sommer, R.
2017-01-01
The computation of the form factors for the B s →lν decay is presented. The b quark is treated by means of Heavy Quark Effective Theory, currently in the static approximation. In these proceedings we discuss the extraction of the bare matrix elements from lattice data through a combined fit to two- and three-point correlation functions, as well as by considering suitable ratios. The different methods agree concerning the extracted form factors and approximately 2% accuracy is reached. The non-perturbative renormalization and matching to QCD is described in accompanying proceedings.
Calculations of electromagnetic nucleon form factors and electroexcitation amplitudes of isobars
International Nuclear Information System (INIS)
Warns, M.; Schroeder, H.; Pfeil, W.; Rollnik, H.
1989-03-01
In this paper, we present numerical results for electroproduction amplitudes of proton resonances and electromagnetic nucleon form factors calculated in a relativized quark model. Interactions with both transversely and longitudinally polarized virtual photons were considered. Contributions of the different effects included in our approach have been analysed through a sample comparison with the available data. We also discuss the validity of the usual single-quark transition ansatz and possible parametrizations of the potential acting between the constituent quarks of the baryon. Impressive agreement is obtained with the nucleon form factor data up to squared momentum transfers of 2.5 GeV 2 , but still some problems remain with the Δ(1232) and higher resonances. (orig.)
Measurement of time-like baryon electro-magnetic form factors in BESIII
Energy Technology Data Exchange (ETDEWEB)
Morales Morales, Cristina; Dbeyssi, Alaa [Helmholtz-Institut Mainz (Germany); Ahmed, Samer Ali Nasher; Lin, Dexu; Rosner, Christoph; Wang, Yadi [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: BESIII-Collaboration
2016-07-01
BEPCII is a symmetric electron-positron collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows BESIII experiment to measure baryon form factors both from direct electron-positron annihilation and from initial state radiation processes. We present results on direct electron-positron annihilation into proton anti-proton and preliminary results on direct electron-positron annihilation into lambda anti-lambda based on data collected by BESIII in 2011 and 2012. Finally, expectations on the measurement of nucleon and hyperon electro-magnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also shown.
Proton and neutron charge form factors in soliton model with dilaton-quarkonium fields
International Nuclear Information System (INIS)
Magar, E.N.; Nikolaev, V.A.; Tkachev, O.G.; Novozhilov, V.Yu.
1997-01-01
Nucleon electromagnetic form factors are considered in the framework of the generalized Skyrme model with dilaton-quarkonium fields. In our first publication we got big discrepancy between calculated form factors and dipole approximation formula. Here we have reasonably good accordance between them in finite impulse region after vector meson dominance has been taken into account. Omega- and rho-mesons have been included only into hadron structure of the photon
International Nuclear Information System (INIS)
Arrington, John; Sick, Ingo
2007-01-01
The extraction of the strangeness form factors from parity-violating elastic electron-proton scattering is sensitive to the electromagnetic form factors at low Q 2 . We provide parametrizations for the form factors and uncertainties, including the effects of two-photon exchange corrections to the extracted electromagnetic form factors. We study effect of the correlations between different form factors, in particular as they impact the parity-violating asymmetry and the extraction of the strangeness form factors. We provide a prescription to extract the strangeness form factors from the asymmetry that provides an excellent approximation of the full two-photon correction. The corrected form factors are also appropriate as input for other low-Q analyses, although the effects of correlations and two-photon exchange corrections may be different
Symmetry Breaking and transition form factors from {eta} and {omega} decays
Energy Technology Data Exchange (ETDEWEB)
Roy, Ankhi, E-mail: ankhi@iiti.ac.in [IIT Indore (India); Collaboration: WASA-at-COSY Collaboration
2013-03-15
The WASA-at-COSY collaboration uses meson production and the decays for the realization of the physics goals. Different rare decay channels of the mesons have to be analyzed in order to investigate symmetry breaking patterns. The combination of high intensity COSY (COoler SYnchrotron) beams and the WASA 4{pi} detector setup allows us to study the rare decay channels of light mesons. We are analyzing different symmetry breaking decay channels of {eta} mesons. One rare decay channel {eta}{yields}{pi}{sup + }{pi}{sup -} e{sup + }e{sup -} is being used to test CP violation. The asymmetry in the angle between the electron and pion planes can give insight about the degree of CP violation. The study of another rare decay channel {eta}{yields}{pi}{sup 0}e{sup + }e{sup -} is a test of C-parity violation. Our analysis of transition form factors of different mesons via conversion decays ({eta}{yields}{gamma}{gamma}{sup *}{yields}e{sup + }e{sup -} {gamma}, {omega}{yields}{pi}{sup 0}e{sup + }e{sup -}) provides insight about hadron structure. The transition form-factor of the {omega} meson provides information about the form factor in the time-like region where the two vector particles (the {omega} and the intermediate virtual photon) have an invariant mass squared will be discussed.
High-precision calculation of the strange nucleon electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Green, Jeremy [Johannes Gutenberg Univ., Mainz (Germany); Meinel, Stefan [Univ. of Arizona, Tucson, AZ (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Engelhardt, Michael G. [New Mexico State Univ., Las Cruces, NM (United States); Krieg, Stefan [Bergische Univ., Wuppertal (Germany); Julich Supercomputing Centre, Julich (Germany); Laeuchli, Jesse [College of William and Mary, Williamsburg, VA (United States); Negele, John W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pochinsky, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Syritsyn, Sergey [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-08-26
We report a direct lattice QCD calculation of the strange nucleon electromagnetic form factors G^{s}_{E} and G^{s}_{M} in the kinematic range 0 ≤ Q^{2} ≤ 1.2GeV^{2}. For the first time, both G^{s}_{E} and G^{s}_{M} are shown to be nonzero with high significance. This work uses closer-to-physical lattice parameters than previous calculations, and achieves an unprecented statistical precision by implementing a recently proposed variance reduction technique called hierarchical probing. We perform model-independent fits of the form factor shapes using the z-expansion and determine the strange electric and magnetic radii and magnetic moment. As a result, we compare our results to parity-violating electron-proton scattering data and to other theoretical studies.
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Singh, B.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Marinescu, D. Nicmorus; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C.J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V.A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B.V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A.G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E.K.; Lobanov, Y. Yu.; Lobanov, V.I.; Makarov, A.F.; Malinina, L.V.; Malyshev, V.; Olshevskiy, A.G.; Perevalova, E.; Piskun, A.A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M.G.; Shabratova, G.; Skachkov, N.B.; Skachkova, A.N.; Strokovsky, E.A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S.A.; Zhuravlev, N.I.; Zorin, A.G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R.F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J.S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M.N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P.N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J.C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H.H.; Lin, D.; Maas, F.; Maldaner, S.; Marta, M.; Michel, M.; Espí, M. C. Mora; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Piñeiro, D. Rodríguez; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A.K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J.P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A.E.; Blinov, V.E.; Bobrovnikov, V.S.; Kononov, S.; Kravchenko, E.A.; Kuyanov, I.A.; Martin, K.; Onuchin, A.P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A.K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M.P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Andersson, W. Ikegami; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Chackara, V. Pothodi; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.
2016-01-01
The results of simulations for future measurements of electromagnetic form factors at \\PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision at which the proton form factors can be determined is estimated. The signal channel $\\bar p p \\to e^+ e^-$ is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. the $\\bar p p \\to \\pi^+ \\pi^-$, is studied. Furthermore, the background versus signal efficiency, statistic and systematic uncertainties on the extracted proton form factors are evaluated using to the two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam condition and detector performances.
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
Energy Technology Data Exchange (ETDEWEB)
Singh, B. [Aligarth Muslim Univ., Aligarth (India). Physics Dept.; Erni, W.; Krusche, B. [Basel Univ. (Switzerland); Collaboration: The PANDA Collaboration; and others
2016-10-15
Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e{sup +}e{sup -} is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π{sup +}π{sup -}, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)
Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR
International Nuclear Information System (INIS)
Singh, B.
2016-01-01
Simulation results for future measurements of electromagnetic proton form factors at PANDA(FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel anti pp → e + e - is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. anti pp → π + π - , is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance. (orig.)
Nucleon structure functions, resonance form factors, and duality
International Nuclear Information System (INIS)
Davidovsky, V.V.; Struminsky, B.V.
2003-01-01
The behavior of nucleon structure functions in the resonance region is explored. For form factors that describe resonance production, expressions are obtained that are dependent on the photon virtuality Q 2 , which have a correct threshold behavior, and which take into account available experimental data on resonance decay. Resonance contributions to nucleon structure functions are calculated. The resulting expressions are used to investigate quark-hadron duality in electron-nucleon scattering by taking the example of the structure function F 2
Generation of truncated recombinant form of tumor necrosis factor ...
African Journals Online (AJOL)
Purpose: To produce truncated recombinant form of tumor necrosis factor receptor 1 (TNFR1), cysteine-rich domain 2 (CRD2) and CRD3 regions of the receptor were generated using pET28a and E. coli/BL21. Methods: DNA coding sequence of CRD2 and CRD3 was cloned into pET28a vector and the corresponding ...
Multilevel Confirmatory Factor Analysis of the Teacher My Class Inventory-Short Form
Villares, Elizabeth; Mariani, Melissa; Sink, Christopher A.; Colvin, Kimberly
2016-01-01
Researchers analyzed data from elementary teachers (N = 233) to further establish the psychometric soundness of the Teacher My Class Inventory-Short Form. Supporting previous psychometric research, confirmatory factor analyses findings supported the factorial validity of the hypothesized five-factor solution. Internal reliability estimates were…
Study of the electromagnetic form factors of Helium-3 and Tritium nuclei by electron scattering
International Nuclear Information System (INIS)
Amroun, A.
1989-01-01
Accurate measurements of the tritium electromagnetic form factor demonstrated that, when the exchange currents are included, the theoretical and the experimental data are in agreement. Similar calculations carried out on helium-3 were not satisfactory. In this investigation, a new electromagnetic form factor of helium-3 is measured. The transfer zone of the diffraction spectra concerning the first minimum and the second maximum is considered. The aim of the study is to test on both nuclei the validity and the uncertainties of the models. The scattering of electrons on helium-3 is analyzed. The experiment was performed in the Saclay linear accelerator. The isoscalar and isovector form factors could be differentiated. By comparing the theoretical and the experimental data, it is demonstrated that the use of three body forces in the calculations has no effect on the form factor results [fr
Strange mesonic transition form factor in the chiral constituent quark model
International Nuclear Information System (INIS)
Ito, H.; Ramsey-Musolf, M.J.
1998-01-01
The form factor g ρπ (S) (Q 2 ) of the strange vector current transition matrix element left-angle ρ|bar sγ μ s|π right-angle is calculated within the chiral quark model. A strange vector current of the constituent U and D quarks is induced by kaon radiative corrections and this mechanism yields the nonvanishing values of g ρπ (S) (0). The numerical result at the photon point is consistent with the one given by the φ-meson dominance model, but the falloff in the Q 2 dependence is faster than the monopole form factor. Mesonic radiative corrections are also examined for the electromagnetic ρ-to-π and K * -to-K transition amplitudes. copyright 1998 The American Physical Society
The SU(2|3) dynamic two-loop form factors
International Nuclear Information System (INIS)
Brandhuber, A.; Kostacińska, M.; Penante, B.; Travaglini, G.; Young, D.
2016-01-01
We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X"3). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.
The SU(2|3) dynamic two-loop form factors
Energy Technology Data Exchange (ETDEWEB)
Brandhuber, A.; Kostacińska, M. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Penante, B. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Travaglini, G.; Young, D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)
2016-08-23
We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X{sup 3}). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.
Waiver approval by EPA pursuant to the American Iron and Steel Requirements of the Clean Water Act Section 608 to the Napa Sanitation District in California for the purchase of 24-inch butterfly valves.
Δ(1232) Axial Charge and Form Factors from Lattice QCD
International Nuclear Information System (INIS)
Alexandrou, Constantia; Gregory, Eric B.; Korzec, Tomasz; Koutsou, Giannis; Negele, John W.; Sato, Toru; Tsapalis, Antonios
2011-01-01
We present the first calculation on the Δ axial vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to Δ axial transition coupling constant and Δ axial charge.
Seismic fragility test of a 6-inch diameter pipe system
International Nuclear Information System (INIS)
Chen, W.P.; Onesto, A.T.; DeVita, V.
1987-02-01
This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis
Study on water leak-tightness of small leaks on a 1 inch cylinder valve
International Nuclear Information System (INIS)
Miyazawa, T.; Kasai, Y.; Inabe, N.; Aritomi, M.
2002-01-01
Practical thresholds for water leak-tightness of small leaks were determined by experimentation. Measurements for small leak samples were taken of air leakage rates and water leakage rates for identical leak samples in order to identify parameters that influence water leak-tightness threshold. Four types of leaks were evaluated: a fine wire inserted in an O-ring seal, a glass capillary tube, a stainless steel orifice, and a scratched valve stem on a 1 inch UF 6 cylinder valve. Experimental results demonstrated that the key parameter for water leak-tightness is the opening size of the leak hole. The maximum allowable hole size to achieve water leak-tightness ranged from 10 to 20 μm in diameter in this study. Experimental results with 1 inch UF 6 cylinder valve samples demonstrated that the acceptance criteria for preshipment leakage test, 1x10 -3 ref-cm 3 .s -1 , as prescribed in ANSI N14.5 is an appropriate value from the point of view of water leak-tightness for enriched UF 6 packages. The mechanism of water leak-tightness is plugging by tiny particles existing in water. The water used in experiments in this study contained far fewer particles than in water assumed to be encountered under accident conditions of transport. Therefore, the water leak-tightness threshold determined in this study is a conservative value in a practical evaluation. (author)
International Nuclear Information System (INIS)
Chidley, B.E.
1983-01-01
Throughout the life of a 24 inch diameter Glass Making Vessel used on the inactive Harvest Vitrification Plant dimensional measurements have been recorded. When glass is present the diameter increases due to thermal stresses. Some permanent longitudinal extension (about 1%) occurred over the 20 runs comprising the glass-making campaign. (author)
Measurement of the form factor in the decay K+ → π0e+vsub(e)
International Nuclear Information System (INIS)
Martyn, H.U.
1974-01-01
Following an introduction into the theory of the K(l3) decay, the fundamentals for the measuring methods of the form factor are derived. The choice of the quantity of nuclear events, the problems of the detection probabilities and of the background, and the form factor analysis are dealt with in detail. The analysis shows that the form factor can be very well described by a linear parametrization. The upper limits for scalar and tensorial interaction contributions are given; these results confirm the validity of the V-A theory also for strangeness-changing decays. (BJ/LH) [de
Form factors of {eta}{sub c} in light-front quark model
Energy Technology Data Exchange (ETDEWEB)
Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, College of Mathematics and Physics, Chongqing (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Lih, Chong-Chung [Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China)
2013-08-15
We study the form factors of the {eta}{sub c} meson in the light-front quark model. We explicitly show that the transition form factor of {eta}{sub c} {yields} {gamma}{sup *}{gamma} as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of {eta}{sub c} is found to be f{sub {eta}{sub c}} = 230.5{sup +52.2}{sub -61.0} and 303.6{sup +115.2}{sub -116.4} MeV for {eta}{sub c} {proportional_to} c anti c by using two {eta}{sub c} {yields} {gamma}{gamma} decay widths of 5.3 {+-} 0.5 and 7.2 {+-} 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)
Form factors of descendant operators: reduction to perturbed M(2,2s+1) models
International Nuclear Information System (INIS)
Lashkevich, Michael; Pugai, Yaroslav
2015-01-01
In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ 13 -perturbation of minimal conformal models of the M(2,2s+1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T ±2k , Θ ±(2k−2) , which correspond to the spin ±(2k−1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T 2k T −2l , which generalize the famous TT̄ operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.
Energy Technology Data Exchange (ETDEWEB)
Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
Directory of Open Access Journals (Sweden)
Kyung Ho Sun
2014-10-01
Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor
International Nuclear Information System (INIS)
Ito, T.
2003-01-01
The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q 2 =0.038 (GeV/c) 2 ]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q 2 = 0.091 (GeV/c) 2 ] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor
Heavy quark form factors at two loops in perturbative QCD
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.
2017-11-01
We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.
Heavy quark form factors at two loops in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group
2017-11-15
We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.
The Electro-Excitation Form Factors for Low-Lying States of 7Li Nucleus
International Nuclear Information System (INIS)
Dakhl, Z.A.; Salih, L.; Al-Qazaz, B.S.
2010-01-01
The transverse electron scattering form factors have been studied for low -lying excited states of 7 L i nucleus. These states are specified by JπT= (0.478MeV),(4.63MeV) and(6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter b r ms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such as the 2p-shell, enhances the form factors for q-values and reproduces the data. The present results are compared with other theoretical models. PACS: 25.30.Bf Elastic electron scattering - 25.30.Dh Inelastic electron scattering to specific states - 21.60.Cs Shell model - 27.20. +n 5≤ A ≥19
The proton electromagnetic form factor F2 and quark orbital angular ...
Indian Academy of Sciences (India)
Protein; electromagnetic form factors; perturbative QCD; quark orbital angular momentum. ... Failures of the ASD approach to correctly predict ex- perimental ... The success of the formalism is the correct prediction of the Q2 scaling behavior of ...
Asymptotic dynamics of QCD, coherent states and the quark form factor
International Nuclear Information System (INIS)
Steiner, F.; Dahmen, H.D.
1980-05-01
The method of asymptotic dynamics for large times developed by Kulish and Fadde'ev for QED is applied to QCD. We study the solution and calculate the on shell quark form factor in leading logarithmic order. (orig.)
Strange magnetic form factor of the proton at $Q^2 = 0.23$ GeV$^2$
Energy Technology Data Exchange (ETDEWEB)
Wang, Ping; Leinweber, Derek; Thomas, Anthony; Young, Ross
2009-06-01
We determine the $u$ and $d$ quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next to leading order in the quenched, and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at $Q^2=0.23$ GeV$^2$, namely $G_M^s=-0.034 \\pm 0.021$ $\\mu_N$.
A Factor Analytic Study of the Coopersmith Self-Esteem Inventory Adult Short Form.
Haines, Janet; Wilson, George V.
1988-01-01
A factor analysis was conducted on the Coopersmith Self-Esteem Inventory-Adult Short Form using 237 college students and 43 female office workers in Australia. Factors were found corresponding with three of the four subscales: general self, social self-peers, and home-parents (family). No factor related to the school-academic (work) subscale. (SLD)
Inelastic magnetic electron scattering form factors of the 26 Mg nucleus
Indian Academy of Sciences (India)
Magnetic electron scattering (3) form factors with core polarization effects, ... to 3+ states of the 26Mg nucleus have been studied using shell model calculations. ... The wave functions of the radial single-particle matrix elements have been ...
Meson form factors and covariant three-dimensional formulation of the composite model
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.
1979-01-01
An apparatus is developed which allows within the relativistic quark model, to find explicit expressions for meson form factors in terms of the wave functions of two-quark system that obey the covariant two-particle quasipotential equation. The exact form of wave functions is obtained by passing to the relativistic configurational representation. As an example, the quark Coulomb interaction is considered
Contribution of meson exchange currents to magnetic form factor of a few complex nuclei
International Nuclear Information System (INIS)
Mathiot, J.F.
1981-12-01
We were interested in the contribution of meson exchange currents (MEC) to the magnetic form factor (MFF) of 49 Ti, 51 V, 87 Sr, 93 Nb at high momentum transfer (1.8 fm -1 to 3.2 fm -1 ). We found that the contribution of tensor correlations to the 1 S 0 - 3 S 1 transition of MEC (adding the 3 D 1 tensor part to the 3 S 1 relative state) multiply the previous calculations by a factor of 2.5 to 4. The sensitivity of MEC to the hadronic form factor is also estimated. It remains of discrepancy of a factor 2 for the MFF at 3 fm -1 for the first three nuclei [fr
Development and Examination of the Five-Factor Obsessive-Compulsive Inventory-Short Form.
Griffin, Sarah A; Suzuki, Takakuni; Lynam, Donald R; Crego, Cristina; Widiger, Thomas A; Miller, Joshua D; Samuel, Douglas B
2018-01-01
The Five-Factor Obsessive-Compulsive Inventory (FFOCI) is an assessment of obsessive-compulsive personality disorder (OCPD) that is based on the conceptual framework of the five-factor model (FFM) of personality. The FFOCI has 12 subscales that assess those five-factor model facets relevant to the description of OCPD. Research has suggested that the FFOCI scores relate robustly to existing measures of OCPD and relevant scales from general personality inventories. Nonetheless, the FFOCI's length-120 items-may limit its clinical utility. This study derived a 48-item FFOCI-Short Form (FFOCI-SF) from the original measure using item response theory methods. The FFOCI-SF scales successfully recreated the nomological network of the original measure and improved discriminant validity relative to the long form. These results support the use of the FFOCI-SF as a briefer measure of the lower-order traits associated with OCPD.
Constructing Nucleon Operators on a Lattice for Form Factors with High Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Syritsyn, Sergey [Stony Brook Univ., NY (United States); Gambhir, Arjun S. [College of William and Mary, Williamsburg, VA (United States); Musch, Bernhard U. [Univ. of Regensburg (Germany); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
We present preliminary results of computing nucleon form factor at high momentum transfer using the 'boosted' or 'momentum' smearing. We use gauge configurations generated with N f = 2 + 1dynamical Wilson-clover fermions and study the connected as well as disconnected contributions to the nucleon form factors. Our initial results indicate that boosted smearing helps to improve the signal for nucleon correlators at high momentum. However, we also find evidence for large excited state contributions, which will likely require variational analysis to isolate the boosted nucleon ground state.
International Nuclear Information System (INIS)
Theussl, L.; Noguera, S.; Amghar, A.; Desplanques, B.
2003-01-01
The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made. (author)
Macroscopic folded form factors for 12C + 12C inelastic scattering
International Nuclear Information System (INIS)
Rickertsen, L.D.; Satchler, G.R.; Stokstad, R.G.; Wieland, R.M.
1976-01-01
The angular distributions for the scattering of carbon-12 from carbon-12 at 117.1 MeV are shown as is also the result of coupled-channel calculations for the elastic and inelastic scattering using these folded form factors
The pion form factor within the hidden local symmetry model
International Nuclear Information System (INIS)
Benayoun, M.; David, P.; DelBuono, L.; Leruste, P.; O'Connell, H.B.
2003-01-01
We analyze a pion form factor formulation which fulfills the Analyticity requirement within the Hidden Local Symmetry (HLS) Model. This implies an s-dependent dressing of the ρ-γ VMD coupling and an account of several coupled channels. The corresponding function F π (s) provides nice fits of the pion form factor data from s=-0.25 to s=1 GeV 2 . It is shown that the coupling to KK has little effect, while ωπ 0 improves significantly the fit probability below the φ mass. No need for additional states like ρ(1450) shows up in this invariant-mass range. All parameters, except for the subtraction polynomial coefficients, are fixed from the rest of the HLS phenomenology. The fits show consistency with the expected behaviour of F π (s) at s=0 up to O(s 2 ) and with the phase shift data on δ 1 1 (s) from threshold to somewhat above the φ mass. The ω sector is also examined in relation with recent data from CMD-2. (orig.)
High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2
Energy Technology Data Exchange (ETDEWEB)
Xiaohui Zhan
2009-12-01
A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.
Feasibility studies of time-like proton electromagnetic form factors at overlinePANDA at FAIR
Singh, B.; Erni, W.; Krusche, B.; Steinacher, M.; Walford, N.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Erlen, T.; Fink, M.; Heinsius, F.; Held, T.; Holtmann, T.; Jasper, S.; Keshk, I.; Koch, H.; Kopf, B.; Kuhlmann, M.; Kümmel, M.; Leiber, S.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Ball, M.; Beck, R.; Hammann, C.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Urban, M.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Patel, B.; Czyzycki, W.; Domagala, M.; Filo, G.; Jaworowski, J.; Krawczyk, M.; Lisowski, F.; Lisowski, E.; Michałek, M.; Poznański, P.; Płażek, J.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Pysz, K.; Schäfer, W.; Szczurek, A.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Biernat, J.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Pyszniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wronska, A.; Augustin, I.; Böhm, R.; Lehmann, I.; Nicmorus Marinescu, D.; Schmitt, L.; Varentsov, V.; Al-Turany, M.; Belias, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Gromliuk, A.; Gruber, L.; Karabowicz, R.; Kliemt, R.; Krebs, M.; Kurilla, U.; Lehmann, D.; Löchner, S.; Lühning, J.; Lynen, U.; Orth, H.; Patsyuk, M.; Peters, K.; Saito, T.; Schepers, G.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Täschner, A.; Traxler, M.; Ugur, C.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V.; Alexeev, G.; Arefiev, V. A.; Astakhov, V.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Y.; Dodokhov, V. Kh.; Efremov, A.; Fechtchenko, A.; Fedunov, A. G.; Galoyan, A.; Grigoryan, S.; Koshurnikov, E. K.; Lobanov, Y. Yu.; Lobanov, V. I.; Makarov, A. F.; Malinina, L. V.; Malyshev, V.; Olshevskiy, A. G.; Perevalova, E.; Piskun, A. A.; Pocheptsov, T.; Pontecorvo, G.; Rodionov, V.; Rogov, Y.; Salmin, R.; Samartsev, A.; Sapozhnikov, M. G.; Shabratova, G.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M.; Teshev, R.; Tokmenin, V.; Uzhinsky, V.; Vodopianov, A.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savrie, M.; Akishina, V.; Kisel, I.; Kozlov, G.; Pugach, M.; Zyzak, M.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Biguenko, K.; Brinkmann, K.; Di Pietro, V.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Etzelmüller, E.; Galuska, M.; Gutz, E.; Hahn, C.; Hayrapetyan, A.; Kesselkaul, M.; Kühn, W.; Kuske, T.; Lange, J. S.; Liang, Y.; Metag, V.; Nanova, M.; Nazarenko, S.; Novotny, R.; Quagli, T.; Reiter, S.; Rieke, J.; Rosenbaum, C.; Schmidt, M.; Schnell, R.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wagner, M. N.; Wasem, T.; Wohlfahrt, B.; Zaunick, H.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P. J.; Lindemulder, M.; Loehner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; Tiemens, M.; van der Weele, J. C.; Veenstra, R.; Vejdani, S.; Dutta, K.; Kalita, K.; Kumar, A.; Roy, A.; Sohlbach, H.; Bai, M.; Bianchi, L.; Büscher, M.; Cao, L.; Cebulla, A.; Dosdall, R.; Gillitzer, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Lehrach, A.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Pütz, J.; Ritman, J.; Schadmand, S.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Zambanini, A.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Isaksson, L.; Achenbach, P.; Corell, O.; Denig, A.; Distler, M.; Hoek, M.; Karavdina, A.; Lauth, W.; Liu, Z.; Merkel, H.; Müller, U.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Thiel, M.; Ahmadi, H.; Ahmed, S.; Bleser, S.; Capozza, L.; Cardinali, M.; Dbeyssi, A.; Deiseroth, M.; Feldbauer, F.; Fritsch, M.; Fröhlich, B.; Jasinski, P.; Kang, D.; Khaneft, D.; Klasen, R.; Leithoff, H. H.; Lin, D.; Maas, F.; Maldaner, S.; Martínez, M.; Michel, M.; Mora Espí, M. C.; Morales Morales, C.; Motzko, C.; Nerling, F.; Noll, O.; Pflüger, S.; Pitka, A.; Rodríguez Piñeiro, D.; Sanchez-Lorente, A.; Steinen, M.; Valente, R.; Weber, T.; Zambrana, M.; Zimmermann, I.; Fedorov, A.; Korjik, M.; Missevitch, O.; Boukharov, A.; Malyshev, O.; Marishev, I.; Balanutsa, V.; Balanutsa, P.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Chandratre, V.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Parmar, A.; Roy, B.; Sonika, G.; Fritzsch, C.; Grieser, S.; Hergemöller, A.; Hetz, B.; Hüsken, N.; Khoukaz, A.; Wessels, J. P.; Khosonthongkee, K.; Kobdaj, C.; Limphirat, A.; Srisawad, P.; Yan, Y.; Barnyakov, M.; Barnyakov, A. Yu.; Beloborodov, K.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S.; Kravchenko, E. A.; Kuyanov, I. A.; Martin, K.; Onuchin, A. P.; Serednyakov, S.; Sokolov, A.; Tikhonov, Y.; Atomssa, E.; Kunne, R.; Marchand, D.; Ramstein, B.; van de Wiele, J.; Wang, Y.; Boca, G.; Costanza, S.; Genova, P.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Levin, A.; Melnik, Y.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Tomasi-Gustafsson, E.; Roy, U.; Yabsley, B.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Manaenkov, S.; Miklukho, O.; Veretennikov, D.; Zhdanov, A.; Makonyi, K.; Preston, M.; Tegner, P.; Wölbing, D.; Bäck, T.; Cederwall, B.; Rai, A. K.; Godre, S.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mignone, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Olave, J.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Hu, J.; Lavezzi, L.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Calen, H.; Ikegami Andersson, W.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Papenbrock, M.; Pettersson, J.; Schönning, K.; Wolke, M.; Galnander, B.; Diaz, J.; Pothodi Chackara, V.; Chlopik, A.; Kesik, G.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Steinschaden, D.; Suzuki, K.; Widmann, E.; Zmeskal, J.
2016-10-01
Simulation results for future measurements of electromagnetic proton form factors at overlinePANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel bar{p}p→ e+e- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e. bar{p}p→ π+π-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance.
Constraints on the Kl3 form factors from analyticity and unitarity
Indian Academy of Sciences (India)
2012-10-05
in. Abstract. The Kπ form factors are investigated at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using as input the ...
Gluing operation and form factors of local operators in N = 4 Super Yang-Mills theory
Bolshov, A. E.
2018-04-01
The gluing operation is an effective way to get form factors of both local and non-local operators starting from different representations of on-shell scattering amplitudes. In this paper it is shown how it works on the example of form factors of operators from stress-tensor operator supermultiplet in Grassmannian and spinor helicity representations.
International Nuclear Information System (INIS)
Skachkov, N.; Solovtsov, I.
1979-01-01
Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential
From Theory to Experiment: Hadron Electromagnetic Form Factors in Space-like and Time-like Regions
International Nuclear Information System (INIS)
Tomasi-Gustafsson, E.; Gakh, G.I.; Rekalo, A.P.
2007-01-01
Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This Paper is devoted to the memory of Prof. M.P. Rekalo
7 CFR 28.25 - Samples for Form A determination.
2010-01-01
... shall be at least six (6) inches wide and approximately twelve (12) inches long and shall weigh at least..., trimming, or discarding part of the sample is prohibited. No part of the cotton or pieces of bagging, leaf...
Energy Technology Data Exchange (ETDEWEB)
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.
2017-02-16
Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.
2017-04-01
Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20-25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical-chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg-Cu alloy layer with occasional intrusion of Mg-Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.
IMPACT TESTING OF MATERIALS USING AN EIGHT-INCH AIR GUN AND COMPUTER REDUCTION OF DATA
Energy Technology Data Exchange (ETDEWEB)
Thorne, L. F.
1973-10-01
A mechanical shock actuator has been converted into an air gun capable of firing 8-inch-·diameter (20.32 cm) projectiles to velocities exceeding 1000 fps (304.8 m/ s). This new capability has been used to study the effect of impact velocity upon the energy.absorbed by crushable materials. Shockpulse data is reduced by computer techniques and test results are displayed in either tabular or graphic format by use of the C DC 6600 Calcomp plotter.
Stackable Form-Factor Peripheral Component Interconnect Device and Assembly
Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)
2013-01-01
A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.
Massive three-loop form factor in the planar limit
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes [PRISMA Cluster of Excellence, Johannes Gutenberg University,Staudingerweg 9, 55099 Mainz (Germany); Smirnov, Alexander V. [Research Computing Center, Moscow State University,119991 Moscow (Russian Federation); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics of Moscow State University,119991 Moscow (Russian Federation); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),Wolfgang-Gaede Straße 1, 76128 Karlsruhe (Germany)
2017-01-17
We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F{sub 1} and F{sub 2} in the large-N{sub c} limit. The analytic results are expressed in terms of Goncharov polylogarithms. This allows for a straightforward numerical evaluation. We also derive series expansions, including power suppressed terms, for three kinematic regions corresponding to small and large invariant masses of the photon momentum, and small velocities of the heavy quarks.
Renormalization group analysis of B →π form factors with B -meson light-cone sum rules
Shen, Yue-Long; Wei, Yan-Bing; Lü, Cai-Dian
2018-03-01
Within the framework of the B -meson light-cone sum rules, we review the calculation of radiative corrections to the three B →π transition form factors at leading power in Λ /mb. To resum large logarithmic terms, we perform the complete renormalization group evolution of the correlation function. We employ the integral transformation which diagonalizes evolution equations of the jet function and the B -meson light-cone distribution amplitude to solve these evolution equations and obtain renormalization group improved sum rules for the B →π form factors. Results of the form factors are extrapolated to the whole physical q2 region and are compared with that of other approaches. The effect of B -meson three-particle light-cone distribution amplitudes, which will contribute to the form factors at next-to-leading power in Λ /mb at tree level, is not considered in this paper.
Leak in spiral weld in a 16 inches gas pipeline
Energy Technology Data Exchange (ETDEWEB)
Fazzini, Pablo G; Bona, Jeremias de [GIE S.A., Mar del Plata (Argentina); Otegui, Jose L [University of Mar del Plata (Argentina)
2009-07-01
This paper discusses a failure analysis after a leak in the spiral weld of a 16 inches natural gas pipeline, in service since 1974. The leak was the result of the coalescence of two different defects, on each surface of the pipe wall, located in the center of the inner cord of the helical DSAW weld. Fractographic and metallographic studies revealed that the leak was a combination of three conditions. During fabrication of the pipe, segregation in grain boundary grouped in mid weld. During service, these segregations underwent a process of selective galvanic corrosion. One of these volumetric defects coincided with a tubular pore in the outer weld. Pigging of the pipeline in 2005 for cleaning likely contributed to the increase of the leak flow, when eliminating corrosion product plugs. Although these defects are likely to repeat, fracture mechanics shows that a defect of this type is unlikely to cause a blowout. (author)
Radiation effects testing at the 88-Inch Cyclotron at LBNL
International Nuclear Information System (INIS)
McMahan, Margaret A.; Koga, Rokotura
2002-01-01
The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed
Electromagnetic Form Factors of Hadrons in Dual-Large Nc QCD
International Nuclear Information System (INIS)
Dominguez, C. A.
2011-01-01
In this talk, results are presented of determinations of electromagnetic form factors of hadrons (pion, proton, and Δ(1236)) in the framework of Dual-Large N c QCD (Dual-QCD ∞ ). This framework improves considerably tree-level VMD results by incorporating an infinite number of zero-width resonances, with masses and couplings fixed by the dual-resonance (Veneziano-type) model.
Nucleon axial form factors using Nf=2 twisted mass fermions with a physical value of the pion mass
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-09-01
We present results on the nucleon axial and induced pseudoscalar form factors using an ensemble of two degenerate twisted mass clover-improved fermions with mass yielding a pion mass of mπ=130 MeV . We evaluate the isovector and the isoscalar, as well as the strange and the charm axial form factors. The disconnected contributions are evaluated using recently developed methods that include deflation of the lower eigenstates, allowing us to extract the isoscalar, strange, and charm axial form factors. We find that the disconnected quark loop contributions are nonzero and particularly large for the induced pseudoscalar form factor.
Nucleon form factors with NF=2 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.
2009-10-01
We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)
International Nuclear Information System (INIS)
Massen, S. E.; Garistov, V. P.; Grypeos, M. E.
1996-01-01
The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q
Predictions of baryon form factors for the electromagnetic and weak interaction
International Nuclear Information System (INIS)
Kiehlmann, H.D.
1978-05-01
The electromagnetic and weak form factors of the baryon matrix elements (with B the nucleon or the Λ(1232)-resonance) are determined via sumrules by the experimentally known form factors of the nucleon matrix element for momentum transfers 0 2 2 . The operator Jμ denotes either the electromagnetic current or the weak hypercharge-conserving current of the I. class. The sumrules are derived from the superconvergence of properly chosen reaction amplitudes. The results allow an absolute determination of the cross sections of a series of peripheral reactions. An important and interesting consequence for the considered matrix elements of the weak current is that the properties of CVC of PCAC follow from the sumrules without additional assumptions. Finally the predictions of relativistic SU(6)-models are checked. One gets surprisingly a good confirmation of the essential results of these models, the reliability of which has almost been unknown on account of a series of speculative assumptions. (orig.) [de
The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering
Energy Technology Data Exchange (ETDEWEB)
Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)
2001-05-01
The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (^{15}NH_{3}) target at a four momentum transfer squared of Q^{2} = 0.5 (GeV/c)^{2}. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in ^{15}NH_{3}. The asymmetry, A_{p}, has been used to determine the proton elastic form factor G_{Ep}. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.
International Nuclear Information System (INIS)
MORGAN, R.G.
1999-01-01
The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve
Energy Technology Data Exchange (ETDEWEB)
MORGAN, R.G.
1999-04-06
The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve.
Thermodynamic model for the elastic form factor in diffraction scattering of protons
International Nuclear Information System (INIS)
Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.
1988-01-01
An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials
Energy Technology Data Exchange (ETDEWEB)
Schaub, John [New Mexico State Univ., Las Cruces, NM (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2010-07-01
We studied the strange contributions to the elastic vector and axial form factors of the nucleon using all available elastic electroweak scattering data. Specifically, we combine elastic nu-p and nubar-p scattering cross-section data from the Brookhaven E734 experiment with elastic ep and quasi-elastic ed and e-^{4}He scattering parity-violating asymmetry data from the SAMPLE, HAPPEx, PVA4 and G0 experiments. We not only determined these form factors at individual values of momentum-transfer (Q^{2}), as other groups have done recently, but also fit the Q^{2}-dependence of these form factors using simple functional forms. I present an overview of the G^{0} backward-angle experiment as well as the results of these fits using existing data, along with some expectations of how we can improve our knowledge of these form factors if the MicroBooNE collaboration completes their experiment.
International Nuclear Information System (INIS)
Kaidalov, A.B.; Kondratyuk, L.A.; Tchekin, D.V.
2000-01-01
The electromagnetic form factors for pions and nucleons are considered within the model of quark-gluon strings, where the momentum-transfer dependence of hadronic form factors is determined by the intercepts of the corresponding Regge trajectories and by the Sudakov form factor. Analytic expressions found for form factors in the timelike region admit an analytic continuation to the spacelike region. The resulting form factors for pions and nucleons comply well with experimental data both for positive and for negative values of the squared momentum transfer q 2 . It is shown that the distinctions between the absolute values of the pion and nucleon form factors F π (q 2 ), G m (q 2 ), and F 2 (q 2 ) at positive values of q 2 and those at negative values of this variable are associated with the analytic properties of the double-logarithmic term in the exponent of the Sudakov form factor. The spin structure of the amplitudes for quark transitions into hadrons that is proposed in the present study makes it possible to describe fairly well available experimental data on the Pauli form factor F 2 and on the ratio G e /G m
Forming Factors And Builder Indicators Of Brand Personality Models In Traditional Retail Traders
Directory of Open Access Journals (Sweden)
Yunelly Asra
2017-12-01
Full Text Available This study aims to find the factors forming and indicator builder model of brand personality of traditional retail traders through measuring the influence of retail mix and culture. The formation of brand personality uses Aaker brand personality dimension to 250 consumers in Bengkalis Regency. The type of research is causal research design. The research variables are brand personality Retail Mix and Brand Personality. Data collection is done by probability sampling with purposive method. Data analysis was done by perception analysis frequency distribution and multiple regression using SPSS version 21.0. The results of this study are The factor of retail mix partially has a positive and significant impact on the brand personality of traditional retail traders in Bengkalis Regency. Factor cultural partially does not affect the brand personality of traditional retail traders in Bengkalis Regency. Simultaneously retail mix and cultural have positive and significant influence on traditional brand traders brand personality in Bengkalis Regency. Initial forming factor of brand personality model of traditional retail traders in Bengkalis Regency is Retail Mix Factor. Indicator of the model of traditional traders brand personality builder in Bengkalis are sincerity excitement competence sophistication competence ruggedness.
Snowden, Austyn; Watson, Roger; Stenhouse, Rosie; Hale, Claire
2015-12-01
To examine the construct validity of the Trait Emotional Intelligence Questionnaire Short form. Emotional intelligence involves the identification and regulation of our own emotions and the emotions of others. It is therefore a potentially useful construct in the investigation of recruitment and retention in nursing and many questionnaires have been constructed to measure it. Secondary analysis of existing dataset of responses to Trait Emotional Intelligence Questionnaire Short form using concurrent application of Rasch analysis and confirmatory factor analysis. First year undergraduate nursing and computing students completed Trait Emotional Intelligence Questionnaire-Short Form in September 2013. Responses were analysed by synthesising results of Rasch analysis and confirmatory factor analysis. Participants (N = 938) completed Trait Emotional Intelligence Questionnaire Short form. Rasch analysis showed the majority of the Trait Emotional Intelligence Questionnaire-Short Form items made a unique contribution to the latent trait of emotional intelligence. Five items did not fit the model and differential item functioning (gender) accounted for this misfit. Confirmatory factor analysis revealed a four-factor structure consisting of: self-confidence, empathy, uncertainty and social connection. All five misfitting items from the Rasch analysis belonged to the 'social connection' factor. The concurrent use of Rasch and factor analysis allowed for novel interpretation of Trait Emotional Intelligence Questionnaire Short form. Much of the response variation in Trait Emotional Intelligence Questionnaire Short form can be accounted for by the social connection factor. Implications for practice are discussed. © 2015 John Wiley & Sons Ltd.
Tensor form factor for the D → π(K) transitions with Twisted Mass fermions.
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a preliminary lattice calculation of the D → π and D → K tensor form factors fT (q2) as a function of the squared 4-momentum transfer q2. ETMC recently computed the vector and scalar form factors f+(q2) and f0(q2) describing D → π(K)lv semileptonic decays analyzing the vector current and the scalar density. The study of the weak tensor current, which is directly related to the tensor form factor, completes the set of hadronic matrix element regulating the transition between these two pseudoscalar mesons within and beyond the Standard Model where a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV and with the valence heavy quark in the mass range from ≃ 0.7 mc to ≃ 1.2mc. The matrix element of the tensor current are determined for a plethora of kinematical conditions in which parent and child mesons are either moving or at rest. As for the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data. We will present preliminary results on the removal of such hypercubic lattice effects.
Development of a Short Form of the Five-Factor Narcissism Inventory: the FFNI-SF.
Sherman, Emily D; Miller, Joshua D; Few, Lauren R; Campbell, W Keith; Widiger, Thomas A; Crego, Cristina; Lynam, Donald R
2015-09-01
The Five-Factor Narcissism Inventory (FFNI; Glover, Miller, Lynam, Crego, & Widiger, 2012) is a 148-item self-report inventory of 15 traits designed to assess the basic elements of narcissism from the perspective of a 5-factor model. The FFNI assesses both vulnerable (i.e., cynicism/distrust, need for admiration, reactive anger, and shame) and grandiose (i.e., acclaim seeking, arrogance, authoritativeness, entitlement, exhibitionism, exploitativeness, grandiose fantasies, indifference, lack of empathy, manipulativeness, and thrill seeking) variants of narcissism. The present study reports the development of a short-form version of the FFNI in 4 diverse samples (i.e., 2 undergraduate samples, a sample recruited from MTurk, and a clinical community sample) using item response theory. The validity of the resultant 60-item short form was compared against the validity of the full scale in the 4 samples at both the subscale level and the level of the grandiose and vulnerable composites. Results indicated that the 15 subscales remain relatively reliable, possess a factor structure identical to the structure of the long-form scales, and manifest correlational profiles highly similar to those of the long-form scales in relation to a variety of criterion measures, including basic personality dimensions, other measures of grandiose and vulnerable narcissism, and indicators of externalizing and internalizing psychopathology. Grandiose and vulnerable composites also behave almost identically across the short- and long-form versions. It is concluded that the FFNI-Short Form (FFNI-SF) offers a well-articulated assessment of the basic traits comprising grandiose and vulnerable narcissism, particularly when assessment time is limited. (c) 2015 APA, all rights reserved.
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
International Nuclear Information System (INIS)
Spayde, D. T.; Averett, T.; Barkhuff, D.; Beck, D. H.; Beise, E. J.; Benson, C.; Breuer, H.; Carr, R.; Covrig, S.; DelCorso, J.
2000-01-01
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections. (c) 2000 The American Physical Society
Strange quark content in the nucleon and the strange quark vector current form factors
International Nuclear Information System (INIS)
Dubnicka, S.; Dubnickova, A.Z.
1996-12-01
A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs
Q resolution calculation of small angle neutron scattering spectrometer and analysis of form factor
International Nuclear Information System (INIS)
Chen Liang; Peng Mei; Wang Yan; Sun Liangwei; Chen Bo
2011-01-01
The calculational methods of Small Angle Neutron Scattering (SANS) spectrometer Q resolution function and its correlative Q standard difference were introduced. The effects of Q standard difference were analysed with the geometry lay out of spectrometer and the spread of neutron wavelength. The one dimension Q resolution Gaussian function were analysed. The form factor curve of ideal solid sphere and two different instrument arrangement parameter was convoluted respectively and the different smearing curve of form factor was obtained. The combination of using the Q resolution function to more accurately analysis SANS data. (authors)
Extraction of the bare form factors for the semi-leptonic B{sub s} decays
Energy Technology Data Exchange (ETDEWEB)
Bahr, F.; Banerjee, D.; Koren, M.; Simma, H.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-01-12
The computation of the form factors for the B{sub s}→lν decay is presented. The b quark is treated by means of Heavy Quark Effective Theory, currently in the static approximation. In these proceedings we discuss the extraction of the bare matrix elements from lattice data through a combined fit to two- and three-point correlation functions, as well as by considering suitable ratios. The different methods agree concerning the extracted form factors and approximately 2% accuracy is reached. The non-perturbative renormalization and matching to QCD is described in accompanying proceedings.
QCD constraints for the electromagnetic form factor of the pion
International Nuclear Information System (INIS)
Machet, B.
1980-07-01
Using the modulus representation, we derive constraints for the behaviour of the electromagnetic form factor of the pion in the time like region [1 GeV 2 , + infinity[, from information given by perturbative QCD in the space like region [-μ 2 , - infinity[. A phenomenological μ dependent upper bound for the exponent of the first non leading logarithmic correction is deduced. Restrictions and problems of the method are discussed
Strong CP violation and the neutron electric dipole form factor
International Nuclear Information System (INIS)
Kuckei, J.; Dib, C.; Faessler, A.; Gutsche, T.; Kovalenko, S. G.; Lyubovitskij, V. E.; Pumsa-ard, K.
2007-01-01
We calculate the neutron electric dipole form factor induced by the CP-violating θ term of QCD within a perturbative chiral quark model which includes pion and kaon clouds. On this basis, we derive the neutron electric dipole moment and the electron-neutron Schiff moment. From the existing experimental upper limits on the neutron electric dipole moment, we extract constraints on the θ parameter and compare our results with other approaches
Nucleon electromagnetic form factors in twisted mass lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.
2011-01-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
Finite-lattice form factors in free-fermion models
International Nuclear Information System (INIS)
Iorgov, N; Lisovyy, O
2011-01-01
We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field
Semi-Leptonic weak decay form factors of LAMBDAb and SIGMAb(OMEGAb) to proton
International Nuclear Information System (INIS)
Haghigat, M.
1996-01-01
The matrix elements of the semi-leptonic weak decays of Λ b and of Σ b Ω b to proton are calculated, in the Bethe-Salpeter formalism. We propose a protonic wave function in terms of its dynamically indistinguishable constituent quarks. We show that there are two universal form factors for Λ b → P and four for Σ b (OMEGA b ) → P decays. They depend, as expected, on the Lorentz scalar Υ 1 .Υ 2 , whereΥ 1 and Υ 2 , are the velocities of the baryons. On the first order perturbation approximation, however, the two and the four form factors degenerate to one expression for each of the two decays. (author). 14 refs
Analytic coupling and Sudakov effects in exclusive processes: pion and γ*γ→π0 form factors
International Nuclear Information System (INIS)
Stefanis, N.G.
2000-01-01
We develop and discuss in technical detail an infrared-finite factorization and optimized renormalization scheme for calculating exclusive processes, which enables the inclusion of transverse degrees of freedom without entailing suppression of calculated observables, like form factors. This is achieved by employing an analytic, i.e., infrared stable, running strong-coupling α s (Q 2 ) which removes the Landau singularity at Q 2 =Λ QCD 2 by a minimum power-behaved correction. The ensuing contributions to the cusp anomalous dimension - related to the Sudakov form factor - and to the quark anomalous dimension - which controls evolution - lead to an enhancement at high Q 2 of the hard part of exclusive amplitudes, calculated in perturbative QCD, while simultaneously improving its scaling behavior. The phenomenological implications of this framework are analyzed by applying it to the pion's electromagnetic form factor, including the NLO contribution to the hard-scattering amplitude, and also to the pion-photon transition at LO. For the pion wave function, an improved ansatz of the Brodsky-Huang-Lepage type is employed, which includes an effective (constituent-like) quark mass, m q =0.33 GeV. Predictions for both form factors are presented and compared to the experimental data, applying Brodsky-Lepage-Mackenzie commensurate scale setting. We find that the perturbative hard part prevails at momentum transfers above about 20 GeV 2 , while at lower Q 2 values the pion form factor is dominated by Feynman-type contributions. The theoretical prediction for the γ * γ→π 0 form factor indicates that the true pion distribution amplitude may be somewhat broader than the asymptotic one. (orig.)
Measurement of the energy dependence of the form factor $f_{+}$ in $K^{0}_{e3}$ decay
Apostolakis, Alcibiades J; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Danielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D
2000-01-01
Neutral-kaon decays to \\pielnu\\ % recorded by the CPLEAR experimentwere analysed to determine the $q^2$ dependence of the \\Kzet\\ electroweak form factor $f_+$. Based on $365\\,612$ events,this form factor was found to have a linear dependence on $q^2$with a slope $\\lambda_+ = 0.0245 \\pm 0.0012_{\\text{stat}} \\pm 0.0022_{\\text{syst}}$.
LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld
International Nuclear Information System (INIS)
Howell, S.K.
1978-01-01
A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report
The proton electromagnetic form factor F2 and quark orbital angular ...
Indian Academy of Sciences (India)
We analyse the proton electromagnetic form factor ratio (2)= 2(2)/1(2) as a function of momentum transfer 2 within perturbative QCD. We ﬁnd that the prediction for (2) at large momentum transfer depends on the exclusive quark wave functions, which are unknown. For a wide range of wave functions we ...
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Nucleon form factors at high q2 within constituent quark models
International Nuclear Information System (INIS)
Desplanques, B.; Silvestre-Brac, B.; Cano, F.; Noguera, S.; Gonzalez, P.; .
2000-01-01
The nucleon form factors are calculated using a non-relativistic description in terms of constituent quarks. The emphasis is put on present numerical methods used to solve the three-body problem in order to reliably predict the expected asymptotic behavior of form factors. Nucleon wave functions obtained in the hyperspherical formalism or employing Faddeev equations have been considered. While a q -8 behavior is expected at high q for a quark-quark force behaving like 1/r at short distances, it is found that the hyper central approximation in the hyperspherical formalism (K = 0) leads to a q -7 behavior. An infinite set of waves would be required to get the correct behavior. Solutions of the Faddeev equations lead to the q -8 behavior. The coefficient of the corresponding term, however, depends on the number of partial waves retained in the Faddeev amplitude. The convergence to the asymptotic behavior has also been studied. Approximate expressions characterizing this one have been derived. From the comparison with the most complete Faddeev calculation, a validity range is inferred for restricted calculations. Refs. 46 (author)
A test of the Veneziano - like πNN form factor
International Nuclear Information System (INIS)
Cass, A.; Mckellar, H.J.
1978-01-01
Dominguez' Veneziano-like πNN form factor has been investigated by attempting to use it to fit dsigma/dt data for np → pn and (antiproton)p → (antineutron)n at 8 GeV/c and 23.5 GeV/c in the interval 0 2 . With n=5/2 as proposed by Dominguez it is not possible to fit the data. A fit can be obtaine for other values of n
ω→π0γ* and ϕ→π0γ* transition form factors in dispersion theory
Schneider, Sebastian P.; Kubis, Bastian; Niecknig, Franz
2012-09-01
We calculate the ω→π0γ* and ϕ→π0γ* electromagnetic transition form factors based on dispersion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and the pion vector form factor. We compare our findings to recent measurements of the ω→π0μ+μ- decay spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-Zweig-Iizuka forbidden ϕ→π0ℓ+ℓ- decays in order to understand the strong deviations from vector-meson dominance found in these transition form factors.
On the D → K-bar*e+νe form factors
International Nuclear Information System (INIS)
Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.
1994-01-01
The infinite mass effective theory, when a heavy quark mass goes to infinity, and chiral perturbation theory at the quark level, based on the extended Nambu-Jona-Lasinio model, are applied for the calculation of the D → K-bar * e + ν e decay form factors. The theoretical results agree with experimental data. (author). 16 refs
Alarcón, J. M.; Weiss, C.
2018-05-01
We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.
A framework for the calculation of the ΔNγ* transition form factors on the lattice
International Nuclear Information System (INIS)
Agadjanov, Andria; Bernard, Véronique; Meißner, Ulf-G.; Rusetsky, Akaki
2014-01-01
Using the non-relativistic effective field theory framework in a finite volume, we discuss the extraction of the ΔNγ * transition form factors from lattice data. A counterpart of the Lüscher approach for the matrix elements of unstable states is formulated. In particular, we thoroughly discuss various kinematic settings, which are used in the calculation of the above matrix element on the lattice. The emerging Lüscher–Lellouch factor and the analytic continuation of the matrix elements into the complex plane are also considered in detail. A full group-theoretical analysis of the problem is made, including the partial-wave mixing and projecting out the invariant form factors from data
Effects of core polarization and meson exchange currents on electromagnetic form factors
Energy Technology Data Exchange (ETDEWEB)
Arima, Akito [Tokyo Univ. (Japan). Dept. of Physics; Ikegami, Hidetsugu; Muraoka, Mitsuo [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics
1980-01-01
Magnetic form factors observed by electron scattering provide good evidence for core polarization and meson exchange currents. Their effects are discussed by taking /sup 17/O, /sup 51/V, /sup 207/Pb /sup 208/Pb, /sup 209/Bi and /sup 12/C.
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.
1987-01-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data. (author)
Urban form and psychosocial factors : Do they interact for leisure-time walking?
Beenackers, Mariëlle A.; Kamphuis, Carlijn B M; Prins, Richard G.; Mackenbach, Johan P.; Burdorf, Alex; Van Lenthe, Frank J.
2014-01-01
INTRODUCTION: This cross-sectional study uses an adaptation of a social-ecological model on the hierarchy of walking needs to explore direct associations and interactions of urban-form characteristics and individual psychosocial factors for leisure-time walking. METHODS: Questionnaire data (n = 736)
Hadron spectroscopy and form factors at quark level
International Nuclear Information System (INIS)
Chakrabarty, S.; Gupta, K.K.; Singh, N.N.; Mitra, A.N.
1988-01-01
The theoretical status of hadrons as quark composites is examined from the point of view of a simultaneous understanding of their on-shell (mass spectra) and off-shell (form factors, transition amplitudes) properties. Greater stress is laid on light quark systems which are more sensitive to the confinement regime, and more prone to relativistic effects than on heavy quarkonia (on which many reviews exist). Two broad theoretical approaches obeying Lorentz and gauge invariance are identified: (i) QCD sum rules as a means of extrapolation from high to low energies; and (ii) dynamical equations for providing a microcausal link in the opposite direction (from low to high energies). The latter represents the major focus of attention in this article, with the Bethe-Salpeter Equation (BSE) providing a formal plank for a comparative assessment of several models. The Null-plane ansatz which facilitates the reduction of the 4-D BSE to a covariant 3-D form also provides the language for its comparison with other covariant 3-D equations. In particular, attention is drawn to the interesting possibility of reconstructing the 4-D BS wave function from its 3-D form (in a two-tier fashion) as a practical tool for generating higher Fock-space components (qq effects) in the BS wave function, and (more interestingly) for a clean separation between soft and hard QCD effects. To illustrate one such practical tool for an integrated view of different hadronic sectors within a single framework, the results of a two-tier BS model are presented in respect of qq-bar, qqq, gg, ggg, gqq-bar states and compared with experiment as well as with the results of other contemporary models. The N.R Resonating Group Method, which becomes necessary for bigger (six-quark) systems is briefly discussed from the point of view of its compatibility with a relativistic form of quark dynamics motivated from the BSC. (Author)
High spatial resolution gamma imaging detector based on a 5 inch diameter R3292 Hamamatsu PSPMT
International Nuclear Information System (INIS)
Wojcik, R.; Majewski, S.; Kross, B.; Weisenberger, A.G.; Steinbach, D.
1998-01-01
High resolution imaging gamma-ray detectors were developed using Hamamatsu's 5 inch diameter R3292 position sensitive PMT (PSPMT) and a variety of crystal scintillator arrays. Special readout techniques were used to maximize the active imaging area while reducing the number of readout channels. Spatial resolutions approaching 1 mm were obtained in a broad energy range from 20 to 511 keV. Results are also presented of coupling the scintillator arrays to the PMT via imaging light guides consisting of acrylic optical fibers
Nucleon electromagnetic form factors in twisted mass lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin
2011-02-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)
International Nuclear Information System (INIS)
Coon, S.A.; Scadron, M.D.
1981-01-01
We suggest that the observed 6% Goldberger-Treiman discrepancy is due in part to a 3% variation in the pion-nucleon form factor and in part due to a 3% variation in the pion decay form factor from q 2 =m/sub π/ 2 to q 2 =0
Directory of Open Access Journals (Sweden)
Giordano V.
2016-01-01
Full Text Available The KM3NeT neutrino telescope will be the largest underwater neutrino telescope and will be located in the abyss of the Mediterranean Sea. In neutrino telescopes the key element of the detector is the optical module and for KM3NeT it consists of 31 PMTs stored inside a transparent pressure-resistant glass sphere of 17-inch that serves as mechanical protection while ensuring good light transmission. Since the PMTs installed into an underwater neutrino telescope can change their orientation because of movements of the detector structure due to sea currents, the influence of Earth's magnetic field has been investigated. Magnetic shielding by means of a mu-metal cage is used to reduce magnetic effects and to make the response of the PMT sufficiently orientation independent. In order to quantify the effect on magnetic field, we compared measurements on variation of gain, transit time spread and detection efficiency for a 3-inch PMT in shielded and unshielded condition at 3 PMT inclinations. Data shows that variations are sufficiently low especially for timing properties.
Energy Technology Data Exchange (ETDEWEB)
Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)
2014-03-15
The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.
The nucleon electric dipole form factor from dimension-six time-reversal violation
de Vries, J.; Mereghetti, E.; Timmermans, R. G. E.; van Kolck, U.
2011-01-01
We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation of time-reversal violation in quark-gluon interactions of effective dimension 6: the quark electric and chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
International Nuclear Information System (INIS)
Kitanine, N; Maillet, J M; Niccoli, G; Terras, V
2016-01-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework. (paper)
Influence of beam divergence on form-factor in X-ray diffraction radiation
International Nuclear Information System (INIS)
Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.
2015-01-01
Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam
The Electro-Excitation Form Factors for Ground and 5.65 MeV Excited States of 6Li Nucleus
International Nuclear Information System (INIS)
Dakhil, Z.A.; Salih, L.; Al-Qazaz, B.S.
2010-01-01
The transverse electron scattering form factors are calculated for the ground state and for the (5.65 MeV) excited state [JπT =1 + 2 0 ] of 6 Li. These form factors are analyzed in the framework of the harmonic oscillator shell model. The two-body interaction of Cohen and Kurath is used to generate the p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors. A higher configuration effect outside the 1p-shell model space enhances the form factors for q-values and reasonably reproduces the data. The results are compared with other theoretical models
Dispersive analysis of the scalar form factor of the nucleon
Hoferichter, M.; Ditsche, C.; Kubis, B.; Meißner, U.-G.
2012-06-01
Based on the recently proposed Roy-Steiner equations for pion-nucleon ( πN) scattering [1], we derive a system of coupled integral equations for the π π to overline N N and overline K K to overline N N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including overline K K intermediate states. In particular, we determine the correction {Δ_{σ }} = σ ( {2M_{π }^2} ) - {σ_{{π N}}} , which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-18
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
International Nuclear Information System (INIS)
Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei
2015-01-01
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Small form factor optical fiber connector evaluation for harsh environments
Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.
2011-09-01
For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.
Lattice study of D and D{sub s} meson form factors with twisted boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Li, Ning; Wu, Ya-Jie [Xi' an Technological University, School of Science, Xi' an (China)
2017-03-15
We present results on the D and D{sub s} meson electromagnetic form factors using N{sub f} = 2 twisted mass Lattice Quantum Chromodynamics (LQCD) gauge configurations. In this simulation, to access spatial components of momenta that are different from the integer multiples of 2π/L, we apply twisted boundary conditions to compute corresponding correlation functions. Electromagnetic form factors with more small four-momentum transfer are determined, and further we fit the electromagnetic charge radius for D and D{sub s} mesons, respectively. (orig.)
Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors
Sufian, Raza Sabbir
We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.
DEFF Research Database (Denmark)
Bu, Ian Y. Y.; Eichhorn, Volkmar; Carlson, Kenneth
2011-01-01
Carbon nanotube (CNT) arrays are typically defined by electron beam lithography (EBL), and hence limited to small areas due to the low throughput. To obtain wafer‐scale fabrication we propose large area thermal nanoimprint lithography (NIL). A 2‐inch stamp master is defined using EBL for subsequent......, efficient production of wafer‐scale/larger arrays of CNTs has been achieved. The CNTs have been deposited by wafer‐scale plasma enhanced chemical vapour deposition (PECVD) of C2H2/NH3. Substrates containing such nanotubes have been used to automate nanorobotic manipulation sequences of individual CNTs...
Cluster form factor calculation in the ab initio no-core shell model
International Nuclear Information System (INIS)
Navratil, Petr
2004-01-01
We derive expressions for cluster overlap integrals or channel cluster form factors for ab initio no-core shell model (NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting point for the description of low-energy nuclear reactions. We consider the composite system and the target nucleus to be described in the Slater determinant (SD) harmonic oscillator (HO) basis while the projectile eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious center of mass components present in the SD bases are removed exactly. The calculated cluster overlap integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations for 5 He vertical bar 4 He+n>, 5 He vertical bar 3 H+d>, 6 Li vertical bar 4 He+d>, 6 Be vertical bar 3 He+ 3 He>, 7 Li vertical bar 4 He+ 3 H>, 7 Li vertical bar 6 Li+n>, 8 Be vertical bar 6 Li+d>, 8 Be vertical bar 7 Li+p>, 9 Li vertical bar 8 Li+n>, and 13 C vertical bar 12 C+n>, with all the nuclei described by multi-(ℎ/2π)Ω NCSM wave functions
Freezing of the QCD coupling constant and the pion form factor
International Nuclear Information System (INIS)
Aguilar, A.C.; Mihara, A.; Natale, A.A.
2003-01-01
The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)
International Nuclear Information System (INIS)
Ueda, Syuzo; Isozaki, Toshikuni; Miyazaki, Noriyuki; Kurihara, Ryoichi; Kato, Rokuro; Saito, Kazuo; Miyazono, Shohachiro
1981-05-01
The purpose of pipe rupture studies in JAERI is to perform the model tests on pipe whip, restraint behavior, jet impingement and jet thrust force, and to establish the computational method for analyzing these phenomena. This report describes the experimental results of pipe whip on the pipe specimens of 4 inch in diameter under BWR condition on which the pressure is 6.77 MPa and the temperature is 285 0 C. The pipe specimens were 114.3 mm (4 inch) in diameter and 8.6 mm in thickness and 4500 mm in length. Four pipe whip restraints used in the tests were the U-bar type of 8 mm in diameter and fabricated from type 304 stainless steel. The experimental parameter was the clearance (30, 50 and 100 mm). The dynamic strain behavior of the pipe specimen and the restraints was investigated by strain gages and their residual deformation was obtained by measuring marking points provided on their surface. The Pressure-time history in the pipe specimens was also obtained by pressure gages. The maximum pipe strain is caused near the restraints and increases with increase of the clearance. The experimental results of pipe whip tests indicate the effectiveness of pipe whip restraints. The ratio of absorbed strain energy of the pipe specimen to that of the restraints is nearly constant for different clearances at the overhang length of 400 mm. (author)
Czech Academy of Sciences Publication Activity Database
Rozložník, Miroslav; Okulicka-Dłużewska, F.; Smoktunowicz, A.
2015-01-01
Roč. 36, č. 2 (2015), s. 727-751 ISSN 0895-4798 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:67985807 Keywords : symmetric indefinite matrices * Cholesky-like factorization * orthogonalization techniques * indefinite bilinear forms * Gram-Schmidt process * rounding error analysis Subject RIV: BA - General Mathematics Impact factor: 1.883, year: 2015
Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration
2017-08-01
We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.
The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing
Energy Technology Data Exchange (ETDEWEB)
Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.; Johnson, M. B.; Hodgkinson, A.; Loew, T.; Benitez, J. Y.; Todd, D. S.; Xie, D. Z.; Perry, T.; Phair, L.; Bernsteiny, L. A.; Bevins, J.; Brown, J. A.; Goldblum, B. L.; Harasty, M.; Harrig, K. P.; Laplace, T. A.; Matthews, E. F.; Bushmaker, A.; Walker, D.; Oklejas, V.; Hopkins, A. R.; Bleuel, D. L.; Chen, J.; Cronin, S. B.
2017-10-01
In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiation testing of carbon nanotube field effect transistor will be discussed.
On the form factors of relevant operators and their cluster property
International Nuclear Information System (INIS)
Acerbi, C.; Valleriani, A.; Mussardo, G.
1996-09-01
We compute the Form Factors of the relevant scaling operators in a class of integrable models without internal symmetries by exploiting their cluster properties. Their identification is established by computing the corresponding anomalous dimensions by means of Delfino-Simonetti-Cardy sum-rule and further confirmed by comparing some universal ratios of the nearby non-integrable quantum field theories with their independent numerical determination. (author). 21 refs, 5 figs, 16 tabs
Asymptotics of pion electromagnetics form factor in scale invariant quark model
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1976-01-01
A consistent relativistic approach is proposed to the investigation of asymptotic behaviour of form factor of a system, composed of two spinor particles, interacting with the vector of (pseudo) scalar neutral field. It is shown that the assumption of finite and small asymptotical value of quark-gluon interaction invariant charge at small distances (g 9 2 9 2 ln(-Q 2 ) 2 values (Q 2 is squared momentum)
Analysis of ATLAS 6-inch cold leg break simulation with MARS-KS code
Energy Technology Data Exchange (ETDEWEB)
Kim, Se Yun; Jun, Hwang Yong; Ha, Sang Jun [Korea Electric Power Company, Daejeon (Korea, Republic of)
2011-05-15
A Domestic Standard Problem (DSP) exercise using ATLAS facility has been organized by KAERI. As the second DSP exercise, the 6-inch cold leg bottom break was determined. This experiment is the counterpart test to the DVI line break to verify the safety performance of the DVI method over the traditional CLI method. Compared with the large break LOCA, the phases of the small break LOCA prior to core recovery occur over a long period. The blowdown, natural circulation, loop seal clearance, boil-off, and core recovery phase should be investigated minutely with relevant models of safety analysis codes in order to predict these thermal hydraulic phenomena correctly. To investigate the ECC bypass phenomena, a finer study on the thermalhydraulic behavior in upper annulus downcomer was carried out
Spacelike and timelike form factors for ω→πγ* and K*→Kγ* in the light-front quark model
International Nuclear Information System (INIS)
Choi, Ho-Meoyng
2008-01-01
We investigate space- and timelike form factors for ω→πγ* and K*→Kγ* decays using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent spacelike form factors are obtained in the q + =0 frame and then analytically continued to the timelike region. Our prediction for the timelike form factor F ωπ (q 2 ) is in good agreement with the experimental data. We also find that the spacelike form factor F K* ± K ± (Q 2 ) for charged kaons encounters a zero because of the negative interference between the two currents to the quark and the antiquark.
Steiner, Thomas; Müller, Beat; Maier, Thomas; Wehrlin, Jon Peter
2016-08-01
The purpose of this study was to analyse the effect of bike type - the 26-inch-wheel bike (26" bike) and the 29-inch-wheel bike (29" bike) - on performance in elite mountain bikers. Ten Swiss National Team athletes (seven males, three females) completed six trials with individual start on a simulated cross-country course with 35 min of active recovery between trials (three trials on a 26" bike and three trials on a 29" bike, alternate order, randomised start-bike). The course consisted of two separate sections expected to favour either the 29" bike (section A) or the 26" bike (section B). For each trial performance, power output, cadence and heart rate were recorded and athletes' experiences were documented. Mean overall performance (time: 304 ± 27 s vs. 311 ± 29 s; P < 0.01) and performance in sections A (P < 0.001) and B (P < 0.05) were better when using the 29" bike. No significant differences were observed for power output, cadence or heart rate. Athletes rated the 29" bike as better for performance in general, passing obstacles and traction. The 29" bike supports superior performance for elite mountain bikers, even on sections supposed to favour the 26" bike.
Kaon semileptonic decay form factors from Nf = 2 non-perturbatively O(a)-improved Wilson fermions
International Nuclear Information System (INIS)
Broemmel, D.; Nakamura, Y.; Pleiter, D.
2007-10-01
We present first results from the QCDSF collaboration for the kaon semileptonic decay form factors at zero momentum transfer, using two flavours of non-perturbatively O(a)-improved Wilson quarks. A lattice determination of these form factors is of particular interest to improve the accuracy on the CKM matrix element vertical stroke V us vertical stroke. Calculations are performed on lattices with lattice spacing of about 0.08 fm with different values of light and strange quark masses, which allows us to extrapolate to chiral limit. Employing double ratio techniques, we are able to get small statistical errors. (orig.)
Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.
2016-08-01
SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI
High-throughput spectrometer designs in a compact form-factor: principles and applications
Norton, S. M.
2013-05-01
Many compact, portable Raman spectrometers have entered the market in the past few years with applications in narcotics and hazardous material identification, as well as verification applications in pharmaceuticals and security screening. Often, the required compact form-factor has forced designers to sacrifice throughput and sensitivity for portability and low-cost. We will show that a volume phase holographic (VPH)-based spectrometer design can achieve superior throughput and thus sensitivity over conventional Czerny-Turner reflective designs. We will look in depth at the factors influencing throughput and sensitivity and illustrate specific VPH-based spectrometer examples that highlight these design principles.
Five-meson VDM fits to the nucleon form factors
International Nuclear Information System (INIS)
Mehrotra, S.; Roos, M.
1975-01-01
Nucleon electromagnetic form factor data in the spacelike and the timelike regions are fitted with a VDM sum of (up to five) isovector and isoscalar pole terms. Finite width effects are included in the rho and the rhosup(,) terms. The effects of including the rhosup(,) and the psi(3105) are studied. Good fits are found only when the rhosup(,) is allowed to have a too low mass (1.2-1.4 GeV) and when in addition some of the couplings or other derived quantities disagree with other estimates. It is concluded that VDM is unable to describe the data unless one introduces a number of yet unknown mesons, such as ωsup(,), phisup(,), rhosup(,)(1.2), etc. (author)
Meson Form Factors and Deep Exclusive Meson Production Experiments
Energy Technology Data Exchange (ETDEWEB)
Horn, Tanja [The Catholic Univ. of America, Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-01
Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.
Current correlators and form factors in the resonance region
Energy Technology Data Exchange (ETDEWEB)
Rosell, I. [Departamento de Ciencias Fisicas, Matematicas y de la Computacion, Universidad CEU Cardenal Herrera, c/Sant Bartomeu 55, E-46115 Alfara del Patriarca, Valencia (Spain); IFIC, Universitat de Valencia - CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)
2009-01-15
Within Resonance Chiral Theory and in the context of QCD current correlators at next-to-leading order in 1/N{sub C}, we have analyzed the two-body form factors which include resonances as a final state. The short-distance constraints have been studied. One of the main motivations is the estimation of the chiral low-energy constants at subleading order, that is, keeping full control of the renormalization scale dependence. As an application we show the resonance estimation of some coupling, L{sub 10}{sup r}({mu}{sub 0})=(-4.4{+-}0.9).10{sup -3} and C{sub 87}{sup r}({mu}{sub 0})=(3.1{+-}1.1).10{sup -5}.
International Nuclear Information System (INIS)
Dubnicka, S.; Martinovic, L.
1988-01-01
Using precise experimental information on the imaginary part of the pion form factor from e + e - → π + π - up to the inelastic threshold and QCD constraints for it in the range of momenta (m π 0 +m ω ) 2 < t < infinity, was investigated by means of a dispersion integral the reliability of individual electroproduction CEA and Cornell model-dependent pion form factor data points
Design evaluation of the 20-cm (8-inch) secondary burner system
International Nuclear Information System (INIS)
Rode, J.S.
1977-08-01
This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated
Bauhahn, P.; Contolatis, A.; Sokolov, V.; Chao, C.
1986-01-01
An all ion-implanted Schottky barrier mixer diode which has a cutoff frequency greater than 1000 GHz has been developed. This new device is planar and FET-compatible and employs a projection lithography 3-inch wafer process. A Ka-band monolithic balanced mixer based on this device has been designed, fabricated and tested. A conversion loss of 8 dB has been measured with a LO drive of 10 dBm at 30 GHz.
Higgs amplitudes from supersymmetric form factors Part II: $\\mathcal{N}<4$ super Yang-Mills arXiv
Brandhuber, Andreas; Penante, Brenda; Travaglini, Gabriele
The study of form factors has many phenomenologically interesting applications, one of which is Higgs plus gluon amplitudes in QCD. Through effective field theory techniques these are related to form factors of various operators of increasing classical dimension. In this paper we extend our analysis of the first finite top-mass correction, arising from the operator ${\\rm Tr} (F^3)$, from $\\mathcal{N}=4$ super Yang-Mills to theories with $\\mathcal{N}<4$, for the case of three gluons and up to two loops. We confirm our earlier result that the maximally transcendental part of the associated Catani remainder is universal and equal to that of the form factor of a protected trilinear operator in the maximally supersymmetric theory. The terms with lower transcendentality deviate from the $\\mathcal{N}=4$ answer by a surprisingly small set of terms involving for example $\\zeta_2$, $\\zeta_3$ and simple powers of logarithms, for which we provide explicit expressions.
Chiral-model of weak-interaction form factors and magnetic moments of octet baryons
International Nuclear Information System (INIS)
Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.
1989-01-01
For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons
Power correction to the asymptotics of the pion electromagnetic form factor
International Nuclear Information System (INIS)
Geshkenbein, B.V.; Terentyev, M.V.
1982-01-01
The contribution of the power correction approximately (μ 2 /Q 2 ) 2 enhanced by the factor approximately μ 2 /anti m 2 , to the pion form factor (FF) is calculated (here μ is the pion mass, anti m=1/2(msub(u)+msub(α)) is the mean value of the u- and d-quark masses, Q 2 =-(p-p') 2 > 0, where p, p' are meson momenta at initial and final state. It is shown that the only source of large corrections is due to the contribution of the local pseudoscalar current. The main (approximately 1/Q 2 ) asymptotics of FF associated with the axial current contribution, is derived. The contribution (approximately 1/Q 4 ) of the pseudoscalar current is calculated
Dependence of electromagnetic form factors of hadrons on light-cone frames
International Nuclear Information System (INIS)
Weber, H.J.; Xu Xiaoming; Chinese Acad. of Sci., Shanghai
1996-01-01
A constituent quark model is developed for an arbitrary light-cone direction so that the light-front time is x LF + =ω.x with a constant lightlike four-vector ω. Form factors are obtained from free one-body electromagnetic current matrix elements. They are found to be ω-independent for spin-0 mesons, nucleons and the Λ-hyperon, while there is an ω-dependence for spin-1 systems like the deuteron. (orig.)
Form factors in the B{sub s}→lν decays using HQET and the lattice
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Debasish [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: ALPHA Collaboration
2017-01-17
We report on a recent computation of the form factors in semi-leptonic decays of the B{sub s} using Heavy Quark Effective Theory (HQET) formalism applied on the lattice. The connection of the form factors with the 2-point and 3-point correlators on the lattice is explained, and the subsequent non-perturbative renormalization of HQET and it's matching to N{sub f}=2 QCD is outlined. The results of the (static) leading-order calculation in the continuum limit is presented.
On the ππ continuum in the nucleon form factors and the proton radius puzzle
Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.-W.; Meißner, U.-G.
2016-11-01
We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ→bar{N} N partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius.
On the ππ continuum in the nucleon form factors and the proton radius puzzle
International Nuclear Information System (INIS)
Hoferichter, M.; Kubis, B.; Ruiz de Elvira, J.; Hammer, H.W.; Meissner, U.G.
2016-01-01
We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)
On the ππ continuum in the nucleon form factors and the proton radius puzzle
Energy Technology Data Exchange (ETDEWEB)
Hoferichter, M. [University of Washington, Institute for Nuclear Theory, Seattle, WA (United States); Kubis, B.; Ruiz de Elvira, J. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Hammer, H.W. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik, Institute for Advanced Simulation, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany)
2016-11-15
We present an improved determination of the ππ continuum contribution to the isovector spectral functions of the nucleon electromagnetic form factors. Our analysis includes the most up-to-date results for the ππ → anti NN partial waves extracted from Roy-Steiner equations, consistent input for the pion vector form factor, and a thorough discussion of isospin-violating effects and uncertainty estimates. As an application, we consider the ππ contribution to the isovector electric and magnetic radii by means of sum rules, which, in combination with the accurately known neutron electric radius, are found to slightly prefer a small proton charge radius. (orig.)
Advanced free-form micro tooling
DEFF Research Database (Denmark)
Tosello, Guido; Gavillet, J.
2011-01-01
-beam lithography and nano imprinting lithography [Che05][Che09] have high manufacturing cost and a low throughput. The aim was obtain large tool area with nano structures patterning without using energy intensive nano machining (e.g. focus ion beam, X-ray lithography, etc) but, instead, by exploiting the advantage......The present deliverable contains the report of the work and results achieved within the framework of WP 2.2 in Tasks 2.2.4 “Advanced free-form micro tooling” in experimental research done regarding practical applications of methods of applying nano structures to tooling solutions. As part of Task 2.......2.4, tests based on three different chemical-based-batch techniques to establish surface nano (i.e. sub-μm) structures on large tools area were performed. The three approached regarded: o Scheme 1 The use of Ø500nm nanobeads deposition for direct patterning of a Ø4inch. silicon wafer and subsequent nickel...
π-exchange NN interaction model with overlapping nucleon form factors
International Nuclear Information System (INIS)
Bagnoud, X.
1986-01-01
The nucleon-nucleon (NN) interaction model includes a π-exchange and takes into account the first excited state Δ(1232) of the nucleon. It is supplemented by a short-range repulsion which has been derived from the nucleon form factor (rms radius b/sub f/) combined with the three-quark wave function (rms radius b/sub q/). The optimization of the model on empirical scattering phase shifts below 300 MeV gives, for a minimum chi 2 , the root-mean-square radii b/sub f/ = b/sub q/ = 0.51 fm and a coupling constant G/sub π/ 2 /4π = 13
International Nuclear Information System (INIS)
Krapchev, V.
1976-01-01
In the framework of the two-dimensional scalar quantum theory of the bag model of Chodos et al a definition of the physical field and a general scheme for constructing a physical state are given. Some of the difficulties associated with such an approach are exposed. Expressions for the physical current and the elastic form factor are given. The calculation of the latter is restricted at first to the approximation in which the mapping from a bag of changing shape to a fixed domain is realized only by a term which is a diagonal, bilinear function of the creation and annihilation operators. This is done for the case of a one-mode and an infinite-mode bag theory. By computing the form factor in an exact one-mode bag model it is shown that the logarithmic falloff of the asymptotic term is the same as the one in the approximation. On the basis of this a form for the asymptotic behavior of the form factor is suggested which may be correct for the general two-dimensional scalar bag theory
Wilkins, Natalie; Myers, Lindsey; Kuehl, Tomei; Bauman, Alice; Hertz, Marci
Violence takes many forms, including intimate partner violence, sexual violence, child abuse and neglect, bullying, suicidal behavior, and elder abuse and neglect. These forms of violence are interconnected and often share the same root causes. They can also co-occur together in families and communities and can happen at the same time or at different stages of life. Often, due to a variety of factors, separate, "siloed" approaches are used to address each form of violence. However, understanding and implementing approaches that prevent and address the overlapping root causes of violence (risk factors) and promote factors that increase the resilience of people and communities (protective factors) can help practitioners more effectively and efficiently use limited resources to prevent multiple forms of violence and save lives. This article presents approaches used by 2 state health departments, the Maryland Department of Health and Mental Hygiene and the Colorado Department of Public Health and Environment, to integrate a shared risk and protective factor approach into their violence prevention work and identifies key lessons learned that may serve to inform crosscutting violence prevention efforts in other states.
Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D
2002-01-01
Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
The nucleon as a test case to calculate vector-isovector form factors at low energies
Leupold, Stefan
2018-01-01
Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.
The nucleon as a test case to calculate vector-isovector form factors at low energies
Energy Technology Data Exchange (ETDEWEB)
Leupold, Stefan [Uppsala Universitet, Institutionen foer Fysik och Astronomi, Uppsala (Sweden)
2018-01-15
Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnes (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sugawara, Yoshihiro; Ishikawa, Yukari, E-mail: yukari@jfcc.or.jp [Japan Fine Ceramics Center, Atsuta, Nagoya, 456-8587 (Japan); Watanabe, Arata [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Miyoshi, Makoto; Egawa, Takashi [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technoloy, Nagoya, 466-8555 (Japan)
2016-04-15
The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3]) and anothor dislocation (b =1/3[-2113]) to form one dislocation (b =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.
Analytic results for planar three-loop integrals for massive form factors
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz,55099 Mainz (Germany); Kavli Institute for Theoretical Physics, UC Santa Barbara,Santa Barbara (United States); Smirnov, Alexander V. [Research Computing Center, Moscow State University,119992 Moscow (Russian Federation); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics of Moscow State University,119992 Moscow (Russian Federation); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT),76128 Karlsruhe (Germany)
2016-12-28
We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general q{sup 2} are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold q{sup 2}=4m{sup 2} are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.
Precise measurement of the neutron magnetic form factor from quasielastic 3 rvec He(rvec e,e')
International Nuclear Information System (INIS)
Gao, H.
1997-01-01
Polarized 3 He targets have proven to be a useful tool for studying the electric and magnetic form factors of the neutron, and the spin structure of the neutron. The neutron magnetic form factor at low Q 2 was determined previously at MIT-Bates from the quasielastic 3 rvec He(rvec e, e ' ) process. New experiment was planned at TJNAF to systematically measure the inclusive 3 He quasielastic transverse asymmetry, A T ' , at Q 2 = 0.1 - 0.5 (GeV/c) 2 with high statistical and systematic accuracy. A 2% statistical uncertainty is aimed at all the pro- posed values of Q 2 , and 3% systematic uncertainty for A T ' can be achieved for this experiment. The precise data will constrain theoretical calculations of 3 He quasielastic asymmetry. Furthermore, the neutron magnetic form factor at Q 2 = 0.1 - 0.5 (GeV/c) 2 will be extracted from the measured asymmetries with an overall uncertainty of 2%. Precise measurements of G n M at low Q 2 will resolve the discrepancy among the existing data in the same Q 2 region
International Nuclear Information System (INIS)
Norhazleena Azaman; Khairul Anuar Mohd Salleh; Amry Amin Abas; Arshad Yassin; Sukhri Ahmad
2016-01-01
Oil and gas industry requires Non Destructive Testing (NDT) to ensure each components, in-service and critical, are fit-for-purpose. Pipes that are used to transfer oil or gas are amongst the critical component that needs to be well maintained and inspected. Typical pipe discontinuities that may lead to unintended incidents are erosion, corrosion, dent, welding defects, etc. Wall thickness assessment, with Radiography Testing (RT) is normally used to inspect such discontinuities and can be performed with two approaches; (a) center line beam tangential technique (b) offset from the centre pipe tangential technique. The latter is a method of choice for this work because of the pipe dimension and limited radiation safe distance at site. Two successful validation approaches (simulation and experimental) were performed to determine the probability of successfulness before the actual RT work with tangential technique is carried out. The pipe was a 10 inch diameter in-service wrapped carbon steel. A 9 Ci Ir-192 and white Imaging Plate (IP) were used as a gamma radiation source and to record the radiographic image. Result of this work suggest that RT with tangential technique for 10 inch wrapped in-service carbon steel pipe can be successfully performed. (author)
Towards a dispersive determination of the η and η' transition form factors
Kubis, Bastian
2018-01-01
We discuss status and prospects of a dispersive analysis of the η and η' transition form factors. Particular focus is put on the various pieces of experimental information that serve as input to such a calculation. These can help improve on the precision of an evaluation of the η and η' pole contributions to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.
International Nuclear Information System (INIS)
Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.
2000-01-01
A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab
Microscopic models for hadronic form factors and vertex functions
International Nuclear Information System (INIS)
Santhanam, I.; Bhatnagar, S.; Mitra, A.N.
1990-01-01
We review the status of nucleon (N) and few-nucleon form factors (f.f.'s) from the view-point of a gradual unfolding of successively inner degrees of freedom (d.o.f.) with increase in q 2 . To this end we focus attention on the problem of a microscopic formulation of hadronic vertex functions (v.f.) from the point of view of their key role in understanding the physics of a large variety of few-hadron reactions on the one hand, and their practical usefulness in articulating the internal dynamics of hadron and few-hadron systems on the other hand. The criterion of an integrated view from low-energy spectroscopy to high-q 2 amplitudes is employed to emphasize the desirability of formulations in terms of relativistic dynamical equations based on Lorentz and gauge invariance in preference to phenomenological models, which often require additional assumptions beyond their original premises to extend their applicability domains. In this respect, the practical possibilities of the Bethe-Salpeter equation (BSE) in articulating the necessary dynamical ingredients are emphasized on a two-tier basis, the basis constants (3) being pre-determined from the mass spectral data (1 st stage) in preparation for the construction of the hadron-quark vertex functions (2 nd stage). An explicit construction is outlined for meson-quark and baryon-quark vertex functions as well as of meson-nucleon vertex functions in a stepwise fashion. The role of the latter as basic parameter-free ingredients is discussed for possible use in the more serious treatment in the current literature of quark-meson level (α) and meson-isobar (β) d.o.f. in 2-N and 3-N form factor studies. Since most of these studies are characterized by the use of RGM techniques at the six-quark level, a comparative discussion is also given of several contemporary RGM based models. Finally, the concrete prospects for employing such hardon-quark vertex functions for evaluating pp-bar annihilation amplitudes are briefly indicated
Measurements of the Proton Elastic-Form-Factor Ratio μpGEp/GMp at Low Momentum Transfer
International Nuclear Information System (INIS)
Ron, G.; Piasetzky, E.; Pomerantz, I.; Shneor, R.; Glister, J.; Lee, B.; Choi, Seonho; Kang, H.; Oh, Y.; Song, J.; Yan, X.; Allada, K.; Dutta, C.; Armstrong, W.; Meziani, Z.-E.; Yao, H.; Arrington, J.; Solvignon, P.; Beck, A.; May-Tal Beck, S.
2007-01-01
High-precision measurements of the proton elastic form-factor ratio, μ p G E p /G M p , have been made at four-momentum transfer, Q 2 , values between 0.2 and 0.5 GeV 2 . The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q 2 range the deviation from unity is primarily due to G E p being smaller than expected
Pion-nucleon form factor in the Chew-Low theory
International Nuclear Information System (INIS)
Ernst, D.J.; Johnson, M.B.
1978-01-01
We find a solution to the static Chew-Low theory of pion-nucleon scattering, avoiding the ''one-meson approximation.'' Our basic equation is crossing symmetric and may be solved for phase shifts delta (p) by standard numerical techniques, upon specifying a form factor v (p) and a set of inelasticities. With v (p) = exp(-p 2 /30) we reproduce experimental delta (p) for p/sub L/ < or = 1.2 GeV/c in the (3,3) state; in the (1,3) states and (3,1) states delta (p) compare well on the average but in the (1,1) state delta (p) have opposite signs. We show the importance of crossing symmetry and the coupling to inelastic channels, and we discuss the possibility of determining v (p) directly from elastic scattering by an inverse scattering formula
Form factors and related quantities in clothed-particle representation
Directory of Open Access Journals (Sweden)
Shebeko Alexander
2017-01-01
Full Text Available We show new applications of the notion of clothed particles in quantum field theory. Its realization by means of the clothing procedure put forward by Greenberg and Schweber allows one to express the total Hamiltonian H and other generators of the Poincaré group for a given system of interacting fields through the creation (annihilation operators for the so-called clothed particles with physical (observed properties. Here such a clothed particle representation is used to calculate the matrix elements (shortly, form factors of the corresponding Nöther current operators sandwiched between the H eigenstates. Our calculations are performed with help of an iterative technique suggested by us earlier when constructing the NN → πNN transition operators. As an illustration, we outline some application of our approach in the spinor quantum electrodynamics.
Electric form factor of the proton through recoil polarization
International Nuclear Information System (INIS)
Punjabi, V.
2000-01-01
The electromagnetic form factors of the nucleon, G E and G M , describe the charge and current distribution inside the nucleon and thus are quite intimately related to its structure. Jefferson Lab experiment 93-027 measured P l and Pt, the longitudinal and transverse recoil proton polarization, respectively, for the 1 H(e-vector,e'p-vector) reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV 2 , using the Hall A facility with two high resolution spectrometers and a Focal Plane Polarimeter. The ratio G Ep /G Mp is directly proportional to the ratio P t /P l . These data have unprecedented precision, and show for the first time that the Q 2 dependence of G Ep and G Mp is very different. (author)
Wilkins, Natalie; Myers, Lindsey; Kuehl, Tomei; Bauman, Alice; Hertz, Marci
2018-01-01
Violence takes many forms, including intimate partner violence, sexual violence, child abuse and neglect, bullying, suicidal behavior, and elder abuse and neglect. These forms of violence are interconnected and often share the same root causes. They can also co-occur together in families and communities and can happen at the same time or at different stages of life. Often, due to a variety of factors, separate, “siloed” approaches are used to address each form of violence. However, understanding and implementing approaches that prevent and address the overlapping root causes of violence (risk factors) and promote factors that increase the resilience of people and communities (protective factors) can help practitioners more effectively and efficiently use limited resources to prevent multiple forms of violence and save lives. This article presents approaches used by 2 state health departments, the Maryland Department of Health and Mental Hygiene and the Colorado Department of Public Health and Environment, to integrate a shared risk and protective factor approach into their violence prevention work and identifies key lessons learned that may serve to inform crosscutting violence prevention efforts in other states. PMID:29189502
General analysis of weak decay form factors in heavy to heavy and heavy to light baryon transitions
International Nuclear Information System (INIS)
Hussain, F.; Liu Dongsheng; Kraemer, M.; Koerner, J.G.; Tawfiq, S.
1992-01-01
We present a complete analysis of the heavy to heavy and heavy to light baryon semi-leptonic decays in the heavy quark effective theory within the framework of a Bethe-Salpeter (BS) approach and demonstrate the equivalence of this approach to other work in the field. We present in a compact form the baryon BS amplitudes which incorporate the symmetries manifest in the heavy quark limit and which also show clearly the light quark dynamics. A similar form of the BS amplitude is presented for light baryons. Using the BS amplitudes, the heavy to heavy and heavy to light semi-leptonic baryon decays are considered. As expected there is a dramatic reduction in the number of form factors. An advantage of our BS approach is demonstrated where the form factors are written as loop integrals which in principle can be calculated. (orig.)
Structural studies of formic acid using partial form-factor analysis
International Nuclear Information System (INIS)
Swan, G.; Dore, J.C.; Bellissent-Funel, M.C.
1993-01-01
Neutron diffraction measurements have been made of liquid formic acid using H/D isotopic substitution. Data are recorded for samples of DCOOD, HCOOD and a (H/D)COOD mixture (α D =0.36). A first-order difference method is used to determine the intra-molecular contribution through the introduction of a partial form-factor analysis technique incorporating a hydrogen-bond term. The method improves the sensitivity of the parameters defining the molecular geometry and avoids some of the ambiguities arising from terms involving spatial overlap of inter- and intra-molecular features. The possible application to other systems is briefly reviewed. (authors). 8 figs., 2 tabs., 8 refs
Baryon octet electromagnetic form factors in a confining NJL model
Directory of Open Access Journals (Sweden)
Manuel E. Carrillo-Serrano
2016-08-01
Full Text Available Electromagnetic form factors of the baryon octet are studied using a Nambu–Jona-Lasinio model which utilizes the proper-time regularization scheme to simulate aspects of colour confinement. In addition, the model also incorporates corrections to the dressed quarks from vector meson correlations in the t-channel and the pion cloud. Comparison with recent chiral extrapolations of lattice QCD results shows a remarkable level of consistency. For the charge radii we find the surprising result that rEp
CEBAF at higher energies and the kaon electromagnetic form factor
Energy Technology Data Exchange (ETDEWEB)
Baker, O.K.
1994-04-01
The electromagnetic production of strangeness, the physics of exciting systems having strangeness degrees of freedom (production of hadrons with one or more strange constituent quarks) using electromagnetic probes (real or virtual photons), is one of the frontier areas of research which will be investigated at the Continuous Electron Beam Accelerator Facility (CEBAF) when it becomes operational. CEBAF is expected to have an important impact upon this field of research using its specialized set of detection instruments and high quality electron beam. This paper focusses upon one aspect of the associated production of strangeness - the determination of the kaon electromagnetic form factor at high squared momentum transfers.
International Nuclear Information System (INIS)
Mankiewicz, L.; Sawicki, M.
1989-01-01
Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics
Nucleon form factors and structure functions from Nf=2 Clover fermions
International Nuclear Information System (INIS)
Collins, S.; Goeckeler, M.; Haegler, P.
2010-12-01
We give an update on our ongoing efforts to compute the nucleon's form factors and moments of structure functions using N f =2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the pseudo-scalar meson mass is in the range of 170-270 MeV. We compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Krutov, A.F. [Samara University, Samara (Russian Federation); Troitsky, S.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow (Russian Federation); Troitsky, V.E. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2017-07-15
Starting from a successful model of the π-meson electromagnetic form factor, we calculate a similar form factor, F{sub K}(Q{sup 2}), of the charged K meson for a wide range of the momentum transfer squared, Q{sup 2}. The only remaining free parameter is to be determined from the measurements of the K-meson charge radius, r{sub K}. We fit this single parameter to the published data of the NA-7 experiment which measured F{sub K}(Q{sup 2}) at Q{sup 2} → 0 and determine our preferred range of r{sub K}, which happens to be close to recent lattice results. Still, the accuracy in the determination of r{sub K} is poor. However, future measurements of the K-meson electromagnetic form factor at Q{sup 2}
Proximity formulae for folding potentials. [Saxon-Woods form factors, first order corrections
Energy Technology Data Exchange (ETDEWEB)
Schechter, H; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica
1979-03-05
The proximity formulae of Brink and Stancu are applied to folding potentials. A numerical study is made for the case of single folding potentials with Saxon-Woods form factors. It is found that a proximity formula is accurate to 1-2% at separations of the order of the radius of the Coulomb barrier and that first order corrections due to first curvature are important. The approximations involved are discussed.
Cui, Lixia; Lin, Wenwen; Oei, Tian P. S.
2011-01-01
This study investigated cross-cultural differences in the factor structure and psychometric properties of the Young Schema Questionnaire (short form; YSQ-SF). The participants were 712 Chinese undergraduate students. The total sample was randomly divided into two sub-samples. Exploratory Factor Analysis (EFA) was conducted on questionnaire results…
Heavy-to-light form factors: Sum rules on the light cone and beyond
International Nuclear Information System (INIS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2007-01-01
We report the first systematic analysis of the off-light-cone effects in sum rules for heavy-to-light form factors. These effects are investigated in a model based on scalar constituents, which allows a technically rather simple analysis but has the essential features of the analogous QCD calculation. The correlator relevant for the extraction of the heavy-to-light form factor is calculated in two different ways: first, by adopting the full Bethe-Salpeter amplitude of the light meson and, second, by performing the expansion of this amplitude near the light cone x 2 =0. We demonstrate that the contributions to the correlator from the light-cone term x 2 =0 and the off-light-cone terms x 2 ≠0 have the same order in the 1/m Q expansion. The light-cone correlator, corresponding to x 2 =0, is shown to systematically overestimate the full correlator, the difference being ∼Λ QCD /δ, with δ the continuum subtraction parameter of order 1 GeV. Numerically, this difference is found to be 10 divide 20%
Elastic and inelastic form factors of the Ne20 in the Hartree-Fock approximation
International Nuclear Information System (INIS)
Oliveira, S.A.C. de.
1977-01-01
Properties of Ne 20 fundamental band are studied such as particle densities and elastic and inelastic form factors. A two body interaction is used and its matrix elements involve only the independent particle states of the 1s-0d shell [pt
Determination of the axial-vector form factor in the radiative decay of the pion
International Nuclear Information System (INIS)
Ortendahl, D.A.
1976-12-01
The branching ratio for the decay π → eνγ was measured in a counter experiment in which the e + was detected in a magnetic spectrometer and the γ-ray in a lead glass hodoscope. The number of observed events is 226.2 +- 22.4. The branching ratio into the phase space with electron momentum above 56 MeV/c and the electron/photon opening angle greater than 132 0 is found to be (5.6 +- 0.7) x 10 -8 . From the measured branching ratio one determines γ, the ratio of the axial vector to vector form factor. The vector form factor is computed using CVC and the π 0 lifetime. For T/sub π/ 0 = 0.828 x 10 -16 sec, γ = 0.44 +- 0.12 or γ = --2.36 +- 0.12 is obtained. A comparison between the measured values of γ and various theories is made
Measurement of B -> D Form Factors in the Semileptonic Decay B -> D* l nu at BaBar
Energy Technology Data Exchange (ETDEWEB)
Gill, Mandeep Singh; /SLAC
2006-01-27
We present here the results of a measurement of the three semileptonic form factors involved in the decay B{sup 0} {yields} D*{ell}{nu}, where {ell} is one of the two light charged leptons (i.e. an electron or muon--though the final results in this work are determined only for {ell} = electron). This measurement uses the Babar 2000-2002 data set, which is altogether approximately 85 x 10{sup 6} B{bar B}-pairs in 78 fb{sup -1} of integrated luminosity. The D*{sup +} was reconstructed in the channel D*{sup +} {yields} D{sup 0}{pi}{sup +}, and the D{sup 0} in the channel D{sup 0} {yields} K{sup -}{pi}{sup +}. This analysis was based ultimately on {approx} 16,386 reconstructed events with an estimated background contamination of {approx} 15%. The method of the measurement was to perform a unbinned maximum likelihood fit in the four kinematic variables that describe the decay for the three form factor parameters R{sub 1}, R{sub 2}, and {rho}{sup 2}. The results obtained for the form factor ratios are R{sub 1} = 1.328 {+-} 0.055 {+-} 0.025 {+-} 0.025 and R{sub 2} = 0.920 {+-} 0.044 {+-} 0.020 {+-} 0.013 for the ratios and {rho}{sup 2} = 0.769 {+-} 0.039 {+-} 0.019 {+-} 0.032 for the form factor slope. The errors given are statistical, Monte Carlo statistical and systematic respectively.
Recent developments in high charge state heavy ion beams at the LBL 88-inch Cyclotron
International Nuclear Information System (INIS)
Gough, R.A.; Clark, D.J.; Glasgow, L.R.
1978-01-01
Recent advances in design and operation of the internal PIG sources at the LBL 88-Inch Cyclotron have led to the development of high charge state (0.4 16 O 8+ . Total external intensities of these beams range from 10 12 particles/s for 6 Li 3+ to 0.1 particles/s for 16 O 8+ . Techniques have been developed for routine tune-out of the low intensity beams. These include use of model beams and reliance on the large systematic data base of cyclotron parameters which has been developed over many years of operation. Techniques for delivery of these weak beams to the experimental target areas are presented. Source design and operation, including special problems associated with Li, Be, and B beams are discussed
Parallel Integer Factorization Using Quadratic Forms
National Research Council Canada - National Science Library
McMath, Stephen S
2005-01-01
Factorization is important for both practical and theoretical reasons. In secure digital communication, security of the commonly used RSA public key cryptosystem depends on the difficulty of factoring large integers...
Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories
International Nuclear Information System (INIS)
Babujian, H.; Karowski, M.
2003-01-01
Previous results on form factors for the scaling Ising and the sinh-Gordon models are extended to general Z N -Ising and affine A N-1 -Toda quantum field theories. In particular result for order, disorder parameters and para-Fermi fields σ Q (x), μ Q-tilde (x) and ψ Q (x) are presented for the Z N -model. For the A N-1 -Toda model form factors for exponentials of the Toda fields are proposed. The quantum field equation of motion is proved and the mass and wave function renormalization are calculated exactly
Continuum limit of the leading order HQET form factor in B{sub s}→Klν decays
Energy Technology Data Exchange (ETDEWEB)
Bahr, Felix; Banerjee, Debasish; Koren, Mateusz; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Technische Univ. Dresden (Germany). Medizinische Fakultaet ' ' Carl Gustav Carus' ' ; Joseph, Anosh [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP); Collaboration: ALPHA Collaboration
2016-01-15
We discuss the computation of form factors for semi-leptonic decays of B-, B{sub s}- mesons in lattice QCD. Considering in particular the example of the static B{sub s} form factors we demonstrate that after non-perturbative renormalization the continuum limit can be taken with confidence. The resulting precision is of interest for extractions of V{sub ub}. The size of the corrections of order 1/m{sub b} is just estimated at present but it is expected that their inclusion does not pose significant difficulties.
International Nuclear Information System (INIS)
Egli, S.; Engfer, R.; Grab, C.; Hermes, E.A.; Pruys, H.S.; Schaaf, A. van der; Vermeulen, D.
1986-01-01
The radiative pion decay π + ->e + νe + e - has been observed for the first time. Information on the form factors was obtained from the kinematical distribution of 79 events. The vector form factor has the same sign as the pion decay constant fsub(π). The ratios of axial-vector form factors to the vector form factor are γ=Fsub(A)/Fsub(V)=0.7+-0.5 and xi=R/Fsub(V)=2.3+-0.6. The value for γ is in agreement with the small positive value (0.53+-0.06) and excludes the large negative value (-2.49+-0.06) of γ obtained in π + ->e + νγ experiments. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Housholder, W.R. [Nuclear Containers, Incorporated, Elizabethton, TN (United States)
1991-12-31
This paper addresses the refurbishment procedures for existing shipping containers for 30-inch diameter UF{sub 6} cylinders in accordance with DOT Specification 21PF-1 and the criteria used to determine rejection when such packages are unsuitable for refurbishment.
Directory of Open Access Journals (Sweden)
E E Shults
2017-12-01
Full Text Available The article considers reasons for radical mass forms of social protest in the context of the ‘Malthusian trap’ and structural-demographic theory of Jack Goldstone, which have become popular in the last two decades. The author critically evaluates these two conceptions and comes to the conclusion that the principles they underline are just concomitant factors, i.e. additional risk factors for political systems and regimes, rather than causes of radical mass forms of social protest. The author suggests a method of analysis that consists of studying the circumstances, i.e. the wide historical context, in which mass forms of social protest usually emerge, and provides a large number of illustrative examples. The scientific approach to the identification of social-historical determinants of radical forms of social protest implies that if something is a reason/cause of an event, then this reason/cause must be present whenever there is such an event both alone or within a complex of concomitant factors. The ‘Malthusian trap’ and demographic factors cannot be traced in all manifestations of radical mass forms of social protest in modern and contemporary history. Moreover, the ‘Malthusian trap’ and demographic pressure on the economy and social system do not always lead to mass forms of social protest. The wave of radical forms of social protest in the last decade, i.e. the so-called ‘color revolutions’, ‘Arab spring’, protest actions in France, England and the USA, once again confirms the relevance of the author’s approach and the importance of critical study of the traditional conceptions.
The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order
Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U
2011-01-01
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
Pion form factor in QCD at intermediate momentum transfers
Braun, V. M.; Khodjamirian, A.; Maul, M.
2000-04-01
We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation: [∫du/uφπ(u)]/[∫du/uφasπ(u)]=1.1+/-0.1 at the scale of 1 GeV. Special attention is paid to the precise definition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft (end-point) contribution and power-suppressed hard contributions of higher twist, so that the total nonperturbative correction to the usual PQCD result turns out to be of the order of 30% for Q2~1 GeV2.
The pion form factor from lattice QCD with two dynamical flavours
Energy Technology Data Exchange (ETDEWEB)
Broemmel, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie]|[Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Physik 1 - Theoretische Physik] (and others)
2006-08-15
We compute the electromagnetic form factor of the pion using non-perturbatively O(a) improved Wilson fermions. The calculations are done for pion masses down to 400 MeV and for lattice spacings of 0.07-0.11 fm. We check for finite size effects by repeating some of the measurements on smaller lattices. The large number of lattice parameters we use allows us to extrapolate to the physical point. For the square of the charge radius we find left angle r{sup 2} right angle =0.440(19) fm{sup 2}, in good agreement with experiment. (orig.)
49 CFR 231.24 - Box and other house cars with roofs, 16 feet 10 inches or more above top of rail. 1
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Box and other house cars with roofs, 16 feet 10... APPLIANCE STANDARDS § 231.24 Box and other house cars with roofs, 16 feet 10 inches or more above top of.... Same as specified for “Box and Other House Cars.” (2) Dimensions. Same as specified for “Box and Other...
International Nuclear Information System (INIS)
Cheoun, Myung Ki; Kim, K.S.
2007-01-01
The pseudo-scalar form factor, which represents the pseudo-scalar quark density distribution due to finite quark masses on the nucleon, is shown to manifest itself with the induced pseudo-scalar form factor in the L 0 + amplitude for the charged pion electro-production. Both form factors show their own peculiar momentum dependence. Under the approximation on which the Goldberger-Treiman relation holds, a sum of both form factors' contributions accounts for the t-channel contribution in the charged pion electro-production near threshold
Analysis tools for precision studies of hadronic three-body decays and transition form factors
International Nuclear Information System (INIS)
Schneider, Sebastian Philipp
2013-01-01
Due to the running coupling constant of Quantum Chromodynamics one of the pillars of the Standard Model, the strong interactions, is still insufficiently understood at low energies. In order to describe the interactions of hadrons that form in this physical regime, one has to devise methods that are non-perturbative in the strong coupling constant. In particular hadronic three-body decays and transition form factors present a great challenge due to the complex analytic structure ensued by strong final-state interactions. In this thesis we present two approaches to tackle these processes. In the first part we use a modified version of non-relativistic effective field theory to analyze the decay η→3π. This perturbative low-energy expansion is ideally suited to study the effects of ππ rescattering and contributes greatly to the understanding of the slope parameter of the η→3π 0 Dalitz plot, a quantity that is strongly influenced by final-state interactions and has presented a long-standing puzzle for theoretical approaches. In the second part we present dispersion relations as a non-perturbative means to study three-particle decays. Using the example of η'→ηππ we give a detailed introduction to the framework and its numerical implementation. We confront our findings with recent experimental data from the BES-III and VES collaborations and discuss whether the extraction of πη scattering parameters, one of the prime motives to study this decay channel, is feasible in such an approach. A more clear-cut application is given in our study of the decays ω/φ→3π due to the relative simplicity of this decay channel: our results are solely dependent on the ππ P-wave scattering phase shift. We give predictions for the Dalitz plot distributions and compare our findings to very precise data on φ→3π by the KLOE and CMD-2 collaborations. We also predict Dalitz plot parameters that may be determined in future high-precision measurements of ω→3π and
Analysis tools for precision studies of hadronic three-body decays and transition form factors
Energy Technology Data Exchange (ETDEWEB)
Schneider, Sebastian Philipp
2013-02-14
Due to the running coupling constant of Quantum Chromodynamics one of the pillars of the Standard Model, the strong interactions, is still insufficiently understood at low energies. In order to describe the interactions of hadrons that form in this physical regime, one has to devise methods that are non-perturbative in the strong coupling constant. In particular hadronic three-body decays and transition form factors present a great challenge due to the complex analytic structure ensued by strong final-state interactions. In this thesis we present two approaches to tackle these processes. In the first part we use a modified version of non-relativistic effective field theory to analyze the decay {eta}{yields}3{pi}. This perturbative low-energy expansion is ideally suited to study the effects of {pi}{pi} rescattering and contributes greatly to the understanding of the slope parameter of the {eta}{yields}3{pi}{sup 0} Dalitz plot, a quantity that is strongly influenced by final-state interactions and has presented a long-standing puzzle for theoretical approaches. In the second part we present dispersion relations as a non-perturbative means to study three-particle decays. Using the example of {eta}'{yields}{eta}{pi}{pi} we give a detailed introduction to the framework and its numerical implementation. We confront our findings with recent experimental data from the BES-III and VES collaborations and discuss whether the extraction of {pi}{eta} scattering parameters, one of the prime motives to study this decay channel, is feasible in such an approach. A more clear-cut application is given in our study of the decays {omega}/{phi}{yields}3{pi} due to the relative simplicity of this decay channel: our results are solely dependent on the {pi}{pi} P-wave scattering phase shift. We give predictions for the Dalitz plot distributions and compare our findings to very precise data on {phi}{yields}3{pi} by the KLOE and CMD-2 collaborations. We also predict Dalitz plot
Nucleon form factors and hidden symmetry in holographic QCD
International Nuclear Information System (INIS)
Hong, D.K.; Rho, M.; Yee, H.-U.; Yi, P.
2007-10-01
The vector dominance of the electromagnetic (EM) form factors both for mesons and baryons arises naturally in holographic QCD, where both the number of colors and the 't Hooft coupling are taken to be very large, offering a bona-fide derivation of the notion of vector dominance. The crucial ingredient for this is the infinite tower of vector mesons in the approximations made which share features that are characteristic of the quenched approximation in lattice QCD. We approximate the infinite sum by contributions from the lowest four vector mesons of the tower which turn out to saturate the charge and magnetic moment sum rules within a few % and compute them totally free of unknown parameters for momentum transfers Q 2 approx.= 1 GeV 2 . We identify certain observables that can be reliably computed within the approximations and others that are not, and discuss how the improvement of the latter can enable one to bring holographic QCD closer to QCD proper. (author)
Hu, J.; Toki, H.; Wen, W.; Shen, H.
2010-03-01
The role of the form factor and short-range correlation in nuclear matter is studied within the relativistic Hartree-Fock approximation. We take, first, the mean-field approximation for meson fields and obtain the fluctuation terms of mesons to be used for the Fock energies. We introduce form factors in the meson-nucleon coupling vertices to take into account the finite-size effect of the nucleon. We use further the unitary correlation operator method for the treatment of the short-range correlation. The form factors of the size ( Λ ˜ 1.0 -2.0GeV) of the nucleon-nucleon interaction cut down largely the contribution of the ρ -meson in the Fock term. The short-range correlation effect is not large but has a significant effect on the pion and ρ -meson energies in the relativistic Hartree-Fock approximation for nuclear matter.
Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data
Dorsey, John T.; Watson, Judith J.
2016-01-01
As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.
Height, socioeconomic and subjective well-being factors among U.S. women, ages 49-79.
Directory of Open Access Journals (Sweden)
Grace Wyshak
Full Text Available BACKGROUND: A vast literature has associated height with numerous factors, including biological, psychological, socioeconomic, anthropologic, genetic, environmental, and ecologic, among others. The aim of this study is to examine, among U.S. women, height factors focusing on health, income, education, occupation, social activities, religiosity and subjective well-being. METHODS/FINDINGS: Data are from the Women's Health Initiative (WHI Observational Study. Participants are 93,676 relatively healthy women ages 49-79; 83% of whom are White, 17% Non-White. Statistical analyses included descriptive statistics, chi-square and multivariable covariance analyses. The mean height of the total sample is 63.67 inches. White women are significantly taller than Non-White women, mean heights 63.68 vs. 63.63 inches (p= 0.0333. Among both Non-White and White women height is associated with social behavior, i.e. attendance at clubs/lodges/groups. Women who reported attendance 'once a week or more often' were taller than those who reported 'none' and 'once to 3 times a month'. Means in inches are respectively for: White women-63.73 vs. 63.67 and 63.73 vs. 63.67, p = 0.0027. p = 0.0298; Non-White women: 63.77 vs. 63.61 and 63.77 vs. 63.60, p = 0.0050, P = 0.0094. In both White and Non-White women, income, education and subjective well-being were not associated with height. However, other factors differed by race/ethnicity. Taller White women hold or have held managerial/professional jobs-yes vs. no-63.70 vs. 63.66 inches; P = 0.036; and given 'a little' strength and comfort from religion' compared to 'none' and 'a great deal', 63.73 vs. 63.66 P = 0.0418 and 63.73 vs. 63.67, P = 0.0130. Taller Non-White women had better health-excellent or very good vs. good, fair or poor-63.70 vs. 63.59, P = 0.0116. CONCLUSIONS: Further research in diverse populations is suggested by the new findings: being taller is associated with social activities -frequent attendance clubs
Height, socioeconomic and subjective well-being factors among U.S. women, ages 49-79.
Wyshak, Grace
2014-01-01
A vast literature has associated height with numerous factors, including biological, psychological, socioeconomic, anthropologic, genetic, environmental, and ecologic, among others. The aim of this study is to examine, among U.S. women, height factors focusing on health, income, education, occupation, social activities, religiosity and subjective well-being. Data are from the Women's Health Initiative (WHI) Observational Study. Participants are 93,676 relatively healthy women ages 49-79; 83% of whom are White, 17% Non-White. Statistical analyses included descriptive statistics, chi-square and multivariable covariance analyses. The mean height of the total sample is 63.67 inches. White women are significantly taller than Non-White women, mean heights 63.68 vs. 63.63 inches (p= 0.0333). Among both Non-White and White women height is associated with social behavior, i.e. attendance at clubs/lodges/groups. Women who reported attendance 'once a week or more often' were taller than those who reported 'none' and 'once to 3 times a month'. Means in inches are respectively for: White women-63.73 vs. 63.67 and 63.73 vs. 63.67, p = 0.0027. p = 0.0298; Non-White women: 63.77 vs. 63.61 and 63.77 vs. 63.60, p = 0.0050, P = 0.0094. In both White and Non-White women, income, education and subjective well-being were not associated with height. However, other factors differed by race/ethnicity. Taller White women hold or have held managerial/professional jobs-yes vs. no-63.70 vs. 63.66 inches; P = 0.036; and given 'a little' strength and comfort from religion' compared to 'none' and 'a great deal', 63.73 vs. 63.66 P = 0.0418 and 63.73 vs. 63.67, P = 0.0130. Taller Non-White women had better health-excellent or very good vs. good, fair or poor-63.70 vs. 63.59, P = 0.0116. Further research in diverse populations is suggested by the new findings: being taller is associated with social activities -frequent attendance clubs/lodges/groups", and with 'a little' vs. 'none' or 'great deal