WorldWideScience

Sample records for inception surface growth

  1. Cavitation inception on micro-particles: a self propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of

  2. Scale effect on bubble growth and cavitation inception in cavitation susceptibility meters

    International Nuclear Information System (INIS)

    Shen, Y.T.; Gowing, S.

    1985-01-01

    The Reynolds number alone is not adequate to predict cavitation inception scaling. Recent experiments on headforms once again show that the cavitation inception data are very sensitive to the nuclei tensile strength which, in turn depends on the velocity scale. This paper theoretically investigates the influence of Reynolds number and velocity scale on cavitation inception in a cavitation susceptibility meter. The numerical examples given are based on a single bubble spherical model

  3. The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, K.J.; Weaver, A.J.; Matthews, H.D. [School of Earth and Ocean Sciences, University of Victoria, Victoria (Canada); Cox, P.M. [Hadley Centre, Meteorological Office, Bracknell (United Kingdom)

    2003-12-01

    The first results of the UVic Earth System Model coupled to a land surface scheme and a dynamic global vegetation model are presented in this study. In the first part the present day climate simulation is discussed and compared to observations. We then compare a simulation of an ice age inception (forced with 116 ka BP orbital parameters and an atmospheric CO{sub 2} concentration of 240 ppm) with a preindustrial run (present day orbital parameters, atmospheric [CO{sub 2}] = 280 ppm). Emphasis is placed on the vegetation's response to the combined changes in solar radiation and atmospheric CO{sub 2} level. A southward shift of the northern treeline as well as a global decrease in vegetation carbon is observed in the ice age inception run. In tropical regions, up to 88% of broadleaf trees are replaced by shrubs and C{sub 4} grasses. These changes in vegetation cover have a remarkable effect on the global climate: land related feedbacks double the atmospheric cooling during the ice age inception as well as the reduction of the meridional overturning in the North Atlantic. The introduction of vegetation related feedbacks also increases the surface area with perennial snow significantly. (orig.)

  4. Raether-Meek criterion for prediction of electrodeless discharge inception on a dielectric surface in different gases

    Science.gov (United States)

    Chvyreva, A.; Pancheshnyi, S.; Christen, T.; Pemen, A. J. M.

    2018-03-01

    Electrodeless streamer inception on an epoxy surface under AC voltage stress was investigated for different gas compositions and pressures, with a focus on the pressure region below 1 bar. For this purpose, we used a set-up with cylindrical electrodes embedded out-of-axis in a cylindrical epoxy rod. Experiments were performed in N2, SF6, ambient air, Ar and CO2. The discharge inception voltage was measured, from which the critical value K of the ionization integral was reconstructed assuming a non-disturbed Laplacian field distribution. We have validated that for electropositive gases Ar an N2 the generally assumed value of K  =  10 is in good agreement with our measurements. For electronegative gases, however, the experimentally obtained values turned out to be considerably higher. We attribute this discrepancy mainly to the statistical time delay of the first electron; to increase the probability of discharge inception in a critical region, it was necessary to extend the critical area by means of applying an overvoltage to the system.

  5. Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator

    DEFF Research Database (Denmark)

    Arora, M.; Ohl, C.-D.; Mørch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases...

  6. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1979-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the spinodal limit and also of the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained

  7. Cavitation inception on microparticles: a self-propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 and 150   μm are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases,

  8. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  9. Comparison of CFD and Test Techniques for Cavitation Inception

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Park, Sung Keun; Lee, Sun Ki; Kim, Byung Kon

    2009-01-01

    Cavitation erosion on centrifugal pump impellers is a one of the fundamental factors that cause performance degradation and life shortening of the pumps. One approach to estimate the expected life of an impeller is to use sheet cavity length on the blade surface. While observing the cavity length is more suitable to accurately predict the impeller damage, it is not readily available in the field or on the test stand. Recently, the prediction of the cavity length by using commercial CFD codes has been tried by several authors. As an alternative to direct measure the cavity length of an impeller, a means of estimating cavity length of an impeller based on the relation of operating NPSH to that of 3% NPSH and inception NPSH was developed by Cooper. Although this method seems to be attractive, it is not easy to accurately estimate the inception NPSH without flow visualization. Some recent researchers has been paid attention to apply the high frequency Acoustic Emission(AE) technique to detect cavitation inception of pumps. As an effort to better estimate the cavity length without relying on flow visualization, CFD calculations and experiments were performed and then the results are compared in this study

  10. Tree-inception in PMMA with a barrier

    International Nuclear Information System (INIS)

    Gefle, O S; Lebedev, S M; Pokholkov, Y P; Gockenbach, E; Borsi, H

    2004-01-01

    The experimental results of a study of the tree-inception phenomenon for three-layer dielectrics in a divergent field are presented in this paper. It is shown that the tree-inception time depends on both the position of the high-permittivity barrier in the insulating gap and the ratio of the permittivities of the barrier material and main dielectric, and that it has a maximum at the optimal barrier position. It is found that the tree-inception length has a minimum value at this barrier position. Good agreement between the coefficient of the local field non-uniformity and the tree-inception time or the initial tree length was found

  11. Flashing inception in flowing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1980-01-01

    The inception of net vaporization in flashing flows is examined. It is suggested that the flashing inception can be expressed as two additive effects. One is due to the static decompression which is a function of the initial temperature and also the expansion rate. The other effect which is a function of Reynolds number and flashing index, is due to the turbulent fluctuations of the flowing liquid. It is shown that by taking a three standard deviation band on the turbulent velocity fluctuations, an adequate representation of the inverse mass flux effect on flashing inception for existing data is obtained. The turbulence effects are combined with the correlation of Alamgir and Lienhard to provide predictive methods recommended for the case where both static and convective decompression effects exist

  12. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  13. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  14. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    Science.gov (United States)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  15. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    Science.gov (United States)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  16. Simulating the inception of pulsed discharges near positive electrodes

    Science.gov (United States)

    Teunissen, Jannis; Ebert, Ute

    2013-09-01

    With 3D particle simulations we study the inception of pulsed discharges near positive electrodes. In different geometries, we first determine the breakdown voltage. Then we study the probability of inception for a fast voltage pulse. This probability mostly depends on the availability of seed electrons to generate the initial electron avalanches. These results are compared with experimental observations. Then we investigate how the shape of a starting discharge affects its further development. In particular, we discuss the formation of so-called ``inception clouds.'' JT was supported by STW-project 10755.

  17. Study on the streamer inception characteristics under positive lightning impulse voltage

    Directory of Open Access Journals (Sweden)

    Zezhong Wang

    2017-11-01

    Full Text Available The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  18. Study on the streamer inception characteristics under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2017-11-01

    The streamer is the main process in an air gap discharge, and the inception characteristics of streamers have been widely applied in engineering. Streamer inception characteristics under DC voltage have been studied by many researchers, but the inception characteristics under impulse voltage, and particularly under lightning impulse voltage with a high voltage rise rate have rarely been studied. A measurement system based on integrated optoelectronic technology has been proposed in this paper, and the streamer inception characteristics in a 1-m-long rod-plane air gap that was energized by a positive lightning impulse voltage have been researched. We have also measured the streamer inception electric field using electrodes with different radii of curvature and different voltage rise rates. As a result, a modified empirical criterion for the streamer inception electric field that considers the voltage rise rate has been proposed, and the wide applicability of this criterion has been proved. Based on the streamer inception time-lag obtained, we determined that the field distribution obeys a Rayleigh distribution, which explains the change law of the streamer inception time-lag. The characteristic parameter of the Rayleigh distribution lies in the range from 0.6 to 2.5 when the radius of curvature of the electrode head is in the range from 0.5 cm to 2.5 cm and the voltage rise rate ranges from 80 kV/μs to 240kV/μs under positive lightning impulse voltage.

  19. To Internationalize Rapidly from Inception: Crowdsource

    Directory of Open Access Journals (Sweden)

    Nirosh Kannangara

    2012-10-01

    Full Text Available Technology entrepreneurs continuously search for tools to accelerate the internationalization of their startups. For the purpose of internationalizing rapidly from inception, we propose that technology startups use crowdsourcing to internalize the tacit knowledge embodied in members of a crowd distributed across various geographies. For example, a technology startup can outsource to a large crowd the definition of a customer problem that occurs across various geographies, the development of the best solution to the problem, and the identification of attractive business expansion opportunities. In this article, we analyze how three small firms use crowdsourcing, discuss the benefits of crowdsourcing, and offer six recommendations to technology entrepreneurs interested in using crowdsourcing to rapidly internationalize their startups from inception.

  20. Inception mechanism and suppression of rotating stall in an axial-flow fan

    International Nuclear Information System (INIS)

    Nishioka, T

    2013-01-01

    Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

  1. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  2. Observations of tip vortex cavitation inception from a model marine propeller

    Science.gov (United States)

    Lodha, R. K.; Arakeri, V. H.

    1984-01-01

    Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.

  3. Physical mechanism and numerical simulation of the inception of the lightning upward leader

    International Nuclear Information System (INIS)

    Li Qingmin; Lu Xinchang; Shi Wei; Zhang Li; Zou Liang; Lou Jie

    2012-01-01

    The upward leader is a key physical process of the leader progression model of lightning shielding. The inception mechanism and criterion of the upward leader need further understanding and clarification. Based on leader discharge theory, this paper proposes the critical electric field intensity of the stable upward leader (CEFISUL) and characterizes it by the valve electric field intensity on the conductor surface, E L , which is the basis of a new inception criterion for the upward leader. Through numerical simulation under various physical conditions, we verified that E L is mainly related to the conductor radius, and data fitting yields the mathematical expression of E L . We further establish a computational model for lightning shielding performance of the transmission lines based on the proposed CEFISUL criterion, which reproduces the shielding failure rate of typical UHV transmission lines. The model-based calculation results agree well with the statistical data from on-site operations, which show the effectiveness and validity of the CEFISUL criterion.

  4. Inception behaviour of pulsed positive corona in several gases

    International Nuclear Information System (INIS)

    Veldhuizen, E M van; Rutgers, W R

    2003-01-01

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air

  5. Inception behaviour of pulsed positive corona in several gases

    Energy Technology Data Exchange (ETDEWEB)

    Veldhuizen, E M van; Rutgers, W R [Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2003-11-07

    The inception probability and the streamer length of pulsed positive corona discharges is determined in argon, nitrogen, oxygen and air. This study is performed in a 25 mm point-plane gap at a pressure of 1 bar. The lowest voltage at which a discharge in argon starts is 3 kV but only with an inception probability of 1%. At 5 kV the corona discharge in argon transforms into a spark with a probability close to 100%. The inception probability of corona discharges in all molecular gases used here as a function of the voltage is identical, starting with 1% at 4 kV and going up to 100% at 9 kV. The streamer lengths are quite different for these gases, nitrogen requiring the lowest voltage for streamers to cross the gap and oxygen the highest. This is probably due to electron attachment in oxygen. A remarkable result is that in air streamers bridge the gap at 8 kV, but spark breakdown occurs only above 26 kV. This property makes it relatively easy to obtain powerful pulsed corona discharges in air.

  6. Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM

    Directory of Open Access Journals (Sweden)

    H. J. Punge

    2012-11-01

    Full Text Available Changing climate conditions on Greenland influence the snow accumulation rate and surface mass balance (SMB on the ice sheet and, ultimately, its shape. This can in turn affect local climate via orography and albedo variations and, potentially, remote areas via changes in ocean circulation triggered by melt water or calving from the ice sheet. Examining these interactions in the IPSL global model requires improving the representation of snow at the ice sheet surface. In this paper, we present a new snow scheme implemented in LMDZ, the atmospheric component of the IPSL coupled model. We analyse surface climate and SMB on the Greenland ice sheet under insolation and oceanic boundary conditions for modern, but also for two different past climates, the last glacial inception (115 kyr BP and the Eemian (126 kyr BP. While being limited by the low resolution of the general circulation model (GCM, present-day SMB is on the same order of magnitude as recent regional model findings. It is affected by a moist bias of the GCM in Western Greenland and a dry bias in the north-east. Under Eemian conditions, the SMB decreases largely, and melting affects areas in which the ice sheet surface is today at high altitude, including recent ice core drilling sites as NEEM. In contrast, glacial inception conditions lead to a higher mass balance overall due to the reduced melting in the colder summer climate. Compared to the widely applied positive degree-day (PDD parameterization of SMB, our direct modelling results suggest a weaker sensitivity of SMB to changing climatic forcing. For the Eemian climate, our model simulations using interannually varying monthly mean forcings for the ocean surface temperature and sea ice cover lead to significantly higher SMB in southern Greenland compared to simulations forced with climatological monthly means.

  7. On the kinematic criterion for the inception of breaking in surface gravity waves: Fully nonlinear numerical simulations and experimental verification

    Science.gov (United States)

    Khait, A.; Shemer, L.

    2018-05-01

    The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.

  8. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    Science.gov (United States)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  9. Modelling large-scale ice-sheet–climate interactions following glacial inception

    Directory of Open Access Journals (Sweden)

    J. M. Gregory

    2012-10-01

    Full Text Available We have coupled the FAMOUS global AOGCM (atmosphere-ocean general circulation model to the Glimmer thermomechanical ice-sheet model in order to study the development of ice-sheets in north-east America (Laurentia and north-west Europe (Fennoscandia following glacial inception. This first use of a coupled AOGCM–ice-sheet model for a study of change on long palæoclimate timescales is made possible by the low computational cost of FAMOUS, despite its inclusion of physical parameterisations similar in complexity to higher-resolution AOGCMs. With the orbital forcing of 115 ka BP, FAMOUS–Glimmer produces ice caps on the Canadian Arctic islands, on the north-west coast of Hudson Bay and in southern Scandinavia, which grow to occupy the Keewatin region of the Canadian mainland and all of Fennoscandia over 50 ka. Their growth is eventually halted by increasing coastal ice discharge. The expansion of the ice-sheets influences the regional climate, which becomes cooler, reducing the ablation, and ice accumulates in places that initially do not have positive surface mass balance. The results suggest the possibility that the glaciation of north-east America could have begun on the Canadian Arctic islands, producing a regional climate change that caused or enhanced the growth of ice on the mainland. The increase in albedo (due to snow and ice cover is the dominant feedback on the area of the ice-sheets and acts rapidly, whereas the feedback of topography on SMB does not become significant for several centuries, but eventually has a large effect on the thickening of the ice-sheets. These two positive feedbacks are mutually reinforcing. In addition, the change in topography perturbs the tropospheric circulation, producing some reduction of cloud, and mitigating the local cooling along the margin of the Laurentide ice-sheet. Our experiments demonstrate the importance and complexity of the interactions between ice-sheets and local climate.

  10. Using Social Media to Accelerate the Internationalization of Startups from Inception

    Directory of Open Access Journals (Sweden)

    Tony Maltby

    2012-10-01

    Full Text Available A set of principles, processes, and tools that entrepreneurs can use to rapidly internationalize their technology startups from inception does not exist. This article discusses entrepreneurs’ use of online social media networks to rapidly internationalize their startups from inception. The article was inspired by how the founders of Dewak S.A. rapidly internationalized their technology startup. Dewak was founded by five unemployed Colombians in June 2008. Two years later, foreign sales comprised 95% of the firm’s revenue and provided the founders with full-time employment. Dewak’s only channel to market was via online social media networks. Recognizing that entrepreneurs can use social media to amplify their tacit knowledge and convert it into sellable products and services contributes to the development of a learning-based view of rapid internationalization from inception. The article provides entrepreneurs seeking to launch and grow global businesses with four recommendations that may save them time and money and increase the size of their addressable markets.

  11. Analysis on the stress corrosion crack inception based on pit shape and size of the FV520B tensile specimen

    Science.gov (United States)

    Xiang, Longhao; Pan, Juyi; Chen, Songying

    2018-06-01

    The influence of pit shape and size on local stress concentration in the tensile specimen and the stress corrosion cracks inception was studied by employing the element remove technique. The maximum stress located in the bottom of pit on FV520B tensile specimen. The location of maximum strain was near the mouth of the pit or the shoulder and plastic strain existed in this region. Stress concentration factor and plastic deformation on four different geometrical shape pits of hemisphere, semi-ellipsoid, bullet and butterfly were numerically investigated, respectively. The simulation results showed that butterfly pit got the biggest stress concentration factor. The plastic strain rate during pit growth was in the sensitivity range of stress corrosion cracks inception, indicating that stress corrosion cracks were more likely to nucleate near the pit tip or the shoulder.

  12. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  13. Alloyed surfaces: New substrates for graphene growth

    Science.gov (United States)

    Tresca, C.; Verbitskiy, N. I.; Fedorov, A.; Grüneis, A.; Profeta, G.

    2017-11-01

    We report a systematic ab-initio density functional theory investigation of Ni(111) surface alloyed with elements of group IV (Si, Ge and Sn), demonstrating the possibility to use it to grow high quality graphene. Ni(111) surface represents an ideal substrate for graphene, due to its catalytic properties and perfect matching with the graphene lattice constant. However, Dirac bands of graphene growth on Ni(111) are completely destroyed due to the strong hybridization between carbon pz and Ni d orbitals. Group IV atoms, namely Si, Ge and Sn, once deposited on Ni(111) surface, form an ordered alloyed surface with √{ 3} ×√{ 3} -R30° reconstruction. We demonstrate that, at variance with the pure Ni(111) surface, alloyed surfaces effectively decouple graphene from the substrate, resulting unstrained due to the nearly perfect lattice matching and preserves linear Dirac bands without the strong hybridization with Ni d states. The proposed surfaces can be prepared before graphene growth without resorting on post-growth processes which necessarily alter the electronic and structural properties of graphene.

  14. Partial discharge patterns related to surface deterioration in voids in epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1990-01-01

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level......, where partial discharges were present for more than 1500 h. Two types of electrical tree growth were found, the bush like tree and a single channel-like tree, which led to very different partial discharge patterns. It is concluded that the formation of crystals on a void surface leads to an immediate...... and easy-to-detect increase in the partial discharge activity with subsequent severe surface deterioration (deep pit formations) in the vicinity of the crystal. However, the partial discharge signal from a specimen with a black channel-like tree structure did not give any indication of channel growth...

  15. Super-resolution using a light inception layer in convolutional neural network

    Science.gov (United States)

    Mou, Qinyang; Guo, Jun

    2018-04-01

    Recently, several models based on CNN architecture have achieved great result on Single Image Super-Resolution (SISR) problem. In this paper, we propose an image super-resolution method (SR) using a light inception layer in convolutional network (LICN). Due to the strong representation ability of our well-designed inception layer that can learn richer representation with less parameters, we can build our model with shallow architecture that can reduce the effect of vanishing gradients problem and save computational costs. Our model strike a balance between computational speed and the quality of the result. Compared with state-of-the-art result, we produce comparable or better results with faster computational speed.

  16. Graphene growth and stability at nickel surfaces

    International Nuclear Information System (INIS)

    Lahiri, Jayeeta; S Miller, Travis; J Ross, Andrew; Adamska, Lyudmyla; Oleynik, Ivan I; Batzill, Matthias

    2011-01-01

    The formation of single-layer graphene by exposure of a Ni(111) surface to ethylene at low pressure has been investigated. Two different growth regimes were found. At temperatures between 480 and 650 deg. C, graphene grows on a pure Ni(111) surface in the absence of a carbide. Below 480 deg. C, graphene growth competes with the formation of a surface Ni 2 C carbide. This Ni 2 C phase suppresses the nucleation of graphene. Destabilization of the surface carbide by the addition of Cu to the surface layer facilitates the nucleation and growth of graphene at temperatures below 480 deg. C. In addition to the growth of graphene on Ni substrates, the interaction between graphene and Ni was also studied. This was done both experimentally by Ni deposition on Ni-supported graphene and by density functional theory calculation of the work of adhesion between graphene and Ni. For graphene sandwiched between two Ni-layers, the work of adhesion between graphene and the Ni substrate was found to be four times as large as that for the Ni-supported graphene without a top layer. This stronger interaction may cause the destruction of graphene that is shown experimentally to occur at ∼200 0 C when Ni is deposited on top of Ni-supported graphene. The destruction of graphene allows the Ni deposits to merge with the substrate Ni. After the completion of this process, the graphene sheet is re-formed on top of the Ni substrate, leaving no Ni at the surface.

  17. Transient disturbance growth in flows over convex surfaces

    Science.gov (United States)

    Karp, Michael; Hack, M. J. Philipp

    2017-11-01

    Flows over curved surfaces occur in a wide range of applications including airfoils, compressor and turbine vanes as well as aerial, naval and ground vehicles. In most of these applications the surface has convex curvature, while concave surfaces are less common. Since monotonic boundary-layer flows over convex surfaces are exponentially stable, they have received considerably less attention than flows over concave walls which are destabilized by centrifugal forces. Non-modal mechanisms may nonetheless enable significant disturbance growth which can make the flow susceptible to secondary instabilities. A parametric investigation of the transient growth and secondary instability of flows over convex surfaces is performed. The specific conditions yielding the maximal transient growth and strongest instability are identified. The effect of wall-normal and spanwise inflection points on the instability process is discussed. Finally, the role and significance of additional parameters, such as the geometry and pressure gradient, is analyzed.

  18. An improved model to determine the inception of positive upward leader–streamer system considering the leader propagation during dark period

    International Nuclear Information System (INIS)

    Xie Shijun; He Junjia; Chen Weijiang

    2013-01-01

    Stem–leader transition and front-streamer inception are two essential conditions for the inception of positive upward leader–streamer system (LSS). Previous models have not considered the initial-leader propagation during dark period and have not been verified systematically. In this paper, a series of positive upward discharge simulation experiments was designed and carried out. Characteristic parameters of the discharge process related to the inception of positive upward LSS, namely, the first-corona inception voltage, the first-corona charge, the dark period, and the LSS inception voltage, were obtained. By comparing these experiment results with simulation results calculated using previous models, it was found that it is improper to assume that the length of the initial leader is a fixed value. Finally, an improved inception model of positive upward LSS considering the leader propagation during dark period was developed and verified with experiment results.

  19. Particle based 3D modeling of positive streamer inception

    NARCIS (Netherlands)

    H.J. Teunissen (Jannis)

    2012-01-01

    htmlabstractIn this report we present a particle based 3D model for the study of streamer inception near positive electrodes in air. The particle code is of the PIC-MCC type and an electrode is included using the charge simulation method. An algorithm for the adaptive creation of super-particles is

  20. Gas heating dynamics during leader inception in long air gaps at atmospheric pressure

    International Nuclear Information System (INIS)

    Liu, Lipeng; Becerra, Marley

    2017-01-01

    The inception of leader discharges in long air gaps at atmospheric pressure is simulated with a thermo-hydrodynamic model and a detailed kinetic scheme for N 2 /O 2 /H 2 O mixtures. In order to investigate the effect of humidity, the kinetic scheme includes the most important reactions with the H 2 O molecule and its derivatives, resulting in a scheme with 45 species and 192 chemical reactions. The heating of a thin plasma channel in front of an anode electrode during the streamer to leader transition is evaluated with a detailed 1D radial model. The analysis includes the simulation of the corresponding streamer bursts, dark periods and aborted leaders that may occur prior to the inception of a propagating leader discharge. The simulations are performed using the time-varying discharge current in two laboratory discharge events of positive polarity reported in the literature as input. Excellent agreement between the simulated and the experimental time variation of the thermal radius for a 1 m rod-plate air gap discharge event reported in the literature has been found. The role of different energy transfer and loss mechanisms prior to the inception of a stable leader is also discussed. It is found that although a small percentage of water molecules can accelerate the vibrational-translational relaxation to some extent, this effect leads to a negligible temperature increase during the streamer-to-leader transition. It is also found that the gas temperature should significantly exceed 2000 K for the transition to lead to the inception of a propagating leader. Otherwise, the strong convection loss produced by the gas expansion during the transition causes a drop in the translational temperature below 2000 K, aborting the incepted leader. Furthermore, it is shown that the assumptions used by the widely-used model of Gallimberti do not hold when evaluating the streamer-to-leader transition. (paper)

  1. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  2. A numerical experiment that provides new results regarding the inception of separation in the flow around a circular cylinder

    Science.gov (United States)

    Malamataris, Nikolaos; Liakos, Anastasios

    2015-11-01

    The exact value of the Reynolds number regarding the inception of separation in the flow around a circular cylinder is still a matter of research. This work connects the inception of separation with the calculation of a positive pressure gradient around the circumference of the cylinder. The hypothesis is that inception of separation occurs when the pressure gradient becomes positive around the circumference. From the most cited laboratory experiments that have dealt with that subject of inception of separation only Thom has measured the pressure gradient there at very low Reynolds numbers (up to Re=3.5). For this reason, the experimental conditions of his tunnel are simulated in a new numerical experiment. The full Navier Stokes equations in both two and three dimensions are solved with a home made code that utilizes Galerkin finite elements. In the two dimensional numerical experiment, inception of separation is observed at Re=4.3, which is the lowest Reynolds number where inception has been reported computationally. Currently, the three dimensional experiment is under way, in order to compare if there are effects of three dimensional theory of separation in the conditions of Thom's experiments.

  3. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  4. Protocol for the establishment and operation of LTPP sections - Inception report

    CSIR Research Space (South Africa)

    Jones, DJ

    2003-02-01

    Full Text Available for the establishment and operation of LTPP sections - Inception Report iii TABLE OF CONTENTS 1. INTRODUCTION........................................................................................................................ 4 2. REVIEW OF LTPP... States ............................................................................................................... 10 2.3. Australia and New Zealand.......................................................................................... 14 2.4...

  5. Market Channels of Technology Startups that Internationalize Rapidly from Inception

    Directory of Open Access Journals (Sweden)

    Simar Yoos

    2012-10-01

    Full Text Available The study of technology startups that internationalize rapidly from inception has increased in recent years. However, little is known about their channels to market. This article addresses a gap in the "born global" literature by examining the channels used by six startups that internationalized rapidly from inception as well as the programs they used to support their channel partners and customers. The six startups examined combined the use of the Internet with: i a relationship with a multi-national, ii distributors, iii re-sellers, or iv a direct sales force. They also delivered programs to support partners and customers that focused on communications, alliance and network development, education, marketing and promotion, and financial incentives. This article informs entrepreneurs who need to design go-to-market channels to exploit global opportunities about decisions made by other entrepreneurs who launched born-global companies. Normative rules and practitioner-oriented approaches are needed to help entrepreneurs explain and apply the results presented in this article.

  6. A Numerical Study of Cavitation Inception in Complex Flow Fields

    Science.gov (United States)

    2007-12-01

    report describes DYNAFLOW’s efforts over the past three years to develop and apply innovative methods to study and model the cavitation inception in...Marjollet, Fréchou, D., Fruman, D.H., Karimi, A., Kueny, J.L., Michel, J.M., La Cavitation. Mécanismes Physiques et Aspects Industrielles

  7. Surface smoothening effects on growth of diamond films

    Science.gov (United States)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  8. Surface preparation for the heteroepitactic growth of ceramic thin films

    International Nuclear Information System (INIS)

    Norton, M.G.; Summerfelt, S.R.; Carter, C.B.

    1990-01-01

    The morphology, composition, and crystallographic orientation of the substrate influence the nucleation and growth of deposited thin films. A method for the preparation of controlled, characteristic surfaces is reported. The surfaces are suitable for the heteroepitactic growth of thin films. When used in the formation of electron-transparent thin foils, the substrates can be used to investigate the very early stages of film growth using transmission electron microscopy. The substrate preparation involves the cleaning and subsequent annealing to generate a surface consisting of a series of steps. The step terraces are formed on the energetically stable surface, and controlled nucleation and growth of films at step edges is found. The substrate materials prepared using this technique include (001) MgO, (001) SrTiO 3 , and (001) LaAlO 3

  9. Factors influencing graphene growth on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, E; Bartelt, N C; McCarty, K F [Sandia National Laboratories, Livermore, CA (United States); Feibelman, P J [Sandia National Laboratories, Albuquerque, NM (United States)], E-mail: mccarty@sandia.gov

    2009-06-15

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  10. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  11. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  12. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  13. Inception and development of voids in flashing liquids

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.

    1979-06-01

    Recent work aimed at correctly describing nonequilibrium vapor generation rates in flashing liquids in decompressing flows similar to those which might be encountered in a loss of coolant accident in a nuclear reactor is summarized. Analysis is reviewed which describes the flashing inception superheat in terms of the turbulence intensity for a given expansion rate and initial temperature, and interfacial area density and interfacial heat flux, and the volumetric vapor generation rates. Comparisons with existing data are included and further experiments being undertaken are described, including typical recent results

  14. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  15. Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment

    International Nuclear Information System (INIS)

    Lim, Byeung Jun; Kwon, Se Jin; Park, Tae Choon

    2014-01-01

    Characteristic changes in the stall inception in a single-stage transonic axial compressor with an axial skewed slot casing treatment were investigated experimentally. A rotating stall occurred intermittently in a compressor with an axial skewed slot, whereas spike-type rotating stalls occurred in the case of smooth casing. The axial skewed slot suppressed stall cell growth and increased the operating range. A mild surge, the frequency of which is the Helmholtz frequency of the compressor system, occurred with the rotating stall. The irregularity in the pressure signals at the slot bottom increased decreasing flow rate. An autocorrelation-based stall warning method was applied to the measured pressure signals. Results estimate and warn against the stall margin in a compressor with an axial skewed slot.

  16. Conditions for mould growth on typical interior surfaces

    DEFF Research Database (Denmark)

    Møller, Eva B.; Andersen, Birgitte; Rode, Carsten

    2017-01-01

    Prediction of the risk for mould growth is an important parameter for the analysis and design of the hygrothermal performance of building constructions. However, in practice the mould growth does not always follow the predicted behavior described by the mould growth models. This is often explained...... by uncertainty in the real conditions of exposure. In this study, laboratory experiments were designed to determine mould growth at controlled transient climate compared to growth at constant climate. The experiment included three building materials with four different surface treatments. The samples were...

  17. Biology is Destiny: A Case of Adrenocortical Carcinoma Diagnosed and Resected at Inception in a Patient Under Close Surveillance for Lung Cancer.

    Science.gov (United States)

    Miron, Benjamin; Ristau, Benjamin T; Tomaszewski, Jeffrey J; Jones, Josh; Milestone, Bart; Wong, Yu-Ning; Uzzo, Robert G; Edmondson, Donna; Scott, Walter; Kutikov, Alexander

    2016-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that is generally associated with a poor prognosis whose existence dictates the management of incidental renal masses. We report a case of ACC diagnosed and treated at its apparent inception in a patient undergoing close surveillance imaging of a prior malignancy. Despite timely detection and resection of a localized ACC this patient rapidly progressed to systemic disease. This case highlights the rapid growth kinetics of ACC and puts into perspective the challenges associated with the established treatment paradigm for patients diagnosed with an adrenal mass.

  18. Biology is Destiny: A Case of Adrenocortical Carcinoma Diagnosed and Resected at Inception in a Patient Under Close Surveillance for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Benjamin Miron

    2016-11-01

    Full Text Available Adrenocortical carcinoma (ACC is a rare malignancy that is generally associated with a poor prognosis whose existence dictates the management of incidental renal masses. We report a case of ACC diagnosed and treated at its apparent inception in a patient undergoing close surveillance imaging of a prior malignancy. Despite timely detection and resection of a localized ACC this patient rapidly progressed to systemic disease. This case highlights the rapid growth kinetics of ACC and puts into perspective the challenges associated with the established treatment paradigm for patients diagnosed with an adrenal mass.

  19. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  20. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  1. KMC Simulation of Surface Growth of Semiconductors

    International Nuclear Information System (INIS)

    Esen, M.

    2004-01-01

    In this work we have studied the growth and equilibration of semiconductor surfaces consisting of monoatomic steps separated by flat terraces using kinetic Monte Carlo method. Atomistic processes such as diffusion on terraces, attachment/detachment particles to/from step edges, attachment of particles from an upper terrace to a bounding step, diffusion of particles along step edges are considered. A rate equation for each, these processes is written and the overall transition probabilities are calculated where processes are ordered to make the distinction between slow and fast processes Iractal The interaction of steps is also included in the calculation of rate equations. The growth of such a surface is simulated when there is a particle flux to the surface. The rough of the surface and its dependence on both temperature and kinetic parameters such edge diffusion barrier are investigated. The formation of islands on terraces is prohibited and the distribution of their number and sizes are investigated as a function of temperature and appropriate kinetic parameters. In the absence of a flux to the surface, the equilibration of the surface is investigated paying particular attention to the top of the profile when the initial surface is a periodic profile where parallel monoatomic steps separated by terraces. It is observed that during equilibration of the profile, the topmost step disintegrates quickly and leads to many islands on the top of the profile due to. collision and annihilation of step edges of opposite sign. The islands then quickly disintegrate due to the line tension effect and this scenario repeats itself until the surface completely flattens

  2. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

    Science.gov (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert

    2004-10-01

    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  3. Inception horizon concept as a basis for sinkhole hazard mapping

    Science.gov (United States)

    Vouillamoz, J.; Jeannin, P.-Y.; Kopp, L.; Chantry, R.

    2012-04-01

    The office for natural hazards of the Vaud canton (Switzerland) is interested for a pragmatic approach to map sinkhole hazard in karst areas. A team was created by merging resources from a geoengineering company (CSD) and a karst specialist (SISKA). Large areas in Vaud territory are limestone karst in which the collapse hazard is essentially related to the collapse of soft-rocks covering underground cavities, rather than the collapse of limestone roofs or underground chambers. This statement is probably not valid for cases in gypsum and salt. Thus, for limestone areas, zones of highest danger are voids covered by a thin layer of soft-sediments. The spatial distributions of void and cover-thickness should therefore be used for the hazard assessment. VOID ASSESSMENT Inception features (IF) are millimetre to decimetre thick planes (mainly bedding but also fractures) showing a mineralogical, a granulometrical or a physical contrast with the surrounding formation that make them especially susceptible to karst development (FILIPPONI ET AL., 2009). The analysis of more than 1500 km of cave passage showed that karst conduits are mainly developed along such discrete layers within a limestone series. The so-called Karst-ALEA method (FILIPPONI ET AL., 2011) is based on this concept and aims at assessing the probability of karst conduit occurrences in the drilling of a tunnel. This approach requires as entries the identification of inception features (IF), the recognition of paleo-water-table (PWT), and their respective spatial distribution in a 3D geological model. We suggest the Karst-ALEA method to be adjusted in order to assess the void distribution in subsurface as a basis for sinkhole hazard mapping. Inception features (horizons or fractures) and paleo-water-tables (PWT) have to be first identified using visible caves and dolines. These features should then be introduced into a 3D geological model. Intersections of HI and PWT located close to landsurface are areas with a

  4. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    Science.gov (United States)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  5. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    Science.gov (United States)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  6. Growth kinetics of metastable (331) nanofacet on Au and Pt(110) surfaces

    International Nuclear Information System (INIS)

    Ndongmouo, U.T.; Houngninou, E.; Hontinfinde, F.

    2006-12-01

    A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (331) nanofacets on Au and Pt(110) surfaces. The results show that under experimental atomic fluxes, the (331) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(001) surface in the kinetic 6-vertex model. (author)

  7. Study of the Inception Length of Flow over Stepped Spillway Models ...

    African Journals Online (AJOL)

    The results showed that the inception (development) length increases as the unit discharge increases and it decreases with an increase in both stepped roughness height and chute angle. The ratio of the development length, in this study, to that of Bauer's was found to be 4:5. Finally, SMM-5 produced the least velocity of ...

  8. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  9. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  10. Influence of growth parameters on the surface morphology and ...

    Indian Academy of Sciences (India)

    Unknown

    surface features of the grown film like terracing, inclusions, meniscus lines, etc are ... Recently, studies carried out on the growth of InSb ..... is a critical factor in any epitaxial growth process and can ... However, this approach can lead to.

  11. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    International Nuclear Information System (INIS)

    Epstein, A K; Hochbaum, A I; Kim, Philseok; Aizenberg, J

    2011-01-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  12. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.

    2012-11-18

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.

  13. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  14. Epitaxial growth of fcc Ti films on Al(001) surfaces

    International Nuclear Information System (INIS)

    Saleh, A.A.; Shutthanandan, V.; Shivaparan, N.R.; Smith, R.J.; Tran, T.T.; Chambers, S.A.

    1997-01-01

    High-energy ion scattering (HEIS), x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction (XPD) were used to study the growth of thin Ti films on Al(001) surfaces. The Al surface peak area in the backscattered ion spectrum of MeV He + ions, incident along the [00 bar 1] direction, was used to monitor the atomic structure of the Ti films during growth. An initial decrease in the area was observed indicating epitaxial film growth. This decrease continued up to a critical film thickness of about 5.5 ML, after which point the structure of the film changed. Titanium films 3, 5, and 9 ML thick were characterized using XPD in the same chamber. Both the HEIS and XPD results show that the Ti films grow with an fcc structure on Al(001). A tetragonal distortion of 2.4% in the fcc Ti film was measured using ions incident along the [10 bar 1] direction. Although there is a general similarity of fcc Ti growth on both Al(001) and Al(110), the submonolayer growth regime does show differences for the two surfaces. copyright 1997 The American Physical Society

  15. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  16. Step driven competitive epitaxial and self-limited growth of graphene on copper surface

    Directory of Open Access Journals (Sweden)

    Lili Fan

    2011-09-01

    Full Text Available The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on copper surface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on copper surface. Our results showed that wide and high steps promoted epitaxial growth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayer graphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

  17. Transient surface states during the CBE growth of GaAs

    Science.gov (United States)

    Farrell, T.; Hill, D.; Joyce, T. B.; Bullough, T. J.; Weightman, P.

    1997-05-01

    We report the occurrence of a transient surface state during the initial stages of CBE GaAs(0 0 1) growth. The state was detected in real-time reflectance ( R) and reflectance anisotropy spectroscopy (RAS) growth monitoring. At low growth rates, less than 1 μm/h, beam equivalent pressure (BEP) of triethylgallium (TEG) BEPs there was a rapid increase in R at all monitoring wavelengths, followed by a monotonic decay to its pre-growth value. This transient increase in R was accompanied by a change in the RAS signal, the magnitude and sign of which varied with wavelength. The initial increase in R is shown to be associated with the development of a metallic-like surface whereas the changes in the RAS signal are consistent with the formation of Ga dimers.

  18. The Effect of Growth Temperature and V/III Flux Ratio of MOCVD Antimony Based Semiconductors on Growth Rate and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Ramelan Ari Handono

    2017-01-01

    Full Text Available Epitaxial Alx Ga1-x Sb layers on GaSb and GaAs substrates have been grown by atmospheric pressure metalorganic chemical vapor deposition using TMAl, TMGa and TMSb. Nomarski microscope and a profiler were employed to examine the surface morphology and growth rate of the samples. We report the effect of growth temperature and V/III flux ratio on growth rate and surface morphology. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. A growth rate activation energy of 0.73 eV was found. At low growth temperatures between 520 and 540°C, the surface morphology is poor due to antimonide precipitates associated with incomplete decomposition of the TMSb. For layers grown on GaAs at 580°C and 600°C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580°C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology

  19. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  20. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  1. Surface reconstruction: An effective method for the growth of mismatched materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Zheng, Beining; Wu, Xiaofeng; Yuan, Long; Wu, Jie; Guo, Hongping; Huang, Keke; Feng, Shouhua, E-mail: shfeng@mail.jlu.edu.cn

    2016-01-01

    Graphical abstract: High quality thin film of GaSb was fabricated with molecular beam epitaxy technique on the reconstructed Si(1 1 1) surface. - Highlights: • Surface reconstruction formed by different surface treatments controls the heteroepitaxial growth. • Mismatched stress can be effectively released when the mismatched material epi-film tilts out of the epitaxial interface plane to create a coincidence-site lattice. • GaSb films grown on Si(1 1 1)-(5√3 × 5√3)-Sb surface show better crystal quality and morphology for its self-assembled 2D fishbone structure. - Abstract: The crystalline quality of epitaxial films depends on the degree of lattice match between substrates and films. Here, we report a growth strategy for large mismatched epi-films to grow GaSb films on Si(1 1 1) substrates. The epitaxial strategy can be influenced by controlling the surface reconstructions of Sb-treated Si(1 1 1). The film with the best quality was grown on Si(1 1 1)-(5√3 × 5√3)-Sb surface due to the stress release and the formation of a self-assembled 2D fishbone structure. Controlled surface engineering provides an effective pathway towards the growth of the large mismatched materials.

  2. Growth of organic films on indoor surfaces

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2017-01-01

    predictions indicate that film growth would primarily be influenced by the gas-phase concentration of SVOCs with octanol-air partitioning (Koa) values in the approximate range 10≤log Koa≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time...

  3. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    Science.gov (United States)

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  4. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  5. Non-linear self-reinforced growth of tearing modes with multiple rational surfaces

    International Nuclear Information System (INIS)

    Maschke, E.K.; Persson, M.; Dewar, R.L.; Australian National Univ., Canberra, ACT

    1993-06-01

    The non-linear evolution of tearing modes with multiple rational surfaces is discussed. It is demonstrated that, in the presence of small differential rotation, the non-linear growth might be faster than exponential. This growth occurs as the rotation frequencies of the plasma at the different rational surfaces go into equilibrium

  6. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  7. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  8. ‘Modular Spacetime in the “Intelligent” Blockbuster: Inception and Source Code’

    OpenAIRE

    Misek, Richard; Cameron, Allan

    2014-01-01

    Suggesting both linear progression and configurable modularity, the complex cinematic narratives of Inception (Christopher Nolan, 2010) and Source Code (Duncan Jones, 2011) produce distinctive articulations of time and space. They also thematize the architectural processes involved in their own narrative construction, by featuring characters who are programmers, designers, and architects, and deploying a range of spatial metaphors (including lines, layers, and circles) via scenography, dialog...

  9. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  10. Investigation of turbocharger compressor surge inception by means of an acoustic two-port model

    Science.gov (United States)

    Kabral, R.; Åbom, M.

    2018-01-01

    The use of centrifugal compressors have increased tremendously in the last decade being implemented in the modern IC engine design as a key component. However, an efficient implementation is restricted by the compression system surge phenomenon. The focus in the investigation of surge inception have mainly been on the aerodynamic field while neglecting the acoustic field. In the present work a new method based on the full acoustic 2-port model is proposed for investigation of centrifugal compressor stall and surge inception. Essentially, the compressor is acoustically decoupled from the compression system, hence enabling the determination of sound generation and the quantification of internal aero-acoustic coupling effects, both independently of the connected pipe system. These frequency dependent quantities are indicating if the compressor is prone to self-sustained oscillations in case of positive feedback when installed in a system. The method is demonstrated on experimentally determined 2-port data of an automotive turbocharger centrifugal compressor under a variety of realistic operating conditions.

  11. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: j_karimi@alum.sharif.edu [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: mshariat@ut.ac.ir [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-31

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  12. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    International Nuclear Information System (INIS)

    Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Shariaty-Niassar, Mojtaba

    2017-01-01

    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  13. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  14. Initial Disease Course and Treatment in an Inflammatory Bowel Disease Inception Cohort in Europe

    DEFF Research Database (Denmark)

    Burisch, Johan; Pedersen, Natalia; Cukovic-Cavka, Silvja

    2014-01-01

    BACKGROUND: The EpiCom cohort is a prospective, population-based, inception cohort of inflammatory bowel disease (IBD) patients from 31 European centers covering a background population of 10.1 million. The aim of this study was to assess the 1-year outcome in the EpiCom cohort. METHODS: Patients...

  15. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  16. Lattice Gas Model Based Optimization of Plasma-Surface Processes for GaN-Based Compound Growth

    Science.gov (United States)

    Nonokawa, Kiyohide; Suzuki, Takuma; Kitamori, Kazutaka; Sawada, Takayuki

    2001-10-01

    Progress of the epitaxial growth technique for GaN-based compounds makes these materials attractive for applications in high temperature/high-power electronic devices as well as in short-wavelength optoelectronic devices. For MBE growth of GaN epilayer, atomic nitrogen is usually supplied from ECR-plasma while atomic Ga is supplied from conventional K-cell. To grow high-quality epilayer, fundamental knowledge of the detailed atomic process, such as adsorption, surface migration, incorporation, desorption and so forth, is required. We have studied the influence of growth conditions on the flatness of the growth front surface and the growth rate using Monte Carlo simulation based on the lattice gas model. Under the fixed Ga flux condition, the lower the nitrogen flux and/or the higher the growth temperature, the better the flatness of the front surface at the sacrifice of the growth rate of the epilayer. When the nitrogen flux is increased, the growth rate reaches saturation value determined from the Ga flux. At a fixed growth temperature, increasing of nitrogen to Ga flux ratio results in rough surface owing to 3-dimensional island formation. Other characteristics of MBE-GaN growth using ECR-plasma can be well reproduced.

  17. Laterally enhanced growth of electrodeposited Au to form ultrathin films on nonconductive surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Chiaki; Saito, Mikiko; Homma, Takayuki

    2012-01-01

    We investigated the laterally enhanced growth of electrodeposited Au for fabricating nanogap electrodes. To enhance the lateral growth, we carried out electrodeposition over patterned electrodes onto a SiO 2 surface modified with self-assembled monolayers (SAMs) or dendrimers with amine groups. The morphology and thickness of the Au films were controlled by adjusting deposition conditions such as duration, applied potential, and Au ion concentration in the bath. To investigate the mechanism of the laterally enhanced growth, the surface states of SAM- or dendrimer-modified SiO 2 were analyzed by X-ray photoelectron spectroscopy (XPS). The XPS results indicate the existence of organic molecules and Au ions on the SiO 2 surface, which suggests that laterally enhanced growth is induced by the Au ions coordinated on the amine groups of the organic molecules. To further analyze the mechanism of the laterally enhanced growth, we investigated the relationship between the morphology of the laterally enhanced growth of Au and the amount of Au ions on organic molecules. The laterally enhanced growth of Au is expected to be useful for fabricating thin film nanogap electrodes.

  18. Extraintestinal manifestations in Crohn's disease and ulcerative colitis: results from a prospective, population-based European inception cohort.

    Science.gov (United States)

    Isene, Rune; Bernklev, Tomm; Høie, Ole; Munkholm, Pia; Tsianos, Epameonondas; Stockbrügger, Reinhold; Odes, Selwyn; Palm, Øyvind; Småstuen, Milada; Moum, Bjørn

    2015-03-01

    In chronic inflammatory bowel disease (IBD) (Crohn's disease [CD] and ulcerative colitis [UC]), symptoms from outside the gastrointestinal tract are frequently seen, and the joints, skin, eyes, and hepatobiliary area are the most usually affected sites (called extraintestinal manifestations [EIM]). The reported prevalence varies, explained by difference in study design and populations under investigation. The aim of our study was to determine the prevalence of EIM in a population-based inception cohort in Europe and Israel. IBD patients were incepted into a cohort that was prospectively followed from 1991 to 2004. A total of 1145 patients were followed for 10 years. The cumulative prevalence of first EIM was 16.9% (193/1145 patients) over a median follow-up time of 10.1 years. Patients with CD were more likely than UC patients to have immune-mediated (arthritis, eye, skin, and liver) manifestations: 20.1% versus 10.4% (p colitis compared to proctitis in UC increased the risk of EIM. In a European inception cohort, EIMs in IBD were consistent with that seen in comparable studies. Patients with CD are twice as likely as UC patients to experience EIM, and more extensive distribution of inflammation in UC increases the risk of EIM.

  19. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  20. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  1. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  2. The glacial inception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature changes

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Amaelle [UMR CEA-CNRS, CEA Saclay, IPSL/Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur -Yvette (France); Hebrew University, Institute of Earth Sciences, Givat Ram, Jerusalem (Israel); Masson-Delmotte, Valerie; Jouzel, Jean; Minster, Benedicte [UMR CEA-CNRS, CEA Saclay, IPSL/Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur -Yvette (France); Raynaud, Dominique [LGGE, UMR CNRS-UJF, St Martin d' Heres (France); Johnsen, Sigfus [University of Copenhagen, Department of Geophysics, Copenhagen (Denmark); Huber, Christof; Leuenberger, Markus; Schwander, Jakob [University of Bern, Physics Institute, Bern (Switzerland)

    2006-02-01

    The mechanisms involved in the glacial inception are still poorly constrained due to a lack of high resolution and cross-dated climate records at various locations. Using air isotopic measurements in the recently drilled NorthGRIP ice core, we show that no evidence exists for stratigraphic disturbance of the climate record of the last glacial inception ({proportional_to}123-100 kyears BP) encompassing Dansgaard-Oeschger events (DO) 25, 24 and 23, even if we lack sufficient resolution to completely rule out disturbance over DO 25. We quantify the rapid surface temperature variability over DO 23 and 24 with associated warmings of 10{+-}2.5 and 16{+-}2.5 C, amplitudes which mimic those observed in full glacial conditions. We use records of {delta}{sup 18}O of O{sub 2} to propose a common timescale for the NorthGRIP and the Antarctic Vostok ice cores, with a maximum uncertainty of 2,500 years, and to examine the interhemispheric sequence of events over this period. After a synchronous North-South temperature decrease, the onset of rapid events is triggered in the North through DO 25. As for later events, DO 24 and 23 have a clear Antarctic counterpart which does not seem to be the case for the very first abrupt warming (DO 25). This information, when added to intermediate levels of CO{sub 2} and to the absence of clear ice rafting associated with DO 25, highlights the uniqueness of this first event, while DO 24 and 23 appear similar to typical full glacial DO events. (orig.)

  3. Influence of the growth-surface on the incorporation of phosphorus in SiC

    International Nuclear Information System (INIS)

    Rauls, E.; Gerstmann, U.; Frauenheim, Th.

    2005-01-01

    Phosphorus is a common and desired n-type dopant of SiC, but it turned out that doping by diffusion or during growth is rarely successful. To avoid the efforts and the creation of damage if ion implantation is used instead, these techniques were, though, highly desirable. In this work, we have investigated theoretically the experimental observation that phosphorus obviously hardly diffuses into the material. Not the diffusivity of the dopant but its addiction to occupy a three-fold coordinated surface site are critical, together with the way the surface affects the bulk migration barriers of the dopants. Whereas the most common growth direction for 4H-SiC, the polar silicon terminated (0001) surface, seems to be least appropriate for the incorporation of phosphorus atoms, growth along the nonpolar [112-bar 0] provides a good possibility to achieve efficient P-doping during growth

  4. Role of prism decussation on fatigue crack growth and fracture of human enamel.

    Science.gov (United States)

    Bajaj, Devendra; Arola, Dwayne

    2009-10-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset compact tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Regardless of the growth direction, the near-threshold region of cyclic extension was typical of "short crack" behavior (i.e. deceleration of growth with an increase in crack length). Cyclic crack growth was more stable in the forward direction and occurred over twice the spatial distance achieved in the reverse direction. In response to the monotonic loads, a rising R-curve response was exhibited by growth in the forward direction only. The total energy absorbed in fracture for the forward direction was more than three times that in the reverse. The rise in crack growth resistance was largely attributed to a combination of mechanisms that included crack bridging, crack bifurcation and crack curving, which were induced by decussation in the inner enamel. An analysis of the responses distinguished that the microstructure of enamel appears optimized for resisting crack growth initiating from damage at the tooth's surface.

  5. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  6. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  7. The incept of ejection from a fresh Taylor cone and subsequent evolution

    Science.gov (United States)

    Lopez-Herrera, Jose M.; Ganan-Calvo, Alfonso

    2017-11-01

    Within a certain range of applied voltages, a pendant drop suddenly subject to an intense electric field develops a cusp from which a fast liquid ligament issues. The incept of this process has common roots with other related phenomena like the Worthington jets, the jet issued after surface bubble bursting or the impact of a drop on a liquid pool. This is experimentally and numerically demonstrated. However, given the electrohydrodynamic nature of the driver in the formation of a Taylor cone, a number of electrokinetic processes take place in the rapid tapering flow, whose characteristic times should be carefully compared to the ones of the flow. As a result, universal scaling laws for the size and charge of the top drop have been obtained. Subsequently, sustaining the applied electric field, the ejection continues and the issuing liquid ligament releases a train of droplets of varying size and charge. Under appropriate conditions and if the liquid suctioned by the electric field is replenished, the system reaches a (quasi)steady state asymptotically. The degree of compliance of the size and charge of those subsequent droplets with previously proposed scaling laws of steady Taylor cone-jets has been studied. Computational code Gerris and an extended electrokinetic module is used. This work was supported by the Ministerio de Economia y Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  8. Measurement of partial discharge inception characteristics in sub-cooled liquid nitrogen

    International Nuclear Information System (INIS)

    Koo, J.Y.; Lee, S.H.; Shin, W.J.; Khan, Umer A.; Oh, S.H.; Seong, J.K.; Lee, B.W.

    2011-01-01

    We measured partial discharge and partial discharge initiation voltage of subcooled liquid nitrogen. Various kinds of test samples have been prepared. Sub-cooled temperature in liquid nitrogen were changed. The number of PD pluses were decreased when 68 K liquid nitrogen was used. Sub-cooled liquid nitrogen has positive effects to suppress PD activities. Partial discharge (PD) measurement is one of the effective diagnostic techniques to predict abnormal high voltage dielectric insulation conditions of the electric equipments. PD diagnostic techniques were also could be utilized to evaluate the conditions of cryogenic dielectric insulation media of high temperature superconducting electric equipment in liquid nitrogen. Generally, liquid nitrogen at 77 K is used as cryogenic and dielectric media for high temperature superconducting devices for high voltage electric power systems. But due to generation of bubbles during quench conditions which cause harmful effect on the properties of liquid nitrogen insulation, sub-cooled nitrogen under 77 K was also employed to suppress bubble formation. In this work, investigation of PD characteristics of sub-cooled liquid nitrogen was conducted in order to clarify the relation between PD inception and the temperature of liquid nitrogen. It was observed that measured PDIV (PD inception voltage) shows little differences according to the sub-cooled temperature of liquid nitrogen, but the magnitude and total numbers of PD has been slightly decreased according the decrease of cooled temperature of liquid nitrogen. From experimental results, it was deduced that the sub-cooled liquid nitrogen from 68 K to 77 K, could be applicable without any considerations of the variation of PDIV.

  9. Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research, Gandhinagar 382428, Gujarat (India); Nirma University, Ahmedabad 382481, Gujarat (India); Jolley, Kenny; Smith, Roger [Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2016-05-30

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on the flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.

  10. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    Energy Technology Data Exchange (ETDEWEB)

    Teys, S.A., E-mail: teys@isp.nsc.ru

    2017-01-15

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  11. Different growth mechanisms of Ge by Stranski-Krastanow on Si (111) and (001) surfaces: An STM study

    International Nuclear Information System (INIS)

    Teys, S.A.

    2017-01-01

    Highlights: • Different atomic mechanisms of transition from two-dimensional to three-dimensional-layer growth on Sransky-Krastanov observed. • The transition from 2D–3D Ge growth on Si (111) and (001) is very different. • Various changes in morphology, surface structures and sequence Ge redistribution during the growth shown. • The sequence of appearance of different incorporation places of Ge atoms was shown. - Abstract: Structural and morphological features of the wetting layer formation and the transition to the three-dimensional Ge growth on (111) and (100) Si surfaces under quasi-equilibrium growth conditions were studied by means of scanning tunneling microscopy. The mechanism of the transition from the wetting layer to the three-dimensional Ge growth on Si was demonstrated. The principal differences and general trends of the atomic processes involved in the wetting layers formation on substrates with different orientations were demonstrated. The Ge growth is accompanied by the Ge atom redistribution and partial strain relaxation due to the formation of new surfaces, vacancies and surface structures of a decreased density. The analysis of three-dimensional Ge islands sites nucleation of after the wetting layer formation was carried out on the (111) surface. The transition to the three-dimensional growth at the Si(100) surface begins with single {105} facets nucleation on the rough Ge(100) surface.

  12. Methods for growth of relatively large step-free SiC crystal surfaces

    Science.gov (United States)

    Neudeck, Philip G. (Inventor); Powell, J. Anthony (Inventor)

    2002-01-01

    A method for growing arrays of large-area device-size films of step-free (i.e., atomically flat) SiC surfaces for semiconductor electronic device applications is disclosed. This method utilizes a lateral growth process that better overcomes the effect of extended defects in the seed crystal substrate that limited the obtainable step-free area achievable by prior art processes. The step-free SiC surface is particularly suited for the heteroepitaxial growth of 3C (cubic) SiC, AlN, and GaN films used for the fabrication of both surface-sensitive devices (i.e., surface channel field effect transistors such as HEMT's and MOSFET's) as well as high-electric field devices (pn diodes and other solid-state power switching devices) that are sensitive to extended crystal defects.

  13. Intrinsic geometry of biological surface growth

    CERN Document Server

    Todd, Philip H

    1986-01-01

    1.1 General Introduction The work which comprises this essay formed part of a multidiscip­ linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom­ itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re­ ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana­ tomical point of view, the work explores the use of the surface geo­ metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports...

  14. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  15. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  16. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  17. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  18. Modelling the growth of Listeria monocytogenes on the surface of smear- or mould-ripened cheese

    Directory of Open Access Journals (Sweden)

    Sol eSchvartzman

    2014-07-01

    Full Text Available Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model and the Logistic model and three secondary (the Cardinal model, the Ratowski model and the Presser model mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modelled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  19. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.

    Science.gov (United States)

    Schvartzman, M Sol; Gonzalez-Barron, Ursula; Butler, Francis; Jordan, Kieran

    2014-01-01

    Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  20. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  1. Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2017-08-01

    Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.

  2. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  3. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  4. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  5. Capacity Development and Strengthening for Energy Policy formulation and implementation of Sustainable Energy Projects in Indonesia CASINDO. Deliverable No. 4. Inception report

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, N.; Smekens, K. [Unit Policy Studies, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Wijnker, M.; Lemmens, L. [Eindhoven University of Technology TUE, Eindhoven (Netherlands); Kamphuis, E. [ETC Nederland, Leusden (Netherlands); Permana, I. [Technical Education Development Centre TEDC, Bandung (Indonesia); Winarno, O.T. [Institute of Technology of Bandung ITB, Bandung (Indonesia)

    2009-10-15

    The overall objective of the CASINDO programme is to establish a self-sustaining and self-developing structure at both the national and regional level to build and strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and energy efficiency and to develop and implement sustainable energy projects. This inception report presents the proposed programmes for addressing the identified training needs, the proposed changes to the monitoring framework and other relevant issues discussed during the inception phase.

  6. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces.

    Directory of Open Access Journals (Sweden)

    Robert King

    2017-10-01

    Full Text Available Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast "yeast-like" growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2. Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2 suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices.

  7. A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces

    Science.gov (United States)

    Plummer, Amy; Halsey, Kirstie; Lovegrove, Alison; Hammond-Kosack, Kim

    2017-01-01

    Pathogenic fungi must extend filamentous hyphae across solid surfaces to cause diseases of plants. However, the full inventory of genes which support this is incomplete and many may be currently concealed due to their essentiality for the hyphal growth form. During a random T-DNA mutagenesis screen performed on the pleomorphic wheat (Triticum aestivum) pathogen Zymoseptoria tritici, we acquired a mutant unable to extend hyphae specifically when on solid surfaces. In contrast “yeast-like” growth, and all other growth forms, were unaffected. The inability to extend surface hyphae resulted in a complete loss of virulence on plants. The affected gene encoded a predicted type 2 glycosyltransferase (ZtGT2). Analysis of >800 genomes from taxonomically diverse fungi highlighted a generally widespread, but discontinuous, distribution of ZtGT2 orthologues, and a complete absence of any similar proteins in non-filamentous ascomycete yeasts. Deletion mutants of the ZtGT2 orthologue in the taxonomically un-related fungus Fusarium graminearum were also severely impaired in hyphal growth and non-pathogenic on wheat ears. ZtGT2 expression increased during filamentous growth and electron microscopy on deletion mutants (ΔZtGT2) suggested the protein functions to maintain the outermost surface of the fungal cell wall. Despite this, adhesion to leaf surfaces was unaffected in ΔZtGT2 mutants and global RNAseq-based gene expression profiling highlighted that surface-sensing and protein secretion was also largely unaffected. However, ΔZtGT2 mutants constitutively overexpressed several transmembrane and secreted proteins, including an important LysM-domain chitin-binding virulence effector, Zt3LysM. ZtGT2 likely functions in the synthesis of a currently unknown, potentially minor but widespread, extracellular or outer cell wall polysaccharide which plays a key role in facilitating many interactions between plants and fungi by enabling hyphal growth on solid matrices. PMID:29020037

  8. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  9. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    International Nuclear Information System (INIS)

    Huang, Her-Hsiung; Wu, Chia-Ping; Sun, Ying-Sui; Yang, Wei-En; Lee, Tzu-Hsin

    2014-01-01

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications

  10. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  11. Prediction of static friction coefficient in rough contacts based on the junction growth theory

    Science.gov (United States)

    Spinu, S.; Cerlinca, D.

    2017-08-01

    The classic approach to the slip-stick contact is based on the framework advanced by Mindlin, in which localized slip occurs on the contact area when the local shear traction exceeds the product between the local pressure and the static friction coefficient. This assumption may be too conservative in the case of high tractions arising at the asperities tips in the contact of rough surfaces, because the shear traction may be allowed to exceed the shear strength of the softer material. Consequently, the classic frictional contact model is modified in this paper so that gross sliding occurs when the junctions formed between all contacting asperities are independently sheared. In this framework, when the contact tractions, normal and shear, exceed the hardness of the softer material on the entire contact area, the material of the asperities yields and the junction growth process ends in all contact regions, leading to gross sliding inception. This friction mechanism is implemented in a previously proposed numerical model for the Cattaneo-Mindlin slip-stick contact problem, which is modified to accommodate the junction growth theory. The frictionless normal contact problem is solved first, then the tangential force is gradually increased, until gross sliding inception. The contact problems in the normal and in the tangential direction are successively solved, until one is stabilized in relation to the other. The maximum tangential force leading to a non-vanishing stick area is the static friction force that can be sustained by the rough contact. The static friction coefficient is eventually derived as the ratio between the latter friction force and the normal force.

  12. A Longitudinal Analysis of Outcomes of Lupus Nephritis in an International Inception Cohort Using a Multistate Model Approach

    DEFF Research Database (Denmark)

    Hanly, John G; Su, Li; Urowitz, Murray B

    2016-01-01

    OBJECTIVE: To study bidirectional change and predictors of change in estimated glomerular filtration rate (GFR) and proteinuria in lupus nephritis (LN) using a multistate modeling approach. METHODS: Patients in the Systemic Lupus International Collaborating Clinics inception cohort were classifie...

  13. The growth of oscillating bubbles in an ultrasound field

    Science.gov (United States)

    Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  14. Financing exponential growth at H3

    OpenAIRE

    Silva, João Ricardo Ferreira Hipolito da

    2012-01-01

    H3 is a fast-food chain that introduced the concept of gourmet hamburgers in the Portuguese market. This case-study illustrates its financing strategy that supported an exponential growth represented by opening 33 restaurants within approximately 3 years of its inception. H3 is now faced with the challenge of structuring its foreign ventures and change its financial approach. The main covered topics are the options an entrepreneur has for financing a new venture and how it evolves along th...

  15. Growth studies of Mytilus californianus using satellite surface temperatures and chlorophyll data for coastal Oregon

    Science.gov (United States)

    Price, J.; Lakshmi, V.

    2013-12-01

    The advancement of remote sensing technology has led to better understanding of the spatial and temporal variation in many physical and biological parameters, such as, temperature, salinity, soil moisture, vegetation cover, and community composition. This research takes a novel approach in understanding the temporal and spatial variability of mussel body growth using remotely sensed surface temperatures and chlorophyll-a concentration. Within marine rocky intertidal ecosystems, temperature and food availability influence species abundance, physiological performance, and distribution of mussel species. Current methods to determine the temperature mussel species experience range from in-situ field observations, temperature loggers, temperature models, and using other temperature variables. However, since the temperature that mussel species experience is different from the air temperature due to physical and biological characteristics (size, color, gaping, etc.), it is difficult to accurately predict the thermal stresses they experience. Methods to determine food availability (chlorophyll-a concentration used as a proxy) for mussel species are mostly done at specific study sites using water sampling. This implies that analysis of temperature and food availability across large spatial scales and long temporal scales is not a trivial task given spatial heterogeneity. However, this is an essential step in determination of the impact of changing climate on vulnerable ecosystems such as the marine rocky intertidal system. The purpose of this study was to investigate the potential of using remotely sensed surface temperatures and chlorophyll-a concentration to better understand the temporal and spatial variability of the body growth of the ecologically and economically important rocky intertidal mussel species, Mytilus californianus. Remotely sensed sea surface temperature (SST), land surface temperature (LST), intertidal surface temperature (IST), chlorophyll

  16. Study on initial stage of hetero-epitaxial growth by glancing angle scattering of fast ions from surfaces

    International Nuclear Information System (INIS)

    Fujii, Yoshikazu; Toba, Kazuaki; Narumi, Kazumasa; Kimura, Kenji; Mannami, Michihiko

    1993-01-01

    Initial stages of epitaxial growth of lead chalcogenides on the (100) surface of SnTe under UHV conditions are studied from the angular distribution of scattered ions at glancing angle incidence of 0.7 MeV He ions on the growing surfaces. Real time measurement of the angular distribution is performed during the growth. Anomalous broadening of the angular distribution is observed at the initial stage of the growth. The broadening is attributed to the surface wrinkles induced by a square network of misfit edge dislocations. (author)

  17. Studies on the controlled growth of InAs nanostructures on scission surfaces

    International Nuclear Information System (INIS)

    Bauer, J.

    2006-01-01

    The aim of this thesis was the controlled alignment of self-assembled InAs nano-structures on a {110}-oriented surface. The surface is prestructured with the atomic precision offered by molecular beam epitaxy, using the cleaved edge overgrowth-technique. On all samples grown within this work, the epitaxial template in the first growth step was deposited on a (001)GaAs substrate, while the InAs-layer forming the nanostructures during the second growth step was grown on cleaved {110}-GaAs surfaces. Atomic Force Microscopy (AFM) investigations demonstrate the formation of quantum dot (QD)-like nanostructures on top of the AlAs-stripes. X-ray diffraction measurements on large arrays of aligned quantum dots demonstrate that the quantum dots are formed of pure InAs. First investigations on the optical properties of these nanostructures were done using microphotoluminescence-spectroscopy with both high spatial and spectral resolution. (orig.)

  18. Implementing opioid substitution in Lebanon: Inception and challenges.

    Science.gov (United States)

    El-Khoury, Joseph; Abbas, Zeinab; Nakhle, Pascale E; Matar, Marie-Therese

    2016-05-01

    Opioid Substitution Treatment (OST) is a firmly established method of treating and managing dependence to opioids in Europe, the US and rest of the developed world. It has a solid evidence base and a positive safety track record. Dissemination of its practice, in parallel to the acceptance of harm reduction as an effective approach, is still timid in low and middle Income countries. After years of advocacy on the parts of clinicians and the voluntary sector, the government of Lebanon launched a national opioid substitution program in 2011 using buprenorphine as the substance of substitution. Lebanon is one of the first countries in the MENA region to establish such a program despite a difficult socio-political context. This paper provides the background of harm reduction efforts in the region and presents the outline of the program from inception to present date. Challenges and recommendations for the future are also discussed. The Lebanese experience with opioid substitution is encouraging so far and can be used as a template for others in the region who might be contemplating broadening the range of services available to tackle addiction to heroin and related substances. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Role of Prism Decussation on Fatigue Crack Growth and Fracture of Human Enamel

    OpenAIRE

    Bajaj, Devendra; Arola, Dwayne

    2009-01-01

    The role of prism decussation on the crack growth resistance of human enamel is evaluated. Miniature inset Compact Tension (CT) specimens embodying a section of cuspal enamel were subjected to Mode I cyclic or monotonic loads. Cracks were grown in either the forward (from outer enamel inwards) or reverse (from inner enamel outwards) direction and the responses were compared quantitatively. Results showed that the outer enamel exhibits lower resistance to the inception and growth of cracks. Re...

  20. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    Science.gov (United States)

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  1. Scaling behaviour of randomly alternating surface growth processes

    International Nuclear Information System (INIS)

    Raychaudhuri, Subhadip; Shapir, Yonathan

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depend on the timing of the applications. The analytical results are supported by numerical simulations of various pairs of primary processes and with different distribution functions. Self-affine surfaces grown by two randomly alternating processes are common in nature (e.g., due to randomly changing weather conditions) and in man-made devices such as rechargeable batteries

  2. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  3. Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine

    National Research Council Canada - National Science Library

    Hathaway, Michael D; Herrick, Greg; Chen, Jenping; Webster, Robert

    2004-01-01

    .... Improved understanding of the stall inception process and how stall control technologies mitigate such will provide compressors with increased tolerance to stall, thereby expanding the operational...

  4. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  5. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  6. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  7. Active Suppression of Rotating Stall Inception with Distributed Jet Actuation

    Directory of Open Access Journals (Sweden)

    Huu Duc Vo

    2007-01-01

    Full Text Available An analytical and experimental investigation of the effectiveness of full-span distributed jet actuation for active suppression of long length-scale rotating stall inception is carried out. Detailed modeling and experimental verification highlight the important effects of mass addition, discrete injectors, and feedback dynamics, which may be overlooked in preliminary theoretical studies of active control with jet injection. A model of the compression system incorporating nonideal injection and feedback dynamics is verified with forced response measurements to predict the right trends in the movement of the critical pole associated with the stall precursor. Active control experiments with proportional feedback control show that the predicted stall precursors are suppressed to give a 5.5% range extension in compressor flow coefficient. In addition, results suggest that the proposed model could be used to design a more sophisticated controller to further improve performance while reducing actuator bandwidth requirements.

  8. The prevalence and determinants of anti-DFS70 autoantibodies in an international inception cohort of systemic lupus erythematosus patients

    DEFF Research Database (Denmark)

    Choi, M. Y.; Clarke, A. E.; St Pierre, Y.

    2017-01-01

    , clinical, and autoantibody associations. Patients were enrolled in the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort within 15 months of diagnosis. The association between anti-DFS70 and multiple parameters in 1137 patients was assessed using univariate and multivariate...

  9. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    International Nuclear Information System (INIS)

    Tian Chungui; Wang Enbo; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-01-01

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO 3 /PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted

  10. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance

    International Nuclear Information System (INIS)

    Li, Chong; Li, Yujie; Ling, Yunyang; Lai, Yangwei; Wu, Chuanliu; Zhao, Yibing

    2014-01-01

    Ultrathin silica coating (UTSC) has emerged as an effective way to improve the compatibility and stability of nanoparticles without attenuating their intrinsic optical properties. Exploration strategies to probe the growth process of ultrathin silica shells on the surface of nanoparticles would represent a valuable innovation that would benefit the development of ultrathin silica coated nanoparticles and their relevant applications. In this work, we report a unique, very effective and straightforward strategy for probing the growth of ultrathin silica shells on the surface of gold nanorods (Au NRs), which exploits the localized surface plasmon resonance (LSPR) as a reporting signal. The thickness of the ultrathin silica shells on the surface of Au NRs can be quantitatively measured and predicted in the range of 0.5–3.5 nm. It is demonstrated that the LSPR shift accurately reflects the real-time change in the thickness of the ultrathin silica shells on Au NRs during the growth process. By using the developed strategy, we further analyze the growth of UTSC on the surface of Au NRs via feeding of Na 2 SiO 3 in a stepwise manner. The responsiveness analysis of LSPR also provides important insight into the shielding effect of UTSC on the surface of Au NRs that is not accessible with conventional strategies. This LSPR-based strategy permits exploration of the surface-mediated sol–gel reactions of silica from a new point of view. (paper)

  11. HFCVD growth of various carbon nanostructures on SWCNT paper controlled by surface treatment

    International Nuclear Information System (INIS)

    Varga, M.; Izak, T.; Kromka, A.; Kotlar, M.; Vretenar, V.; Ledinsky, M.; Michalka, M.; Skakalova, V.; Vesely, M.

    2012-01-01

    In this article, we investigate the nanocomposite material formation, particularly the deposition of nanocrystalline diamond and carbon nanowalls (CNWs) on single-wall carbon nanotubes buckypaper (BP). One part of the buckypaper substrate was nucleated by nanodiamond powder. The growth was carried out in a hot filament chemical vapor deposition (HFCVD) system. Contact angle measurements, scanning electron microscopy, and Raman spectroscopy were used for the surface morphology analysis and characterization of carbon phases. Due to a different surface pretreatment, different carbon nanostructures were formed: diamond film was grown on the nucleated BP area; non-treated area of the BP was covered with a dense field of CNWs. Covering a part of the BP surface prevented an access of the HF-plasma and so the growth of any carbon structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Growth mechanism and surface atomic structure of AgInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pena Martin, Pamela; Rockett, Angus A.; Lyding, Joseph [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Matthews St., Urbana, Illinois 61801 (United States)

    2012-07-15

    The growth of (112)A-oriented AgInSe{sub 2} on GaAs (111)A and its surface reconstruction were studied by scanning tunneling microscopy, atomic force microscopy, and other techniques. Films were grown by a sputtering and evaporation method. Topographic STM images reveal that the film grew by atomic incorporation into surface steps resulting from screw dislocations on the surface. The screw dislocation density was {approx}10{sup 10} cm{sup 2}. Atomically resolved images also show that the surface atomic arrangement appears to be similar to that of the bulk, with a spacing of 0.35-0.41 nm. There is no observable reconstruction, which is unexpected for a polar semiconductor surface.

  13. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  14. Scaling behaviour of randomly alternating surface growth processes

    CERN Document Server

    Raychaudhuri, S

    2002-01-01

    The scaling properties of the roughness of surfaces grown by two different processes randomly alternating in time are addressed. The duration of each application of the two primary processes is assumed to be independently drawn from given distribution functions. We analytically address processes in which the two primary processes are linear and extend the conclusions to nonlinear processes as well. The growth scaling exponent of the average roughness with the number of applications is found to be determined by the long time tail of the distribution functions. For processes in which both mean application times are finite, the scaling behaviour follows that of the corresponding cyclical process in which the uniform application time of each primary process is given by its mean. If the distribution functions decay with a small enough power law for the mean application times to diverge, the growth exponent is found to depend continuously on this power-law exponent. In contrast, the roughness exponent does not depe...

  15. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    Science.gov (United States)

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  16. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  17. Carbon out-diffusion mechanism for direct graphene growth on a silicon surface

    International Nuclear Information System (INIS)

    Kim, Byung-Sung; Lee, Jong Woon; Jang, Yamujin; Choi, Soon Hyung; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Joo, Won-Jae; Hwang, Sungwoo; Whang, Dongmok

    2015-01-01

    Direct growth of graphene on silicon (Si) through chemical vapor deposition has predominantly focused on surface-mediated processes due to the low carbon (C) solubility in Si. However, a considerable quantity of C atoms was incorporated in Si and formed Si 1−x C x alloy with a reduced lattice dimension even in the initial stage of direct graphene growth. Subsequent high temperature annealing promoted active C out-diffusion, resulting in the formation of a graphitic layer on the Si surface. Furthermore, the significantly low thermal conductivity of the Si 1−x C x alloy shows that the incorporated C atoms affect the properties of a semiconductor adjacent to the graphene. These findings provide a key guideline for controlling desirable properties of graphene and designing hybrid semiconductor/graphene architectures for various applications

  18. Understanding the growth mechanism of graphene on Ge/Si(001) surfaces.

    Science.gov (United States)

    Dabrowski, J; Lippert, G; Avila, J; Baringhaus, J; Colambo, I; Dedkov, Yu S; Herziger, F; Lupina, G; Maultzsch, J; Schaffus, T; Schroeder, T; Kot, M; Tegenkamp, C; Vignaud, D; Asensio, M-C

    2016-08-17

    The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.

  19. Surfactant-induced layered growth in homoepitaxy of Fe on Fe(100)-c(2 x 2)O reconstruction surface

    International Nuclear Information System (INIS)

    Kamiko, Masao; Mizuno, Hiroyuki; Chihaya, Hiroaki; Xu, Junhua; Kojima, Isao; Yamamoto, Ryoichi

    2007-01-01

    In this study, the effects of several surfactants (Pb, Bi, and Ag) on the homoepitaxial growth of Fe(100) were studied and compared. The reflection high-energy electron diffraction measurements clearly reveal that these surfactants enhance the layer-by-layer growth of Fe on an Fe(100)-c(2 x 2)O reconstruction surface. The dependence of growth on the surfactant layer thickness suggests that there exists a suitable amount of surfactant layer that induces a smoother layer-by-layer growth. Comparisons between the atomic force microscopy images reveal that the root-mean-square surface roughness of Fe films mediated by Pb and Bi surfactants are considerably smaller than those of the films mediated by Ag surfactant. The Auger electron spectra show that Pb and Bi segregate at the top of the surface. It has been concluded that Pb and Bi are effective surfactants for enhancing layer-by-layer growth in Fe homoepitaxy. Ag has the same effect, but it is less efficient due to the weak surface segregation of Ag

  20. Low-temperature α-alumina thin film growth: ab initio studies of Al adatom surface migration

    International Nuclear Information System (INIS)

    Wallin, E; Helmersson, U; Muenger, E P; Chirita, V

    2009-01-01

    Investigations of activation energy barriers for Al surface hopping on α-Al 2 O 3 (0 0 0 1) surfaces have been carried out by means of first-principles density functional theory calculations and the nudged elastic band method. Results show that surface diffusion on the (most stable) Al-terminated surface is relatively fast with an energy barrier of 0.75 eV, whereas Al hopping on the O-terminated surface is slower, with barriers for jumps from the two metastable positions existing on this surface to the stable site of 0.31 and 0.99 eV. Based on this study and on the literature, the governing mechanisms during low-temperature α-alumina thin film growth are summarized and discussed. Our results support suggestions made in some previous experimental studies, pointing out that limited surface diffusivity is not the main obstacle for α-alumina growth at low-to-moderate temperatures, and that other effects should primarily be considered when designing novel processes for low-temperature α-alumina deposition.

  1. Thin film growth behaviors on strained fcc(111) surface by kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Doi, Y; Matsunaka, D; Shibutani, Y

    2009-01-01

    We study Ag islands grown on strained Ag(111) surfaces using kinetic Monte Carlo (KMC) simulations. We employed KMC parameters of activation energy and attempt frequency estimated by nudged elastic band (NEB) method and vibration analyses. We investigate influences of surface strain and substrate temperature on film growth. As the biaxial surface strain increases, the island density increases. As temperature increases, the shape of the island changes from dendric to hexagonal and the island density increases.

  2. Streamer discharge inception in a sub-breakdown electric field from a dielectric body with a frequency dependent dielectric permittivity

    NARCIS (Netherlands)

    A. A. Dubinova (Anna); C. Rutjes (Casper); U. M. Ebert (Ute)

    2015-01-01

    htmlabstractWe study positive streamer inception from the tip of an elongated ice particle. The dielectric permittivity of ice drops from 93 to 3 for electric fields changing on the millisecond timescale [1]. We demonstrate that this effect can be important on the nanosecond time scale of

  3. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  4. Random distribution of background charge density for numerical simulation of discharge inception

    International Nuclear Information System (INIS)

    Grange, F.; Loiseau, J.F.; Spyrou, N.

    1998-01-01

    The models of electric streamers based on a uniform background density of electrons may appear not to be physical, as the number of electrons in the small active region located in the vicinity of the electrode tip under regular conditions can be less than one. To avoid this, the electron background is modelled by a random density distribution such that, after a certain time lag, at least one electron is present in the grid close to the point electrode. The modelling performed shows that the streamer inception is not very sensitive to the initial location of the charged particles; the ionizing front, however, may be delayed by several tens of nanoseconds, depending on the way the electron has to drift before reaching the anode. (J.U.)

  5. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Balzer, F., E-mail: fbalzer@mci.sdu.dk [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Sun, R. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Parisi, J. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany); Rubahn, H.-G. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Lützen, A. [University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Schiek, M. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany)

    2015-12-31

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  6. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    International Nuclear Information System (INIS)

    Balzer, F.; Sun, R.; Parisi, J.; Rubahn, H.-G.; Lützen, A.; Schiek, M.

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  7. Bubble growth and detachment between two close surfaces

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1985-01-01

    Nucleate boiling is an efficient heat transfer process both as a mean of achieving high heat flux at moderate surface temperature and as a mean of generating steam. The ability to predict nucleate boiling heat flux depends on many interconnected factors such as the number of active sites, the frequency of bubble emission at these sites, and the heat transfer associated with a single bubble. Therefore, the determination of the bubble shape, growth, detachment diameter, and detachment time plays an important role in understanding the boiling mechanisms and in predicting the heat transfer rates. Although much research have been carried-out for the study of free bubble dynamics, the analysis of such problem in a narrow gap-between two close and parallel surfaces (as the gaps between steam generator tubes and tube sheet) has not been attempted, so far as the author is aware. This paper represents an attempt to shed some light on this complex problem. (author)

  8. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    Science.gov (United States)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  9. A novel growth mode of alkane films on a SiO2 surface

    DEFF Research Database (Denmark)

    Mo, H.; Taub, H.; Volkmann, U.G.

    2003-01-01

    on the SiO2 surface with the long-axis of the C32 molecules oriented parallel to the interface followed by a C32 monolayer with the long-axis perpendicular to it. Finally, preferentially oriented bulk particles nucleate having two different crystal structures. This growth model differs from that found...... previously for shorter alkanes deposited from the vapor phase onto solid surfaces....

  10. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  11. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  12. Costs and resource utilization for diagnosis and treatment during the initial year in a European inflammatory bowel disease inception cohort

    DEFF Research Database (Denmark)

    Burisch, Johan; Vardi, Hillel; Pedersen, Natalia

    2015-01-01

    :: The EpiCom cohort is a prospective population-based inception cohort of unselected inflammatory bowel disease patients from 31 Western and Eastern European centers. Patients were followed every third month from diagnosis, and clinical data regarding treatment and investigations were collected. Costs were...

  13. Glacial Inception and Carbon Cycle in CCSM4

    Science.gov (United States)

    Jochum, M.; Bailey, D. A.; Fasullo, J.; Kay, J. E.; Levis, S.; Lindsay, K. T.; Moore, J. K.; Otto-Bliesner, B. L.; Peacock, S.

    2010-12-01

    CCSM4 with ocean and land ecosystem and freely evolving atmospheric carbondioxide is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115.000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by the sea-ice/snow albedo feedback; the MOC is almost unchanged. Most importantly, there is a substantial build up of snow cover on Baffin Island and North Canada - the origins of the Laurentide Ice Sheet. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds of the same order. However, the differences in global net air-sea carbon fluxes are small, and provide no support for the hypothesis that the solubility pump is responsible for the intial drawdown of atmospheric CO2 during a glacial inception. This surprising result is due to several effects, two of which stand out: Firstly, colder SST leads to higher solubility, but also to increased sea-ice concentration, which blocks air-sea exchange; and secondly, the weakening of the Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  14. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  15. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  16. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  17. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms

    Science.gov (United States)

    Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song

    2016-04-01

    A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.

  18. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  19. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  20. Effect of the Surface Layer of Iron Casting on the Growth of Protective Coating During Hot-Dip Galvanizing

    Directory of Open Access Journals (Sweden)

    Kopyciński D.

    2016-03-01

    Full Text Available The paper presents the results of investigations of the growth of protective coating on the surface of ductile iron casting during the hot-dip galvanizing treatment. Ductile iron of the EN-GJS-600-3 grade was melted and two moulds made by different technologies were poured to obtain castings with different surface roughness parameters. After the determination of surface roughness, the hot-dip galvanizing treatment was carried out. Based on the results of investigations, the effect of casting surface roughness on the kinetics of the zinc coating growth was evaluated. It was found that surface roughness exerts an important effect on the thickness of produced zinc coating.

  1. Inception report: Training and technology transfer feasibility study for Tenaga Nasional Berhad. Export trade information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-29

    The study, conducted by General Physics Corporation, was funded by the U.S. Trade and Development Agency. The report recommends strategies and specific actions for Tenaga Nasional Berhad`s training and technology transfer needs. The study covers the assessments made by teams of generation, transmission, distribution, management engineers and training specialists over a 4-month period. The Inception Report is divided into the following sections: (1) Project Objectives; (2) General Physics Background; (3) Project Description; (4) Project Organization; (5) Detailed Scope of Work; (6) Project Schedule; (Appendix A) Personnel Resumes; (Appendix B) General Physics Brochures.

  2. MANHATTAN DISTRICT HISTORY PROJECT Y THE LOS ALAMOS PROJECT VOL. I INCEPTION UNTIL AUGUST 1945

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, D.

    1961-12-01

    THESE TWO VOLUMES CONSTITUTE A RECORD OF THE TECHNICAL, ADMINISTRATIVE , AND POLICY-MAKING ACTIVITIES OF THE LOS ALAMOS PROJECT (PROJECT Y) FROM ITS INCEPTION UNDER THE MANHATTAN DISTRICT THROUGH THE DEVELOPMENT OF THE ATOMIC BOMB (VOL. I), AND DURING THE PERIOD FOLLOWING THE END OF WORLD WAR II UNTIL THE MANHATTAN DISTRICT RELINQUISHED CONTROL TO THE ATOMIC ENERGY COMMISSION AS OF JANUARY 1947 (VOL. II). ALTHOUGH SECURITY REGULATIONS HAVE REQUIRED SOME DELETIONS IN THE ORIGINAL TEXT OF THE TWO VOLUMES, EVERY EFFORT HAS BEEN MADE TO RETAIN THE ORIGINAL LANGUAGE AND EXPRESSIONS OF THE AUTHORS.

  3. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  4. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  5. Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation

    International Nuclear Information System (INIS)

    Sun, Jie; Lindvall, Niclas; Yurgens, August; Nam, Youngwoo; Cole, Matthew T.; Teo, Kenneth B. K.; Woo Park, Yung

    2014-01-01

    A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently “grow from below.” By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000 °C growth temperature

  6. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  7. Ventilation Inception and Washout, Scaling, and Effects on Hydrodynamic Performance of a Surface Piercing Strut

    Science.gov (United States)

    Harwood, Casey; Young, Yin Lu; Ceccio, Steven

    2014-11-01

    High-lift devices that operate at or near a fluid free surface (such as surface-piercing or shallowly-submerged propellers and hydrofoils) are prone to a multiphase flow phenomenon called ventilation, wherein non-condensable gas is entrained in the low-pressure flow, forming a cavity around the body and dramatically altering the global hydrodynamic forces. Experiments are being conducted at the University of Michigan's towing tank using a canonical surface-piercing strut to investigate atmospheric ventilation. The goals of the work are (i) to gain an understanding of the dominant physics in fully wetted, partially ventilated, and fully ventilated flow regimes, (ii) to quantify the effects of governing dimensionless parameters on the transition between flow regimes, and (iii) to develop scaling relations for the transition between flow regimes. Using theoretical arguments and flow visualization techniques, new criteria are developed for classifying flow regimes and transition mechanisms. Unsteady transition mechanisms are described and mapped as functions of the governing non-dimensional parameters. A theoretical scaling relationship is developed for ventilation washout, which is shown to adequately capture the experimentally-observed washout boundary. This material is based upon work supported by the National Science Foundation Graduate Student Research Fellowship under Grant No. DGE 1256260. Support also comes from the Naval Engineering Education Center (Award No. N65540-10-C-003).

  8. On the growth mechanisms of polar (100) surfaces of ceria on copper (100)

    Science.gov (United States)

    Hackl, Johanna; Duchoň, Tomáš; Gottlob, Daniel M.; Cramm, Stefan; Veltruská, Kateřina; Matolín, Vladimír; Nemšák, Slavomír; Schneider, Claus M.

    2018-05-01

    We present a study of temperature dependent growth of nano-sized ceria islands on a Cu (100) substrate. Low-energy electron microscopy, micro-electron diffraction, X-ray absorption spectroscopy, and photoemission electron microscopy are used to determine the morphology, shape, chemical state, and crystal structure of the grown islands. Utilizing real-time observation capabilities, we reveal a three-way interaction between the ceria, substrate, and local oxygen chemical potential. The interaction manifests in the reorientation of terrace boundaries on the Cu (100) substrate, characteristic of the transition between oxidized and metallic surface. The reorientation is initiated at nucleation sites of ceria islands, whose growth direction is influenced by the proximity of the terrace boundaries. The grown ceria islands were identified as fully stoichiometric CeO2 (100) surfaces with a (2 × 2) reconstruction.

  9. Illusions and Cloaks for Surface Waves

    Science.gov (United States)

    McManus, T. M.; Valiente-Kroon, J. A.; Horsley, S. A. R.; Hao, Y.

    2014-08-01

    Ever since the inception of Transformation Optics (TO), new and exciting ideas have been proposed in the field of electromagnetics and the theory has been modified to work in such fields as acoustics and thermodynamics. The most well-known application of this theory is to cloaking, but another equally intriguing application of TO is the idea of an illusion device. Here, we propose a general method to transform electromagnetic waves between two arbitrary surfaces. This allows a flat surface to reproduce the scattering behaviour of a curved surface and vice versa, thereby giving rise to perfect optical illusion and cloaking devices, respectively. The performance of the proposed devices is simulated using thin effective media with engineered material properties. The scattering of the curved surface is shown to be reproduced by its flat analogue (for illusions) and vice versa for cloaks.

  10. Simulation of YBa{sub 2}Cu{sub 3}O{sub 7}/MgO surface growth

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadizadeh, M.R. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran); Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran); Safari, N.; Kia, M.; Savaloni, H. [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran (Iran)

    2006-09-15

    For surface growth simulation of YBa{sub 2}Cu{sub 3}O{sub 7} on MgO substrate, binding energies between each two different Y, Ba, Cu, O, and Mg atoms were calculated by ab initio pseudopotential density functional theory approach. Then, simulation of YBa{sub 2}Cu{sub 3}O{sub 7} growth was performed by a simple two dimensional model based on the ballistic aggregation of hard discs. By increasing the substrate temperature, the atomic layers distribution is more condensed and the nanometric surface roughness decreases. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. The inception of a Paleotethyan magmatic arc in Iberia

    Directory of Open Access Journals (Sweden)

    M.F. Pereira

    2015-03-01

    Full Text Available This paper presents a compilation of recent U-Pb (zircon ages of late Carboniferous–early Permian (LC–EP calc-alkaline batholiths from Iberia, together with a petrogenetic interpretation of magma generation based on comparisons with Mesozoic and Tertiary Cordilleran batholiths and experimental melts. Zircon U-Pb ages distributed over the range ca. 315–280 Ma, indicate a linkage between calc-alkaline magmatism, Iberian orocline generation and Paleotethys subduction. It is also shown that Iberian LC–EP calc-alkaline batholiths present unequivocal subduction-related features comparable with typical Cordilleran batholiths of the Pacific Americas active margin, although geochemical features were partially obscured by local modifications of magmas at the level of emplacement by country rock assimilation. When and how LC–EP calc-alkaline batholiths formed in Iberia is then discussed, and a new and somewhat controversial interpretation for their sources and tectonic setting (plume-assisted relamination is suggested. The batholiths are proposed to have formed during the subduction of the Paleotethys oceanic plate (Pangaea self-subduction and, consequently, they are unrelated to Variscan collision. The origin of the Iberian batholiths is related to the Eurasian active margin and probably represents the inception of a Paleotethyan arc in the core of Pangaea.

  12. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    Science.gov (United States)

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  13. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  14. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  15. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions

    DEFF Research Database (Denmark)

    Stærk, Kristian; Kolmos, Hans Jørn; Khandige, Surabhi

    2016-01-01

    were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS:  Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations...... with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations....... enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSION:  Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions...

  16. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces.

    Science.gov (United States)

    Gruber, J; Zhou, X W; Jones, R E; Lee, S R; Tucker, G J

    2017-05-21

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ([Formula: see text]) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of In x Ga 1-x N-alloy compositions (0 ≤  x  ≤ 0.4) and homologous growth temperatures [0.50 ≤  T/T * m ( x ) ≤ 0.90], where T * m ( x ) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ([Formula: see text]) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  17. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  18. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios

    Science.gov (United States)

    Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.

    2016-08-01

    The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can

  19. Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces

    International Nuclear Information System (INIS)

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H 2 MoO 4 ), which is based on molybdenum trioxide (MoO 3 ). The modification of various materials (e.g. polymers, metals) with MoO 3 particles or sol–gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Highlights: ► The presented modifications of materials surfaces with MoO 3 are non-cytotoxic and decrease biofilm growth and bacteria transmission. ► The material is insensitive towards emerging resistances of bacteria. ► Strong potential to reduce spreading of infectious agents on inanimate surfaces.

  20. Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

    NARCIS (Netherlands)

    Lai, Stanley; Lazenby, R.A.; Kirkman, P.M.; Unwin, P.R.

    2015-01-01

    The nucleation and growth of metal nanoparticles (NPs) on surfaces is of considerable interest with regard to creating functional interfaces with myriad applications. Yet, key features of these processes remain elusive and are undergoing revision. Here, the mechanism of the electrodeposition of

  1. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    Science.gov (United States)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  2. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    Science.gov (United States)

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  3. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  4. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  5. Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth

    Science.gov (United States)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2009-01-01

    Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.

  6. Endogenous growth and economic capacity: Theory and empirical evidence for the NAFTA countries

    Directory of Open Access Journals (Sweden)

    Ignacio Perrotini-Hernàndez

    2017-09-01

    Full Text Available he paper sheds light on the relevance of economic capacity utilisation, capital accumulation and effective demand for the endogeneity of the natural growth rate with respect to normal, depressive and expansive growth regimes. Apart from contributing to fill this theoretical gap, a new model is developed for estimating the elasticity of the natural growth rate, with a specific focus on Canada, Mexico and the United States, throughout the pre-NAFTA and post-NAFTA periods. It is shown that growth regimes are related to the utilisation of economic capacity, while the elasticities of the expansive and depressive natural rates of growth vis-à-vis the normal rate are related to effective demand. It is also found that the normal, depressive and expansive natural rates of growth decreased since the inception of NAFTA, due to the concomitant decline in the growth rate of economic capacity. JEL Classification: O47, O51, O54

  7. Correlation between Fatigue Crack Growth Behavior and Fracture Surface Roughness on Cold-Rolled Austenitic Stainless Steels in Gaseous Hydrogen

    Directory of Open Access Journals (Sweden)

    Tai-Cheng Chen

    2018-03-01

    Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.

  8. Whisker growth: a new mechanism for helium blistering of surfaces in complex radiation environments

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1978-01-01

    Implantation of helium concurrent with the generation of large numbers of displaced atoms in surface layers of materials exposed to 252 Cf α-particles and fission fragments produces a unique form of low temperature surface blistering. The purpose of this paper is to formulate a basis for the whisker-growth mechanism for helium blistering as an aid to the specification of conditions under which the mechanism might apply

  9. Role of Lu and La in the intergranular films on growth of the prism surface in β-Si_3N_4: A molecular dynamics study

    International Nuclear Information System (INIS)

    Jiang, Yun; Garofalini, Stephen H.

    2016-01-01

    The different roles of Lu and La in the intergranular film in silicon nitride on the growth morphology are investigated via molecular dynamics simulations. While advanced microscopy shows each rare earth on the prism surface at room temperature, each additive affects the outward (perpendicular) growth of the surface differently. The simulations show the effect of elevated temperature on the adsorption of La and Lu on this surface that affects growth and provides the atomistic mechanism for the different growth morphology. - Graphical abstract: At elevated temperature, Lu ions move away from the surface as it grows, but remain in near contact (a-start, b-end), whereas La ions remain at the surface and prevent growth (c-start, d-end).

  10. Probability of growth of small damage sites on the exit surface of fused silica optics.

    Science.gov (United States)

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  11. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth

    Science.gov (United States)

    Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.

    2018-06-01

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  12. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  13. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    International Nuclear Information System (INIS)

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  14. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  15. Surface uplift in the Central Andes driven by growth of the Altiplano Puna Magma Body.

    Science.gov (United States)

    Perkins, Jonathan P; Ward, Kevin M; de Silva, Shanaka L; Zandt, George; Beck, Susan L; Finnegan, Noah J

    2016-10-25

    The Altiplano-Puna Magma Body (APMB) in the Central Andes is the largest imaged magma reservoir on Earth, and is located within the second highest orogenic plateau on Earth, the Altiplano-Puna. Although the APMB is a first-order geologic feature similar to the Sierra Nevada batholith, its role in the surface uplift history of the Central Andes remains uncertain. Here we show that a long-wavelength topographic dome overlies the seismically measured extent of the APMB, and gravity data suggest that the uplift is isostatically compensated. Isostatic modelling of the magmatic contribution to dome growth yields melt volumes comparable to those estimated from tomography, and suggests that the APMB growth rate exceeds the peak Cretaceous magmatic flare-up in the Sierran batholith. Our analysis reveals that magmatic addition may provide a contribution to surface uplift on par with lithospheric removal, and illustrates that surface topography may help constrain the magnitude of pluton-scale melt production.

  16. Study on vortex cavitation in a compact fast reactor. Effects of system pressure on inception condition

    International Nuclear Information System (INIS)

    Hiroyuki Sato; Toshiki Ezure; Hideki Kamide

    2005-01-01

    A compact sodium reactor is designed as a commercialized fast reactor cycle system. A 1/10 scaled water experiment was performed to optimize flow in an upper plenum of the reactor vessel, because of high flow velocity resulted from the compacted vessel. In the experiment, vortex cavitation was found at the hot leg inlet because of high velocity in the hot leg pipe (9.4m/s in the design). To evaluate cavitation inception condition of the commercialized reactor, we use the cavitation number k in order to consider the difference of system pressures (0.1MPa in the experiment and 0.3MPa in the design). The minimum pressure at the vortex center will depend on vortex core radius (size of forced vortex region). It is related to axial velocity gradient and fluid viscosity in theory of the Burger's stretched vortex model. We carried out a basic water experiment to investigate the influence of system pressure and fluid viscosity on the vortex cavitation. The cavitation number at the inception of vortex cavitation slightly increased according to the increase of the system pressure. It means that the vortex cavitation occurs easily under higher pressure condition as compared with the similar condition of cavitation number with lower pressure. However the increase was less than 30% when the system pressure was varied from 0.1 to 0.3MPa. The influence of fluid viscosity was examined by change of fluid temperature. Velocity distribution around the vortex was also measured to see the structure of vortex. (authors)

  17. Growth and decay of surface voltage on silver diffused polyimide exposed to 3-15 keV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S K; Dhole, S D; Bhoraskar, V N [Department of Physics, University of Pune, Pune-411007 (India)

    2007-02-21

    During electron irradiation, the growth in the surface voltage on virgin and silver diffused polyimide sample was studied by varying electron energy from 3 to 15 keV and beam diameter from 3 to 15 mm. At a constant beam current, the surface voltage increased nonlinearly with electron energy but decreased slowly with beam diameter at fixed electron energy. At a surface voltage around saturation or beyond 3 kV, the electron beam was switched off and the decay in the surface voltage was studied for a period of 9 x 10{sup 4} s. The surface analysis revealed that the relative concentrations of carbon increased and that of the oxygen and the nitrogen decreased in the electron irradiated virgin and silver diffused polyimide sample, however in different proportions. Under the identical conditions of electron irradiation, the growth rate of the surface voltage, the post irradiated surface resistivity and the voltage decay constant of the silver diffused polyimide were lower than that of the virgin polyimide. The results of the present study reveal that the resistance of the silver diffused polyimide to keV electrons is higher than that of the virgin polyimide.

  18. Developmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae).

    Science.gov (United States)

    Dunlap, Paul V; Davis, Kimberly M; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi

    2008-12-01

    Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore

  19. Canada on the Move: an intensive media analysis from inception to reception.

    Science.gov (United States)

    Faulkner, Guy; Finlay, Sara-Jane

    2006-01-01

    Research evaluating mediated physical activity campaigns uses an unsophisticated conceptualization of the media and would benefit from the application of a media studies approach. The purpose of this article is to report on the application of this type of analysis to the Canada on the Move media campaign. Through interviews and document analysis, the press release surrounding Canada on the Move was examined at four levels: inception, production, transmission and reception. Analytic strategies of thematic and textual analysis were conducted. The press release was well received by journalists and editors and was successfully transmitted as inferred from national and local television coverage, although there was no national print pickup. Canada on the Move was perceived by sampled audience members as a useful and interesting strategy to encourage walking. A holistic approach to media analysis reveals the complex and frequently messy process of this mediated communication process. Implications for future media disseminations of Canada on the Move are discussed.

  20. Developmental and Microbiological Analysis of the Inception of Bioluminescent Symbiosis in the Marine Fish Nuchequula nuchalis (Perciformes: Leiognathidae)▿

    OpenAIRE

    Dunlap, Paul V.; Davis, Kimberly M.; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi

    2008-01-01

    Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as ...

  1. Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings

    DEFF Research Database (Denmark)

    Cerullo, Michele

    2014-01-01

    Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...

  2. Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    2003-01-01

    A perspective is given of the development and use of surface analysis, primarily by Auger-electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), for solving scientific and technological problems. Information is presented on growth and trends in instrumental capabilities, instrumental measurements with reduced uncertainties, knowledge of surface sensitivity, and knowledge and effects of sample morphology. Available analytical resources are described for AES, XPS, and secondary-ion mass spectrometry. Finally, the role of the American Vacuum Society in stimulating improved surface analyses is discussed

  3. Near-surface depletion of antimony during the growth of GaAsSb and GaAs/GaAsSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Kauko, H.; Helvoort, A. T. J. van, E-mail: a.helvoort@ntnu.no [Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Fimland, B. O.; Munshi, A. M. [Department of Electronics and Telecommunications, NTNU, Trondheim (Norway); Grieb, T.; Müller, K.; Rosenauer, A. [Institut für Festkörperphysik, Universität Bremen, Bremen (Germany)

    2014-10-14

    The near-surface reduction of the Sb mole fraction during the growth of GaAsSb nanowires (NWs) and GaAs NWs with GaAsSb inserts has been studied using quantitative high-angle annular dark field scanning transmission electron microscopy (STEM). A model for diffusion of Sb in the hexagonal NWs was developed and employed in combination with the quantitative STEM analysis. GaAsSb NWs grown by Ga-assisted molecular beam epitaxy (MBE) and GaAs/GaAsSb NWs grown by Ga- and Au-assisted MBE were investigated. At the high temperatures employed in the NW growth, As-Sb exchange at and outward diffusion of Sb towards the surface take place, resulting in reduction of the Sb concentration at and near the surface in the GaAsSb NWs and the GaAsSb inserts. In GaAsSb NWs, an increasing near-surface depletion of Sb was observed towards the bottom of the NW due to longer exposure to the As beam flux. In GaAsSb inserts, an increasing change in the Sb concentration profile was observed with increasing post-insert axial GaAs growth time, resulting from a combined effect of radial GaAs overgrowth and diffusion of Sb. The effect of growth temperature on the diffusion of Sb in the GaAsSb inserts was identified. The consequences of these findings for growth optimization and the optoelectronic properties of GaAsSb are discussed.

  4. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  5. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  6. Occurrence of Anaemia in the First Year of Inflammatory Bowel Disease in a European Population-based Inception Cohort-An ECCO-EpiCom Study

    DEFF Research Database (Denmark)

    Burisch, Johan; Vegh, Zsuzsanna; Katsanos, Konstantinnos H.

    2017-01-01

    Background and aims: Anaemia is an important complication of inflammatory bowel disease (IBD). The aim of this study was to determine the prevalence of anaemia and the practice of anaemia screening during the first year following diagnosis in a European prospective population-based inception coho...

  7. 2D problems of surface growth theory with applications to additive manufacturing

    Science.gov (United States)

    Manzhirov, A. V.; Mikhin, M. N.

    2018-04-01

    We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.

  8. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  9. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    International Nuclear Information System (INIS)

    Cooil, S. P.; Wells, J. W.; Hu, D.; Evans, D. A.; Niu, Y. R.; Zakharov, A. A.; Bianchi, M.

    2015-01-01

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp 3 to sp 2 carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level

  10. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  11. Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study

    Science.gov (United States)

    Canepa, M.; Lavagnino, L.; Pasquali, L.; Moroni, R.; Bisio, F.; DeRenzi, V.; Terreni, S.; Mattera, L.

    2009-07-01

    We report on a metastable deexcitation spectroscopy investigation of the growth of L-cysteine layers deposited under UHV conditions on well-defined Au(110)- (1 × 2) and Au(111) surfaces. The interaction of He* with molecular orbitals gave rise to well-defined UPS-like Penning spectra which provided information on the SAM assembly dynamics and adsorption configurations. Penning spectra have been interpreted through comparison with molecular orbital DFT calculations of the free molecule and have been compared with XPS results of previous works. Regarding adsorption of first-layer molecules at room temperature (RT), two different growth regimes were observed. On Au(110), the absence of spectral features related to orbitals associated with SH groups indicated the formation of a compact SAM of thiolate molecules. On Au(111), the data demonstrated the simultaneous presence, since the early stages of growth, of strongly and weakly bound molecules, the latter showing intact SH groups. The different growth mode was tentatively assigned to the added rows of the reconstructed Au(110) surface which behave as extended defects effectively promoting the formation of the S-Au bond. The growth of the second molecular layer was instead observed to proceed similarly for both substrates. Second-layer molecules preferably adopt an adsorption configuration in which the SH group protrudes into the vacuum side.

  12. Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study

    International Nuclear Information System (INIS)

    Canepa, M; Lavagnino, L; Moroni, R; Bisio, F; Terreni, S; Mattera, L; Pasquali, L; De Renzi, V

    2009-01-01

    We report on a metastable deexcitation spectroscopy investigation of the growth of L-cysteine layers deposited under UHV conditions on well-defined Au(110)- (1 x 2) and Au(111) surfaces. The interaction of He* with molecular orbitals gave rise to well-defined UPS-like Penning spectra which provided information on the SAM assembly dynamics and adsorption configurations. Penning spectra have been interpreted through comparison with molecular orbital DFT calculations of the free molecule and have been compared with XPS results of previous works. Regarding adsorption of first-layer molecules at room temperature (RT), two different growth regimes were observed. On Au(110), the absence of spectral features related to orbitals associated with SH groups indicated the formation of a compact SAM of thiolate molecules. On Au(111), the data demonstrated the simultaneous presence, since the early stages of growth, of strongly and weakly bound molecules, the latter showing intact SH groups. The different growth mode was tentatively assigned to the added rows of the reconstructed Au(110) surface which behave as extended defects effectively promoting the formation of the S-Au bond. The growth of the second molecular layer was instead observed to proceed similarly for both substrates. Second-layer molecules preferably adopt an adsorption configuration in which the SH group protrudes into the vacuum side.

  13. Developmental and Microbiological Analysis of the Inception of Bioluminescent Symbiosis in the Marine Fish Nuchequula nuchalis (Perciformes: Leiognathidae)▿

    Science.gov (United States)

    Dunlap, Paul V.; Davis, Kimberly M.; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi

    2008-01-01

    Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as its symbiont, for the presence, developmental state, and microbiological status of the fish's internal, supraesophageal light organ. Nascent light organs were evident in the smallest specimens obtained, flexion larvae of 6.0 to 6.5 mm in notochord length (NL), a developmental stage at which the stomach had not yet differentiated and the nascent gasbladder had not established an interface with the light organ. Light organs of certain of the specimens in this size range apparently lacked bacteria, whereas light organs of other specimens of 6.5 mm in NL and of all larger specimens harbored large populations of bacteria, representatives of which were identified as P. leiognathi. Bacteria identified as Vibrio harveyi were also present in the light organ of one larval specimen. Light organ populations were composed typically of two or three genetically distinct strain types of P. leiognathi, similar to the situation in adult fish, and the same strain type was only rarely found in light organs of different larval, juvenile, or adult specimens. Light organs of larvae carried a smaller proportion of strains merodiploid for the lux-rib operon, 79 of 249 strains, than those of adults (75 of 91 strains). These results indicate that light organs of N. nuchalis flexion and postflexion larvae of 6.0 to 6.7 mm in NL are at an early stage of development and that inception of the symbiosis apparently occurs in flexion larvae of 6.0 to 6.5 mm in NL. Ontogeny of the light organ therefore

  14. Colonial vs. planktonic type of growth: mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods.

    Science.gov (United States)

    Skandamis, Panagiotis N; Jeanson, Sophie

    2015-01-01

    Predictive models are mathematical expressions that describe the growth, survival, inactivation, or biochemical processes of foodborne bacteria. During processing of contaminated raw materials and food preparation, bacteria are entrapped into the food residues, potentially transferred to the equipment surfaces (abiotic or inert surfaces) or cross-contaminate other foods (biotic surfaces). Growth of bacterial cells can either occur planktonically in liquid or immobilized as colonies. Colonies are on the surface or confined in the interior (submerged colonies) of structured foods. For low initial levels of bacterial population leading to large colonies, the immobilized growth differs from planktonic growth due to physical constrains and to diffusion limitations within the structured foods. Indeed, cells in colonies experience substrate starvation and/or stresses from the accumulation of toxic metabolites such as lactic acid. Furthermore, the micro-architecture of foods also influences the rate and extent of growth. The micro-architecture is determined by (i) the non-aqueous phase with the distribution and size of oil particles and the pore size of the network when proteins or gelling agent are solidified, and by (ii) the available aqueous phase within which bacteria may swarm or swim. As a consequence, the micro-environment of bacterial cells when they grow in colonies might greatly differs from that when they grow planktonically. The broth-based data used for modeling (lag time and generation time, the growth rate, and population level) are poorly transferable to solid foods. It may lead to an over-estimation or under-estimation of the predicted population compared to the observed population in food. If the growth prediction concerns pathogen bacteria, it is a major importance for the safety of foods to improve the knowledge on immobilized growth. In this review, the different types of models are presented taking into account the stochastic behavior of single cells

  15. Plasma Rich in Growth Factors for the Treatment of Ocular Surface Diseases.

    Science.gov (United States)

    Anitua, Eduardo; Muruzabal, Francisco; de la Fuente, María; Merayo, Jesús; Durán, Juan; Orive, Gorka

    2016-07-01

    The purpose of this work is to describe and review the technology of plasma rich in growth factors (PRGF), a novel blood derivative product, in the treatment of ocular surface disorders. To demonstrate the importance of this technology in the treatment of ocular pathologies, a thorough review of the preclinical and clinical literature results obtained following use of the different therapeutic formulations of PRGF was carried out. A literature search for applications of PGRF plasma in the ophthalmology field was carried out using the PubMed database. PRGF involves the use of patient's own biologically active proteins, growth factors, and biomaterial scaffolds for therapeutic purposes. This procedural technology is gaining interest in regenerative medicine due to its potential to stimulate and accelerate the tissue healing processes. The versatility and biocompatibility of this technology opens the door to a personalized medicine on ocular tissue regeneration. This review discusses the state of the art of the new treatments and technologies developed to promote ocular surface tissue regeneration. The standardized protocol that has been developed to source eye drops from PRGF technology is also described. The preclinical research, together with the most relevant clinical applications are summarized and discussed. The preliminary results suggest that the use of PRGF to enhance ocular tissue regeneration is safe and efficient.

  16. Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces

    Science.gov (United States)

    Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2018-01-01

    We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.

  17. Influence of the step properties on submonolayer growth of Ge and Si at the Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Romanyuk, Konstantin

    2009-10-21

    The present work describes an experimental investigation of the influence of the step properties on the submonolayer growth at the Si(111) surface. In particular the influence of step properties on the morphology, shape and structural stability of 2D Si/Ge nanostructures was explored. Visualization, morphology and composition measurements of the 2D SiGe nanostructures were carried out by scanning tunneling microscopy (STM). The formation of Ge nanowire arrays on highly ordered kink-free Si stepped surfaces is demonstrated. The crystalline nanowires with minimal kink densities were grown using Bi surfactant mediated epitaxy. The nanowires extend over lengths larger than 1 {mu}m have a width of 4 nm. To achieve the desired growth conditions for the formation of such nanowire arrays, a modified variant of surfactant mediated epitaxy was explored. It was shown that controlling the surfactant coverage at the surface and/or at step edges modifies the growth properties of surface steps in a decisive way. The surfactant coverage at step edges can be associated with Bi passivation of the step edges. The analysis of island size distributions showed that the step edge passivation can be tuned independently by substrate temperature and by Bi rate deposition. The measurements of the island size distributions for Si and Ge in surfactant mediated growth reveal different scaling functions for different Bi deposition rates on Bi terminated Si(111) surface. The scaling function changes also with temperature. The main mechanism, which results in the difference of the scaling functions can be revealed with data of Kinetic Monte-Carlo simulations. According to the data of the Si island size distributions at different growth temperatures and different Bi deposition rates the change of SiGe island shape and preferred step directions were attributed to the change of the step edge passivation. It was shown that the change of the step edge passivation is followed by a change of the

  18. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  19. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  20. Electronic and structural characterizations of unreconstructed {0001} surfaces and the growth of graphene overlayers

    International Nuclear Information System (INIS)

    Emtsev, Konstantin

    2009-01-01

    The present work is focused on the characterization of the clean unreconstructed SiC{0001} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  1. Colonial vs planktonic type of growth: mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods

    Directory of Open Access Journals (Sweden)

    Panagiotis N. Skandamis

    2015-10-01

    Full Text Available Predictive models are mathematical expressions that describe the growth, survival, inactivation or biochemical processes of foodborne bacteria. During processing of contaminated raw materials and food preparation, bacteria are entrapped into the food residues, potentially transferred to the equipment surfaces (abiotic or inert surfaces or cross-contaminate other foods (biotic surfaces. Growth of bacterial cells can either occur planktonically in liquid or immobilized as colonies. Colonies are on the surface or confined in the interior (submerged colonies of structured foods. For low initial levels of bacterial population leading to large colonies, the immobilized growth differs from planktonic growth due to physical constrains and to diffusion limitations within the structured foods. Indeed, cells in colonies experience substrate starvation and/or stresses from the accumulation of toxic metabolites such as lactic acid. Furthermore, the micro-architecture of foods also influences the rate and extent of growth. The micro-architecture is determined by (i the non-aqueous phase with the distribution and size of oil particles and the pore size of the network when proteins or gelling agent are solidified, and by (ii the available aqueous phase within which bacteria may swarm or swim. As a consequence, the micro-environment of bacterial cells when they grow in colonies might greatly differs from that when they grow planktonically. The broth-based data used for modeling (lag time and generation time, the growth rate and population level are poorly transferable to solid foods. It may lead to an over-estimation or under-estimation of the predicted population compared to the observed population in food. If the growth prediction concerns pathogen bacteria, it is a major importance for the safety of foods to improve the knowledge on immobilized growth. In this review, the different types of models are presented taking into account the stochastic behavior of

  2. Brief Report: Predicting Functional Disability: One-Year Results From the Scottish Early Rheumatoid Arthritis Inception Cohort.

    Science.gov (United States)

    Kronisch, Caroline; McLernon, David J; Dale, James; Paterson, Caron; Ralston, Stuart H; Reid, David M; Tierney, Ann; Harvie, John; McKay, Neil; Wilson, Hilary E; Munro, Robin; Saunders, Sarah; Richmond, Ruth; Baxter, Derek; McMahon, Mike; Kumar, Vinod; McLaren, John; Siebert, Stefan; McInnes, Iain B; Porter, Duncan; Macfarlane, Gary J; Basu, Neil

    2016-07-01

    To identify baseline prognostic indicators of disability at 1 year within a contemporary early inflammatory arthritis inception cohort and then develop a clinically useful tool to support early patient education and decision-making. The Scottish Early Rheumatoid Arthritis (SERA) inception cohort is a multicenter, prospective study of patients with newly presenting RA or undifferentiated arthritis. SERA data were analyzed to determine baseline predictors of disability (defined as a Health Assessment Questionnaire [HAQ] score of ≥1) at 1 year. Clinical and psychosocial baseline exposures were entered into a forward stepwise logistic regression model. The model was externally validated using newly accrued SERA data and subsequently converted into a prediction tool. Of the 578 participants (64.5% female), 36.7% (n = 212) reported functional disability at 1 year. Functional disability was independently predicted by baseline disability (odds ratio [OR] 2.67 [95% confidence interval (95% CI) 1.98, 3.59]), depression (OR 2.52 [95% CI 1.18, 5.37]), anxiety (OR 2.37 [95% CI 1.33, 4.21]), being in paid employment with absenteeism during the last week (OR 1.19 [95% CI 0.63, 2.23]), not being in paid employment (OR 2.36 [95% CI 1.38, 4.03]), and being overweight (OR 1.61 [95% CI 1.04, 2.50]). External validation (using 113 newly acquired patients) evidenced good discriminative performance with a C statistic of 0.74, and the calibration slope showed no evidence of model overfit (P = 0.31). In the context of modern early inflammatory arthritis treatment paradigms, predictors of disability at 1 year appear to be dominated by psychosocial rather than more traditional clinical measures. This indicates the potential benefit of early access to nonpharmacologic interventions targeting key psychosocial factors, such as mental health and work disability. © 2016, American College of Rheumatology.

  3. Nucleation and growth of vapor bubbles in the liquid bulk and at a solid surface

    International Nuclear Information System (INIS)

    Yagov, V.V.

    1977-01-01

    The main achievements in the study of the vapor phase origin in liquid and the subsequent growth of the vapor bubbles are presented briefly, and a number of issues on which there is no single opinion as yet are also outlined. The theory of homogeneous nucleation and a great number of experiments make it possible not only to explain qualitatively the causes of spontaneous formation of vapor nucleation centers in the metastable liquid but provides a simple computational relation for the estimating the intensity of this process. None of the existing hypotheses, however, can give a complete answer to the question of the mechanism of the vapor phase nucleation on a solid surface under ''pure conditions'', although this is a more pressing problem. At the same time, the role of cavities of reservoir type (with a narrow orifice) on the surface under heating as reliable stabilizers of the vapor formation (especially in liquid metals) is clarified from the practical point of view. Thus, the identification of technology for production of such cavities would make it possible to increase substantially the efficiency of heat transferring surfaces. Any computational relations for the growth of bubbles on the heating surface also are (and, according to the author, necessarily will be) approximate ones, although considerable success has been achieved in this field

  4. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wen, Guobin [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zhang, Minhua, E-mail: mhzhang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • Calculations based on the first-principle density functional theory were carried out to study ethanol formation from syngas on Cu-Co surfaces. • The most controversial reactions in ethanol formation from syngas were researched: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions (CHx + HCO → CHxCHO (x = 1–3))). • Four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) were built to investigate the synergy of the Cu and Co components. • The PDOS of 4d orbitals and d-band center analysis of surface Cu and Co atoms of all surfaces were studied to reveal correlation between electronic property and catalytic performance. - Abstract: Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CH{sub x} + HCO → CH{sub x}CHO (x = 1–3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between

  5. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    Science.gov (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Crack growth prediction method considering interaction between multiple cracks. Growth of surface cracks of dissimilar size under cyclic tensile and bending load

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Miyokawa, Eiichi; Kikuchi, Masanori

    2011-01-01

    When multiple cracks approach one another, the stress intensity factor is likely to change due to the interaction of the stress field. This causes change in growth rate and shape of cracks. In particular, when cracks are in parallel position to the loading direction, the shape of cracks becomes non-planar. In this study, the complex growth of interacting cracks is evaluated by using the S-Version finite element method, in which local detailed finite element mesh (local mesh) is superposed on coarse finite element model (global mesh) representing the global structure. In order to investigate the effect of interaction on the growth behavior, two parallel surface cracks are subjected to cyclic tensile or bending load. It is shown that the smaller crack is shielded by larger crack due to the interaction and stops growing when the difference in size of two cracks is significant. Based on simulations of various conditions, a procedure and criteria for evaluating crack growth for fitness-for-service assessment is proposed. According to the procedure, the interaction is not necessary to be considered in the crack growth prediction when the difference in size of two cracks exceeds the criterion. (author)

  7. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    International Nuclear Information System (INIS)

    Wolny-Marszalek, M.

    2007-10-01

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  8. Nano-Scale Interface Modification of the Co/Cu System: Metallic Surface Modifiers in the Growth of Smooth Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Wolny-Marszalek, M [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 152 Radzikowskiego str., 31-342, Cracow (Poland)

    2007-10-15

    This review is a collection of twelve original papers concerning growth and interface modification in the Co/Cu system. Most of this research has been carried out in the Laboratory of Surface and Thin Film Physics at the Institute of Nuclear Physics. The Laboratory was created by the author of this review in 1996 in strong collaboration with the Institute of Nuclear Physics Wilhelms-Universitaet in Muenster, Germany and the Institute of Applied Physics Ukrainian Academy of Science in Sumy, Ukraine. The big international team worked under the leadership of Dr Marta Marszalek, initially developing a multicomponent ultrahigh vacuum setup for thin film preparation and analysis, and next accompanying her in studies of the structural, magnetic and magnetotransport properties of Co/Cu multilayers. Systems that exhibit giant magnetoresistance effect have been receiving intensive attentions over recent years since they are possible candidates for applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this research is the growth of magnetic Co/Cu multilayers modified by using metallic surface modifiers called surfactants. The different approaches have been used. Surfactant metals were introduced once into growth process as a buffer layer or they were deposited sequentially at each interface of Co/Cu multilayers. The growth was performed by molecular beam epitaxy technique which allows to tailor carefully deposition conditions. The results showed that two approaches gave different results. Surfactant buffer layers resulted in loss of layered character of multilayers being a kind of an intermediate cluster-like phase combined with a layered area. Small amount of surfactants introduced at each interface lead to well-ordered structures with small roughness and smoother interfaces than in the case of pure Co/Cu multilayers. Despite of the differences, in both cases the improvement of magnetoresistance value was observed. The atomic scale study

  9. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics

    International Nuclear Information System (INIS)

    Honour, Sarah L.; Bell, J. Nigel B.; Ashenden, Trevor W.; Cape, J. Neil; Power, Sally A.

    2009-01-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO x ) representative of urban conditions, in solardome chambers. Annual mean NO x concentrations ranged from 77 nl l -l to 98 nl l -1 , with NO:NO 2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation. - Fumigation experiments demonstrate adverse effects of exhaust emissions on urban vegetation

  10. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  11. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  12. Catalyst free growth of CNTs by CVD on nanoscale rough surfaces of silicon substrates

    Science.gov (United States)

    Damodar, D.; Sahoo, R. K.; Jacob, C.

    2013-06-01

    Catalyst free growth of carbon nanotubes (CNT) has been achieved using atmospheric pressure chemical vapor deposition (APCVD) on surface modified Si(111) substrates. The effect of the substrate surface has been observed by partially etching with KOH (potassium hydroxide) solution which is an anisotropic etchant. Scanning electron microscopy (SEM) confirmed the formation of CNTs over most of the area of the substrate where substrates were anisotropically etched. Transmission electron microscopy (TEM) was used to observe the internal structure of the CNTs. Raman spectroscopy further confirmed the formation of the carbon nanostructures and also their graphitic crystallinity.

  13. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Science.gov (United States)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua

    2017-08-01

    Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.

  14. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    Science.gov (United States)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  15. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    Science.gov (United States)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  16. Preferential adsorption of gallium on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires

    International Nuclear Information System (INIS)

    Shu Haibo; Chen Xiaoshuang; Ding Zongling; Dong Ruibin; Lu Wei

    2010-01-01

    The mechanism of the preferential adsorption of Ga on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires is studied by using first-principles calculations within density functional theory. The calculated results show that Au preadsorption on GaAs(111)B surface significantly enhances the stability of the Ga adatom in comparison with the adsorption of Ga on clean GaAs(111)B surface. The stabilization of the Ga adatom is due to charge transfers from the Ga 4p and 4s states to the Au 6s and As 4p states. The number of Ga adatoms stabilized on GaAs(111)B surfaces depends on the size of surface Au cluster. The reason is that Au acted as an electron acceptor on GaAs(111)B surface assists the charge transfer of Ga adatoms for filling the partial unoccupied bands of GaAs(111)B surface. Our results are helpful to understand the growth of Au-assisted GaAs nanowires.

  17. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Tae; Black, Robert; Yim, Taeeun; Ji, Xiulei; Nazar, Linda F. [University of Waterloo, Department of Chemistry, Waterloo, ON (Canada)

    2012-12-15

    The concept of surface-initiated growth of oxides on functionalized carbons is introduced as a method to inhibit the dissolution of polysulfide ions in Li-S battery cathode materials. MO{sub x} (M: Si, V) thin layers are homogeneously coated on nanostructured carbon-sulfur composites. The coating significantly inhibits the dissolution of polysulfides on cycling, resulting in enhanced cycle performance and coulombic efficiency of the Li-S battery. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The Association Between Maternal Subclinical Hypothyroidism and Growth, Development, and Childhood Intelligence: A Meta-analysis

    Science.gov (United States)

    Liu, Yahong; Chen, Hui; Jing, Chen; Li, FuPin

    2018-06-01

    To explore the association between maternal subclinical hypothyroidism (SCH) in pregnancy and the somatic and intellectual development of their offspring. Using RevMan 5.3 software, a meta-analysis of cohort studies published from inception to May 2017, focusing on the association between maternal SCH in pregnancy and childhood growth, development and intelligence, was performed. Sources included the Cochrane Library, Pub-Med, Web of Science, China National Knowledge Infrastructure and Wan Fang Data. Analysis of a total of 15 cohort studies involving 1.896 pregnant women with SCH revealed that SCH in pregnancy was significantly associated with the intelligence (p=0.0007) and motor development (pdevelopment, low birth weight, premature delivery, fetal distress and fetal growth restriction.

  19. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  20. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene

    DEFF Research Database (Denmark)

    Nilsson, Louis; Andersen, Mie; Bjerre, Jacob

    2012-01-01

    Scanning tunneling microscopy shows that a layer of graphene can be grown on the hex-reconstructed Pt(100) surface and that the reconstruction is preserved after growth. A continuous sheet of graphene can be grown across domain boundaries and step edges without loss of periodicity or change in di...

  1. 3C-SiC nanocrystal growth on 10° miscut Si(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Geetanjali, E-mail: gitudeo@gmail.com [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); D' Angelo, Marie; Demaille, Dominique [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Cavellin, Catherine Deville [INSP, UPMC, CNRS UMR 7588, 4 place Jussieu, Paris F-75005 (France); Faculté des Sciences et Technologie UPEC, 61 av. De Gaulle, Créteil F-94010 (France)

    2014-04-01

    The growth of 3C-SiC nano-crystal (NC) on 10° miscut Si(001) substrate by CO{sub 2} thermal treatment is investigated by scanning and high resolution transmission electron microscopies. The vicinal Si(001) surface was thermally oxidized prior to the annealing at 1100 °C under CO{sub 2} atmosphere. The influence of the atomic steps at the vicinal SiO{sub 2}/Si interface on the SiC NC growth is studied by comparison with the results obtained for fundamental Si(001) substrates in the same conditions. For Si miscut substrate, a substantial enhancement in the density of the SiC NCs and a tendency of preferential alignment of them along the atomic step edges is observed. The SiC/Si interface is abrupt, without any steps and epitaxial growth with full relaxation of 3C-SiC occurs by domain matching epitaxy. The CO{sub 2} pressure and annealing time effect on NC growth is analyzed. The as-prepared SiC NCs can be engineered further for potential application in optoelectronic devices and/or as a seed for homoepitaxial SiC or heteroepitaxial GaN film growth. - Highlights: • Synthesis of 3C-SiC nanocrystals epitaxied on miscut-Si using a simple technique • Evidence of domain matching epitaxy at the SiC/Si interface • SiC growth proceeds along the (001) plane of host Si. • Substantial enhancement of the SiC nanocrystal density due to the miscut • Effect of the process parameters (CO{sub 2} pressure and annealing duration)

  2. Physical activity promotion through the mass media: inception, production, transmission and consumption.

    Science.gov (United States)

    Finlay, Sara-Jane; Faulkner, Guy

    2005-02-01

    Evaluations of physical activity and health media campaigns have been limited and ignore the complex process of communication and the socially constructed nature of news messages. A systematic search strategy was conducted of the literature which was then assessed from two perspectives. First, studies since 1998 were reviewed for their success in impacting message recall and behavior change. Second, employing a critical media studies perspective the papers were assessed for the presence of a more sophisticated understanding of the media processes of inception, transmission and reception. Overall, recent studies support mass media interventions in influencing short-term physical activity message recall and to a lesser extent associated changes in physical activity knowledge. However, the majority of the papers were found to follow a social marketing or media advocacy theory of media promotion with little in-depth consideration of the comprehensive media processes involved in creating media messages and meaning. Simplistic understandings of media transmission dominate in assessing physical activity and health media campaigns. Fuller understandings of the success of media campaigns, the recall of media messages or associated behaviour change can only truly be understood through the application of a more sophisticated form of media analysis.

  3. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  4. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  5. Fructose-enhanced reduction of bacterial growth on nanorough surfaces

    Directory of Open Access Journals (Sweden)

    Durmus NG

    2012-02-01

    Full Text Available Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC endotracheal tubes (ETTs. PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of

  6. Sequential growth in solution of NiFe Prussian blue coordination network nano-layers on Si(100) surfaces

    International Nuclear Information System (INIS)

    Tricard, Simon; Costa-Coquelard, Claire; Volatron, Florence; Fleury, Benoit; Huc, Vincent; Mallah, Talal; Albouy, Pierre-Antoine; David, Christophe; Miserque, Frederic; Jegou, Pascale; Palacin, Serge

    2012-01-01

    Controlling the elaboration of Coordination Networks (CoNet) on surfaces at the nano-scale remains a challenge. One suitable technique is the Sequential Growth in Solution (SGS), which has the advantage to be simple, cheap and fast. We addressed two issues in this article: i) the controlled synthesis of ultra thin films of CoNet (thickness lower than 10 nm), and ii) the investigation of the influence of the precursors' concentration on the growth process. Si(100) was used because it is possible to prepare atomically flat Si-H surfaces, which is necessary for the growth of ultrathin films. We used, as a model system, the sequential reactions of K 4 [Fe(II)(CN) 6 ] and [Ni(II)(H 2 O) 6 ]Cl 2 that occur by the substitution of the water molecules in the coordination sphere of Ni(II) by the nitrogen atoms of ferrocyanide. We demonstrated that the nature of the deposited film depends mainly on the relative concentration of the anchoring sites versus the precursors' solution. Attenuated Total Reflection Fourier Transformed Infra Red (ATR-FTIR), X-ray reflectivity, X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) were used to characterize the steps of the growth process. (authors)

  7. Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media.

    Science.gov (United States)

    Aldarf, M; Fourcade, F; Amrane, A; Prigent, Y

    2004-07-05

    Geotrichum candidum was cultivated at the surface of solid model media containing peptone to simulate the composition of Camembert cheese. The surface growth of G. candidum induced the diffusion of substrates from the core to the rind and the diffusion of produced metabolites from the rind to the core. In the range of pH measured during G. candidum growth, constant diffusion coefficients were found for lactate and ammonium, 0.4 and 0.8 cm(2) day(-1), respectively, determined in sterile culture medium. Growth kinetics are described using the Verlhust model and both lactate consumption and ammonium production are considered as partially linked to growth. The experimental diffusion gradients of lactate and ammonium recorded during G. candidum growth have been fitted. The diffusion/reaction model was found to match with experimental data until the end of growth, except with regard to ammonium concentration gradients in the presence of lactate in the medium. Indeed, G. candidum preferentially assimilated peptone over lactate as a carbon source, resulting in an almost cessation of ammonium release before the end of growth. On peptone, it was found that the proton transfer did not account for the ammonium concentration gradients. Indeed, amino acids, being positively charged, are involved in the proton transfer at the beginning of growth. This effect can be neglected in the presence of lactate within the medium, and the sum of both lactate consumption and ammonium release gradients corresponded well to the proton transfer gradients, confirming that both components are responsible for the pH increase observed during the ripening of soft Camembert cheese. Copyright 2004 Wiley Periodicals, Inc.

  8. Influence of Contact Angle, Growth Angle and Melt Surface Tension on Detached Solidification of InSb

    Science.gov (United States)

    Wang, Yazhen; Regel, Liya L.; Wilcox, William R.

    2000-01-01

    We extended the previous analysis of detached solidification of InSb based on the moving meniscus model. We found that for steady detached solidification to occur in a sealed ampoule in zero gravity, it is necessary for the growth angle to exceed a critical value, the contact angle for the melt on the ampoule wall to exceed a critical value, and the melt-gas surface tension to be below a critical value. These critical values would depend on the material properties and the growth parameters. For the conditions examined here, the sum of the growth angle and the contact angle must exceed approximately 130, which is significantly less than required if both ends of the ampoule are open.

  9. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231).

    Science.gov (United States)

    Xia, Ling; Huang, Rong; Li, Yinta; Song, Shaoxian

    2017-01-01

    The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.

  10. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  11. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    Science.gov (United States)

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin

  12. Recent developments on the Kardar-Parisi-Zhang surface-growth equation.

    Science.gov (United States)

    Wio, Horacio S; Escudero, Carlos; Revelli, Jorge A; Deza, Roberto R; de la Lama, Marta S

    2011-01-28

    The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.

  13. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  14. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  15. The structure of PbCl2 on the {100} surface of NaCl and its consequences for crystal growth

    Science.gov (United States)

    Townsend, Eleanor R.; Brugman, Sander J. T.; Blijlevens, Melian A. R.; Smets, Mireille M. H.; de Poel, Wester; van Enckevort, Willem J. P.; Meijer, Jan A. M.; Vlieg, Elias

    2018-04-01

    The role that additives play in the growth of sodium chloride is a topic which has been widely researched but not always fully understood at an atomic level. Lead chloride (PbCl2) is one such additive which has been reported to have growth inhibition effects on NaCl {100} and {111}; however, no definitive evidence has been reported which details the mechanism of this interaction. In this investigation, we used the technique of surface x-ray diffraction to determine the interaction between PbCl2 and NaCl {100} and the structure at the surface. We find that Pb2+ replaces a surface Na+ ion, while a Cl- ion is located on top of the Pb2+. This leads to a charge mismatch in the bulk crystal, which, as energetically unfavourable, leads to a growth blocking effect. While this is a similar mechanism as in the anticaking agent ferrocyanide, the effect of PbCl2 is much weaker, most likely due to the fact that the Pb2+ ion can more easily desorb. Moreover, PbCl2 has an even stronger effect on NaCl {111}.

  16. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  17. Experimental investigation on the effect of surface electric field in the growth of tungsten nano-tendril morphology due to low energy helium irradiation

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Brunner, D.

    2016-01-01

    The mechanisms responsible for and controlling the growth of tungsten nano-tendrils (or “fuzz”) under low-energy helium plasma exposure remain unclear. For the first time in nano-tendril experiments, the plasma sheath-produced electric field and the helium (He) ion energy have been decoupled, showing that the sheath electric field has little impact on nano-tendril growth, eliminating a possible cause for tendril growth. The well-established necessary growth conditions for W fuzz were maintained with He ion flux density Γ He  > 10 21  He m −2  s −1 , surface temperature T s  = 1273 K, He ion energy E He  = 64 eV, and He ion fluence Φ He  > 10 24  He m −2 . A grid is situated between the tungsten sample and plasma, with the grid and sample potentials independently controlled in order to control the electric field at the surface of the sample while maintaining the same incident He ion energy to the surface. A calculation of the potential profile in the drift space between the grid and sample was used to account for space charge and calculate the electric field at the surface of the sample. Tungsten fuzz formed at all electric fields tested, even near zero electric field. Also, the depth of the resulting W fuzz layer was unaltered by the electric field when compared to the calculated depth determined from an empirical growth model. The conclusion is that the sheath electric field is not necessary to cause the changes in surface morphology. - Highlights: • Surface electric field is proposed as a possible driver of tungsten fuzz growth. • A method that decouples plasma sheath electric field and ion energy is described. • Tungsten fuzz is shown to grow even without direct exposure to plasma. • Tungsten fuzz grows to the same depth with and without the plasma sheath.

  18. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  19. Population-based, inception cohort study of the incidence, course, and prognosis of mild traumatic brain injury after motor vehicle collisions

    DEFF Research Database (Denmark)

    Cassidy, John David; Boyle, Eleanor; Carroll, Linda J

    2014-01-01

    . PARTICIPANTS: All adults (N=1716) incurring an MTBI in a motor vehicle collision between November 1997 and December 1999 in Saskatchewan. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Age- and sex-stratified incidence rates, time to self-reported recovery, and prognostic factors over a 1-year follow......OBJECTIVE: To determine the incidence, course, and prognosis of adult mild traumatic brain injury (MTBI) caused by motor vehicle collisions. DESIGN: Prospective, population-based, inception cohort study. SETTING: The province of Saskatchewan, Canada, with a population of about 1,000,000 inhabitants...

  20. Health-related quality of life improves during one year of medical and surgical treatment in a European population-based inception cohort of patients with Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Burisch, J; Weimers, P; Pedersen, N

    2014-01-01

    : The EpiCom inception cohort consists of 1560 IBD patients from 31 European centres covering a background population of approximately 10.1million. Patients answered the disease specific Short Inflammatory Bowel Disease Questionnaire (SIBDQ) and generic Short Form 12 (SF-12) questionnaire at diagnosis...

  1. Growth of pentacene on Ag(1 1 1) surface: A NEXAFS study

    International Nuclear Information System (INIS)

    Pedio, M.; Doyle, B.; Mahne, N.; Giglia, A.; Borgatti, F.; Nannarone, S.; Henze, S.K.M.; Temirov, R.; Tautz, F.S.; Casalis, L.; Hudej, R.; Danisman, M.F.; Nickel, B.

    2007-01-01

    Thin films of pentacene (C 22 H 14 ) have become widely used in the field of organic electronics. Here films of C 22 H 14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented. XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10 o

  2. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  3. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    Science.gov (United States)

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  4. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  5. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-05

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

  6. Melanoma in Buckinghamshire: Data from the Inception of the Skin Cancer Multidisciplinary Team

    International Nuclear Information System (INIS)

    Cubitt, J. J.; Khan, A. A.; Royston, E.; Rughani, M.; Budny, B. G.; Cubitt, J. J.; Middleton, M. R.

    2013-01-01

    Background. Melanoma incidence is increasing faster than any other cancer in the UK. The introduction of specialist skin cancer multidisciplinary teams intends to improve the provision of care to patients suffering from melanoma. This study aims to investigate the management and survival of patients diagnosed with melanoma around the time of inception of the regional skin cancer multidisciplinary team both to benchmark the service against published data and to enable future analysis of the impact of the specialisation of skin cancer care. Methods. All patients diagnosed with primary cutaneous melanoma between January 1, 2003 and December 3, 2005 were identified. Data on clinical and histopathological features, surgical procedures, complications, disease recurrence and 5-year survival were collected and analysed. Results. Two hundred and fourteen patients were included, 134 female and 80 males. Median Breslow thickness was 0.74 mm (0.7 mm female and 0.8 mm male). Overall 5-year survival was 88% (90% female and 85% male). Discussion. Melanoma incidence in Buckinghamshire is in keeping with published data. Basic demographics details concur with classic melanoma distribution and more recent trends, with increased percentage of superficial spreading and thin melanomas, leading to improved survival are reflected

  7. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  8. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  9. RHEED studies of the nucleation, growth, and mobility of Ag atoms on the Si(111)7 x 7 surface

    International Nuclear Information System (INIS)

    Roos, K.R.

    1993-07-01

    The low temperature and flux dependent growth of ultrathin Ag films on the Si(111)7x7 surface is studied with Reflection High-Energy Electron Diffraction (RHEED). The grazing incidence geometry of RHEED allows for an incident molecular beam normal to the surface, and makes it an ideal surface probe for studying ultrathin film growth in real time. Short-lived oscillations in the diffracted intensity are observed during Ag deposition at 150 K, indicating quasi-layer-by-layer growth mediated by adatom mobility. When the 150 K growth is performed over a wide range of deposition rates F, the peak intensity is observed to scale, i.e. I(Ft) depends only on the total amount deposited, which implies thermally activated diffusion is absent at 150 K. Scaling is not obeyed at higher temperatures (T≥473 K) for the growth of the √3x√3 R30 degrees (√3) superstructure. Testing for scaling of the diffracted intensity constitutes a new experimental method which can be applied generally to determine if thermal diffusion is active at a particular temperature. Scaling is consistent with a constant diffusion length R 0 , independent of substrate temperature and deposition rate. The presence of a non-thermal diffusion mechanism (responsible for the constant diffusion length R 0 ) is confirmed by monitoring the flux dependence of the √3 superstructure growth during deposition at T≥473 K. At these temperatures the total diffusion length R is given by R=R 0 +(4Dt) 1/2 , where (4Dt) 1/2 is the thermal component. A non-zero intercept R 0 is found by plotting the peak intensity I p 1/2 (a measure of the average domain size) vs. deposition rate F -1/2 (F -1 is proportional to the available diffusion time.) From the FWHM of a low coverage (0.2 ML) √3 spot, an estimation of 50 angstrom is made for a lower bound of the magnitude of R 0

  10. Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method.

    Science.gov (United States)

    Topete, Antonio; Alatorre-Meda, Manuel; Villar-Álvarez, Eva M; Cambón, Adriana; Barbosa, Silvia; Taboada, Pablo; Mosquera, Víctor

    2014-07-23

    We report the synthesis of branched gold nanoshells (BGNS) through a seeded-growth surfactant-less method. This was achieved by decorating chitosan-Pluronic F127 stabilized poly(lactic-co-gycolic) acid nanoparticles (NPs) with Au seeds (NP-seed), using chitosan as an electrostatic self-assembling agent. Branched shells with different degrees of anisotropy and optical response were obtained by modulating the ratios of HAuCl4/K2CO3 growth solution, ascorbic acid (AA) and NP-seed precursor. Chitosan and AA were crucial in determining the BGNS size and structure, acting both as coreductants and structure directing growth agents. Preliminary cytotoxicity experiments point to the biocompatibility of the obtained BGNS, allowing their potential use in biomedical applications. In particular, these nanostructures with "hybrid" compositions, which combine the features of gold nanoshells and nanostars showed a better performance as surface enhanced Raman spectroscopy probes in detecting intracellular cell components than classical smoother nanoshells.

  11. Environmental factors in a population-based inception cohort of inflammatory bowel disease patients in Europe

    DEFF Research Database (Denmark)

    Burisch, J; Pedersen, Natalia; Cukovic-Cavka, S

    2014-01-01

    BACKGROUND AND AIMS: The incidence of inflammatory bowel disease (IBD) is increasing in Eastern Europe possibly due to changes in environmental factors towards a more "westernised" standard of living. The aim of this study was to investigate differences in exposure to environmental factors prior ...... and Western European patients differed in environmental factors prior to diagnosis. Eastern European patients exhibited higher occurrences of suspected risk factors for IBD included in the Western lifestyle.......BACKGROUND AND AIMS: The incidence of inflammatory bowel disease (IBD) is increasing in Eastern Europe possibly due to changes in environmental factors towards a more "westernised" standard of living. The aim of this study was to investigate differences in exposure to environmental factors prior...... to diagnosis in Eastern and Western European IBD patients. METHODS: The EpiCom cohort is a population-based, prospective inception cohort of 1560 unselected IBD patients from 31 European countries covering a background population of 10.1 million. At the time of diagnosis patients were asked to complete an 87...

  12. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin.

    Directory of Open Access Journals (Sweden)

    Damien Destouches

    Full Text Available BACKGROUND: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. CONCLUSION/SIGNIFICANCE: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.

  13. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    Science.gov (United States)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-04-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  14. In situ investigation of helium fuzz growth on tungsten in relation to ion flux, fluence, surface temperature and ion energy using infrared imaging in PSI-2

    International Nuclear Information System (INIS)

    Möller, S; Kachko, O; Rasinski, M; Kreter, A; Linsmeier, Ch

    2017-01-01

    Tungsten is a candidate material for plasma-facing components in nuclear fusion reactors. In operation it will face temperatures >800 K together with an influx of helium ions. Previously, the evolution of special surface nanostructures called fuzz was found under these conditions in a limited window of surface temperature, ion flux and ion energy. Fuzz potentially leads to lower heat load tolerances, enhanced erosion and dust formation, hence should be avoided in a fusion reactor. Here the fuzz growth is reinvestigated in situ during its growth by considering its impact on the surfaces infrared emissivity at 4 μ m wavelength with an infrared camera in the linear plasma device PSI-2. A hole in the surface serves as an emissivity reference to calibrate fuzz thickness versus infrared emissivity. Among new data on the above mentioned relations, a lower fuzz growth threshold of 815 ± 24 K is found. Fuzz is seen to grow on rough and polished surfaces and even on the hole’s side walls alike. Literature scalings for thickness, flux and time relations of the fuzz growth rate could not be reproduced, but for the temperature scaling a good agreement to the Arrhenius equation was found. (paper)

  15. Optical monitoring of surface processes relevant to thin film growth by chemical vapour deposition

    International Nuclear Information System (INIS)

    Simcock, Michael Neil

    2002-01-01

    This thesis reports on the investigation of the use of reflectance anisotropy spectroscopy (RAS) as an in-situ monitor for the preparation and oxidation of GaAs(100) c(4x4) surfaces using a CVD 2000 MOCVD reactor. These surfaces were oxidised using air. It was found that it was possible to follow surface degradation using RA transients at 2.6eV and 4eV. From this data it was possible to speculate on the nature of the surface oxidation process. A study was performed into the rate of surface degradation under different concentrations of air, it was found that the relation between the air concentration and the surface degradation was complicated but that the behaviour of the first third of the degradation approximated a first order behaviour. An estimation of the activation energy of the process was then made, and an assessment of the potential use of the glove-box for STM studies which is an integral part of the MOCVD equipment was also made. Following this, a description is given of the construction of an interferometer for monitoring thin film growth. An investigation is also described into two techniques designed to evaluate the changes in reflected intensity as measured by an interferometer. The first technique uses an iteration procedure to determine the film thickness from the reflection data. This is done using a Taylor series expansion of the thin film reflection function to iterate for the thickness. Problems were found with the iteration when applied to noisy data, these were solved by using a least squares fit to smooth the data. Problems were also found with the iteration at the turning points these were solved using the derivative of the function and by anticipating the position of the turning points. The second procedure uses the virtual interface method to determine the optical constants of the topmost deposited material, the virtual substrate, and the growth rate. This method is applied by using a Taylor series expansion of the thin film reflection

  16. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  17. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    Science.gov (United States)

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth

    Science.gov (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  19. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Self-diffusion dynamics processes relevant to 2D homoepitaxy growth of Ni adatom on Ni(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fusheng [College of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Chen, Yifeng, E-mail: yefengc63@sina.com [College of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Wang, Yufei, E-mail: yejin802@126.com [College of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Liu, Zhulin; Hu, Zhongliang [College of Metallurgical Engineering, Hunan University of Technology, Zhuzhou 412007 (China); Yang, Xiyuan [Department of Physics, Hunan University of Arts and Science, Changde 415000 (China); Luo, Wenhua [Department of Physics and Electronic Information Science, Hunan Institute of Science and Technology, Yueyang 414006 (China)

    2014-07-01

    Using molecular dynamics and modified analytic embedded atom methods, the atomic self-diffusion dynamics behaviors relevant to 2D crystal growth on Ni(111) surface have been studied between 150 and 600 K. On perfect Ni(111) surface, the activation energy and prefactor are 0.058±0.001 eV and 4.2×10{sup −4} cm{sup 2}/s between 150 and 350 K, and 0.082±0.003 eV and 7.8×10{sup −4} cm{sup 2}/s from 400 to 600 K. Ni adatom just hops along the directions of close-packed steps on stepped Ni(111) surface, the corresponding activation energies and prefactors are 0.188±0.002 eV and (3.8–4.4)×10{sup −3} cm{sup 2}/s along the direction of A-type step, 0.140±0.001 eV and (1.1–1.2)×10{sup −3} cm{sup 2}/s along the direction of B-type step, and both fitting lines of Arrhenius law intersect at T{sub c}=420–440 K. Our results show that the atomic growth dynamics under nonequilibrium conditions is gradually dominated by the prefactor with increasing temperature. In addition, the shape-change of the 2D nanometer-size island has been discussed on stepped Ni(111) surface in different temperature range.

  1. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Liang Tang [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Jin Yan, E-mail: yanjin@fmmu.edu.cn [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)

    2009-05-05

    Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 {mu}m were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering.

  2. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Liang Tang; Jin Fang; Liu Shouxin; Jin Yan

    2009-01-01

    Microparticles can serve as substrates for cell amplification and deliver the expanded cells to the site of the defect. It was hypothesized that a novel microparticle combined of sustained and localized delivery of proliferative growth factors and gyrus-patterned surface would influence the cell behaviours of adherence and expansion on the microparticle in the present study. To test the hypothesis, gelatin particles with diameter ranging from 280 to 350 μm were fabricated and were modified by cryogenic freeze-drying treatment and basic fibroblast growth factor (bFGF) incorporation. The results of in vitro chondrocyte culture illustrated that cells could proliferate more obviously on the microparticles with bFGF addition, but no correlation between attachment rate and bFGF was observed. On the other hand, microparticles with gyrus-patterned surface demonstrated the highest cell attachment rate and higher rate of cell growth, in particular on bFGF combined ones. It seems to be a promising candidate as a chondrocyte microparticle and could be the potential application in cartilage tissue engineering.

  3. Homo- and heteroepitaxial growth behavior of upright InAs nanowires on InAs and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jens; Gottschalch, Volker; Paetzelt, Hendrik [Institut fuer Anorganische Chemie, Universitaet Leipzig, Johannesallee 29, D-04103 Leipzig (Germany); Wagner, Gerald [Institut fuer Kristallographie und Mineralogie, Universitaet Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Pietsch, Ulrich [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2008-07-01

    Semiconductor nanowires (NW) acquire recently attraction because of promising new application fields in electronics and optoelectronic. We applied the vapor-liquid-solid mechanism with gold seeds in combination with low-pressure metal-organic vapor phase epitaxy (LP-MOVPE) to achieve replicable InAs NW growth with high growth rates. Since the initial alloying of the gold seeds with the substrate material plays a deciding role for the inceptive NW growth, InAs free standing nanowires were grown on GaAs(111)B substrate as well as on InAs/GaAs(111)B quasi-substrate. The influence of the MOVPE parameters will be discussed with respect to NW morphology and real-structure. A special focus will be set on the heteroepitaxial InAs NW growth on GaAs substrates. Gracing-incidence X-ray studies and transmission electron microscopy investigations revealed the existence of a thin Ga{sub x}In{sub 1-x}As graduated alloy layer with embedded crystalline gold alloy particles at the NW substrate interface. The effect of droplet composition on the VLS growth will be presented in a thermodynamic model.

  4. Effects of atomic hydrogen on the selective area growth of Si and Si1-xGex thin films on Si and SiO2 surfaces: Inhibition, nucleation, and growth

    International Nuclear Information System (INIS)

    Schroeder, T.W.; Lam, A.M.; Ma, P.F.; Engstrom, J.R.

    2004-01-01

    Supersonic molecular beam techniques have been used to study the nucleation of Si and Si 1-x Ge x thin films on Si and SiO 2 surfaces, where Si 2 H 6 and GeH 4 have been used as sources. A particular emphasis of this study has been an examination of the effects of a coincident flux of atomic hydrogen. The time associated with formation of stable islands of Si or Si 1-x Ge x on SiO 2 surfaces--the incubation time--has been found to depend strongly on the kinetic energy of the incident molecular precursors (Si 2 H 6 and GeH 4 ) and the substrate temperature. After coalescence, thin film morphology has been found to depend primarily on substrate temperature, with smoother films being grown at substrate temperatures below 600 deg. C. Introduction of a coincident flux of atomic hydrogen has a large effect on the nucleation and growth process. First, the incubation time in the presence of atomic hydrogen has been found to increase, especially at substrate temperatures below 630 deg. C, suggesting that hydrogen atoms adsorbed on Si-like sites on SiO 2 can effectively block nucleation of Si. Unfortunately, in terms of promoting selective area growth, coincident atomic hydrogen also decreases the rate of epitaxial growth rate, essentially offsetting any increase in the incubation time for growth on SiO 2 . Concerning Si 1-x Ge x growth, the introduction of GeH 4 produces substantial changes in both thin film morphology and the rate nucleation of poly-Si 1-x Ge x on SiO 2 . Briefly, the addition of Ge increases the incubation time, while it lessens the effect of coincident hydrogen on the incubation time. Finally, a comparison of the maximum island density, the time to reach this density, and the steady-state polycrystalline growth rate strongly suggests that all thin films [Si, Si 1-x Ge x , both with and without H(g)] nucleate at special sites on the SiO 2 surface, and grow primarily via direct deposition of adatoms on pre-existing islands

  5. Nutrients interaction investigation to improve Monascus purpureus FTC5391 growth rate using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Mohamad, R.

    2013-01-01

    Full Text Available Aims: Two vital factors, certain environmental conditions and nutrients as a source of energy are entailed for successful growth and reproduction of microorganisms. Manipulation of nutritional requirement is the simplest and most effectual strategy to stimulate and enhance the activity of microorganisms. Methodology and Results: In this study, response surface methodology (RSM and artificial neural network (ANN were employed to optimize the carbon and nitrogen sources in order to improve growth rate of Monascus purpureus FTC5391,a new local isolate. The best models for optimization of growth rate were a multilayer full feed-forward incremental back propagation network, and a modified response surface model using backward elimination. The optimum condition for cell mass production was: sucrose 2.5%, yeast extract 0.045%, casamino acid 0.275%, sodium nitrate 0.48%, potato starch 0.045%, dextrose 1%, potassium nitrate 0.57%. The experimental cell mass production using this optimal condition was 21 mg/plate/12days, which was 2.2-fold higher than the standard condition (sucrose 5%, yeast extract 0.15%, casamino acid 0.25%, sodium nitrate 0.3%, potato starch 0.2%, dextrose 1%, potassium nitrate 0.3%. Conclusion, significance and impact of study: The results of RSM and ANN showed that all carbon and nitrogen sources tested had significant effect on growth rate (P-value < 0.05. In addition the use of RSM and ANN alongside each other provided a proper growth prediction model.

  6. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  7. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    Science.gov (United States)

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  8. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  9. Investigating the Effect of Growth Phase on the Surface-Layer Associated Proteome of Lactobacillus acidophilus Using Quantitative Proteomics

    Directory of Open Access Journals (Sweden)

    Courtney Klotz

    2017-11-01

    Full Text Available Bacterial surface-layers (S-layers are semi-porous crystalline arrays that self-assemble to form the outermost layer of some cell envelopes. S-layers have been shown to act as scaffolding structures for the display of auxiliary proteins externally. These S-layer associated proteins have recently gained attention in probiotics due to their direct physical contact with the intestinal mucosa and potential role in cell proliferation, adhesion, and immunomodulation. A number of studies have attempted to catalog the S-layer associated proteome of Lactobacillus acidophilus NCFM under a single condition. However, due to the versatility of the cell surface, we chose to employ a multiplexing-based approach with the intention of accurately contrasting multiple conditions. In this study, a previously described lithium chloride isolation protocol was used to release proteins bound to the L. acidophilus S-layer during logarithmic and early stationary growth phases. Protein quantification values were obtained via TMT (tandem mass tag labeling combined with a triple-stage mass spectrometry (MS3 method. Results showed significant growth stage-dependent alterations to the surface-associated proteome while simultaneously highlighting the sensitivity and reproducibility of the technology. Thus, this study establishes a framework for quantifying condition-dependent changes to cell surface proteins that can easily be applied to other S-layer forming bacteria.

  10. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  11. RHEED studies of the nucleation, growth, and mobility of Ag atoms on the Si(111)7 x 7 surface

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Kelly Ryan [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    The low temperature and flux dependent growth of ultrathin Ag films on the Si(111)7x7 surface is studied with Reflection High-Energy Electron Diffraction (RHEED). The grazing incidence geometry of RHEED allows for an incident molecular beam normal to the surface, and makes it an ideal surface probe for studying ultrathin film growth in real time. Short-lived oscillations in the diffracted intensity are observed during Ag deposition at 150 K, indicating quasi-layer-by-layer growth mediated by adatom mobility. When the 150 K growth is performed over a wide range of deposition rates F, the peak intensity is observed to scale, i.e. I(Ft) depends only on the total amount deposited, which implies thermally activated diffusion is absent at 150 K. Scaling is not obeyed at higher temperatures (T≥473 K) for the growth of the √3x√3 R30° (√3) superstructure. Testing for scaling of the diffracted intensity constitutes a new experimental method which can be applied generally to determine if thermal diffusion is active at a particular temperature. Scaling is consistent with a constant diffusion length R0, independent of substrate temperature and deposition rate. The presence of a non-thermal diffusion mechanism (responsible for the constant diffusion length R0) is confirmed by monitoring the flux dependence of the √3 superstructure growth during deposition at T≥473 K. At these temperatures the total diffusion length R is given by R=R0+(4Dt)1/2, where (4Dt)1/2 is the thermal component. A non-zero intercept R0 is found by plotting the peak intensity Ip1/2 (a measure of the average domain size) vs. deposition rate F-1/2 (F-1 is proportional to the available diffusion time.) From the FWHM of a low coverage (0.2 ML) √3 spot, an estimation of 50 Å is made for a lower bound of the magnitude of R0.

  12. Study of leakage current behaviour on artificially polluted surface of ceramic insulator

    International Nuclear Information System (INIS)

    Subba Reddy, B.; Nagabhushana, G.R.

    2003-01-01

    This paper presents the results of the study concerning to the leakage current behaviour on artificially polluted ceramic insulator surface. From the present study it was observed that there is a reasonably well-defined inception of current i.e. scintillations at a finite voltage. The corresponding voltages for extinction of the current are in the range of 0.8 kV to 2.1 kV. Obviously, the dry band formed in the immediate vicinity of the pin prevents smooth current flow as the voltage rises from zero. Only when the voltage is adequate it causes a flashover of the dray band and current starts flowing. As is common in similar current extinction phenomena, here also, the extinction voltages are significantly lower than the inception voltages. Further, the voltage-current curves invariably show hysteresis-the leakage currents are lower in the reducing portion of the voltage. This is obviously due to drying of the wet pollutant layer thereby increasing its resistance. It is believed that this is the first time that such a direct quantitative evidence of drying in individual half cycles is experimentally visualized

  13. Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation

    Directory of Open Access Journals (Sweden)

    Silviya Mikhailovna Ojovan

    2014-06-01

    Full Text Available Using a variety of proliferating cell types, it was shown that the surface of nanocrystalline-diamond (NCD provides a permissive substrate for cell adhesion and development without the need of complex chemical functionalization prior to cell seeding. In an extensive series of experiments we found that, unlike proliferating cells, post-mitotic primary neurons do not adhere to bare NCD surfaces when cultured in defined medium. These observations raise questions on the potential use of bare NCD as an interfacing layer for neuronal devices. Nevertheless, we also found that classical chemical functionalization methods render the hostile bare NCD surfaces with adhesive properties that match those of classically functionalized substrates used extensively in biomedical research and applications. Based on the results, we propose a mechanism that accounts for the conflicting results; which on one hand claim that un-functionalized NCD provides a permissive substrate for cell adhesion and growth, while other reports demonstrate the opposite.

  14. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  15. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature

    Directory of Open Access Journals (Sweden)

    Gourdin Stéphane

    2014-01-01

    Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.

  16. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  17. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  18. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    Science.gov (United States)

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  19. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  20. Growth Mechanism and Surface Structure of Ge Nanocrystals Prepared by Thermal Annealing of Cosputtered GeSiO Ternary Precursor

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available Ge nanocrystals (Ge-ncs embedded in a SiO2 superlattice structure were prepared by magnetron cosputtering and postdeposition annealing. The formation of spherical nanocrystals was confirmed by transmission electron microscopy and their growth process was studied by a combination of spectroscopic techniques. The crystallinity volume fraction of Ge component was found to increase with crystallite size, but its overall low values indicated a coexistence of crystalline and noncrystalline phases. A reduction of Ge-O species was observed in the superlattice during thermal annealing, accompanied by a transition from oxygen-deficient silicon oxide to silicon dioxide. A growth mechanism involving phase separation of Ge suboxides (GeOx was then proposed to explain these findings and supplement the existing growth models for Ge-ncs in SiO2 films. Further analysis of the bonding structure of Ge atoms suggested that Ge-ncs are likely to have a core-shell structure with an amorphous-like surface layer, which is composed of GeSiO ternary complex. The surface layer thickness was extracted to be a few angstroms and equivalent to several atomic layer thicknesses.

  1. Molecular mechanisms of crystal growth

    International Nuclear Information System (INIS)

    Pina, C. M.

    2000-01-01

    In this paper I present an example of the research that the Mineral Surface Group of the Munster University is conducting in the field of Crystal Growth. Atomic Force Microscopy (Am) in situ observations of different barite (BaSO4) faces growing from aqueous solutions, in combination with computer simulations of the surface attachment of growth units allows us to test crystal growth models. Our results demonstrate the strong structural control that a crystal can exert on its own growth, revealing also the limitation of the classical crystal growth theories (two dimensional nucleation and spiral growth models) in providing a complete explanation for the growth behaviour at a molecular scale. (Author) 6 refs

  2. Growth of binary solid solution single crystals and calculation of melt surface displacement velocity

    International Nuclear Information System (INIS)

    Agamaliyev, Z.A.; Tahirov, V.I.; Hasanov, Z.Y.; Quliyev, A.F.

    2007-01-01

    A binary solid solution single crystal growth method has been worked out. Cylinder feeding alloy with complex content distribution and truncated cone crucible are used. Second component distribution coefficient is more than unit. Content distribution along grown crystal is found by solving continuity equation. After reaching dynamic equilibrium state second component concentration in grown crystal is saturated the value of which is less than the average ona in the feeding alloy. Using the method Ge-Si perfect single crystals has been grown. Calculation method of melt surface displacement velocity has been offered as well

  3. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  4. Monitoring massive fracture growth at 2-km depths using surface tiltmeter arrays

    Science.gov (United States)

    Wood, M.D.

    1979-01-01

    Tilt due to massive hydraulic fractures induced in sedimentary rocks at depths of up to 2.2 km have been recorded by surface tiltmeters. Injection of fluid volumes up to 4 ?? 105 liters and masses of propping agent up to 5 ?? 105 kg is designed to produce fractures approximately 1 km long, 50-100 m high and about 1 cm wide. The surface tilt data adequately fit a dislocation model of a tensional fault in a half-space. Theoretical and observational results indicate that maximum tilt occurs at a distance off the strike of the fracture equivalent to 0.4 of the depth to the fracture. Azimuth and extent of the fracture deduced from the geometry of the tilt field agree with other kinds of geophysical measurements. Detailed correlation of the tilt signatures with pumping parameters (pressure, rate, volume, mass) have provided details on asymmetry in geometry and growth rate. Whereas amplitude variations in tilt vary inversely with the square of the depth, changes in flow rate or pressure gradient can produce a cubic change in width. These studies offer a large-scale experimental approach to the study of problems involving fracturing, mass transport, and dilatancy processes. ?? 1979.

  5. The last glacial inception in continental northwestern Europe: characterization and timing of the Late Eemian Aridity Pulse (LEAP) recorded in multiple Belgian speleothems.

    Science.gov (United States)

    Vansteenberge, Stef; Verheyden, Sophie; Quinif, Yves; Genty, Dominique; Blamart, Dominique; Deprez, Maxim; Van Stappen, Jeroen; Cnudde, Veerle; Cheng, Hai; Edwards, R. Lawrence; Claeys, Philippe

    2017-04-01

    Interglacial-glacial transitions represent important turnovers in the climate system. In contrast with glacial terminations, they are described as a more gradual cooling. So far, the last interglacial has yielded a wealth of knowledge regarding climate dynamics during past warm periods. On top of the assumed gradual temperature drop starting at 119 ka, evidence for the presence of a drastic drying/cooling event in northern Europe has been observed. In lake records from Germany, a distinct shift in pollen assembly at 117.5 ka is interpreted as the consequence of a short dry event lasting 470 years, defined as the Late Eemian Aridity Pulse (LEAP, Sirocko et al., 2005). In a Belgian stalagmite from Han-sur-Lesse Cave, the LEAP is characterized by a 5‰ increase in δ13C occurring in just 200 years. The δ13C enrichment is dated at 117.5 ka and associated with a vegetation change above the cave, induced by a drying and/or cooling event (Vansteenberge et al., 2016). Also, within North Atlantic sediment cores, an increase in ice rafted debris was linked to the occurrence of a colder period at 117 ka (Irvali et al., 2016). Its coevality with the LEAP indicates a likely more regional extent than previously thought. Up to now, no independent chronology exists and little is known about the continental climatic expression of the LEAP. This study aims at 1) constructing an improved and independent chronology for the LEAP event, 2) characterizing this event in terms of its climatic expression and 3) placing the LEAP within the context of an interglacial-glacial transition. For this, two additional speleothems (Han-8, RSM-17) from two different Belgian caves (Han-sur-Lesse, Remouchamps) are added to the existing Han-9 dataset. Exceptionally high growth rates (0.5 mm yr-1) and a presumed annual layering of the RSM-17 sample enable an annual to decadal resolution to investigate the LEAP. U-Th age models covering the glacial inception are constructed with 25 dates on the three

  6. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  7. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  8. Electronic and structural characterizations of unreconstructed {l_brace}0001{r_brace} surfaces and the growth of graphene overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Emtsev, Konstantin

    2009-06-03

    The present work is focused on the characterization of the clean unreconstructed SiC{l_brace}0001{r_brace} surfaces and the growth of graphene overlayers thereon. Electronic properties of SiC surfaces and their interfaces with graphene and few layer graphene films were investigated by means of angle resolved photoelectron spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Structural characterizations of the epitaxial graphene films grown on SiC were carried out by atomic force microscopy and low energy electron microscopy. Supplementary data was obtained by scanning tunneling microscopy. (orig.)

  9. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  10. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  11. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    International Nuclear Information System (INIS)

    Illias, Hazlee A; Chen, George; Lewin, Paul L

    2011-01-01

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  12. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  13. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Zhang, Weiqing; Liu, Jie; Niu, Wenxin; Yan, Heng; Lu, Xianmao; Liu, Bin

    2018-04-19

    Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO 3 used. Upon 785 nm excitation, single Au-Ag NC 350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

  14. Control of surface adatom kinetics for the growth of high-indium content InGaN throughout the miscibility gap

    Science.gov (United States)

    Moseley, Michael; Lowder, Jonathan; Billingsley, Daniel; Doolittle, W. Alan

    2010-11-01

    The surface kinetics of InGaN alloys grown via metal-modulated epitaxy (MME) are explored in combination with transient reflection high-energy electron diffraction intensities. A method for monitoring and controlling indium segregation in situ is demonstrated. It is found that indium segregation is more accurately associated with the quantity of excess adsorbed metal, rather than the metal-rich growth regime in general. A modified form of MME is developed in which the excess metal dose is managed via shuttered growth, and high-quality InGaN films throughout the miscibility gap are grown.

  15. Control of surface adatom kinetics for the growth of high-indium content InGaN throughout the miscibility gap

    International Nuclear Information System (INIS)

    Moseley, Michael; Lowder, Jonathan; Billingsley, Daniel; Doolittle, W. Alan

    2010-01-01

    The surface kinetics of InGaN alloys grown via metal-modulated epitaxy (MME) are explored in combination with transient reflection high-energy electron diffraction intensities. A method for monitoring and controlling indium segregation in situ is demonstrated. It is found that indium segregation is more accurately associated with the quantity of excess adsorbed metal, rather than the metal-rich growth regime in general. A modified form of MME is developed in which the excess metal dose is managed via shuttered growth, and high-quality InGaN films throughout the miscibility gap are grown.

  16. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  17. Methodology Proposal for Increasing Swift Trust within Virtual Teams in the Inception Phase of a Project Life-Cycle: Project Manager’s Perspective

    Directory of Open Access Journals (Sweden)

    Milovanović Bojan Morić

    2015-12-01

    Full Text Available This paper proposes team building methodology for project managers in virtual teams as means to develop swift trust between new team members in the inception phase of the project life cycle. Proposed methodology encompasses activities within the first three days after the team formation and proposes the measuring tools for monitoring and managing trust development within the project team. Aim of this paper is to provide new insights to various decision makers potentially interested in increasing the performance of project teams operating in virtual environment, such as: investors, business owners and project managers working in virtual environment.

  18. Mix and instability growth seeded at the inner surface of CH-ablator implosions on the National Ignition Facility

    Science.gov (United States)

    Haan, S. W.; Celliers, P. M.; Collins, G. W.; Orth, C. D.; Clark, D. S.; Amendt, P.; Hammel, B. A.; Robey, H. F.; Huang, H.

    2014-10-01

    Mix and hydro instability growth are key issues in implosions of ignition targets on NIF. The implosions are designed so that the amplitude of perturbations is thought to be determined by initial seeds to the hydrodynamic instabilities, amplified by an instability growth factor. Experiments have indicated that growth factors can be calculated fairly well, but characterizing the initial seeds is an ongoing effort. Several threads of investigation this year have increased our understanding of growth seeded at the CH/DT interface. These include: more detailed characterization of the CH inner surface; possible other seeds, such as density irregularities either from fabrication defects or arising during the implosion; experiments on the Omega laser measuring velocity modulations on shock fronts shortly after breaking out from the CH, which can seed subsequent growth; and the possible significance of non-hydrodynamic effects such as plasma interpenetration or spall-like ejecta upon shock breakout. This presentation describes these developments, the relationships between them, and their implications for ignition target performance. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  19. Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

    International Nuclear Information System (INIS)

    Kim, Dae Hee; Kim, Dae Hyun; Jeong, Yong Chan; Seo, Hwa Il; Kim, Yeong Cheol

    2010-01-01

    We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom's lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation

  20. Surface tearing modes in tokamaks

    International Nuclear Information System (INIS)

    Takizuka, Tomonori; Kurita, Gen-ichi; Azumi, Masafumi; Takeda, Tatsuoki

    1985-10-01

    Surface tearing modes in tokamaks are studied numerically and analytically. The eigenvalue problem is solved to obtain the growth rate and the mode structure. We investigate in detail dependences of the growth rate of the m/n = 2/1 resistive MHD modes on the safety factor at the plasma surface, current profile, wall position, and resistivity. The surface tearing mode moves the plasma surface even when the wall is close to the surface. The stability diagram for these modes is presented. (author)

  1. study of the inception lengt e inception lengt e inception length

    African Journals Online (AJOL)

    User

    of optimization and also correlates the Bauer's length with that of the present study. 2. ... Ten physical models of stepped-channel chute were built and fixed at the ..... of Stepped Chute Spillways”, Hydropower Dams J.,. 1994, pp. 33-42.

  2. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....

  3. Tailoring of the PS surface with low energy ions: Relevance to growth and adhesion of noble metals

    International Nuclear Information System (INIS)

    Zaporojtchenko, V.; Zekonyte, J.; Wille, S.; Schuermann, U.; Faupel, F.

    2005-01-01

    Ion-polymer interaction induces different phenomena in the near surface layer of polymers, and promotes its adhesion to metals. Using XPS, TEM and AFM, polystyrene surface was examined after 1 keV ion-beam treatments with oxygen, nitrogen and argon ions in the ion fluence range from 10 12 to 10 16 cm -2 to clarify the following points: chemical reaction after treatment in vacuum and after exposure to air, identification of adsorption-relevant species for metal atoms, formation of cross-links in the outermost polymer layer. The early stages of metal-polymer interface formation during metallization play a crucial role in the metal-polymer adhesion. Therefore, the influence of the ion fluence and ion chemistry on the condensation of noble metals, film growth and peel strength were measured. The peel strength showed a maximum at a certain fluence depending on ion chemistry. For example, the surface treatment with very low fluence of oxygen ions improved the adhesion between copper and polystyrene by two orders of magnitude without significantly increasing the surface roughness measured with AFM. The locus of failure changed at the same time from interfacial failure for untreated polymer surfaces to cohesive failure in the polymer for modified surfaces. A multilayer model of the metal-polymer interface after ion treatment is suggested

  4. Studies on the controlled growth of InAs nanostructures on scission surfaces; Untersuchungen zum kontrollierten Wachstum von InAs-Nanostrukturen auf Spaltflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, J.

    2006-01-15

    The aim of this thesis was the controlled alignment of self-assembled InAs nano-structures on a {l_brace}110{r_brace}-oriented surface. The surface is prestructured with the atomic precision offered by molecular beam epitaxy, using the cleaved edge overgrowth-technique. On all samples grown within this work, the epitaxial template in the first growth step was deposited on a (001)GaAs substrate, while the InAs-layer forming the nanostructures during the second growth step was grown on cleaved {l_brace}110{r_brace}-GaAs surfaces. Atomic Force Microscopy (AFM) investigations demonstrate the formation of quantum dot (QD)-like nanostructures on top of the AlAs-stripes. X-ray diffraction measurements on large arrays of aligned quantum dots demonstrate that the quantum dots are formed of pure InAs. First investigations on the optical properties of these nanostructures were done using microphotoluminescence-spectroscopy with both high spatial and spectral resolution. (orig.)

  5. Optimization of Al-CVD process based on elementary reaction simulation and experimental verification: From the growth rate to the surface morphology

    International Nuclear Information System (INIS)

    Sugiyama, Masakazu; Iino, Tomohisa; Nakajima, Tohru; Tanaka, Takeshi; Egashira, Yasuyuki; Yamashita, Kohichi; Komiyama, Hiroshi; Shimogaki, Yukihiro

    2006-01-01

    We propose a method to reduce the surface roughness of Al film in the chemical vapor deposition (CVD) using dimethyl-aluminum-hydride (DMAH) as the precursor. An elementary reaction simulation was executed not only to predict the deposition rate but also to predict the coverage of the film by surface adsorbates. It was assumed that high surface coverage is essential in order to deposit smooth films because the adsorbates protect the surface from oxidation which causes discontinuous growth of crystal grains. According to this principle, the condition, that realizes both high surface coverage and high deposition rate at the same time by using the elementary reaction simulation, was sought. A nozzle inlet was used instead of a conventional showerhead. This drastically improved the surface morphology, showing the effectiveness of this theoretical optimization procedure

  6. Modelling the impact of sanitation, population growth and urbanization on human emissions of Cryptosporidium to surface waters—a case study for Bangladesh and India

    NARCIS (Netherlands)

    Vermeulen, L.C.; Kraker, Dummy; Hofstra, N.; Kroeze, C.; Medema, G.J.

    2015-01-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a

  7. Modelling the impact of sanitation, population growth and urbanization on human emissions of cryptosporidium to surface waters : A case study for Bangladesh and India

    NARCIS (Netherlands)

    Vermeulen, L.C.; Kraker, J.; Hofstra, N.; Kroeze, C.; Medema, G.

    2015-01-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a

  8. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  9. Psychosocial factors and their predictive value in chiropractic patients with low back pain: a prospective inception cohort study

    Directory of Open Access Journals (Sweden)

    Breen Alan C

    2007-03-01

    Full Text Available Abstract Background Being able to estimate the likelihood of poor recovery from episodes of back pain is important for care. Studies of psychosocial factors in inception cohorts in general practice and occupational populations have begun to make inroads to these problems. However, no studies have yet investigated this in chiropractic patients. Methods A prospective inception cohort study of patients presenting to a UK chiropractic practice for new episodes of non-specific low back pain (LBP was conducted. Baseline questionnaires asked about age, gender, occupation, work status, duration of current episode, chronicity, aggravating features and bothersomeness using Deyo's 'Core Set'. Psychological factors (fear-avoidance beliefs, inevitability, anxiety/distress and coping, and co-morbidity were also assessed at baseline. Satisfaction with care, number of attendances and pain impact were determined at 6 weeks. Predictors of poor outcome were sought by the calculation of relative risk ratios. Results Most patients presented within 4 weeks of onset. Of 158 eligible and willing patients, 130 completed both baseline and 6-week follow-up questionnaires. Greatest improvements at 6 weeks were in interference with normal work (ES 1.12 and LBP bothersomeness (ES 1.37. Although most patients began with moderate-high back pain bothersomeness scores, few had high psychometric ones. Co-morbidity was a risk for high-moderate interference with normal work at 6 weeks (RR 2.37; 95% C.I. 1.15–4.74. An episode duration of >4 weeks was associated with moderate to high bothersomeness at 6 weeks (RR 2.07; 95% C.I. 1.19 – 3.38 and negative outlook (inevitability with moderate to high interference with normal work (RR 2.56; 95% C.I. 1.08 – 5.08. Conclusion Patients attending a private UK chiropractic clinic for new episodes of non-specific LBP exhibited few psychosocial predictors of poor outcome, unlike other patient populations that have been studied. Despite

  10. Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception

    Science.gov (United States)

    Habibzadeh, Mehdi; Jannesari, Mahboobeh; Rezaei, Zahra; Baharvand, Hossein; Totonchi, Mehdi

    2018-04-01

    This works gives an account of evaluation of white blood cell differential counts via computer aided diagnosis (CAD) system and hematology rules. Leukocytes, also called white blood cells (WBCs) play main role of the immune system. Leukocyte is responsible for phagocytosis and immunity and therefore in defense against infection involving the fatal diseases incidence and mortality related issues. Admittedly, microscopic examination of blood samples is a time consuming, expensive and error-prone task. A manual diagnosis would search for specific Leukocytes and number abnormalities in the blood slides while complete blood count (CBC) examination is performed. Complications may arise from the large number of varying samples including different types of Leukocytes, related sub-types and concentration in blood, which makes the analysis prone to human error. This process can be automated by computerized techniques which are more reliable and economical. In essence, we seek to determine a fast, accurate mechanism for classification and gather information about distribution of white blood evidences which may help to diagnose the degree of any abnormalities during CBC test. In this work, we consider the problem of pre-processing and supervised classification of white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a consecutive proposed deep learning framework. For first step, this research proposes three consecutive pre-processing calculations namely are color distortion; bounding box distortion (crop) and image flipping mirroring. In second phase, white blood cell recognition performed with hierarchy topological feature extraction using Inception and ResNet architectures. Finally, the results obtained from the preliminary analysis of cell classification with (11200) training samples and 1244 white blood cells evaluation data set are presented in confusion matrices and interpreted using accuracy rate, and false

  11. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  12. Adhesion strength and spreading characteristics of EPS on membrane surfaces during lateral and central growth.

    Science.gov (United States)

    Tansel, Berrin; Tansel, Derya Z

    2013-11-01

    Deposition of extracellular polymeric substances (EPS) on membrane surfaces is a precursor step for bacterial attachment. The purpose of this study was to analyze the morphological changes on a clean polysulfone ultrafilration membrane after exposure to effluent from a membrane bioreactor. The effluent was filtered to remove bacteria before exposing the membrane. The morphological characterization was performed by atomic force microscopy (AFM). The lateral (2D) and central growth characteristics (3D) of the EPS deposits were evaluated by section and topographical analyses of the height images. The contact angle of single EPS units was 9.07 ± 0.50° which increased to 24.41 ± 1.00° for large clusters (over 10 units) and decreased to 18.68 ± 1.00° for the multilayered clusters. The surface tension of the single EPS units was 49.34 ± 1.70 mNm(-1). The surface tension of single layered small and large EPS clusters were 51.26 ± 2.05 and 53.48 ± 2.01 mNm(-1), respectively. For the multilayered clusters, the surface tension was 51.43 ± 2.05 mNm(-1). The spreading values were negative for all deposits on the polysulfone membrane indicating that the EPS clusters did not have tendency to spread but preferred to retain their shapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Bi induced step-flow growth in the homoepitaxial growth of Au(1 1 1)

    International Nuclear Information System (INIS)

    Kamiko, M.; Mizuno, H.; Chihaya, H.; Xu, J.-H.; Kojima, I.; Yamamoto, R.

    2005-01-01

    Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 x 1) reconstruction structure changes to a (1 x 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 x 2√3)R30 deg by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 x 1) and (2√3 x 2√3)R30 deg surfaces is longer than that on the Au(1 1 1) (23 x 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport

  14. Spatial variations of growth within domes having different patterns of principal growth directions

    Directory of Open Access Journals (Sweden)

    Jerzy Nakielski

    2014-01-01

    Full Text Available Growth rate variations for two paraboloidal domes: A and B, identical when seen from the outside but differing in the internal pattern of principal growth directions, were modeled by means of the growth tensor and a natural coordinate system. In dome A periclinal trajectories in the axial plane were given by confocal parabolas (as in a tunical dome, in dome B by parabolas converging to the vertex (as in a dome without a tunica. Accordingly, two natural coordinate systems, namely paraboloidal for A and convergent parabolic for B, were used. In both cases, the rate of growth in area on the surfaces of domes was assumed to be isotropic and identical in corresponding points. It appears that distributions of growth rates within domes A and B are similar in their peripheral and central parts and different only in their distal regions. In the latter, growth rates are relatively large; the maximum relative rate of growth in volume is around the geometric focus in dome A, and on the surface around the vertex in dome B.

  15. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    Science.gov (United States)

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  16. Photographic appraisal of crystal lattice growth technique

    Directory of Open Access Journals (Sweden)

    Kapoor D

    2005-01-01

    Full Text Available Concept of creating mechanical retention for bonding through crystal growth has been successfully achieved in the present study. By using polyacrylic acid, sulphated with sulphuric acid as etchant, abundant crystal growth was demonstrated. Keeping in view the obvious benefits of crystal growth technique, the present SEM study was aimed to observe and compare the changes brought about by different etching agents (phosphoric acid, polyacrylic acid and polyacrylic acid sulphated and to evaluate their advantages and disadvantages in an attempt to reduce iatrogenic trauma caused due to surface enamel alteration. Control and experimental groups were made of 24 and 30 premolars, respectively, for scanning electron microscopic appraisal of normal unetched and etched enamel surface and fracture site and finished surface evaluation. When compared with conventional phosphoric acid and weaker polyacrylic acid, investigations indicated that crystal growth treatment on enamel surface caused minimal iatrogenic trauma and surface alteration were restored to the original untreated condition to a large extent.

  17. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy

    OpenAIRE

    Le Febvrier, Arnaud; Jensen, Jens; Eklund, Per

    2017-01-01

    The effect of the wet-cleaning process using solvents and detergent on the surface chemistry of MgO(001) substrate for film deposition was investigated. Six different wet-cleaning processes using solvent and detergent were compared. The effect on film growth was studied by the example system ScN. The surface chemistry of the cleaned surface was studied by x-ray photoelectron spectroscopy and the film/substrate interface after film growth was investigated by time-of-flight secondary ion mass s...

  18. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  19. Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia

    OpenAIRE

    1989-01-01

    Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison o...

  20. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  1. Plateau-Rayleigh Crystal Growth of Nanowire Heterostructures: Strain-Modified Surface Chemistry and Morphological Control in One, Two, and Three Dimensions.

    Science.gov (United States)

    Day, Robert W; Mankin, Max N; Lieber, Charles M

    2016-04-13

    One-dimensional (1D) structures offer unique opportunities for materials synthesis since crystal phases and morphologies that are difficult or impossible to achieve in macroscopic crystals can be synthesized as 1D nanowires (NWs). Recently, we demonstrated one such phenomenon unique to growth on a 1D substrate, termed Plateau-Rayleigh (P-R) crystal growth, where periodic shells develop along a NW core to form diameter-modulated NW homostructures with tunable morphologies. Here we report a novel extension of the P-R crystal growth concept with the synthesis of heterostructures in which Ge (Si) is deposited on Si (Ge) 1D cores to generate complex NW morphologies in 1, 2, or 3D. Depositing Ge on 50 nm Si cores with a constant GeH4 pressure yields a single set of periodic shells, while sequential variation of GeH4 pressure can yield multimodulated 1D NWs with two distinct sets of shell periodicities. P-R crystal growth on 30 nm cores also produces 2D loop structures, where Ge (Si) shells lie primarily on the outside (inside) of a highly curved Si (Ge) core. Systematic investigation of shell morphology as a function of growth time indicates that Ge shells grow in length along positive curvature Si cores faster than along straight Si cores by an order of magnitude. Short Ge deposition times reveal that shells develop on opposite sides of 50 and 100 nm Si cores to form straight 1D morphologies but that shells develop on the same side of 20 nm cores to produce 2D loop and 3D spring structures. These results suggest that strain mediates the formation of 2 and 3D morphologies by altering the NW's surface chemistry and that surface diffusion of heteroatoms on flexible freestanding 1D substrates can facilitate this strain-mediated mechanism.

  2. Natural disease course of Crohn's disease during the first 5 years after diagnosis in a European population-based inception cohort

    DEFF Research Database (Denmark)

    Burisch, Johan; Kiudelis, Gediminas; Kupcinskas, Limas

    2018-01-01

    OBJECTIVE: The Epi-IBD cohort is a prospective population-based inception cohort of unselected patients with inflammatory bowel disease from 29 European centres covering a background population of almost 10 million people. The aim of this study was to assess the 5-year outcome and disease course...... of patients with Crohn's disease (CD). DESIGN: Patients were followed up prospectively from the time of diagnosis, including collection of their clinical data, demographics, disease activity, medical therapy, surgery, cancers and deaths. Associations between outcomes and multiple covariates were analysed...... by Cox regression analysis. RESULTS: In total, 488 patients were included in the study. During follow-up, 107 (22%) patients received surgery, while 176 (36%) patients were hospitalised because of CD. A total of 49 (14%) patients diagnosed with non-stricturing, non-penetrating disease progressed...

  3. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  4. Changes in the number of resident publications after inception of the 80-hour work week.

    Science.gov (United States)

    Namdari, Surena; Baldwin, Keith D; Weinraub, Barbara; Mehta, Samir

    2010-08-01

    Since the inception of resident work-hour regulations, there has been considerable concern regarding the influence of decreased work hours on graduate medical education. In particular, it is unclear whether implementation of work-hour restrictions has influenced resident academic performance as defined by quantity of peer-reviewed publications while participating in graduate medical education. We determined the impact of work-hour changes on resident involvement in the number of published clinical studies, laboratory research, case reports, and review articles. We conducted a PubMed literature search of 139 consecutive orthopaedic surgery residents (789 total resident-years) at one institution from academic years 1995-1996 to 2008-2009. This represented a continuous timeline before and after implementation of work-hour restrictions. The number of resident publications before and after implementation of work-hour changes was compared. There was a greater probability of peer review authorship in any given resident-year after work-hour changes than before. Average publications per resident-year increased for total articles, clinical articles, case reports, and reviews. There was an increased rate of publications in which the resident was the first author. Since implementation of work-hour changes, total resident publications and publications per resident-year have increased.

  5. Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(1 1 1)-(7 × 7) surfaces: Influence of short-range order on the substrate

    International Nuclear Information System (INIS)

    Roy, Anupam; Bhattacharjee, K.; Ghatak, J.; Dev, B.N.

    2012-01-01

    Clean Si(1 1 1)-(7 × 7) surfaces, followed by air-exposure, have been investigated by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short-range (7 × 7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(1 1 1)-(7 × 7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ∼2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(1 1 1)-(7 × 7) surfaces has been investigated by in situ RHEED and STM and ex situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550 °C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [11 ¯ 0] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si along with its twin [1 ¯ 10] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si , as observed for epitaxial growth of Ag on Si(1 1 1) surfaces. The twins are thus rotated by a 180° rotation of the Ag unit cell about the Si[1 1 1] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(1 1 1) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short-range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.

  6. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  7. Prognosis of acute low back pain: design of a prospective inception cohort study

    Directory of Open Access Journals (Sweden)

    York John

    2006-06-01

    Full Text Available Abstract Background Clinical guidelines generally portray acute low back pain as a benign and self-limiting condition. However, evidence about the clinical course of acute low back pain is contradictory and the risk of subsequently developing chronic low back pain remains uncertain. There are few high quality prognosis studies and none that have measured pain, disability and return to work over a 12 month period. This study aims to provide the first estimates of the one year prognosis of acute low back pain (pain of less than 2 weeks duration in patients consulting primary care practitioners. A secondary aim is to identify factors that are associated with the prognosis of low back pain. Methods/Design The study is a prospective inception cohort study. Consecutive patients consulting general medical practitioners, physiotherapists and chiropractors in the Sydney metropolitan region will complete a baseline questionnaire regarding their back pain. Subsequently these patients will be followed up by telephone 6 weeks, 3 months and 12 months after the initial consultation. Patients will be considered to have recovered from the episode of back pain if they have no pain and no limitation of activity, and have returned to pre-injury work status. Life tables will be generated to determine the one year prognosis of acute low back pain. Prognostic factors will be assessed using Cox regression. Discussion This study will provide the first estimates of the one year prognosis of acute low back pain in a representative sample of primary care patients.

  8. Effects of fin pitch and array of the frost layer growth on extended surface of a heat exchanger

    International Nuclear Information System (INIS)

    Yang, Dong Keun; Lee, Kwan Soo

    2003-01-01

    This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better

  9. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2011-06-15

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  10. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  11. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I.

    2011-01-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  12. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth

    Science.gov (United States)

    Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo

    2017-12-01

    Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.

  13. Surface Acoustic Waves (SAW-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Detection and quantification of cell viability and growth in two-dimensional (2D and three-dimensional (3D cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in

  14. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    Science.gov (United States)

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  15. The metaphor in the grammaticalization process of the verb DANAR to express inceptive aspect with extension of the action in Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Thaís Franco de Paula

    Full Text Available This paper aims to present how a metaphor acts in the grammaticalization process of the verb DANAR, from Brazilian Portuguese, ranging from the full lexical verb to the grammatical, auxiliary verb in constructions like: "The kid danou(-se to cry", hereby referred to as V1DANAR + (pron + (prep + V2infinitive. We support that this new usage of DANAR, perceived as a marker of an inceptive aspect with an extension of action, is a consequence of a metaphorical cognitive process that involves imagetic schemes of motion and force, which already existed within the concrete form of DANAR, which justifies that this verb, although not the archetypal aspect marker, may have updated this grammatical category.

  16. NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004

    Energy Technology Data Exchange (ETDEWEB)

    Don Karner; James Francfort; Randall Solomon

    2004-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.

  17. Modelling the impact of sanitation, population growth and urbanization on human emissions of Cryptosporidium to surface waters—a case study for Bangladesh and India

    Science.gov (United States)

    Vermeulen, Lucie C.; de Kraker, Jelske; Hofstra, Nynke; Kroeze, Carolien; Medema, Gertjan

    2015-09-01

    Cryptosporidium is a protozoan parasite that can cause diarrhoea. Human faeces are an important source of Cryptosporidium in surface waters. We present a model to study the impact of sanitation, urbanization and population growth on human emissions of Cryptosporidium to surface waters. We build on a global model by Hofstra et al (2013 Sci. Total Environ. 442 10-9) and zoom into Bangladesh and India as illustrative case studies. The model is most sensitive to changes in oocyst excretion and infection rate, and to assumptions on the share of faeces reaching the surface water for different sanitation types. We find urban centres to be hotspots of human Cryptosporidium emissions. We estimate that 53% (Bangladesh) and 91% (India) of total emissions come from urban areas. 50% of oocysts come from only 8% (Bangladesh) and 3% (India) of the country area. In the future, population growth and urbanization may further deteriorate water quality in Bangladesh and India, despite improved sanitation. Under our ‘business as usual’ (‘sanitation improvements’) scenario, oocyst emissions will increase by a factor 2.0 (1.2) for India and 2.9 (1.1) for Bangladesh between 2010 and 2050. Population growth, urbanization and sanitation development are important processes to consider for large scale water quality modelling.

  18. A Computational Study of the Growth of Hexagonal Ice

    Science.gov (United States)

    Fulford, Maxwell; Salvalaglio, Matteo; Parrinello, Michele; Molteni, Carla

    Hexagonal ice (Ih) has two distinct crystallographic surfaces; a basal and prism surface. At low vapour pressures, Ih forms thin plates and elongated prisms, depending on the temperature. The macroscopic shape depends on the relative rate of growth of the basal and prism surfaces. The aim of our research is to estimate the relative rate of growth of the two surfaces for a range of temperatures and ultimately predict the shape of Ih, using computer simulations. Our simulations show the well-know phenomenon that the surface of ice lowers its interfacial free energy by forming a stable quasi-liquid layer (QLL). The QLL mediates crystal growth and has a thickness which varies with temperature and crystallographic surface. We use a combination of Molecular Dynamics and Metadynamics to study how the interfacial structure at the ice/quasi-liquid and quasi-liquid/vapour interfaces influence the adsorption potential, surface transport properties and growth shape..

  19. Dynamic growth of slip surfaces in catastrophic landslides.

    Science.gov (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M

    2016-01-01

    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's ( Proc. R. Soc. Lond. A 332 , 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  20. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant.

    Science.gov (United States)

    van der Kooij, Dick; Bakker, Geo L; Italiaander, Ronald; Veenendaal, Harm R; Wullings, Bart A

    2017-03-01

    Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm -2 ) exposed to treated aerobic groundwater (0.3 mg C liter -1 ; 1 μg assimilable organic carbon [AOC] liter -1 ) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm -2 ) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm -2 in the biofilms on glass (1,055 ± 225 pg ATP cm -2 ) and CPVC (2,755 ± 460 pg ATP cm -2 ) exposed to treated anaerobic groundwater (7.9 mg C liter -1 ; 10 μg AOC liter -1 ). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter -1 of organic carbon) induced a low biofilm concentration that supported no or very

  1. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  2. Sputtering-growth of seeded Au nanoparticles for nanogap-assisted surface-enhanced Raman scattering (SERS) biosensing

    Science.gov (United States)

    Fu, Chit Yaw; U. S., Dinish; Rautela, Shashi; Goh, Douglas Wenda; Olivo, Malini

    2011-12-01

    Gold-coated array patterned with tightly-packed nanospheres was developed as a substrate base for constructing SERSenriched nanogaps with Au-nanoparticles (GNPs). Using 1,2-ethanedithiol as a linker, Au-NPs (=17-40nm) were anchored covalently on the sphere-array. Thin Au layer was sputtered on the substrate to mask the citrate coating of GNPs that could demote the sensing mechanism. The negatively-charged GNP surface warrants the colloidal stability, but the resulting repulsive force keeps the immobilized NPs apart by about 40nm. The attained gap size is inadequately narrow to sustain any intense enhancement owing to the near-field nature of SERS. Minimal amount of NaCl was then added to slightly perturb the colloidal stability by reducing their surface charge. Notably, the interparticle-gap reduces at increasing amount of salt, giving rise to increased packing density of GNPs. The SERS enhancement is also found to exponentially increase at decreasing gap size. Nevertheless, the minimum gap achieved is limited to merely 7nm. Excessive addition of salt would eventually induce complete aggregation of particles, forming clustered NPs on the array. A simple sputtering-growth approach is therefore proposed to further minimize the interparticle gap by enlarging the seeded NPs based on mild sputtering. The SEM images confirm that the gap below 7nm is achievable. With advent of the colloidal chemistry, the combined salt-induced aggregation and sputtering-growth techniques can be applied to engineer interparticle gap that is crucial to realize an ultrasensitive SERS biosensor. The proposed two-step preparation can be potentially adopted to fabricate the SERS-enriched nanogaps on the microfluidics platform.

  3. Inception

    DEFF Research Database (Denmark)

    Kock, Christian Erik J

    2016-01-01

    apt to suggest to audiences something that Bush never asserted and ostensibly denied, namely that he believed Saddam Hussein to have been complicit in the 9/11 terrorist acts. Three types of suggestive mechanism are analyzed. They are offered as examples of rhetorical devices used in political...

  4. Low Temperature (180°C Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Teng-Hsiang Chang

    2014-01-01

    Full Text Available This paper describes a new method to grow thin germanium (Ge epilayers (40 nm on c-Si substrates at a low growth temperature of 180°C using electron cyclotron resonance chemical vapor deposition (ECR-CVD process. The full width at half maximum (FWHM of the Ge (004 in X-ray diffraction pattern and the compressive stain in a Ge epilayer of 683 arcsec and 0.12% can be achieved. Moreover, the Ge/Si interface is observed by transmission electron microscopy to demonstrate the epitaxial growth of Ge on Si and the surface roughness is 0.342 nm. The thin-thickness and smooth surface of Ge epilayer grown on Si in this study is suitable to be a virtual substrate for developing the low cost and high efficiency III-V/Si tandem solar cells in our opinion. Furthermore, the low temperature process can not only decrease costs but can also reduce the restriction of high temperature processes on device manufacturing.

  5. Steps in growth of Nb-doped layered titanates with very high surface area suitable for water purification

    International Nuclear Information System (INIS)

    Milanović, Marija; Nikolić, Ljubica M.; Stijepović, Ivan; Kontos, Athanassios G.; Giannakopoulos, Konstantinos P.

    2014-01-01

    Nb-doped layered titanates, as highly efficient adsorbents, have been synthesized by hydrothermal reaction for variable duration and at 150 °C in a highly alkaline solution with NbCl 5 as the Nb source. The results have shown the formation of nanosheets already after 1 h of hydrothermal processing, but morphology and phase composition change as the reaction proceeds. The prepared layered titanates have been structurally investigated via scanning and transmission electron microscopy, X-ray diffraction, as well as Raman and Fourier transform infrared spectroscopies. The steps of layered titanate growth have been followed and an intermediate layered anatase phase is identified. Thus optimized growth of mesoporous titanate materials with 10% Nb atomic content present very high specific surface area of 345.3 m 2  g −1 , and perform as very efficient adsorbents for wastewater treatment applications. - Highlights: • Nb-doped layered titanates have been prepared by a hydrothermal procedure. • Introduction of Nb to precursor lowers the rate of layered titanate formation. • Steps in growth of Nb-doped layered titanates are considered. • Nb-doped layered titanates show high/fast MB adsorption from concentrated solution

  6. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  7. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective area growth of GaN rod structures by MOVPE: Dependence on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Wang, Xue; Erenburg, Milena; Al-Suleiman, Mohamed Aid Mansur; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bergbauer, Werner [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Strassburg, Martin [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2011-07-15

    Selective area growth of GaN nanorods by metalorganic vapor phase epitaxy is highly demanding for novel applications in nano-optoelectronic and nanophotonics. Recently, we report the successful selective area growth of GaN nanorods in a continuous-flow mode. In this work, as examples, we show the morphology dependence of GaN rods with {mu}m or sub-{mu}m in diameters on growth conditions. Firstly, we found that the nitridation time is critical for the growth, with an optimum from 90 to 180 seconds. This leads to more homogeneous N-polar GaN rods growth. A higher temperature during GaN rod growth tends to increase the aspect ratio of the GaN rods. This is due to the enhanced surface diffusion of growth species. The V/III ratio is also an important parameter for the GaN rod growth. Its increase causes reduction of the aspect ratio of GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface than it on {l_brace}1-100{r_brace} m-planes by supplying more NH{sub 3} (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  10. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  11. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  12. Pseudomorphic growth mode of Pb on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, J., E-mail: Julian.ledieu@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Weerd, M.-C de [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 München (Germany); Fournée, V. [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France)

    2015-11-30

    Highlights: • Pb adsorption has been characterised on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface. • A pseudomorphic Pb monolayer is formed at 300 K on this highly corrugated template. • The Pb atomic arrangement replicates the motifs observed on the clean surface. • The formation of surface alloys and intermixing can be disregarded. • Efficient energy dissipation of impinging adatoms allows additional layer deposition. - Abstract: We report the adsorption of lead adatoms on the pseudo-10-fold Al{sub 13}Fe{sub 4}(0 1 0) surface using low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). For the submonolayer regime, Pb adatoms remain highly mobile across the surface at 300 K. STM analysis indicates the formation of irregularly shaped islands of monoatomic height. The latter do not coalesce with increasing coverage. At 0.95 MLE coverage, the LEED patterns are consistent with a pseudomorphic growth of the adatoms. This is confirmed by STM measurements which reveal local motifs qualitatively similar to those observed on the clean Al{sub 13}Fe{sub 4}(0 1 0) surface, i.e. prior to dosing. Apart from the absence of plasmons, the XPS measurements of Pb 4f and Al 2s core levels are comparable to those observed for the Pb/Al(1 1 1) system.

  13. A comparative study of the growth of octadecyltrichlorosilane and 3-mercaptopropyltrimethoxysilane self-assembled monolayers on hydrophilic silicon surfaces

    International Nuclear Information System (INIS)

    Yang, S.-R.; Kolbesen, Bernd O.

    2008-01-01

    Self-assembled monolayers of two different organosilane precursors, methyl-terminated nonpolar n-octadecyltrichlorosilane (OTS, Cl 3 Si(CH 2 ) 17 CH 3 ) and thiol-terminated polar 3-mercaptopropyltrimethoxysilane (MPTMS, (CH 3 O) 3 SiCH 2 CH 2 CH 2 SH), were prepared separately on hydrophilic silicon surfaces by immersion in millimolar solutions of the respective precursors in toluene at room temperature. Ex situ atomic force microscopy (AFM), lateral force microscopy (LFM) and X-ray photoelectron spectroscopy (XPS) were used to study the growth and the properties of OTS and MPTMS SAMs. For OTS SAMs, generally speaking, small islands surrounded large dendrite-shaped islands. But for MPTMS SAMs, sporadic small round islands appeared, but no dendrites. The impact of the solution age was more significant on the growth of OTS SAMs than MPTMS SAMs. At the same precursor concentration and solution age, the growth of OTS SAMs was much faster than MPTMS SAMs due to the greater hydrolysis ability of Si-Cl bonds in OTS as compared with that of Si-OCH 3 bonds in MPTMS. The difference in hydrolysis ability was confirmed by the absence of a Cl signal in the XP spectrum of OTS SAMs and the existence of a C 1s peak corresponding to unhydrolyzed Si-OCH 3 bonds in the XP spectrum of MPTMS SAMs. This trend together with the difference in alkyl chain length had a strong influence on the surface morphology and coverage of these two SAMs. According to the individual adsorption behavior of the components, the predictable kinetic difficulty of preparing OTS/MPTMS mixed SAMs by co-adsorption is pointed out. Furthermore, a potential reaction condition for stepwise adsorption is suggested.

  14. Biofilm growth on polyvinylchloride surface incubated in suboptimal microbial warm water and effect of sanitizers on biofilm removal post biofilm formation

    Science.gov (United States)

    An in vitro experiment was conducted to understand the nature of biofilm growth on polyvinyl chloride (PVC) surface when exposed to sub optimal quality microbial water (> 4 log10 cfu/ml) obtained from poultry drinking water source mimicking water in waterlines during the first week of poultry broodi...

  15. In Situ AFM Study of Crystal Growth on a Barite (001 Surface in BaSO4 Solutions at 30 °C

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kuwahara

    2016-11-01

    Full Text Available The growth behavior and kinetics of the barite (001 surface in supersaturated BaSO4 solutions (supersaturation index (SI = 1.1–4.1 at 30 °C were investigated using in situ atomic force microscopy (AFM. At the lowest supersaturation, the growth behavior was mainly the advancement of the initial step edges and filling in of the etch pits formed in the water before the BaSO4 solution was injected. For solutions with higher supersaturation, the growth behavior was characterized by the advance of the and [010] half-layer steps with two different advance rates and the formation of growth spirals with a rhombic to bow-shaped form and sector-shaped two-dimensional (2D nuclei. The advance rates of the initial steps and the two steps of 2D nuclei were proportional to the SI. In contrast, the advance rates of the parallel steps with extremely short step spacing on growth spirals were proportional to SI2, indicating that the lateral growth rates of growth spirals were directly proportional to the step separations. This dependence of the advance rate of every step on the growth spirals on the step separations predicts that the growth rates along the [001] direction of the growth spirals were proportional to SI2 for lower supersaturations and to SI for higher supersaturations. The nucleation and growth rates of the 2D nuclei increased sharply for higher supersaturations using exponential functions. Using these kinetic equations, we predicted a critical supersaturation (SI ≈ 4.3 at which the main growth mechanism of the (001 face would change from a spiral growth to a 2D nucleation growth mechanism: therefore, the morphology of bulk crystals would change.

  16. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama; Fu, Lei; Sougrat, Rachid; Belmabkhout, Youssef; Cairns, Amy; Giannelis, Emmanuel P.; Eddaoudi, Mohamed

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  17. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    International Nuclear Information System (INIS)

    Heinonen, S; Nikkanen, J-P; Laakso, J; Levänen, E; Raulio, M; Priha, O

    2013-01-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating

  18. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    Science.gov (United States)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  19. Modification of GaN(0001) growth kinetics by Mg doping

    International Nuclear Information System (INIS)

    Monroy, E.; Andreev, T.; Holliger, P.; Bellet-Amalric, E.; Shibata, T.; Tanaka, M.; Daudin, B.

    2004-01-01

    We have studied the effect of Mg doping on the surface kinetics of GaN during growth by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface of GaN, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN. The growth window is hence significantly reduced. Higher growth temperatures lead to an enhancement of Mg segregation and an improvement of the surface morphology

  20. Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact

    International Nuclear Information System (INIS)

    Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Deng, Yangbao; Deng, Shuguang

    2014-01-01

    We study the physical-vapor-deposition of 1D bismuth nanostructures. Bi nanowire elongating along [012] and/or [110] direction as well as anisotropic Bi nano-columns are physical-vapor-deposited successfully. The coexistence and competition of surface diffusion and geometric shielding are critical to their formation as well as growth mode transition among them. Since physical-vapor-deposition is a vacuum process, we make use of it to fabricate the ohmic contact to prevent the damage to the bismuth nanostructures brought by the etching to their thick surface oxide layer. (paper)

  1. Platelet-rich plasma, the ultimate secret for youthful skin elixir and hair growth triggering.

    Science.gov (United States)

    Elghblawi, Ebtisam

    2017-09-08

    The clinical application of platelet-rich plasma (PRP) is based on the increase in the concentration of growth factors that are released from alpha-granule of the concentrated platelets and in the secretion of proteins which are able to capitalize on the healing process at the cellular level. It has been invented to restore the natural beauty by starting the natural rejuvenation process of the skin and aiming to make it function as a younger one and to keep the skin youthful and maintain it. Besides that, it is also emerged to include hairs as a new injectable procedure to enable stimulating hair growth locally and topically; preventing its fall; improving hair shaft, hair stem, and its caliber; increasing its shine, vitality, and pliability; and declining hair splitting and breakage. Thus, youth is in your blood as it has a magical power imposed in the platelet factors. There is, however, no standardization of the techniques besides insufficient description of the adopted procedures. Not long, autologous platelet-rich plasma (PRP) has surfaced strongly in diverse medical specialties including plastic, wound healing and diabetic ulcers, orthopedic, trauma, ocular surgery, dry eye for eyelid injection, urology for urinary incontinence, sexual wellness, cutaneous surgery, sport medicine, dentistry and dermatology, and aesthetic applications. PRP proved to promote wound healing and aid in facelift, volumetric skin, skin rejuvenation, regeneration, and reconstruction; improve wrinkling; stimulate hair growth; increase hair follicle viability and its survival rate; prevent apoptosis; increase and prolong the anagen hair growth stage; and delay the progression to catagen hair cycle stage with increased density in hair loss and hair transplantation. The aims of this extensive review were to cover all PRP application aspects that are carried out in aesthetic dermatology and to assess the literature on platelet-rich plasma outcomes on main aesthetic practices of general

  2. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    Science.gov (United States)

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  3. On the mechanics of thin films and growing surfaces

    KAUST Repository

    Holland, M. A.

    2013-05-24

    Many living structures are coated by thin films, which have distinct mechanical properties from the bulk. In particular, these thin layers may grow faster or slower than the inner core. Differential growth creates a balanced interplay between tension and compression and plays a critical role in enhancing structural rigidity. Typical examples with a compressive outer surface and a tensile inner core are the petioles of celery, caladium, or rhubarb. While plant physiologists have studied the impact of tissue tension on plant rigidity for more than a century, the fundamental theory of growing surfaces remains poorly understood. Here, we establish a theoretical and computational framework for continua with growing surfaces and demonstrate its application to classical phenomena in plant growth. To allow the surface to grow independently of the bulk, we equip it with its own potential energy and its own surface stress. We derive the governing equations for growing surfaces of zero thickness and obtain their spatial discretization using the finite-element method. To illustrate the features of our new surface growth model we simulate the effects of growth-induced longitudinal tissue tension in a stalk of rhubarb. Our results demonstrate that different growth rates create a mechanical environment of axial tissue tension and residual stress, which can be released by peeling off the outer layer. Our novel framework for continua with growing surfaces has immediate biomedical applications beyond these classical model problems in botany: it can be easily extended to model and predict surface growth in asthma, gastritis, obstructive sleep apnoea, brain development, and tumor invasion. Beyond biology and medicine, surface growth models are valuable tools for material scientists when designing functionalized surfaces with distinct user-defined properties. © The Author(s) 2013.

  4. Functional health status in subjects after a motor vehicle accident, with emphasis on whiplash associated disorders: design of a descriptive, prospective inception cohort study

    Directory of Open Access Journals (Sweden)

    Helders Paul JM

    2008-12-01

    Full Text Available Abstract Background The clinical consequences of whiplash injuries resulting from a motor vehicle accident (MVA are poorly understood. Thereby, there is general lack of research on the development of disability in patients with acute and chronic Whiplash Associated Disorders. Methods/Design The objective is to describe the design of an inception cohort study with a 1-year follow-up to determine risk factors for the development of symptoms after a low-impact motor vehicle accident, the prognosis of chronic disability, and costs. Victims of a low-impact motor vehicle accident will be eligible for participation. Participants with a Neck Disability Index (NDI score of 7 or more will be classified as experiencing post-traumatic neck pain and will enter the experimental group. Participants without complaints (a NDI score less than 7 will enter the reference group. The cohort will be followed up by means of postal questionnaires and physical examinations at baseline, 3 months, 6 months, and 12 months. Recovery from whiplash-associated disorders will be measured in terms of perceived functional health, and employment status (return to work. Life tables will be generated to determine the 1-year prognosis of whiplash-associated disorders, and risk factors and prognostic factors will be assessed using multiple logistic regression analysis. Discussion Little is known about the development of symptoms and chronic disability after a whiplash injury. In the clinical setting, it is important to identify those people who are at risk of developing chronic symptoms. This inception prospective cohort study will provide insight in the influence of risk factors, of the development of functional health problems, and costs in people with whiplash-associated disorders.

  5. Functional health status in subjects after a motor vehicle accident, with emphasis on whiplash associated disorders: design of a descriptive, prospective inception cohort study

    Science.gov (United States)

    Schmitt, Maarten A; van Meeteren, Nico LU; de Wijer, Anton; Helders, Paul JM; Graaf, Yolanda van der

    2008-01-01

    Background The clinical consequences of whiplash injuries resulting from a motor vehicle accident (MVA) are poorly understood. Thereby, there is general lack of research on the development of disability in patients with acute and chronic Whiplash Associated Disorders. Methods/Design The objective is to describe the design of an inception cohort study with a 1-year follow-up to determine risk factors for the development of symptoms after a low-impact motor vehicle accident, the prognosis of chronic disability, and costs. Victims of a low-impact motor vehicle accident will be eligible for participation. Participants with a Neck Disability Index (NDI) score of 7 or more will be classified as experiencing post-traumatic neck pain and will enter the experimental group. Participants without complaints (a NDI score less than 7) will enter the reference group. The cohort will be followed up by means of postal questionnaires and physical examinations at baseline, 3 months, 6 months, and 12 months. Recovery from whiplash-associated disorders will be measured in terms of perceived functional health, and employment status (return to work). Life tables will be generated to determine the 1-year prognosis of whiplash-associated disorders, and risk factors and prognostic factors will be assessed using multiple logistic regression analysis. Discussion Little is known about the development of symptoms and chronic disability after a whiplash injury. In the clinical setting, it is important to identify those people who are at risk of developing chronic symptoms. This inception prospective cohort study will provide insight in the influence of risk factors, of the development of functional health problems, and costs in people with whiplash-associated disorders. PMID:19099574

  6. Mechanism for selective growth in electrical steel

    Science.gov (United States)

    Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo

    2018-01-01

    Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110} annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.

  7. Geometrical approach to tumor growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  8. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  9. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  10. Synchrotron x-ray-diffraction study of the structure and growth of Xe films adsorbed on the Ag(111) surface

    International Nuclear Information System (INIS)

    Dai, P.; Wu, Z.; Angot, T.; Wang, S.; Taub, H.; Ehrlich, S.N.

    1999-01-01

    Synchrotron x-ray scattering has been used to investigate the structure and growth of perhaps the simplest of all films: xenon physisorbed on the Ag(111) surface. High-resolution x-ray scans of the in-plane structure and lower-resolution scans (specular and nonspecular) of the out-of-plane order were performed. The Xe films were prepared under both quasiequilibrium and kinetic growth conditions, and have fewer structural defects than those investigated previously by others on graphite substrates. Under quasiequilibrium conditions, the bulk Xe-Xe spacing is reached at monolayer completion, and the monolayer and bilayer lattice constants at coexistence are inferred equal to within 0.005 Angstrom, consistent with theoretical calculations. The Xe/vacuum interface profile for a complete monolayer and bilayer grown at quasiequilibrium is found to be sharper than for kinetically grown films. At coverages above two layers, diffraction scans along the Xe(01l) rod for quasiequilibrated films are consistent with the presence of two domains having predominantly an ABC stacking sequence and rotated 60 degree with respect to each other about the surface normal. Annealing of these films alters neither the population of the two domains nor the fraction of ABA stacking faults. The thickest film grown under quasiequilibrium conditions exceeds 220 Angstrom (resolution limited). Under kinetic growth conditions, x-ray intensity oscillations at the Xe anti-Bragg position of the specular rod are observed as a function of time, indicating nearly layer-by-layer growth. Up to four complete oscillations corresponding to a film of eight layers have been observed before the intensity is damped out; the number of oscillations is found to depend on the substrate temperature, the growth rate, and the quality of the Ag(111) substrate. The specular reflectivity from kinetically grown films at nominal coverages of three and four layers has been analyzed using a Gaussian model which gives a film

  11. On the mechanics of continua with boundary energies and growing surfaces

    Science.gov (United States)

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in

  12. CASTp 3.0: computed atlas of surface topography of proteins.

    Science.gov (United States)

    Tian, Wei; Chen, Chang; Lei, Xue; Zhao, Jieling; Liang, Jie

    2018-06-01

    Geometric and topological properties of protein structures, including surface pockets, interior cavities and cross channels, are of fundamental importance for proteins to carry out their functions. Computed Atlas of Surface Topography of proteins (CASTp) is a web server that provides online services for locating, delineating and measuring these geometric and topological properties of protein structures. It has been widely used since its inception in 2003. In this article, we present the latest version of the web server, CASTp 3.0. CASTp 3.0 continues to provide reliable and comprehensive identifications and quantifications of protein topography. In addition, it now provides: (i) imprints of the negative volumes of pockets, cavities and channels, (ii) topographic features of biological assemblies in the Protein Data Bank, (iii) improved visualization of protein structures and pockets, and (iv) more intuitive structural and annotated information, including information of secondary structure, functional sites, variant sites and other annotations of protein residues. The CASTp 3.0 web server is freely accessible at http://sts.bioe.uic.edu/castp/.

  13. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    Science.gov (United States)

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  14. Mo-Co catalyst nanoparticles: Comparative study between TiN and Si surfaces for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Morant, C., E-mail: c.morant@uam.es [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Campo, T. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marquez, F. [School of Science and Technology, University of Turabo, 00778-PR (United States); Domingo, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain); Sanz, J.M.; Elizalde, E. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-06-01

    Highly pure single-walled carbon nanotubes (SWNT) were synthesized by alcohol catalytic chemical vapor deposition on silicon substrates partially covered by a thin layer of TiN. The TiN coating selectively prevented the growth of carbon nanotubes. Field emission scanning electron microscopy and Raman spectroscopy revealed the formation of high purity vertically aligned SWNT in the Si region. X-ray Photoelectron Spectroscopy and Atomic Force Microscopy indicated that Co nanoparticles are present on the Si regions, and not on the TiN regions. This clearly explains the obtained experimental results: the SWNT only grow where the Co is presented as nanoparticles, i.e. on the Si regions. - Highlights: Black-Right-Pointing-Pointer Single-wall carbon nanotubes (SWNT) ontained by catalytic chemical vapor-deposition. Black-Right-Pointing-Pointer Substrate/Co-Mo catalyst behaviour plays a key role in the SWNT growth. Black-Right-Pointing-Pointer Co nanoparticles (the effective catalyst) have been only observed on the Si region. Black-Right-Pointing-Pointer High purity SWNT were spatially confined in specific locations (Si regions). Black-Right-Pointing-Pointer TiN-coated surfaces, adjacent to a Si oxide region, prevent the growth of SWNT.

  15. Kinetics of monolayer graphene growth by segregation on Pd(111)

    International Nuclear Information System (INIS)

    Mok, H. S.; Murata, Y.; Kodambaka, S.; Ebnonnasir, A.; Ciobanu, C. V.; Nie, S.; McCarty, K. F.

    2014-01-01

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface

  16. Kinetics of monolayer graphene growth by segregation on Pd(111)

    Energy Technology Data Exchange (ETDEWEB)

    Mok, H. S.; Murata, Y.; Kodambaka, S., E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Ebnonnasir, A.; Ciobanu, C. V. [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Nie, S.; McCarty, K. F. [Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-03-10

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface.

  17. The effect of the Ca2+ to CO32- activity ratio on spiral growth at the calcite {1014} surface

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Bechgaard, Klaus; Stipp, Susan Louise Svane

    2010-01-01

    Variation in the Ca2+ to CO 2¿ activity ratio of natural waters is rarely considered in models intended to describe calcite 3 growth. Atomic force microscopy (AFM) and differential interference contrast (DIC) microscopy were used to examine spiral growth on calcite f10¿14g surfaces from solutions...... velocity is achieved at higher relative 3 CO 2¿ activity. The obtuse step velocity data fit the ‘kinetic ionic ratio’ model of Zhang and Nancollas (1998) well, but acute 3 step velocities cannot be described by this model. This is attributed to dissimilar dehydration frequencies for Ca2+ and CO 2¿ 3...

  18. NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Don Karner

    2005-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.

  19. North American trade growth continued in 2007

    Science.gov (United States)

    2009-02-01

    Trade between the United States and its North American Free Trade Agreement (NAFTA) partnersCanada and Mexicohas more than doubled in dollar value since the inception of NAFTA in 1994. In 2007, U.S. trade with Canada and Mexico reached $909 bil...

  20. Optimization of Growth Medium for Efficient Cultivation of Lactobacillus salivarius i 24 using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Lim, C. H.

    2007-01-01

    Full Text Available Production of Lactobacillus salivarius i 24, a probiotic strain for chicken, was studied in batch fermentation using 500 mL Erlenmeyer flask. Response surface method (RSM was used to optimize the medium for efficient cultivation of the bacterium. The factors investigated were yeast extract, glucose and initial culture pH. A polynomial regression model with cubic and quartic terms was used for the analysis of the experimental data. Estimated optimal conditions of the factors for growth of L. salivarius i 24 were; 3.32 % (w/v glucose, 4.31 % (w/v yeast extract and initial culture pH of 6.10.

  1. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben

    1988-03-01

    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  2. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces

    International Nuclear Information System (INIS)

    Michl, Julia; Zaiser, Sebastian; Jakobi, Ingmar; Waldherr, Gerald; Dolde, Florian; Neumann, Philipp; Wrachtrup, Jörg; Teraji, Tokuyuki; Doherty, Marcus W.; Manson, Neil B.; Isoya, Junichi

    2014-01-01

    Synthetic diamond production is a key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers, which is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor deposition diamond growth technique on (111)-oriented substrates, which yields perfect alignment (94% ± 2%) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority (74% ± 4%) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications

  3. Experimental and numerical investigations of stable crack growth of axial surface flaws in a pressure vessel

    International Nuclear Information System (INIS)

    Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.

    1988-01-01

    In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de

  4. Evolution of space dependent growth in the teleost Astyanax mexicanus.

    Directory of Open Access Journals (Sweden)

    Natalya D Gallo

    Full Text Available The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish and several blind cave-dwelling (cavefish forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG. In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments.

  5. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.; Goriely, Alain

    2010-01-01

    infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise

  6. The initial growth stage in PVT growth of aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.; Epelbaum, B.M.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany); Nagata, S. [Functional Materials Development Center, Research Laboratories, JFE Mineral Company, Ltd., 1, Niihama-cho, Chuou-ku, Chiba-shi, Chiba 260-0826 (Japan)

    2006-06-15

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates is the formation of an aluminum oxynitride (AlON) layer at temperatures between 1850-1950 C leading to polycrystalline growth. On the contrary, heteroepitaxial growth of AlN on silicon carbide (SiC) is relatively easy to achieve due to natural formation of a thin molten layer of (Al{sub 2}OC{sub x}) on the seed surface and consequent growth of AlN via the molten buffer layer. Optimization of the seeding process can be achieved by use of ultra-pure starting material. Another critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion coefficients. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Crystallite growth kinetics of TiO2 surface modification with 9 mol% ZnO prepared by a coprecipitation process

    International Nuclear Information System (INIS)

    Ko, Horng-Huey; Hsi, Chi-Shiung; Wang, Moo-Chin; Zhao, Xiujian

    2014-01-01

    Highlights: • TiO 2 powder surface modification with 9 mol% ZnO was obtained. • Phase transformation from anatase to rutile was hindered by ZnO added. • Growth kinetic of anatase TiO 2 nanocrystallites in T-9Z powders was described as: D A,9 2 =2.42×10 5 ×exp(-39.9×10 3 /RT). • Growth kinetic of rutile TiO 2 nanocrystallites in T-9Z powders was described as: D R,9 2 =8.49×10 5 ×exp(-47.6×10 3 /RT) rutile TiO 2 . -- Abstract: The nanocrystallite growth of TiO 2 surface modification with 9 mol% ZnO prepared by a coprecipitation process has been studied. Thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–VIS–NIR spectrophotometry have been utilized to characterize the TiO 2 nanocrystallites surface modification with 9 mol% ZnO (denoted by T-9Z). The DTA result shows that the anatase TiO 2 first formed at 533 K and the completion of anatase TiO 2 crystallization occurred at 745 K for the T-9Z freeze-dried precursor powders. XRD results reveal that the anatase and rutile TiO 2 coexist when the T-9Z freeze-dried precursor powders were calcined at 523–973 K for 2 h. When the T-9Z freeze-dried precursor powders were calcined at 973 K for 2 h, rutile TiO 2 was the major phase, and the minor phases were anatase TiO 2 and Zn 2 Ti 3 O 8 . The phase was composed of the rutile TiO 2 and Zn 2 TiO 4 for the T-9Z freeze-dried precursor powders after calcination at 1273 K for 2 h. The growth kinetics of TiO 2 nanocrystallites in T-9Z powders were described as: D A,9 2 =2.42×10 5 ×exp(-39.9×10 3 /RT)and D R,9 2 =8.49×10 5 ×exp(-47.6×10 3 /RT) for anatase and rutile TiO 2 nanocrystallites respectively. The analysis results of UV/VIS/NIR spectra reveal that the T-9Z freeze-dried precursor powders after calcination have a red-shifted effect with increasing calcination temperature and can be used as a UVA-attenuating agent

  8. Ge(001):B gas-source molecular beam epitaxy: B surface segregation, hydrogen desorption, and film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Greene, J.E. [Materials Science Department, the Coordinated Science Laboratory and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    1999-03-01

    Ultrahigh B-doped Ge(001) layers, with concentrations C{sub B} up to 8{times}10{sup 21} cm{sup {minus}3}, were grown by gas-source molecular beam epitaxy from Ge{sub 2}H{sub 6} and B{sub 2}H{sub 6} at temperatures T{sub s}=325{degree}C (in the surface-reaction-limited regime) and 600{degree}C (in the flux-limited regime). The samples were quenched, D site exchanged for H, and D{sub 2} temperature-programed desorption (TPD) used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s} by comparison with B-adsorbed Ge(001) reference samples with known {theta}{sub B} values. During Ge(001):B film growth, strong surface B segregation to the second layer was observed with surface-to-bulk B concentration ratios ranging up to 6000. The TPD spectra exhibited {alpha}{sub 2} and {alpha}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} peaks associated with deuterium desorption from Ge{sup {asterisk}} surface atoms with B backbonds. Increasing {theta}{sub B} expanded the area under {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} at the expense of {alpha}{sub 2} and {alpha}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.64 eV, and to explain and model the effects of high B coverages on Ge(001) growth kinetics. At T{sub s}=325{degree}C, where B segregation is kinetically hindered, film deposition rates R{sub Ge} are not a strong function of C{sub B}, exhibiting only a small decrease at C{sub B}{approx_gt}5{times}10{sup 18} cm{sup {minus}3}. However, at T{sub s}=600{degree}C, R{sub Ge} decreases by up to 40{percent} with increasing C{sub B}{approx_gt}1{times}10{sup 18} cm{sup {minus}3}. This is due primarily to the combination of B-induced Ge dimer vacancies and the deactivation of surface dangling bonds caused by charge transfer

  9. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L

  10. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  11. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  12. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  13. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  14. Disease activity and damage accrual during the early disease course in a multinational inception cohort of patients with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Nossent, J.; Kiss, Adrian Emil; Rozman, B.

    2010-01-01

    An inception cohort of patients with systemic lupus erythematosus from 14 European centres was followed for up to 5 years in order to describe the current early disease course. At inclusion patients (n = 200, 89% female, mean age 35 years, 97% Caucasian, mean SLEDAI 12.2) fulfilled a mean of 6......% respectively. During the mean follow-up of 4.1 years 25% entered a state of early disease quiescence by global physician assessment, but the overall risk of subsequent flare was 60%. Maximum SLEDAI scores decreased over time, but 45% of patients accrued damage (SDI >= 1) for which baseline presence...... of proteinuria and persistent disease activity were independent predictors. The results indicate minor differences in SLE presentation and treatment within various regions of Europe and a high diagnostic reliance on anti-dsDNA Ab. Despite early reductions in disease activity and improved mortality, the risk...

  15. Fracture processes and mechanisms of crack growth resistance in human enamel

    Science.gov (United States)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  16. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  17. Three-dimensional numerical simulation of crown spike due to coupling effect between bubbles and free surface

    International Nuclear Information System (INIS)

    Han Rui; Zhang A-Man; Li Shuai

    2014-01-01

    The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated

  18. Comparative availability of cesium and strontium for plant absorption from amended Rupert surface soil and associated subsoil: influence of growth conditions

    International Nuclear Information System (INIS)

    Cataldo, D.A.

    1979-03-01

    Studies were undertaken to determine the plant availability of 134 Cs and 85 Sr amended to Rupert surface soil and an associated subsoil. Concentration ratios for cheatgrass (Bromus tectorum) and tumbleweed (Salsola kali) grown on 134 Cs amended Rupert soil were 0.15 and 0.28, respectively; values for amended subsoils were 0.074 and 0.13, respectively. Rupert surface soil and subsoil amended with 85 Sr gave concentration ratios of 15 and 7, respectively, for both tumbleweed and cheatgrass. While pot size (1 vs 4 kg) had a market effect on concentration ratios, values for greenhouses and growth chamber grown plants were generally similar. Aging of both Rupert surface soil and subsoils for 1 to 30 days prior to planting had a pronounced effect on the availability of 134 Cs for uptake by plants, but no effect on 85 Sr uptake

  19. Growth responses of Escherichia coli and Myxococcus xanthus on ...

    African Journals Online (AJOL)

    Bacteria colonize surfaces responding to the physicochemical properties of substrates. A systematic study was carried out with growing single bacterial colonies on the surface of agar media to decipher the interaction between bacterial growth and substrate stiffness. We investigated the growth kinetics of wild-type ...

  20. Tungsten surface evolution by helium bubble nucleation, growth and rupture

    International Nuclear Information System (INIS)

    Sefta, Faiza; Wirth, Brian D.; Hammond, Karl D.; Juslin, Niklas

    2013-01-01

    Molecular dynamics simulations reveal sub-surface mechanisms likely involved in the initial formation of nanometre-sized ‘fuzz’ in tungsten exposed to low-energy helium plasmas. Helium clusters grow to over-pressurized bubbles as a result of repeated cycles of helium absorption and Frenkel pair formation. The self-interstitials either reach the surface as isolated adatoms or trap at the bubble periphery before organizing into prismatic 〈1 1 1〉 dislocation loops. Surface roughening occurs as single adatoms migrate to the surface, prismatic loops glide to the surface to form adatom islands, and ultimately as over-pressurized gas bubbles burst. (paper)

  1. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    Science.gov (United States)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  2. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception

    Directory of Open Access Journals (Sweden)

    R. Schneider

    2013-11-01

    δ13Catm level in the Penultimate (~ 140 000 yr BP and Last Glacial Maximum (~ 22 000 yr BP, which can be explained by either (i changes in the isotopic composition or (ii intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP. Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.

  3. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125 I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  4. Factors associated with early outcomes following standardised therapy in children with ulcerative colitis (PROTECT): a multicentre inception cohort study.

    Science.gov (United States)

    Hyams, Jeffrey S; Davis, Sonia; Mack, David R; Boyle, Brendan; Griffiths, Anne M; LeLeiko, Neal S; Sauer, Cary G; Keljo, David J; Markowitz, James; Baker, Susan S; Rosh, Joel; Baldassano, Robert N; Patel, Ashish; Pfefferkorn, Marian; Otley, Anthony; Heyman, Melvin; Noe, Joshua; Oliva-Hemker, Maria; Rufo, Paul; Strople, Jennifer; Ziring, David; Guthery, Stephen L; Sudel, Boris; Benkov, Keith; Wali, Prateek; Moulton, Dedrick; Evans, Jonathan; Kappelman, Michael D; Marquis, Alison; Sylvester, Francisco A; Collins, Margaret H; Venkateswaran, Suresh; Dubinsky, Marla; Tangpricha, Vin; Spada, Krista L; Britt, Ashley; Saul, Bradley; Gotman, Nathan; Wang, Jessie; Serrano, Jose; Kugathasan, Subra; Walters, Thomas; Denson, Lee A

    2017-12-01

    Previous retrospective studies of paediatric ulcerative colitis have had limited ability to describe disease progression and identify predictors of treatment response. In this study, we aimed to identify characteristics associated with outcomes following standardised therapy after initial diagnosis. The PROTECT multicentre inception cohort study was based at 29 centres in the USA and Canada and included paediatric patients aged 4-17 years who were newly diagnosed with ulcerative colitis. Guided by the Pediatric Ulcerative Colitis Activity Index (PUCAI), patients received initial standardised treatment with mesalazine (PUCAI 10-30) oral corticosteroids (PUCAI 35-60), or intravenous corticosteroids (PUCAI ≥65). The key outcomes for this analysis were week 12 corticosteroid-free remission, defined as PUCAI less than 10 and taking only mesalazine, and treatment escalation during the 12 study weeks to anti-tumour necrosis factor α (TNFα) agents, immunomodulators, or colectomy among those initially treated with intravenous corticosteroids. We identified independent predictors of outcome through multivariable logistic regression using a per-protocol approach. This study is registered with ClinicalTrials.gov, number NCT01536535. Patients were recruited between July 10, 2012, and April 21, 2015. 428 children initiated mesalazine (n=136), oral corticosteroids (n=144), or intravenous corticosteroids (n=148). Initial mean PUCAI was 31·1 (SD 13·3) in children initiating with mesalazine, 50·4 (13·8) in those initiating oral corticosteroids, and 66·9 (13·7) in those initiating intravenous corticosteroids (pmodel due to clinical relevance]), rectal biopsy eosinophil count less than or equal to 32 cells per high power field (4·55, 1·62-12·78; p=0·0040), rectal biopsy surface villiform changes (3·05, 1·09-8·56; p=0·034), and not achieving week 4 remission (30·28, 6·36-144·20; p<0·0001). Our findings provide guidelines to assess the response of children newly

  5. On the mechanics of thin films and growing surfaces

    KAUST Repository

    Holland, M. A.; Kosmata, T.; Goriely, A.; Kuhl, E.

    2013-01-01

    these classical model problems in botany: it can be easily extended to model and predict surface growth in asthma, gastritis, obstructive sleep apnoea, brain development, and tumor invasion. Beyond biology and medicine, surface growth models are valuable tools

  6. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  7. Growth kinetics of boride coatings formed at the surface AISI M2 during dehydrated paste pack boriding

    Energy Technology Data Exchange (ETDEWEB)

    Doñu Ruiz, M.A., E-mail: mdonur0800@alumno.ipn.mx [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); López Perrusquia, N.; Sánchez Huerta, D. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Torres San Miguel, C.R.; Urriolagoitia Calderón, G.M. [Instituto Politécnico Nacional, SEPI-ESIME, Unidad Profesional Adolfo López Mateos Zacatenco, Edificio 5, 2do. Piso, Col. Lindavista, CP 07738 México, D.F. (Mexico); Cerillo Moreno, E.A. [Universidad Politécnica del Valle de México UPVM, Grupo Ciencia e Ingeniería de Materiales, Av. Mexiquense S/N Esquina Av. Universidad Politécnica, Col Villa Esmeralda, 54910 Tultitlan (Mexico); Cortes Suarez, J.V. [Univerisdad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo 180 Azcapotzalco 02200, Área de Ciencia de los Materiales, México, D.F. (Mexico)

    2015-12-01

    The growth kinetics of the boride coatings (FeB and Fe{sub 2}B) at the surface of AISI M2 high speed steels were studied in this work. Boriding thermochemical treatment was carried out by dehydrated paste pack at three different temperatures 1173, 1223, and 1273 K and four exposure times 1, 3, 5, and 7 h, respectively. The presence of FeB and Fe{sub 2}B phases was identified by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction method. In order to obtain the boron diffusion coefficients at the FeB/Fe{sub 2}B boride coatings, a mathematical model based on the mass balance at the growing interfaces was proposed under certain assumptions. Likewise the parabolic growth constants and the boride incubation time were established as a function of the parameters η (T) and ε (T). The activation energy values estimated for the FeB and Fe{sub 2}B layers were 233.42 and 211.89 kJ mol{sup −1} respectively. A good agreement was obtained between the simulated values of boride layer thicknesses and the experimental results. Finally, empirical relationships of boride coating thickness as a function of boriding temperature and time are presented. - Highlights: • Formed boride coatings at the surface of AISI M2 high speed steels by new process dehydrated paste pack boriding. • The model was based on the mass balance equation at the FeB/Fe{sub 2}B and Fe{sub 2}B/Fe interfaces by considering the boride incubation time. • A good agreement was obtained between the simulated values of boride layers coatings and the experimental results.

  8. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stainless steel 304L with europium (Eu as contaminant. This technique consists in spraying an Eu-solution on stainless steel samples. The specimens are firstly treated with a pulsed nanosecond laser after which the steel samples are placed in a 873 K furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer were analyzed by scanning electron microscopy coupled to an energy-dispersive X-ray microanalyzer, as well as by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm–4.5 μm depending on the laser treatment parameters and the heating duration. These contaminated oxides had a ‘duplex structure’ with a mean concentration of the order of 6 × 1016 atoms/cm2 (15 μg/cm2 of europium in the volume of the oxide layer. It appears that europium implementation prevented the oxide growth in the furnace. Nevertheless, the presence of the contamination had no impact on the thickness of the oxide layers obtained by preliminary laser treatment. These oxide layers were used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  9. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  10. Growth of Thiobacillus ferrooxidans on elemental sulfur

    International Nuclear Information System (INIS)

    Espejo, R.T.; Romero, P.

    1987-01-01

    Growth kinetics of Thiobacillus ferrooxidans in batch cultures, containing prills of elementary sulfur as the sole energy source, were studied by measuring the incorporation of radioactive phosphorus in free and adsorbed bacteria. The data obtained indicate an initial exponential growth of the attached bacteria until saturation of the susceptible surface was reached, followed by a linear release of free bacteria due to successive replication of a constant number of adsorbed bacteria. These adsorbed bacteria could continue replication provided the colonized prills were transferred to fresh medium each time the stationary phase was reached. The bacteria released from the prills were unable to multiply, and in the medium employed they lost viability with a half-live of 3.5 days. The spreading of the progeny on the surface was followed by staining the bacteria on the prills with crystal violet; this spreading was not uniform but seemed to proceed through distortions present in the surface. The specific growth rate of T. ferrooxidans ATCC 19859 was about 0.5 day -1 , both before and after saturation of the sulfur surface. The growth of adsorbed and free bacteria in medium containing both ferrous iron and elementary sulfur indicated that T. ferrooxidans can simultaneously utilize both energy sources

  11. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    Science.gov (United States)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  12. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  13. The effect of residual thermal stresses on the fatigue crack growth of laser-surface-annealed AISI 304 stainless steel Part I: computer simulation

    International Nuclear Information System (INIS)

    Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.

    2004-01-01

    The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen

  14. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  15. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces

    Science.gov (United States)

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-01-01

    Background The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). Material/Methods This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. Results Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. Conclusions The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect. PMID:27058704

  16. In Vitro Evaluation of Planktonic Growth on Experimental Cement-Retained Titanium Surfaces.

    Science.gov (United States)

    Balci, Nur; Cakan, Umut; Aksu, Burak; Akgul, Oncu; Ulger, Nurver

    2016-04-08

    BACKGROUND The purpose of this study was to compare the effects of selected cements, or their combination with titanium, on the growth of two periodontopathic bacteria: Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn). MATERIAL AND METHODS This study was comprised of several experimental groups: 1) Dental luting cements (glass ionomer cement, methacrylate-based resin cement, zinc-oxide eugenol cement, eugenol-free zinc oxide cement; 2) titanium discs; and 3) titanium combination cement discs. The disks were submerged in bacterial suspensions of either Fn or Pi. Planktonic bacterial growth within the test media was measured by determining the optical density of the cultures (OD600). Mean and standard deviations were calculated for planktonic growth from three separate experiments. RESULTS Intergroup comparison of all experimental groups revealed increased growth of Pi associated with cement-titanium specimens in comparison with cement specimens. Regarding the comparison of all groups for Fn, there was an increased amount of bacterial growth in cement-titanium specimens although the increase was not statistically significant. CONCLUSIONS The combination of cement with titanium may exacerbate the bacterial growth capacity of Pi and Fn in contrast to their sole effect.

  17. Influence of growth conditions on adhesion of yeast Candida spp. and Pichia spp. to stainless steel surfaces.

    Science.gov (United States)

    Tomičić, Ružica; Raspor, Peter

    2017-08-01

    An understanding of adhesion behavior of Candida and Pichia yeast under different environmental conditions is key to the development of effective preventive measures against biofilm-associated infection. Hence in this study we investigated the impact of growth medium and temperature on Candida and Pichia adherence using stainless steel (AISI 304) discs with different degrees of surface roughness (Ra = 25.20-961.9 nm), material typical for the food processing industry as well as medical devices. The adhesion of the yeast strains to stainless steel surfaces grown in Malt Extract broth (MEB) or YPD broth at three temperatures (7 °C, 37 °C, 43 °C for Candida strains and 7 °C, 27 °C, 32 °C for Pichia strains) was assessed by crystal violet staining. The results showed that the nutrient content of medium significantly influenced the quantity of adhered cells by the tested yeasts. Adhesion of C. albicans and C. glabrata on stainless steel surfaces were significantly higher in MEB, whereas for C. parapsilosis and C. krusei it was YPD broth. In the case with P. pijperi and P. membranifaciens, YPD broth was more effective in promoting adhesion than MEB. On the other hand, our data indicated that temperature is a very important factor which considerably affects the adhesion of these yeast. There was also significant difference in cell adhesion on all types of stainless steel surfaces for all tested yeast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Areal density evolution of isolated surface perturbations at the onset of x-ray ablation Richtmyer-Meshkov growth

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, E. N.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Braun, D.; Sorce, C.; Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 95281 (United States)

    2011-09-15

    Isolated defects on inertial confinement fusion ignition capsules are a concern as defects taller than a few hundred nanometers are calculated to form jets of high-Z material, which enter the main fuel. If this mixing of high-Z material is not controlled, a serious degradation in thermonuclear burn can occur. A path towards controlling the growth of defects on the outer surface of plastic capsules is currently under development, but requires accurate predictions of defect evolution driven by the early time ablative Richtmyer-Meshkov (RM) effect. The chief uncertainty is the Equation of State (EOS) for polystyrene and its effect on ablative RM. We report on measurements of the growth of isolated defects made at the onset of ablative RM oscillations driven by x-ray ablation to differentiate between EOS models used in design calculations. Experiments at the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] used on-axis area backlighting radiography and x-ray framing cameras to determine bump areal densities at discrete times. Bumps 12 and 14 {mu}m tall and 33 {mu}m FWHM were found to grow to 2 x their initial areal density by 3 ns after the start of the drive laser pulse. Shock speed measurements established target conditions resulting from the ablation process. The tabular LEOS 5310 [D. Young and E. Corey, J. Appl. Phys. 78, 3748 (1995)] model shows good agreement with measured shock speeds and bump growth whereas the QEOS model [R. More et al., Phys. Fluids 31, 3059 (1988)] over predicts shock speed and under predicts bump growth by 6x. Differences in ablative RM behavior were also found for x-ray ablation compared to laser ablation, which result in an overestimation (or non-existence) of oscillation frequency for x-ray ablation as predicted by theory.

  19. Comparative study of initial growth stage in PVT growth of AlN on SiC and on native AlN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, B.M.; Heimann, P.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany)

    2005-05-01

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates appears to be aluminum oxynitride poisoning of seed surface leading to polycrystalline growth at 1750-1850 C. This is well below the lowest growth temperature appropriate for physical vapor transport (PVT) of bulk AlN, which is about 2150 C. Contrary, heteroepitaxial growth of AlN on SiC is relatively easy to achieve because of natural formation of a thin molten layer on the seed surface and VLS growth of AlN via the molten buffer layer. The most critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion. Optimization of seeded growth process can be achieved by proper choice of SiC seed orientation and by use of ultra-pure starting material. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Stochastic models for tumoral growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border, and surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stoch...

  1. Occurrence, sources and transport of antibiotics in the surface water of coral reef regions in the South China Sea: Potential risk to coral growth

    International Nuclear Information System (INIS)

    Zhang, Ruijie; Zhang, Ruiling; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Pei, Jiying; Wei, Chaoshuai; Pan, Ziliang; Qin, Zhenjun; Zhang, Gan

    2018-01-01

    Laboratory research has indicated that antibiotics had negative effects on coral growth by disturbing natural microbiota; however, no field studies have reported antibiotic contamination levels and their influence on coral growth in natural coral reef regions (CRRs). This study investigated antibiotic occurrence and sources in the surface water from CRRs that have suffered from rapid coral degradation and evaluated their risk to coral growth. These regions are in the South China Sea, including four coastal and two offshore CRRs. The results show that 13 antibiotics were detected in the coastal CRRs with concentrations ranging from 10 −2 –10 0  ng L −1 , while 5 antibiotics occurred in offshore CRRs (300–950 km from the mainland), with concentrations ranging from 10 −2 to 10 −1  ng L −1 . Their concentrations decreased gradually from the coast to offshore in the transport process. However, Yongxing Island, which is approximately 300 km from the mainland, was an exception with relatively higher concentrations than the surrounding reefs because of the ever-increasing human activity on the island. The presence of anthropogenic contaminants antibiotics in CRRs may be a potential risk to coral growth. - Highlights: • The study first studied antibiotic contamination in seawater from coral reef regions. • Thirteen antibiotics were detected at the level of 10 −2 - 10 0  ng L −1 . • The antibiotic concentrations decreased gradually from the coast to offshore. • Higher concentrations were detected in one offshore reef with more human activities. • Potential risk of the antibiotics to the coral could be ruled out. - Antibiotic contamination level, sources and their potential risk to coral growth were first studied in the surface water of natural coral reef regions.

  2. Carbon Nanotubes Growth by CVD on Graphite Fibers

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Due to the superior electrical and mechanical properties of carbon nanotubes (CNT), synthesizing CNT on various substances for electronics devices and reinforced composites have been engaged in many efforts for applications. This presentation will illustrate CNT synthesized on graphite fibers by thermal CVD. On the fiber surface, iron nanoparticles as catalysts for CNT growth are coated. The growth temperature ranges from 600 to 1000 C and the pressure ranges from 100 Torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than or equal to 900 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in the rough fiber surface without any CNT grown on it. When the growth temperature is relative low (650-800 C), CNT with catalytic particles on the nanotube top ends are fabricated on the graphite surface. (Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis.) (By measuring the samples) Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT (MWCNT), depending on growth concentrations, are found. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  3. Effect of indium accumulation on the characteristics of a-plane InN epi-films under different growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yun-Yo [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Huang, Man-Fang, E-mail: mfhuang@cc.ncue.edu.tw [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Chiang, Yu-Chia [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Fan, Jenn-Chyuan [Department of Electronic Engineering, Nan Kai University of Technology, Nantou, Taiwan, ROC (China)

    2015-08-31

    This study investigated the influence of indium accumulation happened on the surface of a-plane InN grown under different growth conditions. Three different growth rates with N/In ratio from stoichiometric to N-rich were used to grow a-plane InN epifilms on GaN-buffered r-plane sapphires by plasma-assisted molecular beam epitaxy. When a-plane InN was grown above 500 °C with a high growth rate, abnormally high in-situ reflectivity was found during a-plane InN growth, which was resulted from indium accumulation on surface owing to In-N bonding difficulty on certain crystal faces of a-plane InN surface. Even using excess N-flux, indium accumulation could still be found in initial growth and formed 3-dimension-like patterns on a-plane InN surface which resulted in rough surface morphology. By reducing growth rate, surface roughness was improved because indium atoms could have more time to migrate to suitable position. Nonetheless, basal stacking fault density and crystal anisotropic property were not affected by growth rate. - Highlights: • High growth temperature could cause indium accumulation on a-plane InN surface. • Indium accumulation on a-plane InN surface causes rough surface. • Low growth rate improves surface morphology but not crystal quality.

  4. Growth far from equilibrium: Examples from III-V semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kuech, Thomas F. [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Babcock, Susan E. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Mawst, Luke [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-12-15

    The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growth surface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as well as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibility gap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAs{sub 1−y}Bi{sub y} system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.

  5. Geometrical approach to tumor growth.

    Science.gov (United States)

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  6. Surface modification of TiO{sub 2} nanotubes with osteogenic growth peptide to enhance osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Min, E-mail: minlai@jsnu.edu.cn [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Jin, Ziyang [School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Su, Zhiguo [Department of Pharmacy, The Affiliated hospital of Qingdao University, Qingdao, Shandong 266555 (China)

    2017-04-01

    To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO{sub 2} nanotubes with a diameter of around 70 nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO{sub 2} nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO{sub 2} nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO{sub 2} nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO{sub 2} nanotubes showed significantly higher (p < 0.05 or p < 0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14 days of culture, respectively. Cells grown on OGP-functionalized TiO{sub 2} nanotubes had significantly higher (p < 0.05 or p < 0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14 days of culture. These data suggest that surface functionalization of TiO{sub 2} nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. - Highlights: • The OGP functionalized TiO{sub 2} nanotube substrates were successfully fabricated through a direct and effective method. • The OGP functionalized substrates

  7. Neurotrophins differentially stimulate the growth of cochlear neurites on collagen surfaces and in gels☆

    Science.gov (United States)

    Xie, Joanna; Pak, Kwang; Evans, Amaretta; Kamgar-Parsi, Andy; Fausti, Stephen; Mullen, Lina; Ryan, Allen Frederic

    2013-01-01

    The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant. PMID:24459465

  8. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects

    International Nuclear Information System (INIS)

    Han, Yong; Lii-Rosales, A.; Zhou, Y.; Wang, C.-J.

    2017-01-01

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modeling produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.

  9. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  10. Surface science an introduction

    CERN Document Server

    Hudson, John

    1991-01-01

    The whole field of surface science is covered in this work. Starting with a description of the structure and thermodynamics of clean surfaces, the book goes on to discuss kinetic theory of gases and molecular beam formation. This is followed by a largesection on gas-surface interactions, and another major section on energetic particle-surface interactions. The final chapter provides the background to crystal nucleation and growth. The approach adopted is interdisciplinary and slanted towards theexperimental side, with practical analytical techniques being used to illustrate general princi

  11. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  12. Self organized growth of organic thiophene-phenylene nanowires on silicate surfaces

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, Manuela; Lützen, Arne

    2009-01-01

    changes in the choice of the substrate lead to distinctly different growth behavior. On muscovite, a commensurate wetting layer of lying molecules is initially formed with subsequent formation of clusters, which assemble into mutually parallel nanowires. The wires grow along a 110 muscovite direction......Results of a systematic study of the growth of blue-green light-emitting 2,5-di-4-biphenyl-thiophene (PPTPP) molecules on the (001) faces of the sheet silicates muscovite and phlogopite mica are reported. This includes morphology, crystallography, and optical properties. It is shown that small....... In comparison to similar organic molecules, it is found that overall PPTPP has a growth behavior more similar to that of the p-phenylenes as compared to that of the α-thiophenes....

  13. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  14. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dongdong [Physical; Wu, Zhigang [School; Song, Miao [Physical; Chun, Jaehun [Physical; Schenter, Gregory K. [Physical; Li, Dongsheng [Physical

    2018-01-11

    Understanding the growth mechanism of noble metal nanocrystals during solution synthesis is of significant importance for shape and property control. However, much remains unknown about the growth pathways of metal nanoparticles due to lack of direct observation. Using an in-situ transmission electron microscopy technique, we directly observed Ag nanocube and nanobar growth in aqueous solution through both classical monomer-by-monomer addition and non-classical particle attachment processes. During the particle attachment process, Ag nanocubes and nanobars formed via both oriented and non-oriented attachment. Our calculations, along with dynamics of the observed attachment, showed that van der Waals force overcame hydrodynamic and friction forces and drove the particles toward each other. During classical growth, an anisotropic growth was also revealed, and the resulting unsymmetrical shape constituted an intermediate state for Ag nanocube growth. We hypothesized that the temporary symmetry breaking resulted from different growth rates on {001} surfaces due to a local surface concentration variation caused by the imbalance between the consumption of Ag+ near the surface and the diffusion of Ag+ from bulk to surface.

  15. Nucleation and growth of C60 overlayers on the Ag/Pt(111) dislocation network surface

    International Nuclear Information System (INIS)

    Ait-Mansour, K; Ruffieux, P; Xiao, W; Fasel, R; Groening, P; Groening, O

    2007-01-01

    We have investigated the room temperature growth of C 60 overlayers on the strainrelief dislocation network formed by two monolayers of Ag on Pt(111) by means of scanning tunneling microscopy. Extended domains of highly ordered dislocation networks with a typical superlattice parameter of 6.8 nm have been prepared, serving as templates for subsequent C 60 depositions. For low C 60 coverages, the molecules decorate the step-edges, where also the first islands nucleate. This indicates that at room temperature the C 60 molecules are sufficiently mobile to cross the dislocation lines and to diffuse to the step-edges. For C 60 coverages of 0.4 monolayer, besides the islands nucleated at the step-edges, C 60 islands also grow in the middle of terraces. The C 60 islands typically extend over several unit cells of the dislocation network and show an unusual orientation of the hexagonally close-packed C 60 lattice as compared to that found on the bare Ag(111) surface. Whereas C 60 grows preferentially in a (2 √3 x 2 √3) R30 0 structure on Ag(111), on the Ag/Pt(111) dislocation network the C 60 lattice adopts an orientation rotated by 30 0 , with the close-packed C 60 rows aligned along the dislocations which themselves are aligned along the Ag(1-10) directions. For higher coverages in the range of 1-2 monolayers, the growth of C 60 continues in a layer-by-layer fashion

  16. Growth and structure of titanium dioxide on the transition metal surfaces Re(10-10) and Ru(0001); Wachstum und Struktur von Titandioxid auf den Uebergangsmetalloberflaechen Re(10-10) und Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, D.

    2007-03-15

    In this work, we studied the growth and structure of titanium dioxide films on two morphologically different transition metal surfaces, namely the trench-like rhenium(10-10) and the hexagonal ruthenium(0001). The following methods were used: X-ray photoelectron and Auger-electron spectroscopy (XPS and AES), low energy electron diffraction (LEED), low energy Helium-ion scattering (LEIS), scanning tunneling microscopy (STM) and X-ray diffraction (XRD). Titanium dioxide films on rhenium(10-10) were synthesized by co-adsorption of titanium vapor in an oxygen atmosphere up to a thickness of 500 Aa and investigated by means of LEED, LEIS, XPS and XRD. In order to calibrate the titanium flux, the growth mode of titanium on the Re(10-10) surface was determined by means of LEIS, XPS and LEED. The growth of titanium dioxide on the hexagonal ruthenium(0001) surface was investigated by means of STM, XPS and AES. Due to the alloying affinity of Ti and Ru, a titanium oxide film pre-grown at low temperature was finally/fully oxidized at elevated temperature and pressure. First experiments concerning the growth of gold on these titanium dioxide films are presented. One important result of the ongoing work is the imaging of gold clusters with 2-5 atoms in the troughs of rutile(110) beside the typically observed clusters with 3 nm diameter by STM. (orig.)

  17. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  18. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  19. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    Science.gov (United States)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  20. Bubble growth in a narrow horizontal space

    International Nuclear Information System (INIS)

    Stutz, Benoit; Goulet, Remi; Passos, Julio Cesar

    2009-01-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  1. Bubble growth in a narrow horizontal space

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Benoit; Goulet, Remi [CETHIL, UMR5008, CNRS, INSA-Lyon, Universite Lyon1 (France); Passos, Julio Cesar [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. LABSOLAR

    2009-07-01

    The purpose of this work is to develop an axis-symmetric two-phase flow model describing the growth of a single bubble squeezed between a horizontal heated upward-facing disc and an insulating surface placed parallel to the heated surface. Heat transfers at the liquid-vapour interfaces are predicted by the kinetic limit of vaporisation. The depths of the liquid films deposed on the surfaces (heated surface and confinement space) are determined using the Moriyama and Inoue correlation (1996). Transient heat transfers within the heated wall are taken into account. The model is applied to pentane bubble growth. The influence of the gap size, the initial temperature of the system, the thermal effusivity of the heated wall and the kinetic limit of vaporisation are studied. The results show that the expansion of the bubbles strongly depends on the gap size and can be affected by the effusivity of the material. Mechanical inertia effects are mainly dominant at the beginning of the bubble expansion. Pressure drop induced by viscous effects have to be taken into account for high capillary numbers. Heat transfers at the meniscus are negligible except at the early stages of the bubble growth. (author)

  2. Crystallite growth kinetics of TiO{sub 2} surface modification with 9 mol% ZnO prepared by a coprecipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsi, Chi-Shiung [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miao-Li 36003, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Zhao, Xiujian, E-mail: opluse@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China)

    2014-03-05

    Highlights: • TiO{sub 2} powder surface modification with 9 mol% ZnO was obtained. • Phase transformation from anatase to rutile was hindered by ZnO added. • Growth kinetic of anatase TiO{sub 2} nanocrystallites in T-9Z powders was described as: D{sub A,9}{sup 2}=2.42×10{sup 5}×exp(-39.9×10{sup 3}/RT). • Growth kinetic of rutile TiO{sub 2} nanocrystallites in T-9Z powders was described as: D{sub R,9}{sup 2}=8.49×10{sup 5}×exp(-47.6×10{sup 3}/RT) rutile TiO{sub 2}. -- Abstract: The nanocrystallite growth of TiO{sub 2} surface modification with 9 mol% ZnO prepared by a coprecipitation process has been studied. Thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–VIS–NIR spectrophotometry have been utilized to characterize the TiO{sub 2} nanocrystallites surface modification with 9 mol% ZnO (denoted by T-9Z). The DTA result shows that the anatase TiO{sub 2} first formed at 533 K and the completion of anatase TiO{sub 2} crystallization occurred at 745 K for the T-9Z freeze-dried precursor powders. XRD results reveal that the anatase and rutile TiO{sub 2} coexist when the T-9Z freeze-dried precursor powders were calcined at 523–973 K for 2 h. When the T-9Z freeze-dried precursor powders were calcined at 973 K for 2 h, rutile TiO{sub 2} was the major phase, and the minor phases were anatase TiO{sub 2} and Zn{sub 2}Ti{sub 3}O{sub 8}. The phase was composed of the rutile TiO{sub 2} and Zn{sub 2}TiO{sub 4} for the T-9Z freeze-dried precursor powders after calcination at 1273 K for 2 h. The growth kinetics of TiO{sub 2} nanocrystallites in T-9Z powders were described as: D{sub A,9}{sup 2}=2.42×10{sup 5}×exp(-39.9×10{sup 3}/RT)and D{sub R,9}{sup 2}=8.49×10{sup 5}×exp(-47.6×10{sup 3}/RT) for anatase and rutile TiO{sub 2} nanocrystallites respectively. The analysis results of UV/VIS/NIR spectra reveal that the T-9Z freeze

  3. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  4. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  5. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Science.gov (United States)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  6. Step-driven surface segregation and ordering during Si-Ge MBE growth

    International Nuclear Information System (INIS)

    Jesson, D.E.; Pennycook, S.J.; Baribeau, J.M.; Houghton, D.C.

    1992-06-01

    An important role of type S B step edges in determining the as-grown microstructure of Si-Ge superlattices and alloys is implicated from direct Z-contrast images of as-grown structures. A variety of different ordered phase variants can arise at each Si on Ge interface as a result of vertical segregation during superlattice growth. A new monoclinic-ordered structure is predicted to arise as a result of lateral segregation during alloy growth

  7. Shrink-Induced Superhydrophobic and Antibacterial Surfaces in Consumer Plastics

    Science.gov (United States)

    Freschauf, Lauren R.; McLane, Jolie; Sharma, Himanshu; Khine, Michelle

    2012-01-01

    Structurally modified superhydrophobic surfaces have become particularly desirable as stable antibacterial surfaces. Because their self-cleaning and water resistant properties prohibit bacteria growth, structurally modified superhydrophobic surfaces obviate bacterial resistance common with chemical agents, and therefore a robust and stable means to prevent bacteria growth is possible. In this study, we present a rapid fabrication method for creating such superhydrophobic surfaces in consumer hard plastic materials with resulting antibacterial effects. To replace complex fabrication materials and techniques, the initial mold is made with commodity shrink-wrap film and is compatible with large plastic roll-to-roll manufacturing and scale-up techniques. This method involves a purely structural modification free of chemical additives leading to its inherent consistency over time and successive recasting from the same molds. Finally, antibacterial properties are demonstrated in polystyrene (PS), polycarbonate (PC), and polyethylene (PE) by demonstrating the prevention of gram-negative Escherichia coli (E. coli) bacteria growth on our structured plastic surfaces. PMID:22916100

  8. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, Ebadollah, E-mail: enaderi42@gmail.com [Department of Physics, Savitribai Phule Pune University (SPPU), Pune-411007 (India); Ghaisas, S. V. [Department of Electronic Science, Savitribai Phule Pune University (SPPU), Pune-411007 (India)

    2016-08-15

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  9. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    Science.gov (United States)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-08-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  10. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    International Nuclear Information System (INIS)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-01-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  11. Atmosphere influence on in situ ion beam analysis of thin film growth

    International Nuclear Information System (INIS)

    Lin, Yuping; Krauss, A.R.; Gruen, D.M.; Chang, R.P.H.; Auciello, O.H.; Schultz, J.A.

    1994-01-01

    In situ, nondestructive surface characterization of thin-film growth processes in an environment of chemically active gas at pressures of several mTorr is required both for the understanding of growth processes in multicomponent films and layered heterostructures and for the improvement of process reproducibility and device reliability. The authors have developed a differentially pumped pulsed ion beam surface analysis system that includes ion scattering spectroscopy (ISS) and direct recoil spectroscopy (DRS), coupled to an automated ion beam sputter-deposition system (IBSD), to study film growth processes in an environment of chemically active gas, such as required for the growth of oxide, nitride, or diamond thin films. The influence of gas-phase scattering and gas-surface interactions on the ISS and DRS signal intensity and peak shape have been studied. From the intensity variation as a function of ambient gas pressure, the authors have calculated the mean free path and the scattering cross-section for a given combination of primary ion species and ambient gas. Depending on the system geometry and the combination of primary beam and background, it is shown that surface-specific data can be obtained during thin-film growth at pressures ranging from a few mtorr to approximately 1 Torr. Detailed information such as surface composition, structure, and film growth mechanism may be obtained in real-time, making ion beam analysis an ideal nondestructive, in situ probe of thin-film growth processes

  12. Growth Mechanism of Cluster-Assembled Surfaces: From Submonolayer to Thin-Film Regime

    Science.gov (United States)

    Borghi, Francesca; Podestà, Alessandro; Piazzoni, Claudio; Milani, Paolo

    2018-04-01

    Nanostructured films obtained by assembling preformed atomic clusters are of strategic importance for a wide variety of applications. The deposition of clusters produced in the gas phase onto a substrate offers the possibility to control and engineer the structural and functional properties of the cluster-assembled films. To date, the microscopic mechanisms underlying the growth and structuring of cluster-assembled films are poorly understood, and, in particular, the transition from the submonolayer to the thin-film regime is experimentally unexplored. Here we report the systematic characterization by atomic force microscopy of the evolution of the structural properties of cluster-assembled films deposited by supersonic cluster beam deposition. As a paradigm of nanostructured systems, we focus our attention on cluster-assembled zirconia films, investigating the influence of the building block dimensions on the growth mechanisms and roughening of the thin films, following the growth process from the early stages of the submonolayer to the thin-film regime. Our results demonstrate that the growth dynamics in the submonolayer regime determines different morphological properties of the cluster-assembled thin film. The evolution of the roughness with the number of deposited clusters reproduces the growth exponent of the ballistic deposition in the 2 +1 model from the submonolayer to the thin-film regime.

  13. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  14. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Segura-Ruiz, J.; Cantarero, A. [Materials Science Institute, University of Valencia (Spain); Garro, N. [Materials Science Institute, University of Valencia (Spain); Fundacio General de la Universitat de Valencia, Valencia (Spain); Iikawa, F. [Instituto de Fisica ' ' Gleb Wataghin' ' , UNICAMP, Campinas-SP (Brazil); Denker, C.; Malindretos, J.; Rizzi, A. [IV. Physikalisches Institut, Georg-August Universitaet Goettingen (Germany)

    2009-06-15

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical properties of InN nanocolumns: Electron accumulation at InN non-polar surfaces and dependence on the growth conditions

    International Nuclear Information System (INIS)

    Segura-Ruiz, J.; Cantarero, A.; Garro, N.; Iikawa, F.; Denker, C.; Malindretos, J.; Rizzi, A.

    2009-01-01

    InN nanocolumns grown by plasma-assisted molecular beam epitaxy have been studied by photoluminescence (PL) and photoluminescence excitation (PLE). The PL peak energy was red-shifted with respect to the PLE onset and both energies were higher than the low temperature band-gap reported for InN. PL and PLE experiments for different excitation and detection energies indicated that the PL peaks were homogeneously broadened. This overall phenomenology has been attributed to the effects of an electron accumulation layer present at the non-polar surfaces of the InN nanocolumns. Variations in the growth conditions modify the edge of the PLE spectra and the PL peak energies evidencing that the density of free electrons can be somehow controlled by the growth parameters. It was observed that In-BEP and substrate temperature leading to shorter In diffusion lengths diminished the effects of the electron accumulation layer on the optical properties. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Erik Caroselli

    Full Text Available The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change.

  17. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes.

    Science.gov (United States)

    Xiao, Dongdong; Wu, Zhigang; Song, Miao; Chun, Jaehun; Schenter, Gregory K; Li, Dongsheng

    2018-01-30

    Understanding the growth mechanism of noble metal nanocrystals during solution synthesis is of significant importance for shape and property control. However, much remains unknown about the growth pathways of metal nanoparticles due to the lack of direct observation. Using an in situ transmission electron microscopy technique, we directly observed Ag nanocube and nanobar growth in an aqueous solution through both classical monomer-by-monomer addition and nonclassical particle attachment processes. During the particle attachment process, Ag nanocubes and nanobars were formed via both oriented and nonoriented attachment. Our calculations, along with the dynamics of the observed attachment, showed that the van der Waals force overcomes hydrodynamic and friction forces and drives the particles toward each other at separations of 10-100 nm in our experiments. During classical growth, anisotropic growth was also revealed, and the resulting unsymmetrical shape constituted an intermediate state for Ag nanocube growth. We hypothesized that the temporary symmetry breaking resulted from different growth rates on (001) surfaces due to a local surface concentration variation caused by the imbalance between the consumption of Ag + near the surface and the diffusion of Ag + from the bulk to the surface.

  18. Surfacing the Depths: Thoughts on Imitation, Resonance and Growth

    Science.gov (United States)

    Music, Graham

    2005-01-01

    This paper examines some of the research on imitation that shows it to be much more than simply a behavioural or reflex response, but rather an aspect of the growth of genuine social and psychological interaction and part of an intersubjective process that includes the representation of object relationships. Differentiations between mind,…

  19. Psychosocial, Physical, and Neurophysiological Risk Factors for Chronic Neck Pain: A Prospective Inception Cohort Study.

    Science.gov (United States)

    Shahidi, Bahar; Curran-Everett, Douglas; Maluf, Katrina S

    2015-12-01

    The purpose of this investigation was to identify modifiable risk factors for the development of first-onset chronic neck pain among an inception cohort of healthy individuals working in a high-risk occupation. Candidate risk factors identified from previous studies were categorized into psychosocial, physical, and neurophysiological domains, which were assessed concurrently in a baseline evaluation of 171 office workers within the first 3 months of hire. Participants completed monthly online surveys over the subsequent year to identify the presence of chronic interfering neck pain, defined as a Neck Disability Index score ≥5 points for 3 or more months. Data were analyzed using backward logistic regression to identify significant predictors within each domain, which were then entered into a multivariate regression model adjusted for age, sex, and body mass index. Development of chronic interfering neck pain was predicted by depressed mood (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 1.10-10.31, P = .03), cervical extensor endurance (OR = .92, 95% CI, .87-.97, P = .001), and diffuse noxious inhibitory control (OR = .90, 95% CI, .83-.98, P = .02) at baseline. These findings provide the first evidence that individuals with preexisting impairments in mood and descending pain modulation may be at greater risk for developing chronic neck pain when exposed to peripheral nociceptive stimuli such as that produced during muscle fatigue. Depressed mood, poor muscle endurance, and impaired endogenous pain inhibition are predisposing factors for the development of new-onset chronic neck pain of nonspecific origin in office workers. These findings may assist with primary prevention by allowing clinicians to screen for individuals at risk of developing chronic neck pain. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Ab initio-based bulk and surface thermodynamics of InGaN alloys. Investigating the effects of strain and surface polarity

    Energy Technology Data Exchange (ETDEWEB)

    Duff, Andrew I.; Lymperakis, Liverios; Neugebauer, Joerg [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2015-05-15

    The growth of high In content InGaN with sufficiently high crystal quality is challenging due to the differences in the GaN and InN thermodynamics. The surprisingly different thermodynamics is due to a complex competition between strain and chemistry and mediated by the different indium and gallium atomic radii as well as their different bonding enthalpies with nitrogen. In the present work, we investigate bulk and surface thermodynamics of molecular beam epitaxial (MBE) growth of In{sub x}Ga{sub 1-x}N for the technologically relevant (0001) and (000 anti 1) growth planes by means of density functional theory calculations. Our calculations confirm that coherent growth fully suppresses phase separation through spinodal decomposition. However, the biaxial strain is found to have a marginal effect on the critical temperatures for In{sub x}Ga{sub 1-x}N decomposition. Furthermore, the thermal stability of excess indium is found to be remarkably higher on N-polar surfaces than on the Ga-polar surfaces. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)