WorldWideScience

Sample records for inadequate water treatment

  1. [Inadequate treatment of affective disorders].

    Science.gov (United States)

    Bergsholm, P; Martinsen, E W; Holsten, F; Neckelmann, D; Aarre, T F

    1992-08-30

    Inadequate treatment of mood (affective) disorders is related to the mind/body dualism, desinformation about methods of treatment, the stigma of psychiatry, low funding of psychiatric research, low educational priority, and slow acquisition of new knowledge of psychiatry. The "respectable minority rule" has often been accepted without regard to the international expertise, and the consequences of undertreatment have not been weighed against the benefits of optimal treatment. The risk of chronicity increases with delayed treatment, and inadequately treated affective disorders are a leading cause of suicide. During the past 20 years the increase in suicide mortality in Norway has been the second largest in the world. Severe mood disorders are often misclassified as schizophrenia or other non-affective psychoses. Atypical mood disorders, notably rapid cycling and bipolar mixed states, are often diagnosed as personality, adjustment, conduct, attention deficit, or anxiety disorders, and even mental retardation. Neuroleptic drugs may suppress the most disturbing features of mood disorders, a fact often misinterpreted as supporting the diagnosis of a schizophrenia-like disorder. Treatment with neuroleptics is not sufficient, however, and serious side effects may often occur. The consequences are too often social break-down and post-depression syndrome.

  2. A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water.

    Directory of Open Access Journals (Sweden)

    Ashley R Williams

    Full Text Available Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety.To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources.We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of Escherichia coli, thermotolerant or total coliforms were included provided they tested at least ten samples or brands.A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141. Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6-8.1 and 13.6 (95% CI: 6.9-26.7 times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17-0.58 and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22. Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62 compared to other water sources used for consumption.Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks.

  3. The impact of inadequate wastewater treatment on the receiving ...

    African Journals Online (AJOL)

    The impact of inadequate wastewater treatment on the receiving water bodies – Case study: Buffalo City and Nkokonbe Municipalities of the Eastern Cape ... into their respective receiving water bodies (Tembisa Dam, the Nahoon and Eastern Beach which are part of the Indian Ocean; the Tyume River and the Kat River).

  4. The impact of inadequate wastewater treatment on the receiving ...

    African Journals Online (AJOL)

    7950 = Water SA (on-line). 687. The impact of inadequate wastewater treatment on the receiving water bodies – Case study: Buffalo City and. Nkokonbe Municipalities of the Eastern Cape Province. MNB Momba1*, AN Osode2 and M Sibewu1.

  5. Managing inadequate responses to frontline treatment of chronic myeloid leukemia: a case-based review.

    Science.gov (United States)

    Bixby, Dale L

    2013-05-01

    The tyrosine kinase inhibitors (TKIs) imatinib, nilotinib, and dasatinib are the standard of care for treating patients with newly diagnosed chronic-phase chronic myeloid leukemia (CML). Compared with interferon-based treatment, the previous standard of care, imatinib is associated with significantly higher cytogenetic response rates and prolonged overall survival. Nilotinib and dasatinib, both newer and more potent TKIs, significantly improve cytogenetic and molecular response rates compared with imatinib. Despite significant advances in CML treatment enabled by the TKIs, a fraction of patients who receive frontline treatment with a TKI demonstrate inadequate response. The reasons for this vary, but in many cases, inadequate response can be attributed to non-adherence to the treatment regimen, intolerance to the drug, intrinsic or acquired resistance to the drug, or a combination of reasons. More often than not, strategies to improve response necessitate a change in treatment plan, either a dose adjustment or a switch to an alternate drug, particularly in the case of drug intolerance or drug resistance. Improved physician-patient communication and patient education are effective strategies to address issues relating to adherence and intolerance. Because inadequate response to TKI treatment correlates with poor long-term outcomes, it is imperative that patients who experience intolerance or who fail to achieve appropriate responses are carefully evaluated so that appropriate treatment modifications can be made to maximize the likelihood of positive long-term outcome. Copyright © 2012. Published by Elsevier Ltd.

  6. Defining localities of inadequate treatment for childhood asthma: A GIS approach

    Directory of Open Access Journals (Sweden)

    Pliskin Joseph S

    2006-01-01

    Full Text Available Abstract Background The use of Geographic Information Systems (GIS has great potential for the management of chronic disease and the analysis of clinical and administrative health care data. Asthma is a chronic disease associated with substantial morbidity, mortality, and health care use. Epidemiologic data from all over the world show an increasing prevalence of asthma morbidity and mortality despite the availability of effective treatment. These facts led to the emergence of strategies developed to improve the quality of asthma care. The objective To develop an efficient tool for quality assurance and chronic disease management using a Geographic Information System (GIS. Geographic location The southern region of Israel. January 1998 – October 2000. Databases Administrative claims data of the largest HMO in Israel: drug dispensing registry, demographic data, Emergency Room visits, and hospitalization data bases. Methods We created a list of six markers for inadequate pharmaceutical treatment of childhood asthma from the Israeli clinical guidelines. We used this list to search the drug dispensing registry to identify asthmatic children who received inadequate treatment and to assess their health care utilization and bad outcomes: emergency room visits and hospitalizations. Using GIS we created thematic maps on which we located the clinics with a high percentage of children for whom the treatment provided was not in adherence with the clinical guidelines. Results 81% of the children were found to have at least one marker for inadequate treatment; 17.5% were found to have more than one marker. Children with markers were found to have statistically significant higher rates of Emergency Room visits, hospitalizations and longer length of stay in hospital compared with children without markers. The maps show in a robust way which clinics provided treatment not in accord with the clinical guidelines. Those clinics have high rates of Emergency Room

  7. Initial treatment of severe malaria in children is inadequate – a study ...

    African Journals Online (AJOL)

    -medicated at home. Initial consultations are at primary local health facilities where less effective drugs are prescribed at inadequate dosages. Recommended ACTs were also often prescribed at inadequate dosages. Education in the use of ...

  8. WATER TREATMENT

    Science.gov (United States)

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  9. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries.

    Science.gov (United States)

    Prüss-Ustün, Annette; Bartram, Jamie; Clasen, Thomas; Colford, John M; Cumming, Oliver; Curtis, Valerie; Bonjour, Sophie; Dangour, Alan D; De France, Jennifer; Fewtrell, Lorna; Freeman, Matthew C; Gordon, Bruce; Hunter, Paul R; Johnston, Richard B; Mathers, Colin; Mäusezahl, Daniel; Medlicott, Kate; Neira, Maria; Stocks, Meredith; Wolf, Jennyfer; Cairncross, Sandy

    2014-08-01

    To estimate the burden of diarrhoeal diseases from exposure to inadequate water, sanitation and hand hygiene in low- and middle-income settings and provide an overview of the impact on other diseases. For estimating the impact of water, sanitation and hygiene on diarrhoea, we selected exposure levels with both sufficient global exposure data and a matching exposure-risk relationship. Global exposure data were estimated for the year 2012, and risk estimates were taken from the most recent systematic analyses. We estimated attributable deaths and disability-adjusted life years (DALYs) by country, age and sex for inadequate water, sanitation and hand hygiene separately, and as a cluster of risk factors. Uncertainty estimates were computed on the basis of uncertainty surrounding exposure estimates and relative risks. In 2012, 502,000 diarrhoea deaths were estimated to be caused by inadequate drinking water and 280,000 deaths by inadequate sanitation. The most likely estimate of disease burden from inadequate hand hygiene amounts to 297,000 deaths. In total, 842,000 diarrhoea deaths are estimated to be caused by this cluster of risk factors, which amounts to 1.5% of the total disease burden and 58% of diarrhoeal diseases. In children under 5 years old, 361,000 deaths could be prevented, representing 5.5% of deaths in that age group. This estimate confirms the importance of improving water and sanitation in low- and middle-income settings for the prevention of diarrhoeal disease burden. It also underscores the need for better data on exposure and risk reductions that can be achieved with provision of reliable piped water, community sewage with treatment and hand hygiene. © 2014 The Authors. Tropical Medicine and International Health published by John Wiley & Sons Ltd.

  10. An implant-supported removable partial denture on milled bars to compromise the inadequate treatment plan: a clinical report

    OpenAIRE

    Kim, Jee-Hwan; Lee, Jae-Hoon

    2010-01-01

    Presurgical prosthetic treatment planning is critical for the success of the implant prosthesis. Inadequate treatment plan, due to insufficient discussion between prosthodontist, and surgeon, may result in poor prognosis. A 26-year-old male patient was referred for prosthodontic treatment after implant was placed in the area of teeth #17, 16, 22, 25 and 27, without adequate discussion nor the treatment planning between oral surgeon and prosthodontist. It was found that the patient had two hop...

  11. Pregabalin for the treatment of patients with generalized anxiety disorder with inadequate treatment response to antidepressants and severe depressive symptoms.

    Science.gov (United States)

    Olivares, José M; Álvarez, Enrique; Carrasco, José L; Pérez Páramo, María; López-Gómez, Vanessa

    2015-09-01

    To evaluate the effectiveness of pregabalin in patients with resistant generalized anxiety disorder (GAD) and severe depressive symptoms, we carried out a post-hoc analysis of a multicenter, prospective, and observational 6-month study. We included patients who were at least 18 years old, fulfilled the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) criteria for GAD, showed inadequate responses to previous courses of antidepressant treatment, had Montgomery-Asberg Rating Scale scores of at least 35, had not received pregabalin previously, and were prescribed pregabalin upon entry into this study. We included 1815 patients fulfilling the DSM-IV criteria for GAD, and 133 (7.3%) fulfilled the selection criteria for these analyses. Ninety-seven percent of the patients received pregabalin (mean dose: 222 mg/day) in combination with other psychotropics. The Hamilton Anxiety Scale total score was reduced by a mean of 20.3 points (95% confidence interval, 22.1-18.4) (57.2% reduction) at month 6. Pregabalin also ameliorated comorbid depressive symptoms, with a reduction in the mean score of the Montgomery-Asberg Rating Scale of 22.3 points (95% confidence interval, 24.2-20.4) (56.6% reduction). Our results suggest that pregabalin, as part of a combination regimen with antidepressants and/or benzodiazepines, might be effective for the treatment of patients with GAD who have shown inadequate response to previous antidepressants and have severe depressive symptoms.

  12. Nonoclusive thrombosis of mechanical mitral valve prosthesis caused by inadequate treatment of anticoagulant therapy resistance

    Directory of Open Access Journals (Sweden)

    Ivanović Branislava

    2008-01-01

    Full Text Available Background. Oral anticoagulants have been used in the prevention of thromboembolic complications for over six decades. A rare, but possible problem in the application of these medications could be resistance to them. Case report. We presented a patient with nonocclusive thrombosis of the mechanical mitral prosthesis due to inadequately treated resistance to peroral anticoagulant therapy. Resistance to oral anticoagulant medications was proven by an increased dosage of warfarin up to 20 mg and, after that, acenokumarol to 15 mg over ten days which did not lead to an increase in the international normalized ratio (INR value over 1.2. On the basis of information that she did not take food rich in vitamin K or medications which could reduce effects of oral anticoagulants, and that she did not have additional illnesses and conditions that could cause an inadequate response to anticoagulant therapy, it was circumstantially concluded that this was a hereditary form of resistance. Because of the existing mechanical prosthetics on the mitral position, low molecular heparin has been introduced into the therapy. The patient reduced it on her own initiative, leading to nonocclusive valvular thrombosis. Conclusion. When associated complications like absolute arrhithmia does not exist, the finding of resistance to oral anticoagulant agents is an indication for the replacement of a mechanical prosthetic with a biological one which has been done in this patients.

  13. Inadequate treatment of ventilator-associated and hospital-acquired pneumonia: Risk factors and impact on outcomes

    Directory of Open Access Journals (Sweden)

    Piskin Nihal

    2012-10-01

    Full Text Available Abstract Background Initial antimicrobial therapy (AB is an important determinant of clinical outcome in patients with severe infections as pneumonia, however well-conducted studies regarding prognostic impact of inadequate initial AB in patients who are not undergoing mechanical ventilation (MV are lacking. In this study we aimed to identify the risk factors for inadequate initial AB and to determine its subsequent impact on outcomes in both ventilator associated pneumonia (VAP and hospital acquired pneumonia (HAP. Methods We retrospectively studied the accuracy of initial AB in patients with pneumonia in a university hospital in Turkey. A total of 218 patients with HAP and 130 patients with VAP were included. For each patient clinical, radiological and microbiological data were collected. Stepwise multivariate logistic regression analysis was used for risk factor analysis. Survival analysis was performed by using Kaplan-Meier method with Log-rank test. Results Sixty six percent of patients in VAP group and 41.3% of patients in HAP group received inadequate initial AB. Multiple logistic regression analysis revealed that the risk factors for inadequate initial AB in HAP patients were; late-onset HAP (OR = 2.35 (95% CI, 1.05-5.22; p = 0.037 and APACHE II score at onset of HAP (OR = 1.06 (95% CI, 1.01-1.12; p = 0.018. In VAP patients; antibiotic usage in the previous three months (OR = 3.16 (95% CI, 1.27-7.81; p = 0.013 and admission to a surgical unit (OR = 2.9 (95% CI, 1.17-7.19; p = 0.022 were found to be independent risk factors for inadequate initial AB. No statistically significant difference in crude hospital mortality and 28-day mortality was observed between the treatment groups in both VAP and HAP. However we showed a significant increase in length of hospital stay, duration of mechanical ventilation and a prolonged clinical resolution in the inadequate AB group in both VAP and HAP. Conclusion Our data

  14. Inadequate treatment of ventilator-associated and hospital-acquired pneumonia: risk factors and impact on outcomes.

    Science.gov (United States)

    Piskin, Nihal; Aydemir, Hande; Oztoprak, Nefise; Akduman, Deniz; Comert, Fusun; Kokturk, Furuzan; Celebi, Guven

    2012-10-24

    Initial antimicrobial therapy (AB) is an important determinant of clinical outcome in patients with severe infections as pneumonia, however well-conducted studies regarding prognostic impact of inadequate initial AB in patients who are not undergoing mechanical ventilation (MV) are lacking. In this study we aimed to identify the risk factors for inadequate initial AB and to determine its subsequent impact on outcomes in both ventilator associated pneumonia (VAP) and hospital acquired pneumonia (HAP). We retrospectively studied the accuracy of initial AB in patients with pneumonia in a university hospital in Turkey. A total of 218 patients with HAP and 130 patients with VAP were included. For each patient clinical, radiological and microbiological data were collected. Stepwise multivariate logistic regression analysis was used for risk factor analysis. Survival analysis was performed by using Kaplan-Meier method with Log-rank test. Sixty six percent of patients in VAP group and 41.3% of patients in HAP group received inadequate initial AB. Multiple logistic regression analysis revealed that the risk factors for inadequate initial AB in HAP patients were; late-onset HAP (OR = 2.35 (95% CI, 1.05-5.22; p = 0.037) and APACHE II score at onset of HAP (OR = 1.06 (95% CI, 1.01-1.12); p = 0.018). In VAP patients; antibiotic usage in the previous three months (OR = 3.16 (95% CI, 1.27-7.81); p = 0.013) and admission to a surgical unit (OR = 2.9 (95% CI, 1.17-7.19); p = 0.022) were found to be independent risk factors for inadequate initial AB. No statistically significant difference in crude hospital mortality and 28-day mortality was observed between the treatment groups in both VAP and HAP. However we showed a significant increase in length of hospital stay, duration of mechanical ventilation and a prolonged clinical resolution in the inadequate AB group in both VAP and HAP. Our data suggests that the risk factors for inadequate initial AB

  15. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study

    DEFF Research Database (Denmark)

    Lund, S.S.; Tarnow, L.; Astrup, A.S.

    2008-01-01

    BACKGROUND: Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM) have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment...... with metformin versus placebo in patients with T1DM and persistent poor glycaemic control. METHODOLOGY/PRINCIPAL FINDINGS: One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA(1c) (HbA(1c)) > or = 8.5% during the year before enrolment entered a one-month run-in on placebo treatment....... Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c) after one year of treatment...

  16. The danger of an inadequate water intake during prolonged exercise. A novel concept re-visited.

    Science.gov (United States)

    Noakes, T D; Adams, B A; Myburgh, K H; Greeff, C; Lotz, T; Nathan, M

    1988-01-01

    To prevent thermal injuries during distance running, the American College of Sports Medicine proposes that between 0.83 and 1.65 l of water should be ingested each hour during prolonged exercise. Yet such high rates of fluid intake have been reported to cause water intoxication. To establish the freely-chosen rates of fluid intake during prolonged competitive exercise, we measured fluid intake during, body weight before and after, and rectal temperature after competition in a total of 102 runners and 91 canoeists competing in events lasting from 170-340 min. Fluid intakes during competition ranged from 0.29-0.62 l.h-1; rates of water loss ranged from 0.69-1.27 l.h-1 in the runners; values were lower in the canoeists. Mean post-race rectal temperatures ranged from 38.0-39.0 degrees C. There was no relationship between the degree of dehydration and post-race rectal temperature. We conclude that hyperthermia is uncommon in prolonged competitive events held in mild environmental conditions, and that exercise intensity, not the level of dehydration, is probably the most important factor determining the postexercise rectal temperature. During prolonged exercise in mild environmental conditions, a fluid intake of 0.5 l.h-1 will prevent significant dehydration in the majority of athletes.

  17. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  18. Inadequate treatment for elderly patients: professional norms and tight budgets could cause "ageism" in hospitals.

    Science.gov (United States)

    Skirbekk, Helge; Nortvedt, Per

    2014-06-01

    We have studied ethical considerations of care among health professionals when treating and setting priorities for elderly patients in Norway. The views of medical doctors and nurses were analysed using qualitative methods. We conducted 21 in depth interviews and 3 focus group interviews in hospitals and general practices. Both doctors and nurses said they treated elderly patients different from younger patients, and often they were given lower priorities. Too little or too much treatment, in the sense of too many interventions and too much drugs, combined with too little care and comfort, was admitted as a relatively frequent yet unwanted consequence of the way clinical priorities were set for elderly patients. This was explained in terms of elderly patients not tolerating the same treatment as younger patients, and questions were raised about the quality of life of many elderly patients after treatment. These explanations were frequently referred to as medically sound decision making. Other explanations had little to do with medically sound decisions. These often included deep frustration with executive guidelines and budget constraints.

  19. What causes treatment failure - the patient, primary care, secondary care or inadequate interaction in the health services?

    Directory of Open Access Journals (Sweden)

    Lange Ove

    2011-05-01

    Full Text Available Abstract Background Optimal treatment gives complete relief of symptoms of many disorders. But even if such treatment is available, some patients have persisting complaints. One disorder, from which the patients should achieve complete relief of symptoms with medical or surgical treatment, is gastroesophageal reflux disease (GERD. Despite the fact that such treatment is cheap, safe and easily available; some patients have persistent complaints after contact with the health services. This study evaluates the causes of treatment failure. Methods Twelve patients with GERD and persistent complaints had a semi-structured interview which focused on the patients' evaluation of treatment failure. The interviews were taped, transcribed and evaluated by 18 physicians, (six general practitioners, six gastroenterologists and six gastrointestinal surgeons who completed a questionnaire for each patient. The questionnaires were scored, and the relative responsibility for the failure was attributed to the patient, primary care, secondary care and interaction in the health services. Results Failing interaction in the health services was the most important cause of treatment failure, followed by failure in primary care, secondary care and the patient himself; the relative responsibilities were 35%, 28%, 27% and 10% respectively. There was satisfactory agreement about the causes between doctors with different specialities, but significant inter-individual differences between the doctors. The causes of the failures differed between the patients. Conclusions Treatment failure is a complex problem. Inadequate interaction in the health services seems to be important. Improved communication between parts of the health services and with the patients are areas of improvement.

  20. Predictors of treatment response for depression and inadequate social support--the ENRICHD randomized clinical trial.

    Science.gov (United States)

    Cowan, Marie J; Freedland, Kenneth E; Burg, Matthew M; Saab, Patrice G; Youngblood, Marston E; Cornell, Carol E; Powell, Lynda H; Czajkowski, Susan M

    2008-01-01

    To determine whether the 'dose' of treatment exposure, delivery of specific components of cognitive behavior therapy (CBT), patient adherence and/or use of antidepressants predict favorable depression and social support outcomes after 6 months of cognitive behavioral treatment. Secondary analyses of the intervention arm of the Enhancing Recovery in Coronary Heart Disease (ENRICHD) clinical trial involving persons with acute myocardial infarction (MI): n = 641 for the depression outcomes and n = 523 for the social support outcomes. The outcome measures were, for depression: the Beck Depression Inventory (BDI) and Hamilton Rating Scale for Depression (HAM-D); for social support: the ENRICHD Social Support Instrument (ESSI) and Perceived Social Support Scale (PSSS). Better depression outcomes (measured by the BDI) were receiving a high number of depression-specific intervention components, p depression outcomes (measured by the HAM-D) were receiving a high number of the social communication and assertiveness components of the intervention, p social support outcomes (measured by the ESSI and PSSS) were predicted by membership in a racial or ethnic minority group, p social communication and assertiveness components of the intervention was an independent predictor of a worse social support outcome, p depression are useful in treating comorbid depression in post-MI patients. Working on communication skills may help to improve depression but not necessarily social support outcomes in this patient population, while adherence to cognitive-behavioral homework assignments is important for both outcomes. Other components of the ENRICHD intervention that were designed to improve social support had no discernible effects on outcomes. Intervention refinements may be needed in order to achieve better results in future post-MI clinical trials. A greater emphasis on CBT homework adherence could improve both depression and social support outcomes. 2008 S. Karger AG, Basel

  1. The Effect of Inadequate Initial Empiric Antimicrobial Treatment on Mortality in Critically Ill Patients with Bloodstream Infections: A Multi-Centre Retrospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Rachel D Savage

    Full Text Available Hospital mortality rates are elevated in critically ill patients with bloodstream infections. Given that mortality may be even higher if appropriate treatment is delayed, we sought to determine the effect of inadequate initial empiric treatment on mortality in these patients. A retrospective cohort study was conducted across 13 intensive care units in Canada. We defined inadequate initial empiric treatment as not receiving at least one dose of an antimicrobial to which the causative pathogen(s was susceptible within one day of initial blood culture. We evaluated the association between inadequate initial treatment and hospital mortality using a random effects multivariable logistic regression model. Among 1,190 patients (1,097 had bacteremia and 93 had candidemia, 476 (40% died and 266 (22% received inadequate initial treatment. Candidemic patients more often had inadequate initial empiric therapy (64.5% versus 18.8%, as well as longer delays to final culture results (4 vs 3 days and appropriate therapy (2 vs 0 days. After adjustment, there was no detectable association between inadequate initial treatment and mortality among bacteremic patients (Odds Ratio (OR: 1.02, 95% Confidence Interval (CI 0.70-1.48; however, candidemic patients receiving inadequate treatment had nearly three times the odds of death (OR: 2.89, 95% CI: 1.05-7.99. Inadequate initial empiric antimicrobial treatment was not associated with increased mortality in bacteremic patients, but was an important risk factor in the subgroup of candidemic patients. Further research is warranted to improve early diagnostic and risk prediction methods in candidemic patients.

  2. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study.

    Directory of Open Access Journals (Sweden)

    Søren Søgaard Lund

    Full Text Available Despite intensive insulin treatment, many patients with type-1 diabetes (T1DM have longstanding inadequate glycaemic control. Metformin is an oral hypoglycaemic agent that improves insulin action in patients with type-2 diabetes. We investigated the effect of a one-year treatment with metformin versus placebo in patients with T1DM and persistent poor glycaemic control.One hundred patients with T1DM, preserved hypoglycaemic awareness and HaemoglobinA(1c (HbA(1c > or = 8.5% during the year before enrolment entered a one-month run-in on placebo treatment. Thereafter, patients were randomized (baseline to treatment with either metformin (1 g twice daily or placebo for 12 months (double-masked. Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c after one year of treatment. At enrolment, mean (standard deviation HbA(1c was 9.48% (0.99 for the metformin group (n = 49 and 9.60% (0.86 for the placebo group (n = 51. Mean (95% confidence interval baseline-adjusted differences after 12 months with metformin (n = 48 versus placebo (n = 50 were: HbA(1c, 0.13% (-0.19; 0.44, p = 0.422; Total daily insulin dose, -5.7 U/day (-8.6; -2.9, p<0.001; body weight, -1.74 kg (-3.32; -0.17, p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated.In patients with poorly controlled T1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects of metformin therapy in patients with T1DM are warranted.ClinicalTrials.gov NCT00118937.

  3. Water supply and treatment

    International Nuclear Information System (INIS)

    Piacek, P.

    1987-01-01

    Experience is described with the operation of the water supply, the chemical water treatment systems and the unit condensate treatment at the V-2 nuclear power plant at Jaslovske Bohunice. The technology is described which is applied to obtain raw water from the Slnava water reservoir and the respective technological system for its treatment is described. Also described are the treatment of the make-up water for the primary and secondary coolant circuits, demineralization, regeneration of ion exchange filters, neutralization of regeneration waste, sludge dewatering and the treatment of steam turbine condensates. (B.S.)

  4. Alternative disinfectant water treatments

    Science.gov (United States)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  5. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  6. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  7. Water Treatment Technology - Springs.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  8. Water Treatment Technology - Flouridation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  9. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  10. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  11. Water Treatment Technology - Chlorination.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  12. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  13. A systematic review and mixed-treatment comparison of dapagliflozin with existing anti-diabetes treatments for those with type 2 diabetes mellitus inadequately controlled by sulfonylurea monotherapy

    Science.gov (United States)

    2014-01-01

    Background To compare the first-in-class sodium glucose co-transporter 2 (SGLT2) inhibitor, dapagliflozin, with existing type 2 diabetes mellitus (T2DM) treatment options available within the European Union (EU) for add-on therapy to sulfonylureas (SUs). Methods A systematic review was conducted to identify randomised controlled trials (RCTs) in T2DM patients inadequately controlled by SU monotherapy. Direct meta-analysis, Bucher indirect comparisons and Bayesian network meta-analysis (NMA) were conducted on studies meeting predefined inclusion criteria. Sufficient data were available to assess three clinical endpoints at 24 (+/- 6) weeks follow-up: mean change in HbA1c from baseline, mean change in weight from baseline, and the proportion of patients experiencing at least one episode of hypoglycaemia. The effect of confounding baseline factors was explored through covariate analyses. Results The search identified 1,901 unique citations, with 1,870 excluded based on title/abstract. From reviewing full-texts of the remaining 31 articles, 5 studies were considered eligible for analysis. All studies were comparable in terms of baseline characteristics, including: HbA1c, age and body mass index (BMI). In addition to dapagliflozin, sufficient data for meta-analysis was available for three dipeptidyl peptidase-4 (DPP-4) inhibitors and one glucagon-like peptide-1 (GLP-1) analogue. Based on fixed-effect NMA, all treatment classes resulted in statistically significant decreases in HbA1c at follow-up compared to placebo. Dapagliflozin treatment resulted in significantly decreased weight at follow-up compared to placebo (-1.54 kg; 95% CrI -2.16, -0.92), in contrast to treatment with GLP-1 analogues (-0.65 kg; 95% CrI -1.37, 0.07) and DPP-4 inhibitors (0.57 kg; 95% CrI 0.09, 1.06). The odds of hypoglycaemia were similar to placebo for dapagliflozin and DPP-4 inhibitor add-on treatment, but significantly greater than placebo for GLP-1 analogue add-on treatment (10.89; 95% Cr

  14. Basic Water Treatment Operation.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  15. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  16. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study

    DEFF Research Database (Denmark)

    Lund, S.S.; Tarnow, L.; Astrup, A.S.

    2008-01-01

    . Thereafter, patients were randomized (baseline) to treatment with either metformin (1 g twice daily) or placebo for 12 months (double-masked). Patients continued ongoing insulin therapy and their usual outpatient clinical care. The primary outcome measure was change in HbA(1c) after one year of treatment...... = 0.422; Total daily insulin dose, -5.7 U/day (-8.6; -2.9), pbody weight, -1.74 kg (-3.32; -0.17), p = 0.030. Minor and overall major hypoglycaemia was not significantly different between treatments. Treatments were well tolerated. CONCLUSIONS/SIGNIFICANCE: In patients with poorly controlled T......1DM, adjunct metformin therapy did not provide any improvement of glycaemic control after one year. Nevertheless, adjunct metformin treatment was associated with sustained reductions of insulin dose and body weight. Further investigations into the potential cardiovascular-protective effects...

  17. Surgical and prosthodontic consequences of inadequate treatment planning for fixed implant-supported prosthesis in the edentulous mandible.

    Science.gov (United States)

    Bidra, Avinash S

    2010-10-01

    Treatment planning for mandibular fixed implant-supported prostheses requires close communication between surgeons and restorative dentists. Improper implant positioning can result in significant difficulty for patient comfort and fabrication of a functional prosthesis. This case report describes the consequences of placing implants with no preoperative planning with regard to the implant position based on the final restorative plan. A 46-year-old male had all of his remaining maxillary and mandibular teeth extracted, and had 5 implants placed immediately in the interforaminal region of the mandible with the intent of providing a fixed prosthesis. Six weeks later, the patient was referred for prosthodontic care. The patient had no prostheses at that time and was in severe pain due to impingement of the lower lip by one of the implants. The implants were deemed to be in unfavorable positions and angulations. Thereafter, the case was treatment-planned systematically, requiring 2 additional surgical procedures---removal of one of the implants and alveoloplasty of posterior mandible for creation of space for prosthetic components. The remaining 4 implants with unfavorable angulations posed a prosthodontic challenge for fabrication of a prosthesis. The situation was eventually managed by fabrication of a screw-retained metal-resin fixed prosthesis over the remaining 4 implants. Although the situation was managed successfully, it resulted in increased time and treatment expenses, additional appointments, and elaborative steps for correction. Prosthodontics-driven treatment planning concepts and guidelines for prevention of such situations are described in this article. Published by Elsevier Inc.

  18. Inadequate housing in Ghana

    Directory of Open Access Journals (Sweden)

    Franklin Obeng-Odoom

    2011-01-01

    Full Text Available Two themes are evident in housing research in Ghana. One involves the study of how to increase the number of dwellings to correct the overall housing deficit, and the other focuses on how to improve housing for slum dwellers. Between these two extremes, there is relatively little research on why the existing buildings are poorly maintained. This paper is based on a review of existing studies on inadequate housing. It synthesises the evidence on the possible reasons for this neglect, makes a case for better maintenance and analyses possible ways of reversing the problem of inadequate housing.

  19. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  20. Water treatment technology for produced water.

    Science.gov (United States)

    Szép, Angéla; Kohlheb, Robert

    2010-01-01

    Large amounts of produced water are generated during oil and gas production. Produced water, as it is known in the oil industry, is briny fluid trapped in the rock of oil reservoirs. The objective of this study was to test produced waters from a Montana USA oilfield using a mobile station to design a plant to cost efficiently treat the produced water for agricultural irrigation. We used combined physical and chemical treatment of produced water in order to comply with reuse and discharge limits. This mobile station consists of three stages: pretreatments, membrane filtration and post treatment. Two spiral-wound membrane units were employed and the rejections of various constituents were examined. The performance of two membranes, 20 kDa weight cut-off (MWCO) ultrafiltration and a polyamide-composite reverse osmosis membrane was investigated. The mobile station effectively decreased conductivity by 98%, COD by 100% and the SAR by 2.15 mgeqv(0.5) in the produced water tested in this study. Cost analysis showed that the treatment cost of produced water is less expensive than to dispose of it by injection and this treated water may be of great value in water-poor regions. We can conclude that the mobile station provided a viable and cost-effective result to beneficial use of produced water.

  1. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  2. Water treatment method

    Science.gov (United States)

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  3. Water treatment method

    Science.gov (United States)

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  4. Treatment Compliance with Fixed-Dose Combination of Vildagliptin/Metformin in Patients with Type 2 Diabetes Mellitus Inadequately Controlled with Metformin Monotherapy: A 24-Week Observational Study

    Directory of Open Access Journals (Sweden)

    Grigorios Rombopoulos

    2015-01-01

    Full Text Available Objective. To evaluate the differences in treatment compliance with vildagliptin/metformin fixed-dose versus free-dose combination therapy in patients with type 2 diabetes mellitus (T2DM in Greece. Design. Adult patients with T2DM, inadequately controlled with metformin monotherapy, (850 mg bid, participated in this 24-week, multicenter, observational study. Patients were enrolled in two cohorts: vildagliptin/metformin fixed-dose combination (group A and vildagliptin metformin free-dose combination (group B. Results. 659 patients were enrolled, 360 were male, with mean BMI 30.1, mean T2DM duration 59.6 months, and mean HbA1c at baseline 8%; 366 patients were assigned to group A and 293 to group B; data for 3 patients was missing. In group A, 98.9% of patients were compliant with their treatment compared to 84.6% of group B. The odds ratio for compliance in group A versus B was (OR 18.9 (95% CI: 6.2, 57.7; P<0.001. In group A mean HbA1c decreased from 8.1% at baseline to 6.9% (P<0.001 at the study end and from 7.9% to 6.8% (P<0.001 in group B. Conclusions. Patients in group A were more compliant than patients in group B. These results are in accordance with international literature suggesting that fixed-dose combination therapies lead to increased compliance to treatment.

  5. Longterm safety and efficacy of abatacept through 5 years of treatment in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor inhibitor therapy.

    Science.gov (United States)

    Genovese, Mark C; Schiff, Michael; Luggen, Michael; Le Bars, Manuela; Aranda, Richard; Elegbe, Ayanbola; Dougados, Maxime

    2012-08-01

    To evaluate abatacept safety and efficacy over 5 years in patients with rheumatoid arthritis (RA) who had inadequate response to anti-tumor necrosis factor (TNF) therapy in the ATTAIN trial. Patients completing the 6-month, double-blind (DB) placebo-controlled period were eligible to enter the longterm extension (LTE), where all patients received abatacept every 4 weeks (∼10 mg/kg, according to weight range). Safety, efficacy, physical function, and health-related quality of life were monitored throughout. In total, 317 patients (218 DB abatacept, 99 DB placebo) entered the LTE; 150 (47.3%) completed it. Overall incidences of serious adverse events, infections, serious infections, malignant neoplasms, and autoimmune events did not increase during the LTE versus the DB period. American College of Rheumatology responses with abatacept at Month 6 were maintained over 5 years. At Year 5, among patients who received abatacept for 5 years and had available data, 38/103 (36.9%) achieved low disease activity as defined by the 28-joint Disease Activity Score (DAS28)/C-reactive protein (CRP); 23/103 (22.3%) achieved DAS28/CRP-defined remission. Health Assessment Questionnaire response was achieved by 62.5% of patients remaining on treatment at Year 5; mean improvements from baseline in physical component summary and mental component summary scores were 7.34 and 6.42, respectively. High proportions of patients maintained efficacy and physical function benefits or improved their disease state at each timepoint throughout the LTE, if remaining on abatacept treatment. Safety remained consistent, and abatacept efficacy was maintained from 6 months to 5 years, demonstrating the benefits of switching to abatacept in this difficult-to-treat population of patients with RA previously failing anti-TNF therapy.

  6. Technology for Water Treatment

    Science.gov (United States)

    1992-01-01

    There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  7. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  8. 100 Areas water treatment specifications

    Energy Technology Data Exchange (ETDEWEB)

    Greninger, A.B.

    1952-07-11

    This memorandum discussed review of the data from tests using alum in the treatment of pile process water, and using activated silica as a coagulant aid during period of low water temperature, which shows that this method should be substituted for the present method of treating pile process water in all 100 Areas. It was recommended that the water treatment procedures and specifications attached to this memorandum be initiated as standard practice in all 100 Areas as soon as it is possible to make the necessary equipment modifications and installations.

  9. Water treatments of the future

    International Nuclear Information System (INIS)

    Poon, John; Moore Kenneth

    2011-01-01

    This article discusses and reviews nine water technologies. They are solar desalination, synthetic aquaporin membranes, microbial fuel cell and desalination, forward osmosis, resource recovery and brine managment, 'Smart' water grids, micropollutant treatment, the Cities of the Future program and high retention membrane bioreactors.

  10. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  11. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  12. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  13. Drinking Water Fact Sheet: Drinking Water Treatment Systems

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about drinking water treatment systems. This fact sheet discusses different types of water treatment systems available to homeowners. It includes a table with water contaminants or problems, possible causes of the problem, and solutions.

  14. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  15. Radiation treatment of waste water

    International Nuclear Information System (INIS)

    Ballantine, D.S.

    1978-01-01

    The radiation treatment of waste water is reviewed. The aspects considered are: effect on chemical oxygen demand or biochemical oxygen demand; effect on specific pollutants; effect on sewage sludge; disinfection. The basic radiation interactions are given. Potential radiation sources -accelerators or radioisotopes - are considered, and operating pilot plant systems are described. (U.K.)

  16. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  17. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  18. Cleaning and reusing backwash water of water treatment plants

    Science.gov (United States)

    Skolubovich, Yury; Voytov, Evgeny; Skolubovich, Alexey; Ilyina, Lilia

    2017-10-01

    The article deals with the treatment of wash water of water treatment plants open water sources. The results of experimental studies on the choice of effective reagent, cleaning and disposal of wash water of filters. The paper proposed a new two-stage purification technology and multiple reuse of wash water of water purification stations from open surface sources

  19. Aspects of Industrial Water Treatment.

    Science.gov (United States)

    1978-02-01

    Coagulation /Flocculation AI(OH)3, Fe(OE)3, Mn(OH) 2 , CaC12 !Chlorination ChloroalnesChlorinated organics 4 ’Boiler blowdown Phosphates, carbonates, tannin ...ad miteriag of water treatment operatious imould pro- vide the moesseery data te ea reesurcee to be coeerved sod to lower the cost of pellem aba*tmomt...Noncarbonate hardness as CsC0 3Odor Taste Trace organic defined by carbon chloroform extract (CCE) Boiler-feedvater and boiler water tests also include

  20. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    until recently. This paper sets the stage with respect to perspective and management options related to implementation of water reuse. Water treatment has to be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use, including...... reuse. The historical distinction between processes used in water treatment for water supply versus processes used in water treatment of used water (wastewater) will fade, because it will all be unit processes and operations in combinations to fit the purpose of water use. Water can be purified to any...

  1. Drinking water safely during cancer treatment

    Science.gov (United States)

    ... for Disease Control and Prevention. A guide to drinking water treatment technologies for household use. Updated March 14, 2014. www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html . Accessed March 20, 2016.

  2. Contribution of water pollution from inadequate sanitation and housing quality to diarrheal disease in low-cost housing settlements of Cape Town, South Africa.

    Science.gov (United States)

    Govender, Thashlin; Barnes, Jo M; Pieper, Clarissa H

    2011-07-01

    We investigated the effects of failing sanitation, poor housing conditions, and fecal pollution in runoff water on the health-particularly the incidence of diarrheal disease-of residents of low-cost housing settlements in Cape Town, South Africa. In November 2009, we conducted a cross-sectional survey with structured interviews in 4 communities (n = 336 dwellings; 1080 persons). We used Colilert defined-substrate technology to determine Escherichia coli levels in runoff water samples taken from the study communities. Almost 15% of households disposed of soiled products in storm water drains and 6% disposed of soiled products in the street. In only 26% of the dwellings were toilets washed daily. Approximately 59% of dwellings lacked a tap near the toilet for hand washing, and 14% of respondents suffered 1 or more attacks of diarrhea in the 2 weeks preceding their interview. E.coli counts of runoff environmental water samples ranged from 750 to 1 580 000 000 per 100 milliliters. A holistic and integrated approach is needed to improve housing quality and sanitation among Cape Town's low-income citizens.

  3. Consequences of Inadequate Physical Activity

    Centers for Disease Control (CDC) Podcasts

    2018-03-27

    Listen as CDC Epidemiologist Susan Carlson, PhD, talks about her research, which estimates the percentage of US deaths attributed to inadequate levels of physical activity.  Created: 3/27/2018 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 3/27/2018.

  4. Radiologists' responses to inadequate referrals

    International Nuclear Information System (INIS)

    Lysdahl, Kristin Bakke; Hofmann, Bjoern Morten; Espeland, Ansgar

    2010-01-01

    To investigate radiologists' responses to inadequate imaging referrals. A survey was mailed to Norwegian radiologists; 69% responded. They graded the frequencies of actions related to referrals with ambiguous indications or inappropriate examination choices and the contribution of factors preventing and not preventing an examination of doubtful usefulness from being performed as requested. Ninety-five percent (344/361) reported daily or weekly actions related to inadequate referrals. Actions differed among subspecialties. The most frequent were contacting the referrer to clarify the clinical problem and checking test results/information in the medical records. Both actions were more frequent among registrars than specialists and among hospital radiologists than institute radiologists. Institute radiologists were more likely to ask the patient for additional information and to examine the patient clinically. Factors rated as contributing most to prevent doubtful examinations were high risk of serious complications/side effects, high radiation dose and low patient age. Factors facilitating doubtful examinations included respect for the referrer's judgment, patient/next-of-kin wants the examination, patient has arrived, unreachable referrer, and time pressure. In summary, radiologists facing inadequate referrals considered patient safety and sought more information. Vetting referrals on arrival, easier access to referring clinicians, and time for radiologists to handle inadequate referrals may contribute to improved use of imaging. (orig.)

  5. Technology for Water Treatment (National Water Management)

    Science.gov (United States)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  6. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    Science.gov (United States)

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-06

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  7. Factors associated with post-treatment E. coli contamination in households practising water treatment: a study of rural Cambodia.

    Science.gov (United States)

    Benwic, Aaron; Kim, Erin; Khema, Cinn; Phanna, Chet; Sophary, Phan; Cantwell, Raymond E

    2018-03-25

    The purpose of this study was to assess factors associated with Escherichia coli (E. coli) contamination in rural households in Cambodia that have adopted household water treatment. The following factors were significantly associated (α E. coli contamination: cleaning the drinking vessel with untreated water, not drying the cup (with a cloth), accessing treated water by the use of a scoop (ref: using a tap), having more than one untreated water storage container, having an untreated water storage container that appeared dirty on the outside, and cows living within 10 m of the household. This study provides further evidence confirming previous studies reporting an association between inadequate cleanliness of water storage containers and household drinking water contamination, and identifies practical recommendations statistically associated with reduced post-treatment E. coli contamination in the household setting in rural Cambodia.

  8. TENORM: Drinking Water Treatment Residuals

    Science.gov (United States)

    EPA has specific regulations under the Safe Drinking Water Act (SDWA) that limit the amount of radioactivity allowed in community water systems. Learn about methods used to treat these water supplies to remove radioactivity and manage wastes.

  9. Economics of mine water treatment

    OpenAIRE

    Dvořáček, Jaroslav; Vidlář, Jiří; Štěrba, Jiří; Heviánková, Silvie; Vaněk, Michal; Barták, Pavel

    2012-01-01

    Mine water poses a significant problem in lignite coal mining. The drainage of mine water is the fundamental prerequisite of mining operations. Under the legislation of the Czech Republic, mine water that discharges into surface watercourse is subject to the permission of the state administration body in the water management sector. The permission also stipulates the limits for mine water pollution. Therefore, mine water has to be purified prior to discharge. Although all...

  10. Nitrification in Water and Wastewater Treatment

    Science.gov (United States)

    This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...

  11. Insulin Initiation in Insulin-Naïve Korean Type 2 Diabetic Patients Inadequately Controlled on Oral Antidiabetic Drugs in Real-World Practice: The Modality of Insulin Treatment Evaluation Study.

    Science.gov (United States)

    Kim, Sang Soo; Kim, In Joo; Kim, Yong Ki; Yoon, Kun Ho; Son, Ho Young; Park, Sung Woo; Sung, Yeon Ah; Baek, Hong Sun

    2015-12-01

    The Modality of Insulin Treatment Evaluation (MOTIV) study was performed to provide real-world data concerning insulin initiation in Korean type 2 diabetes mellitus (T2DM) patients with inadequate glycemic control with oral hypoglycemic agents (OHAs). This multicenter, non-interventional, prospective, observational study enrolled T2DM patients with inadequate glycemic control (glycosylated hemoglobin [HbA1c] ≥7.0%) who had been on OHAs for ≥3 months and were already decided to introduce basal insulin by their physician prior to the start of the study. All treatment decisions were at the physician's discretion to reflect real-world practice. A total of 9,196 patients were enrolled, and 8,636 patients were included in the analysis (mean duration of diabetes, 8.9 years; mean HbA1c, 9.2%). Basal insulin plus one OHA was the most frequently (51.0%) used regimen. After 6 months of basal insulin treatment, HbA1c decreased to 7.4% and 44.5% of patients reached HbA1c <7%. Body weight increased from 65.2 kg to 65.5 kg, which was not significant. Meanwhile, there was significant increase in the mean daily insulin dose from 16.9 IU at baseline to 24.5 IU at month 6 (P<0.001). Overall, 17.6% of patients experienced at least one hypoglycemic event. In a real-world setting, the initiation of basal insulin is an effective and well-tolerated treatment option in Korean patients with T2DM who are failing to meet targets with OHA therapy.

  12. Insulin Initiation in Insulin-Naïve Korean Type 2 Diabetic Patients Inadequately Controlled on Oral Antidiabetic Drugs in Real-World Practice: The Modality of Insulin Treatment Evaluation Study

    Directory of Open Access Journals (Sweden)

    Sang Soo Kim

    2015-12-01

    Full Text Available BackgroundThe Modality of Insulin Treatment Evaluation (MOTIV study was performed to provide real-world data concerning insulin initiation in Korean type 2 diabetes mellitus (T2DM patients with inadequate glycemic control with oral hypoglycemic agents (OHAs.MethodsThis multicenter, non-interventional, prospective, observational study enrolled T2DM patients with inadequate glycemic control (glycosylated hemoglobin [HbA1c] ≥7.0% who had been on OHAs for ≥3 months and were already decided to introduce basal insulin by their physician prior to the start of the study. All treatment decisions were at the physician's discretion to reflect real-world practice.ResultsA total of 9,196 patients were enrolled, and 8,636 patients were included in the analysis (mean duration of diabetes, 8.9 years; mean HbA1c, 9.2%. Basal insulin plus one OHA was the most frequently (51.0% used regimen. After 6 months of basal insulin treatment, HbA1c decreased to 7.4% and 44.5% of patients reached HbA1c <7%. Body weight increased from 65.2 kg to 65.5 kg, which was not significant. Meanwhile, there was significant increase in the mean daily insulin dose from 16.9 IU at baseline to 24.5 IU at month 6 (P<0.001. Overall, 17.6% of patients experienced at least one hypoglycemic event.ConclusionIn a real-world setting, the initiation of basal insulin is an effective and well-tolerated treatment option in Korean patients with T2DM who are failing to meet targets with OHA therapy.

  13. Reduction of Sulfonylurea with the Initiation of Basal Insulin in Patients with Inadequately Controlled Type 2 Diabetes Mellitus Undergoing Long-Term Sulfonylurea-Based Treatment

    Directory of Open Access Journals (Sweden)

    Yeoree Yang

    2016-10-01

    Full Text Available BackgroundThere were a limited number of studies about β-cell function after insulin initiation in patients exposed to long durations of sulfonylurea treatment. In this study, we aimed to evaluate the recovery of β-cell function and the efficacy of concurrent sulfonylurea use after the start of long-acting insulin.MethodsIn this randomized controlled study, patients with type 2 diabetes mellitus (T2DM, receiving sulfonylurea for at least 2 years with glycosylated hemoglobin (HbA1c >7%, were randomly assigned to two groups: sulfonylurea maintenance (SM and sulfonylurea reduction (SR. Following a 75-g oral glucose tolerance test (OGTT, we administered long-acting basal insulin to the two groups. After a 6-month follow-up, we repeated the OGTT.ResultsAmong 69 enrolled patients, 57 completed the study and were analyzed: 31 in the SM and 26 in the SR group. At baseline, there was no significant difference except for the longer duration of diabetes and lower triglycerides in the SR group. After 6 months, the HbA1c was similarly reduced in both groups, but there was little difference in the insulin dose. In addition, insulin secretion during OGTT was significantly increased by 20% to 30% in both groups. A significant weight gain was observed in the SM group only. The insulinogenic index was more significantly improved in the SR group.ConclusionLong-acting basal insulin replacement could improve the glycemic status and restore β-cell function in the T2DM patients undergoing sulfonylurea-based treatment, irrespective of the sulfonylurea dose reduction. The dose reduction of the concurrent sulfonylurea might be beneficial with regard to weight grain.

  14. The standard treatment protocol for paracetamol poisoning may be inadequate following overdose with modified release formulation: a pharmacokinetic and clinical analysis of 53 cases.

    Science.gov (United States)

    Salmonson, Heléne; Sjöberg, Gunilla; Brogren, Jacob

    2018-01-01

    The use of the standard procedure for managing overdoses with immediate release (IR) paracetamol is questionable when applied to overdoses with modified release (MR) formulations. This study describes the pharmacokinetics of paracetamol and the clinical outcomes following overdoses with a MR formulation. Medical records including laboratory analyses concerning overdoses of MR paracetamol from 2009 to 2015 were collected retrospectively. Inclusion criteria were ingestion of a toxic dose, known time of intake and documented measurements of serum paracetamol and liver function tests. Graphical analysis, descriptive statistics and population pharmacokinetic modelling were used to describe data. Fifty-three cases were identified. Median age was 26 years (range 13-68), median dose was 20 g (range 10-166) and 74% were females. The pharmacokinetic analysis showed a complex, dose dependent serum versus time profile with prolonged absorption and delayed serum peak concentrations with increasing dose. Ten patients had persistently high serum levels for 24 h or more, six of them had a second peak 8-19 h after ingestion. Seven of 34 patients receiving N-acetylcysteine (NAC) within 8 h had alanine aminotransferase (ALT) above reference range. Three of them developed hepatotoxicity (ALT >1000 IU/l). The pharmacokinetic and clinical analysis showed that the standard treatment protocol, including risk assessment and NAC regimen, used for IR paracetamol poisoning not appear suitable for MR formulation. Individual and tailored treatment may be valuable but further studies are warranted to determine optimal regimen of overdoses with MR formulation.

  15. A randomised, double-blind study in adults with major depressive disorder with an inadequate response to a single course of selective serotonin reuptake inhibitor or serotonin-noradrenaline reuptake inhibitor treatment switched to vortioxetine or agomelatine.

    Science.gov (United States)

    Montgomery, Stuart A; Nielsen, Rebecca Z; Poulsen, Lis H; Häggström, Lars

    2014-09-01

    This randomised, double-blind, 12-week study compared efficacy and tolerability of flexible-dose treatment with vortioxetine(10-20 mg/day) versus agomelatine (25-50 mg/day) in major depressive disorder patients with inadequate response to selective serotonin reuptake inhibitor (SSRI)/serotonin-noradrenaline reuptake inhibitor (SNRI) monotherapy. Patients were switched directly from SSRI/SNRI to vortioxetine or agomelatine. Primary endpoint was change from baseline to week 8 in the Montgomery-Åsberg Depression Rating Scale (MADRS) total score analysed by mixed model for repeated measurements, using a noninferiority test followed by a superiority test. Secondary endpoints included response and remission rates, anxiety symptoms(Hamilton Anxiety Rating Scale), Clinical Global Impression, overall functioning (Sheehan Disability Scale), health-related quality of life(EuroQol 5 Dimensions), productivity (work limitation questionnaire) and family functioning (Depression and Family Functioning Scale). Primary endpoint noninferiority was established and vortioxetine (n = 252) was superior to agomelatine (n = 241) by 2.2 MADRS points (pDepression and Family Functioning Scale at weeks 8 and 12. Fewer patients withdrew because of adverse events with vortioxetine (5.9% vs 9.5%). Adverse events (incidence ≥5%) were nausea, headache, dizziness and somnolence. Vortioxetine was noninferior and significantly superior to agomelatine in major depressive disorder patients with previous inadequate response to a single course of SSRI/SNRI monotherapy. Vortioxetine was safe and well tolerated.

  16. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  17. Treatment of acid mining waters

    Energy Technology Data Exchange (ETDEWEB)

    S. Santos; R. Machado; M. Joana Neiva Correia; Jorge R. Carvalho [Instituto Superior Tecnico, Lisbon (Portugal)

    2004-02-01

    The objective of this work was to study the possibility of achieving a selective removal of iron from acid mine waters (AMW) by precipitation/biosorption producing an easily filterable pulp and a solution containing valuable metals such as copper, zinc etc. This treatment is an alternative to the traditional neutralization with Ca(OH){sub 2}, that produces a precipitate of ferric hydroxide (Fe(OH){sub 3}) and gypsum (CaSO{sub 4}), which is extremely difficult to filter and is contaminated with heavy metals. The composition of the investigated solution was established in order to simulate a typical composition of AMW. To prevent the co-precipitation of the heavy metals in significant amounts, iron precipitation has to be carried out at low pH. The effect of the addition of a biomass (grape-stalks or cork powder) on the selective removal of iron and on the sedimentation and filtration operations was determined. The results showed that at pH 3 and for a solid-liquid ratio of 4 g/l it is possible to eliminate 65% of iron and only 5% of copper. Using 8 g/l of biomass the iron removal increased up to 85% of iron and 74% of copper, 90% of zinc and 99% of nickel remained in solution. The addition of the biomass to the pulp also improved the sedimentation and filtration operations.

  18. Surface Water Treatment Rules State Implementation Guidance

    Science.gov (United States)

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  19. USAF Mobility Program Water Treatment System.

    Science.gov (United States)

    also be necessary. Water treatment systems are presented which can be developed to yield potable water from these sources. The proposed systems can be designed to meet the requirements of the Bare Base Mobility Program. (Author)

  20. Evaluation of semidecentralized emergency drinking water treatment.

    Science.gov (United States)

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of water supply interventions.

  1. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  2. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    : water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...... of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic...... until recently. This paper sets the stage with respect to perspective and management options related to implementation of water reuse. Water treatment has to be interpreted as the means by which to purify the water from any degree of impurity to any degree of purity that fits the desired use, including...

  3. Establishing Solar Water Disinfection as a water treatment method at ...

    African Journals Online (AJOL)

    1.1 billion People worldwide do not have access to safe drinking water and therefore are exposed to a high risk for diarrhoeal diseases. As a consequence, about 6,000 children die each day of dehydration due to diarrhoea. Adequate water treatment methods and safe storage of drinking water, combined with hygiene ...

  4. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  5. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1977-01-01

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  6. Off shore produced water treatment with pertraction

    NARCIS (Netherlands)

    Klaassen, R.

    2004-01-01

    During the production of oil and gas also water is produced. This produced water contains dispersed and dissolved oil components. The impact of offshore emissions of produced water on the environment and the treatment of technologies for it are currently under discussion. Emission limits tend to

  7. Water Treatment Technology - Chemistry/Bacteriology.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  8. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  9. Aluminum recovery from water treatment sludges

    OpenAIRE

    Boaventura, Rui A. Rocha; Duarte, António A. L. Sampaio; Almeida, Manuel F.

    2000-01-01

    Aluminum sulfate and polyaluminum chloride are widely used as coagulants in water treatment plants. A chemical sludge containing aluminium hydroxide, adsorbed organic matter and other water insoluble impurities is obtained after the flocculation-clarification process. In Portugal, an estimated amount of 66 000 ton/yr. (wet wt.) water treatment sludge is being disposed of on land or at municipal solid waste (MSW) landfills. Government restrictions to this practice as well as increasing deposit...

  10. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  11. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project...... will develop and implement a methodology to compare and prioritize these technologies and optimizations based on a holistic approach. This will be achieved through the use of life cycle assessment (LCA) along with cost/efficiency analysis with focus on the effects of nutrients, pathogens and micropollutants (i...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  12. Kampo medicines improved blood test and QOL in two vasculitis cases of Churg–Strauss syndrome and Henoch–Shönlein purpura after inadequate treatment with conventional therapies

    Directory of Open Access Journals (Sweden)

    Yasuyo Hijikata

    2010-02-01

    Full Text Available Yasuyo Hijikata1, Yumiko Ikemoto2, Urara Kohdera31Toyodo Hijikata Clinic, Osaka, Japan; 2St Mary’s Hospital, Himeji, Japan; 3Nakano Children’s Hospital, Osaka, JapanObjective: Based on the tenets of traditional Chinese medicine (TCM theory, Kampo medicines were selected and applied to two cases of Churg–Strauss syndrome and Henoch–Shönlein purpura. Two vasculitis syndrome patients exhibited persistent symptoms and abnormal blood tests after treatment with conventional therapies.Methods: As the two cases had “blood stagnation” and “damps and heat” and one had a “yang deficiency” in terms of TCM theory, we applied certain selected Kampo medicines.Results: In case 1, the patient presented with hypereosinophilia, venous thrombosis, pulmonary infarction, decreased platelet count, ulner nerve palsy and Raynaud’s phenomena, which led to a diminished quality of life. After starting the Kampo medicines, the patient improved quickly and recovered within 11 months. In case 2, persistent purpura, abdominal pain, and bloody feces quickly improved and disappeared after Kampo treatment. After starting the Kampo medicines, prednisolone was stopped at 21 days without any sign of relapse to date.Conclusion: Kampo medicines helped clear the persistent abnormal symptoms and laboratory findings of vasculitis syndromes, Churg–Strauss syndrome and Henoch–Shönlein purpura, which had responded inadequately to the conventional therapies administered.Keywords: Kampo medicine, vasculitis, Churg–Strauss syndrome, Henoch–Shönlein purpura

  13. The impact of hygiene and localised treatment on the quality of drinking water in Masaka, Rwanda.

    Science.gov (United States)

    Uwimpuhwe, Monique; Reddy, Poovendhree; Barratt, Graham; Bux, Faizal

    2014-01-01

    The worldwide prevalence of waterborne diseases has been attributed to the lack of safe water, inadequate sanitation and hygiene. This study evaluated socio-demographic factors, microbiological quality of water at source and point of use (POU) at households, water handling and sanitation practices in a rural Rwandan community. Thirty five water samples from the source, Nyabarongo River, and water at point of use (POU) treated with the Slow Sand Filter (SSF) and Sûr'Eau methods, were analysed for total coliform and faecal coliform counts. Turbidity was measured in household samples. A structured questionnaire regarding water collection, storage, usage and waterborne disease awareness was administered to 324 women. Despite the significant reduction in coliforms and faecal coliforms from the Nyabarongo River following treatment using either SSF or Sûr'Eau, the water at point of use was found to be unsafe for human consumption. The frequency of diarrheal diseases were significantly higher among people who did not wash hands before food preparation (P = 0.002) and after using a toilet (P = 0.007) than among those who did. There was a statistically significant association between education levels and water treatment practices at the households (P water storage practices for prevention of household water contamination. A combination of treatment methods with appropriate water handling should be considered. In addition, education is a fundamental precursor to advocating water treatment at POU.

  14. Chemical Industry Waste water Treatment

    International Nuclear Information System (INIS)

    Nasr, F.A.; Doma, H.S.; El-Shafai, S.A.; Abdel-HaJim, H.S.

    2004-01-01

    Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg O 2 /l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg O 2 /l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBe) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law

  15. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  16. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  17. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  18. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  19. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  20. Research Methods of Waste Water Treatment

    OpenAIRE

    , FA Besholli; , H Jaha

    2014-01-01

    The purpose of this paper is the research and treatment of wastewater and utilization after treatment. Polluted waters present a current problem for society, especially recent development of industry, technology, modern agriculture, heavy traffic, demographic explosion and the increase of food requirements and rising of living standards. All these factors affect the vital environment. In fact, these waters are used for the purpose of eliminating pollution and removal of their waste. Initially...

  1. Sewage water treatment by irradiation

    International Nuclear Information System (INIS)

    Shamma, M.; Al-Adawi, M.A.; Othman, I.

    1999-06-01

    Irradiation of the outlet wastewater from Adra Plant shows that radiation sensitivity for the total count of the microorganism, fungi, and pathogenic microorganism were 0.328, 0.327, 0.305 kGy respectively at 3.4 kGy/h. No Ascaris Lumbricoides eggs were found. These results show that radiation technology in wastewater treatment at Adra Plant for reuse in irrigation safely from microbial point of view can be applied. (author)

  2. Water Treatment Technology - Cross-Connections.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on cross connections provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on cross connections terminology and control devices. For each…

  3. Water Treatment Technology - Taste, Odor & Color.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  4. Efficacy and safety of the selective co-stimulation modulator abatacept following 2 years of treatment in patients with rheumatoid arthritis and an inadequate response to anti-tumour necrosis factor therapy.

    Science.gov (United States)

    Genovese, M C; Schiff, M; Luggen, M; Becker, J-C; Aranda, R; Teng, J; Li, T; Schmidely, N; Le Bars, M; Dougados, M

    2008-04-01

    To evaluate the safety and efficacy of abatacept during 2 years of the ATTAIN (Abatacept Trial in Treatment of Anti-TNF INadequate responders) trial in patients with rheumatoid arthritis. Patients completing the 6-month, double-blind period were eligible to enter the long-term extension; patients received abatacept approximately 10 mg/kg, plus disease-modifying antirheumatic drugs. Safety and efficacy (American College of Rheumatology (ACR) criteria responses, DAS28 (C-reactive protein), HAQ-DI, SF-36, Medical Outcomes Study Sleep Problems Index, fatigue VAS) were assessed through 2 years. 317 patients (218 from the abatacept and 99 from the placebo group) entered and 222 (70%) completed 18 months of long-term extension treatment. The incidence and type of adverse events were consistent between the double-blind and cumulative (double-blind plus long-term extension) periods. Rates of serious adverse events were 25.6 and 23.4 per 100 patient-years in the double-blind versus cumulative period. At 6 months and 2 years, using non-responder analyses, ACR responses in abatacept-treated patients were: ACR 20, 59.4% and 56.2%; ACR 50, 23.5% and 33.2%; ACR 70, 11.5% and 16.1%; HAQ-DI responses were 54.4% and 47.9%. At 6 months and 2 years, using post-hoc as-observed analyses, the percentage of patients (95% confidence interval) achieving DAS28 (C-reactive protein) low disease activity score (problems were also maintained throughout the 2 years of abatacept treatment. No unique safety observations were reported during open-label exposure. Improvements in the signs and symptoms of rheumatoid arthritis, physical function and health-related quality of life observed after 6 months, were maintained throughout the 2 years in this population with difficult-to-treat disease. NCT00124982.

  5. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  6. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  7. Rational design of nanomaterials for water treatment.

    Science.gov (United States)

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-11-07

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits. It is now a popular perception that the solutions to the existing and future water challenges will hinge upon further developments in nanomaterial sciences. The concept of rational design emphasizes on 'design-for-purpose' and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress in rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil-water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid to the chemical concepts related to nanomaterial design throughout the review.

  8. An evaluation of Hanford water treatment practices

    Energy Technology Data Exchange (ETDEWEB)

    Touhill, C.J.

    1965-09-01

    An evaluation of Hanford reactor process water treatment practices was made in an effort to ascertain the reasons for variations in the effluent activity between reactors. Recommendations are made for improvements in unit processes as well as for the over-all treatment process based on field inspection of the water treatment plants. In addition, a research program is proposed to supplement the recommendations. The proposed research is designed to uncover methods of more efficient filtration as well as other procedures which might eventually lead to significant effluent activity reductions. The recommendations and research results will be applied toward process optimization.

  9. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  10. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  11. Medication Use Patterns, Treatment Satisfaction, and Inadequate Control of Osteoporosis Study in the Asia-Pacific Region (MUSIC OS-AP): Design of a multinational, prospective, observational study examining the impact of gastrointestinal events on osteoporosis management in postmenopausal women.

    Science.gov (United States)

    Modi, Ankita; Ebeling, Peter R; Lee, Mel S; Min, Yong-Ki; Mithal, Ambrish; Yang, Xiaoqin; Sajjan, Shiva

    2015-12-01

    The burden of osteoporosis in the Asia-Pacific region is not well characterized. The Medication Use Patterns, Treatment Satisfaction, and Inadequate Control of Osteoporosis Study in the Asia-Pacific Region (MUSIC OS-AP) was designed to better understand the association of gastrointestinal events with patient-reported outcomes in postmenopausal women of this region. MUSIC OS-AP is a prospective, multinational, observational cohort study of postmenopausal women ≥ 50 years of age diagnosed with osteoporosis. The study was conducted in five Asia-Pacific countries: Australia, New Zealand, Taiwan, Korea, and India. MUSIC OS-AP has three components: a physician questionnaire, a retrospective chart review, and a prospective cohort study. The physician questionnaire investigated the role of gastrointestinal events in physicians' pharmacologic management of osteoporosis. The retrospective chart review, also completed by physicians, recorded rate of osteoporosis treatment and the types of osteoporosis medications prescribed to osteoporosis patients. The prospective cohort study investigated the associations between gastrointestinal events and patient-reported outcomes among patients taking oral medications for osteoporosis as well as reasons for non-treatment in patients who remained untreated. The prospective cohort study enrolled two groups of patients: untreated, and treated with oral osteoporosis medications. Untreated patients completed only the baseline surveys, providing information on gastrointestinal event rates, quality of life, health care resource use, and reasons for non-treatment. Treated patients, who were either new to osteoporosis medication or continuing an ongoing medication course, completed surveys at baseline and 3, 6, and 12 months post-baseline. The evaluations recorded patient characteristics, gastrointestinal events, health-related and osteoporosis-specific quality of life, health care resource use, medication adherence, and satisfaction with

  12. Fate of Carbamazepine during Water Treatment

    DEFF Research Database (Denmark)

    Kosjek, T.; Andersen, Henrik Rasmus; Kompare, Boris

    2009-01-01

    Seven transformation products of carbamazepine generated by at least one of three common water treatment technologies (W-radiation, oxidation with chlorine dioxide (ClO2), and biological treatment with activated Sludge) were identified by complementary use of ion trap, single quadrupole...... compared the treatment technologies according to the removal of carbamazepine and the production and decay of its transformation products. The most successful method for the removal of carbamazepine was UV treatment, while acridine and acridone were more susceptible to biological treatment. Therefore......, based on the enhanced biodegradability of carbamazepine residues achieved by UV irradiation, we propose a coupled treatment technology involving an initial UV treatment step followed by biological treatment, which may satisfactorily remove the parent compound and its transformation products....

  13. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  14. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  15. Long Term 1 Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The Long Term 1 Enhanced Surface Water Treatment Rule (LT1ESWTR) builds on the requirements of the Surface Water Treatment Rule and specifies treatment requirements to address Cryptosporidium m and other microbial contaminants in public water systems.

  16. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  17. Innovations in nanotechnology for water treatment.

    Science.gov (United States)

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.

  18. Efficacy and Tolerability of Travoprost 0.004%/Timolol 0.5% Fixed-Dose Combination for the Treatment of Primary Open-Angle Glaucoma or Ocular Hypertension Inadequately Controlled with Beta-Blocker Monotherapy

    Science.gov (United States)

    Park, Ki Ho; Hubatsch, Douglas A.; Erichev, Valeriy; Paczka, Jose A.; Roberts, Timothy V.

    2017-01-01

    Objective. To evaluate the efficacy and tolerability of travoprost 0.004%/timolol 0.5% fixed-dose combination (TTFC) in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT) inadequately controlled on beta-blocker monotherapy. Methods. In this phase IV, open-label study, 156 patients on beta-blocker monotherapy with mean intraocular pressure (IOP) between 18 and 32 mmHg were randomized (no washout period) to receive TTFC for 8 weeks (TTFC group) or to continue beta-blocker monotherapy for 4 weeks followed by TTFC for the remaining 4 weeks (beta-blocker group). Results. The mean IOP (±standard deviation) at baseline in the TTFC and beta-blocker groups was 22.5 ± 2.5 mmHg and 22.2 ± 2.3 mmHg, respectively, and at weeks 4 and 8, was 16.7 ± 3.1 mmHg and 16.1 ± 3.1 mmHg, respectively, in TTFC group and 21.1 ± 3.1 mmHg and 16.1 ± 2.8 mmHg, respectively, in the beta-blocker group. There was a significant least squares mean difference between TTFC and beta-blocker in 8 a.m. IOP at week 4 (−4.6 mmHg; one-sided 95% confidence interval [−inf, −3.9]; p < 0.0001 [primary endpoint]); the upper bound of the 95% confidence interval was within the prespecified limit (<0). Both treatments were well tolerated. Conclusion. Superior IOP control was achieved with TTFC in patients with OAG or OHT previously uncontrolled with beta-blockers. No new safety findings were identified. This trial is registered with ClinicalTrials.gov NCT02003391. PMID:28239491

  19. Water Purification by Using Microplasma Treatment

    International Nuclear Information System (INIS)

    Shimizu, K; Masamura, N; Blajan, M

    2013-01-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  20. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  1. Trichomonas gallinae Persistence in Four Water Treatments.

    Science.gov (United States)

    Purple, Kathryn E; Humm, Jacob M; Kirby, R Brian; Saidak, Christina G; Gerhold, Richard

    2015-07-01

    Trichomonas gallinae is a protozoan parasite commonly found in columbids, passerines, and several raptor species. Although T. gallinae is thought to spread between individuals and across species through shared water sources, little research has been conducted regarding the persistence of T. gallinae in the environment. To determine the persistence of T. gallinae in various communal water sources, we inoculated 1 × 10(6) trichomonads into 500 mL samples of distilled water, quarry water, bird bath water, and rain barrel water in two replicates. Aliquots of 0.5 mL were collected from each source at -1, 0, 15, 30, and 60 min; aliquots were incubated at 37 C and examined for trichomonads by light microscopy for five consecutive days. Live trichomonads were observed in all samples and at all sampling times except prior to inoculation (-1 min). The pH of water sources ranged from an average of 5.9 to 7.4 postsampling. Our findings indicate that T. gallinae can persist for up to 60 min in various water treatments and thus be infectious for birds drinking T. gallinae-contaminated water.

  2. Water treatment: Chitosan associated with electrochemical methods

    Science.gov (United States)

    Tamiasso-Martinhon, Priscila; Marques Teixeira de Souza, João; Cruzeiro da Silva, Silvia Maria; Pellegrini Pessoa, Fernando Luiz; Sousa, Célia

    2017-04-01

    Pollution of water bodies due to the presence of toxic metals and organic compounds, bring out a series of environmental problems of public, government and social character. In addition, water pollution, has become the target and source of concern in many industrial sectors. Therefore, it is essential to develop technologies for treatment and purification of water. Chitosan is a natural product derived from chitin, extracted mainly from the shells of crustaceans. It is a low cost, renewable and biodegradable biopolymer of great socioeconomic and environmental importance. The classic treatment of wastewater containing metals involves physical chemistry processes of precipitation, ion exchange and electrochemistry. Electrochemical technology has been presented as the most promising methods for treating wastewater polluted with metals, colloids, dyes or oil in water emulsions; besides being used in removing organic compounds. Alternative methods like adsorption with biosorbents have been investigated. The great advantage of this latter over other techniques is the low generation of residues, easy recovery of metals and the possibility of reuse of the adsorbent. This article aimed to carry out an exploratory study, of bibliographical nature, on the use of chitosan in electrochemical methods for water treatment.

  3. ATES: water treatment and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, A.L. [IF Tehnology bv, Arnhem (Netherlands)

    1994-12-31

    In 1987, eight IEA countries started a new R and D task, Annex 6 to the Implementing Agreement Energy Storage. The objectives of this task were to 1. systematically analyze the chemical, microbiological and environmental aspects of ATES, and subsequently 2. develop reliable, environmentally sound water treatment methods. The principal findings from this R and D task are summarized in this article. (orig.)

  4. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  5. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  6. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  7. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  8. Life cycle assessment of drinking water: comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic bottles

    OpenAIRE

    Garfi, Marianna; Cadena, Erasmo; Sanchez Ramos, David; Ferrer Martí, Ivet

    2016-01-01

    This study evaluated the environmental impacts caused by drinking water consumption in Barcelona (Spain) using the Life Cycle Assessment (LCA) methodology. Five different scenarios were compared: 1) tap water from conventional drinking water treatment; 2) tap water from conventional drinking water treatment with reverse osmosis at the water treatment plant; 3) tap water from conventional drinking water treatment with domestic reverse osmosis; 4) mineral water in plastic bottles, and 5) minera...

  9. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick

    International Nuclear Information System (INIS)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F.

    2011-01-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  11. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  12. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  13. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  14. Association of gastrointestinal events with quality of life and treatment satisfaction in osteoporosis patients: results from the Medication Use Patterns, Treatment Satisfaction, and Inadequate Control of Osteoporosis Study (MUSIC OS).

    Science.gov (United States)

    Modi, A; Sen, S; Adachi, J D; Adami, S; Cortet, B; Cooper, A L; Geusens, P; Mellström, D; Weaver, J P; van den Bergh, J P; Keown, P A; Sajjan, S

    2017-10-01

    The purpose of this study was to assess the association of GI events with HRQoL and treatment satisfaction. The effect of baseline GI events persisted through 1 year of follow-up, as indicated by lower EQ-5D, OPAQ-SV, and treatment satisfaction scores among patients with vs without baseline GI events. The presence of GI events is an independent predictor of decreased HRQoL and treatment satisfaction in patients being treated for osteoporosis. The goal of this study was to assess the association of gastrointestinal (GI) events with health-related quality of life (HRQoL) and treatment satisfaction in patients being treated for osteoporosis. MUSIC OS was a multinational, prospective, observational study examining the impact of GI events on osteoporosis management in postmenopausal women. In this analysis, HRQoL and treatment satisfaction were assessed at baseline, 6, and 12 months and compared between patients with and without GI events. Covariate-adjusted scores were calculated using multivariate least-squares regression analysis, and differences between the mean scores of patients with and without baseline and post-baseline GI events were determined. Among the 2959 patients in the analysis, unadjusted scores at each time point were lower (i.e., worse) for patients with GI events than patients without GI events. In adjusted analyses, the effect of baseline GI events persisted through 1 year of follow-up, as indicated by lower EQ-5D and OPAQ-SV scores at 12 months among patients with vs without baseline GI events (-0.04 for the EQ-5D utility score, -5.07 for the EQ-5D visual analog scale, -3.35 for OPAQ physical function, -4.60 for OPAQ emotional status, and -8.50 for OPAQ back pain; P ≤ 0.001 for all values). Decrements in month 12 treatment satisfaction scores were -6.46 for patients with baseline GI events and -7.88 for patients with post-baseline GI events. The presence of GI events is an independent predictor of decreased HRQoL and treatment satisfaction

  15. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  16. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  17. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  18. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  19. Treatment of oily water by flotation

    International Nuclear Information System (INIS)

    Ortiz O, H.B.

    2002-01-01

    The operation of the nuclear power plants such as Laguna Verde (CLV) with nuclear reactors of the boiling water type (BWR) produce radioactive waste solids, liquids and gaseous which require of a special treatment in their operation and arrangement. Such is the case of the liquid wastes from CLV which are a mixture of water and synthetic oils coming from leaks and spilling by pressure of maintenance of electro-mechanical equipment associated to the performance of the nuclear power plant. This mixture of water and spent oils is pretreated by means of sedimentation, centrifugation and evaporation. However the realized efforts by the CLV, the spent oil obtained from the pretreatment contains concentrations of radioactive material higher than the tolerance limits established in the normative in force in radiological safety (0.37 Bq m L -1 for 60 Co and 54 Mn). In this context it was necessary to design an efficient treatment system and economically profitable which separates the oil, the heavy metals and the leftovers of radioactive material that could be present in water, with the purpose of fulfil with the Mexican Official Standards corresponding for its unload or even it can reuse it in the wash process of treated oil. The treatment system of oily water waste consists of: a) Coagulation-flocculation, b) Flotation system with modified air dissolved (DAFm). The proposed flotation process allows to reach a higher separation efficiencies of: Concentration of greases and oils: 94.11 %; Turbidity: 98.6 %; 60 Co: 82.3 % ; Co: 94.8 % and Cr: 99.9 % (Author)

  20. Control retrofit optimizes water treatment operation

    International Nuclear Information System (INIS)

    Ball, H.R.

    1992-01-01

    Mississippi Power's Plant Daniel has installed a state-of-the-art microprocessor-based monitoring and control system. According to Leeds and Northrup, manufacturers of the new control system, the system collects water chemistry data from on-line analyzers. In addition, it provides automatic control and monitoring of the plant's demineralizer and condensate polishers. A two-year study conducted by Plant Daniel determined the need for updating of the plant's water treatment instrumentation and control system. From this study Mississippi Power made the decision to purchase an integrated control system. This paper reports that operator stations and CRT displays are installed at three plant locations - the demineralizer control room, near the mixed bed polishers, and in the chemical laboratory. All of the stations communicate with one common database. The data base includes three functions of data acquisition, a PID loop control, and ladder logic (PLC) control. In addition to monitoring and controlling the water treatment plant, the system provides consistent control of the regeneration processes. This not only results in improved effluent water quality and longer service runs between regeneration, but also eliminates operator error

  1. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  2. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion treatment...

  3. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  4. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  5. Optimized alumina coagulants for water treatment

    Science.gov (United States)

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  6. The stability of drinking water treatment residue with ozone treatment.

    Science.gov (United States)

    Liu, Xin; Wu, Yu; He, Rui; Jiang, He-Long; Wang, Changhui

    2017-06-12

    The best management of drinking water treatment residue (DWTR) in environmental remediation should be based on comprehensively understanding the effectiveness and risk of DWTR. In this study, the variation in physicochemical properties, metal lability, and adsorption capability of DWTR under oxidizing condition were investigated. The oxidizing condition was set up using ozone treatment, and the laboratory incubation test were performed within 50 d in association with thermogravimetry, Fourier Transform Infrared Spectrometry, specific surface area and porosity analyzer, fractionation, and P adsorption test. The results showed that ozone treatment had limited effect on the properties of organic matter, the lability of Al, Cu, and Fe, the P adsorption capability, and the distributions of the adsorbed P in DWTR, but the treatment increased N 2 sorption/desorption, specific surface area, total pore volume of DWTR and led to the transformation of Mn from acid-soluble to reducible fractions. These findings demonstrated that DWTR generally kept stable under oxidizing environment; even oxidizing environment may induce a tendency of increasing the adsorption capability and decreasing the environmental risk of DWTR. Accordingly, the effectiveness and safety of DWTR can be maintained under natural aerobic environment, and DWTR is a reliable adsorbent that could be recycled in environmental remediation.

  7. Electrochemical Treatment of Water Contaminated with Methylorange

    Directory of Open Access Journals (Sweden)

    Valica Martin

    2016-06-01

    Full Text Available This study examines electrochemical degradation of water artificially contaminated by azo dye Methyl Orange (MO. Degradation is based on chemical electro-oxidation of MO molecules. Graphite was used as an electrode material for electrochemical oxidation of MO. In this work, the different operative parameters (electric current, NaCl content and their effect on effectiveness as well as the treatment time/duration of MO degradation were tested. The highest dye removal (91.0 % was obtained during the electrolysis at current density 3.032 mA/cm2, electrolyte with the content of NaCl 4 g/dm3 (NaCl and the treatment time 35 min.

  8. Radioactivity in surface water, drinking water and sewage treatment plants

    International Nuclear Information System (INIS)

    Steger, F.

    1988-01-01

    The author discusses the origin, occurrence, characteristics and behaviour of radioactive substances in waters, the use of various waters as drinking water and consequences to be drawn in the case of drinking water contamination. 1 ref. (Author)

  9. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  10. Italian retail gasoline activities: inadequate distribution network

    International Nuclear Information System (INIS)

    Verde, Stefano

    2005-01-01

    It is common belief that competition in the Italian retail gasoline activities is hindered by oil companies' collusive behaviour. However, when developing a broader analysis of the sector, low efficiency and scarce competition could results as the consequences coming from an inadequate distribution network and from the recognition of international markets and focal point [it

  11. Barriers to Mammography among Inadequately Screened Women

    Science.gov (United States)

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  12. Radiologists' responses to inadequate referrals

    Energy Technology Data Exchange (ETDEWEB)

    Lysdahl, Kristin Bakke [Oslo University College, Faculty of Health Sciences, Oslo (Norway); University of Oslo, Section for Medical Ethics, Faculty of Medicine, P.O. Box 1130, Blindern, Oslo (Norway); Hofmann, Bjoern Morten [University of Oslo, Section for Medical Ethics, Faculty of Medicine, P.O. Box 1130, Blindern, Oslo (Norway); Gjoevik University College, Faculty of Health Care and Nursing, Gjoevik (Norway); Espeland, Ansgar [Haukeland University Hospital, Department of Radiology, Bergen (Norway); University of Bergen, Section for Radiology, Department of Surgical Sciences, Bergen (Norway)

    2010-05-15

    To investigate radiologists' responses to inadequate imaging referrals. A survey was mailed to Norwegian radiologists; 69% responded. They graded the frequencies of actions related to referrals with ambiguous indications or inappropriate examination choices and the contribution of factors preventing and not preventing an examination of doubtful usefulness from being performed as requested. Ninety-five percent (344/361) reported daily or weekly actions related to inadequate referrals. Actions differed among subspecialties. The most frequent were contacting the referrer to clarify the clinical problem and checking test results/information in the medical records. Both actions were more frequent among registrars than specialists and among hospital radiologists than institute radiologists. Institute radiologists were more likely to ask the patient for additional information and to examine the patient clinically. Factors rated as contributing most to prevent doubtful examinations were high risk of serious complications/side effects, high radiation dose and low patient age. Factors facilitating doubtful examinations included respect for the referrer's judgment, patient/next-of-kin wants the examination, patient has arrived, unreachable referrer, and time pressure. In summary, radiologists facing inadequate referrals considered patient safety and sought more information. Vetting referrals on arrival, easier access to referring clinicians, and time for radiologists to handle inadequate referrals may contribute to improved use of imaging. (orig.)

  13. Financial incentives are inadequate for most companies

    Indian Academy of Sciences (India)

    Financial incentives are inadequate for most companies. market far less lucrative than for other diseases, which results in chronic underinvestment; reduced investment in TB drug R&D,. Pfizer withdrawal from TB R&D; AstraZeneca abandon TB R&D & close site; Novartis pull out; 4/22 Big Pharma producing antibacterials ...

  14. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  15. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, C.; Peperzak, L.; Buma, A.G.J.

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  16. 40 CFR 141.83 - Source water treatment requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Source water treatment requirements. 141.83 Section 141.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper § 141.83 Source water treatment requirements. Systems shall...

  17. EFFICIENCY OF REMOVING BIOGENIC COMPOUNDS IN WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Artur Jachimowski

    2017-08-01

    Full Text Available The aim of the study was to determine the effectiveness of removal of biogenic compounds from water during the treatment process in water treatment plants of Municipal Water Supply and Sewerage Company in Cracow. The selected water quality indicators were analyzed before and after the treatment process in 2007 - 2014. The research was carried out in waters taken from plants that differed in treatment and production. In the analyzed technological systems it was stated that the biggest objections raised the concentration of nitrates, the average content of which is higher in treated water in three plants: Rudawa, Dłubnia and Bielany.

  18. Water Treatment: Can You Purify Water for Drinking?

    Science.gov (United States)

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  19. Modelling of a Small Scale Waste Water Treatment Plant (SSWWTP)

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    2014-06-01

    Jun 1, 2014 ... the waste water [3]. Aim. The aim of this project is to bring into existence a Small Scale Waste Water. Treatment Plant that can convert a waste water with high Chemical Oxygen ... Reduce water born disease and high acidic nature of water ... proper maintenance and operation training is made available to ...

  20. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  1. Evidence Report: Risk Factor of Inadequate Nutrition

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina

    2015-01-01

    The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.

  2. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  3. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  4. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  5. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  6. Optimization of Drinking Water Treatment Processes Using Artificial ...

    African Journals Online (AJOL)

    Drinking water treatment is the process of removing microorganisms and solid from water through different methods such as coagulation and filtration. Artificial neural network (ANN) was developed for process and cost optimization of drinking water treatment processes. Results obtained from ANN model showed that ANN ...

  7. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  8. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  9. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... Using this model, it was demonstrated that water quality standards can be met at all monitoring points at a minimum cost by simultaneously optimising treatment levels at each treatment plant. Keywords: instream water quality, mixed integer optimisation, wastewater treatment levels, Streeter-Phelps.

  10. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  11. The pollutant treatment of water supply in Henan Oilfield

    OpenAIRE

    FU, Yong

    2010-01-01

    The polluting situation of water supply in Henan oil field has been investigated. The pollutant sources have been analyzed. The treatment measures of water supply pollution include developing new water supply, saving on water, controlling groundwater level descending, enhancing management and formulating strict rules and regulations.

  12. Physico-chemical treatment of coke plant effluents for control of water pollution in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, M.K. [Indian School of Mines, Dhanbad (India). Center of Mining Environmental

    2002-01-01

    Coal carbonizing industries in India are important and are growing every year. Large quantities of liquid effluents produced in this industry contain a large amount of suspended solids, high biochemical oxygen demand (BOD), chemical oxygen demand (COD), phenols, ammonia and other toxic substances, which are causing serious surface water pollution in the area. There is a large number of coke plants in the vicinity of Jharia Coal Field (JCF). The working principle of a coke plant and the effluents produced is described. One large coke plant was chosen to evaluate characteristics of the effluent and to suggest a proper treatment method. Present effluent treatment system was found to be inadequate and a large quantity of a very good quality coke breeze is being lost, which is also causing siltation on the riverbed in addition to surface water pollution. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. A scheme has been proposed for the treatment, which can be suitably adopted for the recycling, reuse or safe disposal of the treated effluent. Various unit process and unit operations are discussed. The process may be useful on industrial scale for various sites so as to maintain a clean environment.

  13. Influence of water quality on the embodied energy of drinking water treatment.

    Science.gov (United States)

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  14. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  15. Evaluation of poultry water treatments during feed and water withdrawal on water usage and Salmonella prevalence in broilers

    Science.gov (United States)

    Acidic water treatments during feed and water withdrawal were evaluated as a potential preharvest Salmonella intervention. The hypothesis for the study was the addition of acidified water treatments during feed and water withdrawal should impact the recovery of Salmonella from broiler crops and ceca...

  16. Riverbank filtration: an efficient and economical water treatment technology

    OpenAIRE

    Jaramillo uribe, Marcela

    2012-01-01

    Riverbank Filtration (RBF) is a water treatment technology that consists of extracting water from rivers by pumping wells located in the adjacent alluvial aquifer. During the underground passage, a series of physical, chemical, and biological processes take place, improving the quality of the surface water, substituting or reducing conventional drinking water treatment. Despite its extensive use in Europe and its emerging use in the United States, there are no scientific publications related ...

  17. Innovations in nanotechnology for water treatment

    OpenAIRE

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional pro...

  18. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  19. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  20. Application potential of carbon nanotubes in water treatment: A review.

    Science.gov (United States)

    Liu, Xitong; Wang, Mengshu; Zhang, Shujuan; Pan, Bingcai

    2013-07-01

    Water treatment is the key to coping with the conflict between people's increasing demand for water and the world-wide water shortage. Owing to their unique and tunable structural, physical, and chemical properties, carbon nanotubes (CNTs) have exhibited great potentials in water treatment. This review makes an attempt to provide an overview of potential solutions to various environmental challenges by using CNTs as adsorbents, catalysts or catalyst support, membranes, and electrodes. The merits of incorporating CNT to conventional water-treatment material are emphasized, and the remaining challenges are discussed.

  1. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  2. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  3. High Conductivity Water Treatment Using Water Surface Discharge with Nonmetallic Electrodes

    International Nuclear Information System (INIS)

    Wang Xiaoping; Zhang Xingwang; Lei Lecheng

    2013-01-01

    Although electrohydraulic discharge is effective for wastewater treatment, its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment, water-surface discharge is the preferred choice. However, the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water. As a result, the efficiency of the water treatment might be affected and the service life of the reactor might be shortened. In order to avoid the corrosion problem, nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study. Carbon-felt and water were used as the high voltage electrode and ground electrode, respectively. A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency, and furthermore, the corrosion of metal electrodes was avoided.

  4. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  5. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  6. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  7. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  8. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  9. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  10. Computational fluid dynamic analysis for independent floating water treatment device

    Science.gov (United States)

    Zawawi, M. H.; Swee, M. G.; Zainal, N. S.; Zahari, N. M.; Kamarudin, M. A.; Ramli, M. Z.

    2017-09-01

    This project is to design and develop 3D Independent Floating Water Treatment Device using 3D CAD software. The device is designed to treat water for better water qualities and water flows of the lakes. A prototype was manufactured to study the water treatment efficiency of the device. Computational Fluid Dynamic (CFD) analysis was used to capture the efficiency of the Independent Floating Water Treatment Device by simulates and model the water flows, pressure and velocity. According to the results, the maximum velocity magnitude was around 1m3/s. The velocity contour showed the device has high velocity at the pipe outlet. The velocity became lower and lower as the distance is further from the pipe outlet. The result from the velocity measurement was 1.05m/s. The pressure magnitude was in between 1426 Pa to 1429 Pa. The laboratory results based on water parameters proved that the water movement and direction of water flow of the Independent Floating Water Treatment Device enable the efficient pollutant removal. The vector plot, velocity contour, water flow path lines, water flow streamline and pressure contour was successful modeled.

  11. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  12. Design and construction of a water treatment system

    International Nuclear Information System (INIS)

    Sanaat, H.A.

    1985-01-01

    A physico-chemical water treatment system including a clarifier and a cation ion-exchange column of sodium cycle has been designed and constructed to obtain experience in design and technology of these systems. Water hardness is reduced from 500 PPM to zero PPM by reaction of lime with raw water in clarifier and passage of this partially softened water through the cation ion-exchange column for complete softening. The system has the capacity of treating 30,000 liters of water per cycle of operation. Ascending water velocity in the clarifier and volume and concentration of the regenerant and flow rate of water in the cation ion-exchange column have been experimentally determined. The project has enhanced and upgraded ENTEC'S water experts abilities to design and construct water treatment systems at higher industrial scales. (Author)

  13. Evaluation of two methods in controlling dental treatment water contamination.

    Science.gov (United States)

    Bansal, Ritu; Puttaiah, Raghunath; Harris, Robert; Reddy, Anil

    2011-03-01

    Dental unit water systems are contaminated with biofilms that amplify bacterial counts in dental treatment water in excess of a million colony forming units per milliliter (cfu/ml). The Centers for Disease Control and Prevention and the American Dental Association have agreed that the maximum allowable contamination of dental treatment water not exceed 500 cfu/ml. This study was conducted to evaluate two protocols in controlling contamination of dental unit water systems and dental treatment water. Both methods used an antimicrobial self-dissolving chlorine dioxide (ClO₂) tablet at a high concentration (50 ppm) to shock the dental unit water system biofilms initially followed by periodic exposure. To treat dental treatment source water for patient care, 3 parts per million (ppm) ClO₂ in municipal/tap water was compared to use of a citrus botanical extract dissolved in municipal water. Heterotrophic microbial counts of effluent water and laser scanning confocal microscopy were performed to evaluate effects of the two treatments. Results from this study indicated that both treatments were effective in controlling biofilm contamination and reducing heterotrophic plate counts Contemp Dent Pract 2011;12(2):73-83. Source of support: Nil Conflict of interest: None declared.

  14. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  15. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  16. Advantageous technology for treatment of laundry waters

    International Nuclear Information System (INIS)

    Karlin, Y.; Gorbachev, D.; Volkov, A.; Barinov, A.

    2001-01-01

    In this paper, based on preliminary experimental studies, an improved scheme for cleaning of laundry water is offered which allows reuse of water and components of laundry solutions and produces low amounts of secondary radioactive waste. The principal feature of the proposed process is that waste water from rinsing (60-80% of the total volume) is processed by hyperfiltration, but waste water from the laundry (20-40% of the total volume) is treated by ultrafiltration. Concentrates after reverse osmosis desalination of waste liquids (after rinsing) contain a majority of laundry waste components, since a hyperfiltration membrane efficiently retains salts and surfactant molecules. Desalinated water (permeate) after hyperfiltration is reused, further reducing the volume of liquid wastes. (author)

  17. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    Effects of source, water conditioning and thermal treatment on germination of Ricinodendron heudelotii (baill.) seeds. ... Journal of Applied Science and Technology ... R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %.

  19. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  20. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  1. Survey of disinfection efficiency of small drinking water treatment ...

    African Journals Online (AJOL)

    A survey involving 181 water treatment plants across 7 provinces of South Africa: Mpumalanga, Limpopo, North West, Free State, KwaZulu-Natal, Eastern Cape and Western Cape was undertaken to identify the challenges facing small water treatment plants (SWTPs) in South Africa . Information gathered included ...

  2. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  3. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  4. Household water treatment and safe storage-effectiveness and economics

    NARCIS (Netherlands)

    Stubbé, Stefanie M L; Pelgrim-Adams, Alida; Szántó, Gabor L.; van Halem, D.

    2016-01-01

    Household Water Treatment and safe Storage (HWTS) systems aim to provide safe drinking water in an affordable manner to users where safe piped water supply is either not feasible or not reliable. In this study the effectiveness, economic parameters and costs of three selected HWTS systems were

  5. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  6. Availability Analysis of Chemicals for Water Treatment: An ...

    African Journals Online (AJOL)

    Availability Analysis of Chemicals for Water Treatment: An Application to Edo and Anambra State Water Utilities Boards. ... Nigerian Journal of Technology ... This paper considers the shipment of regular supplies of large quantities of chemicals used in treating water to potable standard in a developing country. A model to ...

  7. Comparative study of household water treatment in a rural ...

    African Journals Online (AJOL)

    This research presents the household treatment of drinking water samples in a rural community in Nigeria by boiling and water guard. The physicochemical parameters of the raw water samples with exception of chloride, BOD and dissolved oxygen were within the permissible limits of the World Health Organization (WHO) ...

  8. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  9. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  10. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    Science.gov (United States)

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  11. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2013-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease. Thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usi...

  12. Predicting the residual aluminum level in water treatment process

    OpenAIRE

    J. Tomperi; M. Pelo; K. Leiviskä

    2012-01-01

    In water treatment processes, aluminum salts are widely used as coagulation chemical. High dose of aluminum has been proved to be at least a minor health risk and some evidence points out that aluminum could increase the risk of Alzheimer's disease thus it is important to minimize the amount of residual aluminum in drinking water and water used at food industry. In this study, the data of a water treatment plant (WTP) was analyzed and the residual aluminum in drinking water was predicted usin...

  13. Treatment of radon rich well water

    International Nuclear Information System (INIS)

    Mose, D.; Mushrush, G.; Chrosniak, C.

    1991-01-01

    Private wells supply potable water to about 25% of the homes in northern Virginia, and almost all water wells contain radon, a carcinogenic radionuclide derived form uranium in rocks and soil. The average Virginia well provides about 2,000-3,000 pCi/l of dissolved radon; the US Environmental Protection Agency has proposed that 300 pCi/l of should be the allowed maximum for public water supplies. To estimate the ability of activated charcoal to remove radon from private well water, a home supplied by a water well carrying at sign 4,000 pCi/l was studied. Following 1 year of water measurements, an in-line tank containing 1 cubic foot of activated charcoal was installed, and a subsequent 6 month interval of radon measurements on untreated and on treated water was conducted. Although removal rates of more than 90% have been reported, this study home showed a 60-70% radiation removal in the tank. A high percentage removal rate was reached in less than a month after installation, and was maintained for about 4 months, but the removal rate declined to about 50% by the end of the testing interval. Additional studies are being conducted to determine the effect of using different charcoal volumes, different charcoal types; also being studied is the gamma emission of the charcoal tank

  14. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment.

    Science.gov (United States)

    He, Xuexiang; Liu, Yen-Ling; Conklin, Amanda; Westrick, Judy; Weavers, Linda K; Dionysiou, Dionysios D; Lenhart, John J; Mouser, Paula J; Szlag, David; Walker, Harold W

    2016-04-01

    Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  16. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    .... The contents have been updated to cover changes to regulatory requirements, testing methodology, and design approaches, as well as the emergent topics of pharmacological agents in the water supply...

  17. Water Treatment Systems Make a Big Splash

    Science.gov (United States)

    2004-01-01

    In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.

  18. Water footprint assessment for wastewater treatment: method, indicator, and application.

    Science.gov (United States)

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  19. Disinfection of Water by Ultrasound: Application to Ballast Water Treatment

    National Research Council Canada - National Science Library

    Brizzolara, Robert A; Holm, Eric R; Stamper, David M

    2006-01-01

    .... A contact time for one log kill of an E. coli pure culture of 0.6 minutes was measured when using higher average intensities resulting from reduced treatment cell diameters, a substantial improvement over previous work...

  20. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  1. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    Science.gov (United States)

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  2. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  3. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  4. 9 CFR 417.6 - Inadequate HACCP Systems.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Inadequate HACCP Systems. 417.6... ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS § 417.6 Inadequate HACCP Systems. A HACCP system may be found to be inadequate if: (a) The HACCP plan in operation does not meet the requirements set forth in...

  5. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  6. Biological Treatment of Water Disinfection Byproducts using ...

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  7. SISTEM PENGOLAHAN AIR MINUM SEDERHANA (PORTABLE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Isna Syauqiah

    2017-04-01

    Full Text Available Water is the most important thing for living. Lately it is difficult to get clean water and suitable for consumption. Many water sources are commonly used not as good as it used to be. It needs to research about making a simple water treatment system with variable time and suitable volume for Martapura river conditions by knowing the quality of drinking water that produced. The technology used includes water treatment conducted physically (filtration and aeration, chemical processing (adsorption and desinfection using UV. This research was conducted in several stages. First is the design of portable water treatment itself is by making the columns of aeration, filtration column, adsorption column, and columns where the desinfection equipment are separated. Second, the optimizing tools that aim to determine the optimum time and volume of each instrument. So it will be obtained the optimum time and volume for whole instrument. Third, the analysis results of Martapura river. Based on research results obtained that the design of this tool is less effective with the quality of Martapura river water conditions to be processed into drinking water that is usually consumed by people around because the quality of drinking water that produced has not reached the standard of specified drinking water quality standard. Optimum time for this tool is 135 s with a desinfection time for 2 minutes and the optimum volume of entering water amounts to 2 L

  8. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  9. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  10. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  11. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  12. BIOSORPTION IN TREATMENT OF WASTE WATER

    Directory of Open Access Journals (Sweden)

    Lavinia Tofan

    2003-08-01

    toxic or valuable metals from diluted effluents. This fact is due to biosorption, which is more efficient in retention of cations present at low concentrations in aqueous solutions, that the conventional treatment, involving reduced energetic consumptions too.

  13. Costs and water quality effects of wastewater treatment plant centralization

    Energy Technology Data Exchange (ETDEWEB)

    Macal, C.M.; Broomfield, B.J.

    1980-01-01

    The costs and water quality impacts of two regional configurations of municipal wastewater treatment plants in Northeastern Illinois are compared. In one configuration, several small treatment plants are consolidated into a smaller number of regional facilities. In the other, the smaller plants continue to operate. Costs for modifying the plants to obtain various levels of pollutant removal are estimated using a simulation model that considers the type of equipment existing at the plants and the costs of modifying that equipment to obtain a range of effluent levels for various pollutants. A dynamic water-quality/hydrology simulation model is used to determine the water quality effects of the various treatment technologies and pollutant levels. Cost and water quality data are combined and the cost-effectiveness of the two treatment configurations is compared. The regionalized treatment-plant configuration is found to be the more cost-effective.

  14. Linking water treatment practices and fish welfare

    DEFF Research Database (Denmark)

    Zubiaurre, Claire; Pedersen, Lars-Flemming

    2016-01-01

    Peracetic acids can be used as sanitizers to control water quality in aquaculture systems. As an alternative to formalin, chloramine-T or copper sulphate, PAA has strong anti-microbial effects, degrades quickly and is relatively safe to use. Its mode of action and associated rapid decay can make...

  15. Tofacitinib versus Biologic Treatments in Moderate-to-Severe Rheumatoid Arthritis Patients Who Have Had an Inadequate Response to Nonbiologic DMARDs: Systematic Literature Review and Network Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Evelien Bergrath

    2017-01-01

    Full Text Available Objective. To compare the efficacy and tolerability of tofacitinib, an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA, as monotherapy and combined with disease-modifying antirheumatic drugs (DMARDs versus biological DMARDs (bDMARDs and other novel DMARDs for second-line moderate-to-severe rheumatoid arthritis (RA patients by means of a systematic literature review (SLR and network meta-analysis (NMA. Methods. MEDLINE®, EMBASE®, and Cochrane Central Register of Controlled Trials were searched to identify randomized clinical trials (RCTs published between 1990 and March 2015. Efficacy data based on American College of Rheumatology (ACR response criteria, improvements in the Health Assessment Questionnaire Disability Index (HAQ-DI at 6 months, and discontinuation rates due to adverse events were analyzed by means of Bayesian NMAs. Results. 45 RCTs were identified, the majority of which demonstrated a low risk of bias. Tofacitinib 5 mg twice daily (BID and 10 mg BID monotherapy exhibited comparable efficacy and discontinuation rates due to adverse events versus other monotherapies. Tofacitinib 5 mg BID and 10 mg BID + DMARDs or methotrexate (MTX were mostly comparable to other combination therapies in terms of efficacy and discontinuation due to adverse events. Conclusion. In most cases, tofacitinib had similar efficacy and discontinuation rates due to adverse events compared to biologic DMARDs.

  16. Inadequate Nutritional Status of Hospitalized Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ali Alkan

    2017-03-01

    Full Text Available Objective: In oncology practice, nutrition and also metabolic activity are essential to support the nutritional status and prevent malignant cachexia. It is important to evaluate the patients and plan the maneuvers at the start of the therapy. The primary objective of the study is to define the nutritional status of hospitalized patients and the factors affecting it in order to define the most susceptible patients and maneuvers for better nutritional support. Methods: Patients hospitalized in oncology clinic for therapy were evaluated for food intake and nutritional status through structured interviews. The clinical properties, medical therapies, elements of nutritional support were noted and predictors of inadequate nutritional status (INS were analyzed. Results: Four hundred twenty three patients, between 16-82 years old (median: 52 were evaluated. Nearly half of the patients (185, 43% reported a better appetite at home than in hospital and declared that hospitalization is an important cause of loss of appetite (140/185, 75.6%. Presence of nausea/vomiting (N/V, depression, age less than 65 and use of non-steroidal anti-inflammatory drugs (NSAIDs were associated with increased risk of INS in hospitalized cancer patients. On the contrary, steroid medication showed a positive impact on nutritional status of cancer patients. Conclusion: N/V, younger age, presence of depression and NSAIDs medication were associated with INS in hospitalized cancer patients. Clinicians should pay more attention to this group of patients. In addition, unnecessary hospitalizations and medications that may disturb oral intake must be avoided. Corticosteroids are important tools for managing anorexia and INS.

  17. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  18. Removal of uranium from drinking water by conventional treatment methods

    International Nuclear Information System (INIS)

    Sorg, T.J.

    1989-01-01

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. This paper presents treatment technology information on the effectiveness of conventional methods to removal uranium from drinking water. Treatment information based primarily on laboratory and pilot plant studies is presented on conventional coagulation/filtration, ion exchange, lime softening, and reverse osmosis. Ion-exchange treatment has been applied successfully on ground waters by small systems

  19. Waste Water Treatment of Dye Contamination

    Directory of Open Access Journals (Sweden)

    Pattana Boonyaprapa

    2009-01-01

    Full Text Available The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment systems. Eighty-five percent of tie-dye entrepreneurs agreed that there must be wastewater treatment before release into the environment. From group discussions, it was found that the entrepreneurs realized the wastewater problem and wanted to carry out environment friendly tie-dyeing. Our study demonstrated that the average value of the colour density, chemical oxygen demand (COD, total dissolved solids (TDS and pH of the wastewater characteristics were 170 SU (space units, 1584 mg/l, 2487 mg/l and 8, respectively. For the upflow anaerobic filter, 5 sets of experiments, with 24 hours retention time, were designed, with 0, 1, 2, 3 and 4 % of cow’s feces ferment, respectively (sets 1st-5th. The result showed decreasing colour densities from 170 SU to 160 SU (dark colour, 60 SU (very light colour, 12 SU (no colour, 10 SU (no colour and 10 SU (no colour, respectively. We conclude that the upflow anaerobic filter, containing 2% cow’s feces ferment is an efficient way to reduce colour density of the wastewater. Mixing cow’s feces ferment with tie-dye wastewater increased COD and TDS in wastewater. Mean COD was increased by residual organic matter from 1584 mg/l (before treatment to (after-treatment, sets 2nd- 5th 1600 mg/l, 1680 mg/l, 1710 mg/l and 1750 mg/l, respectively. COD aftertreatment was higher than the industrial effluence standard (400 mg/l. Further treatment COD might include wetland procedures. TDS was increased by some residual organic matter

  20. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  1. Radiation treatment for endocrine disrupters in water

    International Nuclear Information System (INIS)

    Taguchi, Mitsumasa

    2003-01-01

    The radiation-induced decomposition of a trace amount of 17 β-estradiol (E2) in water was studied as a function of the dose of 60Co γ-rays. Concentration of both E2 and E2 activity were estimated by LC-MS and ELISA, and decreased with an increase in the dose of γ-rays. E2 at 1.8-nM in water was degraded almost completely by irradiation at 10 Gy (=J/kg), but the E2 activity of the same sample still remained, and decreased by 30 Gy to be lower than the threshold level of contamination to induce some estrogenic effects on the environmental ecology. (author)

  2. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  3. Nanofibrous Mats for Effective Water Treatment

    Directory of Open Access Journals (Sweden)

    Parmiss Mojir Shaibani

    2013-01-01

    Full Text Available One-dimensional BiFeO3 (BFO nanofibers fabricated by electrospinning of a solution of Nylon6/BFO followed by calcination were used for photocatalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM, X-ray diffraction (XRD, and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nanofibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nanofibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nanofibers. Photocatalytic activity of the nanofibers and their application in water purification were investigated against 4-chlorophenol (4CP as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photocatalytic activity of the BFO nanofibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.

  4. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water.

    Science.gov (United States)

    Spayd, Steven E; Robson, Mark G; Buckley, Brian T

    2015-02-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples was collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations was significantly lower (pwater treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-01-01

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water

  6. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  7. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  8. Economies of density for on-site waste water treatment

    NARCIS (Netherlands)

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-01-01

    Decentralised wastewater treatment is increasingly gaining interest as a means of responding to sustainability challenges. Cost comparisons are a crucial element of any sustainability assessment. While the cost characteristics of centralised waste water management systems (WMS) have been studied

  9. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  10. Integrated approach to industrial sewage water treatment - a way of water resources rational use and protection

    Directory of Open Access Journals (Sweden)

    Alekseyev Evgeny

    2016-01-01

    Full Text Available Ion-exchange softening plants wash water treatment studies are provided in order to bring them back to the process. Poorly soluble Ca and Mg compounds formation conditions have been studied during the course of such water caustic treatment using the potentiometric titration method. Information has been provided about the Ca and Mg hydroxide sludge sorption properties with regard to the characteristic contaminants of the sewage water generated by the textile industry enterprise. Suitability of the hydroxide sludge has been established for use in the sewage water treatment technology in order to remove the persisting organic compounds, such as the synthetic dyes.

  11. Abstracts : The Second Maghreb Conference on Desalination and Water Treatment

    International Nuclear Information System (INIS)

    2009-01-01

    This is a book of abstracts, contains the short papers from The Second Maghreb Conference on Desalination and Water Treatment (CMTDE 2009), organized by the Tunisian Desalination Association, Tunisia and the European Desalination Society, it was held on 19 - 22 - 2009 , In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of Desalination and water treatment.

  12. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    Science.gov (United States)

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  13. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  14. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  15. Assessing the water quality index of water treatment plant and bore wells, in Delhi, India.

    Science.gov (United States)

    Chaturvedi, M K; Bassin, J K

    2010-04-01

    Water quality monitoring exercise was carried out with water quality index (WQI) method by using water characteristics data for bore wells and a water treatment plant in Delhi city from December 2006 to August 2007. The water treatment plant received surface water as raw water, and product water is supplied after treatment. The WQI is used to classify water quality as excellent, good, medium, bad, and very bad. The National Sanitation Foundation WQI procedure was used to calculate the WQI. The index ranges from 0 to 100, where 100 represents an excellent water quality condition. Water samples were collected monthly from a bore well in Nehru Camp (site 1), a bore well in Sanjay Gandhi pumping station (site 2), and water treatment plant in Haiderpur (site 3). Five parameters were analyzed, namely, nitrate, pH, total dissolved solids, turbidity, and temperature. We found that the WQI was around 73-80 in site 3, which corresponds to "good," and it decreased to 54.32-60.19 and 59.93-70.63 in site 1 and site 2, respectively, indicating that these bore wells were classified as "medium" quality.

  16. Selection of water treatment processes special study

    International Nuclear Information System (INIS)

    1991-11-01

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering

  17. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  18. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    Science.gov (United States)

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  19. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  20. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  1. Review on Chemical treatment of Industrial Waste Water | Sahu ...

    African Journals Online (AJOL)

    Industrialization played an important role for scio-economy of the country. Generally, a lot of water is used and lot of wastewater generated from industries due their processes and washing purpose. A large number of chemicals are used for the production of potable water and in the treatment of wastewater effluents.

  2. Effects of forest cover on drinking water treatment costs

    Science.gov (United States)

    Travis Warziniack; Chi Ho Sham; Robert Morgan; Yasha Feferholtz

    2016-01-01

    This paper explores the relationship between forest cover and drinking water treatment costs using results from a 2014 survey by the American Water Works Association (AWWA) that targeted utilities in forested ecoregions in the United States. On the basis of the data collected, there is a negative relationship between forest cover and turbidity, i.e. as forest...

  3. The effectiveness of conventional water treatment in removing ...

    African Journals Online (AJOL)

    Algal blooms are a global problem due to various negative effects that can compromise water quality, such as the production of metabolites that are responsible for odour, colour, taste and ... This study aimed to evaluate the efficacy of conventional water treatment for the removal of algae, cyanobacteria and cyanotoxins.

  4. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred method of disposal, as there are environmental concerns and increasingly high costs associated with other disposal options. However, before WTR can be applied to land, consideration needs ...

  5. Water quality modelling and optimisation of wastewater treatment ...

    African Journals Online (AJOL)

    Instream water quality management encompasses field monitoring and utilisation of mathematical models. These models can be coupled with optimisation techniques to determine more efficient water quality management alternatives. Among these activities, wastewater treatment plays a crucial role. In this work, a ...

  6. Effectiveness of home water treatment methods in Dschang ...

    African Journals Online (AJOL)

    The MPN (Most Probable Number) technique was used to assess the bacteriological quality of nine of the important drinking water sources in Dschang. Water from the most polluted source was then subjected to six home-based treatment methods, commonly used by the population. Boiling for up to thirty minutes was the ...

  7. Reduction of sludge volume in waste waters at the end of the drinking water treatment process

    OpenAIRE

    Fakin, Rebeka

    2018-01-01

    Water treatment at Seierstad drinking water treatment plant is done by chemical coagulation using aluminum-based coagulant. The quality of the drinking water source – Lake Farris, has decreased throughout the years, that is why more and more particles, organic matter and dissolved minerals must be removed. That contributes to the volume of sludge being produced at the end of the process. The main objective of the assignment is to reduce sludge volume by coagulation and flocculation in the sed...

  8. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  9. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  10. Public Perception of Potable Water Supply in Abeokuta South west ...

    African Journals Online (AJOL)

    ... their daily demand. Only 39% of the respondents who relied on water from alternative sources subjected the water to treatment before usage. It was advised that issues of inadequate water supply and coverage area be addressed speedily and residents should subject water obtained from alternative sources to treatment.

  11. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  12. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  13. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  14. Inadequate control of world's radioactive sources

    International Nuclear Information System (INIS)

    2002-01-01

    The radioactive materials needed to build a 'dirty bomb' can be found in almost any country in the world, and more than 100 countries may have inadequate control and monitoring programs necessary to prevent or even detect the theft of these materials. The IAEA points out that while radioactive sources number in the millions, only a small percentage have enough strength to cause serious radiological harm. It is these powerful sources that need to be focused on as a priority. In a significant recent development, the IAEA, working in collaboration with the United States Department of Energy (DOE) and the Russian Federation's Ministry for Atomic Energy (MINATOM), have established a tripartite working group on 'Securing and Managing Radioactive Sources'. Through its program to help countries improve their national infrastructures for radiation safety and security, the IAEA has found that more than 100 countries may have no minimum infrastructure in place to properly control radiation sources. However, many IAEA Member States - in Africa, Asia, Latin America, and Europe - are making progress through an IAEA project to strengthen their capabilities to control and regulate radioactive sources. The IAEA is also concerned about the over 50 countries that are not IAEA Member States (there are 134), as they do not benefit from IAEA assistance and are likely to have no regulatory infrastructure. The IAEA has been active in lending its expertise to search out and secure orphaned sources in several countries. More than 70 States have joined with the IAEA to collect and share information on trafficking incidents and other unauthorized movements of radioactive sources and other radioactive materials. The IAEA and its Member States are working hard to raise levels of radiation safety and security, especially focusing on countries known to have urgent needs. The IAEA has taken the leading role in the United Nations system in establishing standards of safety, the most significant of

  15. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  16. Treatment of Perfluorinated Alkyl Substances in Wash Water ...

    Science.gov (United States)

    Report The U.S. Environmental Protection Agency’s (EPA) National Homeland Security Research Center partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. This report summarizes the results from testing conducted to evaluate the treatment of large volumes of water containing perfluorinated alkyl substances (PFAS). This summary of conclusions and observations about the performance and implementation of adsorptive treatment of AFFF contaminated water, based on the testing performed at the INL WSTB.

  17. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  18. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  19. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  20. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  1. Effect of polyaluminium chloride water treatment sludge on effluent ...

    African Journals Online (AJOL)

    Effect of polyaluminium chloride water treatment sludge on effluent quality of domestic wastewater treatment. ... The results obtained showed a decrease in total suspended solids (TSS), chemical oxygen demand (COD), total ammonium nitrogen (TAN), and total phosphates (TP) in the supernatant after 30 min of settlement.

  2. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  3. Comparative studies on chemical, hot and cold water treatments of ...

    African Journals Online (AJOL)

    study was to compare cold and hot water treatment with chemical treatment of banana planting material for the control of the banana weevil, and to validate the effect of paring on weevil and nematode removal from banana suckers. Materials and methods. The experiment was conducted at Kawanda Agricultural research ...

  4. Techniques of WasteWater Treatment-Introduction to Effluent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 11. Techniques of WasteWater Treatment - Introduction to Effluent Treatment and Industrial Methods. Amol A Kulkarni Mugdha Deshpande A B Pandit. General Article Volume 5 Issue 11 November 2000 pp 56-68 ...

  5. Waste Water Treatment Apparatus and Methods

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  6. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  7. Application of hydrodynamic cavitation in ballast water treatment.

    Science.gov (United States)

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  8. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e...... of induced impacts as compared to avoided impacts is introduced in the life cycle impact assessment (LCIA) part. Furthermore, as novel approaches, potential ecotoxicity impact from a high number of micropollutants and the potential impact from pathogens (and whole effluent toxicity) are to be included....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  9. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  10. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  11. Radium 226 in filter sludges from ground water treatment

    International Nuclear Information System (INIS)

    Haberer, K.

    1999-01-01

    Sludge waters from 80 different water works in Germany have been investigated on the content of radium 226, which appears wide-spread in ground water in very low concentrations, but heavily enriched in treatment sludges. The radium 226 contents of the sludge waters from treatment facilities for iron and manganese removal and in some cases for softening and flocculation were related to the dry residues separately determined. The specific Ra 226-activities of the dry residues fit to a log-norm distribution with a median value of 500 Bq/kg and a deviation of 1.7. 90% of the values were below 1200 Bq/kg. Radium 226 is strongly fixed to the sludges and will not be washed out, as elution experiments showed. Further investigations and calculations of the radium 226 content in the treated ground water proved the plausibility of the results. (orig.) [de

  12. Water treatment by the AC gliding arc air plasma

    Science.gov (United States)

    Gharagozalian, Mehrnaz; Dorranian, Davoud; Ghoranneviss, Mahmood

    2017-09-01

    In this study, the effects of gliding arc (G Arc) plasma system on the treatment of water have been investigated experimentally. An AC power supply of 15 kV potential difference at 50 Hz frequency was employed to generate plasma. Plasma density and temperature were measured using spectroscopic method. The water was contaminated with staphylococcus aureus (Gram-positive) and salmonella bacteria (Gram-negative), and Penicillium (mold fungus) individually. pH, hydrogen peroxide, and nitride contents of treated water were measured after plasma treatment. Decontamination of treated water was determined using colony counting method. Results indicate that G Arc plasma is a powerful and green tool to decontaminate water without producing any byproducts.

  13. Surface-wave-sustained plasma torch for water treatment

    Science.gov (United States)

    Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.

    2018-02-01

    In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.

  14. Ozonation system for treatment of cooling tower water

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, T.; Horton, A.; Kaplan, B.

    1994-11-10

    An improved system for treatment of cooling tower water using ozone as a biocide. A self-contained unit is supplied with compressed air which is introduced to ozone generating electrodes at a constant flowrate. The ozone is mixed with tower water and then returned to the cooling tower. A sampling probe allows for constant monitoring of the ozone content of water coming from the tower. The volume of ozone mixing with the tower water is accordingly constantly adjusted. The system also includes safety control features to monitor system operation and provide shutoff in the event of malfunction. (author).

  15. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  16. Biochemical, Environmental Engineering and Water Treatment

    International Nuclear Information System (INIS)

    Ahmed, A.A.E.; Ibrahem, I.M.

    2004-01-01

    to Environmental Considerations - The environmental impacts of a proposed wastewater treatment facility are as important,t, if not more so, as cost considerations, a few comments regarding applicable environmental considerations that must also be addressed are appropriate. - The environmental evaluations should focus on social, technical, ecological, economic, political, legal, and institutional (STEEPLI) criteria. - Environmental Impact Statement (EIS) prepared for any proposed governmental action that is determined to have a significant impact on the quality of the human environment. - The regulations ensure that the probable environmental effects are identified, that a reasonable number of alternative actions and their environmental impacts are considered, that the environmental information is available for public understanding and scrutiny, and that the public and governmental agencies participate as a part of the decision process. - All pertinent regulations and the inherent participate afforded must be disclosed in the EIS. - National Environmental Policy Act of USA (NEP A ) neither prohibits nor permits any action but requires full disclosure of environmental information and public participation in the decision making process

  17. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  18. Nanofiltration technology in water treatment and reuse: applications and costs.

    Science.gov (United States)

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  19. Drinking water treatment technologies in Europe: State of the art - vulnerabilities - research needs

    OpenAIRE

    Van der Hoek, J.P.; Bertelkamp, C.; Verliefde, A.R.D.; Singhal, N.

    2012-01-01

    Eureau is the European Federation of National Associations of Water and Wastewater Services. At the request of Eureau Commission 1, dealing with drinking water, a survey was made focusing on raw drinking water sources and drinking water treatment technologies applied in Europe. Raw water sources concerned groundwater, surface water, surface water with artificial recharge and river bank filtration. Treatment schemes concerned no treatment, conventional treatment, advanced treatment and convent...

  20. Grey water treatment in UASB reactor at ambient temperature.

    Science.gov (United States)

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  1. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  2. Biological treatment options for consolidated tailings release waters

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, C.P.; Nix, P.G.; Sander, B. [EVS Environment Consultants, North Vancouver, British Columbia (Canada); Knezevic, Z.

    1995-12-31

    Suncor Inc., Oil Sands Group, operates a large oil sands mining and extraction operation in northeastern Alberta. The extraction plant produces large volumes of a tailings slurry which resists dewatering and treatment, and is toxic to aquatic organisms. Consolidated tailings (CT) technology is used to treat tailings by either acid/lime or gypsum and enhances the possibility of treating residual fine tails in a ``dry`` land reclamation scenario and treating the release water in a wastewater treatment reclamation scenario. The objective was to assess the treatability of CT release water (i.e., the reduction of acute and chronic toxicities to trout, Ceriodaphnia, and bacteria) in bench-scale biological treatment systems. Microtox{reg_sign} IC20 test showed complete detoxification for the gypsum CT release water within 3 to 5 weeks compared with little reduction in toxicity for dyke drainage. Acute toxicity (fish) and chronic toxicity (Ceriodaphnia, bacterial) was removed from both CT release waters. Phosphate and aeration enhanced detoxification rates. Concentrations of naphthenic acids (an organic toxicant) were not reduced, but levels of dissolved organic compounds decreased faster than was the case for dyke drainage water, indicating that some of the organic compounds in both acid/lime and gypsum CT waters were more biodegradable. There was a pattern of increasing toxicity for dyke drainage water which confirmed observations during field-scale testing in the constructed wetlands and which was not observed for CT release waters. Acid/lime and gypsum CT water can be treated biologically in either an aeration pond, constructed wetlands, or a combination of both thereby avoiding the expense of long-term storage and/or conventional waste treatment systems.

  3. 25 CFR 170.811 - What happens if lack of funds results in inadequate maintenance?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What happens if lack of funds results in inadequate maintenance? 170.811 Section 170.811 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.811 What happens if lack of funds...

  4. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse.

    Science.gov (United States)

    Qu, Xiaolei; Brame, Jonathon; Li, Qilin; Alvarez, Pedro J J

    2013-03-19

    Ensuring reliable access to clean and affordable water is one of the greatest global challenges of this century. As the world's population increases, water pollution becomes more complex and difficult to remove, and global climate change threatens to exacerbate water scarcity in many areas, the magnitude of this challenge is rapidly increasing. Wastewater reuse is becoming a common necessity, even as a source of potable water, but our separate wastewater collection and water supply systems are not designed to accommodate this pressing need. Furthermore, the aging centralized water and wastewater infrastructure in the developed world faces growing demands to produce higher quality water using less energy and with lower treatment costs. In addition, it is impractical to establish such massive systems in developing regions that currently lack water and wastewater infrastructure. These challenges underscore the need for technological innovation to transform the way we treat, distribute, use, and reuse water toward a distributed, differential water treatment and reuse paradigm (i.e., treat water and wastewater locally only to the required level dictated by the intended use). Nanotechnology offers opportunities to develop next-generation water supply systems. This Account reviews promising nanotechnology-enabled water treatment processes and provides a broad view on how they could transform our water supply and wastewater treatment systems. The extraordinary properties of nanomaterials, such as high surface area, photosensitivity, catalytic and antimicrobial activity, electrochemical, optical, and magnetic properties, and tunable pore size and surface chemistry, provide useful features for many applications. These applications include sensors for water quality monitoring, specialty adsorbents, solar disinfection/decontamination, and high performance membranes. More importantly, the modular, multifunctional and high-efficiency processes enabled by nanotechnology provide a

  5. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  6. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  7. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and......The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... cycle impact assessment methods on pathogens, whole effluent toxicity and micropollutants will be developed within the project. As part of this work a review of more than 20 previous LCA studies on WWTTs has been done and the findings are summarised on this poster. The review is focused on the relative...

  8. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  9. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  10. Soviet civil defense is inadequate and meaningless

    International Nuclear Information System (INIS)

    Kaplan, F.M.

    1985-01-01

    In this paper, the author argues that Soviet civil defense plans exist primarily on paper and are used to pacify the Soviet people, not as plans to survive and prevail in a nuclear confrontation with the U.S. The author describes how the Soviet people have little faith in the civil defense programs. They don't believe they can survive an attack. Furthermore, he says the Soviets have never staged an evacuation exercise in any major city nor, even in smaller towns, has an entire community been evacuated. The author says there are numerous problems with the shelter programs as well. Very few existing shelters have any food stocks, only a few more have any water. There is little evidence that Soviet leaders have planned their economy with civil defense in mind. Nor - given the blatant inadequacies of Soviet civil defense programs, the marked vulnerabilities of the Soviet economy, and the intrinsic limitation and uncertainties about civil defense generally - is there much basis for claiming that Soviet leaders, even in desperate straits, would risk war with the United States while counting on civil defense measures to limit the damage wreaked on the Soviet Union

  11. Water drinking as a treatment for orthostatic syndromes

    Science.gov (United States)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  12. Advances in treatment methods for uranium contaminated soil and water

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2002-01-01

    Water and soil contaminated with actinides, such as uranium and plutonium, are an environmental concern at most U.S. Department of Energy sites, as well as other locations in the world. Remediation actions are on going at many sites, and plans for cleanup are underway at other locations. This paper will review work underway at Clemson University in the area of treatment and remediation of soil and water contaminated with actinide elements. (author)

  13. Treatment of the oily produced water (OPW) using coagulant mixtures

    OpenAIRE

    Hosny, R.; Fathy, M.; Ramzi, M.; Abdel Moghny, Th.; Desouky, S.E.M.; Shama, S.A.

    2016-01-01

    Treatment of the oily produced water (OPW) before injection into oil reservoirs is necessary to reduce formation damage. This can be done using chemo-physical process to minimize the oil droplets in water. In this respect, this work aims to extract natural polymer (chitosan) from shrimp shells and mix it with coagulants (chitosan/carboxy methyl cellulose and chitosan/aluminum sulfate) to adsorb oil from OPW. Adsorption experiments were carried out in batch mode firstly to choose the best coag...

  14. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  15. Prevention of biofilm formation in dialysis water treatment systems.

    Science.gov (United States)

    Smeets, Ed; Kooman, Jeroen; van der Sande, Frank; Stobberingh, Ellen; Frederik, Peter; Claessens, Piet; Grave, Willem; Schot, Arend; Leunissen, Karel

    2003-04-01

    Biofilm formations in dialysis systems may be relevant because they continuously release bacterial compounds and are resistant against disinfection. The aim of the study was to compare the development of biofilm between a water treatment system based on a single reverse osmosis unit producing purified dialysate water [bacterial count, 350 colony-forming unit (CFU)/L] (center A) and a water treatment system based on double reverse osmosis and electric deionization, which is continuously disinfected with ultraviolet light and treated with ozone once a week (bacterial count, 1 CFU/L) (center B). During a period of 12 weeks, biofilm formation was studied in the tubing segment between the water piping and the dialysis module, using four dialysis monitors in each center. On a weekly basis, tubing samples of 5 cm length (N = 96) were taken under aseptic conditions and investigated for microbiologic contamination [cystine lactose electrolyte-deficient (CLED) Agar], endotoxin levels [limulus amoeben lysate (LAL) gel test, cutoff value, 0.0125 EU/mL], and biofilm formation [electron scanning microscopy (SEM)]. In center A, tube cultures were positive (>100 CFU/mL) in 16% of samples at 22 degrees C and 37 degrees C, compared to 3% of samples of center B (P tubing samples of center A and negative in all of the samples of center B (P < 0.05). Biofilm was present in 91.7% of the samples of center A (Fig. 1), and only present in one sample (taken after 9 weeks) of center B (P < 0.05) (Fig. 2). In center A, biofilm formation was already observed after 1 week. In contrast to a standard water treatment system producing purified water, the use of a system producing highly purified water, which is also treated with regular disinfection procedures, leads to a significant reduction in biofilm formation, bacterial growth, and endotoxin levels in a highly vulnerable part of a water treatment system.

  16. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  17. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  18. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  19. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  20. Long-term Impact of Integration of Household Water Treatment and Hygiene Promotion with Antenatal Services on Maternal Water Treatment and Hygiene Practices in Malawi

    Science.gov (United States)

    Loharikar, Anagha; Russo, Elizabeth; Sheth, Anandi; Menon, Manoj; Kudzala, Amose; Tauzie, Blessius; Masuku, Humphreys D.; Ayers, Tracy; Hoekstra, Robert M.; Quick, Robert

    2013-01-01

    A clinic-based program to integrate antenatal services with distribution of hygiene kits including safe water storage containers, water treatment solution (brand name WaterGuard), soap, and hygiene education, was implemented in Malawi in 2007 and evaluated in 2010. We surveyed 389 participants at baseline in 2007, and found and surveyed 232 (60%) participants to assess water treatment, test stored drinking water for residual chlorine (an objective measure of treatment), and observe handwashing technique at follow-up in 2010. Program participants were more likely to know correct water treatment procedures (67% versus 36%; P water treatment and proper handwashing technique among program participants. PMID:23243106

  1. Hydraulic Fracking Water Treatment in Texas and North Dakota.

    OpenAIRE

    Abordo , Genel; Patel , Cameron; Duncan , Cody; McAlpine , Caitlin; Thomas, Trevor; Libby, James; Ryan , Kerrick

    2013-01-01

    Project Definition: Flo-tech Engineering is developing a mobile treatment system for flowback and produced water from hydraulic fracturing operations.  The water will be treated for fracking reuse.  The system will be implemented in Bakken Shale in North Dakota and/or Eagle Ford Shale in southern Texas.  Design Constraints and Parameters:  Extensive research was required to determine which site areas to develop and the current technologies used to treat the water involved in hydraulic fractur...

  2. 'Iraq Water Treatment Vulnerabilities': a challenge to public health ethics.

    Science.gov (United States)

    MacQueen, Graeme; Nagy, Thomas; Santa Barbara, Joanna; Raichle, Claudia

    2004-01-01

    A formerly classified US document, 'Iraq Water Treatment Vulnerabilities,' provides evidence that ill health was knowingly induced in the population of Iraq through the ruination of that country's water purification system. We believe that the uncovering of this document should stimulate the public health community to clarify principles of public health ethics and to formulate statements giving voice to these principles. We propose here two statements, one dealing with the broad issue of public health ethics and international relations, and one dealing specifically with public health ethics and water purification.

  3. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  4. Mineralizing urban net-zero water treatment: Phase II field ...

    Science.gov (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo

  5. Mine water treatment with yellowcake by-production

    International Nuclear Information System (INIS)

    Csicsak, J.; Csoevari, M.; Eberfalvy, J.; Lendvai, Zs.

    2002-01-01

    Mining and milling of uranium ore in Hungary was terminated at the end of 1997. From that time rehabilitation works have been carrying out, which include manly the relocation of different solid wastes, such as waste rocks, heap leached residues, demolishing of former industrial buildings, clean up contaminated sites. Overall rehabilitation of the tailings ponds has also started. At first step the ground water restoration system is under construction, aiming at protecting the drinking water aquifer situated in the immediate vicinity of the tailings ponds. Former mining activity has been carried out also in the vicinity of the drinking water catchment area, for protection of that is compulsory to maintain appropriate depression in the mine in question. This means that mine water has to be pumped out continuously and because of the elevated uranium concentration in mine water, the water has to be treated. Thus the water quality protection is connected with uranium removal from the mine water. Mine water treatment process developed is based on anion-exchange process and removal of the uranium from the eluates with hydrogen peroxide. (author)

  6. Testing large volume water treatment and crude oil ...

    Science.gov (United States)

    Report EPA’s Homeland Security Research Program (HSRP) partnered with the Idaho National Laboratory (INL) to build the Water Security Test Bed (WSTB) at the INL test site outside of Idaho Falls, Idaho. The WSTB was built using an 8-inch (20 cm) diameter cement-mortar lined drinking water pipe that was previously taken out of service. The pipe was exhumed from the INL grounds and oriented in the shape of a small drinking water distribution system. Effluent from the pipe is captured in a lagoon. The WSTB can support drinking water distribution system research on a variety of drinking water treatment topics including biofilms, water quality, sensors, and homeland security related contaminants. Because the WSTB is constructed of real drinking water distribution system pipes, research can be conducted under conditions similar to those in a real drinking water system. In 2014, WSTB pipe was experimentally contaminated with Bacillus globigii spores, a non-pathogenic surrogate for the pathogenic B. anthracis, and then decontaminated using chlorine dioxide. In 2015, the WSTB was used to perform the following experiments: • Four mobile disinfection technologies were tested for their ability to disinfect large volumes of biologically contaminated “dirty” water from the WSTB. B. globigii spores acted as the biological contaminant. The four technologies evaluated included: (1) Hayward Saline C™ 6.0 Chlorination System, (2) Advanced Oxidation Process (A

  7. Treatment of tunnel wash water and implications for its disposal.

    Science.gov (United States)

    Hallberg, M; Renman, G; Byman, L; Svenstam, G; Norling, M

    2014-01-01

    The use of road tunnels in urban areas creates water pollution problems, since the tunnels must be frequently cleaned for traffic safety reasons. The washing generates extensive volumes of highly polluted water, for example, more than fivefold higher concentrations of suspended solids compared to highway runoff. The pollutants in the wash water have an affinity for particulate material, so sedimentation should be a viable treatment option. In this study, 12 in situ sedimentation trials were carried out on tunnel wash water, with and without addition of chemical flocculent. Initial suspended solids concentration ranged from 804 to 9,690 mg/L. With sedimentation times of less than 24 hours and use of a chemical flocculent, it was possible to reach low concentrations of suspended solids (detergents used for the tunnel wash, decreased significantly at low suspended solids concentrations after sedimentation using a flocculent. The tunnel wash water did not inhibit nitrification. The treated water should be suitable for discharge into recipient waters or a wastewater treatment plant.

  8. Characterization of drinking water treatment for virus risk assessment.

    Science.gov (United States)

    Teunis, P F M; Rutjes, S A; Westrell, T; de Roda Husman, A M

    2009-02-01

    Removal or inactivation of viruses in drinking water treatment processes can be quantified by measuring the concentrations of viruses or virus indicators in water before and after treatment. Virus reduction is then calculated from the ratio of these concentrations. Most often only the average reduction is reported. That is not sufficient when treatment efficiency must be characterized in quantitative risk assessment. We present three simple models allowing statistical analysis of series of counts before and after treatment: distribution of the ratio of concentrations, and distribution of the probability of passage for unpaired and paired water samples. Performance of these models is demonstrated for several processes (long and short term storage, coagulation/filtration, coagulation/sedimentation, slow sand filtration, membrane filtration, and ozone disinfection) using microbial indicator data from full-scale treatment processes. All three models allow estimation of the variation in (log) reduction as well as its uncertainty; the results can be easily used in risk assessment. Although they have different characteristics and are present in vastly different concentrations, different viruses and/or bacteriophages appear to show similar reductions in a particular treatment process, allowing generalization of the reduction for each process type across virus groups. The processes characterized in this paper may be used as reference for waterborne virus risk assessment, to check against location specific data, and in case no such data are available, to use as defaults.

  9. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  10. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  11. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants

    NARCIS (Netherlands)

    Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a

  12. Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials.

    Science.gov (United States)

    Lin, Cheng-Fang; Wu, Chung-Hsin; Ho, Hsiu-Mai

    2006-01-01

    Water treatment plant sludge and municipal solid waste incinerator bottom ash are non-hazardous residues, and they can be reprocessed to produce useful materials for city public works. In this study, an effort was endeavored to investigate the properties of water permeable bricks made of water treatment sludge and bottom ash without involving an artificial aggregate step. The water treatment plant sludge was dried and ground, and the bottom ash was subjected to magnetic separation to remove ferrous metals. Both sludge and bottom ash were ground and sieved to a size of bottom ash and the blocks were molded under a pressure of 110 kg/cm2. Thereafter, the molded blocks were sintered at temperatures of 900-1200 degrees C for 60-360 min. The compressive strength, permeability and water absorption rate of the sintered brick were examined and compared to relevant standards. The amount of bottom ash added in the mixture with water treatment sludge affects both the compressive strength and the permeability of the sintered bricks. The two effects are antonymous as higher bottom ash content will develop a beehive configuration and have more voids in the brick. It is concluded that a 20% weight content of bottom ash under a sintering condition of 1150 degrees C for 360 min can generate a brick with a compressive strength of 256 kg/cm2, a water absorption ratio of 2.78% and a permeability of 0.016 cm/s.

  13. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  14. Randomized Trial of Once-Daily Fluticasone Furoate in Children with Inadequately Controlled Asthma

    DEFF Research Database (Denmark)

    Oliver, Amanda J.; Covar, Ronina A.; Goldfrad, Caroline H.

    2016-01-01

    Objective To evaluate the dose-response, efficacy, and safety of fluticasone furoate (FF; 25 µg, 50 µg, and 100 µg), administered once daily in the evening during a 12-week treatment period to children with inadequately controlled asthma. Study design This was a Phase IIb, multicenter, stratified...

  15. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  16. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  17. Modelling total sewage water discharge to a regional treatment plant.

    NARCIS (Netherlands)

    Witter, J.V.; Stricker, H.

    1986-01-01

    In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in

  18. Effects of different rhizosphere ventilation treatment on water and ...

    African Journals Online (AJOL)

    The objective of this study was to explore the effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize. The pot experiment was conducted using three methods: no ventilation, two day ventilation and four day ventilation, under conditions of the different levels of irrigation methods.

  19. Laser removal of water repellent treatments on limestone

    Science.gov (United States)

    Gómez-Heras, Miguel; Alvarez de Buergo, Mónica; Rebollar, Esther; Oujja, Mohamed; Castillejo, Marta; Fort, Rafael

    2003-12-01

    Protective and water repellent treatments are applied on stone materials used on buildings or sculptures of artistic value to reduce water intrusion without limiting the natural permeability to water vapour of the material. The effect of the wavelength associated with the laser removal of two water repellent treatments applied on limestone, Paraloid B-72, a copolymer of methyl acrylate and ethyl methacrylate, and Tegosivin HL-100, a modified polysiloxane resin, was investigated by using the four harmonics of a Q-switched Nd:YAG laser (1064, 532, 355 and 266 nm). The modifications induced on the surface of limestone samples by laser irradiation were studied using colorimetry, roughness measurements and scanning electron microscopy (SEM). The removal of the treatments was found to be dependent on the laser irradiation conditions and on the characteristics of the coatings. The fundamental laser radiation was effective in removing both treatments, but thermal alteration processes were induced on the constituent calcite crystals. The best results were obtained by irradiation in the near UV at 355 nm.

  20. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  1. Some techniques used in the treatment of phenolic waters residual

    International Nuclear Information System (INIS)

    Alzate S, Rafael A.; Botero, Carlos Andre

    2000-01-01

    The current state of the diverse processes of treatment of phenolic waters residual is presented, beginning with the methods traditionally employees, until finishing with those but recent innovations, which have been derived of the necessity of increasing the removal of these pollutants without increasing the costs of such processes in excessive form

  2. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    Science.gov (United States)

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  3. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    In this study, Jambo tannery which is located in Busia District, (Uganda) with a daily processing capacity of 6.6 tonnes of hides and skin utilises 20 m3 of water to produce 17 m3 of wastewater/day. The generated wastewater is treated on site in the wastewater treatment plant whose performance was assessed. The main ...

  4. Model-Based Control of Drinking-Water Treatment Plants

    NARCIS (Netherlands)

    Van Schagen, K.M.

    2009-01-01

    The drinking water in the Netherlands is of high quality and the production cost is low. This is the result of extensive research in the past decades to innovate and optimise the treatment processes. The processes are monitored and operated by motivated and skilled operators and process

  5. Efficacy of conventional drinking water treatment processes in ...

    African Journals Online (AJOL)

    2013-10-07

    Oct 7, 2013 ... Total photosynthetic pigments (TPP) were removed effectively by all the different water treatment processes. ... With good removal of intact cyanobacteria cells during coagulation, flocculation and sedimentation, geosmin concentra- tions in the ..... the total photosynthetic pigments (TPP) are mostly produced.

  6. Environmental life cycle assessments for water treatment processes ...

    African Journals Online (AJOL)

    The objective of this study was to generate information on the environmental profile of the life cycle of water, including treatment, distribution and collection and disposal (including recycling), in an urban context. As a case study the eThekwini Municipality (with its main city Durban) in South Africa was used. Another aim of ...

  7. The vital role of water treatment in energy management

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Ram, O.P.

    1983-01-01

    This paper discusses various aspects of water treatment relevant to thermal power plants', The reverse osmosis systems employing hollow fibre membranes are compact have excellent rejection characteristics and are easy to maintain. These can be used as demineralisers to improve the performance of ion exchange polishing systems.

  8. Short communication: Effect of water treatment of sorghum on the ...

    African Journals Online (AJOL)

    It was observed that water treatment reduced the tannin contents of sorghum. Birds fed diets A, E and F showed the best weight gains, and diet G showed a better weight gain than diets B, C and D. The best feed efficiency was observed in chicks fed diets with treated sorghum compared with those fed raw sorghum.

  9. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    Full Length Research Paper. Modeling Jambo wastewater treatment system to predict water re-use options. Kyeyune Simonpeter and Mulamba Peter*. Department of Agricultural and Bio-Systems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda. Received 22 August, 2012; Accepted 29 December, 2014.

  10. Effects of sulphuric acid and hot water treatments on seed ...

    African Journals Online (AJOL)

    A study was carried out to investigate the effects of sulphuric acid and hot water treatments on the germination of Tamarind (Tamarindus indica L). Seeds were placed on moistened filter papers in 28 cm diameter Petri dishes under laboratory condition for germination. 330 seeds of T. indica (10 seeds per Petri dish) with ...

  11. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Plasma treatment of polyester fabric to impart the water repellency property∗. C J JAHAGIRDAR and L B TIWARI1. Applied Physics Division, Institute of Chemical Technology, University of Mumbai,. Matunga, Mumbai 400 019, India. 1Present address: B/18, B-304, Gulshan, Gokuldham, Goregaon (East), Mumbai 400 063,.

  12. Dispersed droplet dynamics during produced water treatment in oil industry

    NARCIS (Netherlands)

    van Eijkeren, D.F.

    2016-01-01

    For Lagrangian particle tracking applied to swirling flow produced water treatment the influence of the history force is investigated. In the expression for the history force an existing Reynolds number dependent kernel is adapted and validated for a range of experimental data for settling spheres.

  13. [Newly Designed Water Treatment Systems for Hospital Effluent].

    Science.gov (United States)

    Azuma, Takashi

    2018-01-01

     Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.

  14. Waterbirds at Paarl Waste Water Treatment Works, South Africa ...

    African Journals Online (AJOL)

    Numbers of waterbirds were counted monthly from May 1994 to April 2004 at Paarl Waste Water Treatment Works, South Africa. Seventy-two waterbird species were recorded, of which 33 species (46%) were recorded breeding. Mean summer and winter counts were 2822 ± 504 and 1651 ± 251 birds, respectively. Summer ...

  15. 207 EFFECTS OF HOT AND COLD WATER PRE- TREATMENTS ...

    African Journals Online (AJOL)

    temperature) for 8, 12 and 24 hours and hot water at 100 C for 5, 10 and 15 minutes . The research seeks to find the best pre germination time to be used for each of the two pre- treatments used in the experiment. Completely randomized design (CRD) of analysis of variance (ANOVA) was used in analysis of obtained data ...

  16. An Analysis of the Waste Water Treatment Operator Occupation.

    Science.gov (United States)

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  17. Bacterial Diversity in a Mine Water Treatment Plant▿ †

    OpenAIRE

    Heinzel, Elke; Hedrich, Sabrina; Janneck, Eberhard; Glombitza, Franz; Seifert, Jana; Schlömann, Michael

    2008-01-01

    We investigated the microbial community in a pilot plant for treatment of acid mine water by biological ferrous iron oxidation using clone library analysis and calculated statistical parameters for further characterization. The microbial community in the plant was conspicuously dominated by a group of Betaproteobacteria affiliated with “Ferribacter polymyxa”.

  18. Current status of radiation treatment of water and wastewater

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1997-01-01

    This is a brief review of the current status of radiation treatment of surface water, groundwater, wastewaters, and sewage sludges. Sources of ionizing radiation, and combination radiation methods for purification are described in some detail. Special attention is paid to pilot and industrial facilities. (author)

  19. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  20. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi

    Science.gov (United States)

    Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.

    2017-08-01

    Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality

  1. Drinking water treatment in solar reactors with immobilized photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sichel, C.; Fernandez, P.; Blanco, J.; Lorenz, K.

    2005-07-01

    This work has been performed at the Plataforma Solar de Almeria. As in our daily consumption of any other good, it is important to take an interest in sustainable treatment methods for purifying a vital water supply. Primary water treatment has no need for energy consuming techniques as any suspended particles can usually be removed by sand traps and sedimentation basin. Organic matter and biodegradable chemical contaminants ca be decomposed by activated sludge plants, bacteria beds, or in the case of highly organically loaded sewage by methanisation.In the recent years, another photocatalysts a photo sensitizer has been used in desinfection experiments. Ruthenium appears to have good potential for inactivation of bacteria in chelating coordination compounds. The SOLWATER project attempts to provide remote areas of such developing countries as Mexico, Peru and Argentina with drinking water disinfected by solar photocatalysis with immobilized TiO2 and Ru(II). (Author)

  2. Skull-base Osteomyelitis: a Dreaded Complication after Trivial Fall and Inadequate Management

    Directory of Open Access Journals (Sweden)

    Kundan Mittal

    2015-10-01

    Full Text Available Introduction: Skull-based osteomyelitis is bony infection which generally originates from inadequately treated chronic infection, adjoining tissue infection or after trauma.Case: 11 month female child had a trivial fall while standing near a bucket. The child developed fracture of right clavicle and left orbital swelling which was inadequately treated. This resulted in in spread of infection to adjoining tissues, skull bones, sinuses and brain.Conclusion: Cranial base osteomyelitis is rare but dreaded condition which requires early diagnosis and prompt treatment to avoid mortality and morbidity in form of neurological deficits and permanent disability

  3. Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System.

    Science.gov (United States)

    Chen, Lihua; Zhu, Xuan; Zhang, Menglu; Wang, Yuxin; Lv, Tianyu; Zhang, Shenghua; Yu, Xin

    2017-05-28

    Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of 2.14 × 10 7 copies/100 ml in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

  4. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

    Science.gov (United States)

    van Slooten, Cees; Peperzak, Louis; Buma, Anita G J

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant.

  5. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  6. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  7. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  8. Release of natural radionuclides in the Czech Republic - from water treatment plants where water from underground water sources is treated

    International Nuclear Information System (INIS)

    Sinaglova, R.

    2014-01-01

    In this abstract author deals with the treatment of drinking water in the Czech Republic with removing of natural radionuclides as well as with treatment of filter cartridges. The advantage of these technologies is that flushing is not required so no wastewater occurs. Used ion exchangers with higher content of uranium are processed in the chemical treatment of uranium ores, managed by DIAMO, state enterprise. (authors)

  9. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick; Caracterizacao fisica, quimica e mineralogica de residuo de estacao de tratamento de aguas para aproveitamento em tijolo solo-cimento

    Energy Technology Data Exchange (ETDEWEB)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F., E-mail: larapessin@hotmail.com [Universidade Estadual do Norte Fluminense Darcy Ribeiro (CCT/PPGECM/UENF), Campos dos Goytacazes, RJ (Brazil)

    2011-07-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  10. Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water.

    Science.gov (United States)

    Simate, Geoffrey S; Iyuke, Sunny E; Ndlovu, Sehliselo; Heydenrych, Mike; Walubita, Lubinda F

    2012-02-01

    The volume of industrial and domestic wastewater is increasing significantly year by year with the change in the lifestyle based on mass consumption and mass disposal brought about by the dramatic development of economies and industries. Therefore, effective advanced wastewater treatment is required because wastewater contains a variety of constituents such as particles, organic materials, and emulsion depending on the resource. However, residual chemicals that remain during the treatment of wastewaters form a variety of known and unknown by-products through reactions between the chemicals and some pollutants. Chronic exposure to these by-products or residual chemicals through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. For example, residual aluminium salts in treated water may cause Alzheimer's disease (AD). As for carbon nanotubes (CNTs), despite their potential impacts on human health and the environment having been receiving more and more attention in the recent past, existing information on the toxicity of CNTs in drinking water is limited with many open questions. Furthermore, though general topics on the human health impacts of traditional water treatment chemicals have been studied, no comparative analysis has been done. Therefore, a qualitative comparison of the human health effects of both residual CNTs and traditional water treatment chemicals is given in this paper. In addition, it is also important to cover and compare the human health effects of CNTs to those of traditional water treatment chemicals together in one review because they are both used for water treatment and purification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Link Between Inadequate Sleep and Obesity in Young Adults.

    Science.gov (United States)

    Vargas, Perla A

    2016-03-01

    The prevalence of obesity has increased dramatically over the past decade. Although an imbalance between caloric intake and physical activity is considered a key factor responsible for the increase, there is emerging evidence suggesting that other factors may be important contributors to weight gain, including inadequate sleep. Overall research evidence suggests that inadequate sleep is associated with obesity. Importantly, the strength and trajectory of the association seem to be influenced by multiple factors including age. Although limited, the emerging evidence suggests young adults might be at the center of a "perfect health storm," exposing them to the highest risk for obesity and inadequate sleep. Unfortunately, the methods necessary for elucidating the complex relationship between sleep and obesity are lacking. Uncovering the underlying factors and trajectories between inadequate sleep and weight gain in different populations may help to identify the windows of susceptibility and to design targeted interventions to prevent the negative impact of obesity and related diseases.

  12. Sunlight-induced photochemical decay of oxidants in natural waters: implications in ballast water treatment.

    Science.gov (United States)

    Cooper, William J; Jones, Adam C; Whitehead, Robert F; Zika, Rod G

    2007-05-15

    The transport and discharge of ship ballast water has been recognized as a major vector for the introduction of invasive species. Chemical oxidants, long used in drinking water and wastewater treatment, are alternative treatment methods for the control of invasive species currently being tested for use on ships. One concern when a ballasted vessel arrives in port is the adverse effects of residual oxidant in the treated water. The most common oxidants include chlorine (HOCl/OCl-), bromine (HOBr/OBr-), ozone (03), hydrogen peroxide (H2O2), chlorine dioxide (ClO2), and monochloramine (NH2Cl). The present study was undertaken to evaluate the sunlight-mediated photochemical decomposition of these oxidants. Sunlight photodecomposition was measured at various pH using either distilled water or oligotrophic Gulf Stream water for specific oxidants. For selected oxidants, quantum yields at specific wavelengths were obtained. An environmental photochemical model, GCSOLAR, also provided predictions of the fate (sunlight photolysis half-lives) of HOCI/OCl-, HOBr/OBr-, ClO2, and NH2Cl for two different seasons at latitude 40 degrees and in water with two different concentrations of chromophoric dissolved organic matter. These data are useful in assessing the environmental fate of ballast water treatment oxidants if they were to be discharged in port.

  13. State of the art of produced water treatment.

    Science.gov (United States)

    Jiménez, S; Micó, M M; Arnaldos, M; Medina, F; Contreras, S

    2018-02-01

    Produced water (PW) is the wastewater generated when water from underground reservoirs is brought to the surface during oil or gas extraction. PW is generated in large amounts and has a complex composition, containing various toxic organic and inorganic compounds. PW is currently treated in conventional trains that include phase separators, decanters, cyclones and coarse filters in order to comply with existing regulation for discharge. These treatment trains do not achieve more restrictive limitations related to the reuse of the effluent (reinjection into extraction wells) or other beneficial uses (e.g., irrigation). Therefore, and to prevent environmental pollution, further polishing processes need to be carried out. Characterization of the PW to determine major constituents is the first step to select the optimum treatment for PW, coupled with environmental factors, economic considerations, and local regulatory framework. This review tries to provide an overview of different treatments that are being applied to polish this type of effluents. These technologies include membranes, physical, biological, thermal or chemical treatments, where special emphasis has been made on advanced oxidation processes due to the advantages offered by these processes. Commercial treatments, based on the combination, modification and improvement of simpler treatments, were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of microalgal treatments on pesticides in water.

    Science.gov (United States)

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.

  15. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination.

    Science.gov (United States)

    Kayvani Fard, Ahmad; McKay, Gordon; Buekenhoudt, Anita; Al Sulaiti, Huda; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-05

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  16. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  17. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  18. Application of Intelligent System for Water Treatment Plant Operation

    Directory of Open Access Journals (Sweden)

    A Mirsepassi

    2004-10-01

    Full Text Available The water industry is facing increased pressure to produce higher quality treated water at a lower cost. The efficiency of a treatment process closely is related to the operation of the plant. To improve the operating performance, an Artificial Neural Network (ANN paradigm has been applied to a water treatment plant. An ANN which is able to learn the non-linear performance relationships of historical data of a plant has been proved to be capable of providing operational guidance for plant operators. A back-propagation network is used to determine the alum and polymer dosages. The results showed that the ANN model was most promising. The correlation coefficients (r between the actual and predicted values for the alum and polymer dosages were both 0.97 and the average absolute percentage errors were 4.09% and 8.76% for the alum and polymer dosages, respectively. The application of the ANN model was illustrated using data from Wyong Shire Council’s Mardi Water Treatment Plant on the Central Coast of NSW.

  19. Modular decontamination plant for radioactive mine water treatment

    International Nuclear Information System (INIS)

    Andel, P.

    1988-01-01

    The prototype of the decontamination station consists of 4 sand pressure filters 1200 mm in diameter, 2 dissolving tanks with a volume of 600 litres, 2 two-head proportioning pumps, an electric distributor, a control system, piping and other accessories. The peripheral blanket of the station contains a heating electric cable, insulation and air technology. The individual parts of the station may be handled by truck crane, it is operational within 24 hours and maximum capacity is 10 l/sec. Treatment technology is extremely variable and may be adjusted for changing quality of discharged water. It is based on a combination of sand filtration and sorption on ion exchangers and this may be linked to a sedimentation and retention tank. The station may be used for the treatment of mine waters and also for the treatment of industrial waste water and drinking water. It is highly operational and variable and may be used both in case of accident and on a long-term basis. (M.D.). 4 refs

  20. Oil sand process-affected water treatment using coke adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  1. Inadequate pain relief among patients with primary knee osteoarthritis.

    Science.gov (United States)

    Laires, Pedro A; Laíns, Jorge; Miranda, Luís C; Cernadas, Rui; Rajagopalan, Srini; Taylor, Stephanie D; Silva, José C

    Despite the widespread treatments for osteoarthritis (OA), data on treatment patterns, adequacy of pain relief, and quality of life are limited. The prospective multinational Survey of Osteoarthritis Real World Therapies (SORT) was designed to investigate these aspects. To analyze the characteristics and the patient reported outcomes of the Portuguese dataset of SORT at the start of observation. Patients ≥50 years with primary knee OA who were receiving oral or topical analgesics were eligible. Patients were enrolled from seven healthcare centers in Portugal between January and December 2011. Pain and function were evaluated using the Brief Pain Inventory (BPI) and WOMAC. Quality of life was assessed using the 12-Item Short Form Health Survey (SF-12). Inadequate pain relief (IPR) was defined as a score >4/10 on item 5 of the BPI. Overall, 197 patients were analyzed. The median age was 67.0 years and 78.2% were female. Mean duration of knee OA was 6.2 years. IPR was reported by 51.3% of patients. Female gender (adjusted odds ratio - OR 2.15 [95%CI 1.1, 4.5]), diabetes (OR 3.1 [95%CI 1.3, 7.7]) and depression (OR 2.24 [95%CI 1.2, 4.3]) were associated with higher risk of IPR. Patients with IPR reported worst outcomes in all dimensions of WOMAC (p<0.001) and in all eight domains and summary components of SF-12 (p<0.001). Our findings indicate that improvements are needed in the management of pain in knee OA in order to achieve better outcomes in terms of pain relief, function and quality of life. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  2. Plant-wide Control Strategy for Improving Produced Water Treatment

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Pedersen, Simon; Løhndorf, Petar Durdevic

    2016-01-01

    This work focuses on investigation and development of an innovative Produced Water Treatment (PWT) technology for offshore oil & gas production by employing the model-based plant-wide control strategy. The key contributions lie in two folds: (i) the advanced anti-slug analysis and control...... quality in a continuous and real-time manner. However, this new solution relies on the availability of reliable Oilin-Water (OiW) real-time measuring technologies, which apparently are still quite challenging and un-matured....

  3. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    OpenAIRE

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for calculating chemical equilibria in groundwater. The development of a graphical user interface for PHREEQC in Microsoft Excel has made it possible to easily incorporate complicated chemical calculat...

  4. Physico-chemical pre-treatment for drinking water

    International Nuclear Information System (INIS)

    Hassanien, W. A. M.

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  5. Inadequate management of pregnancy-associated listeriosis: lessons from four case reports.

    Science.gov (United States)

    Charlier, C; Goffinet, F; Azria, E; Leclercq, A; Lecuit, M

    2014-03-01

    Listeria monocytogenes infection during pregnancy can lead to dramatic fetal or neonatal outcomes. No clinical trial has evaluated treatment options, and retrospective studies of cases are therefore important to define optimal regimens. We report four cases of materno-neonatal listeriosis illustrating inadequate antimicrobial therapy management and discuss recommended treatment options. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  6. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E. Michael; Sitterley, Kurban A.; Korak, Julie A.; Aiken, George R.; Linden, Karl G.

    2015-01-01

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver–Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS = 22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC = 590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach.

  7. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  8. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  9. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant.

    Science.gov (United States)

    Okeke, Benedict C; Thomson, M Sue; Moss, Elica M

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R(2)=0.998) and turbidity (R(2)=0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (Pcoliforms (Pcoliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern can be employed in microbial source tracking. Published by Elsevier B.V.

  10. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  11. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  12. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  13. Treatment of waste thermal waters by ozonation and nanofiltration.

    Science.gov (United States)

    Kiss, Z L; Szép, A; Kertész, S; Hodúr, C; László, Z

    2013-01-01

    After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

  14. Water and air ozone treatment as an alternative sanitizing technology.

    Science.gov (United States)

    Martinelli, M; Giovannangeli, F; Rotunno, S; Trombetta, C M; Montomoli, E

    2017-03-01

    We investigated the effectiveness of ozone (aqueous and gaseous) treatment as an alternative sanitizing technology to common conventional disinfectants in reducing the microbial contamination of both water and air. Ozone was added for 20 minutes to a well-defined volume of water and air by the system named "Ozonomatic ® ". The effectiveness of ozonation was determined by counting CFU/ m3 or ml of bacteria present in samples of air or water collected before (T 0 ) and after (T 1 ) the addition of ozone and comparing the microbial load of different bacteria present in ozonized and nonozonized samples. When the ozonisation equipment was located at 30 cm from the surface of the water in the bath tub in which the bacteria investigated were inoculated, the treatment was able to reduce the total microbial load present in the aerosol by 70.4% at a temperature of 36°C for 48 hours. Conversely, at 22°C for 5 days, only a modest decrease (9.1%) was observed. Escherichia coli and Pseudomonas aeruginosa were completely eliminated. A 93.9% reduction was observed for Staphylococcus aureus, followed by Streptococcus faecalis (25.9%). The addition of ozone to water was able to almost eliminate Staphylococcus aureus (98.9% reduction) and also to exert a strong impact on Legionella pneumophila (87.5% reduction). Streptococcus faecalis and Pseudomonas aeruginosa showed a decrease of 64.2% and 57.4%, respectively. Conversely, only a 26.4% reduction was observed for the bacterium Escherichia coli. This study showed that the addition of ozone in the air exerted a modest reduction on microbial load at 36°C, whereas no effect was observed at 22°C. Aqueous and gaseous ozone treatments were effective against microbial contaminants, reducing the CFU of the microorganisms studied. These results confirm the efficacy of the ozone disinfection treatment of both water and air; particularly, it constitutes an extremely promising alternative, allowing the possibility to reuse contaminated water.

  15. Effect of hot water treatments on quality of highbush blueberries.

    Science.gov (United States)

    Fan, L; Forney, C F; Song, J; Doucette, C; Jordan, M A; McRae, K B; Walker, B A

    2008-08-01

    Highbush blueberries, cv 'Burlington', were treated with 22, 45, 50, or 60 degrees C water for 15 or 30 s along with an untreated control. Fruit were then stored for 0, 1, 2, or 4 wk at 0 degrees C and 2 or 9 d at 20 degrees C prior to evaluation of microbial population and fruit quality. After 4 wk of storage, the hot water treatment at 60 degrees C resulted in 92% marketable berries, followed by 90% at 50 degrees C, 88% at 45 degrees C, and 83% at 22 degrees C compared with 76% in untreated controls. Decay incidence was reduced to 0.6%, 1.2%, 1.4%, or 2.8% with 60, 50, 45, or 22 degrees C water treatments, respectively, compared with 5.1% in controls following 4 wk at 0 degrees C and 2 d at 20 degrees C. After an additional 7 d at 20 degrees C, decay in fruit treated at 60 degrees C for 15 or 30 s remained at 1.8% and 0.4%, respectively, compared to 37.4% in controls. Weight loss of berries treated with hot water was 0.4% against 3.8% in controls, and shriveled and split berries were also reduced compared to controls (Ppathogens causing decay of Burlington blueberries during storage. Hot water treatments also immediately induced an increase in ethanol and reduced fruit titratable acidity and soluble solids content, but had no significant effect on fruit firmness, pH, or most flavor volatile concentrations.

  16. Analysis of inadequate cervical smears using Shewhart control charts

    Directory of Open Access Journals (Sweden)

    Wall Michael K

    2004-06-01

    Full Text Available Abstract Background Inadequate cervical smears cannot be analysed, can cause distress to women, are a financial burden to the NHS and may lead to further unnecessary procedures being undertaken. Furthermore, the proportion of inadequate smears is known to vary widely amongst providers. This study investigates this variation using Shewhart's theory of variation and control charts, and suggests strategies for addressing this. Methods Cervical cytology data, from six laboratories, serving 100 general practices in a former UK Health Authority area were obtained for the years 2000 and 2001. Control charts of the proportion of inadequate smears were plotted for all general practices, for the six laboratories and for the practices stratified by laboratory. The relationship between proportion of inadequate smears and the proportion of negative, borderline, mild, moderate or severe dyskaryosis as well as the positive predictive value of a smear in each laboratory was also investigated. Results There was wide variation in the proportion of inadequate smears with 23% of practices showing evidence of special cause variation and four of the six laboratories showing evidence of special cause variation. There was no evidence of a clinically important association between high rates of inadequate smears and better detection of dyskaryosis (R2 = 0.082. Conclusions The proportion of inadequate smears is influenced by two distinct sources of variation – general practices and cytology laboratories, which are classified by the control chart methodology as either being consistent with common or special cause variation. This guidance from the control chart methodology appears to be useful in delivering the aim of continual improvement.

  17. An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants.

    Science.gov (United States)

    Breitholtz, Magnus; Näslund, Maria; Stråe, Daniel; Borg, Hans; Grabic, Roman; Fick, Jerker

    2012-04-01

    Increased attention is currently directed towards potential negative effects of pharmaceuticals and other micro-pollutants discharged into the aquatic environment via municipal sewage water. A number of additional treatment technologies, such as ozonation, have therefore been suggested as promising tools for improving the removal efficiency of pharmaceuticals in existing Sewage Treatment Plants (STPs). Constructed wetlands are also capable of removing a variety of micro-pollutants, including some pharmaceuticals, and could hence be a resource efficient complement to more advanced treatment technologies. The purpose of the present study was therefore to increase the knowledge base concerning the potential use of constructed wetlands as a treatment step to reduce emissions of organic micro-pollutants from municipal sewage effluents. Under cold winter conditions, incoming and outgoing waters from four Swedish free water surface wetlands, operated as final treatment steps of sewage effluent from municipal STPs, were sampled and analyzed for levels of a set of 92 pharmaceuticals and 22 inorganic components as well as assessed using subchronic ecotoxicity tests with a macro-alga and a crustacean. Sixty-five pharmaceuticals were detected in the range from 1 ng L(-1) to 7.6 μg L(-1) in incoming and outgoing waters from the four investigated wetlands. Although the sampling design used in the present study lacks the robustness of volume proportional to 24h composite samples, the average estimated removal rates ranged from 42% to 52%, which correlates to previous published values. The effects observed in the ecotoxicity tests with the macro-alga (EC(50)s in the range of 7.5-46%) and the crustacean (LOECs in the range of 11.25-90%) could not be assigned to either pharmaceutical residues or metals, but in general showed that these treatment facilities release water with a relatively low toxic potential, comparable to water that has been treated with advanced tertiary

  18. Solar photocatalysis - a possible step in drinking water treatment

    International Nuclear Information System (INIS)

    Ljubas, Davor

    2005-01-01

    Possibility of the use of solar radiation for reduction of Natural Organic Matter (NOM) content in natural lake water, as a source for drinking water preparation, was the topic of this research. Solar radiation alone does not have enough energy for sufficient degradation of NOM, but in combination with heterogeneous photocatalyst-titanium dioxide (TiO 2 ), with or without other chemicals, the degradation potential could increase. In specific geographical conditions in Republic of Croatia, e.g. Adriatic islands or Dalmatia, solar radiation could be used for photocatalytic degradation of natural organic matter (NOM) in surface waters and therewith lighten the process of preparing them to the potable water. Specific quality of the geographical locality appears in fact that it is a very attractive tourist destination, especially in period June-September. In this period the drinking water demand is the biggest and, fortunately, the intensity of the solar radiation, too. So, there is a proportion between the drinking water demand and solar radiation available for the use in drinking water treatment. A number of tests with lake water exposed to solar radiation in non-concentrating reactors were performed and photodegradation of NOM for various combinations of doses and crystal forms of TiO 2 with H 2 O 2 was studied. Irradiation intensity was estimated from global solar radiation measurements. The best performance for the NOM degradation had combination of 1 g/L TiO 2 both anatase and rutile+solar radiation+H 2 O 2 , but - economically - it was not the best combination. An estimation of the biodegradation potential of dissolved organic matter after the photocatalytic step is given, too

  19. Are water vole resistant to anticoagulant rodenticides following field treatments?

    Science.gov (United States)

    Vein, Julie; Grandemange, Agnès; Cosson, Jean-François; Benoit, Etienne; Berny, Philippe J

    2011-08-01

    The anti-vitamin Ks (AVKs) are widely used to control rodent populations. They inhibit Vitamin K regeneration by the Vitamin K Epoxide Reductase (VKOR) and cause a fatal hemorrhagic syndrome. Because of repeated use, some populations of commensal rodents have expressed resistance to these compounds. In Franche-Comté (France), the water vole exhibits cyclic population outbreaks. A second generation AVK, bromadiolone, has been used for the last 20 years to control vole populations. The aim of this study is to determine whether these repeated treatments could have led to the development of resistance to AVKs in water vole populations. We conducted enzymatic and genetic studies on water voles trapped in treated and non treated plot. The results indicate that voles from the most heavily treated area exhibit enzymatic changes in VKOR activity hence arguing for resistance to AVKs and that an intronic haplotype on the vkorc1 gene seems to be associated with these enzymatic changes.

  20. Computational Analysis of Sedimentation Process in the Water Treatment Plant

    Science.gov (United States)

    Tulus; Suriati; Situmorang, M.; Zain, D. M.

    2017-09-01

    This study aims to determine how the distribution of sludge concentration and velocity of water flow in the water treatment plant in equilibrium state. The problems are solved by implementing the finite element method to a momentum transport equation which is a basic differential equation that is used for liquid-solid mixtures with high solid concentrations. In the finite element method, the flow field is broken down into a set of smaller fluid elements. The domain is considered as a container in the space of three-dimensional (3D). The sludge concentration distribution as well as the water flow velocity distribution in the inlet, central and outlet are different. The results of numerical computation are similar compared to the measurement results.

  1. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  2. Treatment of hexafluoroarsenate from contaminated water: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, H. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Grundwassersanierung, Leipzig (Germany); Bernhard, K.; Hoffmann, P. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Umwelt- und Biotechnologisches Zentrum (UBZ), Leipzig (Germany); Neu, T.R.; Tuempling, W. von [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Fliessgewaesseroekologie, Magdeburg (Germany); Wennrich, R. [UFZ - Helmholtz-Zentrum fuer Umweltforschung GmbH, Department Analytik, Leipzig (Germany); Daus, B.

    2008-12-15

    Wastewater from the crystal glass factory can contain arsenic as hexafluoroarsenate. On the basis of a case study, an optimized treatment procedure for a hexafluoroarsenate-containing surface water is presented using a strong basic anion exchanger. To minimize the microbial activity by forming biofilms on the surface of the exchanger material, distinctive technical features were described on the basis of results from laboratory and pilot plant tests. Silver impregnation of the ion exchange material has been shown to be not suitable due to a decrease in capacity by surface covering. Pre-filters appear to be an inexpensive and effective option to increase the lifespan of the filters. A volume of 15 m{sup 3} of contaminated water was cleaned up using 1 kg of ion exchange resin on site in 250 hours. The ion exchange process has shown to be capable of cleaning waters contaminated with hexafluoroarsenate. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Naturally occuring radioactivity in residues of drinking water treatment

    International Nuclear Information System (INIS)

    Vornehm, C.; Mallick, R.

    2009-01-01

    In the course of a research project about 500 residues of drinking water treatment from approx. 400 water supply companies in Bavaria were investigated on naturally occurring radioactivity. For each residue the effective dose for workers was evaluated for each residue. The results show that increased activities, particularly of Radium-226, can be found in the material. The dose due to the exposure to the residues, which mostly result from the backwashing of filters, is below the reference value of 1 mSv/a, which can be used according to paragraph 97 of the German radiation protection standard. During the project the quantity of residues in Bavaria and the ways of their disposal were evaluated. In addition the relation between the amount of natural radioisotopes in the residues and the geological and hydrochemical conditions of the water catchment area was pointed out. (orig.)

  4. Process water treatment at the Ranger uranium mine, Northern Australia.

    Science.gov (United States)

    Topp, H; Russell, H; Davidson, J; Jones, D; Levy, V; Gilderdale, M; Davis, S; Ring, R; Conway, G; Macintosh, P; Sertorio, L

    2003-01-01

    The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance data are presented for each stage. The unique features of the proposed process are: recycling of the lime/CO2 softening sludge to the uranium mill as a neutralant, the use of power station off-gas for carbonation, the use of residual ammonia as the pH buffer in carbonation; and the recovery and recycling of ammonia from the RO reject stream.

  5. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  6. Kinetics and mechanism of dimethoate chlorination during drinking water treatment.

    Science.gov (United States)

    Tian, Fang; Liu, Wenjun; Guo, Guang; Qiang, Zhimin; Zhang, Can

    2014-05-01

    Dimethoate (DMT), a commonly used organophosphorus pesticide, is of great concern because of its toxicity and potentially harmful effects on water sources. The elimination of DMT as well as the toxicity and persistence of the byproducts formed during DMT degradation is most important for the safety of drinking water. This study first determined the reaction kinetics of DMT with free chlorine (FC) under typical water treatment conditions. The reaction between DMT and FC proceeded rapidly, exhibiting first-order with respect to each reactant. The degradation of DMT by FC was highly pH dependent, and the pseudo-first-order rate constant decreased obviously from 0.13 to 0.02 s(-1) with an increase in pH from 7.0 to 8.3. Bromide ion accelerated the reaction by acting as a catalyst, and the accelerated reaction rate was linearly proportional to the bromide concentration. As a ubiquitous component in natural waters, humic acid also increased the reaction rate. However, the presence of ammonium inhibited the degradation of DMT due to its rapid converting FC to chloramines. Omethoate (OMT) was identified as an important byproduct of DMT chlorination, but only accounted for ca. 28% of the DMT degraded; and other two organic byproducts were also identified. The acute toxicity of DMT solution increased after treatment with FC due to the formation of more toxic byproducts (e.g. OMT). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Numerical and experimental investigation of UV disinfection for water treatment

    International Nuclear Information System (INIS)

    Li, H.Y.; Osman, H.; Kang, C.W.; Ba, T.

    2017-01-01

    Highlights: • UV irradiation for water treatment is numerically and experimentally investigated. • Fluence rate E increases exponentially with the increase of UVT. • UV dose distribution moves to a high range with increase of UVT and lamp power. • A linear relationship is observed between fluence rate E and average UV dose D ave . • D ave decreases with the increase of UVT and fluid flow rate. - Abstract: Disinfection by ultraviolet (UV) for water treatment in a UV reactor is numerically and experimentally investigated in this paper. The flow of water, UV radiation transportation as well as microorganism particle trajectories in the UV reactor is simulated. The effects of different parameters including UV transmittance (UVT), lamp power and water flow rate on the UV dose distribution and average UV dose are studied. The UV reactor performance in terms of average UV dose under these parameters is analysed. Comparisons are made between experiments and simulations on the average UV dose and reasonable agreement is achieved. The results show that the fluence rate increases exponentially with the increase of UVT. The UV dose distribution profiles moves to a high range of UV dose with the increase of UVT and lamp power. The increase of water flow rate reduces the average exposure time of microorganism particles to the UV light, resulting in the shifting of UV dose distribution to a low range of UV dose. A linear relationship is observed between fluence rate and the average UV dose. The average UV dose increases with the increase of lamp power while it decreases with the increase of UVT and water flow rate.

  8. Treatment of contaminated greywater using pelletised mine water sludge.

    Science.gov (United States)

    Abed, Suhail N; Almuktar, Suhad A; Scholz, Miklas

    2017-07-15

    Precipitated sludge (ochre) obtained from a mine water treatment plant was considered as an adsorbent substance for pollutants, since ochre is relatively free from problematic levels of toxic elements, which could impair on the quality of water to be treated. Artificially created ochre pellets from mixing Portland cement with raw ochre sludge were utilised to remediate either high (HC) or low (LC) contaminated synthetic greywater (SGW) in mesocosm-scale stabilisation ponds at 2-day and 7-day contact times under real weather conditions in Salford. After a specific retention time, treated SGW was agitated before sampling to evaluate pollutant removal mechanisms (other than sedimentation) such as adsorption by ochre pellets, before replacing the treated water with new inflow SGW. The results showed that cement-ochre pellets have a high ability to adsorb ortho-phosphate-phosphorous (PO 4 -P) significantly (p treatment for HC-SGW at 2- and 7-day contact times, respectively. Cadmium was still adsorbed significantly (p treatment of LC-SGW. However, the calcium (Ca) content decreased significantly (p < 0.05) within ochre pellets treating both types of greywaters due to mobilisation. The corresponding increases of Ca in greywater were significant (p < 0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phyto-treatment of domestic waste water using artificial marshes

    Energy Technology Data Exchange (ETDEWEB)

    Vaca, Rodrigo; Sanchez, Fabian [Oleoducto de Crudos Pesados (OCP), Quito (Ecuador)

    2009-12-19

    The phyto-treatment of domestic waste water by the use of artificial marshes system consists in beds of treatment working in series, this beds are constituted basically by inverse filters of inert granular material where the nutrients are cached from the residual water. Most of the treatment is carried in roots steams and leaves of defined species of plants. The rest of the treatment is performed by anaerobic and aerobic bacteria that grow within the beds. In the proximities of the roots and the area near the bed surface, aerobic processes take place and in deepest zones, anaerobic processes take place. It is desirable that the aerobic process will be the predominant one, mainly to avoid bad odors; this is obtained with the correct selection of plants which must have dense and deep roots. The economic factor is also important for the selection of this type of treatment system, the cost of operation and maintenance is minimum compared with other type of systems. The operation cost is practically zero because it is not required provision of electrical energy for its operation; energy used is the solar energy through the photosynthesis process. The maintenance is reduced to pruning and cleaning that can be performed twice a year. The goals of this paper is to show our experiences during the construction, stabilization and operation of these systems installed in 13 OCP locations with different types of weather and explain the conclusions arrived after construction and operation; present this kind of systems as an alternative of economic wastewater treatment in terms of construction, operation and maintenance and as environment friendly treatment. (author)

  10. Water balance of rice plots under three different water treatments: monitoring activity and experimental results

    Science.gov (United States)

    Chiaradia, Enrico Antonio; Romani, Marco; Facchi, Arianna; Gharsallah, Olfa; Cesari de Maria, Sandra; Ferrari, Daniele; Masseroni, Daniele; Rienzner, Michele; Battista Bischetti, Gian; Gandolfi, Claudio

    2014-05-01

    In the agricultural seasons 2012 and 2013, a broad monitoring activity was carried out at the Rice Research Centre of Ente Nazionale Risi (CRR-ENR) located in Castello d'Agogna (PV, Italy) with the purpose of comparing the water balance components of paddy rice (Gladio cv.) under different water regimes and assessing the possibility of reducing the high water inputs related to the conventional practice of continuous submergence. The experiments were laid out in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) continuous flooding with wet-seeded rice (FLD), ii) continuous flooding from around the 3-leaf stage with dry-seeded rice (3L-FLD), and iii) surface irrigation every 7-10 days with dry-seeded rice (IRR). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and multi-sensor moisture probes. Moreover, an eddy covariance station was installed on the bund between the treatments FLD and IRR. Data were automatically recorded and sent by a wireless connection to a PC, so as to be remotely controlled thanks to the development of a Java interface. Furthermore, periodic measurements of crop biometric parameters (LAI, crop height and rooting depth) were performed in both 2012 and 2013 (11 and 14 campaigns respectively). Cumulative water balance components from dry-seeding (3L-FLD and IRR), or flooding (FLD), to harvest were calculated for each plot by either measurements (i.e. rainfall, irrigation and surface drainage) or estimations (i.e. difference in the field water storage, evaporation from both the soil and the water surface and transpiration), whereas the sum of percolation and capillary rise (i.e. the 'net percolation') was obtained as the residual term of the water balance. Incidentally, indices of water application efficiency (evapotranspiration over net water input) and water productivity (grain production over net water

  11. Water Technology Lecture 4: Water Treatment, Hypochlorite as a disinfectant for drinking water

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is the fourth lecture in the course Water Technology dealing with disinfection using hypochlorite. This is a PowerPoint lecture which is free to use and modify. It was designed to be used in conjunction with the course text Gray, N.F. (2017) Water Science and Technology: An Introduction, published by CRC Press, Oxford. In the lecture the following are explored: use of hypochlorite; calcium hypochlorite; sodium hypochlorite; electrolysis of brine; chlorine tablets; emergency disinfec...

  12. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Science.gov (United States)

    2010-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment technique...

  13. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  14. Studies on the treatment of surface water using rajma seeds

    Science.gov (United States)

    Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh

    2018-03-01

    Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.

  15. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  16. Low-Density, Mechanical Compressible, Water-Induced Self-Recoverable Graphene Aerogels for Water Treatment.

    Science.gov (United States)

    Ye, Shibing; Liu, Yue; Feng, Jiachun

    2017-07-12

    Graphene aerogels (GAs) have demonstrated great promise in water treatment, acting as separation and sorbent materials, because of their high porosity, large surface area, and high hydrophobicity. In this work, we have fabricated a new series of compressible, lightweight (3.3 mg cm -3 ) GAs through simple cross-linking of graphene oxide (GO) and poly(vinyl alcohol) (PVA) with glutaraldehyde. It is found that the cross-linked GAs (xGAs) show an interesting water-induced self-recovery ability, which can recover to their original volume even under extremely high compression strain or after vacuum-/air drying. Importantly, the amphiphilicity of xGAs can be adjusted facilely by changing the feeding ratio of GO and PVA and it exhibits affinity from polar water to nonpolar organic liquids depended on its amphiphilicity. The hydrophobic xGAs with low feeding ratio of PVA and GO can be used as adsorbent for organic liquid, while the hydrophilic xGAs with high feeding ratio of PVA and GO can be used as the filter material to remove some water-soluble dye in the wastewater. Because of the convenience of our approach in adjusting the amphiphilicity by simply changing the PVA/GO ratio and excellent properties of the resulting xGAs, such as low density, compressive, and water-induced self-recovery, this work suggests a promising technique to prepare GAs-based materials for the water treatment in different environment with high recyclability and long life.

  17. Treatment of the oily produced water (OPW using coagulant mixtures

    Directory of Open Access Journals (Sweden)

    R. Hosny

    2016-09-01

    Full Text Available Treatment of the oily produced water (OPW before injection into oil reservoirs is necessary to reduce formation damage. This can be done using chemo-physical process to minimize the oil droplets in water. In this respect, this work aims to extract natural polymer (chitosan from shrimp shells and mix it with coagulants (chitosan/carboxy methyl cellulose and chitosan/aluminum sulfate to adsorb oil from OPW. Adsorption experiments were carried out in batch mode firstly to choose the best coagulants in water treatment, also to investigate the effects of pH on the adsorption uptake, adsorbent dosage, coagulant mixture doses and contact time. It was found that the oil removal by chitosan reached 96.35% and 59% at pH = 4 and pH = 9, respectively. The ability of chitosan to remove oil was increased after adding different coagulants CMC/or aluminum sulfate at average mixing time between 30 and 60 min. It was also found that the highest removal efficiency of chitosan/CMC is 99% at (90% chitosan: 10% CMC and chitosan/Al2(SO43 is 85% at (80% chitosan: 20% Al2(SO43. The SEM photographs of chitosan, chitosan/CMC and chitosan/Al2(SO43 mixture as oil removal showed that chitosan/Al2(SO43 lies between chitosan alone and chitosan/CMC mixture. Generally chitosan/CMC characterized significantly by its high ability to adsorb petroleum oil and suspended solids from OPW, additionally, reduces the economic cost of water treatment.

  18. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  19. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21... Hot water dip treatment schedule for mangoes. Mangoes may be treated using schedule T102-a: (a) Fruit... the treatment. (c) Water in the treatment tank must be treated or changed regularly to prevent...

  20. "Recovery of Iron Coagulants From Tehran Water-Treatment-Plant Sludge for Reusing in Textile Wastewater Treatment"

    OpenAIRE

    F Vaezi; F Batebi

    2001-01-01

    Most of the water treatment plants in Iran discharge their sludge to the environment whithout consideration of possible side effects. Since this kind of sludge is generally considered pollutant, the sludge treatment of water industry seems to be an essential task. Obviously theweight and volume of solids produced during the coagulation process are much more than other wastes of water treatment operations, and their treatment is much more difficult as well. Besides, this sludge contains metal ...

  1. Evaluation of Effectiveness Technological Process of Water Purification Exemplified on Modernized Water Treatment Plant at Otoczna

    Directory of Open Access Journals (Sweden)

    Jordanowska Joanna

    2014-12-01

    Full Text Available The article presents the work of the Water Treatment Plant in the town of Otoczna, located in the Wielkopolska province, before and after the modernization of the technological line. It includes the quality characteristics of the raw water and treated water with particular emphasis on changes in the quality indicators in the period 2002 -2012 in relation to the physicochemical parameters: the content of total iron and total manganese, the ammonium ion as well as organoleptic parameters(colour and turbidity. The efficiency of technological processes was analysed, including the processes of bed start up with chalcedonic sand to remove total iron and manganese and ammonium ion. Based on the survey, it was found that the applied modernization helped solve the problem of water quality, especially the removal of excessive concentrations of iron, manganese and ammonium nitrogen from groundwater.

  2. Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Directory of Open Access Journals (Sweden)

    H. M. Abd El-Hady

    2001-01-01

    Full Text Available In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm. The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl. The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal.

  3. Treatment of waste water by coagulation and flocculation using biomaterials

    Science.gov (United States)

    Muruganandam, L.; Saravana Kumar, M. P.; Jena, Amarjit; Gulla, Sudiv; Godhwani, Bhagesh

    2017-11-01

    The present study deals with the determination of physical and chemical parameters in the treatment process of waste water by flocculation and coagulation processes using natural coagulants and assessing their feasibility for water treatment by comparing the performance with each other and with a synthetic coagulant. Initial studies were done on the synthetic waste water to determine the optimal pH and dosage, the activity of natural coagulant, followed by the real effluent from tannery waste. The raw tannery effluent was bluish-black in colour, mildly basic in nature, with high COD 4000mg/l and turbidity in the range 700NTU, was diluted and dosed with organic coagulants, AloeVera, MoringaOleifera and Cactus (O.ficus-indica). The study observed that coagulant Moringa Oleifera of 15 mg/L dose at 6 pH gave the best reduction efficiencies for major physicochemical parameters followed by Aloe Vera and Cactus under identical conditions. The study reveals that the untreated tannery effluents can be treated with environmental confirmative naturally occurring coagulants.

  4. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R

    2017-06-01

    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  5. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Adsorption of Roxarsone onto Drinking Water Treatment Residuals: Preliminary Studies

    Science.gov (United States)

    Salazar, J.; Sarkar, D.; Datta, R.; Sharma, S.

    2006-05-01

    Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is an organo-arsenical compound, commonly used as a feed additive in the broiler poultry industry to control coccidial intestinal parasites. Roxarsone is not toxic to the birds not only because of the low dose, and also because it most likely does not convert to toxic inorganic arsenic (As) in their systems. However, upon excretion, roxarsone may undergo transformation to inorganic As, posing a serious risk of contaminating the agricultural land and water bodies via surface runoff or leaching. The use of poultry litter as fertilizer results in As accumulation rates of up to 50 metric tons per year in agricultural lands. The immediate challenge, as identified by the various regulatory bodies in recent years is to develop an efficient, yet cost-effective and environmentally sound approach to cleaning up such As- contaminated soils. Recent studies conducted by our group have suggested that the drinking water treatment residuals (WTRs) can effectively retain As, thereby decreasing its mobility in the environment. The WTRs are byproducts of drinking water treatment processes and are typically composed of amorphous Fe/Al oxides, activated C and cationic polymers. They can be obtained free-of-cost from water treatment plants. It is well demonstrated that the environmental mobility of As is controlled by adsorption/desorption reactions onto mineral surfaces. Hence, knowledge of adsorption and desorption of As onto the WTRs is of environmental relevance. The reported study examined the adsorption and desorption characteristics of As using two types of WTRs, namely the Fe-WTRs (byproduct of Fe salt treatment), and the Al-WTRs (byproduct of Al salt treatment). All adsorption experiments were carried out in batch and As retention on the WTRs was investigated as a function of solid/solution ratio (1:5, 1:10, 1:25 and 1:50), equilibration time (10 min - 48 hr), pH (2 - 10) and initial As load (100, 500, 1000 and 2000 mg As/L). The

  7. Tap water iontophoresis in the treatment of pediatric hyperhidrosis.

    Science.gov (United States)

    Dagash, Haitham; McCaffrey, Sinead; Mellor, Katie; Roycroft, Agnes; Helbling, Ingrid

    2017-02-01

    The treatment options for localized hyperhidrosis include antiperspirants, anticholinergics, iontophoresis, botulinum toxin and surgery. Tap water iontophoresis (TWI) involves immersing the affected area in tap water and passing a small electrical current through the area. Our aim was to assess the success of this therapy in a pediatric cohort. Retrospective case note review of all patients younger than 18years who underwent TWI between 2002 and 2015. Demographic data, number of treatment sessions, side effects and overall success were analyzed. Individuals undergo 7 treatments over 4weeks. A positive outcome was determined as an improvement in symptoms. Pre- and posttreatment hyperhidrosis disease severity scale (HDSS) was measured. Data are presented as mean (range). Statistical analysis was by paired t-test. A P value of hyperhidrosis (PPH) was present in 39/43 (91%) patients. Axillary hyperhidrosis (AH) was present in 19/43 (44%) patients. All patients (with the exception of one) underwent 7 sessions (5-7). Side effects included paresthesia (88%), pruritus (26%), pain (26%), erythema (14%), dryness (12%) as well as vesicle formation and abrasions in one patient (2%). A positive outcome was found in 84% (36/43) of patients. There was a significant reduction in mean HDSS (pre 3.5 vs. post 2; P=0.0001). TWI is a safe and effective modality of treatment for both PPH and AH in the pediatric population, with minimal side effects. Pediatric surgeons should offer this treatment option before considering more invasive surgical procedures. IV: Retrospective study. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    in a proactive manner. They can also be used to optimize the filtration process. However, further research is necessary to relate the information obtained through the tools to specific causes. New tools such as the total dissolved gas probe, salt tracers and ammonium profiles are presented. Potential tools from......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... and reliable filter performance, and water quality compliance. A salt tracer tool is developed to be used in full-scale filters to investigate the heterogeneity of the filter bed. The tool allows the pore velocity to be estimated in different locations of the filter bed during the duration of a filter run...

  9. EFFICIENT DESIGN OF A PHOTOVOLTAIC WATER PUMPING AND TREATMENT SYSTEM

    OpenAIRE

    Abderrahmen Ben Chaabene; Med Faouzi Elkaroui; Anis Sellami

    2013-01-01

    Through the world, the exploitation of solar energies knew a strong growth these last years. It is interesting to exploit them on the place of consumption, by directly transforming into heat, or in electricity according to needs and especially in remote areas where power from utility is not available or is too costly to install. The use of photovoltaic sources in water pumping and treatment domain is one of the most important renewable energy applications. Having an arid to a semi-arid climat...

  10. TREATMENT SYSTEM FOR WASTEWATER AT VILLA CLARA WATER MANAGEMENT COMPANY

    Directory of Open Access Journals (Sweden)

    Floramis Pérez Martín

    2016-04-01

    Full Text Available The aim of this paper is to assess the current operating and safety conditions of biological treatment systems for wastewater in the centers of swinish and poultry breeding at Villa Clara Water Management Company, with the purpose of setting a group of organizational, technical and human measures that contributes to prevent contamination and minimize biological risks. In this way it can be guaranteed the protection to the workers, the facilities, community and the environment, to have a sure occupational atmosphere in the organization. As a result of the evaluation the factors that affect the operation of the biodigestion system and the security of the process are defined.

  11. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  12. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  13. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Rasmussen, Peter

    2007-01-01

    Under resting conditions, the brain is protected against hypoxia because cerebral blood flow increases when the arterial oxygen tension becomes low. However, during strenuous exercise, hyperventilation lowers the arterial carbon dioxide tension and blunts the increase in cerebral blood flow, which...... can lead to an inadequate oxygen delivery to the brain and contribute to the development of fatigue....

  14. Inadequate Information in Laboratory Test Requisition in a Tertiary ...

    African Journals Online (AJOL)

    Aim: Laboratory investigations are important aspect of patient management and inadequate information or errors arising from the process of filling out laboratory Request Forms can impact significantly on the quality of laboratory result and ultimately on patient care. Objectives: This study examined the pattern of deficiencies ...

  15. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature - slides

    Science.gov (United States)

    Watershed protection, and associated in situ water quality improvements, has received considerable attention as a means of mitigating health risks and avoiding expenditures at drinking water treatment plants (DWTPs). In this presentation, we review the literature linking raw wate...

  16. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Science.gov (United States)

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  17. Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics: Part 3.

    Science.gov (United States)

    Sorg, Thomas J.; And Others

    1978-01-01

    This article is the third in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations. This report deals specifically with treatment methods for removing cadmium, lead, and silver from drinking water. (CS)

  18. Pure oxygen for the urban water waste treatment; Oxigeno puro para tratamiento de aguas residuales urbanas

    Energy Technology Data Exchange (ETDEWEB)

    Estevez Pastor, F.S.; Ferrer Gaztambide, J. [EDAR La China (Spain)

    1995-11-01

    The pilot plant for waste water treatment in La China (Spain) is described. This plant used pure oxygen for the waste water treatment. The best depuration, the flexibility to experiment the fluctuations of flow and change are studied. (Author)

  19. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  20. Inadequate sleep and muscle strength: Implications for resistance training.

    Science.gov (United States)

    Knowles, Olivia E; Drinkwater, Eric J; Urwin, Charles S; Lamon, Séverine; Aisbett, Brad

    2018-02-02

    Inadequate sleep (e.g., an insufficient duration of sleep per night) can reduce physical performance and has been linked to adverse metabolic health outcomes. Resistance exercise is an effective means to maintain and improve physical capacity and metabolic health, however, the outcomes for populations who may perform resistance exercise during periods of inadequate sleep are unknown. The primary aim of this systematic review was to evaluate the effect of sleep deprivation (i.e. no sleep) and sleep restriction (i.e. a reduced sleep duration) on resistance exercise performance. A secondary aim was to explore the effects on hormonal indicators or markers of muscle protein metabolism. A systematic search of five electronic databases was conducted with terms related to three combined concepts: inadequate sleep; resistance exercise; performance and physiological outcomes. Study quality and biases were assessed using the Effective Public Health Practice Project quality assessment tool. Seventeen studies met the inclusion criteria and were rated as 'moderate' or 'weak' for global quality. Sleep deprivation had little effect on muscle strength during resistance exercise. In contrast, consecutive nights of sleep restriction could reduce the force output of multi-joint, but not single-joint movements. Results were conflicting regarding hormonal responses to resistance training. Inadequate sleep impairs maximal muscle strength in compound movements when performed without specific interventions designed to increase motivation. Strategies to assist groups facing inadequate sleep to effectively perform resistance training may include supplementing their motivation by training in groups or ingesting caffeine; or training prior to prolonged periods of wakefulness. Copyright © 2018. Published by Elsevier Ltd.

  1. Magnetic Water Treatment in Environmental Management: A Review of the Recent Advances and Future Perspectives

    OpenAIRE

    Yadollahpour Ali; Rashidi Samaneh; Rezaee Zohre; Jalilifar Mostafa

    2014-01-01

    Magnetic water treatment (MWT) is a relatively new technique in environmental management. Magnetic field exposure alters physical and chemical properties of water molecules resulting in unique characteristics. Magnetized water has shown various properties with possible applications in different fields of environmental management. Scale prevention/elimination, soil enhancement, plant growth, crop yield, water saving, and waste water treatment are some of these applications. Magnetic treatment...

  2. Synchronous Oscillations Intrinsic to Water: Applications to Cellular Time Keeping and Water Treatment

    Directory of Open Access Journals (Sweden)

    D. James Morré

    2015-05-01

    seconds when placed side by side. Potential applications from water treatment along with opportunity related to human health are anticipated to derive from a better understanding of how water synchrony is generated and maintained, and to be aided by methodological advances in measurement and analysis.

  3. Constructed Wetland Treatment Systems For Water Quality Improvement

    International Nuclear Information System (INIS)

    Nelson, E.

    2010-01-01

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m 3 per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m 3 of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m 3 per day, and be able to handle 9,690 m 3 of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of

  4. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  5. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    prototype version. In 2008, 100% of samples fulfilled WHO standards (1989) and Global Gap requirement for faecal contamination. MBR removed from inlet flow in the average 82% of arsenic, 82% of cadmium, 97% of chromium, 93% of copper and 99% of lead. Boron and manganese were not removed from permeate...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... filter can remove up to 60% of E. coli but the removal process was not stable nor predictable. FTS removed 76% of arsenic, 80% of cadmium and copper, 88% of chromium and lead, and up to 97% of zinc. Like the MBR, boron and manganese were not removed from the irrigation water. Gravel filter directly fed...

  6. Grace buys aquatic quimica to boost water treatment stake

    International Nuclear Information System (INIS)

    Hunter, D.

    1993-01-01

    How W.R. Grace (Boca Raton, FL) president and newly appointed CEO J.P. Bolduc plans to expand Grace's core businesses following his drastic portfolio pruning during the past 18 months is a key question for Grace watchers. Grace's acquisition of $70-million/year water treatment firm Aquatec Quimica (Sao Paulo) is one indicator. Grace's $300-million/year Dearborn water treatment business is currently a weak number three [in the world market], and we want to be number one or number two, nothing less, Bolduc insists. The Aquatc buy meets his criterion of a synergistic and strategic acquisition with which he plans to expand the business, backed by more focused R ampersand D. Disposal last month of Homco oil field services operation, for $98.5 million, takes Bolduc toward his $500-million target for the year for asset sales. These totaled $1.1 billion at the end of 1992. The final tally will be more than the $1.5-billion target previously stated, Bolduc says, due to higher realizations on certain sales and additions to the list, including Grace Culinary and Colowyo Coal

  7. Removal of coagulant aluminum from water treatment residuals by acid.

    Science.gov (United States)

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Analysis of mining-medicinal waters regulation. Possible treatments

    Directory of Open Access Journals (Sweden)

    María del Mar Corral Lledó

    2006-12-01

    Full Text Available The mineral waters have been a part of our lives for many centuries, since they are believe to be beneficial and to have therapeutic properties for the human health. This fact makes a key issue to provide an analyses od the current legislation on this issue ( Royal Decree-Law 743/1928, April 25th, that aproves the statute on exploitation of spring of mineral and medicinal water; Mining Law of 1973 and its regulations, in order to determine the treatments that may be applied to these watersm meanly in the case of Legionella appearance, or as preventive maesure of it. The results of this analysis shows that there is no limitation or prohibition in the treatments to what they may be subjected, as long as their physico-chemical characteristic remains altered. Contamination by Legionella bacterium, is nowadays an issue of concern, and that is reason why Public Health Authority has established the quidelines to apply for spas in order to avoid or fight a possible outbreak.

  9. High Rate Water Treatment Plant System: Successful Implementation

    Directory of Open Access Journals (Sweden)

    Mohajit Mohajit

    2015-10-01

    Full Text Available The High Rate Water Treatment Plant (HR-WTP system, which is inexpensive, effective and efficient, has been developed to reduce the common operational problems, and also as an alternative for the development of water treatment plant systems capacity in Indonesia. HR-WTP-system is superior to those of conventional WTP-systems in respect to its capacity, performance, as well as operational liability of the system.Mathematical model of the HR-WTP system had been developed and simulation using the mathematical model as well as field observation had been clarified.Implementation of HR-WTP-system in up-rating of the Dekeng-WTP system at PDAM Kota Bogor proved successful in increasing the plant capacity from its original of 500 Lps to more than 1200 Lps. Anothersuccessful application of HR-WTP-system was experienced in the upgrading and up-rating of the Pedindang-WTP system at PDAM Kota Pangkalpinang where the plant capacity can be increased from its original of 50 Lps to 300 Lps. The performance of the WTP-system was also significantly improved from poor performance to very good performance.

  10. Catalytic membrane reactor for water and wastewater treatment

    Science.gov (United States)

    Heng, Samuel

    A double membrane reactor was fabricated and assessed for continuous treatment of water containing organic contaminants by ozonation. This innovative reactor consisted of a zeolite membrane prepared on the inner surface of a porous a-alumina support, which served as water selective extractor and active contactor, and a porous stainless membrane which was the ozone gas diffuser. The coupling of membrane separation and chemical oxidation was found to be highly beneficial to both processes. The total organic carbon (TOC) removal rate at the retentate was enhanced by up to 2.2 times, as compared to membrane ozonation. Simultaneously, clean water (membrane support, was shown to further enhance TOC degradation, permeated TOC concentration, permeate flux, and moreover, ozone yield. The achievements of this project included: (1) The development of a novel low-temperature zeolite membrane activation method that generates consistently high quality membranes (i.e. high reproducibility and fewer defects). (2) The demonstration that gamma-alumina and gamma-alumina supported catalysts do not have significant activity and that the TOC removal enhancement usually observed during catalytic ozonation was due primarily to the contribution of adsorption and metal leaching. Thermogravimetric analysis (TGA) and elemental analysis (EA) of the spent catalyst showed that, during catalytic ozonation, oxygenated by-products of increased adsorbability were concentrated onto the gamma-alumina contactor, and were subsequently degraded. (3) The development of a method for coating high surface area gamma-alumina layers onto the grains of zeolite membrane support used as the active membrane contactor.

  11. Treatment of pit water from uranium mining operation

    International Nuclear Information System (INIS)

    Mouton, A.; Lafforgue, P.; Lyaudet, G.

    1984-01-01

    The pit water from uranium mines is normally treated to eliminate the soluble radium and suspended solids. The radium is precipitated together with the barium sulphate. The latter results from the reaction of barium chloride with an excess of sulphate ions. The suspended solids are flocculated by aluminium salts (chloride, polychloride). If necessary, synthetic flocculants are also used. Certain grades of pit water contain, sometimes incidentally, a few milligrams of uranium per litre. These quantities always remain too low for any direct recovery (treatment by ion exchange resins). By applying certain measures, the preceding processes can also be used to eliminate uranium. The latter is carried away by aluminium hydroxide in a very narrow zone of pH (6 to 7,4) which corresponds to the minimum solubility of the hydroxide. Depending on the characteristic of the water (pH, salinity), use is made either of aluminium sulphate or of sodium aluminate, with an addition of a base in extreme cases. This article gives various examples of applications in the Haute-Vienne, Chardon in Vendee, the Commanderie mine in Vendee, at Cerilly in Allier and at Lodeve in Herault [fr

  12. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1990-01-01

    This paper reports on the selection of an appropriate treatment system to remove radon from drinking water which depends primarily upon percent removal; capital and operating and maintenance costs; safety; raw water quality with respect to parameters such as Fe, Mn, bacteria, and organics. The radon removal efficiency of the diffused bubble and packed tower aeration exceeded 99% at A:W ratios of 15:1 and 5:1, respectively; the GAC system averaged 81 ± 7.7%. Though our field evaluations indicated that GAC systems may not be as efficient as aeration systems, the system tested was operated above design requirements for most of the study period. Other researchers have found removals of greater than 99% with GAC point-of-entry applications. Therefore, each of these processes has the potential to consistently remove 99% of the radon applied. However, even this percent removal may not be sufficient to meet an MCL in the range of 200 to 1000 pCi/L if the raw water contained more than 20,000 to 100,000 pCi/L, respectively

  13. Technique of complex slime water treatment of coal-mining branch

    OpenAIRE

    Solodov, G. А.; Zhbyr, Е. V.; Papin, А. V.; Nevedrov, А. V.

    2007-01-01

    The possibility of complex slime water treatment at coal-mining and coal-treating plants producing marketable products: power-generating concentrate, coal-water fuel, magnetic fraction, industrial water is shown. A basic process flowsheet of slime water treatment presenting a united technological complex is suggested.

  14. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influenc...

  15. 21 CFR 1250.83 - Storage of water prior to treatment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment...

  16. Behavior of gadolinium-based diagnostics in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cyris, Maike

    2013-04-25

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L{sup -1} gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L{sup -1}. In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been

  17. Behavior of gadolinium-based diagnostics in water treatment

    International Nuclear Information System (INIS)

    Cyris, Maike

    2013-01-01

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L -1 gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L -1 . In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been determined

  18. Public health effects of inadequately managed stormwater runoff.

    Science.gov (United States)

    Gaffield, Stephen J; Goo, Robert L; Richards, Lynn A; Jackson, Richard J

    2003-09-01

    This study investigated the scale of the public health risk from stormwater runoff caused by urbanization. We compiled turbidity data for municipal treated drinking water as an indication of potential risk in selected US cities and compared estimated costs of waterborne disease and preventive measures. Turbidity levels in other US cities were similar to those linked to illnesses in Milwaukee, Wis, and Philadelphia, Pa. The estimated annual cost of waterborne illness is comparable to the long-term capital investment needed for improved drinking water treatment and stormwater management. Although additional data on cost and effectiveness are needed, stormwater management to minimize runoff and associated pollution appears to make sense for protecting public health at the least cost.

  19. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    Science.gov (United States)

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  20. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    Science.gov (United States)

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Culcer, Ioan; Stefanescu, Mariana; Iliescu, Gheorghe; Titescu, Gheorghe

    2001-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than the metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  2. Physical treatment of water from heater circuit by magnetic fields

    International Nuclear Information System (INIS)

    Culcer, Mihai; Curuia, Marian; Stefanescu, Ioan; Iliescu, Mariana; Titescu, Gheorghe; Vitan, Eugen

    2002-01-01

    Magnetic scale control technologies can be used as a replacement for most water-softening equipment. Specifically, chemical softening, ion exchange and reverse osmosis, when used for control of hardness, could be replaced by magnetic water treatment technologies which use a magnetic field to alter the reaction between scale-forming ions in hard water. Hard water contains high levels of calcium, and other divalent cations. When subjected to heating, the divalent ions forms insoluble compounds with anions such as carbonate. These insoluble compounds have a much lower heat transfer capability than metal. Because they are insulators, additional fuel consumption would be required to transfer on equivalent amount of energy. The general principle for the magnetic technology is a result of physical interaction between a magnetic field and a moving electric charge, in this case in the form of ions. When ions pass through the magnetic field, a force is exerted on each ion. The forces on ions of opposite charges are in opposite directions. The redirection of the particles tends to increase the frequency with which ions of opposite charge collide and combine to form a mineral precipitate, or insoluble compound. Since this reaction takes place in a low temperature region of a heat exchange system, the scale formed is non-adherent. The magnetic field can be realized with permanent magnets or electromagnets. There are two electromagnetic devices: invasive and non-invasive. Invasive devices have parts or the whole operating equipment within the flow field. This device requires the removal of a pipe section for insertion. Non-invasive devices are completely external to pipe, and thus can be installed while the pipe is in operation. We have under study a non-invasive electromagnetic device. In the paper it is largely presented. (authors)

  3. Drinking water treatment residuals: a review of recent uses.

    Science.gov (United States)

    Ippolito, J A; Barbarick, K A; Elliott, H A

    2011-01-01

    Coagulants such as alum [Al2(SO4)3 x 14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxides, resulting in a strong affinity for anionic species. Recent research has focused on using WTR as cost-effective materials to reduce soluble phosphorus (P) in soils, runoff, and land-applied organic wastes (manures and biosolids). Studies show P adsorption by WTR to be fast and nearly irreversible, suggesting long-term stable immobilization of WTR-bound P. Because excessive WTR application can induce P deficiency in crops, effective application rates and methods remain an area of intense research. Removal of other potential environmental contaminants [ClO4-, Se(+IV and +VI), As(+III and +V), and Hg] by WTR has been documented, suggesting potential use of WTR in environmental remediation. Although the creation of Al plant toxicity and enhanced Al leaching are concerns expressed by researchers, these effects are minimal at circumneutral soil pH conditions. Radioactivity, trace element levels, and enhanced Mn leaching have also been cited as potential problems in WTR usage as a soil supplement. However, these issues can be managed so as not to limit the beneficial use of WTR in controlling off-site P losses to sensitive water bodies or reducing soil-extractable P concentrations.

  4. Research trends in electrochemical technology for water and wastewater treatment

    Science.gov (United States)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  5. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  6. Inadequate Empirical Antibiotic Therapy in Hospital Acquired Pneumonia.

    Science.gov (United States)

    Dahal, S; Rijal, B P; Yogi, K N; Sherchand, J B; Parajuli, K; Parajuli, N; Pokhrel, B M

    2015-01-01

    Inadequate empirical antibiotic therapy for HAP is a common phenomena and one of the indicators of the poor stewardship. This study intended to analyze the efficacy of empirical antibiotics in the light of microbiological data in HAP cases. Suspected cases of HAP were followed for clinico-bacterial evidence, antimicrobial resistance and pre and post culture antibiotic use. The study was taken from February,2014 to July 2014 in department of Microbiology and department of Respiratory medicine prospectively. Data was analyzed by Microsoft Office Excel 2007. Out of 758 cases investigated, 77(10 %) cases were HAP, 65(84%) of them were culture positive and 48(74 %) were late in onset. In early onset cases, isolates were Acinetobacter 10(42%), Escherichia coli 5(21%), S.aureus 4(17%), Klebsiella 1(4%) and Pseudomonas 1(4%). From the late onset cases Acinetobacter 15(28%), Klebsiella 17(32%) and Pseudomonas 13(24%) were isolated. All Acinetobacter, 78% Klebsiella and 36% Pseudomonas isolates were multi drug resistant. Empirical therapies were inadequate in 12(70%) of early onset cases and 44(92%) of late onset type. Cephalosporins were used in 7(41%) of early onset infections but found to be adequate only in 2(12%) cases. Polymyxins were avoided empirically but after cultures were used in 9(19%) cases. Empirical antibiotics were vastly inadequate, more frequently so in late onset infections. Use of cephalosporins empirically in early onset infections and avoiding empirical use of polymyxin antibiotics in late onset infections contributed largely to the findings. Inadequate empirical regimen is a real time feedback for a practitioner to update his knowledge on the local microbiological trends.

  7. Characterization and treatment of grey water : option for (re)use

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.

    2009-01-01

    Addressing the issues of water shortage and appropriate sanitation in Jordan, domestic grey water treatment receives growing interest. Grey water comprises the domestic wastewater flows excluding waters associated with the toilet. The topics of concern for grey water are its characteristics,

  8. Drinking water treatment technologies in Europe : State of the art - vulnerabilities - research needs

    NARCIS (Netherlands)

    Van der Hoek, J.P.; Bertelkamp, C.; Verliefde, A.R.D.; Singhal, N.

    2012-01-01

    Eureau is the European Federation of National Associations of Water and Wastewater Services. At the request of Eureau Commission 1, dealing with drinking water, a survey was made focusing on raw drinking water sources and drinking water treatment technologies applied in Europe. Raw water sources

  9. Efficiency Research on Meat Industry Waste Water Treatment Applying the Method of Dissolved Air Flotation

    Directory of Open Access Journals (Sweden)

    Valentinas Gerasimovas

    2012-01-01

    Full Text Available To protect environment from industrial pollution, strict requirements for waste water treatment are imposed. The purpose of research is to establish an optimal ratio of saturated liquid and meat industry waste water. Research included JCC “Traidenis” waste water treatment system installed in JSC “BHJ Baltic”. Investigations into treated waste water indicated that an optimal ratio of waste water and saturated liquid was 2/1 under duration time of 8 minutes. Efficient waste water treatment made 86% and the ratio of waste water and saturated liquid was 2/1.Article in Lithuanian

  10. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  11. [Treatment of polluted urban river water using filamentous green algae].

    Science.gov (United States)

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  12. Bio-augmented activated sludge treatment of potato waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, R.Y.L.; Hung, Y.T.

    1988-01-01

    A laboratory study was conducted to determine the effect of bacterial augmentation with LLMO (liquid live microorganisms) on the activated sludge treatment of potato waste waters. Completed mixed activated sludge bench scale reactors were used in this study. Parameters varied during the continuous reactor run included hydraulic detention time, LLMO addition, and powdered activated carbon addition. The hydraulic detention time lasted 1, 2, and 3 days, while the sludge age was maintained at 10 days for both reactors. The bio-augmented reactor had a better COD removal than the non-bio-augmented reactor at a lower MLVSS level in the reactor. It is concluded that bacterial augmentation with LLMO improved slightly the COD removal efficiency in treating potato wastewaters with the activated sludge process. The bio-augmentation increased the substrate removel rate, increased the oxygen utilization, and decreased the excess sludge production.

  13. Progress and challenges of carbon nanotube membrane in water treatment

    KAUST Repository

    Lee, Jieun

    2016-05-25

    The potential of the carbon nanotube (CNT) membrane has been highly strengthened in water treatment during the last decade. According to works published up to now, the unique and excellent characteristics of CNT outperformed conventional polymer membranes. Such achievements of CNT membranes are greatly dependent on their fabrication methods. Further, the intrinsic properties of CNT could be a critical factor of applicability to membrane processes. This article provides an explicit and systematic review of the progress of CNT membranes addressing the current epidemic—whether (i) the CNT membranes could tackle current challenges in the pressure- or thermally driven membrane processes and (ii) CNT hybrid nanocomposite as a new generation of materials could complement current CNT-enhanced membrane. © 2016 Taylor & Francis Group, LLC.

  14. Metallic iron for water treatment: leaving the valley of confusion

    Science.gov (United States)

    Makota, Susanne; Nde-Tchoupe, Arnaud I.; Mwakabona, Hezron T.; Tepong-Tsindé, Raoul; Noubactep, Chicgoua; Nassi, Achille; Njau, Karoli N.

    2017-12-01

    Researchers on metallic iron (Fe0) for environmental remediation and water treatment are walking in a valley of confusion for 25 years. This valley is characterized by the propagation of different beliefs that have resulted from a partial analysis of the Fe0/H2O system as (1) a reductive chemical reaction was considered an electrochemical one and (2) the mass balance of iron has not been really addressed. The partial analysis in turn has been undermining the scientific method while discouraging any real critical argumentation. This communication re-establishes the complex nature of the Fe0/H2O system while recalling that, finally, proper system analysis and chemical thermodynamics are the most confident ways to solve any conflicting situation in Fe0 environmental remediation.

  15. Methods and solutions for galvanic waste water treatment

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available Currently galvanic sludge is considered as one of the most dangerous wastes, which are formed during purification of galvanic wastewater. The slimes of galvanic production are the most toxic industrial waste and sources of heavy metals emitted into the environment. Galvanic sludge belongs to the third hazard class; these wastes need to be deposited in special landfills for toxic waste. These polygons are complex and require significant costs. In this regard, there is a need for such methods of purification of galvanic sewage sludge, which may be used in other industries or will have fourth class of hazard or below. This article compares the main methods of purification of galvanic waste waters in general and galvanic sludge in particular, currently introducing new techniques for treating industrial effluents. One of them considers treatment of galvanic waste water by means of suspensions of ferriferous hydrosol that is an electric generated coagulant derived from waste forming, steel wool, etc. There is a sort of experience already acquired in some countries how to use of ferropericlase.

  16. Water feed and effluent treatment for hydrogen sulfide-water system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1981-01-01

    This invention provides a feed and effluent treatment system for improving the recovery of a gas (e.g. H 2 S) from solution in a liquid (e.g. water) when the liquid also contains dissolved nonvolatile components (e.g. the salts of sea water) at low temperatures. In a gas/liquid contact process in which the gas is at least partially soluble in the liquid, a portion of the liquid is extracted after it passes through a hot zone, the pressure of the liquid is reduced by flashing it through pressure reduction means to remove a portion of the dissolved gas, and the gas thus recovered is returned to the process

  17. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    International Nuclear Information System (INIS)

    Suryanarayan, S.; Husain, A.; Williams, D.

    2010-01-01

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D 2 O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D 2 O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H 2 O 2 ) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H 2 O 2 +IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as well as TOC. Detailed

  18. Predictors of inadequate initial echocardiography in suspected Kawasaki disease: Criteria for sedation.

    Science.gov (United States)

    Lorenzoni, Raymond P; Choi, Jaeun; Choueiter, Nadine F; Munjal, Iona M; Katyal, Chhavi; Stern, Kenan W D

    2018-03-09

    Kawasaki disease is the primary cause of acquired pediatric heart disease in developed nations. Timely diagnosis of Kawasaki disease incorporates transthoracic echocardiography for visualization of the coronary arteries. Sedation improves this visualization, but not without risks and resource utilization. To identify potential sedation criteria for suspected Kawasaki disease, we analyzed factors associated with diagnostically inadequate initial transthoracic echocardiography performed without sedation. This retrospective review of patients Kawasaki disease from 2009 to 2015 occurred at a medium-sized urban children's hospital. The primary outcome was diagnostically inadequate transthoracic echocardiography without sedation due to poor visualization of the coronary arteries, determined by review of clinical records. The associations of the primary outcome with demographics, Kawasaki disease type, laboratory data, fever, and antipyretic or intravenous immunoglobulin treatment prior to transthoracic echocardiography were analyzed. In total, 112 patients (44% female, median age 2.1 years, median BSA 0.54 m 2 ) underwent initial transthoracic echocardiography for suspected Kawasaki disease, and 99 were not sedated. Transthoracic echocardiography was diagnostically inadequate in 19 out of these 99 patients (19.2%) and was associated with age ≤ 2.0 years, weight ≤ 10.0 kg, and antipyretic use ≤ 6 hours before transthoracic echocardiography (all P Kawasaki disease. These factors should be considered when deciding which patients to sedate for initial Kawasaki disease transthoracic echocardiography. © 2018 Wiley Periodicals, Inc.

  19. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexavalent chromium-based water... Cooling Systems § 749.68 Hexavalent chromium-based water treatment chemicals in cooling systems. (a) Chemicals subject to this section. Hexavalent chromium-based water treatment chemicals that contain...

  20. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  1. Double use of water treatment in soilless growing systems

    NARCIS (Netherlands)

    Ruijven, Van J.; Os, Van E.; Stijger, I.; Beerling, E.; Haan, de Cees

    2017-01-01

    Worldwide increase of water shortage and competition for fresh water is raising the awareness that an increase in water use efficiency in horticulture is a necessity. At the same time, environmental awareness and legislation (e.g. the EU Water Framework Directive 2000/60/EC) restricts the emissions

  2. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    Science.gov (United States)

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  3. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the first year of the project ''Modified Reverse Osmosis System for Treatment of Produced Waters.'' This research project has two objectives. The first objective is to test the use of clay membranes in the treatment of produced waters by reverse osmosis. The second objective is to test the ability of a system patented by the New Mexico Tech Research Foundation to remove salts from reverse osmosis waste streams as a solid. We performed 12 experiments using clay membranes in cross-flow experimental cells. We found that, due to dispersion in the porous frit used adjacent to the membrane, the concentration polarization layer seems to be completely (or nearly completely) destroyed at low flow rates. This observation suggests that clay membranes used with porous frit material many reach optimum rejection rates at lower pumping rates than required for use with synthetic membranes. The solute rejection efficiency decreases with increasing solution concentration. For the membranes and experiments reported here, the rejection efficiency ranged from 71% with 0.01 M NaCl solution down to 12% with 2.3 M NaCl solution. More compacted clay membranes will have higher rejection capabilities. The clay membranes used in our experiments were relatively thick (approximately 0.5 mm). The active layer of most synthetic membranes is only 0.04 {micro}m (0.00004 mm), approximately 1250 times thinner than the clay membranes used in these experiments. Yet clay membranes as thin as 12 {micro}m have been constructed (Fritz and Eady, 1985). Since Darcy's law states that the flow through a material of constant permeability is inversely proportional to it's the material's thickness, then, based on these experimental observations, a very thin clay membrane would be expected to have much higher flow rates than the ones used in these experiments. Future experiments will focus on testing very thin clay membranes. The

  4. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Toxicological assessment of polyhexamethylene biguanide for water treatment

    Directory of Open Access Journals (Sweden)

    Asiedu-Gyekye Isaac J.

    2015-12-01

    Full Text Available Polyhexamethylene biguanide (PHMB is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer’s instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4×103 mg/L of 0.1% solution resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50 is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable.

  6. Sea-urchin-like iron oxide nanostructures for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Uk, E-mail: leeho@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Soon Chang [Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Young-Chul [Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Vrtnik, Stane; Kim, Changsoo; Lee, SangGap [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Young Boo; Nam, Bora [Jeonju Center, Korea Basic Science Institute, Jeonju 561-756 (Korea, Republic of); Lee, Jae Won [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of); Park, So Young; Lee, Sang Moon [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Jouhahn, E-mail: jouhahn@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of)

    2013-11-15

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} phase) nanostructures (called u-MFN) with large surface areas (94.1 m{sup 2} g{sup −1}) and strong magnetic properties (57.9 emu g{sup −1}) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g{sup −1}) and Cr(VI) (35.0 mg g{sup −1}) and the organic pollutant Congo red (109.2 mg g{sup −1}). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions.

  7. PENCEGAHAN KOROSI DENGAN BOILER WATER TREATMENT (BWT PADA KETEL UAP KAPAL.

    Directory of Open Access Journals (Sweden)

    Suleman Suleman

    2012-03-01

    Full Text Available This paper explained about a using of Boiler Water Treatment (BWT as corrosion protection for boiler on ship. BWT used as addition on boiler water, which used destilat water. As experiment results, BWT used on destilat water and destilat - seawater mixed given not koagulan patch on. The simulation given not satisfied results, caused by good not equipment.

  8. Deferasirox pharmacokinetics in patients with adequate versus inadequate response

    Science.gov (United States)

    Chirnomas, Deborah; Smith, Amber Lynn; Braunstein, Jennifer; Finkelstein, Yaron; Pereira, Luis; Bergmann, Anke K.; Grant, Frederick D.; Paley, Carole; Shannon, Michael

    2009-01-01

    Tens of thousands of transfusion-dependent (eg, thalassemia) patients worldwide suffer from chronic iron overload and its potentially fatal complications. The oral iron chelator deferasirox has become commercially available in many countries since 2006. Although this alternative to parenteral deferoxamine has been a major advance for patients with transfusional hemosiderosis, a proportion of patients have suboptimal response to the maximum approved doses (30 mg/kg per day), and do not achieve negative iron balance. We performed a prospective study of oral deferasirox pharmacokinetics (PK), comparing 10 transfused patients with inadequate deferasirox response (rising ferritin trend or rising liver iron on deferasirox doses > 30 mg/kg per day) with control transfusion-dependent patients (n = 5) with adequate response. Subjects were admitted for 4 assessments: deferoxamine infusion and urinary iron measurement to assess readily chelatable iron; quantitative hepatobiliary scintigraphy to assess hepatic uptake and excretion of chelate; a 24-hour deferasirox PK study following a single 35-mg/kg dose of oral deferasirox; and pharmacogenomic analysis. Patients with inadequate response to deferasirox had significantly lower systemic drug exposure compared with control patients (P deferasirox must be determined. This trial has been registered at http://www.clinicaltrials.gov under identifier NCT00749515. PMID:19724055

  9. Hybrid membranes of polyamide applied in treatment of waste water

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de

    2017-01-01

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl 2 ). The hybrid membranes with CaCl 2 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl 2 have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl 2 , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl 2 in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl 2 in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  10. Treatment of residual waters of slaughterhouses with filters

    International Nuclear Information System (INIS)

    Ortiz A, Jesus Mario

    1995-01-01

    For studying the anaerobic treatment of the residual waters coming from a slaughterhouse of bovine livestock, they were used a system of two filters in series and a third unique filter as witness. With values average of load organic volumetric and time of retention of 1.6 kg/(m 3 d) and 26 hours respectively, the efficiencies of removal of total DQO were similar in the unique filter and in the system in series, of the order of 64% on the average. Likewise, the retention and accumulation of biological solids in the channel were shown as the main road of removal of the DQO. The differentiation of the process achieved with the two filters in series allowed establishing that most of the accumulation happened in the primary filter, as long as the fundamental of the bioconversion in methane took place in the secondary filter of the system in series. The first relative level of methanegenization obtained could be explained by the limitations to the activity of the methanogenic biomass imposed by the low temperatures, although it could not discard a probable inhibition for the hydrolysis products of the accumulated fats

  11. SISTEM PENGOLAHAN AIR MINUM SEDERHANA (PORTABLE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Isna Syauqiah

    2017-04-01

    Full Text Available Abstrak- Air merupakan kebutuhan yang paling utama bagi makhluk hidup. Belakangan ini timbul masalah yang sangat krusial yaitu sulit untuk mendapatkan air bersih dan layak untuk dikonsumsi. Tujuan dari penelitian ini yaitu mengetahui keefektifan alat dalam mengolah air sungai menjadi air minum dan mengetahui waktu optimum dalam pengolahan air. Penelitian ini dilakukan dengan beberapa tahap. Pertama yaitu perancangan portable water treatment itu sendiri yaitu dengan membuat kolom-kolom aerasi, kolom filtrasi, kolom adsorpsi, dan kolom desinfeksi yang mana alat-alat tersebut dibuat bongkar pasang. Kedua, yaitu pengoptimasian alat-alat yang bertujuan untuk menentukan waktu dan volume optimum masing-masing alat. Sehingga akan didapatkan waktu dan volume optimum untuk alat secara keseluruhan. Ketiga, hasil analisa air sungai Martapura. Berdasarkan hasil penelitian didapat bahwa desain alat ini kurang efektif dengan kondisi kualitas sungai air Martapura untuk diolah menjadi air minum yang biasa dikonsumsi oleh masyarakat sekitar karena kualitas air minum yang dihasilkan belum mencapai standar baku mutu air minum yang ditetapkan. Waktu optimum untuk alat ini adalah 135 s dengan lama desinfeksi selama 2 menit dan volume optimum air masuk adalah sebesar 2 L

  12. Hybrid membranes of polyamide applied in treatment of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena, E-mail: keilamachadodemedeiros@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Departamento de Engenharia Sanitaria e Ambiental

    2017-03-15

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl{sub 2} ). The hybrid membranes with CaCl{sub 2} were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl{sub 2} have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl{sub 2} , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl{sub 2} in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl{sub 2} in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  13. Characterizing natural organic matter in drinking water treatment processes and trains

    NARCIS (Netherlands)

    Baghoth, S.A.

    2012-01-01

    Natural organic matter (NOM) generally influences water treatment processes such as coagulation, oxidation, adsorption, and membrane filtration. NOM contributes colour, taste and odour in drinking water, fouls membranes, serves as a precursor for disinfection by-products, increases the exhaustion

  14. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  15. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  16. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Whitworth; Liangxiong Li

    2002-09-15

    This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments

  17. Synergistic Water-Treatment Reactors Using a TiO2-Modified Ti-Mesh Filter

    OpenAIRE

    Akira Fujishima; Yuko Morito; Masahiko Ikekita; Tomonori Suzuki; Masayuki Hara; Yasuhiro Nojima; Ryuichi Nakano; Kazuya Nakata; Shoko Tago; Ken Masuko; Tsuyoshi Ochiai

    2013-01-01

    The recent applications of a TiO2-modified Ti-mesh filter (TMiP™) for water purification are summarized with newly collected data including biological assays as well as sewage water treatment. The water purification reactors consist of the combination of a TMiP, a UV lamp, an excimer VUV lamp, and an ozonation unit. The water purification abilities of the reactor were evaluated by decomposition of organic contaminants, inactivation of waterborne pathogens, and treatment efficiency for sewage ...

  18. Description of station waste water treatment and study of reclaiming industry ceramic red

    International Nuclear Information System (INIS)

    Yadava, Y.P.; Rego, S.A.B.C.; Junior, B.S.; Bezerra, L.P.; Ferreira, R.A.S.

    2012-01-01

    So that the water meets potability standards required by the laws it passes through various treatment processes which generate waste called WTS (Water Treatment Sludge). This sludge is disposed of without any processing, however, environmental agencies and the public are demanding alternatives to this situation. Knowing this, this study aims to characterize the sludge from the Water Treatment Plant Botafogo and analyze its viability as a feedstock in the manufacture of red bricks. (author)

  19. Risk factors for and consequences of inadequate surgical margins in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Lawaetz, Mads; Homøe, Preben

    2014-01-01

    OBJECTIVE: The purpose of this study was to examine which factors are associated with inadequate surgical margins and to assess the postoperative consequences. STUDY DESIGN: A retrospective cohort of 110 patients with oral squamous cell carcinoma treated with surgery during a 2-year period...... was examined. Clinical, histopathologic, and operative variables were related to the surgical margin status. Furthermore postoperative treatment data were compared with margin status. RESULTS: Univariate statistically significant associations were found between the tumor site in the floor of mouth, more...

  20. The role of abutment-attachment selection in resolving inadequate interarch distance: a clinical report.

    Science.gov (United States)

    Alsiyabi, Abdullah S; Felton, David A; Cooper, Lyndon F

    2005-09-01

    A critical factor that needs to be evaluated during the diagnosis and treatment planning phase for patients seeking an implant-tissue-supported overdenture or metal-resin implant fixed denture is the presence of adequate interarch distance. The amount of interarch distance is critical to the selection of appropriate implant abutments and attachments for both implant-tissue-supported overdentures and metal-resin implant fixed complete dentures. This clinical report describes a patient with complications related to the failure to diagnose inadequate interarch distance, and the methods used to resolve the patient's chief complaint. A guide for abutment-attachment selection using one commercially available implant system is given.