WorldWideScience

Sample records for inactivating lyase activity

  1. Mechanism-based inactivator of isocitrate lyases 1 and 2 fromMycobacterium tuberculosis.

    Science.gov (United States)

    Pham, Truc V; Murkin, Andrew S; Moynihan, Margaret M; Harris, Lawrence; Tyler, Peter C; Shetty, Nishant; Sacchettini, James C; Huang, Hsiao-Ling; Meek, Thomas D

    2017-07-18

    Isocitrate lyase (ICL, types 1 and 2) is the first enzyme of the glyoxylate shunt, an essential pathway for Mycobacterium tuberculosis ( Mtb ) during the persistent phase of human TB infection. Here, we report 2-vinyl-d-isocitrate (2-VIC) as a mechanism-based inactivator of Mtb ICL1 and ICL2. The enzyme-catalyzed retro-aldol cleavage of 2-VIC unmasks a Michael substrate, 2-vinylglyoxylate, which then forms a slowly reversible, covalent adduct with the thiolate form of active-site Cys 191 2-VIC displayed kinetic properties consistent with covalent, mechanism-based inactivation of ICL1 and ICL2 with high efficiency (partition ratio, <1). Analysis of a complex of ICL1:2-VIC by electrospray ionization mass spectrometry and X-ray crystallography confirmed the formation of the predicted covalent S -homopyruvoyl adduct of the active-site Cys 191 .

  2. Activation and Stabilization of Olive Recombinant 13-Hydroperoxide Lyase Using Selected Additives.

    Science.gov (United States)

    Jacopini, Sabrina; Vincenti, Sophie; Mariani, Magali; Brunini-Bronzini de Caraffa, Virginie; Gambotti, Claude; Desjobert, Jean-Marie; Muselli, Alain; Costa, Jean; Tomi, Félix; Berti, Liliane; Maury, Jacques

    2017-07-01

    The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at -20 or at -80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na 2 SO 4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na 2 SO 4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na 2 SO 4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.

  3. Phenylalanine ammonia-lyase (PAL) gene activity in response to ...

    African Journals Online (AJOL)

    Phenylalanine ammonia-lyase (PAL) catalyzes the biosynthesis of rosmarinic acid (RA), tyrosine and phenylalanine are the precursors of RA, while proline drives metabolite precursors toward Shikimate and phenylpropanoid pathway ending with the production of RA. The aim of this study was to investigate the PAL gene ...

  4. Phenylalanine ammonia-lyase (PAL) gene activity in response to ...

    African Journals Online (AJOL)

    Yomi

    2012-01-03

    Jan 3, 2012 ... Phenylalanine ammonia-lyase (PAL) catalyzes the biosynthesis of rosmarinic acid (RA), tyrosine and phenylalanine are the precursors of RA, while proline drives metabolite precursors toward Shikimate and phenylpropanoid pathway ending with the production of RA. The aim of this study was to.

  5. Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity. More particularly, the present invention pertains to polypeptides having tyrosine ammonia lyase activity and high...... substrate specificity towards tyrosine, which makes them particularly suitable in the production of p-coumaric acid and other hydroxycinnamic acids. The present invention thus provides processes for the production of p-coumaric acid and other hydroxycinnamic acids employing these polypeptides as well...

  6. Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA.

    Science.gov (United States)

    Bowen, J K; Templeton, M D; Sharrock, K R; Crowhurst, R N; Rikkerink, E H

    1995-01-20

    The feasibility of performing routine transformation-mediated mutagenesis in Glomerella cingulata was analysed by adopting three one-step gene disruption strategies targeted at the pectin lyase gene pnlA. The efficiencies of disruption following transformation with gene replacement- or gene truncation-disruption vectors were compared. To effect replacement-disruption, G. cingulata was transformed with a vector carrying DNA from the pnlA locus in which the majority of the coding sequence had been replaced by the gene for hygromycin B resistance. Two of the five transformants investigated contained an inactivated pnlA gene (pnlA-); both also contained ectopically integrated vector sequences. The efficacy of gene disruption by transformation with two gene truncation-disruption vectors was also assessed. Both vectors carried at 5' and 3' truncated copy of the pnlA coding sequence, adjacent to the gene for hygromycin B resistance. The promoter sequences controlling the selectable marker differed in the two vectors. In one vector the homologous G. cingulata gpdA promoter controlled hygromycin B phosphotransferase expression (homologous truncation vector), whereas in the second vector promoter elements were from the Aspergillus nidulans gpdA gene (heterologous truncation vector). Following transformation with the homologous truncation vector, nine transformants were analysed by Southern hybridisation; no transformants contained a disrupted pnlA gene. Of nineteen heterologous truncation vector transformants, three contained a disrupted pnlA gene; Southern analysis revealed single integrations of vector sequence at pnlA in two of these transformants. pnlA mRNA was not detected by Northern hybridisation in pnlA- transformants. pnlA- transformants failed to produce a PNLA protein with a pI identical to one normally detected in wild-type isolates by silver and activity staining of isoelectric focussing gels. Pathogenesis on Capsicum and apple was unaffected by disruption of

  7. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    Science.gov (United States)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  8. Active site proton delivery and the lyase activity of human CYP17A1

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.; Denisov, Ilia G.; Sligar, Stephen G., E-mail: s-sligar@illinois.edu

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbon scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which reducing

  9. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase beta.

    Science.gov (United States)

    Chaturvedula, V S Prakash; Zhou, Bing-Nan; Gao, Zhijie; Thomas, Shannon J; Hecht, Sidney M; Kingston, David G I

    2004-12-01

    Bioassay-directed fractionation of a methyl ethyl ketone extract of Solidago canadensis L. (Asteraceae), using an assay to detect the lyase activity of DNA polymerase beta, resulted in the isolation of the four new lupane triterpenoids 1-4 and the seven known compounds lupeol, lupeyl acetate, ursolic acid, cycloartenol, cycloartenyl palmitate, alpha-amyrin acetate, and stigmasterol. The structures of the new compounds were established as 3beta-(3R-acetoxyhexadecanoyloxy)-lup-20(29)-ene (1), 3beta-(3-ketohexadecanoyloxy)-lup-20(29)-ene (2), 3beta-(3R-acetoxyhexadecanoyloxy)-29-nor-lupan-20-one (3), and 3beta-(3-hetohexadecanoyloxy)-29-nor-lupan-20-one (4), respectively, on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical modification studies. All 11 compounds were inhibitory to the lyase activity of DNA polymerase beta.

  10. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    Science.gov (United States)

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities

    Directory of Open Access Journals (Sweden)

    Lavín Paris

    2016-09-01

    Full Text Available Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodophyta, in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psychrotrophic due to its optimal temperature (17ºC and maximum temperature (20°C of growth. Agarase and alginate-lyase displayed enzymatic activities within a range of 10°C to 50°C, with differences in the optimal temperature to hydrolyze agar (50°C, agarose (50°C and alginate (30°C during the first 30 min of activity. Strain Flavobacterium INACH002 is a promising Antarctic biotechnological resource; however, further research is required to illustrate the structural and functional bases of the enzymatic performance observed during the degradation of different substrates at different temperatures.

  12. Mammalian O-phosphorylethanolamine phospho-lyase activity and its inhibition.

    Science.gov (United States)

    Grøn, I H

    1978-04-01

    The activity of the enzyme O-phosphorylethanolamine phospho-lyase, metabolizing O-phosphorylethanolamine to acetaldehyde, orthophosphate, and ammonia in vitro, was studied in human liver biopsy and autopsy material, and leucocytes. Only in the liver biopsies enzyme activity towards O-phosphorylethanolamine could be found, and in amounts corresponding to one tenth of the activity found in rat liver examined under identical conditions. The enzyme activity of the liver biopsies was confined to the post-microsomal fraction, the activity amounting to 35 +/- 7 (SD) micromicron/mg protein. The results suggest the presence of an inhibiting factor of protein character. Inhibition was not due to competition from alkaline phosphatase (E.C. 3.1.3.1.) or O-phosphorylethanolamine cytidylyl-transferase (E.C. 2.7.7.14).

  13. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

    Directory of Open Access Journals (Sweden)

    Parinaz Ghadam

    2017-05-01

    Full Text Available Objective(s: Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Alginate lyase gene (algl is a member of alginate producing operon which by glycosidase activity produces primer for other enzymes in this cluster. Also this activity can destroy the extracellular alginate; therefore this enzyme participates in alginate production and destruction pathway. Alginate lyase causes detachment of a biofilm by reducing its adhesion to the surfaces, and increases phagocytosis and antibiotic susceptibility. In this study, alginate lyase was purified in just one step and its properties were investigated. Materials and Methods: The purification was done by affinity chromatography, analysed by SDS-PAGE, and its effect on P. aeruginosa biofilms was surveyed by micro titer plate assay and SEM. The substrate specificity of the enzyme was determined by PCR. Results: Alginate lyase from isolate 48 was purified in one step. It is more thermally resistant than alginate lyase from Pseudomonas aeruginosa PAO1 and poly M, poly G and poly MG alginate were the substrate of this enzyme. Moreover, it has an eradication effect on biofilms from P. aeruginosa 48 and PAO1. Conclusion: In this study an alginate lyase with many characteristics suitable in medicine such as thermal stability, effective on poly M alginate, and bacterial biofilm destructive was introduced and purified.

  14. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  15. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  16. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Directory of Open Access Journals (Sweden)

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  17. Studies on pectin lyase

    NARCIS (Netherlands)

    Houdenhoven, van F.E.A.

    1975-01-01

    The pectin lyase activity in the commercial enzyme preparation Ultrazym originates from more then one type of enzyme; two of them, accounting for 95 % of the total activity, have been completely purified. As purity criteria specific activity, polyacrylamide disc gel electrophoresis and SDS

  18. Stability of hydroperoxide lyase activity from Amaranthus tricolor (Amaranthus mangostanus L.) leaves: influence of selected additives.

    Science.gov (United States)

    Long, Zhen; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei

    2010-04-15

    Hydroperoxide lyase (HPL) has potential value for the flavour additive industry. Currently, the production and application of HPL suffer from stability problems. The objective of this study was to investigate the stabilisation of HPL preparation from Amaranthus tricolor leaves by the addition of selected chemical additives. Amaranthus tricolor leaves were identified as a particularly rich source of 13-HPL activity. The addition of 100 g L(-1) sucrose and trehalose to microsomal HPL prior to lyophilisation could retain nearly 100% enzymatic activity, compared to only 20% for the lyophilised control. The lyophilised microsomal HPL containing sucrose maintained full activity for even 40 days storage at -20 degrees C. For HPL solution, glycerol was effective for long-term stability at -20 degrees C. Moreover, poyols (sucrose and trehalose) and amino acid (glycine) enhanced the thermostability of HPL, while KCl and polyol mannitol decreased the thermostability of HPL. The flavour-producing enzyme HPL, found in the leaves of Amaranthus tricolor, was stabilised by the addition of chemical additives. (c) 2010 Society of Chemical Industry.

  19. New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture.

    Science.gov (United States)

    Ulaganathan, ThirumalaiSelvi; Boniecki, Michal T; Foran, Elizabeth; Buravenkov, Vitaliy; Mizrachi, Naama; Banin, Ehud; Helbert, William; Cygler, Miroslaw

    2017-05-19

    Ulvan is a complex sulfated polysaccharide biosynthesized by green seaweed and contains predominantly rhamnose, xylose, and uronic acid sugars. Ulvan-degrading enzymes have only recently been identified and added to the CAZy ( www.cazy.org ) database as family PL24, but neither their structure nor catalytic mechanism(s) are yet known. Several homologous, new ulvan lyases, have been discovered in Pseudoalteromonas sp. strain PLSV, Alteromonas LOR, and Nonlabens ulvanivorans, defining a new family PL25, with the lyase encoded by the gene PLSV_3936 being one of them. This enzyme cleaves the glycosidic bond between 3-sulfated rhamnose (R3S) and glucuronic acid (GlcA) or iduronic acid (IdoA) via a β-elimination mechanism. We report the crystal structure of PLSV_3936 and its complex with a tetrasaccharide substrate. PLSV_3936 folds into a seven-bladed β-propeller, with each blade consisting of four antiparallel β-strands. Sequence conservation analysis identified a highly conserved region lining at one end of a deep crevice on the protein surface. The putative active site was identified by mutagenesis and activity measurements. Crystal structure of the enzyme with a bound tetrasaccharide substrate confirmed the identity of base and acid residues and allowed determination of the catalytic mechanism and also the identification of residues neutralizing the uronic acid carboxylic group. The PLSV_3936 structure provides an example of a convergent evolution among polysaccharide lyases toward a common active site architecture embedded in distinct folds.

  20. Mode of action of pectic enzymes. II. Further purification of exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans.

    Science.gov (United States)

    Miller, L; Macmillan, J D

    1970-04-01

    Exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans were purified 156-fold and 178-fold, respectively, by gel filtration chromatography on Sephadex G-200. The activities of both enzymes coincided in a single protein peak. Profiles of the two activities also coincided in diethylaminoethyl-cellulose chromatography and zonal centrifugation. These studies indicated that the esterase and the lyase were either complexed or similar molecular species. The former seems more probable because of the relatively high molecular weight. Both activities were most stable at pH 6.0. The esterase was inactivated rapidly at pH 5 or 7. Lyase preparations were freed of pectinesterase activity by heating for 30 min at 38 C and pH 7.0.

  1. Phenylalanine ammonia-lyase (pal) and peroxidase activity in brown rust infected tissues of pakistani wheat cultivars

    International Nuclear Information System (INIS)

    Riaz, A.; Tahir, M.I.

    2014-01-01

    Besides other factors resistance and susceptibility is the outcome of biochemical processes such as activities of defense-related enzymes. So in this study, Phenylalanine ammonia-lyase (PAL) and Peroxidase activity of resistant (Inqilab-91) and susceptible (Kirin-95) wheat cultivars were determined through spectrophotometer to address the biochemical aspect related to the disease after 8 hours, 24 hours, 48 hours and 72 hours of leaf rust inoculation. The results have shown that these enzymes were present in both the resistant and susceptible cultivars but the activity was more pronounced in the resistant one. The effect of PAL and peroxidase activity was also investigated among inoculated and uninoculated plants within the same cultivar. The activity of both PAL and peroxidase were more significant in inoculated ones. The results have shown that the after 72 hours of inoculation Inqilab-91 had more PAL activity i.e., 5.47 IU/ml/min than in Kirin-95 i.e., 2.08 IU/ml/min at 270 nm. While peroxidase activity in Inqilab-91 was 6.41 IU/ml/min and in Kirin-95, 3.66 IU/ml/min after 72 hours of inoculation, observed under 470 nm wavelength. Increase in one's activity increases the other enzyme's activity. The activity was more prominent after 72 hours of infection as pathogen had successfully established itself in the host plant tissue. The activities of these enzymes act as plants active defense mechanism against the attack of pathogen. (author)

  2. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Highsmith, R.F.; Gallaher, M.J.

    1986-01-01

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125 I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  3. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Highsmith, R.F.; Gallaher, M.J.

    1986-03-05

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive /sup 125/I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface.

  4. Modeling of human factor Va inactivation by activated protein C

    Directory of Open Access Journals (Sweden)

    Bravo Maria

    2012-05-01

    Full Text Available Abstract Background Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (FXa and its cofactor FVa plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC, an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and “protection” of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation. Results A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative

  5. Peroxidase and phenylalanine ammonia-lyase activities, phenolic acid contents, and allelochemicals-inhibited root growth of soybean

    Directory of Open Access Journals (Sweden)

    VANESSA HERRIG

    2002-01-01

    Full Text Available The influence of the allelochemicals ferulic (FA and vanillic (VA acids on peroxidase (POD, EC 1.11.1.7 and phenylalanine ammonia-lyase (PAL, EC 4.3.1.5 activities and their relationships with phenolic acid (PhAs contents and root growth of soybean (Glycine max (L. Merr. were examined. Three-day-old seedlings were cultivated in nutrient solution containing FA or VA (0.1 to 1 mM for 48 h. Both compounds (at 0.5 and 1 mM decreased root length (RL, fresh weight (FW and dry weight (DW and increased PhAs contents. At 0.5 and 1 mM, FA increased soluble POD activity (18% and 47%, respectively and cell wall (CW-bound POD activity (61% and 34%, while VA increased soluble POD activity (33% and 17% but did not affect CW-bound POD activity. At 1 mM, FA increased (82% while VA reduced (32% PAL activities. The results are discussed on the basis of the role of these compounds on phenylpropanoid metabolism and root growth and suggest that the effects caused on POD and PAL activities are some of the many mechanisms by which allelochemicals influence plant growth

  6. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.

    Science.gov (United States)

    Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul

    2013-12-01

    We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples. © 2013 Wiley Periodicals, Inc.

  7. Activation and stabilization of the hydroperoxide lyase enzymatic extract from mint leaves (Mentha spicata) using selected chemical additives.

    Science.gov (United States)

    Akacha, Najla B; Karboune, Salwa; Gargouri, Mohamed; Kermasha, Selim

    2010-03-01

    The effects of selected lyoprotecting excipients and chemical additives on the specific activity and the thermal stability of the hydroperoxide lyase (HPL) enzymatic extract from mint leaves were investigated. The addition of KCl (5%, w/w) and dextran (2.5%, w/w) to the enzymatic extract, prior to lyophilization, increased the HPL specific activity by 2.0- and 1.2-fold, respectively, compared to the control lyophilized extract. From half-life time (t (1/2)), it can be seen that KCl has enhanced the HPL stability by 1.3- to 2.3-fold, during long-period storage at -20 degrees Celsius and 4 degrees Celsius. Among the selected additives used throughout this study, glycine appeared to be the most effective one. In addition to the activation effect conferred by glycine, it also enhanced the HPL thermal stability. In contrast, polyhydroxyl-containing additives were not effective for stabilizing the HPL enzymatic extract. On the other hand, there was no signification increase in HPL activity and its thermal stability with the presence of Triton X-100. The results also showed that in the presence of glycine (10%), the catalytic efficiency of HPL was increased by 2.45-fold than that without additive.

  8. [The relationship between activity and gene expression of phenylalanine ammonia-lyase and peel pitting in 'Fengjie' navel orange fruits].

    Science.gov (United States)

    Li, Zheng-Guo; Gao, Xue; Fan, Jing; Yang, Ying-Wu; Li, Dao-Gao; Kanellis, Angelos K

    2006-06-01

    Citrus fruit is prone to develop peel pitting during development and storage, which greatly decreases its fresh market value because of the deterioration of the peel. In the present study, we have examined the effect of different temperatures (15 degrees C and 4 degrees C), waxing and mechanical damage on the changes in the activity of phenylalanine ammonia-lyase (PAL) and the incidence of peel pitting in 'Fengjie' navel orange (Citrus sinensis Osbeck) fruits. The expression levels of PAL2, PAL6 genes in the peel during the development of peel pitting have been investigated through semi-quantitative PCR method. The incidence of peel pitting was greatly enhanced by waxing and mechanical damage and was decreased in lower temperature storage (4 degrees C) (Fig.1). Waxing and mechanical damage might be the important factors inducing peel pitting and suitable low temperature could decrease the incidence of this disease. The PAL activity increased during the whole storage period in accordance with the development of this pitting (Fig.2). The expression levels of PAL2 and PAL6 genes in damaged peel were higher than those in healthy peel and the expression of PAL2 is much more higher than that of PAL6 (Figs.4 and 5). The results suggested that the enzyme activity of PAL, along with the expression of PAL2 gene is highly related to this peel pitting occurred on 'Fengjie' navel orange fruits.

  9. Functional implications of the beta-helical protein fold: differences in chemical and thermal stabilities of Erwinia chrysanthemi EC16 pectate lyases B, C, and E.

    Science.gov (United States)

    Hurlbert, J C; Preston, J F

    2000-09-15

    Colonization of plant tissue by the phytopathogen Erwinia chrysanthemi EC16 is aided by the activities of the pectate lyase isozymes (PLs), which depolymerize the polygalacturonic acid component (PGA) of plant cell walls. The bacterium secretes four pectate lyases (PLa, PLb, PLc, and PLe), two of which, PLc and PLe, have been shown to fold into a similar domain motif, the beta-helix. To understand the rationale behind the evolution and retention of these isoforms, the susceptibilities of pectate lyases B, C, and E to chemical and thermal denaturation and the resulting enzymatic inactivation were examined. With guanidine hydrochloride used as a denaturant, all three pectate lyases denatured with transition midpoint guanidine hydrochloride concentrations (Cm) of 1.3, 1.1, and 1.8 M for PLb, PLc, and PLe, respectively. Lyase activity decreased in direct response to loss of secondary structure in all enzymes. Pectate lyases B and C demonstrated increased enzymatic activity at temperatures above 30 degrees C, with maximal activity observed at 40 degrees C for PLb and 35 degrees C for PLc. Transition midpoints (Tm) as measured by circular dichroism were at 46.9 degrees C for PLb and 44.3 degrees C for PLc, indicating detectable conformational changes accompanying thermal inactivation. Decreased enzymatic activity of PLe was observed at all temperatures above 30 degrees C, and the enzyme was found to possess a Tm at 38.9 degrees C. The data demonstrate structural differences among these enzymes that may be the basis for different enzymatic efficiencies under the potential array of environmental conditions experienced by the bacterium. These differences, in turn, may play a part in the retention of these isozymes as virulence factors, allowing the successful colonization of susceptible plant hosts.

  10. Cooperative functioning between phenylalanine ammonia lyase and isochorishmate synthase activities contributes to salicylic acid biosynthesis in soybean

    Science.gov (United States)

    Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL), or the isochorishmate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We...

  11. Effect of Activated Plastic Films on Inactivation of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Belén Soriano Cuadrado

    2016-07-01

    Full Text Available In the present study, low density polyethylene films were activated by co-extrusion with zinc oxide, zinc acetate or potassium sorbate. Films were also surface-activated with tyrosol singly or in combination with lactic acid or p-hydroxybenzoic acid. Activated films were tested on Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica and Pseudomonas fluorescens. The combinations showing greatest inhibition zones and broadest inhibitory spectrum were the films activated with tyrosol plus p-hydroxybenzoic acid. A small delay in growth of Listeria innocua was observed on seabream packed in ZnO-activated films during refrigerated storage for 7 days. When films activated with 2.5% tyrosol or with 1.5% tyrosol plus 0.5 p-hydroxybenzoic acid were used for vacuum packaging of smoked salmon and smoked tuna challenged with cocktails of S. enterica and L. monocytogenes strains, the combination of tyrosol and p-hydroxybenzoic acid improved inactivation of both pathogens during chill storage compared to films singly activated with tyrosol. The best results were obtained in smoked salmon, since no viable pathogens were detected after 7 days of chill storage for the activated film. Results from the study highlight the potential of plastic films surface-activated with tyrosol and p-hydroxybenzoic acid in the control of foodborne pathogens in smoked seafood.

  12. Insights into the activity change of spore photoproduct lyase induced by mutations at a peripheral glycine residue

    Science.gov (United States)

    Yang, Linlin; Li, Lei

    2017-03-01

    UV radiation triggers the formation of 5-thyminyl-5,6-dihydrothymine, i.e. the spore photoproduct (SP), in the genomic DNA of bacterial endospores. These SPs, if not repaired in time, may lead to genome instability and cell death. SP is mainly repaired by spore photoproduct lyase (SPL) during spore outgrowth via an unprecedented protein-harbored radical transfer pathway that is composed of at least a cysteine and two tyrosine residues. This mechanism is consistent with the recently solved SPL structure that shows all three residues are located in proximity and thus able to participate in the radical transfer process during the enzyme catalysis. In contrast, an earlier in vivo mutational study identified a glycine to arginine mutation at the position 168 on the B. subtilis SPL that was later found to be > 15 Å away from the enzyme active site. This mutation appears to abolish the enzyme activity because endospores carrying this mutant were sensitive to UV light. To understand the molecular basis for this rendered enzyme activity, we constructed two SPL mutations G168A and G168R, examined their repair of dinucleotide SP TpT, and found that both mutants exhibit reduced enzyme activity. Comparing with the wildtype (WT) SPL enzyme, the G168A mutant slows down the SP TpT repair by 3 4 fold while the G168R mutant by 80 fold. Both mutants exhibit a smaller apparent (DV) kinetic isotope effect (KIE) but a bigger competitive (DV/K) KIE than that by the WT SPL. Moreover, the G168R mutant also produces a large portion of the abortive repair product TpT-SO2-; the formation of which indicates that cysteine 141 is no longer well positioned as the H-donor to the thymine allylic radical intermediate. All these data imply that the mutation at the remote glycine 168 residue alters the enzyme 3D structure, subsequently reducing the SPL activity by changing the positions of the essential amino acids involved in the radical transfer process.

  13. Phenylalanine Ammonia Lyase Activity in Stem of Pepper (Capsicum annuum L.) Infected by Phytophthora capsici L.

    OpenAIRE

    KOC, Esra; USTUN, Ayşen Sulun

    2012-01-01

    In this study, PAL activity in stems of pepper (Capsicum annuum L.) plants infected by the root rot pathogen Phytophthora capsici-22 in a resistant (PM-702) and two susceptible (Kahramanmaraş-Hot (KM-Hot) and Demre-8) cultivar were studied. The response of the PAL activity in the resistant cultivar was faster and higher than in the susceptible cultivars (p < 0.01). The increase in production of  PAL upon Phytophthora capsici-22 were higher in the infected plants compared to the non-in...

  14. Function of the activated protein C (APC) autolysis loop in activated FVIII inactivation.

    Science.gov (United States)

    Cramer, Thomas J; Gale, Andrew J

    2011-06-01

    Activated protein C (APC) binds to its substrates activated factor V (FVa) and activated factor VIII (FVIIIa) with a basic exosite that consists of loops 37, 60, 70 and the autolysis loop. These loops have a high density of basic residues, resulting in a positive charge on the surface of APC. Many of these residues are important in the interaction of APC with FVa and FVIIIa. The current study focused on the function of the autolysis loop in the interaction with FVIIIa. This loop was previously shown to interact with FVa, and it inhibits APC inactivation by plasma serpins. Charged residues of the autolysis loop were individually mutated to alanine and the activity of these mutants was assessed in functional FVIIIa inactivation assays. The autolysis loop was functionally important for FVIIIa inactivation. Mutation of R306, K311 and R314 each resulted in significantly reduced FVIIIa inactivation. The inactivating cleavages of FVIIIa at R336 and R562 were affected equally by the mutations. Protein S and FV stimulated cleavage at R562 more than cleavage at R336, independent of mutations in the autolysis loop. Together, these results confirmed that the autolysis loop plays a significant role as part of the basic exosite on APC in the interaction with FVIIIa. © 2011 Blackwell Publishing Ltd.

  15. Page 1 Effect of Detergents on the Activity and Inactivation of ...

    Indian Academy of Sciences (India)

    Effect of Detergents on the Activity and Inactivation of Invertase 225. SUMMARY. 1. Detergents are shown to decrease the activity of sucrase. 2. The cationic detergents are found to be more effective than the anionic detergents. 3. The critical pH region of inactivation of sucrase is found to shift to higher pH values in the ...

  16. A Systems Chemical Biology Study of Malate Synthase and Isocitrate Lyase Inhibition in Mycobacterium tuberculosis During Active and NRP Growth

    Science.gov (United States)

    May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander; Oprea, Tudor I.

    2013-01-01

    The ability of Mycobacterium tuberculosis (Mtb) to survive in low oxygen environments enables the bacterium to persist in a latent state within host tissues. In vitro studies of Mtb growth have identified changes in isocitrate lyase (ICL) and malate synthase (MS) that enable bacterial persistent under low oxygen and other environmentally limiting conditions. Systems chemical biology (SCB) enables us to evaluate the effects of small molecule inhibitors not only on the reaction catalyzed by malate synthase and isocitrate lyase, but the effect on the complete tricarboxylic acid cycle (TCA) by taking into account complex network relationships within that system. To study the kinetic consequences of inhibition on persistent bacilli, we implement a systems-chemical biology (SCB) platform and perform a chemistry-centric analysis of key metabolic pathways believed to impact Mtb latency. We explore consequences of disrupting the function of malate synthase (MS) and isocitrate lyase (ICL) during aerobic and hypoxic non-replicating persistence (NRP) growth by using the SCB method to identify small molecules that inhibit the function of MS and ICL, and simulating the metabolic consequence of the disruption. Results indicate variations in target and non-target reaction steps, clear differences in the normal and low oxygen models, as well as dosage dependent response. Simulation results from singular and combined enzyme inhibition strategies suggest ICL may be the more effective target for chemotherapeutic treatment against Mtb growing in a microenvironment where oxygen is slowly depleted, which may favor persistence. PMID:24121675

  17. Adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Jurecka, Agnieszka; Zikanova, Marie; Kmoch, Stanislav; Tylki-Szymańska, Anna

    2015-03-01

    Adenylosuccinate lyase ADSL) deficiency is a defect of purine metabolism affecting purinosome assembly and reducing metabolite fluxes through purine de novo synthesis and purine nucleotide recycling pathways. Biochemically this defect manifests by the presence in the biologic fluids of two dephosphorylated substrates of ADSL enzyme: succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado). More than 80 individuals with ADSL deficiency have been identified, but incidence of the disease remains unknown. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The fatal neonatal form has onset from birth and presents with fatal neonatal encephalopathy with a lack of spontaneous movement, respiratory failure, and intractable seizures resulting in early death within the first weeks of life. Patients with type I (severe form) present with a purely neurologic clinical picture characterized by severe psychomotor retardation, microcephaly, early onset of seizures, and autistic features. A more slowly progressing form has also been described (type II, moderate or mild form), as having later onset, usually within the first years of life, slight to moderate psychomotor retardation and transient contact disturbances. Diagnosis is facilitated by demonstration of SAICAr and S-Ado in extracellular fluids such as plasma, cerebrospinal fluid and/or followed by genomic and/or cDNA sequencing and characterization of mutant proteins. Over 50 ADSL mutations have been identified and their effects on protein biogenesis, structural stability and activity as well as on purinosome assembly were characterized. To date there is no specific and effective therapy for ADSL deficiency.

  18. Activation of inactivation process initiates rapid eye movement sleep.

    Science.gov (United States)

    Mallick, Birendra Nath; Singh, Abhishek; Khanday, Mudasir Ahmad

    2012-06-01

    Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314

    Directory of Open Access Journals (Sweden)

    Fei Wu

    2016-03-01

    Full Text Available A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB producing genes (hoxI and pcyA, while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB and the lyase gene (cpcU, cpcS, or cpcU/S were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314.

  20. Neuraminidase Activity in Streptococcus sanguis and in the Viridans Group, and Occurrence of Acylneuraminate Lyase in Viridans Organisms Isolated from Patients with Septicemia

    Science.gov (United States)

    Müller, H. E.

    1974-01-01

    The enzyme neuraminidase (EC 3.2.1.18) was found to be strongly active in different types of Streptococcus sanguis and S. viridans, and, in addition, the occurrence of the enzyme acylneuraminate pyruvate lyase (EC 4.1.3.3) was described in S. viridans. The enzyme-active bacteria strains were isolated from blood cultures of patients with septicemia. Whereas S. sanguis lost its strong neuraminidase activity after some weeks, S. viridans retained its enzyme activity for a long time in culture. Immunoelectrophoretic studies of the blood cultures of patients with streptococcal infections showed the loss of neuraminic acid in most glycoproteins of the serum, proving the in vivo action of neuraminidase. The pathogenic role of neuraminidase is discussed in streptococcal septicemia from the viewpoint of present knowledge. Images PMID:4816461

  1. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    Science.gov (United States)

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines.

  2. Argininosuccinate lyase deficiency.

    Science.gov (United States)

    Nagamani, Sandesh C S; Erez, Ayelet; Lee, Brendan

    2012-05-01

    The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCDs), a group of inborn errors of hepatic metabolism that often result in life-threatening hyperammonemia. Argininosuccinate lyase (ASL) catalyzes the fourth reaction in this cycle, resulting in the breakdown of argininosuccinic acid to arginine and fumarate. ASL deficiency (ASLD) is the second most common UCD, with a prevalence of ~1 in 70,000 live births. ASLD can manifest as either a severe neonatal-onset form with hyperammonemia within the first few days after birth or as a late-onset form with episodic hyperammonemia and/or long-term complications that include liver dysfunction, neurocognitive deficits, and hypertension. These long-term complications can occur in the absence of hyperammonemic episodes, implying that ASL has functions outside of its role in ureagenesis and the tissue-specific lack of ASL may be responsible for these manifestations. The biochemical diagnosis of ASLD is typically established with elevation of plasma citrulline together with elevated argininosuccinic acid in the plasma or urine. Molecular genetic testing of ASL and assay of ASL enzyme activity are helpful when the biochemical findings are equivocal. However, there is no correlation between the genotype or enzyme activity and clinical outcome. Treatment of acute metabolic decompensations with hyperammonemia involves discontinuing oral protein intake, supplementing oral intake with intravenous lipids and/or glucose, and use of intravenous arginine and nitrogen-scavenging therapy. Dietary restriction of protein and dietary supplementation with arginine are the mainstays in long-term management. Orthotopic liver transplantation (OLT) is best considered only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional medical therapy.

  3. Heat inactivation of native plasmin, plasminogen and plasminogen activators in bovine milk: a revisited study

    OpenAIRE

    Denis, Thierry; Humbert, Gérard; Gaillard, Jean-Luc

    2001-01-01

    International audience; Thermal inactivation, at temperatures between 60 °C and 140 °C, of native plasmin, plasminogen and plasminogen activators were studied in bovine milk using improved enzymatic assays. While measured heat inactivation kinetic of plasmin and plasminogen were in line with previously reported values, plasminogen activators were, surprisingly, found to be as heat sensitive as plasmin and plasminogen in a milk system containing proteins with free SH groups. Activation energie...

  4. Change in the Content of Salicylic Acid and in the Activities of Phenylalanine Ammonia-Lyase and Catalase in Wheat Seedling Roots Under the Effect of Azospirillum Lectins

    Directory of Open Access Journals (Sweden)

    Alen'kina S.A.

    2012-05-01

    Full Text Available We investigated the time course of changes in the endogenous content of salicylic acid, the ratio between the acid's free and bound forms, and changes in the activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the effect of the lectins of two strains of the associative nitrogen-fixing bacterium Azospirillum: A. brasilense Sp7 and its mutant defective in lectin activity, A. brasilense Sp7.2.3. Differences in plant response to the action of the lectins from these two strains were established. On the basis of the obtained data, a model was proposed for lectin-assisted induction of resistance, according to which the lectin effect on the roots of seedlings results in accumulation of free salicylic acid, which inhibits catalase activity, ultimately leading to accumulation of hydrogen peroxide and to formation of induced resistance.

  5. ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

    Directory of Open Access Journals (Sweden)

    Mahmut ÖZER

    2003-03-01

    Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.

  6. Efficiency of inactivation of trypsin inhibitory activity in some selected ...

    African Journals Online (AJOL)

    Trypsin inhibitor (TI) levels in the crop seeds varied between 0.0 in Adansonia digitata and 40.8 TIU/mg in Pterocarpus osun. Efficiency of inactivation of TI by autoclaving ranged from 58.1% in Millettia thonningii to 100% in Sesbania pachycarpa and Lonchocarpus. sericeus. It is concluded that the effect of heat treatment on ...

  7. High-performance liquid chromatography-fluorescence assay of pyruvic acid to determine cysteine conjugate beta-lyase activity : application to S-1,2-dichlorovinyl-L-cysteine and S-2-benzothiazolyl-L-cysteine

    NARCIS (Netherlands)

    Stijntjes, G.J.; te Koppele, J.M.; Vermeulen, N P

    1992-01-01

    An HPLC-fluorescence assay has been developed for the determination of the activity of rat renal cytosolic cysteine conjugate beta-lyase. The method is based on isocratic HPLC separation and fluorescence detection of pyruvic acid, derivatized with o-phenylenediamine (OPD), and is shown to be rapid,

  8. Differential inhibition of 17alpha-hydroxylase and 17,20-lyase activities by three novel missense CYP17 mutations identified in patients with P450c17 deficiency

    NARCIS (Netherlands)

    E.L.T. van den Akker (Erica); J.W. Koper (Jan); A.L.M. Boehmer (Annemie); A.P.N. Themmen (Axel); M. Verhoef-Post (Miriam); M.A. Timmerman (Marianna); B.J. Otten (Barto); S.L.S. Drop (Stenvert); F.H. de Jong (Frank)

    2002-01-01

    textabstractThe microsomal enzyme cytochrome P450c17 is an important regulator of steroidogenesis. The enzyme has two functions: 17alpha-hydroxylase and 17,20-lyase activities. These functions determine the ability of adrenal glands and gonads to synthesize 17alpha-hydroxylated

  9. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato.

    Science.gov (United States)

    Schwartz, Allison R; Morbitzer, Robert; Lahaye, Thomas; Staskawicz, Brian J

    2017-01-31

    AvrHah1 [avirulence (avr) gene homologous to avrBs3 and hax2, no. 1] is a transcription activator-like (TAL) effector (TALE) in Xanthomonas gardneri that induces water-soaked disease lesions on fruits and leaves during bacterial spot of tomato. We observe that water from outside the leaf is drawn into the apoplast in X. gardneri-infected, but not X. gardneriΔavrHah1 (XgΔavrHah1)-infected, plants, conferring a dark, water-soaked appearance. The pull of water can facilitate entry of additional bacterial cells into the apoplast. Comparing the transcriptomes of tomato infected with X. gardneri vs. XgΔavrHah1 revealed the differential up-regulation of two basic helix-loop-helix (bHLH) transcription factors with predicted effector binding elements (EBEs) for AvrHah1. We mined our RNA-sequencing data for differentially up-regulated genes that could be direct targets of the bHLH transcription factors and therefore indirect targets of AvrHah1. We show that two pectin modification genes, a pectate lyase and pectinesterase, are targets of both bHLH transcription factors. Designer TALEs (dTALEs) for the bHLH transcription factors and the pectate lyase, but not for the pectinesterase, complement water soaking when delivered by XgΔavrHah1 By perturbing transcriptional networks and/or modifying the plant cell wall, AvrHah1 may promote water uptake to enhance tissue damage and eventual bacterial egression from the apoplast to the leaf surface. Understanding how disease symptoms develop may be a useful tool for improving the tolerance of crops from damaging disease lesions.

  11. O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response.

    Science.gov (United States)

    Fediuc, Erika; Lips, S Herman; Erdei, László

    2005-08-01

    The roles of O-acetylserine (thiol) lyase (OASTL, EC 4.2.99.8) and abscisic (ABA) acid in stress responses to NaCl and cadmium treatments were investigated in Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steudel plants. OASTL activity increased under stress (25-300 microM Cd, 100mM NaCl, 1 microM ABA) in both Typha and Phragmites mainly in roots, contributing substantially to satisfy the higher demand of cysteine for adaptation and protection. The earliest significant responses in intact roots were recorded after 12-24 h of Cd treatments, but different levels of stimulation were also observed after 3 and 7 days of exposure. The OASTL activity responses of Phragmites to salinity (100mM NaCl) were higher than those of Typha. Cysteine synthesis in Typha is much higher than in Phragmites, which supports the efficiency of the thiol-metabolism-based protection shown in Typha. Exogenous ABA increased OASTL activity in both species. Cd treatments led to increased ABA levels in roots. Phragmites showed higher ABA levels compared to Typha. The increase of ABA content indicates the involvement of this phytohormone in early stress responses, while the stimulation of OASTL following the ABA application suggests that ABA has a role in an OASTL activation pathway.

  12. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening.

    Science.gov (United States)

    Palafox-Carlos, H; Contreras-Vergara, C A; Muhlia-Almazán, A; Islas-Osuna, M A; González-Aguilar, G A

    2014-05-16

    Phenylalanine ammonia lyase (PAL) and p-coumarate 3-hydroxylase (C3H) are key enzymes in the phenylpropanoid pathway. The relative expression of PAL and C3H was evaluated in mango fruit cultivar 'Ataulfo' in four ripening stages (RS1, RS2, RS3, and RS4) by quantitative polymerase chain reaction. In addition, enzyme activity of PAL and C3H was determined in mango fruits during ripening. The PAL levels were downregulated at the RS2 and RS3 stages, while C3H levels were upregulated in fruits only at RS3. The enzyme activity of PAL followed a pattern that was different from that of the PAL expression, thus suggesting regulation at several levels. For C3H, a regulation at the transcriptional level is suggested because a similar pattern was revealed by its activity and transcript level. In this study, the complexity of secondary metabolite biosynthesis regulation is emphasized because PAL and C3H enzymes are involved in the biosynthesis of several secondary metabolites that are active during all mango ripening stages.

  13. Cultivable Alginate Lyase-Excreting Bacteria Associated with the Arctic Brown Alga Laminaria

    Directory of Open Access Journals (Sweden)

    Yu-Zhong Zhang

    2012-11-01

    Full Text Available Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65, Psychromonas (10/65 and Polaribacter (8/65 were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21, Psedoalteromonas (6/21 and Polaribacter (4/21 are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.

  14. Cultivable alginate lyase-excreting bacteria associated with the Arctic brown alga Laminaria.

    Science.gov (United States)

    Dong, Sheng; Yang, Jie; Zhang, Xi-Ying; Shi, Mei; Song, Xiao-Yan; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-11-06

    Although some alginate lyases have been isolated from marine bacteria, alginate lyases-excreting bacteria from the Arctic alga have not yet been investigated. Here, the diversity of the bacteria associated with the brown alga Laminaria from the Arctic Ocean was investigated for the first time. Sixty five strains belonging to nine genera were recovered from six Laminaria samples, in which Psychrobacter (33/65), Psychromonas (10/65) and Polaribacter (8/65) were the predominant groups. Moreover, 21 alginate lyase-excreting strains were further screened from these Laminaria-associated bacteria. These alginate lyase-excreting strains belong to five genera. Psychromonas (8/21), Psedoalteromonas (6/21) and Polaribacter (4/21) are the predominant genera, and Psychrobacter, Winogradskyella, Psychromonas and Polaribacter were first found to produce alginate lyases. The optimal temperatures for the growth and algiante lyase production of many strains were as low as 10–20 °C, indicating that they are psychrophilic bacteria. The alginate lyases produced by 11 strains showed the highest activity at 20–30 °C, indicating that these enzymes are cold-adapted enzymes. Some strians showed high levels of extracellular alginate lyase activity around 200 U/mL. These results suggest that these algiante lyase-excreting bacteria from the Arctic alga are good materials for studying bacterial cold-adapted alginate lyases.

  15. The hydroxynitrile lyase from almond: crystal structure and mechanistical studies

    International Nuclear Information System (INIS)

    Dreveny, Ingrid

    2001-09-01

    Cyanogenesis is a defense process of several thousand plant species. Hydroxynitrile lyase (HNL), a key enzyme of this process, cleaves a cyanohydrin precursor into hydrocyanic acid and the corresponding aldehyde or ketone. The reverse reaction constitutes an important tool in industrial biocatalysis. Different classes of hydroxynitrile lyases have convergently evolved from FAD-dependent oxidoreductases, α/β hydrolases and alcohol dehydrogenases. The FAD-dependent hydroxynitrile lyases (FAD-HNLs) carry a flavin cofactor whose redox properties appear to be unimportant for catalysis. The high resolution crystal structure of the hydroxynitrile lyase from almond (Prunus amygdalus), PaHNL1, has been determined and constitutes the first 3D structure of an FAD-HNL. The overall fold and the architecture of the active site region showed that PaHNL1 belongs to the glucose-methanol-choline-oxidoreductase family, with closest structural similarity to glucose oxidase. There is strong evidence from the sequence and the reaction product that FAD-dependent hydroxynitrile lyases have evolved from an aryl alcohol oxidizing precursor. Structures of PaHNL1 in complex with its natural substrate mandelonitrile and the competitive inhibitor benzyl alcohol provided insight into the residues involved in catalysis and a mechanism without participation of the cofactor could be suggested. Although the catalytic residues differ between the α/β-hydrolase-type HNLs and PaHNL1, common general features relevant for hydroxynitrile lyase activity could be proposed. (author)

  16. RNF12 activates Xist and is essential for X chromosome inactivation

    NARCIS (Netherlands)

    T.S. Barakat (Tahsin Stefan); N. Gunhanlar (Nilhan); C.G. Pardo (Cristina Gontan); E. Mulugeta (Eskeatnaf); M. Ghazvini (Mehrnaz); R. Boers (Ruben); A. Kenter (Annegien); E. Rentmeester (Eveline); J.A. Grootegoed (Anton); J.H. Gribnau (Joost)

    2011-01-01

    textabstractIn somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators

  17. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system.

    Science.gov (United States)

    Oh, Yuri; Xu, Xu; Kim, Ji Young; Park, Jong Moon

    2015-08-01

    Brown seaweed contains up to 67% of carbohydrates by dry weight and presents high potential as a polysaccharide feedstock for biofuel production. To effectively use brown seaweed as a biomass, degradation of alginate is the major challenge due to its complicated structure and low solubility in water. This study focuses on the isolation of alginate degrading bacteria, determining of the optimum fermentation conditions, as well as comparing the conventional single fermentation system with the two-phase fermentation system which is separately using alginate and mannitol extracted from Laminaria japonica. Maximum yield of organic acids production and volatile solids reduction obtained were 0.516 g/g and 79.7%, respectively, using the two-phase fermentation system in which alginate fermentation was carried out at pH 7 and mannitol fermentation at pH 8. The two-phase fermentation system increased the yield of organic acids production by 1.14 times and led to a 1.45-times reduction of VS when compared to the conventional single fermentation system at pH 8. The results show that the two-phase fermentation system improved the utilization of alginate by separating alginate from mannitol leading to enhanced alginate lyase activity. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Similarities in the action patterns of exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans.

    Science.gov (United States)

    Lee, M; Miller, L; Macmillan, J D

    1970-09-01

    Exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans were assayed simultaneously in the same reaction mixture which contained a highly esterified pectin, polymethyl polygalacturonic acid methyl glycoside. Lyase is specific for unesterified galacturonide residues and cannot degrade this substrate in the absence of the esterase. The rate for esterase was twice the rate for lyase throughout the entire course of the combined reaction. Thus, the molar ratio of the two enzyme activities was the same since the product of the lyase is an unsaturated digalacturonic acid containing two free carboxyl groups. Since clostridial exopolygalacturonate lyase is known to degrade polygalacturonate in a linear manner beginning from the reducing ends of polygalacturonate chains, it was apparent that clostridial pectinesterase must hydrolyze methyl groups in highly esterified pectins with an action pattern similar to that of the lyase. Otherwise it would be impossible for the two enzyme rates to have corresponded on the basis of a 2:1 ratio.

  19. A single amino acid residue, Ala 105, confers 16alpha-hydroxylase activity to human cytochrome P450 17alpha-hydroxylase/17,20 lyase.

    Science.gov (United States)

    Swart, Amanda C; Storbeck, Karl-Heinz; Swart, Pieter

    2010-04-01

    In adrenal steroidogenesis, CYP17 catalyses the 17alpha-hydroxylation of pregnenolone and progesterone and the subsequent 17,20-lyase reaction, yielding adrenal androgens. The enzyme exhibits distinctly different selectivities towards these substrates in various species. CYP17 has also been shown to exhibit 16alpha-hydroxylase activity towards progesterone in some species, with only human and chimp CYP17 catalysing the biosynthesis of substantial amounts of 16-OHprogesterone. The 16alpha-hydroxylase activity was investigated by introducing an Ala105Leu substitution into human CYP17. The converse mutation, Leu105Ala was introduced into the baboon, goat and pig enzymes. Wt human CYP17 converted approximately 30% progesterone to 16-OHprogesterone while the Ala105Leu mutant converted negligible amounts to 16-OHprogesterone ( approximately 9%), comparable to wt CYP17 of the other three species when expressed in COS-1 cells. The ratio of 17-hydroxylated products to 16-OHprogesterone of human CYP17 was 2.7 and that of the mutant human construct 10.5. Similar ratios were observed for human and goat CYP17 with the corresponding Ala or Leu residues. Although the Leu105Ala mutation of both baboon and pig CYP17 exhibited the same trend regarding the ratios, the rate of progesterone conversion was reduced. Coexpression with cytochrome b(5) significantly decreased the ratio of 17-hydroxylated products to 16-OHprogesterone in the Leu105 constructs, while effects were negligible with Ala at this position. Homology models show that Ala105 faces towards the active pocket in the predicted B'-C domain of CYP17. The smaller residue allows more flexibility of movement in the active pocket than Leu, presenting both the C16 and C17 of progesterone to the iron-oxy complex. 2010 Elsevier Ltd. All rights reserved.

  20. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni

    2003-01-01

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units...... to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general. Udgivelsesdato: 2003-Jun-15...

  1. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-30

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  2. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    Science.gov (United States)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  3. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    Science.gov (United States)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  4. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Otero, José Manuel; Olivares Hernandez, Roberto

    2009-01-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards...

  5. Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes

    Directory of Open Access Journals (Sweden)

    Hughes Richard K

    2007-11-01

    Full Text Available Abstract Background Hydroperoxide lyase (HPL is a key enzyme in plant oxylipin metabolism that catalyses the cleavage of polyunsaturated fatty acid hydroperoxides produced by the action of lipoxygenase (LOX to volatile aldehydes and oxo acids. The synthesis of these volatile aldehydes is rapidly induced in plant tissues upon mechanical wounding and insect or pathogen attack. Together with their direct defence role towards different pathogens, these compounds are believed to play an important role in signalling within and between plants, and in the molecular cross-talk between plants and other organisms surrounding them. We have recently described the targeting of a seed 9-HPL to microsomes and putative lipid bodies and were interested to compare the localisation patterns of both a 13-HPL and a 9/13-HPL from Medicago truncatula, which were known to be expressed in leaves and roots, respectively. Results To study the subcellular localisation of plant 9/13-HPLs, a set of YFP-tagged chimeric constructs were prepared using two M. truncatula HPL cDNAs and the localisation of the corresponding chimeras were verified by confocal microscopy in tobacco protoplasts and leaves. Results reported here indicated a distribution of M.truncatula 9/13-HPL (HPLF between cytosol and lipid droplets (LD whereas, as expected, M.truncatula 13-HPL (HPLE was targeted to plastids. Notably, such endocellular localisation has not yet been reported previously for any 9/13-HPL. To verify a possible physiological significance of such association, purified recombinant HPLF was used in activation experiments with purified seed lipid bodies. Our results showed that lipid bodies can fully activate HPLF. Conclusion We provide evidence for the first CYP74C enzyme, to be targeted to cytosol and LD. We also showed by sedimentation and kinetic analyses that the association with LD or lipid bodies can result in the protein conformational changes required for full activation of the enzyme

  6. Critical role of arginine 160 of the EutB protein subunit for active site structure and radical catalysis in coenzyme B12-dependent ethanolamine ammonia-lyase.

    Science.gov (United States)

    Sun, Li; Groover, Olivia A; Canfield, Jeffrey M; Warncke, Kurt

    2008-05-20

    The protein chemical, kinetic, and electron paramagnetic resonance (EPR) and electron spin-echo envelope modulation (ESEEM) spectroscopic properties of ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium with site-directed mutations in a conserved arginine residue (R160) of the active site containing EutB protein subunit have been characterized. R160 was predicted by a comparative model of EutB to play a critical role in protein structure and catalysis [Sun, L., and Warncke, K. (2006) Proteins: Struct., Funct., Bioinf. 64, 308-319]. R160I and R160E mutants fail to assemble into an EAL oligomer that can be isolated by the standard enzyme purification procedure. The R160K and R160A mutants assemble, but R160A EAL is catalytically inactive and reacts with substrates to form magnetically isolated Co(II) and unidentified radical species. R160A EAL activity is resurrected by externally added guanidinium to 2.3% of wild-type EAL. R160K EAL displays catalytic turnover of aminoethanol, with a 180-fold lower value of k(cat)/ K(M) relative to wild-type enzyme. R160K EAL also forms Co(II)-substrate radical pair intermediate states during turnover on aminoethanol and (S)-2-aminopropanol substrates. Simulations of the X-band EPR spectra show that the Co(II)-substrate radical pair separation distances are increased by 2.1 +/- 1.0 A in R160K EAL relative to wild-type EAL, which corresponds to the predicted 1.6 A change in arginine versus lysine side chain length. 14N ESEEM from a hyperfine-coupled protein nitrogen in wild type is absent in R160K EAL, which indicates that a guanidinium 14N of R160 interacts directly with the substrate radical through a hydrogen bond. ESEEM of the 2H-labeled substrate radical states in wild-type and R160K EAL shows that the native separation distances among the substrate C1 and C2, and coenzyme C5' reactant centers, are conserved in the mutant protein. The EPR and ESEEM measurements evince a protein-mediated force on the C5'-methyl center

  7. Phenolics and Flavonoids Compounds, Phenylanine Ammonia Lyase and Antioxidant Activity Responses to Elevated CO2 in Labisia pumila (Myrisinaceae

    Directory of Open Access Journals (Sweden)

    Hawa Z.E. Jaafar

    2012-05-01

    Full Text Available A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO2 (400, 800 and 1,200 µmol·mol−1 on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO2 concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO2 levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO2 (1,200 µmol·mol−1 exposure, gallic acid increased tremendously, especially in var. alata and pumila (101–111%, whilst a large quercetin increase was noted in var. lanceolata (260%, followed closely by alata (201%. Kaempferol, although detected under ambient CO2 conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100% and pumila (298~433%. Meanwhile, pyragallol and rutin were only seen in var. alata (810 µg·g−1 DW and pumila (25 µg·g−1 DW, respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO2 enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO2 levels implying the possible improvement of health-promoting quality of Malaysian L. pumila

  8. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Elias Abdou

    2017-05-01

    Full Text Available For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL, were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work

  9. Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons.

    Science.gov (United States)

    Rueckemann, Jon W; DiMauro, Audrey J; Rangel, Lara M; Han, Xue; Boyden, Edward S; Eichenbaum, Howard

    2016-02-01

    The mechanisms that enable the hippocampal network to express the appropriate spatial representation for a particular circumstance are not well understood. Previous studies suggest that the medial entorhinal cortex (MEC) may have a role in reproducibly selecting the hippocampal representation of an environment. To examine how ongoing MEC activity is continually integrated by the hippocampus, we performed transient unilateral optogenetic inactivations of the MEC while simultaneously recording place cell activity in CA1. Inactivation of the MEC caused a partial remapping in the CA1 population without diminishing the degree of spatial tuning across the active cell assembly. These changes remained stable irrespective of intermittent disruption of MEC input, indicating that while MEC input is integrated over long time scales to bias the active population, there are mechanisms for stabilizing the population of active neurons independent of the MEC. We find that MEC inputs to the hippocampus shape its ongoing activity by biasing the participation of the neurons in the active network, thereby influencing how the hippocampus selectively represents information. © 2015 Wiley Periodicals, Inc.

  10. Inactivation efficacy of non-thermal plasma activated solutions against Newcastle disease virus.

    Science.gov (United States)

    Su, Xia; Tian, Ying; Zhou, Hongzhuan; Li, Yinglong; Zhang, Zhenhua; Jiang, Beiyu; Yang, Bing; Zhang, Jue; Fang, Jing

    2018-02-23

    In recent years, plasma activated solution (PAS) have made a good progress in the disinfection of medical device, tooth whitening, fruit preservation. In this study, we investigated the inactivation efficacy of Newcastle disease virus by PAS. Water, 0.9% NaCl and 0.3% H 2 O 2 were excited by plasma to obtain the corresponding solutions PAS(H 2 O), PAS(NaCl) and PAS(H 2 O 2 ). The complete inactivation of virus after PAS treatment for 30 min was confirmed by the embryo lethality assay (ELA) and hemagglutination (HA) test. Scanning electron microscopy (SEM) results showed that the morphology of the viral particle changed under PAS treatments. The total protein concentration of virus decreased by bradford protein assay due to PAS treatment. The nucleic acid integrity assay demonstrated that viral RNA degraded into smaller fragments. Moreover, the physicochemical properties of PAS including ORP, electric conductivity, H 2 O 2 concentration and electron spin resonance spectra analysis indicated that reactive oxygen and nitrogen species play a major role in the virus inactivation. Therefore, PAS, as an environmentally friendly method, would be a promising alternative strategy for application in the poultry industries. Importance Newcastle disease (ND) as an infectious viral disease of avian species caused significant economic losses to domestic animal and poultry industry. The traditional chemical sanitizers, such as chlorine-based products, are associated with risks of by-products formation with carcinogenic effect and environmental pollution. Based on these, plasma activated water as a green disinfection product is a promising alternative applied in stock farming and sterilization in hospitals and public places. In this study, we explored the inactivation efficacy of different plasma activated solution (PAS) against NDV and the possible mechanism between PAS and NDV. Our results demonstrated that reactive oxygen and nitrogen species detected in PAS, including short

  11. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1

    DEFF Research Database (Denmark)

    Einholm, Anja P; Pedersen, Katrine E; Wind, Troels

    2003-01-01

    XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases......, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target. Udgivelsesdato: 2003-Aug-1...

  12. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    Science.gov (United States)

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Inactivation of staphylococcal virulence factors using a light-activated antimicrobial agent

    Directory of Open Access Journals (Sweden)

    Wilson Michael

    2009-10-01

    Full Text Available Abstract Background One of the limitations of antibiotic therapy is that even after successful killing of the infecting microorganism, virulence factors may still be present and cause significant damage to the host. Light-activated antimicrobials show potential for the treatment of topical infections; therefore if these agents can also inactivate microbial virulence factors, this would represent an advantage over conventional antibiotic therapy. Staphylococcus aureus produces a wide range of virulence factors that contribute to its success as a pathogen by facilitating colonisation and destruction of host tissues. Results In this study, the ability of the light-activated antimicrobial agent methylene blue in combination with laser light of 665 nm to inactivate staphylococcal virulence factors was assessed. A number of proteinaceous virulence factors were exposed to laser light in the presence of methylene blue and their biological activities re-determined. The activities of V8 protease, α-haemolysin and sphingomyelinase were shown to be inhibited in a dose-dependent manner by exposure to laser light in the presence of methylene blue. Conclusion These results suggest that photodynamic therapy could reduce the harmful impact of preformed virulence factors on the host.

  14. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  15. The ppuI-rsaL-ppuR quorum-sensing system regulates cellular motility, pectate lyase activity, and virulence in potato opportunistic pathogen Pseudomonas sp. StFLB209.

    Science.gov (United States)

    Kato, Taro; Morohoshi, Tomohiro; Someya, Nobutaka; Ikeda, Tsukasa

    2015-01-01

    Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209.

  16. Isocitrate lyase and the glyoxylate cycle. Progress report, February 15, 1989--February 15, 1990

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, B.A.

    1990-12-31

    Active site modifications of isocitrate lyase (icl) from Escherichia coli are described. In addition directed mutagenesis of icl gene are detailed aimed at varying the charge yet conserving the structure of the enzymes active site.

  17. Activation and Inactivation of Primary Human Immunodeficiency Virus Envelope Glycoprotein Trimers by CD4-Mimetic Compounds

    Science.gov (United States)

    Madani, Navid; Princiotto, Amy M.; Zhao, Connie; Jahanbakhshsefidi, Fatemeh; Mertens, Max; Herschhorn, Alon; Melillo, Bruno; Smith, Amos B.

    2016-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) entry into cells is mediated by the viral envelope glycoproteins (Env), a trimer of three gp120 exterior glycoproteins, and three gp41 transmembrane glycoproteins. The metastable Env is triggered to undergo entry-related conformational changes when gp120 binds sequentially to the receptors, CD4 and CCR5, on the target cell. Small-molecule CD4-mimetic compounds (CD4mc) bind gp120 and act as competitive inhibitors of gp120-CD4 engagement. Some CD4mc have been shown to trigger Env prematurely, initially activating Env function, followed by rapid and irreversible inactivation. Here, we study CD4mc with a wide range of anti-HIV-1 potencies and demonstrate that all tested CD4mc are capable of activating as well as inactivating Env function. Biphasic dose-response curves indicated that the occupancy of the protomers in the Env trimer governs viral activation versus inactivation. One CD4mc bound per Env trimer activated HIV-1 infection. Envs with two CD4mc bound were activated for infection of CD4-negative, CCR5-positive cells, but the infection of CD4-positive, CCR5-positive cells was inhibited. Virus was inactivated when all three Env protomers were occupied by the CD4mc, and gp120 shedding from the Env trimer was increased in the presence of some CD4mc. Env reactivity and the on rates of CD4mc binding to the Env trimer were found to be important determinants of the potency of activation and entry inhibition. Cross-sensitization of Env protomers that do not bind the CD4mc to neutralization by an anti-V3 antibody was not evident. These insights into the mechanism of antiviral activity of CD4mc should assist efforts to optimize their potency and utility. IMPORTANCE The trimeric envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) mediate virus entry into host cells. Binding to the host cell receptors, CD4 and CCR5, triggers changes in the conformation of the HIV-1 envelope glycoprotein trimer important

  18. Site I Inactivation Impacts Calmodulin Calcium Binding and Activation of Bordetella pertussis Adenylate Cyclase Toxin.

    Science.gov (United States)

    Johns, Christian W; Finley, Natosha L

    2017-11-30

    Site I inactivation of calmodulin (CaM) was used to examine the importance of aspartic acid 22 at position 3 in CaM calcium binding, protein folding, and activation of the Bordetella pertussis adenylate cyclase toxin domain (CyaA-ACD). NMR calcium titration experiments showed that site I in the CaM mutant (D22A) remained largely unperturbed, while sites II, III, and IV exhibited calcium-induced conformational changes similar to wild-type CaM (CaMWt). Circular dichroism analyses revealed that D22A had comparable α -helical content to CaMWt, and only modest differences in α -helical composition were detected between CaMWt-CyaA-ACD and D22A-CyaA-ACD complexes. However, the thermal stability of the D22A-CyaA-ACD complex was reduced, as compared to the CaMWt-CyaA-ACD complex. Moreover, CaM-dependent activity of CyaA-ACD decreased 87% in the presence of D22A. Taken together, our findings provide evidence that D22A engages CyaA-ACD, likely through C -terminal mediated binding, and that site I inactivation exerts functional effects through the modification of stabilizing interactions that occur between N -terminal CaM and CyaA-ACD.

  19. Modulation of cyanoalanine synthase and O-acetylserine (thiol) lyases A and B activity by beta-substituted alanyl and anion inhibitors.

    Science.gov (United States)

    Warrilow, Andrew G S; Hawkesford, Malcolm J

    2002-03-01

    The reaction mechanisms of three enzymes belonging to a single gene family are compared: a cyanoalanine synthase and two isoforms of O-acetylserine (thiol) lyase (O-ASTL) isolated from spinach (Spinacea oleracea L. cv. Medina). O-ASTL represents a major regulatory point in the S-assimilatory pathway, and the related cyanoalanine synthase, which is specific to the mitochondrial compartment, has evolved an independent function of cyanide detoxification. All three enzymes catalysed both the cysteine synthesis and cyanoalanine synthesis reactions although with different efficiencies, and which may be explained by a single amino acid substitution in the substrate-binding pocket of the enzyme. Substituted alanine and nucleophillic inhibitors caused predominantly non-competitive inhibition, indicating binding to both E- and F-forms of the enzyme in a bi-bi ping-pong kinetic model. Michaelis-Menten kinetics were observed when the alanyl substrate was varied in the presence and absence of inhibitors. The use of alanyl inhibitors has shown that the alanyl half-cycle of both the cysteine synthesis and cyanoalanine synthesis reactions of cyanoalanine synthase and O-acetylserine (thiol) lyases are similar. This is in contrast to the results observed with nucleophillic inhibitors, which have shown that the mechanisms of anion binding and processing differ between cyanoalanine synthase and O-ASTLs.

  20. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Directory of Open Access Journals (Sweden)

    Arpiar eSaunders

    2012-07-01

    Full Text Available Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs whose transgene expression is activated by Cre (Cre-On. Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (Cre-Off and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery.

  1. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  2. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.

    Science.gov (United States)

    Liu, Xiaoqiang; Li, Feng; Tang, Jiuyou; Wang, Weihong; Zhang, Fengxia; Wang, Guodong; Chu, Jinfang; Yan, Cunyu; Wang, Taoqing; Chu, Chengcai; Li, Chuanyou

    2012-01-01

    The allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA) overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E)-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo). The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.

  3. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Liu

    Full Text Available The allene oxide synthase (AOS and hydroperoxide lyase (HPL branches of the oxylipin pathway, which underlie the production of jasmonates and aldehydes, respectively, function in plant responses to a range of stresses. Regulatory crosstalk has been proposed to exist between these two signaling branches; however, there is no direct evidence of this. Here, we identified and characterized a jasmonic acid (JA overproduction mutant, cea62, by screening a rice T-DNA insertion mutant library for lineages that constitutively express the AOS gene. Map-based cloning was used to identify the underlying gene as hydroperoxide lyase OsHPL3. HPL3 expression and the enzyme activity of its product, (E-2-hexenal, were depleted in the cea62 mutant, which resulted in the dramatic overproduction of JA, the activation of JA signaling, and the emergence of the lesion mimic phenotype. A time-course analysis of lesion formation and of the induction of defense responsive genes in the cea62 mutant revealed that the activation of JA biosynthesis and signaling in cea62 was regulated in a developmental manner, as was OsHPL3 activity in the wild-type plant. Microarray analysis showed that the JA-governed defense response was greatly activated in cea62 and this plant exhibited enhanced resistance to the T1 strain of the bacterial blight pathogen Xanthomonasoryzaepvoryzae (Xoo. The wounding response was attenuated in cea62 plants during the early stages of development, but partially recovered when JA levels were elevated during the later stages. In contrast, the wounding response was not altered during the different developmental stages of wild-type plants. These findings suggest that these two branches of the oxylipin pathway exhibit crosstalk with regards to biosynthesis and signaling and cooperate with each other to function in diverse stress responses.

  4. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    Science.gov (United States)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  5. Screening of alginate lyase-excreting microorganisms from the surface of brown algae.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Zhang, Zhaojie; Wang, Xuejiang; Qin, Song; Yan, Peisheng

    2017-12-01

    Alginate lyase is a biocatalyst that degrades alginate to produce oligosaccharides, which have many bioactive functions and could be used as renewable biofuels. Here we report a simple and sensitive plate assay for screening alginate lyase-excreting microorganisms from brown algae. Brown algae Laminaria japonica, Sargassum horneri and Sargassum siliquatrum were cultured in sterile water. Bacteria growing on the surface of seaweeds were identified and their capacity of excreting alginate lyase was analyzed. A total of 196 strains were recovered from the three different algae samples and 12 different bacterial strains were identified capable of excreting alginate lyases. Sequence analysis of the 16S rRNA gene revealed that these alginate lyase-excreting strains belong to eight genera: Paenibacillus (4/12), Bacillus (2/12), Leclercia (1/12), Isoptericola (1/12), Planomicrobium (1/12), Pseudomonas (1/12), Lysinibacillus (1/12) and Sphingomonas (1/12). Further analysis showed that the LJ-3 strain (Bacillus halosaccharovorans) had the highest enzyme activity. To our best knowledge, this is the first report regarding alginate lyase-excreting strains in Paenibacillus, Planomicrobium and Leclercia. We believe that our method used in this study is relatively easy and reliable for large-scale screening of alginate lyase-excreting microorganisms.

  6. Azospirillum irakense Produces a Novel Type of Pectate Lyase

    Science.gov (United States)

    Bekri, My Ali; Desair, Jos; Keijers, Veerle; Proost, Paul; Searle-van Leeuwen, Marjo; Vanderleyden, Jos; vande Broek, Ann

    1999-01-01

    The pelA gene from the N2-fixing plant-associated bacterium Azospirillum irakense, encoding a pectate lyase, was isolated by heterologous expression in Escherichia coli. Nucleotide sequence analysis of the region containing pelA indicated an open reading frame of 1,296 bp, coding for a preprotein of 432 amino acids with a typical amino-terminal signal peptide of 24 amino acids. N-terminal amino acid sequencing confirmed the processing of the protein in E. coli at the signal peptidase cleavage site predicted by nucleotide sequence analysis. Analysis of the amino acid sequence of PelA revealed no homology to other known pectinases, indicating that PelA belongs to a new pectate lyase family. PelA macerates potato tuber tissue, has an alkaline pH optimum, and requires Ca2+ for its activity. Of several divalent cations tested, none could substitute for Ca2+. Methyl-esterified pectin (with a degree of esterification up to 93%) and polygalacturonate can be used as substrates. Characterization of the degradation products formed upon incubation with polygalacturonate indicated that PelA is an endo-pectate lyase generating unsaturated digalacturonide as the major end product. Regulation of pelA expression was studied by means of a translational pelA-gusA fusion. Transcription of this fusion is low under all growth conditions tested and is dependent on the growth phase. In addition, pelA expression was found to be induced by pectin. An A. irakense pelA::Tn5 mutant still displayed pectate lyase activity, suggesting the presence of multiple pectate lyase genes in A. irakense. PMID:10198006

  7. Azospirillum irakense produces a novel type of pectate lyase.

    Science.gov (United States)

    Bekri, M A; Desair, J; Keijers, V; Proost, P; Searle-van Leeuwen, M; Vanderleyden, J; Vande Broek, A

    1999-04-01

    The pelA gene from the N2-fixing plant-associated bacterium Azospirillum irakense, encoding a pectate lyase, was isolated by heterologous expression in Escherichia coli. Nucleotide sequence analysis of the region containing pelA indicated an open reading frame of 1,296 bp, coding for a preprotein of 432 amino acids with a typical amino-terminal signal peptide of 24 amino acids. N-terminal amino acid sequencing confirmed the processing of the protein in E. coli at the signal peptidase cleavage site predicted by nucleotide sequence analysis. Analysis of the amino acid sequence of PelA revealed no homology to other known pectinases, indicating that PelA belongs to a new pectate lyase family. PelA macerates potato tuber tissue, has an alkaline pH optimum, and requires Ca2+ for its activity. Of several divalent cations tested, none could substitute for Ca2+. Methyl-esterified pectin (with a degree of esterification up to 93%) and polygalacturonate can be used as substrates. Characterization of the degradation products formed upon incubation with polygalacturonate indicated that PelA is an endo-pectate lyase generating unsaturated digalacturonide as the major end product. Regulation of pelA expression was studied by means of a translational pelA-gusA fusion. Transcription of this fusion is low under all growth conditions tested and is dependent on the growth phase. In addition, pelA expression was found to be induced by pectin. An A. irakense pelA::Tn5 mutant still displayed pectate lyase activity, suggesting the presence of multiple pectate lyase genes in A. irakense.

  8. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A.

    Directory of Open Access Journals (Sweden)

    Steven M Swift

    Full Text Available Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.

  9. The inactivation of single-chain urokinase-type plasminogen activator by thrombin in a plasma milieu : effect of thrombomodulin

    NARCIS (Netherlands)

    Braat, E.A.M.; Los, P.; Rijken, D.C.

    1998-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu- PA) into a virtually inactive two-chain form (tcu-PA/T), a process which may contribute to the maintenance of a fresh blood clot. We have examined the inactivation of scu-PA by thrombin in a plasma milieu to get more insight in

  10. Three Alginate Lyases from Marine Bacterium Pseudomonas fluorescens HZJ216: Purification and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liyan, Li [Ocean University of China, Qingdao, PRC; Jiang, Xiaolu [Ocean University of China, Qingdao, PRC; Wang, Peng [Ocean University of China, Qingdao, PRC; Guan, Huashi [Ocean University of China, Qingdao, PRC; Guo, Hong [ORNL

    2010-01-01

    Three alginate lyases (A, B, and C) from an alginate-degrading marine bacterium strain HZJ216 isolated from brown seaweed in the Yellow Sea of China and identified preliminarily as Pseudomonas fluorescens are purified, and their biochemical properties are described. Molecular masses of the three enzymes are determined by SDS-PAGE to be 60.25, 36, and 23 kDa with isoelectric points of 4, 4.36, and 4.59, respectively. Investigations of these enzymes at different pH and temperatures show that they are most active at pH 7.0 and 35 C. Alginate lyases A and B are stable in the pH range of 5.0 9.0, while alginate lyase C is stable in the pH range of 5.0 7.0. Among the metal ions tested, additions of Na+, K+, and Mg2+ ions can enhance the enzyme activities while Fe2+, Fe3+, Ba2+, and Zn2+ ions show inhibitory effects. The substrate specificity results demonstrate that alginate lyase C has the specificity for G block while alginate lyases A and B have the activities for both M and G blocks. It is the first report about extracellular alginate lyases with high alginate-degrading activity from P. fluorescens.

  11. Evaluation of the carbapenem inactivation method (CIM) for detecting carbapenemase activity in enterobacteria.

    Science.gov (United States)

    Aguirre-Quiñonero, A; Cano, M E; Gamal, D; Calvo, J; Martínez-Martínez, L

    2017-07-01

    The objective of this study was to evaluate the accuracy of the CIM test in the detection of carbapenemase activity in 124 strains of Enterobacteriaceae. A panel of 124 previously characterized Enterobacteriaceae was tested: 77 strains producing the following carbapenemase families: KPC (n = 14), GES (n = 22), NDM (n = 19), VIM (n = 4), IMP (n = 4) and OXA-48 (n = 14) and 47 non-carbapenemase producers. For the CIM method, an active susceptibility meropenem disc was exposed to a bacterial suspension of a test strain; when a carbapenemase is produced, the antibiotic is inactivated allowing uninhibited growth of an indicator strain after overnight incubation. A clear inhibition zone (≥20 mm) was considered indicative of no-carbapenemase activity. All KPC, NDM, VIM, IMP or OXA-48 producing strains were unequivocally detected with the CIM test. CIM false negative results were obtained with eleven Enterobacter cloacae producing GES-6. Two other E. cloacae not producing carbapenemase (one with SHV-12, one hyperproducing AmpC) were positive by the test. The sensitivity and specificity of the assay compared to those of molecular methods were 85.7% and 95.7%, respectively. The CIM method proved to be inexpensive and easy to interpret. It provided less than optimal results in the detection of GES-6 activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new inactivation kinetic model.

    Science.gov (United States)

    Agcam, E; Akyıldız, A; Evrendilek, G Akdemir

    2014-12-15

    The inactivation kinetics of pectin methyl esterase (PME) during the shelf life (4°C-180 days) of freshly squeezed orange juice samples processed by both pulsed electric fields (PEF) and heat pasteurization (HP) was evaluated in the study. The PME inactivation level after the PEF (25.26 kV/cm-1206.2 μs) and HP (90°C-20s) treatments were 93.8% and 95.2%, respectively. The PME activity of PEF-processed samples decreased or did not change, while that of HP samples increased during storage (pPME inactivation as a function of the PEF treatment conditions, and this enabled the estimation of the reaction rate constant (587.8-2375.4s(-1)), and the time required for a 90% reduction (De, 3917.7-969.5s). Quantification of the increase in PEF energy to ensure a ten-fold reduction in De (ze, 63.7 J), activation electric fields (-921.2 kV cm(-1)mol(-1)), and electrical activation energy (12.9 kJ mol(-1)) was also carried out. Consequently, PEF processing was very effective for the inactivation of PME and for providing stability of orange juice during storage. Copyright © 2014. Published by Elsevier Ltd.

  13. Coordinated action of pectinesterase and polygalacturonate lyase complex of Clostridium multifermentans.

    Science.gov (United States)

    Sheiman, M I; Macmillan, J D; Miller, L; Chase, T

    1976-05-01

    The polygalacturonate lyase and pectinesterase activities of Clostridium multifermentans, both produced extracellularly when the organism grows on pectin or polygalacturonate, have been suggested to be associated in a single complex. Both enzymic sites act on their respective substrates by single-chain action patterns, as shown by equivalent release of terminal tritium label and total product throughout the reaction. From these results, the Km and V of the lyase, and the amount of lyase activity present, we calculate the steady-state concentration of lyase substrate expected during action of the two sites on pectin if the sites are independent. No such steady-state concentration of lyase substrate was observed. Therefore, we conclude that the two types of active site act in a coordinated manner; the polysaccharide chain passes from the esterase site to the lyase site without intermediate dissociation and rebinding. This 'molecular disassembly line' constituted by the two sites may represent a system of general significance in synthesis and degradation of biological polymers.

  14. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands.

    Science.gov (United States)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni; Schack, Lotte; Wind, Troels; Kenney, John M; Andreasen, Peter A

    2003-06-15

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.

  15. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  16. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    Science.gov (United States)

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Calmodulin-activated cyclic nucleotide phosphodiesterase from brain. Relationship of subunit structure to activity assessed by radiation inactivation

    International Nuclear Information System (INIS)

    Kincaid, R.L.; Kemdner, E.; Manganiello, V.C.; Osborne, J.C.; Vaughan, M.

    1981-01-01

    The apparent target sizes of the basal and calmodulin-dependent activities of calmodulin-activated phosphodiesterase from bovine brain were estimated using target theory analysis of data from radiation inactivation experiments. Whether crude or highly purified samples were irradiated, the following results were obtained. Low doses of radiation caused a 10 to 15% increase in basal activity, which, with further irradiation, decayed with an apparent target size of approx.60,000 daltons. Calmodulin-dependent activity decayed with an apparent target size of approx.105,000 daltons. The percentage stimulation of enzyme activity by calmodulin decreased markedly as a function of radiation dosage. These observations are consistent with results predicted by computer-assisted modeling based on the assumptions that: 1) the calmodulin-activated phosphodiesterase exists as a mixture of monomers which are fully active in the absence of calmodulin and dimers which are inactive in the absence of calmodulin; 2) in the presence of calmodulin, a dimer exhibits activity equal to that of two monomers; 3) on radiation destruction of a dimer, an active monomer is generated. This monomer-dimer hypothesis provides a plausible explanation for and definition of basal and calmodulin-dependent phosphodiesterase activity

  18. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization.

    Directory of Open Access Journals (Sweden)

    Seung-Beom Hong

    2010-12-01

    Full Text Available Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN.TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation.Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.

  19. Reversible pH-dependent activation/inactivation of CF(1-ATPase of spinach chloroplasts

    Directory of Open Access Journals (Sweden)

    A. P. Khomochkin

    2017-08-01

    Full Text Available The aim of the work was to study the reverse pH-dependent regulation of the enzymatic activity of the catalytic part of ATP synthase (EC 3.6.3.14 of chloroplast – coupling factor CF1. It was shown that the short-term incubation of isolated CF1 in the media with pH 4.5 or 3.5 leads to inactivation of Ca2+-ATPase, which is rapidly (t1/2 ~ 1 min restored in the medium containing 0.5-10 mM bicarbonate at pH 7.8. After acid treatment, the rate of Mg2+-ATPase reaction was also stimulated in the presence of 1 mM bicarbonate (рН 7.8; 37 °С. The increase in Ca2+– and Mg2+-АТР activity of CF1 associated with the addition of NaHCO3 solution was completely eliminated after the introduction of 50 mM acetazolamide – a specific inhibitor of carbonic anhydrase. The obtained results suggest the existence of the bound bicarbonate in the CF1 structure, which apparently participates in proton transfer.

  20. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area

    Science.gov (United States)

    Jo, Yong Sang; Lee, Jane; Mizumori, Sheri J.Y.

    2013-01-01

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure that is known as one of the brain areas that represent expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells that were activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses that were elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides the information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards. PMID:23658156

  1. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    Science.gov (United States)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  2. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    International Nuclear Information System (INIS)

    Xiong, Qing; Liu, Hongbin; Xu, Le; Wang, Xia; Zhu, Qunlin; Lu, Weiping; Chen, Qiang; Zeng, Xue; Yi, Ping

    2017-01-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H 2 O 2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H 2 O 2aq (aq indicates an aqueous species). Further analysis shows that the ·OH aq radicals play an important role in the inactivation process. The ·OH aq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OH aq production increases and enhances the inactivation efficiency of C. glabrata . Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H 2 O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOH aq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein. (paper)

  3. Carbohydrates and dehydration inactivation of Lactobacillus plantarum: The role of moisture distribution and water activity.

    NARCIS (Netherlands)

    Linders, L.J.M.; Jong, de G.I.W.; Meerdink, G.; Riet, van 't K.

    1997-01-01

    Sucrose, maltose, lactose, trehalose, glucose, fructose and sorbitol were tested for their ability to minimize the dehydration inactivation of Lactobacillus plantarum during fluidized bed drying. Desorption isotherms were measured for starch and L. plantarum, for binary mixtures containing starch

  4. Rhamnogalacturonan lyase reveals a unique three-domain modular structure for polysaccharide lyase family 4

    DEFF Research Database (Denmark)

    McDonough, Michael A.; Kadirvelraj, Renuka; Harris, Pernille

    2004-01-01

    Rhamnogalacturonan lyase (RG-lyase) specifically recognizes and cleaves alpha-1,4 glycosidic bonds between L-rhamnose and D-galacturonic acids in the backbone of rhamno galacturonan-I, a major component of the plant cell wall polysaccharide, pectin. The three-dimensional structure of RG-lyase from...... Aspergillus aculeatus has been determined to 1.5 Angstrom resolution representing the first known structure from polysaccharide lyase family 4 and of an enzyme with this catalytic specificity. The 508-amino acid polypeptide displays a unique arrangement of three distinct modular domains. Each domain shows...

  5. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Directory of Open Access Journals (Sweden)

    Jensen GS

    2017-08-01

    Full Text Available Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™ cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors.Results: Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response.Conclusion: The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that

  6. Inactivation kinetics of invertase in honey and honey-glucose syrup formulations: effects of temperature and water activity.

    Science.gov (United States)

    Sramek, Martin; Woerz, Benjamin; Horn, Helmut; Weiss, Jochen; Kohlus, Reinhard

    2017-03-01

    The high viscosity and stickiness of honey in its natural state causes handling difficulties, therefore the demand for honey powder is continuously increasing. Powder preparation has to be performed gently because of the thermo- and oxidation- sensitive nature of honey. The aim of this study was to determine the degradation of invertase during drying as an indirect measure of the retention of valuable honey nutrients. The reaction kinetics were estimated in polyfloral honey and honey-glucose syrup (GS) formulation and the impact of temperature (40-70°C) and water activity (a w 0.23-0.81) was established. The honey-GS formulation (55:45 w/w) was intended for the preparation of high-grade honey powders using the vacuum-drying method. Invertase inactivation at temperatures below 60°C followed first-order kinetics. At 60°C high dilution (a w 0.81) and at 70°C, heterogeneous inactivation behaviour was observed. The best fit of invertase heterogeneous inactivation kinetic was achieved with the Cerf two-fraction model. The GS addition showed a stabilizing effect on invertase during thermal degradation. The data on invertase inactivation gathered here can be utilized to select optimal parameters for honey vacuum-drying and other thermal processes in order to achieve maximum invertase retention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Prenatal diagnosis in adenylosuccinate lyase deficiency

    NARCIS (Netherlands)

    Marie, S.; Flipsen, J. W.; Duran, M.; Poll-The, B. T.; Beemer, F. A.; Bosschaart, A. N.; Vincent, M. F.; van den Berghe, G.

    2000-01-01

    Adenylosuccinate lyase deficiency, an autosomal recessive inborn error of purine synthesis, provokes accumulation in body fluids of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Most patients display severe

  8. Isolation of protoplasts from undaria pinnatifida by alginate lyase digestion

    Science.gov (United States)

    Xiaoke, Hu; Xiaolu, Jiang; Huashi, Guan

    2003-04-01

    The aim of this study is to isolate protoplasts from Undaria pinnatifida. Protoplasts of the alga were isolated enzymatically by using alginate lyase, which was prepared by fermenting culture of a strain Vibrio sp. 510. Monofacterial method was applied for optimizing digestion condition. The optimum condition for protoplast preparation is enzymatic digestion at 28°C for 2h using alginate lyase at the concentration of 213.36 U (8 mL) every 0.5g fresh thalline with NaCl 50 and at the shaking speed of 150 r min-1 during digestion. The protoplast yield can reach 2.62±0.09 million per 0.5 g fresh leave under the optimum condition. The enzyme activity is inhibited by Ca2+ and slightly enhanced by Fe2+ and Mn2+ at concentrations of 0.05, 0.08 and 0.10 mol L-1.

  9. Utilization of Aspergillus oryzae to produce pectin lyase from various agro-industrial residues

    Directory of Open Access Journals (Sweden)

    Safia Koser

    2014-07-01

    Full Text Available The present study was aimed to investigate the culture influence on pectin lyase production potential of fungal strain Aspergillus oryzae. The enzyme profile of A. oryzae showed highest activity of pectin lyase after 3rd day of incubation on lemon peel waste under solid state fermentation conditions. To induce the pectin lyase synthesis capability of A. oryzae at optimal level various culture variables including physical and nutritional parameters were optimized by adopting classical optimization technique. Therefore, through fermentation process optimization the production of pectin lyase was substantially induced up to the level of 875 U/mL, when fermentation medium of lemon peel waste inoculated with 5 mL spore suspension of A. oryzae. The optimal fermentation conditions for maximum pectin lyase yield were as: optimum pH 5, 70% moisture level and incubated at 40 °C in addition with 1% sterile glucose solution as readily available carbon source and 0.2% yeast extract as an inexpensive nitrogen supplement (1%. The results obtained in current investigation so far demonstrated that culture conditions have great influence on the pectin lyase production potential of A. oryzae.

  10. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  11. Hydrogen Peroxide Treatment and the Phenylpropanoid Pathway Precursors Feeding Improve Phenolics and Antioxidant Capacity of Quinoa Sprouts via an Induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases Activities

    Directory of Open Access Journals (Sweden)

    Michał Świeca

    2016-01-01

    Full Text Available Hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding affected the antioxidant capacity of quinoa sprouts. Compared to the control, total phenolics content was significantly increased by treatment of control sprouts with 50 mM and 200 mM H2O2—an elevation of about 24% and 28%, respectively. The highest increase of flavonoids content was found for the sprouts treated with 200 mM H2O2 obtained from seeds fed with shikimic acid. All the studied modifications increased the antioxidant potential of sprouts (at least by 50% compared to control. The highest reducing power was found for the sprouts treated with 200 mM H2O2 obtained by phenylalanine feeding (5.03 mg TE/g DW and those obtained from the seeds fed with tyrosine (5.26 mg TE/g DW. The activities of L-tyrosine (TAL and L-phenylalanine (PAL ammonia-lyases were strongly affected by germination time as well as the applied modification of sprouting. On the 3rd day the highest PAL activity was determined for both untreated and induced with 50 mM H2O2 sprouts obtained by phenylalanine feeding. H2O2 induced TAL activity; the highest TAL activity was determined for 3-day-old sprouts induced with 200 mM H2O2 obtained from seeds fed with phenylalanine.

  12. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su In; Kim, Hee Sook [Kyungsung Univ., Busan (Korea, Republic of). Dept. of Food Science and Biotechnology; Choi, Sung Hee; Lee, Eun Yeol [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Chemical Engineering

    2012-09-15

    A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40 C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate. (orig.)

  13. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation.

    Science.gov (United States)

    Ramsden, Christopher A; Riley, Patrick A

    2014-04-15

    Tyrosinase is an enzyme widely distributed in the biosphere. It is one of a group of proteins with a strongly conserved bicopper active centre able to bind molecular oxygen. Tyrosinase manifests two catalytic properties; monooxygenase and oxidase activity. These actions reflect the oxidation states of the active centre. Tyrosinase has four possible oxidation states and the details of their interaction are shown to give rise to the unusual kinetic behaviour of the enzyme. The resting state of the enzyme is met-tyrosinase [Cu(II)2] and activation, associated with a 'lag period', involves reduction to deoxy-tyrosinase [Cu(I)2] which is capable of binding dioxygen to form oxy-tyrosinase [Cu(II)2·O2]. Initially the conversion of met- to deoxy-tyrosinase is brought about by a catechol that is indirectly formed from an ortho-quinone product of tyrosinase action. The primary function of the enzyme is monooxygenation of phenols to ortho-quinones by oxy-tyrosinase. Inactivation of the enzyme results from monooxygenase processing of catechols which can lead to reductive elimination of one of the active-site copper ions and conversion of oxy-tyrosinase to the inactive deact-tyrosinase [Cu(II)Cu(0)]. This review describes the tyrosinase pathways and the role of each oxidation state in the enzyme's oxidative transformations of phenols and catechols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  15. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls

  16. Inactivated probioticBacillus coagulansGBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086

  17. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Directory of Open Access Journals (Sweden)

    Natalija Budimir

    Full Text Available BACKGROUND: The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV vaccine, that can target conserved internal antigens such as the nucleoprotein (NP and/or matrix protein (M1 need to be explored. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs, protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. CONCLUSION/SIGNIFICANCE: The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane

  18. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.

    Science.gov (United States)

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity and full immunogenicity of the vaccine.

  19. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels

    Science.gov (United States)

    Itsuki, Kyohei; Imai, Yuko; Hase, Hideharu; Okamura, Yasushi; Inoue, Ryuji

    2014-01-01

    Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C–insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of

  20. C4b-binding protein inhibits the factor V-dependent but not the factor V-independent cofactor activity of protein S in the activated protein C-mediated inactivation of factor VIIIa

    NARCIS (Netherlands)

    van de Poel, R. H.; Meijers, J. C.; Bouma, B. N.

    2001-01-01

    Activated protein C (APC) is an important inactivator of coagulation factors Va and VIIIa. In the inactivation of factors Va and VIIIa, protein S serves as a cofactor to APC. Protein S can bind to C4b-binding protein (C4BP), and thereby loses its cofactor activity to APC. By modulating free protein

  1. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  2. PME-1 protects ERK pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma

    Science.gov (United States)

    Puustinen, Pietri; Junttila, Melissa R.; Vanhatupa, Sari; Sablina, Anna A.; Hector, Melissa E.; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C.; Westermarck, Jukka

    2010-01-01

    ERK/MAPK pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies, however the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A (PP2A) promotes basal ERK pathway activity, and is required for efficient growth factor response. Mechanistically PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and PKC. In malignant glioblastoma, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (N=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells, and suggest important functional role for PME-1 in the disease progression of human astrocytic gliomas. PMID:19293187

  3. Enhancing RGI lyase thermostability by targeted single point mutations

    DEFF Research Database (Denmark)

    Silva, Inês R.; Larsen, Dorte Møller; Jers, Carsten

    2013-01-01

    Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering...

  4. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available CaV2.2 (N-type voltage-gated calcium channels (Ca2+ channels play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. "Fast" voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of "slow" voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate "slow" inactivation of sodium channels, but little is known about if/how second messengers control "slow" inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA dramatically prolonged recovery from "slow" inactivation, but an inactive control (4α-PMA had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating "slow" inactivation. We postulate that the kinetics of recovery from "slow" inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.

  5. Binding sequences for RdgB, a DNA damage-responsive transcriptional activator, and temperature-dependent expression of bacteriocin and pectin lyase genes in Pectobacterium carotovorum subsp. carotovorum.

    Science.gov (United States)

    Yamada, Kazuteru; Kaneko, Jun; Kamio, Yoshiyuki; Itoh, Yoshifumi

    2008-10-01

    Pectobacterium carotovorum subsp. carotovorum strain Er simultaneously produces the phage tail-like bacteriocin carotovoricin (Ctv) and pectin lyase (Pnl) in response to DNA-damaging agents. The regulatory protein RdgB of the Mor/C family of proteins activates transcription of pnl through binding to the promoter. However, the optimal temperature for the synthesis of Ctv (23 degrees C) differs from that for synthesis of Pnl (30 degrees C), raising the question of whether RdgB directly activates ctv transcription. Here we report that RdgB directly regulates Ctv synthesis. Gel mobility shift assays demonstrated RdgB binding to the P(0), P(1), and P(2) promoters of the ctv operons, and DNase I footprinting determined RdgB-binding sequences (RdgB boxes) on these and on the pnl promoters. The RdgB box of the pnl promoter included a perfect 7-bp inverted repeat with high binding affinity to the regulator (K(d) [dissociation constant] = 150 nM). In contrast, RdgB boxes of the ctv promoters contained an imperfect inverted repeat with two or three mismatches that consequently reduced binding affinity (K(d) = 250 to 350 nM). Transcription of the rdgB and ctv genes was about doubled at 23 degrees C compared with that at 30 degrees C. In contrast, the amount of pnl transcription tripled at 30 degrees C. Thus, the inverse synthesis of Ctv and Pnl as a function of temperature is apparently controlled at the transcriptional level, and reduced rdgB expression at 30 degrees C obviously affected transcription from the ctv promoters with low-affinity RdgB boxes. Pathogenicity toward potato tubers was reduced in an rdgB knockout mutant, suggesting that the RdgAB system contributes to the pathogenicity of this bacterium, probably by activating pnl expression.

  6. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix

    Directory of Open Access Journals (Sweden)

    Jason Wu

    2017-11-01

    Full Text Available Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically. Here, we identify the globular C-terminal extracellular domain as a structure that is sufficient to confer the time course of inactivation and a single positively charged lysine residue at the adjacent inner pore helix as being required for its voltage dependence. Our results are consistent with a mechanism for inactivation that is mediated through voltage-dependent conformations of the inner pore helix and allosteric coupling with the C-terminal extracellular domain.

  7. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  8. Inactivation of the Lateral Entorhinal Area Increases the Influence of Visual Cues on Hippocampal Place Cell Activity

    Directory of Open Access Journals (Sweden)

    Kristin M. Scaplen

    2017-05-01

    Full Text Available The hippocampus is important for both navigation and associative learning. We previously showed that the hippocampus processes two-dimensional (2D landmarks and objects differently. Our findings suggested that landmarks are more likely to be used for orientation and navigation, whereas objects are more likely to be used for associative learning. The process by which cues are recognized as relevant for navigation or associative learning, however, is an open question. Presumably both spatial and nonspatial information are necessary for classifying cues as landmarks or objects. The lateral entorhinal area (LEA is a good candidate for participating in this process as it is implicated in the processing of three-dimensional (3D objects and object location. Because the LEA is one synapse upstream of the hippocampus and processes both spatial and nonspatial information, it is reasonable to hypothesize that the LEA modulates how the hippocampus uses 2D landmarks and objects. To test this hypothesis, we temporarily inactivated the LEA ipsilateral to the dorsal hippocampal recording site using fluorophore-conjugated muscimol (FCM 30 min prior to three foraging sessions in which either the 2D landmark or the 2D object was back-projected to the floor of an open field. Prior to the second session we rotated the 2D cue by 90°. Cues were returned to the original configuration for the third session. Compared to the Saline treatment, FCM inactivation increased the percentage of rotation responses to manipulations of the landmark cue, but had no effect on information content of place fields. In contrast, FCM inactivation increased information content of place fields in the presence of the object cue, but had no effect on rotation responses to the object cue. Thus, LEA inactivation increased the influence of visual cues on hippocampal activity, but the impact was qualitatively different for cues that are useful for navigation vs. cues that may not be useful for

  9. Inactivation of the Lateral Entorhinal Area Increases the Influence of Visual Cues on Hippocampal Place Cell Activity.

    Science.gov (United States)

    Scaplen, Kristin M; Ramesh, Rohan N; Nadvar, Negin; Ahmed, Omar J; Burwell, Rebecca D

    2017-01-01

    The hippocampus is important for both navigation and associative learning. We previously showed that the hippocampus processes two-dimensional (2D) landmarks and objects differently. Our findings suggested that landmarks are more likely to be used for orientation and navigation, whereas objects are more likely to be used for associative learning. The process by which cues are recognized as relevant for navigation or associative learning, however, is an open question. Presumably both spatial and nonspatial information are necessary for classifying cues as landmarks or objects. The lateral entorhinal area (LEA) is a good candidate for participating in this process as it is implicated in the processing of three-dimensional (3D) objects and object location. Because the LEA is one synapse upstream of the hippocampus and processes both spatial and nonspatial information, it is reasonable to hypothesize that the LEA modulates how the hippocampus uses 2D landmarks and objects. To test this hypothesis, we temporarily inactivated the LEA ipsilateral to the dorsal hippocampal recording site using fluorophore-conjugated muscimol (FCM) 30 min prior to three foraging sessions in which either the 2D landmark or the 2D object was back-projected to the floor of an open field. Prior to the second session we rotated the 2D cue by 90°. Cues were returned to the original configuration for the third session. Compared to the Saline treatment, FCM inactivation increased the percentage of rotation responses to manipulations of the landmark cue, but had no effect on information content of place fields. In contrast, FCM inactivation increased information content of place fields in the presence of the object cue, but had no effect on rotation responses to the object cue. Thus, LEA inactivation increased the influence of visual cues on hippocampal activity, but the impact was qualitatively different for cues that are useful for navigation vs. cues that may not be useful for navigation. FCM

  10. Activation-Inactivation Cycling of Rab35 and ARF6 Is Required for Phagocytosis of Zymosan in RAW264 Macrophages

    Directory of Open Access Journals (Sweden)

    Youhei Egami

    2015-01-01

    Full Text Available Phagocytosis of zymosan by phagocytes is a widely used model of microbial recognition by the innate immune system. Live-cell imaging showed that fluorescent protein-fused Rab35 accumulated in the membranes of phagocytic cups and then dissociated from the membranes of newly formed phagosomes. By our novel pull-down assay for Rab35 activity, we found that Rab35 is deactivated immediately after zymosan internalization into the cells. Phagosome formation was inhibited in cells expressing the GDP- or GTP-locked Rab35 mutant. Moreover, the simultaneous expression of ACAP2—a Rab35 effector protein—with GTP-locked Rab35 or the expression of plasma membrane-targeted ACAP2 showed a marked inhibitory effect on phagocytosis through ARF6 inactivation by the GAP activity of ACAP2. ARF6, a substrate for ACAP2, was also localized on the phagocytic cups and dissociated from the membranes of internalized phagosomes. In support of the microscopic observations, ARF6-GTP pull-down experiments showed that ARF6 is transiently activated during phagosome formation. Furthermore, the expression of GDP- or GTP-locked ARF6 mutants also suppresses the uptake of zymosan. These data suggest that the activation-inactivation cycles of Rab35 and ARF6 are required for the uptake of zymosan and that ACAP2 is an important component that links Rab35/ARF6 signaling during phagocytosis of zymosan.

  11. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+channel inactivation.

    Science.gov (United States)

    Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz

    2017-01-01

    In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  12. Misleading behavioural phenotype with adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Gitiaux, Cyril; Ceballos-Picot, Irène; Marie, Sandrine; Valayannopoulos, Vassili; Rio, Marlène; Verrieres, Séverine; Benoist, Jean François; Vincent, Marie Françoise; Desguerre, Isabelle; Bahi-Buisson, Nadia

    2009-01-01

    Adenylosuccinate lyase deficiency is a rare autosomal disorder of de novo purine synthesis, which results in the accumulation of succinylpurines in body fluids. Patients with adenylosuccinate lyase deficiency show a variable combination of mental retardation, epilepsy and autistic features and are usually discovered during screens for unexplained encephalopathy using the Bratton-Marshall assay that reveals the excretion of the succinylaminoimidazolecarboxamide riboside (SAICAr). Here, we report on two sisters aged 11 and 12 years presented with global developmental delay, motor apraxia, severe speech deficits, seizures and behavioural features, which combined excessive laughter, a very happy disposition, hyperactivity, a short attention span, the mouthing of objects, tantrums and stereotyped movements that gave a behavioural profile mimicking Angelman syndrome. Both patients had an increased succinyladenosine/SAICAr ratio of 1.6, and exhibited a novel homozygous missense mutation (c.674T>C; p.Met225Thr) in the exon 6 of the ADSL gene. We suggest that these clinical features might be a new presentation of adenylosuccinate lyase deficiency. On the basis of this observation, although adenylosuccinate lyase deficiency is a rare disorder, this diagnosis should be considered in patients with mental retardation and a behavioural profile suggestive of Angelman syndrome.

  13. Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi.

    Science.gov (United States)

    He, Chuan; Muramatsu, Hisashi; Kato, Shin-Ichiro; Ohnishi, Kouhei

    2017-11-01

    Ulvan is a sulfated polysaccharide found in the cell wall of the green algae Ulva. We first isolated several ulvan-utilizing Alteromonas sp. from the feces of small marine animals. The strain with the highest ulvan-degrading activity, KUL17, was analyzed further. We identified a 55-kDa ulvan-degrading protein secreted by this strain and cloned the gene encoding for it. The deduced amino acid sequence indicated that the enzyme belongs to polysaccharide lyase family 24 and thus the protein was named ulvan lyase. The predicted molecular mass of this enzyme is 110 kDa, which is different from that of the identified protein. By deletion analysis, the catalytic domain was proven to be located on the N-terminal half of the protein. KUL17 contains two ulvan lyases, one long and one short, but the secreted and cleaved long ulvan lyase was demonstrated to be the major enzyme for ulvan degradation.

  14. APNTP Inactivation of MS2 Bacteriophage: Effect of operating parameters on virucidal activity

    Science.gov (United States)

    Alshraiedeh, Nid'a.; Alkawareek, Mahmoud; Gorman, Sean; Graham, William; Gilmore, Brendan

    2013-09-01

    Atmospheric pressure non-thermal plasmas (APNTP) provide a promising alternative method for surface decontamination. Norovirus is globally the most common etiological agent of acute non-bacterial gastroenteritis outbreaks. APNTP have proven to be effective in inactivation of MS2 bacteriophages, widely employed as surrogate for human norovirus. Here we explore the optimization of a helium-based kHz APNTP by varying the oxygen concentration (from 0 to 0.75%) in the feed gas and the operating frequency (from 10 to 40 kHz). It has been established that both these changes increase the reactive oxide concentration in the plume and we see a correlation between both increasing oxygen concentration and operating frequency and reduction in survival density of treated bacteriophages. For example increasing the O2 concentration from 0 to 0.5 to 0.75% increased the log reduction from 4.98 to 5.93 to 7.06, respectively. These results will be discussed in the context of recent studies where singlet delta oxygen was shown to cause MS2 phage inactivation., Q T Algwari, PhD Thesis QUB (2011).

  15. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    Science.gov (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Computational insights into the G-protein-biased activation and inactivation mechanisms of the μ opioid receptor.

    Science.gov (United States)

    Cheng, Jian-Xin; Cheng, Tao; Li, Wei-Hua; Liu, Gui-Xia; Zhu, Wei-Liang; Tang, Yun

    2018-01-01

    The μ opioid receptor (OR), a member of the class A subfamily of G-protein coupled receptors (GPCRs), is a major target for the treatment of pain. G-protein biased μ-OR agonists promise to be developed as analgesics. Thus, TRV130, the first representative μ-OR ligand with G-protein bias, has entered into phase III clinical trials. To identify the detailed G-protein-biased activation and inactivation mechanisms of the μ-OR, we constructed five μ-OR systems that were in complexes with the G-protein-biased agonists TRV130 and BU72, the antagonists β-FNA and naltrexone, as well as the free receptor. We performed a series of conventional molecular dynamics simulations and analyses of G-protein-biased activation and inactivation mechanisms of μ-OR. Our results, together with previously reported mutation results, revealed the operating mode of the activation switch composed of residues W 6.48 and Y 7.43 (Ballesteros/Weinstein numbering), the activity of which was responsible for down- and up-regulation, respectively, of the β-arrestin signaling, which in turn affected G-protein-biased activation of μ-OR. TRV130 was found to stabilize W 6.48 by interacting with Y 7.43 . In addition, we obtained useful information regarding μ-OR-biased activation, such as strong stabilization of W 7.35 through a hydrophobic ring interaction in the TRV130 system. These findings may facilitate understanding of μ-OR biased activation and the design of new biased ligands for GPCRs.

  17. Hydrogen peroxide (H2O2) irreversibly inactivates creatine kinase from Pelodiscus sinensis by targeting the active site cysteine.

    Science.gov (United States)

    Wang, Wei; Lee, Jinhyuk; Hao, Hao; Park, Yong-Doo; Qian, Guo-Ying

    2017-12-01

    Creatine kinase (EC 2.7.3.2, CK) plays an important role in cellular energy metabolism and homeostasis by catalysing the transfer of phosphate between ATP and creatine phosphate. In this study, we investigated the effects of H 2 O 2 on PSCKM (muscle type creatine kinase from Pelodiscus sinensis) by the integrating method between enzyme kinetics and docking simulations. We found that H 2 O 2 strongly inactivated PSCKM (IC 50 =0.25mM) in a first-order kinetic process, and targeted the active site cysteine directly. A conformational study showed that H 2 O 2 did not induce the tertiary structural changes in PSCKM with no extensive exposure of hydrophobic surfaces. Sequential docking simulations between PSCKM and H 2 O 2 indicated that H 2 O 2 interacts with the ADP binding region of the active site, consistent with experimental results that demonstrated H 2 O 2 -induced inactivation. Our study demonstrates the effect of H 2 O 2 on PSCKM enzymatic function and unfolding, and provides important insight into the changes undergone by this central metabolic enzyme in ectothermic animals in response to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Properties of alkaline pectate lyase from recombinant strain E. coli JM109 (pHsh PL)].

    Science.gov (United States)

    Zhuge, Bin; Du, Guocheng; Zhuge, Jian; Chen, Jian

    2008-01-01

    Alkaline pectate lyase (PL) from recombinant strain E. coli JM109 (pHsh PL) was purified by a three-step process including (NH4)2SO4 precipitation followed by dialysis and chromatography. The purified enzyme appeared homologous on SDS-PAGE. The specific activity of the purified enzyme reached 1079 U/mg. The optimal pH and temperature were in the ranges of pH 9.0 to 10.0 and 50 degrees C to 66 degrees C. The enzyme was preferable in optimal pH range in enzymatic retting of flax. Enzyme activity slightly increased in the presence of Mg2+ ion, whereas decreased in the presence of other ions, especially Fe2+. The K(m) of the purified enzyme for polygalacturonic acid was 20.93 mg/L, the V(max) for polygalacturonic acid hydrolysis was 105.3 micromol of unsaturated products per min and Ea was 21.74 kJ/mol. The results of the decay constant (k(d)) analysis on condition of PL bonding polygalacturonic acid (k(d) = 0.02 min(-1)) and PL without polygalacturonic acid (k(d) = 0.0342 min(-1)) showed the substrate was helpful to decrease thermal inactivation of PL. The products (unsaturated oligomers) from polygalacturonic acid degraded by PL were analyzed by electrospray ionization mass spectrometry(ESI-MS). The following data were obtained: ESI-MS m/z, 350.82 (unsaturated bigalacturonic acid, uG2), 527.04 (unsaturated trigalacturonic acid, uG3). However, m/z 175 (unsaturated galacturonic acid, uGI) was not found. These results indicate that the final PGA degradation products was a mixture of unsaturated oligo-galacturonides including uG3 and uG2 except for uG1. It suggests that the recombinant PL cannot degrade uG3 and uG2.

  19. Poly(ethylene glycol)-mediated conformational alteration of α-chymotrypsin prevents inactivation of insulin by stabilizing active intermediates.

    Science.gov (United States)

    Yu, Jibing; Wei, Xiuli; Zhang, Li; Fang, Xiaocui; Yang, Tao; Huang, Feng; Liang, Wei

    2014-10-06

    Proteolytic enzymes in the gut represent one of the biggest barriers against oral delivery of therapeutic proteins and peptides. In the current study, we explored the effect of poly(ethylene glycol) 400 (PEG 400), a commonly used crowding agent, on insulin degradation mediated by α-chymotrypsin (α-CT). Without PEG 400, insulin was quickly cleaved by α-CT to generate inactive degradation products. In comparison, incorporation of PEG 400 resulted in reaction mixtures with retained biological activity. The analysis on the conformation of α-CT and the local environment of the enzyme's active site unraveled that PEG 400 altered the conformation of α-CT to prevent the inactivation of insulin via stabilization of active intermediates. These findings indicated that PEG 400 may provide a promising addition toward oral delivery of insulin.

  20. Investigation of E. coli bacteria inactivation by photocatalytic activity of TiO2 coated expanded polystyrene foam

    Science.gov (United States)

    Varnagiris, S.; Sakalauskaite, S.; Tuckute, S.; Lelis, M.; Daugelavicius, R.; Milcius, D.

    2017-03-01

    Photocatalytic properties of anatase and other TiO2 polymorphs are widely researched and applied in practical application. In current study TiO2 films on the plasma pre-treated expanded polystyrene (EPS) foam were deposited using magnetron sputtering technique. Main properties of the films were characterised using combination of XRD, XPS and SEM techniques. Photocatalytic properties of the observed crystalline anatase phase were tested by investigating bleaching of the methylene blue (MB) aqueous solution and by testing Escherichia coli (E. coli) viability after incubation under UV-B irradiation. E. coli viability experiments indicated that there are two mechanisms of E. coli bacteria inactivation. UV irradiation alone causes rapid damage to the outer membrane of E. coli bacteria. The second mechanism of E. coli inactivation is invoked only with synergistic combination of TiO2 and UV. Acting as photocatalyst TiO2 generates active radicals who initiate the chain peroxidation of organic molecules and within 45 min reduce E. coli bacteria viability by nearly 90%.

  1. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    Energy Technology Data Exchange (ETDEWEB)

    Robert, M.F.; Ashmarina, L.; Poitier, E. [Hospital Ste-Justine, Montreal (Canada)] [and others

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which we suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.

  2. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes.

    Science.gov (United States)

    Wendisch, V F; Spies, M; Reinscheid, D J; Schnicke, S; Sahm, H; Eikmanns, B J

    1997-10-01

    In the amino-acid-producing microorganism Corynebacterium glutamicum, the specific activities of the acetate-activating enzymes acetate kinase and phosphotransacetylase and those of the glyoxylate cycle enzymes isocitrate lyase and malate synthase were found to be high when the cells were grown on acetate (0.8, 2.9, 2.1, and 1.8 U/mg protein, respectively). When the cells were grown on glucose or on other carbon sources such as lactate, succinate, or glutamate, the specific activities were two- to fourfold (acetate kinase and phosphotransacetylase) and 45- to 100-fold (isocitrate lyase and malate synthase) lower, indicating that the synthesis of the four enzymes is regulated by acetate in the growth medium. A comparative Northern (RNA) analysis of the C. glutamicum isocitrate lyase and malate synthase genes (aceA and aceB) and transcriptional cat fusion experiments revealed that aceA and aceB are transcribed as 1.6- and 2.7-kb monocistronic messages, respectively, and that the regulation of isocitrate lyase and malate synthase synthesis is exerted at the level of transcription from the respective promoters. Surprisingly, C. glutamicum mutants defective in either acetate kinase or phosphotransacetylase showed low specific activities of the other three enzymes (phosphotransacetylase, isocitrate lyase, and malate synthase or acetate kinase, isocitrate lyase, and malate synthase, respectively) irrespective of the presence or absence of acetate in the medium. This result and a correlation of a high intracellular acetyl coenzyme A concentration with high specific activities of isocitrate lyase, malate synthase, acetate kinase, and phosphotransacetylase suggest that acetyl coenzyme A or a derivative thereof may be a physiological trigger for the genetic regulation of enzymes involved in acetate metabolism of C. glutamicum.

  3. Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Vliet, Lydia K; Wilkinson, Terry G; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David

    2011-01-01

    Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  5. The Carbapenem Inactivation Method (CIM), a Simple and Low-Cost Alternative for the Carba NP Test to Assess Phenotypic Carbapenemase Activity in Gram-Negative Rods

    NARCIS (Netherlands)

    Zwaluw, K. van der; Haan, A. de; Pluister, G.N.; Bootsma, H.J.; Neeling, A.J. de; Schouls, L.M.

    2015-01-01

    A new phenotypic test, called the Carbapenem Inactivation Method (CIM), was developed to detect carbapenemase activity in Gram-negative rods within eight hours. This method showed high concordance with results obtained by PCR to detect genes coding for the carbapenemases KPC, NDM, OXA-48, VIM, IMP

  6. Biotechnological potential of agro-industrial waste in the synthesis of pectin lyase from Aspergillus brasiliensis.

    Science.gov (United States)

    Pili, Jonaina; Danielli, Angélica; Nyari, Nádia Ld; Zeni, Jamile; Cansian, Rogério L; Backes, Geciane T; Valduga, Eunice

    2018-03-01

    This study aims at investigating pectin lyase bioproduction in submerged fermentation with synthetic medium and agro-industrial residues, using the filamentous fungus Aspergillus brasiliensis. The maximum pectin lyase activity in a synthetic medium (42 g/l pectin, 40 g/l yeast extract, and 0.02 g/l iron sulfate) was 31 U/ml, and 46 U/ml in the agro-industrial medium (160 g/l orange peel, 150 g/l corn steep liquor, and 300 g/l parboiled rice water), obtained over 60 and 124 h of bioproduction, 180 r/min, 30 ℃, pH initial 5.5, and 5·10 6 spores/ml, respectively. Partial characterization of pectin lyase crude enzyme extract obtained from the synthetic medium and the one made of agro-industrial residues showed optimum conditions at pH of 5.5 and 4.5 and temperatures of 37 and 55 ℃, respectively. The E d obtained was 3.13 and 9.15 kJ/mol, and the half-life time (t 1/2 ) was 5.71 and 80 h at 55 ℃ for pectin lyase produced in synthetic and agro-industrial medium, respectively.

  7. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-08

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  8. Determination of pectin methylesterase activity in commercial pectinases and study of the inactivation kinetics through two potentiometric procedures

    Directory of Open Access Journals (Sweden)

    Samantha Lemke Gonzalez

    2011-06-01

    Full Text Available Pectinases are enzymes that degrade pectic substances and are widely used in juice and fruit beverages to improve the quality of the process. The objective of this study was to determine the optimum pH and temperature of two samples of commercial pectinases and propose an alternative procedure to determine the residual activity comparing the data with those of the traditional procedure. The pectin methylesterase (PME activity in Pectinex 100 L Plus and Panzyn Clears was determined by potentiometry. The reaction consisted of 5.00 mg.mL-1 apple pectin, 0.100 mol.L-1 NaCl, and 50 µL enzyme to a total volume of 30 mL. The pectin reaction in the presence of PME in all experiments revealed a first order kinetics. The PME in the two enzyme preparations showed higher activity at pH 4.0 to 4.5 and temperature of 45 ºC. From the results of both procedures ΔV NaOH/Δt and ΔpH/Δt, it was concluded that the inactivation of PME occurred at 75 ºC. The results obtained from the ratio ΔpH/Δt showed good correlation with those obtained from the ratio ΔV NaOH/Δt. In the reaction accompanied by the ratio ΔpH/Δt, the release of H3O+ occurred in the real time reaction.

  9. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  10. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases. In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7. A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7 were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2 and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi. Similarly, this procedure reduced the number of female adults at 40 dpi

  11. Structural Insights Into The Bacterial Carbon-Phosphorus Lyase Machinery

    DEFF Research Database (Denmark)

    Brodersen, Ditlev Egeskov

    the proteins encoded in the phn operon act in concert to catabolise phosphonate remain unknown. We have determined the crystal structure of a 240 kDa Escherichia coli carbon-phosphorus lyase core complex at 1.7 Å and show that it comprises a highly intertwined network of subunits with several unexpected......Phosphonate compounds act as a nutrient source for some microorganisms when phosphate is limiting but require a specialised enzymatic machinery due to the presence of the highly stable carbon-phosphorus bond. Despite the fundamental importance to microbial metabolism, the details of how...... structural features. The complex contains at least two different active sites and suggest a revision of current models of carbon-phosphorus bond cleavage. Using electron microscopy, we map the binding site of an additional protein subunit, which may use ATP for driving conformational changes during...

  12. Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana.

    Science.gov (United States)

    Voss, Cristina; Eyol, Ergül; Frank, Martin; von der Lieth, Claus-W; Berger, Martin R

    2006-06-01

    The aim of this study was to identify and characterize the active component(s) of Ximenia americana plant material used to treat cancer in African traditional medicine. By a combination of preextraction, extraction, ion exchange and affinity chromatography, a mixture of two cytotoxic proteins was isolated. Using degenerated primers designed on the de novo sequence of two tryptic peptides from one of these proteins, a DNA fragment was amplified and the sequence obtained was used to determine the complete cDNA sequence by the RACE method. Sequence analysis and molecular modeling showed that the new protein, riproximin, belongs to the family of type II ribosome inactivating proteins. These results are in good agreement with the ability of riproximin to inhibit protein synthesis in a cell-free system, as well as with the cytotoxicity of riproximin, as demonstrated by its IC50 value of 0.5 pM in MCF7, 1.1 pM in HELA and 0.6 pM in CC531-lacZ cells. To assess the antineoplastic efficacy of the purified riproximin in vivo, the CC531-lacZ colorectal cancer rat metastasis model was used. Significant anticancer activity was found after administration of total dosages of 100 (perorally) and 10 (intraperitoneally) pmol riproximin/kg. These results suggest that riproximin has distinct potential for cancer treatment.

  13. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T

    2006-01-01

    , the mechanism underlying this transcriptional repression by glucose remains unclear. Here we report that glucose-induced repression of PPARalpha gene expression in INS-1E cells is independent of beta-cell excitation and insulin secretion but requires activation of protein phosphatase 2A in a process involving...... but not AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....... inactivation of the AMP-activated protein kinase (AMPK). Pharmacological activation of AMPK at high glucose concentrations interferes with glucose repression of PPARalpha and PPARalpha target genes in INS-1E cells as well as in rat islets. Specific knock-down of the catalytic AMPK-subunit AMPKalpha2...

  14. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2015-01-01

    Full Text Available Spinocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease (MJD, is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers

  15. [Construction and high-density fermentation of alkaline pectate lyase high-yield yeast].

    Science.gov (United States)

    Wang, Xiaowen; Xiang, La; Xu, Ting; Lu, Zhenghui; Zhang, Guimin

    2017-12-25

    Pectate lyase is widely applied in ramie degumming and fabric bioscouring in the textile industry. Compared to conventional processes that involve high alkaline and high temperature treatment, enzyme based treatments have significant advantages in fibers protectiveness, improved efficiency of refining, reduced energy consumption and pollution. Hence, it would be highly desirable to construct high-yield alkaline pectate lyase engineered strains and reduce the pectate lyase production cost. In the previous study, pectate lyase gene pel from Bacillus subtilis168 was expressed in Pichia pastoris GS115 after codon usage optimization based on the vector pHBM905A. To improve the expression level, the vector pHBM905BDM with optimized promoter and signal peptide was used to express the optimized gene pels in GS115. The transformant had increased activity from 68 U/mL to 100 U/mL with the improvement in the transcription level by 27% measured by qPCR. The transformants were further screened on pectin plates, where higher halo forming strains were picked for shake-flask fermentation and strain GS115-pHBM905BDM-pels4 showed the highest activity of 536 U/mL. Then plasmid pPIC9K-pels was constructed and electroporated into the GS115-pHBM905BDM-pels4 cells. Subsequently, high-copy transformant was screened by using the medium containing antibiotics G418, strain GS115-pHBM905BDMpPIC9K- pels1 was identified with increased activity of 770 U/mL and the copy number of pels was 7 confirmed by qPCR. Finally, the activity of pectate lyase produced by GS115-pHBM905BDM-pPIC9K-pels1reached to 2 271 U/mL in a 5-L fermentor. The activity of pectate lyase in our study reached the highest level of expression in P. pastoris, showing good application potential in the textile industry.

  16. Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation.

    Science.gov (United States)

    Dong, Yuguo; Zhang, Jian; Xu, Rui; Lv, Xinxin; Wang, Lihua; Sun, Aiyou; Wei, Dongzhi

    2016-11-28

    Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum . MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. β-Hydroxy-β-methylglutaryl-CoA (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens -mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum . Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum .

  17. Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids.

    Science.gov (United States)

    Turner, Nicholas J

    2011-04-01

    Ammonia lyases catalyse the reversible addition of ammonia to cinnamic acid (1: R=H) and p-hydroxycinnamic (1: R=OH) to generate L-phenylalanine (2: R=H) and L-tyrosine (2: R=OH) respectively (Figure 1a). Both phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) are widely distributed in plants, fungi and prokaryotes. Recently there has been interest in the use of these enzymes for the synthesis of a broader range of L-arylalanines. Aminomutases catalyse a related reaction, namely the interconversion of α-amino acids to β-amino acids (Figure 1b). In the case of L-phenylalanine, this reaction is catalysed by phenylalanine aminomutase (PAM) and proceeds stereospecifically via the intermediate cinnamic acid to generate β-Phe 3. Ammonia lyases and aminomutases are related in sequence and structure and share the same active site cofactor 4-methylideneimidazole-5-one (MIO). There is currently interest in the possibility of using these biocatalysts to prepare a wide range of enantiomerically pure l-configured α-amino and β-amino acids. Recent reviews have focused on the mechanism of these MIO containing enzymes. The aim of this review is to review recent progress in the application of ammonia lyase and aminomutase enzymes to prepare enantiomerically pure α-amino and β-amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Mandelonitrile lyase from Ximenia americana L.: stereospecificity and lack of flavin prosthetic group.

    Science.gov (United States)

    Kuroki, G W; Conn, E E

    1989-09-01

    A mandelonitrile lyase (EC 4.1.2.10) that catalyzes the dissociation of (S)-(-)-mandelonitrile to benzaldehyde and hydrogen cyanide has been purified to apparent homogeneity from leaves of Ximenia americana L. (Olacaceae). The lyase was purified 122-fold with 38% yield by chromatography on carboxymethyl-cellulose and chromatofocusing. The enzyme had a pH optimum of 5.5, with a Km value of 280 microM. Activity toward 4-hydroxy-(R,S)-mandelonitrile was 77% of that observed with the endogenous substrate; no activity was observed toward the aliphatic substrate acetone cyanohydrin. The enzyme was stable at 4 degrees C and at room temperature for at least 1 month. Native and subunit molecular weights of 38,000 and 36,500, respectively, suggest the enzyme is a monomer. The isoelectric point was pH 3.9 as determined by isoelectric focusing. Staining with periodic acid-Schiff and fluorescein-labeled concanavalin A reagents indicate this enzyme is a glycoprotein. In contrast to (R)-mandelonitrile lyases isolated from Prunus species, the Ximenia lyase does not appear to be a flavoprotein. A second enzyme that eluted from the chromatofocusing column at pH 4.0 was also active toward mandelonitrile. However, this form accounted for less than 10% of the total activity, and its specific activity was only 6% of that of the major component. Additional physical and kinetic studies suggested this activity may be due to a nonspecific enzyme that is active toward mandelonitrile.

  19. Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Jing

    2009-12-01

    Full Text Available Abstract Background Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. Methods We examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation. Results Promoter methylation of RASSF1A could be detected in 71.05% (27/38 of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p p p p Conclusion Expression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated

  20. Mechanisms of heat inactivation in Salmonella serotype Typhimurium as affected by low water activity at different temperatures.

    Science.gov (United States)

    Aljarallah, K M; Adams, M R

    2007-01-01

    To determine the effect of reduced water activity (a(w)) on thermal inactivation of Salmonella serotype Typhimurium at different temperatures and its mechanism. D-value determinations at a range of different temperatures showed that heating at reduced a(w) (0.94, produced by addition of glucose or sodium chloride to nutrient broth) was protective at temperatures above 53-55 degrees C but sensitizing below this temperature. Using selective enumeration media to determine injury, it was shown that at lower heating temperatures cells survived at high a(w) with cytoplasmic injury whereas at low a(w) these cells were killed. At higher temperatures ribosome degradation was a more important cause of death and was inhibited by low a(w) heating media thereby providing greater heat resistance. The observed change in behaviour reflects the different reactions responsible for thermal death at different temperatures and their different response to reduced a(w). This work qualifies the previous assumption that reduced a(w) is protective and suggests that the efficacy of low temperature pasteurization regimes may be increased by reduced a(w).

  1. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

    International Nuclear Information System (INIS)

    Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

    2011-01-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

  2. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  3. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    International Nuclear Information System (INIS)

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH 3 , pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar

  4. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  5. Structural Basis for Streptogramin B Resistance in Staphylococcus aureus by Virginiamycin B Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Korczynska,M.; Mukhtar, T.; Wright, G.; Berghuis, A.

    2007-01-01

    The streptogramin combination therapy of quinupristin-dalfopristin (Synercid) is used to treat infections caused by bacterial pathogens, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. However, the effectiveness of this therapy is being compromised because of an increased incidence of streptogramin resistance. One of the clinically observed mechanisms of resistance is enzymatic inactivation of the type B streptogramins, such as quinupristin, by a streptogramin B lyase, i.e., virginiamycin B lyase (Vgb). The enzyme catalyzes the linearization of the cyclic antibiotic via a cleavage that requires a divalent metal ion. Here, we present crystal structures of Vgb from S. aureus in its apoenzyme form and in complex with quinupristin and Mg{sup 2+} at 1.65- and 2.8-{angstrom} resolution, respectively. The fold of the enzyme is that of a seven-bladed {beta}-propeller, although the sequence reveals no similarity to other known members of this structural family. Quinupristin binds to a large depression on the surface of the enzyme, where it predominantly forms van der Waals interactions. Validated by site-directed mutagenesis studies, a reaction mechanism is proposed in which the initial abstraction of a proton is facilitated by a Mg{sup 2+}-linked conjugated system. Analysis of the Vgb-quinupristin structure and comparison with the complex between quinupristin and its natural target, the 50S ribosomal subunit, reveals features that can be exploited for developing streptogramins that are impervious to Vgb-mediated resistance.

  6. Plasminogen-dependent and -independent proteolytic activity of murine endothelioma cells with targeted inactivation of fibrinolytic genes.

    Science.gov (United States)

    Lijnen, H R; Wagner, E F; Collen, D

    1997-02-01

    Plasminogen-dependent and -independent proteolytic activity of marine endothelioma (End) cells that were derived from mice with targeted inactivation of the tissue-type plasminogen activator (t-PA-/-), urokinase-type plasminogen activator (u-PA-/-) or plasminogen activator inhibitor-1 (PAI-1-/-) genes was studied with the use of fibrin and extracellular matrix degradation assays. In a buffer milieu, the activation rate of plasminogen (final concentration 0.25 microM) with wild-type and t-PA-/- End cells (3 x 10(4) to 4 x 10(6) cells/ml) was comparable, but it was about 4-fold reduced with u-PA-/- End cells and 3-fold enhanced with PAI-1-/- End cells. Plasminogen activation was markedly reduced by addition of amiloride or of anti-murine u-PA antibodies but not by addition of anti-murine t-PA antibodies, and it was not stimulated by addition of fibrin. Lysis of 125I-fibrin labeled matrix in the presence of plasminogen was comparable with wild-type, t-PA-/- and PAI-1-/- End cells (50% lysis in 3 h with 0.7 to 1.5 x 10(6) cells/ml), but was significantly reduced with u-PA-/- End cells (50% lysis in 20 h with 0.87 x 10(6) cells/ml). Lysis of 3H-proline labeled extracellular matrix in the presence of plasminogen with wild-type, t-PA-/- and PAI-1-/- End cells (20% lysis in 48 h with 3 to 5 x 10(6) cells/ml) was comparable, but it was virtually abolished with u-PA-/- End cells. In the absence of plasminogen, lysis of both the fibrin and the extracellular matrix by all four cell types was drastically reduced and was virtually abolished by addition of phenylmethylsulfonylfluoride or 1,10 phenanthroline. These data indicate that the proteolytic activity of the transformed murine endothelioma cells, measured in plasminogen activation or matrix degradation assays, is essentially u-PA-related and largely plasminogen-dependent.

  7. Intracellular Erythrocyte Platelet-activating Factor Acetylhydrolase I Inactivates Aspirin in Blood*

    Science.gov (United States)

    Zhou, Gang; Marathe, Gopal K.; Willard, Belinda; McIntyre, Thomas M.

    2011-01-01

    Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A2 with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A2 synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood. PMID:21844189

  8. Intracellular erythrocyte platelet-activating factor acetylhydrolase I inactivates aspirin in blood.

    Science.gov (United States)

    Zhou, Gang; Marathe, Gopal K; Willard, Belinda; McIntyre, Thomas M

    2011-10-07

    Aspirin (acetylsalicylic acid) prophylaxis suppresses major adverse cardiovascular events, but its rapid turnover limits inhibition of platelet cyclooxygenase activity and thrombosis. Despite its importance, the identity of the enzyme(s) that hydrolyzes the acetyl residue of circulating aspirin, which must be an existing enzyme, remains unknown. We find that circulating aspirin was extensively hydrolyzed within erythrocytes, and chromatography indicated these cells contained a single hydrolytic activity. Purification by over 1400-fold and sequencing identified the PAFAH1B2 and PAFAH1B3 subunits of type I platelet-activating factor (PAF) acetylhydrolase, a phospholipase A(2) with selectivity for acetyl residues of PAF, as a candidate for aspirin acetylhydrolase. Western blotting showed that catalytic PAFAH1B2 and PAFAH1B3 subunits of the type I enzyme co-migrated with purified erythrocyte aspirin hydrolytic activity. Recombinant PAFAH1B2, but not its family member plasma PAF acetylhydrolase, hydrolyzed aspirin, and PAF competitively inhibited aspirin hydrolysis by purified or recombinant erythrocyte enzymes. Aspirin was hydrolyzed by HEK cells transfected with PAFAH1B2 or PAFAH1B3, and the competitive type I PAF acetylhydrolase inhibitor NaF reduced erythrocyte hydrolysis of aspirin. Exposing aspirin to erythrocytes blocked its ability to inhibit thromboxane A(2) synthesis and platelet aggregation. Not all individuals or populations are equally protected by aspirin prophylaxis, the phenomenon of aspirin resistance, and erythrocyte hydrolysis of aspirin varied 3-fold among individuals, which correlated with PAFAH1B2 and not PAFAH1B3. We conclude that intracellular type I PAF acetylhydrolase is the major aspirin hydrolase of human blood.

  9. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Celine J. Granier

    2014-08-01

    Full Text Available PDCD2 (programmed cell death domain 2 is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs and embryonic fibroblasts (MEFs. We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.

  10. DAF in diabetic patients is subject to glycation/inactivation at its active site residues.

    Science.gov (United States)

    Flückiger, Rudolf; Cocuzzi, Enzo; Nagaraj, Ram H; Shoham, Menachem; Kern, Timothy S; Medof, M Edward

    2018-01-01

    Decay accelerating factor (DAF or CD55) is a cell associated C3 and C5 convertase regulator originally described in terms of protection of self-cells from systemic complement but now known to modulate adaptive T cell responses. It is expressed on all cell types. We investigated whether nonenzymatic glycation could impair its function and potentially be relevant to complications of diabetes mellitus and other conditions that result in nonenzymatic glycation including cancer, Alzheimer's disease, and aging. Immunoblots of affinity-purified DAF from erythrocytes of patients with diabetes showed pentosidine, glyoxal-AGEs, carboxymethyllysine, and argpyrimidine. HPLC/MS analyses of glucose modified DAF localized the sites of AGE modifications to K 125 adjacent to K 126 , K 127 at the junction of CCPs2-3 and spatially near R 96 , and R 100 , all identified as being critical for DAF's function. Functional analyses of glucose or ribose treated DAF protein showed profound loss of its regulatory activity. The data argue that de-regulated activation of systemic complement and de-regulated activation of T cells and leukocytes could result from non-enzymatic glycation of DAF. Copyright © 2017. Published by Elsevier Ltd.

  11. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem.

    Science.gov (United States)

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Huang, Huoqing; Shi, Pengjun; Bai, Yingguo; Yang, Peilong; Yao, Bin

    2012-01-01

    Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen. A total of 103 unique fragments of polygalacturonase (PF00295) and pectate lyase (PF00544 and PF09492) genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles. This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.

  12. Direct generation of titanium dioxide nanoparticles dispersion under supercritical conditions for photocatalytic active thermoplastic surfaces for microbiological inactivation

    International Nuclear Information System (INIS)

    Zydziak, Nicolas; Zanin, Maria-Helena Ambrosio; Trick, Iris; Hübner, Christof

    2015-01-01

    Thermoplastic poly(propylene) (PP) and acrylonitrile-butadiene-styrene (ABS) surfaces were coated with silica based films via the sol–gel process, containing titanium dioxide (TiO 2 ) as photocatalyst. TiO 2 was previously synthesized via sol–gel and treated under supercritical conditions in water dispersions. The characterization of the TiO 2 dispersions was performed via disc centrifuge to determine the particle size and via Raman spectroscopy and X-Ray Diffraction (XRD) to characterize the crystallinity of TiO 2 . The synthesized TiO 2 dispersions and commercially available TiO 2 particles were incorporated in silica based films which were synthesized under acidic or basic conditions, leading to dense or porous films respectively. The morphology of the films was characterized via Scanning Electron Microscopy (SEM). The incorporation of synthesized TiO 2 in the coating led to photocatalytically more active thermoplastic surfaces than films formulated with commercially available TiO 2 as determined via dye discoloration test. A microbiological test performed with Sarcina lutea confirmed this result and showed an inactivation factor of 6 (99.9999%) after 24 h UV irradiation, for synthesized TiO 2 incorporated in acidic formulated silica layer on ABS surfaces. - Highlights: • We report about photocatalytic layers formulated on thermoplastic surfaces. • We synthesized silica layer and TiO 2 via sol–gel and supercritical treatment. • Amorphous, crystalline and commercial dispersions were generated and characterized. • The morphology of dense and porous photocatalytic layers is observed via SEM. • Discoloration and microbiological tests correlate activity and surface morphology

  13. Inactivation of Escherichia coli phosphoribosylpyrophosphate synthetase by the 2',3'-dialdehyde derivative of ATP. Identification of active site lysines

    DEFF Research Database (Denmark)

    Hilden, Ida; Hove-Jensen, Bjarne; Harlow, Kenneth W.

    1995-01-01

    The enzyme 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) synthetase from Escherichia coli was irreversibly inactivated on exposure to the affinity analog 2',3'-dialdehyde ATP (oATP). The reaction displayed complex saturation kinetics with respect to oATP with an apparent KD of approximately 0.8 m...... of enzymatic activity. These results imply a functional role for at least two of the identified amino acid residues....

  14. Adenylosuccinate lyase deficiency--first British case.

    Science.gov (United States)

    Marinaki, A M; Champion, M; Kurian, M A; Simmonds, H A; Marie, S; Vincent, M F; van den Berghe, G; Duley, J A; Fairbanks, L D

    2004-10-01

    A deficiency of adenylosuccinate lyase (ASDL) is characterised by the accumulation of SAICAriboside (SAICAr) and succinyladenosine (S-Ado) in body fluids. The severity of the clinical presentation correlates with a low S-Ado/SAICAr ratio in body fluids. We report the first British case of ADSL deficiency. The patient presented at 14 days with a progressive neonatal encephalopathy and seizures. There was marked axial and peripheral hypotonia. Brain MRI showed widespread white matter changes. She died at 4 weeks of age. Concentrations of SAICAr and SAdo were markedly elevated in urine, plasma and CSF and the SAdo/SAICAr ratio was low, consistent with the severe phenotype. The patient was compound heterozygous for 2 novel ADSL mutations; c.9 G>C (A3P) and c.572 C>T (R190X).

  15. Hippocampus and two-way active avoidance conditioning: Contrasting effects of cytotoxic lesion and temporary inactivation.

    Science.gov (United States)

    Wang, Jia; Bast, Tobias; Wang, Yu-Cong; Zhang, Wei-Ning

    2015-12-01

    Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40-50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral

  16. Novel proton MR spectroscopy findings in adenylosuccinate lyase deficiency

    NARCIS (Netherlands)

    Zulfiqar, M.; Lin, D.D.; Graaf, M. van der; Barker, P.B.; Fahrner, J.A.; Marie, S. de; Morava, E.; Boer, L. de; Willemsen, M.A.A.P.; Vining, E.; Horska, A.; Engelke, U.F.H.; Wevers, R.A.; Maegawa, G.H.

    2013-01-01

    Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor

  17. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have...... states (TSs) for the two reactions into the active site of CYP17A1 showed that the TS for the C17 hydroxylation needs to be distorted by 13 kJ·mol–1, whereas the TS for the 17,20 lyase reaction easily can be accommodated in the protein. Finally, differences in the hydrogen-bond pattern of the substrates...

  18. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation

  19. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp YM55-1

    NARCIS (Netherlands)

    Veetil, Vinod Puthan; Raj, Hans; Quax, Wim J.; Janssen, Dick B.; Poelarends, Gerrit J.

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of l-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of l-aspartate to form an enzyme-stabilized enediolate intermediate.

  20. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1

    Directory of Open Access Journals (Sweden)

    Hisashi Yagi

    2017-12-01

    Full Text Available Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7 was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.

  1. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1.

    Science.gov (United States)

    Yagi, Hisashi; Isobe, Natsuki; Itabashi, Narumi; Fujise, Asako; Ohshiro, Takashi

    2017-12-27

    Polysaccharides from seaweeds are widely used in various fields, including the food, biomedical material, cosmetic, and biofuel industries. Alginate, which is a major polysaccharide in brown algae, and the products of its degradation (oligosaccharides) have been used in stabilizers, thickeners, and gelling agents, especially in the food industry. Discovering novel alginate lyases with unique characteristics for the efficient production of oligosaccharides may be relevant for the food and pharmaceutical fields. In this study, we identified a unique alginate lyase derived from an alginate-utilizing bacterium, Shewanella species YH1. The recombinant enzyme (rAlgSV1-PL7) was produced in an Escherichia coli system and it was classified in the Polysaccharide Lyase family 7. The optimal temperature and pH for rAlgSV1-PL7 activity were around 45 °C and 8, respectively. Interestingly, we observed that rAlgSV1-PL7 retained over 80% of its enzyme activity after incubation at 30 °C for at least 20 days, indicating that rAlgSV1-PL7 is a long-lived enzyme. Moreover, the degradation of alginate by rAlgSV1-PL7 produced one to four sugars because of the broad substrate specificity of this enzyme. Our findings suggest that rAlgSV1-PL7 may represent a new commercially useful enzyme.

  2. Production of Diamino propionic acid ammonia lyase by a new strain of Salmonella typhimurium PU011

    Directory of Open Access Journals (Sweden)

    Shiva Kumar Vasanth V

    2002-03-01

    Full Text Available Abstract Background Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP. DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP. Results S. typhimurium PU011, a non-virulent bacterial strain isolated in our lab, was found to produce DAP ammonia lyase enzyme when grown in minimal medium containing DAP. There was a direct correlation between biomass yield and enzyme activity, until 16 h post inoculation in minimal medium containing DAP. Following ammonium sulphate precipitation and passing through Sephadex G100, CM-Sephadex and DEAE-Sephacel for crude enzyme extract preparation, about 68-fold enzyme purity was obtained. The purified enzyme gave maximum activity at pH 8.0 and was stable up to 45 degrees C. The Km value for the substrate was found to be 0.685mM, calculated from a Line Weaver Burk plot. Conclusion A new bacterial strain, S.typhimurium PU 011, which is capable of producing DAP ammonia lyase, was isolated.

  3. Purification and Characterization of a Novel (R)-Mandelonitrile Lyase from the Fern Phlebodium aureum.

    Science.gov (United States)

    Wajant, H.; Forster, S.; Selmar, D.; Effenberger, F.; Pfizenmaier, K.

    1995-12-01

    Using high-performance liquid chromatography and nuclear magnetic resonance we identified vicianin as the cyanogenic compound of Phlebodium aureum. The (R)-hydroxynitrile lyase involved during cyanogenesis in the catabolism of the aglycon ([R]-mandelonitrile) was purified to apparent homogeneity. The purified holoenzyme is a homomultimer with subunits of Mr = 20,000. At least three isoforms of the enzyme exist. In contrast to other hydroxynitrile lyases, mandelonitrile lyase (MDL) from P. aureum was not inhibited by sulfhydryl- or hydroxyl-modifying reagents, suggesting a different catalytic mechanism. The enzyme is active over a broad temperature range, with maximum activity between 35 and 50[deg]C, and a pH optimum at 6.5. In contrast to (R)-MDLs isolated from several species of the Rosaceae family, (R)-MDL from P. aureum is not a flavoprotein. The substrate specificity was investigated using immobilized enzyme and diisopropyl ether as solvent. The addition of cyanide to aromatic and heterocyclic carbonyls is catalyzed by this (R)-MDL, whereas aliphatic carbonyls are poorly converted.

  4. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    Science.gov (United States)

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  5. Biophysical Studies of Function and Stability in Adenylosuccinate Lyase

    Science.gov (United States)

    Ray, Stephen; Duval, Nathan; Wilkinson, Terry, II; Shaheen, Sean; Ghosh, Kinshuk; Patterson, David

    2012-10-01

    Adenylosuccinate Lyase (ADSL) is a homotetrameric protein with four active sites that accommodate two reactions in the de novo purine biosynthesis pathway. It catalyzes the conversion of SAICAR to AICAR and AMPS to AMP. Point mutations in the gene encoding the protein ADSL lead to ADSL deficiency, a disorder characterized by serious neurological and physiological symptoms. Two leading hypotheses regarding the pathogenesis are ``Loss of Function'' or ``Gain in Toxic Function.'' These hypotheses can be related to the reduction of either the enzyme kinetics or the stability of the tetramer structure. Enzymatic studies can be used to provide a quantitative measure of the extent to which the enzyme acts on its designated substrates, SAICAR and AMPS. Recent kinetic studies have measured activity only on the substrates independently. Here we present characterization of enzyme kinetics for the biophysically interesting and physiologically relevant case where two substrates exhibit competitive binding to the enzyme, for both wild type and disease causing mutants of ADSL. Preliminary data suggest equivalent specific activities may be necessary to suppress severe phenotypes from expressing. Additionally, we will present results on the role of mutations on the thermodynamic stability of the enzyme. We will discuss thermodynamic analysis that gives a direct quantitative measure of the propensity of formation of folded and unfolded states of the protein, which influence the functionality of the protein and may also influence aggregation.

  6. Cloning and study of the pectate lyase gene of Erwinia carotovora

    International Nuclear Information System (INIS)

    Bukanov, N.O.; Fonshtein, M.Yu.; Evtushenkov, A.N.; Syarinskii, M.A.; Strel'chenko, P.P.; Yankovski, N.K.; Alikhanyan, S.I.; Fomichev, Yu.K.; Debabov, V.G.

    1986-01-01

    The cloning of the gene of a secretable protein of Erwinia carotovora, pectate lyase, in Escherichia coli was described. Primary cloning was conducted using the phage vector λ 47.1. In the gene library of E. carotovora obtained, eight phages carrying the gene sought were identified according to the appearance of enzymatic activity of the gene product, pectate lyase, in situ. The BamHI fragment of DNA, common to all these phages, was recloned on the plasmid pUC19. It was shown that the cloned pectate lyase gene is represented on the E. carotovora chromosome in one copy. Methods of production of representative gene libraries on phage vectors from no less than 1 μg of cloned DNA even for the genomes of eukaryotes have now been developed. Vectors have been created, for example, λ 47.1, permitting the selection only of hybrid molecules. A number of methods have been developed for the search for a required gene in the library, depending on whether the cloned gene can be expressed or not, and if it can, what properties it will impart to the hybrid clone containing it

  7. Tyrosinase inactivation in organic solvents.

    Science.gov (United States)

    Warrington, J C; Saville, B A

    1999-11-05

    The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction. Copyright 1999 John Wiley & Sons, Inc.

  8. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice

    KAUST Repository

    La, Honggui

    2011-09-06

    DNA 5-methylcytosine (5-meC) is an important epigenetic mark for transcriptional gene silencing in many eukaryotes. In Arabidopsis, 5-meC DNA glycosylase/lyases actively remove 5-meC to counter-act transcriptional gene silencing in a locus-specific manner, and have been suggested to maintain the expression of transposons. However, it is unclear whether plant DNA demethylases can promote the transposition of transposons. Here we report the functional characterization of the DNA glycosylase/lyase DNG701 in rice. DNG701 encodes a large (1,812 amino acid residues) DNA glycosylase domain protein. Recombinant DNG701 protein showed 5-meC DNA glycosylase and lyase activities in vitro. Knockout or knockdown of DNG701 in rice plants led to DNA hypermethylation and reduced expression of the retrotransposon Tos17. Tos17 showed less transposition in calli derived from dng701 knockout mutant seeds compared with that in wild-type calli. Overexpression of DNG701 in both rice calli and transgenic plants substantially reduced DNA methylation levels of Tos17 and enhanced its expression. The overexpression also led to more frequent transposition of Tos17 in calli. Our results demonstrate that rice DNG701 is a 5-meC DNA glycosylase/lyase responsible for the demethylation of Tos17 and this DNA demethylase plays a critical role in promoting Tos17 transposition in rice calli.

  9. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2017-04-01

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  10. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase.

    Directory of Open Access Journals (Sweden)

    Adam E Brummett

    Full Text Available The osmolyte dimethylsulfoniopropionate (DMSP is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS, a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121. Measurements of metal binding affinity and catalytic activity indicate that Fe(II is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II per monomer. Electronic absorption and electron paramagnetic resonance (EPR studies show an interaction between NO and Fe(II-DddW, with NO binding to the EPR silent Fe(II site giving rise to an EPR active species (g = 4.29, 3.95, 2.00. The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.

  11. Characterization of Enzyme Structure-Function Relationship of Adenylosuccinate Lyase

    Science.gov (United States)

    Ray, Stephen; Patterson, David; Ghosh, Kingshuk; Wilkinson, Terry; Shaheen, Sean

    2009-10-01

    Adenylosuccinate lyase (ADSL) is an enzyme involved in de novo purine biosynthesis required for several important biological functions. Occasionally disturbances within the enzyme occur, causing a disorder known as ADSL deficiency. It is likely these mutations affect the formation of the tetramer structure by protein misfolding or aggregation. We are beginning to study fundamental properties of the enzyme structure-function relationship of Wild-Type ADSL compared to mutants associated with ADSL Deficiency with two major studies: i) Stability and formation of multimeric complexes in a heterogeneous pool of other structures, ii) Enzymatic activity and reaction kinetics studies by measuring reaction rates of the conversion of substrate into products and enzyme substrate complex formation equilibrium. Our group has successfully expressed Wild-Type (WT) and the mutants R426H and A291V in a protein expression vector and have measured their respective enzyme activity after purification. Modelling approaches for molecular interactions of monomer subunits show the trimer structure could be problematic. We have also carried out our preliminary analysis of the structure-function relationship using microscopic model for the A291V mutant compared to the WT protein.

  12. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  13. Role of antibodies in protection elicited by active vaccination with genetically inactivated alpha hemolysin in a mouse model of staphylococcus aureus skin and soft tissue infections.

    Science.gov (United States)

    Mocca, Christopher P; Brady, Rebecca A; Burns, Drusilla L

    2014-05-01

    Due to the emergence of highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections, S. aureus has become a major threat to public health. A majority of CA-MRSA skin and soft tissue infections in the United States are caused by S. aureus USA300 strains that are known to produce high levels of alpha hemolysin (Hla). Therefore, vaccines that contain inactivated forms of this toxin are currently being developed. In this study, we sought to determine the immune mechanisms of protection for this antigen using a vaccine composed of a genetically inactivated form of Hla (HlaH35L). Using a murine model of skin and soft tissue infections (SSTI), we found that BALB/c mice were protected by vaccination with HlaH35L; however, Jh mice, which are deficient in mature B lymphocytes and lack IgM and IgG in their serum, were not protected. Passive immunization with anti-HlaH35L antibodies conferred protection against bacterial colonization. Moreover, we found a positive correlation between the total antibody concentration induced by active vaccination and reduced bacterial levels. Animals that developed detectable neutralizing antibody titers after active vaccination were significantly protected from infection. These data demonstrate that antibodies to Hla represent the major mechanism of protection afforded by active vaccination with inactivated Hla in this murine model of SSTI, and in this disease model, antibody levels correlate with protection. These results provide important information for the future development and evaluation of S. aureus vaccines.

  14. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    Science.gov (United States)

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  15. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation

    Directory of Open Access Journals (Sweden)

    Danielle Biscaro Pedrolli

    2014-01-01

    Full Text Available A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb2+ and was not significantly affected by Hg2+. Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca2+. The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.

  16. Purification and Characterization of a Unique Pectin Lyase from Aspergillus giganteus Able to Release Unsaturated Monogalacturonate during Pectin Degradation

    Science.gov (United States)

    Carmona, Eleonora Cano

    2014-01-01

    A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb2+ and was not significantly affected by Hg2+. Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca2+. The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking. PMID:25610636

  17. Structural insights into the bacterial carbon-phosphorus lyase machinery.

    Science.gov (United States)

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten; Russo, Christopher J; Passmore, Lori A; Hove-Jensen, Bjarne; Jochimsen, Bjarne; Brodersen, Ditlev E

    2015-09-03

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon-phosphorus (C-P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C-P lyase core complex (PhnG-PhnH-PhnI-PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero-octamer comprising an intertwined network of subunits with unexpected self-homologies. It contains two potential active sites that probably couple phosphonate compounds to ATP and subsequently hydrolyse the C-P bond. We map the binding site of PhnK on the complex using electron microscopy, and show that it binds to a conserved insertion domain of PhnJ. Our results provide a structural basis for understanding microbial phosphonate breakdown.

  18. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease.

    Science.gov (United States)

    Paul, Bindu D; Sbodio, Juan I; Xu, Risheng; Vandiver, M Scott; Cha, Jiyoung Y; Snowman, Adele M; Snyder, Solomon H

    2014-05-01

    Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.

  19. Clinical, biochemical and molecular genetic correlations in adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Race, V; Marie, S; Vincent, M F; Van den Berghe, G

    2000-09-01

    Adenylosuccinate lyase (ADSL) deficiency (MIM 103050) is an autosomal recessive inborn error of purine synthesis characterized by the accumulation in body fluids of succinylaminoimidazolecarboxamide (SAICA) riboside and succinyladenosine (S-Ado), the dephosphorylated derivatives of the two substrates of the enzyme. Because ADSL-deficient patients display widely variable degrees of psychomotor retardation, we have expressed eight mutated ADSL enzymes as thioredoxin fusions and compared their properties with the clinical and biochemical characteristics of 10 patients. Three expressed mutated ADSL enzymes (M26L, R426H and T450S) were thermolabile, four (A2V, R141W, R303C and S395R) were thermostable and one (del206-218), was inactive. Thermolabile mutations decreased activities with SAICA ribotide (SAICAR) and adenylosuccinate (S-AMP) in parallel, or more with SAICAR than with S-AMP. Patients homozygous for one of these mutations, R426H, displayed similarly decreased ADSL activities in their fibroblasts, S-Ado:SAICA riboside ratios of approximately 1 in their cerebrospinal fluid and were profoundly retarded. With the exception of A2V, thermostable mutations decreased activity with S-AMP to a much more marked extent than with SAICAR. Two unrelated patients homozygous for one of the thermostable mutations, R303C, also displayed a much more marked decrease in the activity of fibroblast ADSL with S-AMP than with SAICAR, had S-Ado:SAICA riboside ratios between 3 and 4 in their cerebrospinal fluid and were mildly retarded. These results suggest that, in some cases, the genetic lesion of ADSL determines the ratio of its activities with S-AMP versus SAICAR, which in turn defines the S-Ado:SAICA riboside ratio and the patients' mental status.

  20. The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice

    Directory of Open Access Journals (Sweden)

    Yunpeng Fan

    2015-01-01

    Full Text Available Objectives. The adjuvant activity of Epimedium polysaccharide-propolis flavone liposome (EPL was investigated in vitro and in vivo. Methods. In vitro, the effects of EPL at different concentrations on splenic lymphocytes proliferation and mRNA expression of IFN-γ and IL-6 were determined. In vivo, the adjuvant activities of EPL, EP, and mineral oil were compared in BALB/c mice through vaccination with inactivated porcine circovirus type 2 (PCV2 vaccine. Results. In vitro, EPL promoted lymphocytes proliferation and increased the mRNA expression of IFN-γ and IL-6, and the effect was significantly better than EP at all concentrations. In vivo, EPL significantly promoted the lymphocytes proliferation and the secretion of cytokines and improved the killing activity of NK cells, PCV2-specific antibody titers, and the proportion of T-cell subgroups. The effects of EPL were significantly better than EP and oil adjuvant at most time points. Conclusion. EPL could significantly improve both PCV2-specific cellular and humoral immune responses, and its medium dose had the best efficacy. Therefore, EPL would be exploited in an effective immune adjuvant for inactivated PCV2 vaccine.

  1. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  2. Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism.

    Science.gov (United States)

    Ulaganathan, ThirumalaiSelvi; Helbert, William; Kopel, Moran; Banin, Ehud; Cygler, Miroslaw

    2018-01-30

    Ulvan is a major cell wall component of green algae of the genus Ulva and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan degrading lyases have been recently characterized and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases and partially characterized. Two families of ulvan degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed β-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg-320, followed by sliding of the substrate into the canyon toward the active-site residues. Surprisingly, the LOR_107 structure was very similar to that of PL25 family PLSV_3936, despite only ~14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes.

    Science.gov (United States)

    Lindbäck, T; Okstad, O A; Rishovd, A L; Kolstø, A B

    1999-11-01

    Haemolysin BL (HBL) is a Bacillus cereus toxin composed of a binding component, B, and two lytic components, L1 and L2. HBL is also the enterotoxin responsible for the diarrhoeal food poisoning syndrome caused by several strains of B. cereus. The three genes encoding the HBL components constitute an operon and are transcribed from a promoter 608 bp upstream of the hblC translational start site. The first gene of the hbl operon, hblC, in the B. cereus type strain, ATCC 14579, was inactivated in this study. Inactivation of hblC strongly reduced both the enterotoxigenic activity of B. cereus ATCC 14579 and the haemolytic activity against sheep erythrocytes, while maintaining full haemolytic activity against human erythrocytes.

  4. Antifungal activity of the ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) against the green mould Penicillium digitatum.

    Science.gov (United States)

    Citores, Lucía; Iglesias, Rosario; Gay, Carolina; Ferreras, José Miguel

    2016-02-01

    The ribosome-inactivating protein BE27 from sugar beet (Beta vulgaris L.) leaves is an apoplastic protein induced by signalling compounds, such as hydrogen peroxide and salicylic acid, which has been reported to be involved in defence against viruses. Here, we report that, at a concentration much lower than that present in the apoplast, BE27 displays antifungal activity against the green mould Penicillium digitatum, a necrotrophic fungus that colonizes wounds and grows in the inter- and intracellular spaces of the tissues of several edible plants. BE27 is able to enter into the cytosol and kill fungal cells, thus arresting the growth of the fungus. The mechanism of action seems to involve ribosomal RNA (rRNA) N-glycosylase activity on the sarcin-ricin loop of the major rRNA which inactivates irreversibly the fungal ribosomes, thus inhibiting protein synthesis. We compared the C-terminus of the BE27 structure with antifungal plant defensins and hypothesize that a structural motif composed of an α-helix and a β-hairpin, similar to the γ-core motif of defensins, might contribute to the specific interaction with the fungal plasma membranes, allowing the protein to enter into the cell. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  5. Inactivated E. coli transformed with plasmids that produce dsRNA against infectious salmon anemia virus hemagglutinin show antiviral activity when added to infected ASK cells.

    Directory of Open Access Journals (Sweden)

    Katherine eGarcía

    2015-04-01

    Full Text Available Infectious salmon anemia virus (ISAV has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3 with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP, fusion (F, hemagglutinin (HE and matrix (M proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

  6. Human PIEZO1: removing inactivation.

    Science.gov (United States)

    Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2013-08-20

    PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Preparation and Characterization of Visible-Light-Activated Fe-N Co-Doped TiO2 and Its Photocatalytic Inactivation Effect on Leukemia Tumors

    Directory of Open Access Journals (Sweden)

    Kangqiang Huang

    2012-01-01

    Full Text Available The Fe-N co-doped TiO2 nanocomposites were synthesized by a sol-gel method and characterized by scanning electron microscope (SEM, transmission electron microscope (TEM, X-ray diffraction (XRD, ultraviolet-visible absorption spectroscopy (UV-vis and X-ray photoelectron spectroscopy (XPS. Then the photocatalytic inactivation of Fe-N-doped TiO2 on leukemia tumors was investigated by using Cell Counting Kit-8 (CCK-8 assay. Additionally, the ultrastructural morphology and apoptotic percentage of treated cells were also studied. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited in groups treated with TiO2 nanoparticles and the photocatalytic activity of Fe-N-TiO2 was significantly higher than that of Fe-TiO2 and N-TiO2, indicating that the photocatalytic efficiency could be effectively enhanced by the modification of Fe-N. Furthermore, when 2 wt% Fe-N-TiO2 nanocomposites at a final concentration of 200 μg/mL were used, the inactivation efficiency of 78.5% was achieved after 30-minute light therapy.

  8. [Sudden death of a patient with 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency].

    Science.gov (United States)

    Vilaseca Busca, M A; Ribes Rubio, A; Briones Godino, P; Cusi Sánchez, V; Baraíbar Castelló, R; Gairi Taull, J M

    1990-02-01

    A new case of neonatal 3-hydroxy-3-methylglutaric aciduria is described. 3-hydroxy-3-methylglutaryl CoA lyase activities in leukocytes demonstrated the patient's homozygosity and the heterozygous character of the parents and two other members of the family. Dietetic management with low fat high carbohydrate diet together with protein restriction and carnitine resulted in a good control of the metabolic acidosis, the hypoglycemia, and the physical and neurological development. Nevertheless, sudden death occurred at the age thirteen months without any previous apparent trouble and the necropsia showed neither signs of infection nor hepatic or cardiac derangement.

  9. Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Tzu-Li Lu

    2011-01-01

    Full Text Available Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator.

  10. Isolation, expression and comparison of a pectate lyase produced ...

    African Journals Online (AJOL)

    Administrator

    2010-12-27

    Dec 27, 2010 ... Key words: Pectate lyase, Fusarium oxysporum f.sp. cubense, Fusarium wilt, banana. INTRODUCTION. Banana (Musa spp.) is a number four important crop in developing countries (Heslop-Harrison and Schwarzacher,. 2007). Banana production suffers from several diseases and Fusarium wilt disease ...

  11. Cystathionine .gamma.-lyase: Clinical, metabolic, genetic, and structural studies

    Czech Academy of Sciences Publication Activity Database

    Kraus, J. P.; Hašek, Jindřich; Kožich, V.; Collard, R.; Venezia, S.; Janošíková, B.; Wang, J.; Stabler, S. P.; Allen, R. H.; Jakobs, C.; Finn, C. T.; Chien, Y. H.; Hwu, W. L.; Hegele, R. A.; Mudd, S. H.

    2009-01-01

    Roč. 97, č. 4 (2009), s. 250-259 ISSN 1096-7192 R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : cystathionine gamma-lyase * cystathioninuria * hypercystathioninemia Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.897, year: 2009

  12. Catalytic Promiscuity of Ancestral Esterases and Hydroxynitrile Lyases.

    Science.gov (United States)

    Devamani, Titu; Rauwerdink, Alissa M; Lunzer, Mark; Jones, Bryan J; Mooney, Joanna L; Tan, Maxilmilien Alaric O; Zhang, Zhi-Jun; Xu, Jian-He; Dean, Antony M; Kazlauskas, Romas J

    2016-01-27

    Catalytic promiscuity is a useful, but accidental, enzyme property, so finding catalytically promiscuous enzymes in nature is inefficient. Some ancestral enzymes were branch points in the evolution of new enzymes and are hypothesized to have been promiscuous. To test the hypothesis that ancestral enzymes were more promiscuous than their modern descendants, we reconstructed ancestral enzymes at four branch points in the divergence hydroxynitrile lyases (HNL's) from esterases ∼ 100 million years ago. Both enzyme types are α/β-hydrolase-fold enzymes and have the same catalytic triad, but differ in reaction type and mechanism. Esterases catalyze hydrolysis via an acyl enzyme intermediate, while lyases catalyze an elimination without an intermediate. Screening ancestral enzymes and their modern descendants with six esterase substrates and six lyase substrates found higher catalytic promiscuity among the ancestral enzymes (P promiscuous and catalyzed both hydrolysis and lyase reactions with many substrates. A broader screen tested mechanistically related reactions that were not selected for by evolution: decarboxylation, Michael addition, γ-lactam hydrolysis and 1,5-diketone hydrolysis. The ancestral enzymes were more promiscuous than their modern descendants (P = 0.04). Thus, these reconstructed ancestral enzymes are catalytically promiscuous, but HNL1 is especially so.

  13. [Adenylosuccinate lyase deficiency: an unusual cause of neonatal seizure].

    Science.gov (United States)

    Clamadieu, C; Cottin, X; Rousselle, C; Claris, O

    2008-02-01

    Adenylosuccinate lyase deficiency is an autosomal recessive inborn error of purine synthesis, which provokes epilepsy, psychomotor delay and/or autistic features. We report on two siblings with ADSL deficiency, who developed seizures on the first day of life. ADSL deficiency should be part of the screening to be performed in case of neonatal seizures.

  14. Correlation between the cystathionine-r-lyase (CES) and the ...

    African Journals Online (AJOL)

    Background: The infection of Helicobacter pylori (H. pylori) is one of the most important causes of gastric ulcer disease. The role of hydrogen sulfide (H2S) production in H. pylori-induced gastric ulcer disease. Aim: The expression of cystathionine-γ-lyase (CSE) was determined, and correlated with the severity of gastric ulcer ...

  15. Priming ammonia lyases and aminomutases for industrial and therapeutic applications

    NARCIS (Netherlands)

    Heberling, Matthew M.; Wu, Bian; Bartsch, Sebastian; Janssen, Dick B.

    Ammonia lyases (AL) and aminomutases (AM) are emerging in green synthetic routes to chiral amines and an AL is being explored as an enzyme therapeutic for treating phenylketonuria and cancer. Although the restricted substrate range of the wild-type enzymes limits their widespread application, the

  16. In Silico Characterization of Pectate Lyase Protein Sequences from Different Source Organisms

    Directory of Open Access Journals (Sweden)

    Amit Kumar Dubey

    2010-01-01

    Full Text Available A total of 121 protein sequences of pectate lyases were subjected to homology search, multiple sequence alignment, phylogenetic tree construction, and motif analysis. The phylogenetic tree constructed revealed different clusters based on different source organisms representing bacterial, fungal, plant, and nematode pectate lyases. The multiple accessions of bacterial, fungal, nematode, and plant pectate lyase protein sequences were placed closely revealing a sequence level similarity. The multiple sequence alignment of these pectate lyase protein sequences from different source organisms showed conserved regions at different stretches with maximum homology from amino acid residues 439–467, 715–816, and 829–910 which could be used for designing degenerate primers or probes specific for pectate lyases. The motif analysis revealed a conserved Pec_Lyase_C domain uniformly observed in all pectate lyases irrespective of variable sources suggesting its possible role in structural and enzymatic functions.

  17. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB.

    Science.gov (United States)

    Park, Mi Hee; Choi, Myoung Suk; Kwak, Dong Hoon; Oh, Ki-Wan; Yoon, Do Young; Han, Sang Bae; Song, Ho Sueb; Song, Min Jong; Hong, Jin Tae

    2011-06-01

    Bee venom has been used as a traditional medicine to treat arthritis, rheumatism, back pain, cancerous tumors, and skin diseases. However, the effects of bee venom on the prostate cancer and their action mechanisms have not been reported yet. To determine the effect of bee venom and its major component, melittin on the prostate cancer cells, apoptosis is analyzed by tunnel assay and apoptotic gene expression. For xenograft studies, bee venom was administrated intraperitoneally twice per week for 4 weeks, and the tumor growth was measured and the tumor were analyzed by immunohistochemistry. To investigate whether bee venom and melittin can inactivate nuclear factor kappa B (NF-κB), we assessed NF-κB activity in vitro and in vivo. Bee venom (1-10 µg/ml) and melittin (0.5-2.5 µg/ml) inhibited cancer cell growth through induction of apoptotic cell death in LNCaP, DU145, and PC-3 human prostate cancer cells. These effects were mediated by the suppression of constitutively activated NF-κB. Bee venom and melittin decreased anti-apoptotic proteins but induced pro-apoptotic proteins. However, pan caspase inhibitor abolished bee venom and melittin-induced apoptotic cell death and NF-κB inactivation. Bee venom (3-6 mg/kg) administration to nude mice implanted with PC-3 cells resulted in inhibition of tumor growth and activity of NF-κB accompanied with apoptotic cell death. Therefore, these results indicated that bee venom and melittin could inhibit prostate cancer in in vitro and in vivo, and these effects may be related to NF-κB/caspase signal mediated induction of apoptotic cell death. Copyright © 2010 Wiley-Liss, Inc.

  18. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.

    2015-08-11

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  19. Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions.

    Directory of Open Access Journals (Sweden)

    Mathias J Gerl

    Full Text Available Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1 HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions.

  20. Sugar-cane juice induces pectin lyase and polygalacturonase in Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Minussi Rosana Cristina

    1998-01-01

    Full Text Available The use of other inducers as substitutes for pectin was studied aiming to reduce the production costs of pectic enzymes. The effects of sugar-cane juice on the production of pectin lyase (PL and polygalacturonase (PG by Penicillium griseoroseum were investigated. The fungus was cultured in a mineral medium (pH 6.3 in a rotary shaker (150 rpm for 48 h at 25oC. Culture media were supplemented with yeast extract and sucrose or sugar-cane juice. Sugar-cane juice added singly to the medium promoted higher PL activity and mycelial dry weight when compared to pectin and the use of sugar-cane juice and yeast extract yielded levels of PG activity that were similar to those obtained with sucrose-yeast extract or pectin. The results indicated that, even at low concentrations, sugar-cane juice was capable of inducing pectin lyase and polygalacturonase with no cellulase activity in P. griseoroseum.

  1. Adenylosuccinate lyase deficiency in a Malaysian patient, with novel adenylosuccinate lyase gene mutations.

    Science.gov (United States)

    Chen, Bee Chin; McGown, Ivan N; Thong, Meow Keong; Pitt, James; Yunus, Zabedah M; Khoo, Teck Beng; Ngu, Lock Hock; Duley, John A

    2010-12-01

    Most cases of adenylosuccinate lyase (ADSL OMIM 103050) deficiency reported to date are confined to the various European ethnic groups. We report on the first Malaysian case of ADSL deficiency, which appears also to be the first reported Asian case. The case was diagnosed among a cohort of 450 patients with clinical features of psychomotor retardation, global developmental delay, seizures, microcephaly and/or autistic behaviour. The patient presented with frequent convulsions and severe myoclonic jerk within the first few days of life and severe psychomotor retardation. The high performance liquid chromatography (HPLC) profile of the urine revealed the characteristic biochemical markers of succinyladenosine (S-Ado) and succinyl-aminoimidazole carboximide riboside (SAICAr). The urinary S-Ado/SAICAr ratio was found to be 1.02 (type I ADSL deficiency). The patient was compound heterozygous for two novel mutations, c.445C > G (p.R149G) and c.774_778insG (p.A260GfsX24).

  2. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Matsui, K; Fukutomi, S; Wilkinson, J; Hiatt, B; Knauf, V; Kajwara, T

    2001-11-01

    To modify the flavor properties of tomato fruits, cucumber fatty acid hydroperoxide lyase (HPL), which can act on 9-hydroperoxides of fatty acids to form volatile C9-aldehydes, was introduced to tomato plants. Through enzyme assay, high activity of the introduced HPL could be found in either the leaves or fruits of transgenic tomatoes; however, the composition of volatile short-chain aldehydes and alcohols in the transgenic tomato fruits was little modified. This was unexpected because tomato fruits have high lipoxygenase activity to form 9-hydroperoxides. When linoleic acid was added to a crude homogenate prepared from the transgenic tomato fruits, a high amount of C9-aldehyde was formed, but the amount of C6-aldehyde was almost equivalent to that in nontransgenic tomatoes. Through quantification of fatty acid hydroperoxides, it has been revealed that 13-hydroperoxides of fatty acids are preferably formed from endogenous substrate, whereas 9-hydroperoxides are formed from fatty acids added exogenously. From these observations, possible mechanisms to regulate metabolic flow of the lyase pathway are discussed.

  3. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    Science.gov (United States)

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  4. Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem.

    Directory of Open Access Journals (Sweden)

    Peng Yuan

    Full Text Available Efficient degradation of pectin in the rumen is necessary for plant-based feed utilization. The objective of this study was to characterize the diversity, abundance, and functions of pectinases from microorganisms in the sheep rumen.A total of 103 unique fragments of polygalacturonase (PF00295 and pectate lyase (PF00544 and PF09492 genes were retrieved from microbial DNA in the rumen of a Small Tail Han sheep, and 66% of the sequences of these fragments had low identities (<65% with known sequences. Phylogenetic tree building separated the PF00295, PF00544, and PF09492 sequences into five, three, and three clades, respectively. Cellulolytic and noncellulolytic Butyrivibrio, Prevotella, and Fibrobacter species were the major sources of the pectinases. The two most abundant pectate lyase genes were cloned, and their protein products, expressed in Escherichia coli, were characterized. Both enzymes probably act extracellularly as their nucleotide sequences contained signal sequences, and they had optimal activities at the ruminal physiological temperature and complementary pH-dependent activity profiles.This study reveals the specificity, diversity, and abundance of pectinases in the rumen ecosystem and provides two additional ruminal pectinases for potential industrial use under physiological conditions.

  5. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2017-11-01

    Full Text Available The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.

  6. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John

    2002-01-01

    Regulation of pyruvate-formate lyase (PFL) activity in vivo plays a central role in the shift from homolactic to mixed-acid product formation observed during the growth of Lactococcus lactis on glucose and galactose, respectively. Characterisation of L lactis MG1363 in anaerobic batch cultures sh...

  7. Analysis of the sulfur-regulated control of the cystathionine γ-lyase gene of Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Reveal Brad S

    2012-07-01

    Full Text Available Abstract Background Cystathionine γ-lyase plays a key role in the transsulfuration pathway through its primary reaction of catalyzing the formation of cysteine from cystathionine. The Neurospora crassa cystathionine γ-lyase gene (cys-16+ is of particular interest in dissecting the regulation and dynamics of transsulfuration. The aim of this study was to determine the regulatory connection of cys-16+ to the Neurospora sulfur regulatory network. In addition, the cys-16+ promoter was characterized with the goal of developing a strongly expressed and regulatable gene expression tool. Findings The cystathionine γ-lyase cys-16+ gene was cloned and characterized. The gene, which contains no introns, encodes a protein of 417 amino acids with conserved pyridoxal 5’-phosphate binding site and substrate-cofactor binding pocket. Northern blot analysis using wild type cells showed that cys-16+ transcript levels increased under sulfur limiting (derepressing conditions and were present only at a low level under sulfur sufficient (repressing conditions. In contrast, cys-16+ transcript levels in a Δcys-3 regulatory mutant were present at a low level under either derepressing or repressing conditions. Gel mobility shift analysis demonstrated the presence of four CYS3 transcriptional activator binding sites on the cys-16+ promoter, which were close matches to the CYS3 consensus binding sequence. Conclusions In this work, we confirm the control of cystathionine γ-lyase gene expression by the CYS3 transcriptional activator through the loss of cys-16+ expression in a Δcys-3 mutant and through the in vitro binding of CYS3 to the cys-16+ promoter at four sites. The highly regulated cys-16+ promoter should be a useful tool for gene expression studies in Neurospora

  8. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Yamasaki, Masayuki; Mikami, Bunzo [Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru; Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2006-05-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2{sub 1} and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°.

  9. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    Ochiai, Akihito; Yamasaki, Masayuki; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2006-01-01

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P2 1 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  10. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial.

    Science.gov (United States)

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8-67.2), 53.4% (95% CI: 48.1-58.7), and 54.9% (95% CI: 48.1-60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6-97.3), 93.8% (95% CI: 91.2-96.4), and 95.3% (95% CI: 93.0-97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective.

  11. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment.

    Science.gov (United States)

    Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro

    2016-03-01

    Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.

  12. Quantitation of heparosan with heparin lyase III and spectrophotometry.

    Science.gov (United States)

    Huang, Haichan; Zhao, Yingying; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2014-02-15

    Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectrophotometer at 232 nm. We report a new method for the quantitative detection of heparosan with heparin lyase III and spectrophotometry that is safer and more specific than the traditional carbazole assay. In an optimized detection system, heparosan at a minimum concentration of 0.60 g/L in fermentation broth can be detected. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Mutation R96W in cytochrome P450c17 gene causes combined 17{alpha}-hydroxylase/17-20-lyase deficiency in two french canadian patients

    Energy Technology Data Exchange (ETDEWEB)

    LaFlamme, N.; Leblanc, J.F.; Mailloux, J. [Laval Univ., Quebec (Canada)

    1996-01-01

    Congenital adrenal hyperplasia (CAH) is the most frequent cause of adrenal insufficiency and ambiguous genitalia in newborn children. In contrast to CAH caused by 21{alpha}-hydroxylase and 11{beta}-hydroxylase deficiencies, which impairs steroid formation in the adrenal exclusively, 17{alpha}-hydroxylase/17,20-lyase deficiency impairs steroid biosynthesis in the adrenals and gonads. The sequence of CYP17 gene was determined by direct sequencing of asymmetric PCR products in two French-Canadian 46,XY pseudohermaphrodite siblings suffering from combined 17{alpha}-hydroxylase/17,20-lyase deficiency. The two patients are homozygous for the novel missense mutation R96W caused by a C to T transition converting codon Arg{sup 96} (CGG) into a Trp (TGG) in exon 1. Both parents are heterozygous for this missense mutation. We assessed the effect of the R96W mutation on 17{alpha}-hydroxylase/17,20-lyase activity by analysis of mutant enzyme, generated by site-directed mutagenesis, expressed in COS-1 cells. The presence of R96W substitution almost completely abolished the activity of the mutant protein. The present findings provide a molecular explanation for the signs and symptoms of combined 17 {alpha}-hydroxylase/17,20-lyase deficiency in these two patients and provide useful information on the structure-activity relationships of the P450c17 enzyme. 31 refs., 4 figs., 1 tab.

  14. Function analysis of cystathionine gamma-lyase mutants

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2009-01-01

    Roč. 16, 1a (2009), b5 ISSN 1211-5894. [Discussions in Structural Molecular Biology /7./. 12.03.2009-14.03.2009, Nové Hrady] R&D Projects: GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : cystathionine gamma-lyase * medical treatment * vitamin B6 Subject RIV: CD - Macromolecular Chemistry

  15. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  16. Expression and properties of the highly alkalophilic phenylalanine ammonia-lyase of thermophilic Rubrobacter xylanophilus.

    Directory of Open Access Journals (Sweden)

    Klaudia Kovács

    Full Text Available The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24 of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD studies showed that RxPAL is associated with an extensive α-helical character (far UV CD and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia.

  17. Expression and Bioinformatics Analysis of Pectate Lyase Gene from Bacillus subtilis521

    Science.gov (United States)

    Xiao, Jing; Lu, Fu-Ping; Li, Yu; Li, Jin-Ting

    In order to exploit new genetic resources, Pectate lyase(PEL) gene was amplified by PCR using the genome DNA from an alkaline Bacillus subtilis521. The PCR product was inserted into pET22b(+) vector. The recombinant plasmids were cloned in E.coli DH5α and then expressed in E.coli BL21. When cultured in the optimized medium, the positive clones E.coli BL21(pET22b(+)pel)showed intracellular pectate lyase activity of 90.0 U/mL. It was indicated that we had obtained the correct PEL gene. The pel has an open reading frame of 1263 nucleotides and codes for a product of 420 amino acids with a calculated molecular mass of 45.5 kD. Based on computer assisted analysis, a signal peptides and two conserved domains were revealed. The sequence analysis for PEL showed that it shares 26-82% homology with other strains in GenBank. In addition, the advanced structure of PEL were also predicted and analysed. This study will help to the experimental design of PEL fermentation and production purification and enzyme evolution.

  18. Influence of iodinated contrast media on the activities of histamine inactivating enzymes diamine oxidase and histamine N-methyltransferase in vitro.

    Science.gov (United States)

    Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G

    2014-01-01

    Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  19. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production.

    Science.gov (United States)

    Ouattara, Hadja D; Ouattara, Honoré G; Droux, Michel; Reverchon, Sylvie; Nasser, William; Niamke, Sébastien L

    2017-09-01

    Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material. lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Ribosomal 16S gene sequence analysis showed that Lactobacillus plantarum and Leuconostoc mesenteroides are the dominant LAB species in these six regions. In addition, other species were identified as the minor microbial population, namely Lactobacillus curieae, Enterococcus faecium, Fructobacillus pseudoficulneus, Lactobacillus casei, Weissella paramesenteroides and Weissella cibaria. However, in each region, the LAB microbial population was composed of a restricted number of species (maximum 5 species), which varied between the different regions. LAB implication in the breakdown of citric acid was investigated as a fundamental property for a successful cocoa fermentation process. High citrate lyase producer strains were characterized by rapid citric acid consumption, as revealed by a 4-fold decrease in citric acid concentration in the growth medium within 12h, concomitant with an increase in acetic acid and lactic acid concentration. The production of citrate lyase was strongly dependent on environmental conditions, with optimum production at acidic pH (pHcocoa fermentation. This study reveals that one of the major roles of LAB in the cocoa fermentation process involves the breakdown of citric acid during the early stage of cocoa fermentation through the activity of citrate lyase. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Marco Cambiaghi

    2017-07-01

    Full Text Available Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  1. Reversible Inactivation of the Higher Order Auditory Cortex during Fear Memory Consolidation Prevents Memory-Related Activity in the Basolateral Amygdala during Remote Memory Retrieval.

    Science.gov (United States)

    Cambiaghi, Marco; Renna, Annamaria; Milano, Luisella; Sacchetti, Benedetto

    2017-01-01

    Recent findings have shown that the auditory cortex, and specifically the higher order Te2 area, is necessary for the consolidation of long-term fearful memories and that it interacts with the amygdala during the retrieval of long-term fearful memories. Here, we tested whether the reversible blockade of Te2 during memory consolidation may affect the activity changes occurring in the amygdala during the retrieval of fearful memories. To address this issue, we blocked Te2 in a reversible manner during memory consolidation processes. After 4 weeks, we assessed the activity of Te2 and individual nuclei of the amygdala during the retrieval of long-term memories. Rats in which Te2 was inactivated upon memory encoding showed a decreased freezing and failed to show Te2-to-basolateral amygdala (BLA) synchrony during memory retrieval. In addition, the expression of the immediate early gene zif268 in the lateral, basal and central amygdala nuclei did not show memory-related enhancement. As all sites were intact upon memory retrieval, we propose that the auditory cortex represents a key node in the consolidation of fear memories and it is essential for amygdala nuclei to support memory retrieval process.

  2. A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability

    Science.gov (United States)

    Cang, Chunlei; Aranda, Kimberly; Ren, Dejian

    2014-09-01

    Action potentials (APs) are fundamental cellular electrical signals. The genesis of short APs lasting milliseconds is well understood. Ultra-long APs (ulAPs) lasting seconds to minutes also occur in eukaryotic organisms, but their biological functions and mechanisms of generation are largely unknown. Here, we identify TPC3, a previously uncharacterized member of the two-pore channel protein family, as a new voltage-gated Na+ channel (NaV) that generates ulAPs, and that establishes membrane potential bistability. Unlike the rapidly inactivating NaVs that generate short APs in neurons, TPC3 has a high activation threshold, activates slowly and does not inactivate—three properties that help generate long-lasting APs and guard the membrane against unintended perturbation. In amphibian oocytes, TPC3 forms a channel similar to channels induced by depolarization and sperm entry into eggs. TPC3 homologues are present in plants and animals, and they may be important for cellular processes and behaviours associated with prolonged membrane depolarization.

  3. Arhgef15 promotes retinal angiogenesis by mediating VEGF-induced Cdc42 activation and potentiating RhoJ inactivation in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Sentaro Kusuhara

    Full Text Available BACKGROUND: Drugs inhibiting vascular endothelial growth factor (VEGF signaling are globally administered to suppress deregulated angiogenesis in a variety of eye diseases. However, anti-VEGF therapy potentially affects the normal functions of retinal neurons and glias which constitutively express VEGF receptor 2. Thus, it is desirable to identify novel drug targets which are exclusively expressed in endothelial cells (ECs. Here we attempted to identify an EC-specific Rho guanine nucleotide exchange factor (GEF and evaluate its role in retinal angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By exploiting fluorescence-activated cell sorting and microarray analyses in conjunction with in silico bioinformatics analyses, we comprehensively identified endothelial genes in angiogenic retinal vessels of postnatal mice. Of 9 RhoGEFs which were highly expressed in retinal ECs, we show that Arhgef15 acted as an EC-specific GEF to mediate VEGF-induced Cdc42 activation and potentiated RhoJ inactivation, thereby promoting actin polymerization and cell motility. Disruption of the Arhgef15 gene led to delayed extension of vascular networks and subsequent reduction of total vessel areas in postnatal mouse retinas. CONCLUSIONS/SIGNIFICANCE: Our study provides information useful to the development of new means of selectively manipulating angiogenesis without affecting homeostasis in un-targeted tissues; not only in eyes but also in various disease settings such as cancer.

  4. Lysine succinylation of Mycobacterium tuberculosis isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics.

    Science.gov (United States)

    Zhou, Mingliang; Xie, Longxiang; Yang, Zhaozhen; Zhou, Jiahai; Xie, Jianping

    2017-04-01

    Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants' mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5 Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.

  5. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice.

    Science.gov (United States)

    Taniguchi, Masayuki; Takahashi, Nobuteru; Takayanagi, Tomohiro; Ikeda, Atsuo; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2014-01-01

    The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity). Copyright © 2013 Wiley Periodicals, Inc.

  6. Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04.

    Science.gov (United States)

    Zhu, Benwei; Ni, Fang; Sun, Yun; Yao, Zhong

    2017-11-01

    Alginate lyases play an essential role in the production of oligosaccharides by degrading alginate polysaccharide. Although many alginate lyases from various microorganisms have been characterized, reports on alginate lyases with special characteristics and commercial potential are still rather rare. In this study, a new alginate lyase, FsAlgA, was cloned from the deep-sea marine bacterium Flammeovirga sp. NJ-04. The recombinant enzyme was purified on Ni-NTA sepharose and then characterized in detail. It exhibited the highest activity (3343.7 U/mg) at pH 7.0 and 50 °C. Notably, the FsAlgA retained more than 80% of its maximum activity after incubation at 50 °C for 30 min, suggesting that FsAlgA was a heat-stable alginate lyase. Additionally, FsAlgA possessed broad substrate specificity, showing high activities toward both poly β-D-mannuronate (polyM) and poly α-L-guluronate (polyG). Furthermore, the K m values of FsAlgA toward sodium alginate (0.48 mM) and polyG (0.94 mM) were lower than that toward polyM (1.42 mM). The TLC and ESI-MS analyses indicated that FsAlgA endolytically degraded alginate polysaccharide and released oligosaccharides with degree of polymerization (DP) of 2-5. Therefore, it may be a potent tool to produce alginate oligosaccharides with low DPs.

  7. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth

    DEFF Research Database (Denmark)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia

    2015-01-01

    Pyruvate formate lyase (PFL) is characterized as an enzyme functional at anaerobic conditions, since the radical in the enzyme's active form is sensitive to oxygen. In this study, PFL and its activating enzyme from Escherichia coli were expressed in a Saccharomyces cerevisiae strain lacking...... of either of these electron donors had a positive effect on growth under aerobic conditions, indicating increased activity of PFL. The positive effect on growth was manifested as a higher final biomass concentration and a significant increase in transcription of formate dehydrogenases. Among the two...

  8. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes.

    Directory of Open Access Journals (Sweden)

    Jan-Hendrik Hehemann

    Full Text Available Marine microbes degrade dimethylsulfoniopropionate (DMSP, which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS. Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS and total reflection X-ray fluorescence (TRXF revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes.

  9. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    International Nuclear Information System (INIS)

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-01

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  10. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis.

    Science.gov (United States)

    Vogel, John P; Raab, Theodore K; Schiff, Celine; Somerville, Shauna C

    2002-09-01

    The plant genes required for the growth and reproduction of plant pathogens are largely unknown. In an effort to identify these genes, we isolated Arabidopsis mutants that do not support the normal growth of the powdery mildew pathogen Erysiphe cichoracearum. Here, we report on the cloning and characterization of one of these genes, PMR6. PMR6 encodes a pectate lyase-like protein with a novel C-terminal domain. Consistent with its predicted gene function, mutations in PMR6 alter the composition of the plant cell wall, as shown by Fourier transform infrared spectroscopy. pmr6-mediated resistance requires neither salicylic acid nor the ability to perceive jasmonic acid or ethylene, indicating that the resistance mechanism does not require the activation of well-described defense pathways. Thus, pmr6 resistance represents a novel form of disease resistance based on the loss of a gene required during a compatible interaction rather than the activation of known host defense pathways.

  11. The Skin Bacterium Propionibacterium acnes Employs Two Variants of Hyaluronate Lyase with Distinct Properties

    DEFF Research Database (Denmark)

    Nazipi, Seven; Stødkilde-Jørgensen, Kristian; Scavenius, Carsten

    2017-01-01

    Hyaluronic acid (HA) and other glycosaminoglycans are extracellular matrix components in the human epidermis and dermis. One of the most prevalent skin microorganisms, Propionibacterium acnes, possesses HA-degrading activity, possibly conferred by the enzyme hyaluronate lyase (HYL). In this study......, we identified the HYL of P. acnes and investigated the genotypic and phenotypic characteristics. Investigations include the generation of a P. acneshyl knockout mutant and HYL activity assays to determine the substrate range and formed products. We found that P. acnes employs two distinct variants...... of the observed differences between P. acnes phylotype IA and IB/II strains. Whereas type IA strains are primarily found on the skin surface and associated with acne vulgaris, type IB/II strains are more often associated with soft and deep tissue infections, which would require elaborate tissue invasion...

  12. BART Inhibits Pancreatic Cancer Cell Invasion by Rac1 Inactivation through Direct Binding to Active Rac1

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2012-05-01

    Full Text Available We report that Binder of Arl Two (BART plays a role in inhibiting cell invasion by regulating the activity of the Rho small guanosine triphosphatase protein Rac1 in pancreatic cancer cells. BART was originally identified as a binding partner of ADP-ribosylation factor-like 2, a small G protein implicated as a regulator of microtubule dynamics and folding. BART interacts with active forms of Rac1, and the BART-Rac1 complex localizes at the leading edges of migrating cancer cells. Suppression of BART increases active Rac1, thereby increasing cell invasion. Treatment of pancreatic cancer cells in which BART is stably knocked down with a Rac1 inhibitor decreases invasiveness. Thus, BART-dependent inhibition of cell invasion is likely associated with decreased active Rac1. Suppression of BART induces membrane ruffling and lamellipodial protrusion and increases peripheral actin structures in membrane ruffles at the edges of lamellipodia. The Rac1 inhibitor inhibits the lamellipodia formation that is stimulated by suppression of BART. Our results imply that BART regulates actin-cytoskeleton rearrangements at membrane ruffles through modulation of the activity of Rac1, which, in turn, inhibits pancreatic cancer cell invasion.

  13. Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer.

    Science.gov (United States)

    Bao, Guo-Qing; Shen, Bai-Yong; Pan, Chun-Peng; Zhang, Ya-Jing; Shi, Min-Min; Peng, Cheng-Hong

    2013-09-12

    Gemcitabine is a first-line drug utilised in the chemotherapy of pancreatic cancer; however, this drug induces chemo-resistance and toxicity to normal tissue during treatment. Here, we firstly report that andrographolide (ANDRO) alone not only has anti-pancreatic cancer activity, but it also potentiates the anti-tumour activity of gemcitabine. Treatment with ANDRO alone inhibits proliferation of the pancreatic cancer cell lines in a dose- and time-dependent manner in vitro. Interestingly, ANDRO induces cell cycle arrest and apoptosis of pancreatic cancer cells by inhibiting STAT3 and Akt activation, upregulating the expression of p21(WAF1) and Bax, and downregulating the expression of cyclinD1, cyclinE, survivin, X-IAP and Bcl-2. Additionally, ANDRO combined with gemcitabine significantly induce stronger cell cycle arrest and more obvious apoptosis than each single treatment. The mechanistic study demonstrates that this synergistic effect is also dependent on the inhibition of STAT3 and Akt activations which subsequently regulates the pathways involved in the apoptosis and cell cycle arrest. Furthermore, both ANDRO alone and the combination treatments exhibit efficacious anti-tumour activity in vivo. Overall, our results provide solid evidence supporting that ANDRO alone or its combination with gemcitabine is a potential chemotherapeutic approach for treating human pancreatic cancer in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1.

    Science.gov (United States)

    Bucekova, Marcela; Juricova, Valeria; Monton, Enrique; Martinotti, Simona; Ranzato, Elia; Majtan, Juraj

    2018-02-01

    Microwave (MW) thermal heating has been proposed as an efficient method for honey liquefaction, while maintaining honey quality criteria. However, little is known about the effects of MW thermal heating on honey antibacterial activity. In this study, we aimed to determine the effects of MW heating on the antibacterial activity of raw rapeseed honeys against Pseudomonas aeruginosa and Staphylococcus aureus, with a particular focus on two major bee-derived antibacterial components, defensin-1 and hydrogen peroxide (H 2 O 2 ). Our results demonstrated that MW thermal heating completely abolished honey antibacterial activity whereas conventional thermal treatment at 45 and 55°C did not affect the antibacterial activity of honey samples. A significant decrease in both glucose oxidase activity and H 2 O 2 production as well as defensin-1 amount was observed in MW-treated samples. Given that defensin-1 and H 2 O 2 are regular antibacterial components of all honeys, MW heating may have similar negative effects on every type of crystallized/liquid honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mechanism-based inactivation of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    International Nuclear Information System (INIS)

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, 3 H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells

  16. Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways

    Directory of Open Access Journals (Sweden)

    Arshad H. Rahmani

    2014-01-01

    Full Text Available The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.

  17. A self-inactivating retrovector incorporating the IL-2 promoter for activation-induced transgene expression in genetically engineered T-cells

    Directory of Open Access Journals (Sweden)

    Lejeune Laurence

    2006-11-01

    Full Text Available Abstract Background T-cell activation leads to signaling pathways that ultimately result in induction of gene transcription from the interleukin-2 (IL-2 promoter. We hypothesized that the IL-2 promoter or its synthetic derivatives can lead to T-cell specific, activation-induced transgene expression. Our objective was to develop a retroviral vector for stable and activation-induced transgene expression in T-lymphocytes. Results First, we compared the transcriptional potency of the full-length IL-2 promoter with that of a synthetic promoter composed of 3 repeats of the Nuclear Factor of Activated T-Cells (NFAT element following activation of transfected Jurkat T-cells expressing the large SV40 T antigen (Jurkat TAg. Although the NFAT3 promoter resulted in a stronger induction of luciferase reporter expression post stimulation, the basal levels of the IL-2 promoter-driven reporter expression were much lower indicating that the IL-2 promoter can serve as a more stringent activation-dependent promoter in T-cells. Based on this data, we generated a self-inactivating retroviral vector with the full-length human IL-2 promoter, namely SINIL-2pr that incorporated the enhanced green fluorescent protein (EGFP fused to herpes simplex virus thymidine kinase as a reporter/suicide "bifunctional" gene. Subsequently, Vesicular Stomatitis Virus-G Protein pseudotyped retroparticles were generated for SINIL-2pr and used to transduce the Jurkat T-cell line and the ZAP-70-deficient P116 cell line. Flow cytometry analysis showed that EGFP expression was markedly enhanced post co-stimulation of the gene-modified cells with 1 μM ionomycin and 10 ng/ml phorbol 12-myristate 13-acetate (PMA. This activation-induced expression was abrogated when the cells were pretreated with 300 nM cyclosporin A. Conclusion These results demonstrate that the SINIL-2pr retrovector leads to activation-inducible transgene expression in Jurkat T-cell lines. We propose that this design can be

  18. The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells

    International Nuclear Information System (INIS)

    Kumar, Naresh; Park, Ji Hoon; Jeon, Su Nam; Park, Bong Sang; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    In the present work, we have generated reactive species (RS) through microsecond-pulsed plasma (MPP) in the cell culture media using a Marx generator with point–point electrodes of approximately 0.06 J discharge energy/pulse. RS generated in culture media through MPP have a selective action between growth of the H460 lung cancer cells and L132 normal lung cells. We observed that MPP-activated media (MPP-AM) induced apoptosis on H460 lung cancer cells through an oxidative DNA damage cascade. Additionally, we studied the apoptosis-related mRNA expression, DNA oxidation and polymerase-1 (PARP-1) cleaved analysis from treated cancer cells. The result proves that radicals generated through MPP play a pivotal role in the activation of media that induces the selective killing effect. (paper)

  19. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Science.gov (United States)

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine.

    Science.gov (United States)

    Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao

    2017-06-01

    The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structural insights into the bacterial carbon - phosphorus lyase machinery

    DEFF Research Database (Denmark)

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten

    2015-01-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon–phosphorus...... (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero...

  2. Hydroxynitrile Lyases: Biological Sources and Application as Biocatalysts

    Directory of Open Access Journals (Sweden)

    Herfried Griengl

    2004-01-01

    Full Text Available We review the state of the art regarding the application of hydroxynitrile lyases to obtain, enantioselectively, (R- and (S-cyanohydrins of aldehydes and ketones. Special emphasis is given to recent preparative applications and to research for extending the number of plants serving as sources for the enzyme. Depending on the plant family, the mechanism of the enzyme-catalysed reaction can be different. A novel area of research is the consideration of evolutionary aspects on the basis of structure comparisons.

  3. Adenylosuccinate lyase deficiency: the first identified polish patient.

    Science.gov (United States)

    Jurkiewicz, Elzbieta; Mierzewska, Hanna; Kuśmierska, Katarzyna

    2007-10-01

    Adenylosuccinate lyase (ADSL) deficiency is a rare disease of de novo purine synthesis. The main symptoms are psychomotor retardation, epilepsy, autistic features, occasionally associated with muscular hypotonia. Diagnosis is made by detection of abnormal purine metabolites (succinyladenosine - S-Ado and succinylaminoimidazole carboxamide riboside - SAICAr) in body fluids. The severity of the clinical features correlates with low S-Ado/SAICAr ratio. We report clinical, biochemical and brain MRI findings of a female infant with severe early epilepsy and hypotonia, who died at the age of 10 weeks.

  4. Azospirillum irakense Produces a Novel Type of Pectate Lyase

    OpenAIRE

    Bekri, My Ali; Desair, Jos; Keijers, Veerle; Proost, Paul; Searle-van Leeuwen, Marjo; Vanderleyden, Jos; vande Broek, Ann

    1999-01-01

    The pelA gene from the N2-fixing plant-associated bacterium Azospirillum irakense, encoding a pectate lyase, was isolated by heterologous expression in Escherichia coli. Nucleotide sequence analysis of the region containing pelA indicated an open reading frame of 1,296 bp, coding for a preprotein of 432 amino acids with a typical amino-terminal signal peptide of 24 amino acids. N-terminal amino acid sequencing confirmed the processing of the protein in E. coli at the signal peptidase cleavage...

  5. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    International Nuclear Information System (INIS)

    Mukisa, Ivan M.; Muyanja, Charles M.B.K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-01-01

    Malted and un-malted sorghum (Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant (p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum. - Highlights: ► Malted and un-malted Sorghum flours irradiated (10 kGy) and re-irradiated (25 kGy). ► Complete decontamination only achieved after re-irradiation. ► Significant reduction (p<0.05) in malt amylase activity. ► Microbial growth, starch breakdown and acidification unaffected during fermentation. ► Viscosity of sorghum porridge lowered due to weakened starch granules.

  6. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM...... the wild-type RGI lyase in Bacillus subtilis as opposed to in Pichia pastoris; this effect is suggested to be a negative result of glycosylation of the P. pastoris expressed enzyme. A ~ twofold improvement in thermal stability at 60 °C, accompanied by less significant increases in Tm of the enzyme mutants......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  7. Enzyme discovery beyond homology: a unique hydroxynitrile lyase in the Bet v1 superfamily

    Science.gov (United States)

    Lanfranchi, Elisa; Pavkov-Keller, Tea; Koehler, Eva-Maria; Diepold, Matthias; Steiner, Kerstin; Darnhofer, Barbara; Hartler, Jürgen; van den Bergh, Tom; Joosten, Henk-Jan; Gruber-Khadjawi, Mandana; Thallinger, Gerhard G.; Birner-Gruenberger, Ruth; Gruber, Karl; Winkler, Margit; Glieder, Anton

    2017-05-01

    Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins. Due to their convergent evolution, finding new representatives is challenging. Here we show the discovery of unique HNL enzymes from the fern Davallia tyermannii by coalescence of transcriptomics, proteomics and enzymatic screening. It is the first protein with a Bet v1-like protein fold exhibiting HNL activity, and has a new catalytic center, as shown by protein crystallography. Biochemical properties of D. tyermannii HNLs open perspectives for the development of a complementary class of biocatalysts for the stereoselective synthesis of cyanohydrins. This work shows that systematic integration of -omics data facilitates discovery of enzymes with unpredictable sequences and helps to extend our knowledge about enzyme diversity.

  8. Purine biosynthesis in Chinese Hamster cell mutants and human fibroblasts partially deficient in adenylosuccinate lyase

    International Nuclear Information System (INIS)

    Laikind, P.K.; Gruber, H.E.; Hoffer, M.; Jansen, I.; Miller, L.; Seegmiller, J.E.

    1986-01-01

    In a study of purine nucleotide metabolism of CHO-Ade I cells and fibroblasts from an adenylocsuccinate (AS) and SAICA riboside over-producing pattient the authors examined the effect of ASMP lyase deficiency on brachpoint enzyme activities and on de novo synthesis by comparison to the control cell lines, wild type parent cells (CHO-K1) and fibroblasts from age-matched normal individuals, respectively. The rate of newly-formed purine synthesis and excretion was measured by determining the amount of C 14-formate incorporatted into adenine, hypoxanthine, and guanasine moities. The nucleotide, nucleoside and base content of cells and media were analyzed by hhigh-pressure liquid chrromatography. Results are presented

  9. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    Science.gov (United States)

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  10. Insight into the role of substrate-binding residues in conferring substrate specificity for the multifunctional polysaccharide lyase Smlt1473.

    Science.gov (United States)

    MacDonald, Logan C; Berger, Bryan W

    2014-06-27

    Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly

  11. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis.

    Science.gov (United States)

    Savchenko, Tatyana; Yanykin, Denis; Khorobrykh, Andrew; Terentyev, Vasily; Klimov, Vyacheslav; Dehesh, Katayoon

    2017-06-01

    This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.

  12. Thermal Inactivation of Viruses

    Science.gov (United States)

    1977-10-01

    production. Proc. Soc. Exptl. Biol. Med. 116:174-177. Mayer, V. 1965. Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity...inactivation of rabies and other rhabrtoviruses: stabilization of the chelating agent Ethylenediaminetetraacetic acid at physiological temperatures. Infec

  13. Thermal inactivation of Bacillus cereus spores affected by the solutes used to control water activity of the heating medium.

    Science.gov (United States)

    Mazas, M; Martínez, S; López, M; Alvarez, A B; Martin, R

    1999-12-01

    The heat resistance of B. cereus spores (ATCC 7004, 4342 and 9818) over a wide temperature range (92-125 degrees C) in aqueous solutions of NaCl, LiCl, sucrose and glycerol at different water activities (1.00-0.71) was investigated. Sodium chloride in the heating medium tended to protect the spores of B. cereus against heat. The z-values increased significantly (P 0.87 M), the D-values showed an increase, although only those obtained for strain 4342 in sucrose solutions 2.22 M were higher than those found in pure water. The z-values were significantly higher (P < 0.05) when sucrose was added at concentrations above 1.42 M, except for strain 4342. When a(w) was lowered from 0.96 to 0.71 with glycerol, D-values obtained gradually increased, about 30, 50 and 60 fold for 4342, 7004 and 9818 strains, respectively. No significant effect on z-values were detected.

  14. ACh-induced depolarization in inner ear artery is generated by activation of a TRP-like non-selective cation conductance and inactivation of a potassium conductance.

    Science.gov (United States)

    Ma, Ke-Tao; Guan, Bing-Cai; Yang, Yu-Qin; Zhao, Hui; Jiang, Zhi-Gen

    2008-05-01

    Adequate cochlear blood supply by the spiral modiolar artery (SMA) is critical for normal hearing. ACh may play a role in neuroregulation of the SMA but several key issues including its membrane action mechanisms remain poorly understood. Besides its well-known endothelium-dependent hyperpolarizing action, ACh can induce a depolarization in vascular cells. Using intracellular and whole-cell recording techniques on cells in guinea pig in vitro SMA, we studied the ionic mechanism underlying the ACh-depolarization and found that: (1) ACh induced a DAMP-sensitive depolarization when intermediate conductance KCa channels were blocked by charybdotoxin or nitrendipine. The ACh-depolarization was associated with a decrease in input resistance (R(input)) in high membrane potential (V(m)) ( approximately -40 mV) cells but with no change or an increase in R input in low Vm ( approximately -75 mV) cells. ACh-depolarization was attenuated by background membrane depolarization from approximately -70 mV in the majority of cells; (2) ACh-induced inward current in smooth muscle cells embedded in a SMA segment often showed a U-shaped I/V curve, the reversal potential of its two arms being near EK and 0 mV, respectively; (3) ACh-depolarization was reduced by low Na+, zero K+ or 20mM K+ bath solutions; (4) ACh-depolarization was inhibited by La3+ in all cells tested, by 4-AP and flufenamic acid in low Vm cells, but was not sensitive to Cd2+, Ni2+, nifedipine, niflumic acid, DIDS, IAA94, linopirdine or amiloride. We conclude that ACh-induced vascular depolarization was generated mainly by activation of a TRP-like non-selective cation channel and by inactivation of an inward rectifier K+ channel.

  15. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents.

    OpenAIRE

    McEvoy, J L; Murata, H; Chatterjee, A K

    1990-01-01

    recA-mediated production of pectin lyase (PNL) and the bacteriocin carotovoricin occurs in Erwinia carotovora subsp. carotovora 71 when this organism is subjected to agents that damage or inhibit the synthesis of DNA. The structural gene pnlA was isolated from a strain 71 cosmid gene library following mobilization of the cosmids into a moderate PNL producer, strain 193. The cosmid complemented pnl::Tn5 but not ctv::Tn5 mutations. A constitutive level of PNL activity was detected in RecA+ and ...

  16. Comparative activities of phenylalanine ammonia-lyase and tyrosine ...

    African Journals Online (AJOL)

    Plants respond to attack by pathogens by initiating a change in cellular metabolism, leading to synthesis of antifungal proteins, production of phytoalexins and/or accumulation of phenolic compounds, namely lignins and salicylic. Lignins reinforce pectocellulosic cell walls and limit the invasion of plant tissues by pathogens; ...

  17. Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains.

    Science.gov (United States)

    Liu, Dan; Zhang, Zheng; Liman, Emily R

    2005-05-27

    TRPM5, a member of the superfamily of transient receptor potential ion channels, is essential for the detection of bitter, sweet, and amino acid tastes. In heterologous cell types it forms a nonselective cation channel that is activated by intracellular Ca(2+). TRPM5 is likely to be part of the taste transduction cascade, and regulators of TRPM5 are likely to affect taste sensation. In this report we show that TRPM5, but not the related channel TRPM4b, is potently blocked by extracellular acidification. External acidification has two effects, a fast reversible block of the current (IC(50) pH = 6.2) and a slower irreversible enhancement of current inactivation. Mutation of a single Glu residue in the S3-S4 linker and a His residue in the pore region each reduced sensitivity of TRPM5 currents to fast acid block (IC(50) pH = 5.8 for both), and the double mutant was nearly insensitive to acidic pH (IC(50) pH = 5.0). Prolonged exposure to acidic pH enhanced inactivation of TRPM5 currents, and mutant channels that were less sensitive to acid block were also less sensitive to acid-enhanced inactivation, suggesting an intimate association between the two processes. These processes are, however, distinct because the pore mutant H896N, which has normal sensitivity to acid block, shows significant recovery from acid-enhanced inactivation. These data show that extracellular acidification acts through specific residues on TRPM5 to block conduction through two distinct but related mechanisms and suggest a possible interaction between extracellular pH and activation and adaptation of bitter, sweet, and amino acid taste transduction.

  18. Cold Plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli 0157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe

    Science.gov (United States)

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomato, baby spinach leaves and cantaloupe. Stem scar and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherich...

  19. Activation of X Chromosome Inactivation

    NARCIS (Netherlands)

    C.M. Maduro (Cheryl)

    2016-01-01

    markdownabstractIn mammals, males are the heterogametic sex having an X chromosome and a Y chromosome whereas females have two X chromosomes. Despite originating from an ancient homologous autosomal pair, the X and Y chromosome now differ greatly in size and gene content after ~180 MY of evolution.

  20. Sequence analysis and overexpression of a pectin lyase gene (pel1) from Aspergillus oryzae KBN616.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A gene (pel1) encoding pectin lyase (Pel1) was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,196 bp with a single intron. The ORF encoded 381 amino acids with a signal peptide of 20 amino acids. The deduced amino acid sequence showed high similarity to those of Aspergillus niger pectin lyases and Glomerella cingulata PnlA. The pel1 gene was successfully overexpressed under the promoter of the A. oryzae TEF1 gene. The molecular mass of the recombinant pectin lyase substantially coincided with that calculated based on nucleotide sequence.

  1. Subcritical Water Hydrolysis Effectively Reduces the In Vitro Seeding Activity of PrPSc but Fails to Inactivate the Infectivity of Bovine Spongiform Encephalopathy Prions.

    Science.gov (United States)

    Murayama, Yuichi; Yoshioka, Miyako; Okada, Hiroyuki; Takata, Eri; Masujin, Kentaro; Iwamaru, Yoshifumi; Shimozaki, Noriko; Yamamura, Tomoaki; Yokoyama, Takashi; Mohri, Shirou; Tsutsumi, Yuji

    2015-01-01

    The global outbreak of bovine spongiform encephalopathy (BSE) has been attributed to the recycling of contaminated meat and bone meals (MBMs) as feed supplements. The use of MBMs has been prohibited in many countries; however, the development of a method for inactivating BSE prions could enable the efficient and safe use of these products as an organic resource. Subcritical water (SCW), which is water heated under pressure to maintain a liquid state at temperatures below the critical temperature (374°C), exhibits strong hydrolytic activity against organic compounds. In this study, we examined the residual in vitro seeding activity of protease-resistant prion protein (PrPSc) and the infectivity of BSE prions after SCW treatments. Spinal cord homogenates prepared from BSE-infected cows were treated with SCW at 230-280°C for 5-7.5 min and used to intracerebrally inoculate transgenic mice overexpressing bovine prion protein. Serial protein misfolding cyclic amplification (sPMCA) analysis detected no PrPSc in the SCW-treated homogenates, and the mice treated with these samples survived for more than 700 days without any signs of disease. However, sPMCA analyses detected PrPSc accumulation in the brains of all inoculated mice. Furthermore, secondary passage mice, which inoculated with brain homogenates derived from a western blotting (WB)-positive primary passage mouse, died after an average of 240 days, similar to mice inoculated with untreated BSE-infected spinal cord homogenates. The PrPSc accumulation and vacuolation typically observed in the brains of BSE-infected mice were confirmed in these secondary passage mice, suggesting that the BSE prions maintained their infectivity after SCW treatment. One late-onset case, as well as asymptomatic but sPMCA-positive cases, were also recognized in secondary passage mice inoculated with brain homogenates from WB-negative but sPMCA-positive primary passage mice. These results indicated that SCW-mediated hydrolysis was

  2. Improved production of polygalacturonate lyase by combining a pH and online methanol control strategy in a two-stage induction phase with a shift in the transition phase.

    Science.gov (United States)

    Qureshi, Muhammad Salman; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2010-04-01

    Polygalacturonate lyase is a kind of enzyme that is abundantly used in the textile industry for cotton scouring. Previously, we reconstructed the polygalacturonate lyase gene in Pichia pastoris for the expression of this enzyme. To enhance the production of polygalacturonate lyase (PGL), a combined strategy was formulated by combining online methanol control and two-stage pH control strategies. For the two-stage pH control strategy during the growth phase, the pH was controlled at 5.5, and in the induction phase different pH levels were investigated for the optimum enzyme production. During the online methanol control strategy, the different levels of methanol (v/v) were investigated for the best enzyme production at pH 5.5. These two strategies were combined together for enhanced PGL productivity, and the induction phase was divided into two stages in which methanol concentrations were maintained at different levels online. The transition phase was introduced during the induction phase instead of introducing it after the growth phase. The two-stage combination strategy was formulated on the bases of methanol consumption of cells, optimal pH, cell viability and the production of polygalacturonate lyase by P. pastoris. By using this strategy, the production was doubled compared with common conditions, and the highest polygalacturonate lyase activity reached 1,631 U/ml. This strategy proved to be very useful for the enhancement of polygalacturonate lyase production by achieving higher cell viability, alcohol oxidase activity and phosphate-related compounds of the cells during the induction phase.

  3. New Mechanistic Insight from Substrate- and Product-Bound Structures of the Metal-Dependent Dimethylsulfoniopropionate Lyase DddQ.

    Science.gov (United States)

    Brummett, Adam E; Dey, Mishtu

    2016-11-08

    The marine microbial catabolism of dimethylsulfoniopropionate (DMSP) by the lyase pathway liberates ∼300 million tons of dimethyl sulfide (DMS) per year, which plays a major role in the biogeochemical cycling of sulfur. Recent biochemical and structural studies of some DMSP lyases, including DddQ, reveal the importance of divalent transition metal ions in assisting DMSP cleavage. While DddQ is believed to be zinc-dependent primarily on the basis of structural studies, excess zinc inhibits the enzyme. We examine the importance of iron in regulating the DMSP β-elimination reaction catalyzed by DddQ as our as-isolated purple-colored enzyme possesses ∼0.5 Fe/subunit. The UV-visible spectrum exhibited a feature at 550 nm, consistent with a tyrosinate-Fe(III) ligand-to-metal charge transfer transition. Incubation of as-isolated DddQ with added iron increases the intensity of the 550 nm peak, whereas addition of dithionite causes a bleaching as Fe(III) is reduced. Both the Fe(III) oxidized and Fe(II) reduced species are active, with similar k cat values and 2-fold differences in their K m values for DMSP. The slow turnover of Fe(III)-bound DddQ allowed us to capture a substrate-bound form of the enzyme. Our DMSP-Fe(III)-DddQ structure reveals conformational changes associated with substrate binding and shows that DMSP is positioned optimally to bind iron and is in the proximity of Tyr 120 that acts as a Lewis base to initiate catalysis. The structures of Tris-, DMSP-, and acrylate-bound forms of Fe(III)-DddQ reported here illustrate various states of the enzyme along the reaction pathway. These results provide new insights into DMSP lyase catalysis and have broader significance for understanding the mechanism of oceanic DMS production.

  4. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe.

    Science.gov (United States)

    Jiang, Yunbin; Sokorai, Kimberly; Pyrgiotakis, Georgios; Demokritou, Philip; Li, Xihong; Mukhopadhyay, Sudarsan; Jin, Tony; Fan, Xuetong

    2017-05-16

    The purpose of this study was to investigate the efficacy of aerosolized hydrogen peroxide in inactivating bacteria and maintaining quality of grape tomatoes, baby spinach leaves and cantaloupes. Stem scars and smooth surfaces of tomatoes, spinach leaves, and cantaloupe rinds, inoculated with Escherichia coli O157:H7, Salmonella Typhimurium and Listeria innocua, were treated for 45s followed by additional 30min dwell time with hydrogen peroxide (7.8%) aerosols activated by atmospheric cold plasma. Non-inoculated samples were used to study the effects on quality and native microflora populations. Results showed that two ranges of hydrogen peroxide droplets with mean diameters of 40nm and 3.0μm were introduced into the treatment chamber. The aerosolized hydrogen peroxide treatment reduced S. Typhimurium populations by 5.0logCFU/piece, and E. coli O157:H7 and L. innocua populations from initial levels of 2.9 and 6.3logCFU/piece, respectively, to non-detectable levels (detection limit 0.6logCFU/piece) on the smooth surface of tomatoes. However, on the stem scar area of tomatoes, the reductions of E. coli O157:H7, S. Typhimurium, and L. innocua were only 1.0, 1.3, and 1.3 log, respectively. On the cantaloupe rind, the treatment reduced populations of E. coli O157:H7, S. Typhimurium and L. innocua by 4.9, 1.3, and 3.0logCFU/piece, respectively. Under the same conditions, reductions achieved on spinach leaves were 1.5, 4.2 and 4.0 log for E. coli O157:H7, S. Typhimurium and L. innocua, respectively. The treatments also significantly reduced native aerobic plate count, and yeasts and mold count of tomato fruits and spinach leaves. Furthermore, firmness and color of the samples were not significantly affected by the aerosolized hydrogen peroxide. Overall, our results showed that the efficacy of aerosolized hydrogen peroxide depended on type of inoculated bacteria, location of bacteria and type of produce items, and aerosolized hydrogen peroxide could potentially be used to

  5. Cytochrome c and c1 heme lyases are essential in Plasmodium berghei.

    Science.gov (United States)

    Posayapisit, Navaporn; Songsungthong, Warangkhana; Koonyosying, Pongpisid; Falade, Mofolusho O; Uthaipibull, Chairat; Yuthavong, Yongyuth; Shaw, Philip J; Kamchonwongpaisan, Sumalee

    Malaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes. Plasmodium spp. possess two cytochrome heme lyases encoded by separate genes. Given the redundancy of heme synthesis, we sought to determine if heme lyase function also exhibits redundancy. To answer this question, we performed gene knockout experiments. We found that the PBANKA_143950 and PBANKA_0602600 Plasmodium berghei genes encoding cytochrome c (Pbcchl) and cytochrome c1 (Pbcc 1 hl) heme lyases, respectively, can only be disrupted when a complementary gene is present. In contrast, four genes in the de novo heme synthesis pathway can be disrupted without complementation. This work provides evidence that Pbcchl and Pbcc 1 hl are both essential and thus may be antimalarial targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Genetics Home Reference: 17 alpha-hydroxylase/17,20-lyase deficiency

    Science.gov (United States)

    ... breasts and pubic hair, and do not menstruate (amenorrhea). Women with partial 17α-hydroxylase/17,20-lyase ... have female internal reproductive organs, these individuals have amenorrhea and do not develop female secondary sex characteristics. ...

  7. In vivo proton MR spectroscopy findings specific for adenylosuccinate lyase deficiency.

    NARCIS (Netherlands)

    Henneke, M.; Dreha-Kulaczewski, S.; Brockmann, K.; Graaf, M. van der; Willemsen, M.H.; Engelke, U.F.H.; Dechent, P.; Heerschap, A.; Helms, G.; Wevers, R.A.; Gartner, J.

    2010-01-01

    Adenylosuccinate lyase (ADSL) deficiency is an inherited metabolic disorder affecting predominantly the central nervous system. The disease is characterized by the accumulation of succinylaminoimidazolecarboxamide riboside and succinyladenosine (S-Ado) in tissue and body fluids. Three children

  8. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  9. Epigenetic inactivation of CHFR in human tumors.

    Science.gov (United States)

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J; Jair, Kam-Wing; Schuebel, Kornel E; Imai, Kohzoh; Tokino, Takashi

    2003-06-24

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin-ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, we analyzed the pattern of CHFR expression in a number of human cancer cell lines and primary tumors. We found CpG methylation-dependent silencing of CHFR expression in 45% of cancer cell lines, 40% of primary colorectal cancers, 53% of colorectal adenomas, and 30% of primary head and neck cancers. Expression of CHFR was precisely correlated with both CpG methylation and deacetylation of histones H3 and H4 in the CpG-rich regulatory region. Moreover, CpG methylation and thus silencing of CHFR depended on the activities of two DNA methyltransferases, DNMT1 and DNMT3b, as their genetic inactivation restored CHFR expression. Finally, cells with CHFR methylation had an intrinsically high mitotic index when treated with microtubule inhibitor. This means that cells in which CHFR was epigenetically inactivated constitute loss-of-function alleles for mitotic checkpoint control. Taken together, these findings shed light on a pathway by which mitotic checkpoint is bypassed in cancer cells and suggest that inactivation of checkpoint genes is much more widespread than previously suspected.

  10. Characterisation of the l-Cystine β-Lyase PatB from Phaeobacter inhibens: An Enzyme Involved in the Biosynthesis of the Marine Antibiotic Tropodithietic Acid.

    Science.gov (United States)

    Dickschat, Jeroen S; Rinkel, Jan; Klapschinski, Tim; Petersen, Jörn

    2017-11-16

    The l-cystine β-lyase from Phaeobacter inhibens is involved in the biosynthesis of the sulfur-containing antibiotic tropodithietic acid. The recombinant enzyme was obtained by heterologous expression in Escherichia coli and biochemically characterised by unambiguous chemical identification of the products formed from the substrate l-cystine, investigation of the substrate spectrum, determination of the enzyme kinetics, sequence alignment with closely related homologues and site-directed mutagenesis to identify a highly conserved lysine residue that is critical for functionality. PatB from P. inhibens is a new member of the small group of characterised l-cystine β-lyases and the first example of an enzyme with such an activity that is required for the biosynthesis of an antibiotic. A comparison of PatB to previously reported enzymes with l-cystine β-lyase activity from bacteria and plants is given. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

    Directory of Open Access Journals (Sweden)

    Dany J V Beste

    2011-07-01

    Full Text Available Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using ¹³C-metabolic flux analysis (MFA. Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with ¹³C labeled glycerol or sodium bicarbonate. Through measurements of the ¹³C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate--oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO₂ into biomass. As the human host is abundant in CO₂ this finding requires further investigation in vivo as CO₂ fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using ¹³C-MFA.

  12. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  13. Aspergillus fumigatus Does Not Require Fatty Acid Metabolism via Isocitrate Lyase for Development of Invasive Aspergillosis▿

    Science.gov (United States)

    Schöbel, Felicitas; Ibrahim-Granet, Oumaïma; Avé, Patrick; Latgé, Jean-Paul; Brakhage, Axel A.; Brock, Matthias

    2007-01-01

    Aspergillus fumigatus is the most prevalent airborne filamentous fungus causing invasive aspergillosis in immunocompromised individuals. Only a limited number of determinants directly associated with virulence are known, and the metabolic requirements of the fungus to grow inside a host have not yet been investigated. Previous studies on pathogenic microorganisms, i.e., the bacterium Mycobacterium tuberculosis and the yeast Candida albicans, have revealed an essential role for isocitrate lyase in pathogenicity. In this study, we generated an isocitrate lyase deletion strain to test whether this strain shows attenuation in virulence. Results have revealed that isocitrate lyase from A. fumigatus is not required for the development of invasive aspergillosis. In a murine model of invasive aspergillosis, the wild-type strain, an isocitrate lyase deletion strain, and a complemented mutant strain were similarly effective in killing mice. Moreover, thin sections demonstrated invasive growth of all strains. Additionally, thin sections of lung tissue from patients with invasive aspergillosis stained with anti-isocitrate lyase antibodies remained negative. From these results, we cannot exclude the use of lipids or fatty acids as a carbon source for A. fumigatus during invasive growth. Nevertheless, test results do imply that the glyoxylate cycle from A. fumigatus is not required for the anaplerotic synthesis of oxaloacetate under infectious conditions. Therefore, an antifungal drug inhibiting fungal isocitrate lyases, postulated to act against Candida infections, is assumed to be ineffective against A. fumigatus. PMID:17178786

  14. [Ultrasonic inactivation of Aspergillus niger glucose oxidase in aqueous solutions].

    Science.gov (United States)

    Karaseva, E I; Tarun, E I; Metelitsa, D I

    2009-01-01

    The inactivation of Aspergillus niger glucose oxidase (GO) was studied in 0.02 M phosphate-citrate buffer (PCB) at various pH, temperatures of 37-59 degrees C, and sonication with low frequency (27 kHz, LF-US) and high frequency (2.64 MHz, HF-US) ultrasound. The GO inactivation was characterized by the effective first-order inactivation rate constants k(in), k(in)*, and k(in)(us), reflecting the total, thermal, and ultrasonic inactivation components. The constants strongly depended on the pH and temperature of solution, GO concentration, and the presence of acceptors of the free radicals HO* -DMF, DMSO, ethanol, butanol, octanol, and mannitol, confirming that the active radicals formed in the ultrasonic cavitation field played an important role in the GO inactivation. The activation energy in the loss of GO catalytic activity considerably decreased when the enzyme solution was treated with LF-US or HF-US. The dissociative scheme of GO inactivation is discussed. Mannitol can be used for protection of GO from inactivation with LF-US or HF-US in the food industry and immunobiotechnology.

  15. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    Science.gov (United States)

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  16. Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains.

    Science.gov (United States)

    Oliveira, Hugo; Costa, Ana R; Konstantinides, Nico; Ferreira, Alice; Akturk, Ergun; Sillankorva, Sanna; Nemec, Alexandr; Shneider, Mikhail; Dötsch, Andreas; Azeredo, Joana

    2017-12-01

    Bacteriophages are ubiquitous in nature and represent a vast repository of genetic diversity, which is driven by the endless coevolution cycle with a diversified group of bacterial hosts. Studying phage-host interactions is important to gain novel insights into their dynamic adaptation. In this study, we isolated 12 phages infecting species of the Acinetobacter baumannii-Acinetobacter calcoaceticus complex which exhibited a narrow host range and similar morphological features (podoviruses with short tails of 9-12 nm and isometric heads of 50-60 nm). Notably, the alignment of the newly sequenced phage genomes (40-41 kb of DNA length) and all Acinetobacter podoviruses deposited in Genbank has shown high synteny, regardless of the date and source of isolation that spans from America to Europe and Asia. Interestingly, the C-terminal pectate lyase domain of these phage tail fibres is often the only difference found among these viral genomes, demonstrating a very specific genomic variation during the course of their evolution. We proved that the pectate lyase domain is responsible for phage depolymerase activity and binding to specific Acinetobacter bacterial capsules. We discuss how this mechanism of phage-host co-evolution impacts the tail specificity apparatus of Acinetobacter podoviruses. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    Science.gov (United States)

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. © 2014 The Society for Applied Microbiology.

  18. A high-throughput scintillation proximity assay for sphingosine-1-phosphate lyase.

    Science.gov (United States)

    Kashem, Mohammed A; Wa, Chunling; Wolak, John P; Grafos, Nicholas S; Ryan, Kelli R; Sanville-Ross, Mary L; Fogarty, Kylie E; Rybina, Irina V; Shoultz, Alycia; Molinaro, Teresa; Desai, Sudha N; Rajan, Anusha; Huber, John D; Nelson, Richard M

    2014-06-01

    The emergence of sphingosine-1-phosphate lyase (SPL) as a promising therapeutic target for inflammatory diseases has heightened interest in the identification of small molecules that modulate its activity. The enzymatic activity of SPL is typically measured using radiometric or fluorescence-based assays that require a lipid extraction step, or by direct quantitation of reaction products using mass spectrometry (MS). To facilitate testing large numbers of compounds to identify SPL modulators, we developed a robust scintillation proximity assay (SPA) that is compatible with high-throughput screening (HTS). This assay employs recombinant human full-length SPL in insect cell membrane preparations to catalyze the conversion of biotinylated aminosphingosine-1-[(33)P]phosphate (S1(33)P-biotin) to trans-2-hexadecenal-biotin and ethanolamine [(33)P]phosphate. To validate the SPA and confirm the fidelity of its measurement of SPL enzyme activity, we developed a Rapid-Fire MS method that quantitates nonradiolabeled S1P-biotin. In addition, we developed a simple, scalable method to produce S1(33)P-biotin in quantities sufficient for HTS. The optimized SPA screen in 384-well microplates produced a mean plate-wise Z'-statistic of 0.58 across approximately 3,000 plates and identified several distinct structural classes of SPL inhibitor. Among the inhibitors that the screen identified was one compound with an IC50 of 1.6 μM in the SPA that induced dose-dependent lymphopenia in mice.

  19. QM/MM investigation of the reaction rates of substrates of 2,3-dimethylmalate lyase: A catabolic protein isolated from Aspergillus niger.

    Science.gov (United States)

    Chotpatiwetchkul, Warot; Jongkon, Nathjanan; Hannongbua, Supa; Gleeson, M Paul

    2016-07-01

    Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. THE ANTIGENIC POTENCY OF EPIDEMIC INFLUENZA VIRUS FOLLOWING INACTIVATION BY ULTRAVIOLET RADIATION

    Science.gov (United States)

    Salk, Jonas E.; Lavin, G. I.; Francis, Thomas

    1940-01-01

    A study of the antigenic potency of influenza virus inactivated by ultraviolet radiation has been made. Virus so inactivated is still capable of functioning as an immunizing agent when given to mice by the intraperitoneal route. In high concentrations inactivated virus appears to be nearly as effective as active virus but when quantitative comparisons of the immunity induced by different dilutions are made, it is seen that a hundredfold loss in immunizing capacity occurs during inactivation. Virus in suspensions prepared from the lungs of infected mice is inactivated more rapidly than virus in tissue culture medium. A standard for the comparison of vaccines of epidemic influenza virus is proposed. PMID:19871057

  1. Inactivation of human and simian rotaviruses by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.M.; Chen, Y.S.; Lindburg, K.; Morales, D.

    1987-09-01

    The inactivation of simian rotavirus Sa-11 and human rotavirus type 2 (Wa) by ozone was compared at 4/sup 0/C by using single-particle virus stocks. Although the human strain was clearly more sensitive, both virus types were rapidly inactivated by ozone concentrations of 0.25 mg/liter or greater at all pH levels tested. Comparison of the virucidal activity of ozone with that of chlorine in identical experiments indicated little significant difference in rotavirus-inactivating efficiencies when the disinfectants were used at concentrations of 0.25 mg/liter or greater.

  2. Lethal fetal and early neonatal presentation of adenylosuccinate lyase deficiency: observation of 6 patients in 4 families.

    Science.gov (United States)

    Mouchegh, Katharina; Zikánová, Marie; Hoffmann, Georg F; Kretzschmar, Benno; Kühn, Thomas; Mildenberger, Eva; Stoltenburg-Didinger, Gisela; Krijt, Jakub; Dvoráková, Lenka; Honzík, Tomás; Zeman, Jiri; Kmoch, Stanislav; Rossi, Rainer

    2007-01-01

    To characterize a new lethal fetal and early postnatal variant of adenylosuccinate lyase (ADSL) deficiency. This was a retrospective analysis of 6 patients with very early presentation of ADSL deficiency. Most of the 6 patients had impaired intrauterine growth, microcephaly, fetal hypokinesia, and a lack of fetal heart rate variability. Postnatally, they shared severe muscular hypotonia necessitating mechanical ventilation, intractable seizures, and early death. All 6 patients had biochemical evidence of severe (type 1) disease and low residual ADSL activities. All were compound heterozygous for mutations that, based on expression studies, have a pronounced effect on ADSL activity and/or stability. ADSL deficiency may present with prenatal growth restriction, fetal and neonatal hypokinesia, and rapidly fatal neonatal encephalopathy. This clinical presentation is associated with genotypes resulting in very low residual enzyme activity.

  3. Enzymatic Hydrolysis of Alginate to Produce Oligosaccharides by a New Purified Endo-Type Alginate Lyase

    Directory of Open Access Journals (Sweden)

    Benwei Zhu

    2016-06-01

    Full Text Available Enzymatic hydrolysis of sodium alginate to produce alginate oligosaccharides has drawn increasing attention due to its advantages of containing a wild reaction condition, excellent gel properties and specific products easy for purification. However, the efficient commercial enzyme tools are rarely available. A new alginate lyase with high activity (24,038 U/mg has been purified from a newly isolated marine strain, Cellulophaga sp. NJ-1. The enzyme was most active at 50 °C and pH 8.0 and maintained stability at a broad pH range (6.0–10.0 and temperature below 40 °C. It had broad substrate specificity toward sodium alginate, heteropolymeric MG blocks (polyMG, homopolymeric M blocks (polyM and homopolymeric G blocks (polyG, and possessed higher affinity toward polyG (15.63 mM as well as polyMG (23.90 mM than polyM (53.61 mM and sodium alginate (27.21 mM. The TLC and MS spectroscopy analysis of degradation products suggested that it completely hydrolyzed sodium alginate into oligosaccharides of low degrees of polymerization (DPs. The excellent properties would make it a promising tool for full use of sodium alginate to produce oligosaccharides.

  4. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  5. Production of endo-pectate lyase by two stage cultivation of Erwinia carotovora

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Satoshi; Kobayashi, Yoshiaki

    1987-02-26

    The productivity of endo-pectate lyase from Erwinia carotovora GIR 1044 was found to be greatly improved by two stage cultivation: in the first stage the bacterium was grown with an inducing carbon source, e.g., pectin, and in the second stage it was cultivated with glycerol, xylose, or fructose with the addition of monosodium L-glutamate as nitrogen source. In the two stage cultivation using pectin or glycerol as the carbon source the enzyme activity reached 400 units/ml, almost 3 times as much as that of one stage cultivation in a 10 liter fermentor. Using two stage cultivation in the 200 liter fermentor improved enzyme productivity over that in the 10 liter fermentor, with 500 units/ml of activity. Compared with the cultivation in Erlenmeyer flasks, fermentor cultivation improved enzyme productivity. The optimum cultivating conditions were agitation of 480 rpm with aeration of 0.5 vvm at 28 /sup 0/C. (4 figs, 4 tabs, 14 refs)

  6. Modern Approaches to Discovering New Hydroxynitrile Lyases for Biocatalysis.

    Science.gov (United States)

    Padhi, Santosh Kumar

    2017-01-17

    Hydroxynitrile lyases (HNLs) have grown in importance from laboratory to industry due to their potential to catalyze stereoselective C-C bond-formation reactions in the synthesis of several chiral intermediates, such as enantiopure α-cyanohydrins, β-nitro alcohols, and their derivatives with multiple functional groups. With these wide applications, the demand for finding new HNLs has increased, and this has led to exploration not only of new HNLs but also of new ways to discover them. An exclusive review article on HNLs by Asano et al. in 2011 described the discovery of HNLs along with their applications. Since then many scientific advancements have been seen in this area. This article aims to highlight the modern HNL discovery approaches, based mainly on 1) genome mining, 2) use of INTMSAlign software, 3) rational design (based on a millipede HNL), 4) evolution of catalytic mechanisms, 5) protein engineering guided by catalytic mechanisms, and 6) screening of plants with cyanogen glycoside (CG) content. This description is followed by future prospects. Overall this review represents the present state and the future potential of HNL discovery approaches, and so might be hoped to be instrumental not only in exploration of new HNLs but also in the invention of methods for potential biotechnological applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phenylalanine ammonia-lyase through evolution: A bioinformatic approach

    Directory of Open Access Journals (Sweden)

    Shiva Hemmati

    2015-03-01

    Full Text Available Phenylalanine ammonia-lyase (PAL is the first entry enzyme of the phenylpropanoid pathway that converts phenylalanine to cinnamic acid which is the precursor of various secondary metabolites. PAL is recently formulated for phenylketonuric patients in pegylated forms; therefore, screening a PAL with the highest affinity to the substrate is of a great importance. PAL exists in all higher plants and some fungi and few bacteria. Ancestors of land plants have been adopted by evolving metabolic pathways. A multi-gene family encodes PAL by gene duplication events in most plants. In this study, the taxonomic distribution and phylogeny of pal gene found in land plants, fungi and bacteria have been analyzed. It seems that the ancestor of plants acquired a pal gene via horizontal gene transfer in symbioses with bacteria and fungi. Gymnosperms have kept a diverse set of pal genes that arose from gene duplication events. In angiosperms, after the divergence of dicotyledons from monocots, pal genes were duplicated many times. The close paralogues of pal genes in some species indicate expansion of gene families after the divergence in plant pal gene evolution. Interestingly, some of the plant pals clustered by species in a way that pals within one species are more closely related to each other than to homologs in the other species which indicates this duplication event occurred more recently.

  8. Novel proton MR spectroscopy findings in adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Zulfiqar, Maria; Lin, Doris D M; Van der Graaf, Marinette; Barker, Peter B; Fahrner, Jill A; Marie, Sandrine; Morava, Eva; De Boer, Lonneke; Willemsen, Michel A A P; Vining, Eileen; Horská, Alena; Engelke, Udo; Wevers, Ron A; Maegawa, Gustavo H B

    2013-04-01

    Adenylosuccinate lyase (ADSL) deficiency is a rare inborn error of metabolism resulting in accumulation of metabolites including succinylaminoimidazole carboxamide riboside (SAICAr) and succinyladenosine (S-Ado) in the brain and other tissues. Patients with ADSL have progressive psychomotor retardation, neonatal seizures, global developmental delay, hypotonia, and autistic features, although variable clinical manifestations may make the initial diagnosis challenging. Two cases of the severe form of the disease are reported here: an 18-month-old boy with global developmental delay, intractable neonatal seizures, progressive cerebral atrophy, and marked hypomyelination, and a 3-month-old girl presenting with microcephaly, neonatal seizures, and marked psychomotor retardation. In both patients in vivo proton magnetic resonance spectroscopy (MRS) showed the presence of S-Ado signal at 8.3 ppm, consistent with a prior report. Interestingly, SAICAr signal was also detectable at 7.5 ppm in affected white matter, which has not been reported in vivo before. A novel splice-site mutation, c.IVS12 + 1/G > C, in the ADSL gene was identified in the second patient. Our findings confirm the utility of in vivo proton MRS in suggesting a specific diagnosis of ADSL deficiency, and also demonstrate an additional in vivo resonance (7.5 ppm) of SAICAr in the cases of severe disease. Copyright © 2012 Wiley Periodicals, Inc.

  9. Genomic Characterization of Phenylalanine Ammonia Lyase Gene in Buckwheat.

    Directory of Open Access Journals (Sweden)

    Karthikeyan Thiyagarajan

    Full Text Available Phenylalanine Ammonia Lyase (PAL gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum. The identified SNPs in F. tataricum didn't result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.

  10. Sexual Dimorphism in the Selenocysteine Lyase Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Ashley N. Ogawa-Wong

    2018-01-01

    Full Text Available Selenium (Se is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly−/− mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice. Strikingly, females appeared to present with a less severe phenotype, suggesting the relationship between Scly and energy metabolism may be regulated in a sex-specific manner. Here, we report that while body weight and body fat gain occur in both male and female Scly−/− mice, strikingly, males are susceptible to developing glucose intolerance, whereas female Scly−/− mice are protected. Because Se is critical for male reproduction, we hypothesized that castration would attenuate the metabolic dysfunction observed in male Scly−/− mice by eliminating sequestration of Se in testes. We report that fasting serum insulin levels were significantly reduced in castrated males compared to controls, but islet area was unchanged between groups. Finally, both male and female Scly−/− mice exhibit reduced hypothalamic expression of selenoproteins S, M, and glutathione peroxidase 1.

  11. Biochemical analysis of Centaurea depressa phenylalanine ammonia lyase (PAL) for biotechnological applications in phenylketonuria (PKU).

    Science.gov (United States)

    Babaoğlu Aydaş, Selcen; Şirin, Seda; Aslim, Belma

    2016-12-01

    Phenylketonuria (PKU) is the most common hereditary defect of phenylalanine hydroxylase (PAH) enzyme achieving the hydroxylation of phenylalanine (Phe). Phenylalanine ammonia lyase (PAL) converts Phe to a harmless metabolite, trans-cinnamic acid (TCA) in plants and PAL enzyme activity is fairly high in plants rich in flavonoids. The study aimed the biochemical analysis of PAL form Centaurea depressa BIEB. (Asteraceae) a flavonoid rich plant. This study may form the main frame of future research efforts for the development of a plant preparation aimed for oral intake in PKU patients in an attempt to enrich their diet by allowing them to ingest some food stuff containing Phe without being exposed to complications. PAL was partially purified from the leaves of C. depressa. Enzyme activity was determined in comparison with that of other herbs that reportedly have a high PAL activity. Enzyme optimization was achieved and the PAL protein was detected by western blotting. C. depressa PAL demonstrated high activity (34.9 ± 0.6 U/mg protein). The enzyme was purified by 1.92-fold, which resulted in an activity of 53.30 ± 0.2 U/mg protein. The high-performance liquid chromatography analyzes of the PAL activity both before and after purification were in agreement. Western blot of PAL exhibited a 70 kDa protein band. The optimum pH and temperature are pH 8.8 and 37 °C. The optimum activities under gastric and intestinal digestion conditions were observed at pH 4.0 and pH 8.0, respectively. PAL activity of C. depressa is high, and does not disappear under different environmental conditions. This enzyme could be used for the development of dietary foods and biotechnological products for patients with PKU.

  12. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids.

    Science.gov (United States)

    Ledger, Elizabeth V K; Pader, Vera; Edwards, Andrew M

    2017-10-01

    Daptomycin is a lipopeptide antibiotic with activity against Gram-positive bacteria. We showed previously that Staphylococcus aureus can survive daptomycin exposure by releasing membrane phospholipids that inactivate the antibiotic. To determine whether other pathogens possess this defence mechanism, phospholipid release and daptomycin activity were measured after incubation of Staphylococcus epidermidis, group A or B streptococci, Streptococcus gordonii or Enterococcus faecalis with the antibiotic. All bacteria released phospholipids in response to daptomycin, which resulted in at least partial inactivation of the antibiotic. However, E. faecalis showed the highest levels of lipid release and daptomycin inactivation. As shown previously for S. aureus, phospholipid release by E. faecalis was inhibited by the lipid biosynthesis inhibitor platensimycin. In conclusion, several pathogenic Gram-positive bacteria, including E. faecalis, inactivate daptomycin by releasing phospholipids, which may contribute to the failure of daptomycin to resolve infections caused by these pathogens.

  13. Epigenetic inactivation of CHFR in human tumors

    OpenAIRE

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J.; Jair, Kam-Wing; Schuebel, Kornel E.; Imai, Kohzoh; Tokino, Takashi

    2003-01-01

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin–ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, w...

  14. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Paronyan, M.H.

    2015-01-01

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  15. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation

    International Nuclear Information System (INIS)

    Elliott, L.H.; McCormick, J.B.; Johnson, K.M.

    1982-01-01

    Because of the cumbersome conditions experienced in a maximum containment laboratory, methods for inactivating highly pathogenic viruses were investigated. The infectivity of Lassa, Marburg, and Ebola viruses was inactivated without altering the immunological activity after radiation with 60 CO gamma rays. At 4 degrees C, Lassa virus was the most difficult to inactivate with a rate of 5.3 X 10(-6) log 50% tissue culture infective dose per rad of 60 CO radiation, as compared with 6.8 X 10(-6) log 50% tissue culture infective dose per rad for Ebola virus and 8.4 X 10(-6) log 50% tissue culture infective dose per rad for Marburg virus. Experimental inactivation curves, as well as curves giving the total radiation needed to inactivate a given concentration of any of the three viruses, are presented. The authors found this method of inactivation to be superior to UV light or beta-propiolactone inactivation and now routinely use it for preparation of material for protein-chemistry studies or for preparation of immunological reagents

  16. Comparative structural and enzymatic studies on Salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features.

    Science.gov (United States)

    Deka, G; Bisht, S; Savithri, H S; Murthy, M R N

    2018-05-01

    Cellular metabolism of amino acids is controlled by a large number of pyridoxal 5'-phosphate (PLP) dependent enzymes. Diaminopropionate ammonia lyase (DAPAL), a fold type II PLP-dependent enzyme, degrades both the D and L forms of diaminopropionic acid (DAP) to pyruvate and ammonia. Earlier studies on the Escherichia coli DAPAL (EcDAPAL) had suggested that a disulfide bond located close to the active site may be crucial for maintaining the geometry of the substrate entry channel and the active site. In order to obtain further insights into the catalytic properties of DAPAL, structural and functional studies on Salmonella typhimurium DAPAL (StDAPAL) were initiated. The three-dimensional X-ray crystal structure of StDAPAL was determined at 2.5 Å resolution. As expected, the polypeptide fold and dimeric organization of StDAPAL is similar to those of EcDAPAL. A phosphate group was located in the active site of StDAPAL and expulsion of this phosphate is probably essential to bring Asp125 to a conformation suitable for proton abstraction from the substrate (D-DAP). The unique disulfide bond of EcDAPAL was absent in StDAPAL, although the enzyme displayed comparable catalytic activity. Site directed mutagenesis of the cysteine residues involved in disulfide bond formation in EcDAPAL followed by functional and biophysical studies further confirmed that the disulfide bond is not necessary either for substrate binding or for catalysis. The activity of StDAPAL but not EcDAPAL was enhanced by monovalent cations suggesting subtle differences in the active site geometries of these two closely related enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  18. Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification.

    Science.gov (United States)

    Siritunga, Dimuth; Arias-Garzon, Diana; White, Wanda; Sayre, Richard T

    2004-01-01

    Cassava (Manihot esculenta, Crantz) roots are the primary source of calories for more than 500 million people, the majority of whom live in the developing countries of Africa. Cassava leaves and roots contain potentially toxic levels of cyanogenic glycosides. Consumption of residual cyanogens (linamarin or acetone cyanohydrin) in incompletely processed cassava roots can cause cyanide poisoning. Hydroxynitrile lyase (HNL), which catalyses the conversion of acetone cyanohydrin to cyanide, is expressed predominantly in the cell walls and laticifers of leaves. In contrast, roots have very low levels of HNL expression. We have over-expressed HNL in transgenic cassava plants under the control of a double 35S CaMV promoter. We show that HNL activity increased more than twofold in leaves and 13-fold in roots of transgenic plants relative to wild-type plants. Elevated HNL levels were correlated with substantially reduced acetone cyanohydrin levels and increased cyanide volatilization in processed or homogenized roots. Unlike acyanogenic cassava, transgenic plants over-expressing HNL in roots retain the herbivore deterrence of cyanogens while providing a safer food product.

  19. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    Science.gov (United States)

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal inactivation kinetics of β-galactosidase during bread baking.

    Science.gov (United States)

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating.

    Science.gov (United States)

    Song, Won-Jae; Kang, Dong-Hyun

    2016-12-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different electric power levels to inactivate three pathogens in peanut butter with different aw. Peanut butter inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Listeria monocytogenes (0.3, 0.4, and 0.5 aw) were treated with a 915 MHz microwave with 2, 4, and 6 kW for up to 5 min. Six kW 915 MHz microwave treatment for 5 min reduced these three pathogens by 1.97 to >5.17 log CFU/g. Four kW 915 MHz microwave processing for 5 min reduced these pathogens by 0.41-1.98 log CFU/g. Two kW microwave heating did not inactivate pathogens in peanut butter. Weibull and Log-Linear + Shoulder models were used to describe the survival curves of three pathogens because they exhibited shouldering behavior. Td and T5d values were calculated based on the Weibull and Log-Linear + Shoulder models. Td values of the three pathogens were similar to D-values of Salmonella subjected to conventional heating at 90 °C but T5d values were much shorter than those of conventional heating at 90 °C. Generally, increased aw resulted in shorter T5d values of pathogens, but not shorter Td values. The results of this study can be used to optimize microwave heating pasteurization system of peanut butter. Copyright © 2016. Published by Elsevier Ltd.

  2. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  3. Novel features in the evolution of adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Pérez-Dueñas, Belén; Sempere, Angela; Campistol, Jaume; Alonso-Colmenero, Itziar; Díez, María; González, Verónica; Merinero, Begoña; Desviat, Lourdes R; Artuch, Rafael

    2012-07-01

    Adenylosuccinate lyase (ADSL) deficiency is an autosomal recessive disorder of the purine synthesis which results in accumulation of succinylpurines (succinyladenosine (S-Ado) and succinylamino-imidazole carboxamide riboside (SAICAr)) in body fluids. Patients present developmental delay, often accompanied by epilepsy and autistic spectrum disorders. To describe atypical neurological features in the evolution of three novel unrelated cases of ADSL deficiency. A 9-year-old boy with severe cognitive impairment and autistic behaviour received d-ribose therapy for one year. Drug withdrawal was associated with acute neurological deterioration, severe brain atrophy and demyelination on MRI. The second patient is a 5.5-year-old girl with mild developmental delay who presented a benign course with moderate cognitive impairment as the only feature in her evolution. The final patient is a 14-year-old boy with severe cognitive impairment who developed drug-resistant epilepsy and bathing reflex seizures, progressive spasticity in the lower limbs and thoracic deformity. SAICAr and S-Ado in urine were analysed by HPLC with diode array detection. Diagnosis was confirmed by molecular analysis of the ADSL gene. An elevation of S-Ado and SAICAr excretion in urine was detected in all three patients. The patients were homozygous for the missence change p.I369L and for the novel change p.M389V. Drug-resistant epilepsy and specific therapeutic interventions may modify the neurological outcome in ADSL deficiency. d-ribose must be considered with caution as, in our experience, it returns no clinical benefit and drug withdrawal can precipitate status epilepticus and acute neurological deterioration. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Thrombin generation, ProC(®)Global, prothrombin time and activated partial thromboplastin time in thawed plasma stored for seven days and after methylene blue/light pathogen inactivation.

    Science.gov (United States)

    Thiele, Thomas; Hron, Gregor; Kellner, Sarah; Wasner, Christina; Westphal, Antje; Warkentin, Theodore E; Greinacher, Andreas; Selleng, Kathleen

    2016-01-01

    Methylene blue pathogen inactivation and storage of thawed plasma both lead to changes in the activity of several clotting factors. We investigated how this translates into a global loss of thrombin generation potential and alterations in the protein C pathway. Fifty apheresis plasma samples were thawed and each divided into three subunits. One subunit was stored for 7 days at 4 °C, one was stored for 7 days at 22 °C and one was stored at 4 °C after methylene blue/light treatment. Thrombin generation parameters, ProC(®)Global-NR, prothrombin time and activated partial thromboplastin time were assessed on days 0 and 7. The velocity of thrombin generation increased significantly after methylene blue treatment (increased thrombin generation rate; time to peak decreased) and decreased after storage (decreased thrombin generation rate and peak thrombin; increased lag time and time to peak). The endogenous thrombin generation potential remained stable after methylene blue treatment and storage at 4 °C. Methylene blue treatment and 7 days of storage at 4 °C activated the protein C pathway, whereas storage at room temperature and storage after methylene blue treatment decreased the functional capacity of the protein C pathway. Prothrombin time and activated partial thromboplastin time showed only modest alterations. The global clotting capacity of thawed plasma is maintained at 4 °C for 7 days and directly after methylene blue treatment of thawed plasma. Thrombin generation and ProC(®)Global are useful tools for investigating the impact of pathogen inactivation and storage on the clotting capacity of therapeutic plasma preparations.

  5. Probing the structure of glucan lyases – the lytic members of GH31 - by sequence analysis, circular dichroism and proteolysis

    DEFF Research Database (Denmark)

    Ernst, Heidi; Lo Leggio, Leila; Yu, Shukun

    2005-01-01

    Glucan lyase (GL) is a polysaccharide lyase with unique characteristics. It is involved in an alternative pathway for the degradation of alpha-glucans, the anhydrofructose pathway. Sequence similarity suggests that this lytic enzyme belongs to glycoside hydrolase family 31, for which until very r...

  6. Inactivation of pectin methylesterase by immobilized trypsins from cunner fish and bovine pancreas.

    Science.gov (United States)

    Li, Dan; Matos, Madyu; Simpson, Benjamin K

    2013-01-01

    Immobilized cunner fish trypsin was used to inactivate pectin methylesterase (PME). The effects of different reaction conditions (e.g., incubation time, PME concentration, and temperature) on PME inactivation and kinetics of inactivation were investigated. Temperature, incubation time, and PME concentration significantly affected the extent of PME inactivation. Generally, higher temperature, longer incubation time, and low PME concentration caused more PME inactivation. The immobilized fish trypsin had higher capacity to inactivate PME than immobilized bovine trypsin. The inactivation efficiency of the immobilized fish trypsin was about 20% higher than that of its bovine counterpart. However, PME inactivated by both trypsins regained partial activity during storage at 4°C, with immobilized fish trypsin-treated PME regaining more of its original activity than the immobilized bovine trypsin-treated PME. Heat-denatured PME was hydrolyzed more extensively by immobilized fish trypsin than by its bovine counterpart. The rate constants increased, whereas the D-values decreased with temperature for both immobilized fish and bovine trypsins. The inactivation rate constants of immobilized fish trypsin at all the temperatures investigated (i.e., 15-35°C) were higher than those of immobilized bovine trypsin. Furthermore, the activation energy (Ea ) of PME inactivation by immobilized fish trypsin was lower than that of immobilized bovine trypsin. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. Generation of 2-Furfurylthiol by Carbon-Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20.

    Science.gov (United States)

    Zha, Musu; Sun, Baoguo; Yin, Sheng; Mehmood, Arshad; Cheng, Lei; Wang, Chengtao

    2018-03-07

    2-Furfurylthiol is the representative aroma compound of Chinese sesame-flavored baijiu. Previous studies demonstrated that baijiu yeasts could generate 2-furfurylthiol using furfural and l-cysteine as precursors and that the Saccharomyces cerevisiae genes STR3 and CYS3 are closely related to 2-furfurylthiol biosynthesis. To confirm the mechanism of the STR3- and CYS3-gene products on 2-furfurylthiol biosynthesis, their encoded proteins were purified, and we confirmed their activities as carbon-sulfur lyases. Str3p and Cys3p were able to cleave the cysteine-furfural conjugate to release 2-furfurylthiol. Moreover, the characterization of the enzymatic properties of the purified proteins shows good thermal stabilities and wide pH tolerances, which enable their strong potential for various applications. These data provide direct evidence that yeast Str3p and Cys3p release 2-furfurylthiol in vitro, which can be applied to improve baijiu flavor.

  8. The requirement of oxygen for the induction of phenylalanine ammonia lyase in potatoes by light or gamma irradiation

    International Nuclear Information System (INIS)

    Shirsat, S.G.; Nair, P.M.

    1976-01-01

    The induction of phenylalanine ammonia lyase (PAL) either in excised potato parenchymatous tissue by light or excised bud tissue by gamma radiation was abolished completely by submersion of the tissue in water. However, this effect could be reversed by passing air or oxygen vigorously through the medium. In this case the recovery of the induction was only about 75% of that of the air-incubated sample. Similarly the incubation of the tissue in nitrogen atmosphere instead of air caused complete inhibition of PAL induction. Experiments with protein synthesis inhibitors like cycloheximide, puromycin, actinomycin D and cinnabarinic acid, indicated that the oxygen-dependent enhancement of PAL activity, when the tissues are suspended in water, was due to de novo synthesis of the enzyme. (author)

  9. Studies on the inhibition of sphingosine-1-phosphate lyase by stabilized reaction intermediates and stereodefined azido phosphates.

    Science.gov (United States)

    Sanllehí, Pol; Abad, José-Luís; Bujons, Jordi; Casas, Josefina; Delgado, Antonio

    2016-11-10

    Two kinds of inhibitors of the PLP-dependent enzyme sphingosine-1-phosphate lyase have been designed and tested on the bacterial (StS1PL) and the human (hS1PL) enzymes. Amino phosphates 1, 12, and 32, mimicking the intermediate aldimines of the catalytic process, were weak inhibitors on both enzyme sources. On the other hand, a series of stereodefined azido phosphates, resulting from the replacement of the amino group of the natural substrates with an azido group, afforded competitive inhibitors in the low micromolar range on both enzyme sources. This similar behavior represents an experimental evidence of the reported structural similarities for both enzymes at their active site level. Interestingly, the anti-isomers of the non-natural enantiomeric series where the most potent inhibitors on hS1PL. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Replacing a suite of commercial pectinases with a single enzyme, pectate lyase B, in Saccharomyces cerevisiae fermentations of cull peaches.

    Science.gov (United States)

    Edwards, M C; Williams, T; Pattathil, S; Hahn, M G; Doran-Peterson, J

    2014-04-01

    Fermentation of pectin-rich biomass with low concentrations of polysaccharides requires some treatment of the pectin, but does not need complete degradation of the polysaccharide to reach maximum ethanol yields. Cull peaches, whole rotten fruits that are not suitable for sale, contain high concentrations of glucose (27.7% dw) and fructose (29.3% dw) and low amounts of cellulose (2.8% dw), hemicellulose (4.5% dw) and pectin (5.6% dw). Amounts of commercial saccharification enzymes, cellulase and cellobiase can be significantly decreased and commercial pectinase mixtures can be replaced completely with a single enzyme, pectate lyase (PelB), while maintaining ethanol yields above 90% of the theoretical maximum. PelB does not completely degrade pectin; it only releases short chain oligogalacturonides. However, the activity of PelB is sufficient for the fermentation process, and its addition to fermentations without commercial pectinase increases ethanol production by ~12%.

  11. Adenylosuccinate lyase deficiency in the United Kingdom pediatric population: first three cases.

    Science.gov (United States)

    Lundy, Claire T; Jungbluth, Heinz; Pohl, Keith R E; Siddiqui, Ata; Marinaki, Anthony M; Mundy, Helen; Champion, Michael P

    2010-11-01

    Adenylosuccinate lyase deficiency is an autosomal recessive disorder of purine metabolism resulting from mutations in the ADSL gene on chromosome subband 22q13.1 and associated with a wide range of clinical manifestations. Although there is currently no effective treatment of ADSL deficiency, recognition of the condition is important, because prenatal genetic diagnosis can be offered to affected families. Reported here are the cases of the only three children diagnosed to date in the United Kingdom with adenylosuccinate lyase deficiency, to further delineate the clinical phenotype and to raise awareness of this disorder. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Inactivation of orange pectinesterase by combined high-pressure and -temperature treatments: a kinetic study.

    Science.gov (United States)

    Van den Broeck, I; Ludikhuyze, L R; Van Loey, A M; Hendrickx, M E

    2000-05-01

    Pressure and/or temperature inactivation of orange pectinesterase (PE) was investigated. Thermal inactivation showed a biphasic behavior, indicating the presence of labile and stable fractions of the enzyme. In a first part, the inactivation of the labile fraction was studied in detail. The combined pressure-temperature inactivation of the labile fraction was studied in the pressure range 0.1-900 MPa combined with temperatures from 15 to 65 degrees C. Inactivation in the pressure-temperature domain specified could be accurately described by a first-order fractional conversion model, estimating the inactivation rate constant of the labile fraction and the remaining activity of the stable fraction. Pressure and temperature dependence of the inactivation rate constants of the labile fraction was quantified using the Eyring and Arrhenius relations, respectively. By replacing in the latter equation the pressure-dependent parameters (E(a), k(ref)(T)()) by mathematical expressions, a global model was formulated. This mathematical model could accurately predict the inactivation rate constant of the labile fraction of orange PE as a function of pressure and temperature. In a second part, the stable fraction was studied in more detail. The stable fraction inactivated at temperatures exceeding 75 degrees C. Acidification (pH 3.7) enhanced thermal inactivation of the stable fraction, whereas addition of Ca(2+) ions (1 M) suppressed inactivation. At elevated pressure (up to 900 MPa), an antagonistic effect of pressure and temperature on the inactivation of the stable fraction was observed. The antagonistic effect was more pronounced in the presence of a 1 M CaCl(2) solution as compared to the inactivation in water, whereas it was less pronounced for the inactivation in acid medium.

  13. Formulation and PEGylation optimization of the therapeutic PEGylated phenylalanine ammonia lyase for the treatment of phenylketonuria.

    Science.gov (United States)

    Bell, Sean M; Wendt, Dan J; Zhang, Yanhong; Taylor, Timothy W; Long, Shinong; Tsuruda, Laurie; Zhao, Bin; Laipis, Phillip; Fitzpatrick, Paul A

    2017-01-01

    Phenylketonuria (PKU) is a genetic metabolic disease in which the decrease or loss of phenylalanine hydroxylase (PAH) activity results in elevated, neurotoxic levels of phenylalanine (Phe). Due to many obstacles, PAH enzyme replacement therapy is not currently an option. Treatment of PKU with an alternative enzyme, phenylalanine ammonia lyase (PAL), was first proposed in the 1970s. However, issues regarding immunogenicity, enzyme production and mode of delivery needed to be overcome. Through the evaluation of PAL enzymes from multiple species, three potential PAL enzymes from yeast and cyanobacteria were chosen for evaluation of their therapeutic potential. The addition of polyethylene glycol (PEG, MW = 20,000), at a particular ratio to modify the protein surface, attenuated immunogenicity in an animal model of PKU. All three PEGylated PAL candidates showed efficacy in a mouse model of PKU (BTBR Pahenu2) upon subcutaneous injection. However, only PEGylated Anabaena variabilis (Av) PAL-treated mice demonstrated sustained low Phe levels with weekly injection and was the only PAL evaluated that maintained full enzymatic activity upon PEGylation. A PEGylated recombinant double mutant version of AvPAL (Cys503Ser/Cys565Ser), rAvPAL-PEG, was selected for drug development based on its positive pharmacodynamic profile and favorable expression titers. PEGylation was shown to be critical for rAvPAL-PEG efficacy as under PEGylated rAvPAL had a lower pharmacodynamic effect. rAvPAL and rAvPAL-PEG had poor stability at 4°C. L-Phe and trans-cinnamate were identified as activity stabilizing excipients. rAvPAL-PEG is currently in Phase 3 clinical trials to assess efficacy in PKU patients.

  14. The New Self-Inactivating Lentiviral Vector for Thalassemia Gene Therapy Combining Two HPFH Activating Elements Corrects Human Thalassemic Hematopoietic Stem Cells

    Science.gov (United States)

    Papanikolaou, Eleni; Georgomanoli, Maria; Stamateris, Evangelos; Panetsos, Fottes; Karagiorga, Markisia; Tsaftaridis, Panagiotis; Graphakos, Stelios

    2012-01-01

    Abstract To address how low titer, variable expression, and gene silencing affect gene therapy vectors for hemoglobinopathies, in a previous study we successfully used the HPFH (hereditary persistence of fetal hemoglobin)-2 enhancer in a series of oncoretroviral vectors. On the basis of these data, we generated a novel insulated self-inactivating (SIN) lentiviral vector, termed GGHI, carrying the Aγ-globin gene with the −117 HPFH point mutation and the HPFH-2 enhancer and exhibiting a pancellular pattern of Aγ-globin gene expression in MEL-585 clones. To assess the eventual clinical feasibility of this vector, GGHI was tested on CD34+ hematopoietic stem cells from nonmobilized peripheral blood or bone marrow from 20 patients with β-thalassemia. Our results show that GGHI increased the production of γ-globin by 32.9% as measured by high-performance liquid chromatography (p=0.001), with a mean vector copy number per cell of 1.1 and a mean transduction efficiency of 40.3%. Transduced populations also exhibited a lower rate of apoptosis and resulted in improvement of erythropoiesis with a higher percentage of orthochromatic erythroblasts. This is the first report of a locus control region (LCR)-free SIN insulated lentiviral vector that can be used to efficiently produce the anticipated therapeutic levels of γ-globin protein in the erythroid progeny of primary human thalassemic hematopoietic stem cells in vitro. PMID:21875313

  15. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels

    Science.gov (United States)

    Fineberg, Jeffrey D.; Ritter, David M.

    2012-01-01

    A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously

  16. Structural and kinetic analysis of Schistosoma mansoni Adenylosuccinate Lyase (SmADSL).

    Science.gov (United States)

    Romanello, Larissa; Serrão, Vitor Hugo Balasco; Torini, Juliana Roberta; Bird, Louise E; Nettleship, Joanne E; Rada, Heather; Reddivari, Yamini; Owens, Ray J; DeMarco, Ricardo; Brandão-Neto, José; Pereira, Humberto D'Muniz

    2017-06-01

    Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites are formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus.

    Science.gov (United States)

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-02-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.

  18. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    Science.gov (United States)

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Catalytic Mechanisms and Biocatalytic Applications of Aspartate and Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    de Villiers, Marianne; Veetil, Vinod Puthan; Raj, Hans; de Villiers, Jandre; Poelarends, Gerrit J.

    2012-01-01

    Ammonia lyases catalyze the formation of alpha-beta-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes

  20. Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2

    NARCIS (Netherlands)

    Klug-Santner, Barbara G.; Schnitzhofer, Wolfgang; Vrsanska, Maria; Weber, Jörg; Agrawal, Pramod; Nierstrasz, Vincent; Guebitz, Georg M.

    2006-01-01

    An alkalophilic bacterium was isolated based on the potential of extra-cellular enzymes for bioscouring. The bacterium was identified as a new strain of Bacillus pumilus BK2 producing an extra-cellular endo-pectate lyase PL (EC 4.2.2.2). PL was purified to homogeneity in three steps and has a

  1. Cystathionine-γ-lyase gene silencing with siRNA in monocytes ...

    Indian Academy of Sciences (India)

    Hydrogen sulphide is an endogenous inflammatory mediator produced by cystathionine-γ-lyase (CSE) in macrophages. To determine the role of H2S and macrophages in sepsis, we used small interference RNA (siRNA) to target the CSE gene and investigated its effect in a mouse model of sepsis. Cecal ligation puncture ...

  2. Biocatalytic Enantioselective Synthesis of N-Substituted Aspartic Acids by Aspartate Ammonia Lyase

    NARCIS (Netherlands)

    Weiner, Barbara; Poelarends, Gerrit J.; Janssen, Dick B.; Feringa, Ben L.

    2008-01-01

    The gene encoding aspartate ammonia lyase (aspB) from Bacillus sp. YM55-1 has been cloned and overexpressed, and the recombinant enzyme containing a C-terminal His6 tag has been purified to homogeneity and subjected to kinetic characterization. Kinetic studies have shown that the His6 tag does not

  3. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; de Villiers, Jandre; Rozeboom, Henriëtte J.; Puthan Veetil, Vinod; Reis, Carlos R.; Villiers, Marianne de; Dekker, Frank J.; Wildeman, Stefaan de; Quax, Wim J.; Thunnissen, Andy-Mark W.H.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

    The redesign of enzymes to produce catalysts for a predefined transformation remains a major challenge in protein engineering. Here, we describe the structure-based engineering of methylaspartate ammonia lyase (which in nature catalyses the conversion of 3-methylaspartate to ammonia and

  4. Kinetic Resolution and Stereoselective Synthesis of 3-Substituted Aspartic Acids by Using Engineered Methylaspartate Ammonia Lyases

    NARCIS (Netherlands)

    Raj, Hans; Szymanski, Wiktor; Villiers, Jandré de; Puthan Veetil, Vinod; Quax, Wim J.; Shimamoto, Keiko; Janssen, Dick B.; Feringa, Ben L.; Poelarends, Gerrit J.

    2013-01-01

    Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described.

  5. Alteration of the Diastereoselectivity of 3-Methylaspartate Ammonia Lyase by Using Structure-Based Mutagenesis

    NARCIS (Netherlands)

    Raj, Hans; Weiner, Barbara; Puthan Veetil, Vinod; Reis, Carlos R.; Quax, Wim J.; Janssen, Dick B.; Feringa, Ben L.; Poelarends, Gerrit J.

    2009-01-01

    3-Methylaspartate ammonia-lyase (MAL) catalyzes the reversible amination of mesaconate to give both (2S,3S)-3-methylaspartic acid and (2S,3R)-3-methylaspartic acid as products. The deamination mechanism of MAL is likely to involve general base catalysis, in which a catalytic base abstracts the C3

  6. Biochemical and structural characterization of a novel bacterial manganese-dependent hydroxynitrile lyase.

    NARCIS (Netherlands)

    Hajnal, I.; Lyskowski, A.; Hanefeld, U.; Gruber, K.; Schwab, H.; Steiner, K.

    2013-01-01

    Hydroxynitrile lyases (HNLs), which catalyse the decomposition of cyanohydrins, are found mainly in plants. In vitro, they are able to catalyse the synthesis of enantiopure cyanohydrins, which are versatile building blocks in the chemical industry. Recently, HNLs have also been discovered in

  7. c-Jun N-Terminal Kinase Inactivation by Mitogen-Activated Protein Kinase Phosphatase 1 Determines Resistance to Taxanes and Anthracyclines in Breast Cancer.

    Science.gov (United States)

    Rincón, Raúl; Zazo, Sandra; Chamizo, Cristina; Manso, Rebeca; González-Alonso, Paula; Martín-Aparicio, Ester; Cristóbal, Ion; Cañadas, Carmen; Perona, Rosario; Lluch, Ana; Eroles, Pilar; García-Foncillas, Jesús; Albanell, Joan; Rovira, Ana; Madoz-Gúrpide, Juan; Rojo, Federico

    2016-11-01

    MAPK phosphatase-1 (MKP-1) is overexpressed during malignant transformation of the breast in many patients, and it is usually associated with chemoresistance through interference with JNK-driven apoptotic pathways. Although the molecular settings of the mechanism have been documented, details about the contribution of MKP-1 to the failure of chemotherapeutic interventions are unclear. Transient overexpression of MKP-1 and treatment with JNK-modulating agents in breast carcinoma cells confirmed the mediation of MKP-1 in the resistance to taxanes and anthracyclines in breast cancer, through the inactivation of JNK1/2. We next assessed MKP-1 expression and JNK1/2 phosphorylation status in a large cohort of samples from 350 early breast cancer patients treated with adjuvant anthracycline-based chemotherapy. We detected that MKP-1 overexpression is a recurrent event predominantly linked to dephosphorylation of JNK1/2 with an adverse impact on relapse of the tumor and overall and disease-free survival. Moreover, MKP-1 and p-JNK1/2 determinations in 64 locally advanced breast cancer patients treated with neoadjuvant taxane-based chemotherapy showed an inverse correlation between MKP-1 overexpression (together with JNK1/2 inhibition) and the pathologic response of the tumors. Our results emphasize the importance of MKP-1 as a potential predictive biomarker for a subset of breast cancer patients with worse outcome and less susceptibility to treatment. Mol Cancer Ther; 15(11); 2780-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Degradation of ureidoglycolate in French bean (Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase.

    Science.gov (United States)

    Muñoz, Alfonso; Raso, María José; Pineda, Manuel; Piedras, Pedro

    2006-06-01

    A ureidoglycolate-degrading activity was analysed in different tissues of French bean (Phaseolus vulgaris L.) plants during development. Activity was detected in all the tissues analysed, although values were very low in seeds before germination and in cotyledons. After radicle emergence, the activity increased due to high activity present in the axes. The highest levels of specific activity were found in developing fruits, from which the enzyme was purified and characterised. This is the first ureidoglycolate-degrading activity that has been purified to homogeneity from a ureide legume. The enzyme was purified 280 fold, and the specific activity for the pure enzyme was 4.4 units mg(-1), which corresponds to a turnover number of 1,055 min(-1). The native enzyme has a molecular mass of 240 kDa and consists of six identical or similar-sized subunits each of 38 kDa. The activity of the purified enzyme was completely dependent on manganese and asparagine. The enzyme exhibited hyperbolic, Michaelian kinetics for ureidoglycolate with a K(m) value of 3.9 mM. This enzyme has been characterised as a ureidoglycolate urea-lyase (EC 4.3.2.3).

  9. Inactivation of viruses in labile blood derivatives. II. Physical methods

    International Nuclear Information System (INIS)

    Horowitz, B.; Wiebe, M.E.; Lippin, A.; Vandersande, J.; Stryker, M.H.

    1985-01-01

    The thermal inactivation of viruses in labile blood derivatives was evaluated by addition of marker viruses (VSV, Sindbis, Sendai, EMC) to anti-hemophilic factor (AHF) concentrates. The rate of virus inactivation at 60 degrees C was decreased by at least 100- to 700-fold by inclusion of 2.75 M glycine and 50 percent sucrose, or 3.0 M potassium citrate, additives which contribute to retention of protein biologic activity. Nonetheless, at least 10(4) infectious units of each virus was inactivated within 10 hours. Increasing the temperature from 60 to 70 or 80 degrees C caused a 90 percent or greater loss in AHF activity. An even greater decline in the rate of virus inactivation was observed on heating AHF in the lyophilized state, although no loss in AHF activity was observed after 72 hours of heating at 60 degrees C. Several of the proteins present in lyophilized AHF concentrates displayed an altered electrophoretic mobility as a result of exposure to 60 degrees C for 24 hours. Exposure of lyophilized AHF to irradiation from a cobalt 60 source resulted in an acceptable yield of AHF at 1.0, but not at 2.0, megarads. At 1 megarad, greater than or equal to 6.0 logs of VSV and 3.3 logs of Sindbis virus were inactivated

  10. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  11. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  12. Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation.

    Science.gov (United States)

    Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

    2011-02-01

    We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Billich

    Full Text Available BACKGROUND: Sphingosine-1-phosphate (S1P regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1. Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. METHODOLOGY: We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. PRINCIPAL FINDINGS: The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE. T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. SIGNIFICANCE: The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.

  14. Structural And Biochemical Characterization of the Therapeutic A. Variabilis Phenylalanine Ammonia Lyase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Gamez, A.; Archer, H.; Abola, E.E.; Sarkissian, C.N.; Fitzpatrick, P.; Wendt, D.; Zhang, Y.; Vellard, M.; Bliesath, J.; Bell, S.; Lemont, J.; Scriver, C.R.; Stevens, R.C.

    2009-05-26

    We have recently observed promising success in a mouse model for treating the metabolic disorder phenylketonuria with phenylalanine ammonia lyase (PAL) from Rhodosporidium toruloides and Anabaena variabilis. Both molecules, however, required further optimization in order to overcome problems with protease susceptibility, thermal stability, and aggregation. Previously, we optimized PAL from R. toruloides, and in this case we reduced aggregation of the A. variabilis PAL by mutating two surface cysteine residues (C503 and C565) to serines. Additionally, we report the structural and biochemical characterization of the A. variabilis PAL C503S/C565S double mutant and carefully compare this molecule with the R. toruloides engineered PAL molecule. Unlike previously published PAL structures, significant electron density is observed for the two active-site loops in the A. variabilis C503S/C565S double mutant, yielding a complete view of the active site. Docking studies and N-hydroxysuccinimide-biotin binding studies support a proposed mechanism in which the amino group of the phenylalanine substrate is attacked directly by the 4-methylidene-imidazole-5-one prosthetic group. We propose a helix-to-loop conformational switch in the helices flanking the inner active-site loop that regulates accessibility of the active site. Differences in loop stability among PAL homologs may explain the observed variation in enzyme efficiency, despite the highly conserved structure of the active site. A. variabilis C503S/C565S PAL is shown to be both more thermally stable and more resistant to proteolytic cleavage than R. toruloides PAL. Additional increases in thermal stability and protease resistance upon ligand binding may be due to enhanced interactions among the residues of the active site, possibly locking the active-site structure in place and stabilizing the tetramer. Examination of the A. variabilis C503S/C565S PAL structure, combined with analysis of its physical properties, provides

  15. Radiation inactivation analysis of kidney microvillar peptidases

    International Nuclear Information System (INIS)

    Fulcher, I.S.; Ingram, J.; Kenny, A.J.

    1986-01-01

    Five membrane peptidases were studied by radiation inactivation analysis of pig kidney microvillar membranes. One heterodimeric enzyme, γ-glutamyl transferase, presented a target size corresponding to the dimeric M r . The other enzymes are known to be homodimers. Three of these, aminopeptidase A, aminopeptidase N and dipeptidyl peptidase 4, gave results clearly indicating the monomer to be the target and, hence, in this group the association of the subunits was not essential for activity. The target size for endopeptidase-24.11 was intermediate between those for monomer and dimer and its functional state was not resolved by the experiments. (Auth.)

  16. Inactivation of Herpes Simplex Viruses by Nonionic Surfactants

    Science.gov (United States)

    Asculai, Samuel S.; Weis, Margaret T.; Rancourt, Martha W.; Kupferberg, A. B.

    1978-01-01

    Nonionic surface-active agents possessing ether or amide linkages between the hydrophillic and hydrophobic portions of the molecule rapidly inactivated the infectivity of herpes simplex viruses. The activity stemmed from the ability of nonionic surfactants to dissolve lipid-containing membranes. This was confirmed by observing surfactant destruction of mammalian cell plasma membranes and herpes simplex virus envelopes. Proprietary vaginal contraceptive formulations containing nonionic surfactants also inactivated herpes simplex virus infectivity. This observation suggests that nonionic surfactants in appropriate formulation could effectively prevent herpes simplex virus transmission. Images PMID:208460

  17. Enzyme Activities in Oleaginous Yeasts Accumulating and Utilizing Exogenous or Endogenous Lipids

    NARCIS (Netherlands)

    Holdsworth, Jane E.; Veenhuis, Marten; Ratledge, Colin

    1988-01-01

    The activities of ATP:citrate lyase (ACL; EC 4.1.3.8), carnitine acetyltransferase (CAT; EC 2.3.1.7), NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42), isocitrate lyase (ICL; EC 4.1.3.1) and malic enzyme (malate dehydrogenase; EC 1.1.1.40) were measured in four oleaginous yeasts, Candida

  18. Congenital Adrenal Hyperplasia due to 17-alpha-hydoxylase/17,20-lyase Deficiency Presenting with Hypertension and Pseudohermaphroditism: First Case Report from Oman

    Directory of Open Access Journals (Sweden)

    Waad-Allah S. Mula-Abed

    2014-01-01

    Full Text Available This is the first report of congenital adrenal hyperplasia (CAH due to combined 17α-hydroxylase/17,20 lyase deficiency in an Omani patient who was initially treated for many years as a case of hypertension. CAH is an uncommon disorder that results from a defect in steroid hormones biosynthesis in the adrenal cortex. The clinical presentation depends on the site of enzymatic mutations and the types of accumulated steroid precursors. A 22-year-old woman who was diagnosed to have hypertension since the age of 10 years who was treated with anti-hypertensive therapy was referred to the National Diabetes and Endocrine Centre, Royal Hospital, Oman. The patient also had primary amenorrhea and features of sexual infantilism. Full laboratory and radio-imaging investigations were done. Adrenal steroids, pituitary function and karyotyping study were performed and the diagnosis was confirmed by molecular mutation study. Laboratory investigations revealed adrenal steroids and pituitary hormones profile in addition to 46XY karyotype that are consistent with the diagnosis of CAH due to 17α-hydroxylase deficiency. Extensive laboratory workup revealed low levels of serum cortisol (and its precursors 17α-hydroxyprogesterone and 11-deoxycortisol, adrenal androgens (dehydroepiandrosterone sulfate and androstenedione, and estrogen (estradiol; and high levels of mineralocorticoids precursors (11-deoxycorticosterone and corticosterone with high levels of ACTH, FSH and LH. Mutation analysis revealed CYP17A1-homozygous mutation (c.287G>A p.Arg96Gln resulting in the complete absence of 17α-hydroxylase/17,20-lyase activity. The patient was treated with dexamethasone and ethinyl estradiol with cessation of anti-hypertensive therapy. A review of the literature was conducted to identify previous studies related to this subtype of CAH. This is the first biochemically and genetically proven case of CAH due to 17α-hydroxylase/17,20-lyase deficiency in Oman and in the Arab

  19. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  20. Thermal inactivation kinetics of partially purified mango pectin methylesterase

    Directory of Open Access Journals (Sweden)

    Claudio Alonso DÍAZ-CRUZ

    2016-01-01

    Full Text Available Abstract Kinetic parameters of thermal inactivation of pectin methylesterase (PME in a partially purified mango enzyme extract were determined. The PME of mango partially purified by salting out showed different patterns of thermal inactivation, indicating the presence of a thermostable fraction at 70 °C and a thermolabile fraction at lower temperatures. The inactivation of the thermostable fraction exhibited a linear behavior that yielded a z-value of 9.44 °C and an activation energy (Ea of 245.6 kJ mol-1 K-1 using the Arrhenius model. The thermostable mango PME fraction represented 17% of total crude enzyme extract, which emphasizes the importance of residual enzyme activity after heat treatment.

  1. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.

    Science.gov (United States)

    Puthan Veetil, Vinod; Raj, Hans; Quax, Wim J; Janssen, Dick B; Poelarends, Gerrit J

    2009-06-01

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of L-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of L-aspartate to form an enzyme-stabilized enediolate intermediate. Ketonization of this intermediate eliminates ammonia and yields the product, fumarate. Although two crystal structures of aspartases have been determined, details of the catalytic mechanism have not yet been elucidated. In the present study, eight active site residues (Thr101, Ser140, Thr141, Asn142, Thr187, His188, Lys324 and Asn326) were mutated in the structurally characterized aspartase (AspB) from Bacillus sp. YM55-1. On the basis of a model of the complex in which L-aspartate was docked manually into the active site of AspB, the residues responsible for binding the amino group of L-aspartate were predicted to be Thr101, Asn142 and His188. This postulate is supported by the mutagenesis studies: mutations at these positions resulted in mutant enzymes with reduced activity and significant increases in the K(m) for L-aspartate. Studies of the pH dependence of the kinetic parameters of AspB revealed that a basic group with a pK(a) of approximately 7 and an acidic group with a pK(a) of approximately 10 are essential for catalysis. His188 does not play the typical role of active site base or acid because the H188A mutant retained significant activity and displayed an unchanged pH-rate profile compared to that of wild-type AspB. Mutation of Ser140 and Thr141 and kinetic analysis of the mutant enzymes revealed that these residues are most likely involved in substrate binding and in stabilizing the enediolate intermediate. Mutagenesis studies corroborate the essential role of Lys324 because all mutations at this position resulted in mutant enzymes that were completely inactive. The substrate-binding model and kinetic analysis of mutant enzymes suggest that Thr187 and Asn326

  2. Molecular Viability Testing of UV-Inactivated Bacteria.

    Science.gov (United States)

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  3. Radiation-induced inactivation of bovine liver catalase in nitrous oxide-saturated solutions

    International Nuclear Information System (INIS)

    Gebicka, L.; Metodiewa, D.

    1988-01-01

    Radiation-induced inactivation of catalase by . OH/H . radicals was studied. It was found that inactivation yield of catalase depended on the dose. Optical spectrum of irradiated catalase showed that no redox processes in active site of enzyme occurred as a result of . OH/H . interaction. (author) 19 refs.; 3 figs

  4. The influence of catechol structure on the suicide-inactivation of tyrosinase.

    Science.gov (United States)

    Ramsden, Christopher A; Stratford, Michael R L; Riley, Patrick A

    2009-09-07

    3,6-Difluorocatechol, which cannot act as a monooxygenase tyrosinase substrate, is an oxidase substrate, and, in contrast to other catechols, oxidation does not lead to suicide-inactivation, providing experimental evidence for an inactivation mechanism involving reductive elimination of Cu(0) from the active site.

  5. The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs

    DEFF Research Database (Denmark)

    Tolouie, Haniye; Mohammadifar, Mohammad Amin; Ghomi, Hamid

    2018-01-01

    to higher inactivation, however, the inactivation of lipase and lipoxygenase was not significant after 25 min treatment time. The DPPH radical scavenging activity and total phenolic of treated samples did not change significantly compared to controlled samples. However lipase and lipoxygenase recovered some...

  6. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2.

    Science.gov (United States)

    Cai, Xiaoqing; Guo, Lele; Pei, Fei; Chang, Xiaoyun; Zhang, Rui

    2018-04-15

    Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC 50 of Polyphyllin G ranged from 10 to 65 μM. However the IC 50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC 50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The inactivation of cytochrome P450 3A5 by 17alpha-ethynylestradiol is cytochrome b5-dependent: metabolic activation of the ethynyl moiety leads to the formation of glutathione conjugates, a heme adduct, and covalent binding to the apoprotein.

    Science.gov (United States)

    Lin, Hsia-Lien; Hollenberg, Paul F

    2007-04-01

    17Alpha-ethynylestradiol (EE) inactivates cytochrome P450 3A5 (3A5) in the reconstituted system in a mechanism-based manner. The inactivation is dependent on NADPH, and it is irreversible. The inactivation of 3A5 by EE is also dependent on cytochrome b5 (b5). The values for the K(I) and k(inact) of the 7-benzyloxy-4-(trifluoromethyl)coumarin O-debenzylation activity of 3A5 are 26 microM and 0.06 min(-1), respectively. Incubation of 3A5 with EE resulted in a 62% loss of catalytic activity, 60% loss in the reduced CO difference spectrum, and 40% decrease in native heme with the formation of a heme adduct. The partition ratio was approximately 25, and the stoichiometry of binding was approximately 0.3 mol of EE metabolite bound/mol of P450 inactivated. Four major metabolites were formed during the metabolism of EE by 3A5. SDS-polyacrylamide gel electrophoresis analysis demonstrated that [3H]EE was irreversibly bound to 3A5 apoprotein. Liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) revealed that two glutathione (GSH) conjugates with m/z values of 620 were formed only in the presence of b5. These two conjugates are formed from the reaction of GSH with the ethynyl group with the oxygen being inserted into either the internal or terminal carbon. A heme adduct with the ion at m/z 927 and two dipyrrole adducts with ions at m/z 579 were detected by LC-MS/MS analysis. In conclusion, 3A5 can activate EE to a 17alpha-oxirene-related reactive species that can then partition the oxygen between the internal and terminal carbons of the ethynyl group to form heme and apoprotein adducts, resulting in the inactivation of P450 3A5.

  8. Reversible Activation of Halophilic β-lactamase from Methanol-Induced Inactive Form: Contrast to Irreversible Inactivation of Non-Halophilic Counterpart.

    Science.gov (United States)

    Tokunaga, Hiroko; Maeda, Junpei; Arakawa, Tsutomu; Tokunaga, Masao

    2017-06-01

    Effects of a water-miscible organic solvent, methanol, on the structure and activity of halophilic β-lactamase derived from Chromohalobacter sp.560 (HaBla), were investigated by means of circular dichroism (CD) measurement and enzymatic activity determination. Beta-lactamase activity was enhanced about 1.2-fold in the presence of 10-20% methanol. CD measurement of HaBla revealed different structures depending on the methanol concentration: native-like active form (Form I) in 10-20% methanol and methanol-induced inactive form at higher concentration (Form II in 40-60% and Form III in 75-80% methanol). Incubation of HaBla with 40% methanol led to the complete loss of activity within ~80 min accompanied by the formation of Form II, whose activity was recovered promptly up to ~80% of full activity upon dilution of the methanol concentration to 10%. In addition, when the protein concentration was sufficiently high (e.g., 0.7 mg/ml), HaBla activity of Form III in 75% methanol could be recovered in the same way (with slightly slower recovery rate), upon dilution of the methanol concentration. In contrast, non-halophilic β-lactamase from Escherichia coli K12 strain MG1655 (EcBla) was irreversibly denatured in the presence of 40% methanol. HaBla showed remarkable ability to renature from the methanol-induced inactive states.

  9. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  10. Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase-like bacterial Dimethylsulfoniopropionate lyase: a new enzyme from an old fold.

    Science.gov (United States)

    Wang, Peng; Chen, Xiu-Lan; Li, Chun-Yang; Gao, Xiang; Zhu, De-yu; Xie, Bin-Bin; Qin, Qi-Long; Zhang, Xi-Ying; Su, Hai-Nan; Zhou, Bai-Cheng; Xun, Lu-ying; Zhang, Yu-Zhong

    2015-10-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria, and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds, but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO4 (3-) and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Furthermore, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  11. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    Science.gov (United States)

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Structure of suicide-inactivated β-hydroxydecanoyl-thioester dehydrase

    International Nuclear Information System (INIS)

    Schwab, J.M.; Ho, C.K.; Li, W.B.; Townsend, C.A.; Salituro, G.M.

    1986-01-01

    β-Hydroxydecanoylthioester dehydrase, the key enzyme in biosynthesis of unsaturated fatty acids under anaerobic conditions, equilibrates thioesters of (R)-3-hydroxydecanoic acid, E-2-decenoic acid, and Z-3-decenoic acid. Dehydrase is irreversibly inactivated by the N-acetylcysteamine thioester of 3-decynoic acid (3-decynoyl-NAC), via dehydrase-catalyzed isomerization to 2,3-decadienoyl-NAC. To probe the relationship between normal catalysis and suicide inactivation, the structure of the inactivated enzyme has been studied. 3-[2- 13 C]Decynoyl-NAC was synthesized and incubated with dehydrase. 13 C NMR showed that attack of 2,3-decadienoyl-NAC by the active site histidine gives 3-histidinyl-3-decenoyl-NAC, which slowly rearranges to the more stable Δ 2 isomer. Model histidine-allene adducts have been made and characterized. Analysis of NMR data show that the C=C configuration of the decenoyl moiety of enzyme-bound inactivator is E. The suggestion that the mechanism of dehydrase inactivation parallels its normal mechanism of action is supported these findings

  13. Biochemical Evaluation of Phenylalanine Ammonia Lyase from Endemic Plant Cyathobasis fruticulosa (Bunge Aellen. for the Dietary Treatment of Phenylketonuria

    Directory of Open Access Journals (Sweden)

    Seda Şirin

    2016-01-01

    Full Text Available Enzyme substitution therapy with the phenylalanine ammonia lyase (PAL is a new approach to the treatment of patients with phenylketonuria (PKU. This enzyme is responsible for the conversion of phenylalanine to trans-cinnamic acid. We assessed the PAL enzyme of the endemic plant Cyathobasis fruticulosa (Bunge Aellen. for its possible role in the dietary treatment of PKU. The enzyme was found to have a high activity of (64.9±0.1 U/mg, with the optimum pH, temperature and buffer (Tris–HCl and L-phenylalanine concentration levels of pH=8.8, 37 °C and 100 mM, respectively. Optimum enzyme activity was achieved at pH=4.0 and 7.5, corresponding to pH levels of gastric and intestinal juice, and NaCl concentration of 200 mM. The purifi cation of the enzyme by 1.87-fold yielded an activity of 98.6 U/mg. PAL activities determined by HPLC analyses before and after purification were similar. Two protein bands, one at 70 and the other at 23 kDa, were determined by Western blot analysis of the enzyme. This enzyme is a potential candidate for serial production of dietary food and biotechnological products.

  14. Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii.

    Science.gov (United States)

    Palou, E; López-Malo, A; Barbosa-Cánovas, G V; Welti-Chanes, J; Swanson, B G

    1998-09-01

    Zygosaccharomyces bailii inactivation was evaluated in oscillatory high hydrostatic pressure (HHP) treatments at sublethal pressures (207, 241, or 276 MPa) and compared with continuous HHP treatments in laboratory model systems with a water activity (aw) of 0.98 and pH 3.5. The yeast was inoculated into laboratory model systems and subjected to HHP in sterile bags. Two HHP treatments were conducted: continuous (holding times of 5, 10, 15, 20, 30, 60, or 90 min) and oscillatory (two, three, or four cycles with holding times of 5 min and two cycles with holding times of 10 min). Oscillatory pressure treatments increased the effectiveness of HHP processing. For equal holding times, Z. bailii counts decreased as the number of cycles increased. Holding times of 20 min in HHP oscillatory treatments at 276 MPa assured inactivation (bailii initial inoculum. Oscillatory pressurization could be useful to decrease Z. bailii inactivation time.

  15. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  16. Mechanistic studies of the inactivation of tyrosinase by resorcinol.

    Science.gov (United States)

    Stratford, Michael R L; Ramsden, Christopher A; Riley, Patrick A

    2013-03-01

    The inactivation of tyrosinase by resorcinol (1,3-dihydroxybenzene) and seventeen simple derivatives has been investigated using combined spectrophotometry and oximetry together with hplc/ms examination of the oxidation products. The results are consistent with a Quintox mechanism, analogous to that proposed for catechol inactivation of tyrosinase, in which the resorcinol substrate is oxidised via the monooxygenase route leading to a hydroxy intermediate that undergoes deprotonation and results in irreversible elimination of Cu(0) from the active site. Hplc/ms evidence for formation of the resorcinol monooxygenase product (3-hydroxy-ortho-quinone) is presented and the relationship between the ring position of simple resorcinol substituents (H, Me, F, Cl) and tyrosinase inactivation is rationalised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia.

    Science.gov (United States)

    Wu, Wanqiang; Li, Yuelian; Wu, Yue; Zhang, Yawen; Wang, Zhen; Liu, Xuebo

    2015-09-01

    In this study, the effects of lutein on neuroinflammation in lipopolysaccharide (LPS)-activated BV-2 microglia were investigated. The production of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and nitric oxide was measured in culture medium using enzyme immunoassay and Griess reagent, respectively. The expression of proteins was determined using Western blot. Pretreatment with lutein (50 μM) prior to LPS (1 μg/mL, 12 h) stimulation resulted in a significant inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as tumor necrosis factor-α, interleukin-1β, and nitric oxide production (p lutein suppressed LPS-induced NF-κB activation by inhibiting the phosphorylation of p38 kinase, c-Jun N-terminal kinase (JNK), and Akt kinase (p lutein markedly quenched reactive oxygen species and promoted antioxidant protein expression including heme oxygenase-1 and quinone oxidoreductase by enhancing the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) mediated NF-E2-related factor 2 (Nrf2) activation (p lutein attenuates neuroinflammation in LPS-activated BV-2 microglia partly through inhibiting p38-, JNK-, and Akt-stimulated NF-κB activation and promoting ERK-induced Nrf2 activation, suggesting that lutein has great potential as a nutritional preventive strategy in inflammation-related neurodegenerative disorders. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Crystallization and preliminary X-ray analysis of argininosuccinate lyase from Streptococcus mutans

    International Nuclear Information System (INIS)

    Cao, Yan-Li; Li, Gui-Lan; Wang, Kai-Tuo; Zhang, Hong-Yin; Li, Lan-Fen

    2011-01-01

    Crystals of argininosuccinate lyase from S. mutans were obtained and X-ray data were collected to 2.5 Å resolution in space group R3. Argininosuccinate lyase (ASL) is an important enzyme in arginine synthesis and the urea cycle, which are highly conserved from bacteria to eukaryotes. The gene encoding Streptococcus mutans ASL (smASL) was amplified and cloned into expression vector pET28a. The recombinant smASL protein was expressed in a soluble form in Escherichia coli strain BL21 (DE3) and purified to homogeneity by two-step column chromatography. Crystals suitable for X-ray analysis were obtained and X-ray diffraction data were collected to a resolution of 2.5 Å. The crystals belonged to space group R3, with unit-cell parameters a = b = 254.5, c = 78.3 Å

  19. [Kinetics of catalase inactivation induced by ultrasonic cavitation].

    Science.gov (United States)

    Potapovich, M V; Eremin, A N; Metelitsa, D I

    2003-01-01

    Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.

  20. Cloning and expression of antiviral/ribosome-inactivating protein ...

    Indian Academy of Sciences (India)

    Madhu urs

    2007-12-16

    Dec 16, 2007 ... The cleaved and purified recombinant. BBAP1 exhibited ribosome-inhibiting rRNA N-glycosidase activity, and imparted a high level of resistance against the tobacco mosaic virus (TMV). [Choudhary N, Kapoor H C and Lodha M L 2008 Cloning and expression of antiviral/ribosome-inactivating protein from ...

  1. Cloning and expression of antiviral/ribosome-inactivating protein ...

    Indian Academy of Sciences (India)

    Madhu urs

    2007-12-16

    Dec 16, 2007 ... Many higher plant species belonging to various taxonomic families are known to produce endogenous, non-stress induced inhibitor proteins called antiviral proteins (AVPs). Many of these AVPs have ribosome-inhibiting rRNA N- glycosidase activity and are known as ribosome-inactivating proteins (RIPs).

  2. Probing reversible chemistry in coenzyme B12-dependent ethanolamine ammonia lyase with kinetic isotope effects

    OpenAIRE

    Jones, Alex R; Rentergent, Julius; Scrutton, NS; Hay, S

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the ?-carbon of the 5?-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5?-deoxyadenosyl radical and substrate during si...

  3. Progress Towards Simple and Direct Detection of Adenylosuccinate Lyase Deficiency in Human Urine.

    Science.gov (United States)

    Lim, Soojin; Lowry, Mark; Strongin, Robert M

    2011-10-14

    A rhodamine based boronic acid linearly responds to increasing 5-aminoimidazole-4-carboxamide riboside (AICAr) concentrations in human urine. This method is thus an advance in detecting adenylosuccinate lyase (ADSL) deficiency as AICAr is a model riboside for the ADSL substrates succinyladenosine (S-Ado) and succinylaminoimidazolecarboxamide riboside (SAICAr). ADSL deficiency is a rare but devastating disease of de novo purine synthesis in infants. Its diagnosis is also significant as it is one of the autism spectrum disorders.

  4. Inactivation of allergens and toxins.

    Science.gov (United States)

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Neurologic presentation, diagnostics, and therapeutic insights in a severe case of adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Jurecka, Agnieszka; Opoka-Winiarska, Violetta; Rokicki, Dariusz; Tylki-Szymańska, Anna

    2012-05-01

    Epilepsy in adenylosuccinate lyase deficiency may be difficult to treat, and there is no standardized therapy. The authors describe a case of severe adenylosuccinate lyase deficiency resulting from a heterozygous mutation of the ADSL gene (p.D215H/p.I351T). The patient presented with tonic-clonic seizures, opisthotonus, tremor, and myoclonus in the 4th day of life. The seizures were refractory on various combinations of antiepileptic treatment. A ketogenic diet was introduced at the age of 2 resulting in a seizure-free period. The patient, however, developed a metabolic hyperchloremic acidosis with Fanconi syndrome, which disappeared a month after cessation of the diet at the age of 5. Since the withdrawal of the ketogenic diet, seizures have returned to a frequency of several times a day. In conclusion, a ketogenic diet could be considered a valid therapeutic option in patients with intractable seizures in a course of adenylosuccinate lyase deficiency; however, it requires a formal study.

  6. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis.

    Science.gov (United States)

    Fatland, Beth L; Nikolau, Basil J; Wurtele, Eve Syrkin

    2005-01-01

    Acetyl-CoA provides organisms with the chemical flexibility to biosynthesize a plethora of natural products that constitute much of the structural and functional diversity in nature. Recent studies have characterized a novel ATP-citrate lyase (ACL) in the cytosol of Arabidopsis thaliana. In this study, we report the use of antisense RNA technology to generate a series of Arabidopsis lines with a range of ACL activity. Plants with even moderately reduced ACL activity have a complex, bonsai phenotype, with miniaturized organs, smaller cells, aberrant plastid morphology, reduced cuticular wax deposition, and hyperaccumulation of starch, anthocyanin, and stress-related mRNAs in vegetative tissue. The degree of this phenotype correlates with the level of reduction in ACL activity. These data indicate that ACL is required for normal growth and development and that no other source of acetyl-CoA can compensate for ACL-derived acetyl-CoA. Exogenous malonate, which feeds into the carboxylation pathway of acetyl-CoA metabolism, chemically complements the morphological and chemical alterations associated with reduced ACL expression, indicating that the observed metabolic alterations are related to the carboxylation pathway of cytosolic acetyl-CoA metabolism. The observations that limiting the expression of the cytosolic enzyme ACL reduces the accumulation of cytosolic acetyl-CoA-derived metabolites and that these deficiencies can be alleviated by exogenous malonate indicate that ACL is a nonredundant source of cytosolic acetyl-CoA.

  7. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth.

    Science.gov (United States)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia; Chen, Yun; Siewers, Verena; Nielsen, Jens

    2015-06-01

    Pyruvate formate lyase (PFL) is characterized as an enzyme functional at anaerobic conditions, since the radical in the enzyme's active form is sensitive to oxygen. In this study, PFL and its activating enzyme from Escherichia coli were expressed in a Saccharomyces cerevisiae strain lacking pyruvate decarboxylase and having a reduced glucose uptake rate due to a mutation in the transcriptional regulator Mth1, IMI076 (Pdc(-) MTH1-ΔT ura3-52). PFL was expressed with two different electron donors, reduced ferredoxin or reduced flavodoxin, respectively, and it was found that the coexpression of either of these electron donors had a positive effect on growth under aerobic conditions, indicating increased activity of PFL. The positive effect on growth was manifested as a higher final biomass concentration and a significant increase in transcription of formate dehydrogenases. Among the two electron donors reduced flavodoxin was found to be a better electron donor than reduced ferredoxin. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Inactivation of mitochondrial ATPase by ultraviolet light

    International Nuclear Information System (INIS)

    Chavez, E.; Cuellar, A.

    1984-01-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation

  9. A kinetic study of the suicide inactivation of an enzyme measured through coupling reactions. Application to the suicide inactivation of tyrosinase.

    Science.gov (United States)

    Escribano, J; Tudela, J; Garcia-Carmona, F; Garcia-Canovas, F

    1989-01-01

    A systematic procedure for the kinetic study of reaction mechanisms with enzyme inactivation induced by a suicide substrate in the presence or in the absence of an auxiliary substrate, when the enzyme activity is measured through coupling reactions, enzymically catalysed or not, was developed and analysed by using the transient-phase approach. The methodology is established to determine the parameters and kinetic constants corresponding to the enzyme suicide inactivation and the coupling reactions. This approach is illustrated by a study of the suicide inactivation of tyrosinase by catechol in the presence of L-proline. Treatment of the experimental data was carried out by non-linear regression. PMID:2508631

  10. Kinetic parameters for thermal inactivation of soluble peroxidase from needles of Serbian spruce Picea omorika (Pancić) Purkyne.

    Science.gov (United States)

    Laketa, Danijela; Bogdanović, Jelena; Kalauzi, Aleksandar; Radotić, Ksenija

    2009-03-01

    Thermal inactivation of peroxidase (POD) in an extract of Picea omorika (Pancić) Purkyne needles initiated by heat treatment was studied. This is the first study of this kind on a conifer species. Non-linear regression analysis was applied on the inactivation rate data, combining Mitscherlich and Arrhenius equations, treating time and temperature simultaneously as explaining variables. We determined the inactivation rate constant k, the Arrhenius energy of inactivation E and the remaining activity C(min) for the crude extract and for separated acidic and basic enzyme fractions, as well as for individual isoenzymes separated electrophoretically. A comparison of inactivation parameters for acidic and basic fractions shows that the thermal inactivation rate of the basic fraction is higher. The obtained value of inactivation energy for crude extract was between the values for acidic and basic isoenzyme fractions. One of the three analysed individual isoenzymes was characterised by a lower inactivation rate constant and higher inactivation energy. Another isoenzyme showed considerably higher level of remaining activity compared to the others, which identified it as the most resistant to high temperatures. The acquired values of Arrhenius energy of inactivation for POD in crude extract were intermediate, considering a range of POD values for various other plant species.

  11. Biochemical and structural analysis of 14 mutant adsl enzyme complexes and correlation to phenotypic heterogeneity of adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Zikanova, Marie; Skopova, Vaclava; Hnizda, Ales; Krijt, Jakub; Kmoch, Stanislav

    2010-04-01

    Adenylosuccinate lyase (ADSL) deficiency is neurometabolic disease characterized by accumulation of dephosphorylated enzyme substrates SAICA-riboside (SAICAr) and succinyladenosine (S-Ado) in body fluids of affected individuals. The phenotypic severity differs considerably among patients: neonatal fatal, severe childhood, and moderate phenotypic forms correlating with different values for the ratio between S-Ado and SAICAr concentrations in cerebrospinal fluid have been distinguished. To reveal the biochemical and structural basis for this phenotypic heterogeneity, we expressed and characterized 19 ADSL mutant proteins identified in 16 patients representing clinically distinct subgroups. Respecting compound heterozygosity and considering the homotetrameric structure of ADSL, we used intersubunit complementation and prepared and characterized genotype-specific heteromeric mutant ADSL complexes. We correlated clinical phenotypes with biochemical properties of the mutant proteins and predicted structural impacts of the mutations. We found that phenotypic severity in ADSL deficiency is correlated with residual enzymatic activity and structural stability of the corresponding mutant ADSL complexes and does not seem to result from genotype-specific disproportional catalytic activities toward one of the enzyme substrates. This suggests that the S-Ado/SAICAr ratio is probably not predictive of phenotype severity; rather, it may be secondary to the degree of the patient's development (i.e., to the age of the patient at the time of sample collection). (c) 2010 Wiley-Liss, Inc.

  12. Structural and biochemical characterization of human adenylosuccinate lyase (ADSL) and the R303C ADSL deficiency-associated mutation.

    Science.gov (United States)

    Ray, Stephen P; Deaton, Michelle K; Capodagli, Glenn C; Calkins, Lauren A F; Sawle, Lucas; Ghosh, Kingshuk; Patterson, David; Pegan, Scott D

    2012-08-21

    Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.

  13. Structural and Biochemical Characterization of Human Adenylosuccinate Lyase (ADSL) and the R303C ADSL Deficiency Associated Mutation

    Science.gov (United States)

    Ray, Stephen P.; Deaton, Michelle K.; Capodagli, Glenn C.; Calkins, Lauren A. F.; Sawle, Lucas; Ghosh, Kingshuk; Patterson, David; Pegan, Scott D.

    2012-01-01

    Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two non-sequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide (AICAR), which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate (AMPS) to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL’s arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme’s ability to catalyze the conversion of SAMP than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights as to why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild-type (WT) and the R303C mutation of ADSL were investigated enzymatically, and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL’s cooperativity. By utilizing this information a model for the interaction between ADSL and SAICAR is proposed. PMID:22812634

  14. Structural and Biochemical Characterization of Human Adenylosuccinate Lyase (ADSL) and the R303C ADSL Deficiency-Associated Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Stephen P.; Deaton, Michelle K.; Capodagli, Glenn C.; Calkins, Lauren A.F.; Sawle, Lucas; Ghosh, Kingshuk; Patterson, David; Pegan, Scott D. (Denver)

    2014-10-02

    Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.

  15. Fermented Rice Germ Extract Alleviates Morphological and Functional Damage to Murine Gastrocnemius Muscle by Inactivation of AMP-Activated Protein Kinase.

    Science.gov (United States)

    Tanaka, Miyu; Yoshino, Yuta; Takeda, Shogo; Toda, Kazuya; Shimoda, Hiroshi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-10-01

    Sarcopenia, loss of muscle mass and function, is mainly observed in elderly people. In this study, we investigated whether fermented rice germ extract (FRGE) has some effects on the mouse gastrocnemius muscle by using behavioral and morphological analyses, Western blotting, and a murine model of immobilization-induced muscle atrophy. Daily oral FRGE administration increased muscle weight and strength. In addition, myofiber size in gastrocnemius muscle of FRGE-treated mice was increased as revealed by morphological quantification. Activation of AMP-activated protein kinase (AMPK) signaling, which inhibits protein synthesis and stimulates protein degradation in gastrocnemius muscle, was significantly attenuated in the FRGE-treated mice compared with control mice. Expression level of forkhead box 3a (FOXO3a) protein was also significantly decreased in the FRGE-treated group. Moreover, the decrease in mean myofiber cross-sectional area in immobilized hindlimb in vehicle-treated mice was inhibited by FRGE treatment in histological analysis. In conclusion, FRGE increased the strength and weight of gastrocnemius muscle and myofiber size, and reduced immobilization-induced muscle atrophy in mice. These findings indicated that FRGE might be beneficial in preventing motor dysfunction in a range of conditions, including sarcopenia.

  16. Effect of oxygen on inactivation of biologically active DNA by γ rays in vitro: influence of metalloporphyrins and enzymatic DNA repair

    International Nuclear Information System (INIS)

    van Hemmen, J.J.; Meuling, W.J.A.; Bleichrodt, J.F.

    1978-01-01

    Biologically active DNA dissolved in a bacterial extract shows a higher sensitivity to γ rays under oxygen than under anoxic conditions. This oxygen effect depends on the presence of dialyzable, probably organometallic, compounds in the extract. Metalloporphyrins mimic these cellular components with regard to the effect of oxygen on DNA irradiated in vitro. Anoxic irradiation leads to less double-strand breaks in the DNA than irradiation under oxygen, but the oxygen effect in vitro is mainly due to nucleotide damage. No oxygen effect is observed when the biological activity of the irradiated DNA is assayed on spheroplasts of a bacterial strain carrying a uvrA mutation, i.e., a deficiency in the excision repair system, and the sensitivity of the DNA is almost equal to that found for irradiation under oxygen and assay on a repair-proficient strain. It may be concluded, therefore, that the oxygen effect observed with DNA in cellular extracts or in the presence of metalloporphyrins results from more efficient cellular repair of the otherwise lethal nucleotide damage inflicted under anoxic conditions. Comparison of the oxygen effect on DNA in vitro with the radiosensitization of bacterial cells by oxygen shows that in bacteria part of the radiation damage may be similar to that induced in DNA in vitro, but, in addition, the cells sustain another type of damage which is subjected to an oxygen effect but not to excision repair

  17. Optimization of the synthesis process of an iron oxide nanocatalyst supported on activated carbon for the inactivation of Ascaris eggs in water using the heterogeneous Fenton-like reaction.

    Science.gov (United States)

    Morales-Pérez, Ariadna A; Maravilla, Pablo; Solís-López, Myriam; Schouwenaars, Rafael; Durán-Moreno, Alfonso; Ramírez-Zamora, Rosa-María

    2016-01-01

    An experimental design methodology was used to optimize the synthesis of an iron-supported nanocatalyst as well as the inactivation process of Ascaris eggs (Ae) using this material. A factor screening design was used for identifying the significant experimental factors for nanocatalyst support (supported %Fe, (w/w), temperature and time of calcination) and for the inactivation process called the heterogeneous Fenton-like reaction (H2O2 dose, mass ratio Fe/H2O2, pH and reaction time). The optimization of the significant factors was carried out using a face-centered central composite design. The optimal operating conditions for both processes were estimated with a statistical model and implemented experimentally with five replicates. The predicted value of the Ae inactivation rate was close to the laboratory results. At the optimal operating conditions of the nanocatalyst production and Ae inactivation process, the Ascaris ova showed genomic damage to the point that no cell reparation was possible showing that this advanced oxidation process was highly efficient for inactivating this pathogen.

  18. Activation and inactivation of the volume-sensitive taurine leak pathway in NIH3T3 fibroblasts and Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry

    2007-01-01

    Hypotonic exposure provokes the mobilization of arachidonic acid, production of ROS, and a transient increase in taurine release in Ehrlich Lettre cells. The taurine release is potentiated by H(2)O(2) and the tyrosine phosphatase inhibitor vanadate and reduced by the phospholipase A(2) (PLA(2......)) inhibitors bromoenol lactone (BEL) and manoalide, the 5-lipoxygenase (5-LO) inhibitor ETH-615139, the NADPH oxidase inhibitor diphenyl iodonium (DPI), and antioxidants. Thus, swelling-induced taurine efflux in Ehrlich Lettre cells involves Ca(2+)-independent (iPLA(2))/secretory PLA(2) (sPLA(2)) plus 5-LO...... activity and modulation by ROS. Vanadate and H(2)O(2) stimulate arachidonic acid mobilization and vanadate potentiates ROS production in Ehrlich Lettre cells and NIH3T3 fibroblasts under hypotonic conditions. However, vanadate-induced potentiation of the volume-sensitive taurine efflux is, in both cell...

  19. A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity.

    Science.gov (United States)

    Hopwood, Emily M S; Ahmed, Duale; Aitken, Susan M

    2014-02-01

    Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4-1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3-3, 26-58 and 124-568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Km(l-Cth) of E333 substitution variants is increased ~17-fold, while Km(l-OAS) is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Km(l-OSHS)=7±2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Km(l-Cth)=2100±100) and 260-fold higher than that of l-Hcys (kcat/Km(l-Hcys)=0.027±0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Application of electrolysis to inactivation of antibacterials in clinical use.

    Science.gov (United States)

    Nakano, Takashi; Hirose, Jun; Kobayashi, Toyohide; Hiro, Naoki; Kondo, Fumitake; Tamai, Hiroshi; Tanaka, Kazuhiko; Sano, Kouichi

    2013-04-01

    Contamination of surface water by antibacterial pharmaceuticals (antibacterials) from clinical settings may affect aquatic organisms, plants growth, and environmental floral bacteria. One of the methods to decrease the contamination is inactivation of antibacterials before being discharged to the sewage system. Recently, we reported the novel method based on electrolysis for detoxifying wastewater containing antineoplastics. In the present study, to clarify whether the electrolysis method is applicable to the inactivation of antibacterials, we electrolyzed solutions of 10 groups of individual antibacterials including amikacin sulfate (AMK) and a mixture (MIX) of some commercial antibacterials commonly prescribed at hospitals, and measured their antibacterial activities. AMK was inactivated in its antibacterial activities and its concentration decreased by electrolysis in a time-dependent manner. Eighty to ninety-nine percent of almost all antibacterials and MIX were inactivated within 6h of electrolysis. Additionally, cytotoxicity was not detected in any of the electrolyzed solutions of antibacterials and MIX by the Molt-4-based cytotoxicity test. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  2. Ribosome-inactivating proteins: potent poisons and molecular tools.

    Science.gov (United States)

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-11-15

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.

  3. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  4. UK-18,892: resistance to modification by aminoglycoside-inactivating enzymes.

    Science.gov (United States)

    Andrews, R J; Brammer, K W; Cheeseman, H E; Jevons, S

    1978-12-01

    UK-18,892, a new semisynthetic aminoglycoside, was active against bacteria possessing aminoglycoside-inactivating enzymes, with the exception of some known to possess AAC(6') or AAD(4') enzymes. This activity has been rationalized by using cell-free extracts of bacteria containing known inactivating enzymes, where it was shown that UK-18,892 was not a substrate for the APH(3'), AAD(2''), AAC(3), and AAC(2') enzymes. It was also demonstrated that UK-18,892 protected mice against lethal infections caused by organisms possessing aminoglycoside-inactivating enzymes.

  5. An HPLC-based assay of adenylosuccinate lyase in erythrocytes.

    Science.gov (United States)

    Bierau, Jörgen; Pooters, Ivo N A; Visser, Dennis; Bakker, Jaap A

    2011-11-01

    ADSL deficiency is a disorder of purine metabolism with a broad clinical spectrum. A rapid and simple HPLC-based assay to measure ADSL activity in erythrocytes was developed. The suitability of DBSs was assessed. ADSL activity was measured in erythrocyte lysates and DBS using succinyl-AMP as the substrate. Detection and quantification were performed using isocratic ion-pairing reversed-phase HPLC with UV-detection. Reference values in erythrocyte lysates were established. The intra- and interassay variations were 2% and 8%, respectively. ADSL deficiency was easily recognized. ADSL activity in DBS was highly unstable, disqualifying DBS for diagnostic procedures.

  6. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer.

    Science.gov (United States)

    Wang, Mingpeng; Chen, Lei; Liu, Zhengyi; Zhang, Zhaojie; Qin, Song; Yan, Peisheng

    2016-12-01

    Algae have long been used to augment plant productivity through their beneficial effects. Alginate oligosaccharide is believed to be one of the important components to enhance growth and crop yield. In this study, we isolated and characterized a Bacillus litoralis strain, named Bacillus M3, from decayed kelps. We further demonstrated that the M3 strain could secrete alginate lyase to degrade alginate. The crude enzyme exhibited the highest activity (33.74 U/mg) at pH 7.0 and 50°C. The M3 strain was also able to ferment the brown alga Sargassum horneri. Fermentation results revealed that a fermentation period of 8-12 hr was the best harvest time with the highest level of alginate oligosaccharides. Plant growth assay showed that the seaweed fermentation extract had an obvious promotion effect on root and seedling growth of Lycopersicon eseulentum L. Our results suggest that fermentation extract of Sargassum horneri by the novel strain of Bacillus litoralis M3 has significant development potential for biofertilizer production and agriculture application. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    Science.gov (United States)

    Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto

    2015-10-01

    L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.

  8. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential

    Directory of Open Access Journals (Sweden)

    Adriana Castillo-Villanueva

    2017-12-01

    Full Text Available Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222 by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Keywords: Giardiasis, Drug repurposing, Neglected disease, Recombinant protein, Enzyme inactivation

  9. Simultaneous passive and active immunization against hepatitis B: noninterference of hepatitis B immune globulin with the anti-HBs response to reduced doses of heat-inactivated hepatitis B vaccine

    NARCIS (Netherlands)

    Lelie, P. N.; Reesink, H. W.; Grijm, R.; de Jong-van Manen, S. T.; Reerink-Brongers, E. E.

    1986-01-01

    The effect of simultaneous administration of hepatitis B immune globulin on the antibody response to a low dose of heat-inactivated hepatitis B vaccine was investigated in 175 health care workers. Subjects were divided into four groups: Groups I and II received 3 monthly injections of a reduced dose

  10. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... Abstract. X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X ...

  11. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  12. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  13. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  14. A Case of Dilated Cardiomyopathy Associated with 3-Hydroxy-3-Methylglutaryl-Coenzyme A (HMG CoA Lyase Deficiency

    Directory of Open Access Journals (Sweden)

    Alexander A. C. Leung

    2009-01-01

    Full Text Available 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA lyase deficiency is an inborn error of metabolism characterized by impairment of ketogenesis and leucine catabolism resulting in an organic acidopathy. In 1994, a case of dilated cardiomyopathy and fatal arrhythmia was reported in a 7-month-old infant. We report a case of dilated cardiomyopathy in association with HMG CoA lyase deficiency in a 23-year-old man with the acute presentation of heart failure. To our knowledge, this is the first case reported in an adult.

  15. Potential role of pectate lyase and Ca(2+) in the increase in strawberry fruit firmness induced by short-term treatment with high-pressure CO2.

    Science.gov (United States)

    Wang, Mao Hua; Kim, Jin Gook; Ahn, Sun Eun; Lee, Ah Youn; Bae, Tae Min; Kim, Deu Re; Hwang, Yong Soo

    2014-04-01

    Postharvest treatment with high-pressure CO2 helps to control decay and increase firmness in strawberries. Increases in firmness occurred through modification of calcium binding to cell wall. However, the mechanism(s) involved in Ca(2+) migration to pectic polymers and other physiological events associated with the maintenance of increased firmness are not clearly understood. The focus of this study was to find potential mechanism(s) that are associated with calcium movement, increases in firmness, or maintenance of firmness in strawberry fruit after high-pressure CO2 treatment. An increase in firmness was induced by high-pressure CO2 treatment, but not by high-pressure N2 treatment. This indicates that CO2 stimulates a change in firmness. The increase in firmness induced by high-pressure CO2 seems to involve calcium efflux. Using membrane Ca(2+) -dependent ATPase inhibitors sodium vanadate (250 μM) and erythrosin B (100 μM) delayed both the increase in firmness and calcium binding to wall polymers. Exogenous application of CaCl2 (10 mM) enhanced the firmness increase of fruit slices only when they were exposed to high-pressure CO2 . The activity of pectate lyase was downregulated by CO2 treatment, but β-galactosidase activity was not affected. The increase in strawberry firmness induced by high-pressure CO2 treatment primarily involves the efflux of calcium ions and their binding to wall polymers. These physiological changes are not induced by an anaerobic environment. The downregulation of wall-modifying enzymes, such as pectate lyase, appeared to contribute to the maintenance of firmness that was induced by high-pressure CO2 treatment. © 2014 Institute of Food Technologists®

  16. Nonthermal Plasma Inactivation of Food-Borne Pathogens

    OpenAIRE

    Misra, N.; Tiwari, B.; Rahavarao, K.; Cullen, Patrick

    2011-01-01

    Non-thermal plasma (NTP) is electrically energized matter, composed of highly reactive species including gas molecules, charged particles in the form of positive ions, negative ions, free radicals, electrons and quanta of electromagnetic radiation (photons) at near-room temperature. NTP is an emerging nonthermal technology with potential applications for decontamination in the food industries. An upsurge in the research activities for plasma based inactivation of food borne pathogens is evide...

  17. Inactivation of acetylcholinesterase by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride.

    Science.gov (United States)

    Zang, Lun-Yi; Misra, Hara P

    2003-12-01

    The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, Km for the substrate (acetylthiocholine), was found to be 0.216 mM and Ki for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation.

  18. Enzyme assay for identification of pectin and pectin derivatives, based on recombinant pectate lyase.

    Science.gov (United States)

    Hansen, K M; Truesen, A B; Søderberg, J R

    2001-01-01

    A simple method was developed for fast identification of pectin, based on a recombinant endopectate lyase cloned from Aspergillus niger. When pectin was demethylated and treated with pectate lyase, beta-elimination occurred, resulting in a double bond between C-4 and C-5 in the galacturonic acid residue of the released nonreducing end. The formation of double bonds produced an increase in light absorption, which was detected at 235 nm. The assay was tested on pectin of different origins (apple, orange, sugar beet, sunflower, celery, lemon), pectin derivatives (amidated pectin), and speciality types such as low molecular weight and low %DE (degree of esterification, percentage of galacturonic acid groups esterified with methanol) pectin. The highest response was given by pectate (pectin with %DEgums (carboxymethylcellulose, carrageenan, locust bean gum, tragacanth, gellan, tamarind, xanthan, amylogum, sodium alginate, or agar) gave any response. Members of IPPA (International Pectin Producers Association) have evaluated the validity of the assay in a ring test. All members of the Association were able to identify pectin from other gums in a blind test. The method can replace more laborious and ambiguous identification tests which exist today.

  19. Molecular cloning, characterization and expression analysis of adenylosuccinate lyase gene in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Yuan, Tian; Gu, Ji-Rui; Gu, Wen-Bo; Wu, Jiang; Ge, Shao-Rong; Xu, Heng

    2011-03-01

    Adenylosuccinate lyase (ADSL) is a bifunctional enzyme acting in de novo purine synthesis and purine nucleotide recycling. In the present study, we have constructed a grass carp (Ctenopharyngodon idella) intestinal cDNA library that has over 2.3 × 10(5) primary clones. An expressed sequence tag (EST) of grass carp adenylosuccinate lyase (gcADSL) gene was screened from this library. Both 5'-RACE and 3'-RACE were carried out in order to obtain the complete cDNA sequence, which contains a 1,446 bp open reading frame encoding 482 amino acids about 54.552 kDa. The deduced amino acid sequence shares high homology with its vertebrate counterparts, which shares 94% similarity with zebrafish, 81% with African clawed frog as well as chicken, 77% with human and 76% with mouse. This gcADSL genomic sequence, consisted of 13 exons and 12 introns, is 8,557 bp in size. Real-time quantitative PCR analysis revealed that the highest expression level of gcADSL was detected in muscle and the lowest in gill. In western blotting analysis, His(6)-tagged gcADSL protein expressed in Escherichia coli could be recognized not only by an anti-His(6)-tag monoclonal antibody but also by an anti-human ADSL polyclonal antibody, indicating immunological crossreactivity occurs between grass carp and human ADSL protein. 1,082 bp 5'-flanking region sequence was cloned and analyzed.

  20. Expression, purification and crystallization of l-methionine γ-lyase 2 from Entamoeba histolytica

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Dan [Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Yamagata, Wataru; Kamei, Kaeko [Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Nozaki, Tomoyoshi [Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Harada, Shigeharu, E-mail: harada@kit.ac.jp [Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan)

    2006-10-01

    l-Methionine γ-lyase 2 from E. histolytica, a key enzyme in sulfur-containing amino-acid degradation in this protozoan parasite, has been crystallized in a form suitable for X-ray structure analysis. l-Methionine γ-lyase (MGL) is considered to be an attractive target for rational drug development because the enzyme is absent in mammalian hosts. To enable structure-based design of drugs targeting MGL, one of the two MGL isoenzymes (EhMGL2) was crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.89, b = 102.68, c = 169.87 Å. The crystal diffracted to a resolution of 2.0 Å. The presence of a tetramer in the asymmetric unit (4 × 43.1 kDa) gives a Matthews coefficient of 2.2 Å{sup 3} Da{sup −1}. The structure was solved by the molecular-replacement method and structure refinement is now in progress.

  1. RHOA inactivation enhances Wnt signaling and promotes colorectal cancer

    Science.gov (United States)

    Rodrigues, Paulo; Macaya, Irati; Bazzocco, Sarah; Mazzolini, Rocco; Andretta, Elena; Dopeso, Higinio; Mateo-Lozano, Silvia; Bilić, Josipa; Cartón-García, Fernando; Nieto, Rocio; Suárez-López, Lucia; Afonso, Elsa; Landolfi, Stefania; Hernandez-Losa, Javier; Kobayashi, Kazuto; Cajal, Santiago Ramón y; Tabernero, Josep; Tebbutt, Niall C.; Mariadason, John M.; Schwartz, Simo; Arango, Diego

    2014-01-01

    Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis. PMID:25413277

  2. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.

    Science.gov (United States)

    Wang, Miao; Warncke, Kurt

    2013-10-09

    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >10(10)-fold. The cleavage-generated 5'-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen-atom-transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, with temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex and (2)H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the (2)H- and (1)H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ± 1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ± 6 cal/(mol·K) (relative to 7 ± 1 cal/(mol·K) in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond-breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate.

  3. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.

    Science.gov (United States)

    Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T

    2011-01-01

    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.

  4. Isolation and characterization of two hydroperoxide lyase genes from grape berries : HPL isogenes in Vitis vinifera grapes.

    Science.gov (United States)

    Zhu, Bao-Qing; Xu, Xiao-Qing; Wu, Yu-Wen; Duan, Chang-Qing; Pan, Qiu-Hong

    2012-07-01

    C6 compounds are the major fraction of the volatile profiles of grape berries, contributing the typical 'green' aroma to the grape and wine. Hydroperoxide lyase (HPL) catalyzes the cleavage of fatty acid hydroperoxides to produce C6 compounds. Two hypothetical genes, VvHPL1 and VvHPL2 were cloned from grape berries (Vitis vinifera L. Cabernet Sauvignon). Bioinformatics analysis revealed that the proteins encoded by these two genes both belong to subfamily of cytochrome P450 and contain typical conserved domains of HPLs, and have high identity with HPLs from other plants. Prokaryotically-expressed VvHPL1 and VvHPL2 with thioredoxin-6xHis-fusion partner were confirmed to have enzymatic activity. VvHPL1 is specific for 13-HPOD (T) producing C6 aldehydes with relatively higher activity and VvHPL2 catalyzes the cleavage of both 9- and 13-hydroperoxides producing C6 aldehydes and C9 aldehydes respectively. Analysis of real time-PCR showed that VvHPL2 was highly expressed in the leaves and the flowers of the grapes, while relatively low transcript abundance was detected in the berries, tendril and stems; VvHPL1 had high expression in all detected tissues. During grape berry development, the expression of these two isogenes presented similar trends with a rapid increase after veraison and a decrease at full-ripen stage, which roughly corresponded to the accumulation of their volatile products. These data lay an essential foundation for further study on the accumulation and control of C6 volatiles in grape berries.

  5. Modeling and Re-Engineering of Azotobacter vinelandii Alginate Lyase to Enhance Its Catalytic Efficiency for Accelerating Biofilm Degradation.

    Directory of Open Access Journals (Sweden)

    Chul Ho Jang

    Full Text Available Alginate is known to prevent elimination of Pseudomonas aeruginosa biofilms. Alginate lyase (AlgL might therefore facilitate treatment of Pseudomonas aeruginosa-infected cystic fibrosis patients. However, the catalytic activity of wild-type AlgL is not sufficiently high. Therefore, molecular modeling and site-directed mutagenesis of AlgL might assist in enzyme engineering for therapeutic development. AlgL, isolated from Azotobacter vinelandii, catalyzes depolymerization of alginate via a β-elimination reaction. AlgL was modeled based on the crystal structure template of Sphingomonas AlgL species A1-III. Based on this computational analysis, AlgL was subjected to site-directed mutagenesis to improve its catalytic activity. The kcat/Km of the K194E mutant showed a nearly 5-fold increase against the acetylated alginate substrate, as compared to the wild-type. Double and triple mutants (K194E/K245D, K245D/K319A, K194E/K245D/E312D, and K194E/K245D/K319A were also prepared. The most potent mutant was observed to be K194E/K245D/K319A, which has a 10-fold improved kcat value (against acetylated alginate compared to the wild-type enzyme. The antibiofilm effect of both AlgL forms was identified in combination with piperacillin/tazobactam (PT and the disruption effect was significantly higher in mutant AlgL combined with PT than wild-type AlgL. However, for both the wild-type and K194E/K245D/K319A mutant, the use of the AlgL enzyme alone did not show significant antibiofilm effect.

  6. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide–zinc oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); An, Taicheng, E-mail: antc99@gig.ac.cn [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Guiying [State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Wei, E-mail: weiwang@hust.edu.cn [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Cai, Yuncheng [State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yip, Ho Yin [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Zhao, Huijun [Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia); Wong, Po Keung, E-mail: pkwong@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2015-12-15

    Graphical abstract: - Highlights: • The GO–ZnO composites exhibited efficient VLD bacterial inactivation performance. • Strong interfacial interaction existed between GO and ZnO. • GO served as a photosensitizer in the inactivation process. • Excellent antibacterial activity by GO–ZnO composite was shown under sunlight. • An inactivation mechanism based on the GO photosensitizer induction was proposed. - Abstract: The visible-light-driven (VLD) photocatalytic activity of graphene oxide–zinc oxide (GO–ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO–ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO–ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as ·OH{sub bulk}, which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO–ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO–ZnO composite has great potential in wastewater treatment and environmental protection.

  7. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Crosslinked enzyme aggregates of hydroxynitrile lyase partially purified from Prunus dulcis seeds and its application for the synthesis of enantiopure cyanohydrins.

    Science.gov (United States)

    Yildirim, Deniz; Tükel, S Seyhan; Alagöz, Dilek

    2014-01-01

    Hydroxynitrile lyases are powerful catalysts in the synthesis of enantiopure cyanohydrins which are key synthons in the preparations of a variety of important chemicals. The response surface methodology including three-factor and three-level Box-Behnken design was applied to optimize immobilization of hydroxynitrile lyase purified partially from Prunus dulcis seeds as crosslinked enzyme aggregates (PdHNL-CLEAs). The quadratic model was developed for predicting the response and its adequacy was validated with the analysis of variance test. The optimized immobilization parameters were initial glutaraldehyde concentration, ammonium sulfate saturation concentration, and crosslinking time, and the response was relative activity of PdHNL-CLEA. The optimal conditions were determined as initial glutaraldehyde concentration of 25% w/v, ammonium sulfate saturation concentration of 43% w/v, and crosslinking time of 18 h. The preparations of PdHNL-CLEA were examined for the synthesis of (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile from their corresponding aldehydes and hydrocyanic acid. After 96-h reaction time, the yield-enantiomeric excess values (%) were 100-99, 100-21, 100-99, 83-91, 100-99, 100-72, and 100-14%, respectively, for (R)-mandelonitrile, (R)-2-chloromandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, (R)-4-bromomandelonitrile, (R)-4-fluoromandelonitrile, and (R)-4-nitromandelonitrile. The results show that PdHNL-CLEA offers a promising potential for the preparation of enantiopure (R)-mandelonitrile, (R)-3,4-dihydroxymandelonitrile, (R)-2-hydroxy-4-phenyl butyronitrile, and (R)-4-bromomandelonitrile with a high yield and enantiopurity. © 2014 American Institute of Chemical Engineers.

  9. [Differential display of messenger RNA and identification of selenocysteine lyase gene in hepatocellular carcinoma cells transiently expressing hepatitis C virus core protein].

    Science.gov (United States)

    Yepes, Jesús Orlando; Luz Gunturiz, María; Henao, Luis Felipe; Navas, María Cristina; Balcázar, Norman; Gómez, Luis Alberto

    2006-06-01

    Hepatitis C virus is associated with diverse liver diseases including acute and chronic hepatitis, steatosis, cirrhosis and hepatocellular carcinoma. Several studies have explored viral mechanisms involved in the establishment of persistent infection and oncogenic Hepatitis C virus. Expression assays of Hepatitis C virus core protein suggest that this protein has transforming and carcinogenic properties with multifunctional activities in host cells. Characterization of expressed genes in cells expressing Core protein is important in order to identify candidate genes responsible for these pathogenic alterations. To compare and identify gene expression profiles in the human hepatocarcinoma derived cell line, HepG2, with transient expression of Hepatitis C virus Core protein. We have used comparative PCR-mediated differential display of mRNA from HepG2 hepatocarcinoma with and without transient expression of HCV Core protein or green fluorescent protein, previously obtained using the Semliki Forest Virus-based expression, through transduction of recombinant particles, rSFV-Core and rSFV-GFP, respectively. We observed differences in band intensities of mRNA in HepG2 cells transduced with rSFV-Core compared with those detected in cells without transduction, and transduced with rSFV-GFP. Cloning and sequencing of a gene fragment (258 bp) that was expressed differentially in HepG2 cells transduced with rSFV-Core, was identified as selenocystein lyase. The results confirm that HCV Core protein expressed in HepG2 is associated with specific changes in mRNA expression, including the gene for selenocystein lyase. This gene may be involved in the pathophysiology of hepatocellular carcinoma.

  10. Design and Mechanism of Tetrahydrothiophene-Based γ-Aminobutyric Acid Aminotransferase Inactivators

    Energy Technology Data Exchange (ETDEWEB)

    Le, Hoang V. [Departments; Hawker, Dustin D. [Departments; Wu, Rui [Department; Doud, Emma [Departments; Widom, Julia [Departments; Sanishvili, Ruslan [X-ray; Liu, Dali [Department; Kelleher, Neil L. [Departments; Silverman, Richard B. [Departments

    2015-03-25

    Low levels of gamma-aminobutyric acid (GABA), one of two major neurotransmitters that regulate brain neuronal activity, are associated with many neurological disorders, such as epilepsy, Parkinsons disease, Alzheimers disease, Huntingtons disease, and cocaine addiction. One of the main methods to raise the GABA level in human brain is to use small molecules that cross the bloodbrain barrier and inhibit the activity of gamma-aminobutyric acid aminotransferase (GABA-AT), the enzyme that degrades GABA. We have designed a series of conformationally restricted tetrahydrothiophene-based GABA analogues with a properly positioned leaving group that could facilitate a ring-opening mechanism, leading to inactivation of GABA-AT. One compound in the series is 8 times more efficient an inactivator of GABA-AT than vigabatrin, the only FDA-approved inactivator of GABA-AT. Our mechanistic studies show that the compound inactivates GABA-AT by a new mechanism. The metabolite resulting from inactivation does not covalently bind to amino acid residues of GABA-AT but stays in the active site via H-bonding interactions with Arg-192, a pi-pi interaction with Phe-189, and a weak nonbonded (SO)-O-...=C interaction with Glu-270, thereby inactivating the enzyme.

  11. Crystal Structure of α-1,4-Glucan Lyase, a Unique Glycoside Hydrolase Family Member with a Novel Catalytic Mechanism

    NARCIS (Netherlands)

    Rozeboom, Henriëtte J.; Yu, Shukun; Madrid, Susan; Kalk, Kor H.; Zhang, Ran; Dijkstra, Bauke W.

    2013-01-01

    α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-D-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades

  12. Structure of PhnP: a phosphodiesterase of the carbon-phosphorous lyase pathway for phosphonate degradation

    DEFF Research Database (Denmark)

    Podzelinska, Kateryna; He, Shu-Mei; Wathier, Matthew

    2009-01-01

    Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal-dependent ...

  13. Identification, expression, and characterization of a novel bacterial RGI Lyase enzyme for the production of bio-functional fibers

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Larsen, Dorte Møller; Meyer, Anne S.

    2011-01-01

    A gene encoding a putative rhamnogalacturonan I (RGI) Lyase (EC 4.2.2.-) from Bacillus licheniformis (DSM13) was selected after a homology search and phylogenetic analysis and optimized with respect to codon usage. The designed gene was transformed into Pichia pastoris and the enzyme was produced...

  14. Five phosphonate operon gene products as components of a multi-subunit complex of the carbon-phosphorus lyase pathway

    DEFF Research Database (Denmark)

    Jochimsen, Bjarne; Lolle, Signe; McSorley, Fern R.

    2011-01-01

    Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed...

  15. Mapping of the human adenylosuccinate lyase (ADSL) gene to chromosome 22q13.1-->q13.2.

    Science.gov (United States)

    Fon, E A; Demczuk, S; Delattre, O; Thomas, G; Rouleau, G A

    1993-01-01

    Adenylosuccinate lyase (ADSL) is an essential enzyme involved in de novo purine biosynthesis. A deficiency in ADSL in humans has been shown to predispose to a neurodevelopmental syndrome with autistic features. Using both a somatic cell hybrid mapping panel and fluorescence in situ hybridization, we have precisely localized the human ADSL gene to chromosome 22q13.1-->q13.2.

  16. The ketogenic diet is well tolerated and can be effective in patients with argininosuccinate lyase deficiency and refractory epilepsy

    NARCIS (Netherlands)

    Peuscher, Rosanne; Dijsselhof, Monique E.; Abeling, Nico G.; van Rijn, Margreet; van Spronsen, Francjan J.; Bosch, Annet M.

    2012-01-01

    Argininosuccinate lyase (ASL) deficiency (MIM 608310, McKusick 207900) is a rare disorder of the urea cycle, which leads to a deficiency of arginine and hyperammonemia. Epilepsy is a frequent complication of this disorder. A ketogenic diet (KD) can be a very effective therapy for refractory

  17. Inhibitory effects of triterpenes and flavonoids on the enzymatic activity of hyaluronic acid-splitting enzymes.

    Science.gov (United States)

    Hertel, Waltraud; Peschel, Gundela; Ozegowski, Jörg-Hermann; Müller, Peter-Jürgen

    2006-06-01

    The effect of triterpenes and flavonoids on the activity of several hyaluronic acid-splitting enzymes was investigated. Studies showed that the inhibitory effect of the triterpenes glycyrrhizin and glycyrrhetinic acid is dependent on the source of hyaluronate lyase. Hyaluronate lyase from Streptococcus agalactiae (Hyal B) and recombinant hyaluronate lyase from Streptococcus agalactiae (rHyal B) demonstrated strongest inhibition. In contrast, hyaluronate lyases from Streptomyces hyalurolyticus (Hyal S), Streptococcus equisimilis (Hyal C) and hyaluronidase from bovine testis (Dase) showed only reduced inhibition action. A non-competitive dead end inhibition with Ki=3.1+/-1.8x10(-6) mol/mL and Kii=6.7+/-2.4x10(-6) mol/mL was found for glycyrrhizin on recombinant hyaluronate lyase from Streptococcus agalactiae. The inhibitory effect of flavonoids on Hyal B, rHyal B and Dase was determined depending on the number of hydroxyl groups and side chain substituents in the molecule. Flavonoids with many hydroxyl groups inhibited hyaluronate lyase stronger than those with only a few. Native hyaluronate lyase (Hyal B) showed a more extensive inhibition than the recombinant protein (rHyal B). Accordingly, the inhibition by triterpenes and flavonoids is presumably specific for each hyaluronic acid (HA)-splitting enzyme.

  18. [Characteristics of thermal inactivation of lysozyme in solution].

    Science.gov (United States)

    Tarun, E I; Eremin, A N; Metelitsa, D I

    1986-01-01

    In the buffer solution (pH 6,2) at 20-80 degrees, the lysozyme thermoinactivation was studied by monitoring of its activity decrease in the lysis of M. lysodeicticus cells. Protein inactivation was characterized by effective pseudofirst order rate constants which depend on enzyme concentration and are described by equation k = k0 . exp [-alpha 0 (1-gamma/T) [E]0], where k0 is inactivation rate constant at "infinite" enzyme dilution, [E0] is an initial lysozyme concentration, alpha 0 and gamma are the coefficients independent on [E0]. By extrapolation of the "k" dependencies on [E]0 the constants k0 were determined. In the range 40-70 degrees C, the rate constant k0 is equal 4,0 X 10(11) . exp (-24 200/RT) sec-1.

  19. [Thermal inactivation and stabilization of lysozyme substrate-- Micrococcus lysodeicticus cells].

    Science.gov (United States)

    Tarun, E I; Eremin, A N; Metelitsa, D I

    1986-01-01

    Heat inactivation of the acetonic powder of Micrococcus lysodeicticus cells suspended in phosphate buffer pH 6.2 was quantitatively characterized in the temperature range from 34 to 52 degrees. The total value of the rate constant for heat inactivation of the cells equals 2.88 X 10(8) exp(-18360/RT) sec-1. The activation parameters of the process at 34 degrees are the following: delta H* = 17.7 kcal/mole; delta S* = 21.8 E. U.; delta F* = 24.4 kcal/mole. The effect of ethylene glycol, mannitol, dextran, polyvinyl alcohol (PVA) and polyethylene glycols with different molecular weights on the lysis rate and cell stability was studied. Polyvinyl alcohol was found to be the most effective stabilizer. At concentrations of about 10(-5) it enhances the thermostability of the cells threefold.

  20. Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial.

    Science.gov (United States)

    Longo, Nicola; Harding, Cary O; Burton, Barbara K; Grange, Dorothy K; Vockley, Jerry; Wasserstein, Melissa; Rice, Gregory M; Dorenbaum, Alejandro; Neuenburg, Jutta K; Musson, Donald G; Gu, Zhonghua; Sile, Saba

    2014-07-05

    Phenylketonuria is an inherited disease caused by impaired activity of phenylalanine hydroxylase, the enzyme that converts phenylalanine to tyrosine, leading to accumulation of phenylalanine and subsequent neurocognitive dysfunction. Phenylalanine ammonia lyase is a prokaryotic enzyme that converts phenylalanine to ammonia and trans-cinnamic acid. We aimed to assess the safety, tolerability, pharmacokinetic characteristics, and efficacy of recombinant Anabaena variabilis phenylalanine ammonia lyase (produced in Escherichia coli) conjugated with polyethylene glycol (rAvPAL-PEG) in reducing phenylalanine concentrations in adult patients with phenylketonuria. In this open-label, phase 1, multicentre trial, single subcutaneous injections of rAvPAL-PEG were given in escalating doses (0·001, 0·003, 0·010, 0·030, and 0·100 mg/kg) to adults with phenylketonuria. Participants aged 18 years or older with blood phenylalanine concentrations of 600 μmol/L or higher were recruited from among patients attending metabolic disease clinics in the USA. The primary endpoints were safety and tolerability of rAvPAL-PEG. Secondary endpoints were the pharmacokinetic characteristics of the drug and its effect on concentrations of phenylalanine. Participants and investigators were not masked to assigned dose group. This study is registered with ClinicalTrials.gov, number NCT00925054. 25 participants were recruited from seven centres between May 6, 2008, and April 15, 2009, with five participants assigned to each escalating dose group. All participants were included in the safety population. The most frequently reported adverse events were injection-site reactions and dizziness, which were self-limited and without sequelae. Two participants had serious adverse reactions to intramuscular medroxyprogesterone acetate, a drug that contains polyethylene glycol as an excipient. Three of five participants given the highest dose of rAvPAL-PEG (0·100 mg/kg) developed a generalised skin rash

  1. N'-formylkynurenine-photosensitized inactivation of bacteriophage

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Redpath, J.L.; Pileni, M.P.

    1976-01-01

    Measurements have been made of the sensitizing properties of N'-formylkynurenine (FK) on bacteriophages, as part of a wider study of FK photosensitization of systems which have both protein and DNA components. Suspensions of bacteriophages T 6 and T 7 were near-U.V. (lambda > 320 nm) irradiated in solutions saturated with either O 2 or He in the presence of 5 x 10 -4 M FK. The survival curves obtained demonstrated that FK can act as a photosensitizer for biological inactivation. The involvement of singlet oxygen as one factor in this FK sensitized inactivation was clearly demonstrated by the increased rate of inactivation when the phage were suspended in O 2 -saturated D 2 O, in place of water, during irradiation. The complex mechanism of phage inactivation must involve direct interaction between excited FK and substrate, as well as singlet oxygen. FK is therefore a new natural photosensitizer of significance in cell photochemistry induced by sunlight. (U.K.)

  2. Inactivation of batrachotoxin-modified Na+ channels in GH3 cells. Characterization and pharmacological modification

    Science.gov (United States)

    1992-01-01

    Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process. PMID:1311019

  3. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  4. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  5. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.

    Science.gov (United States)

    Tong, Xiaohong; Qi, Jinfeng; Zhu, Xudong; Mao, Bizeng; Zeng, Longjun; Wang, Baohui; Li, Qun; Zhou, Guoxin; Xu, Xiaojing; Lou, Yonggen; He, Zuhua

    2012-09-01

    As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant-specific defense responses. The loss-of-function mutant hpl3-1 produced disease-resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3-1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)-3-hexen-1-ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3-1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild-type, most likely as a result of increased release of BPH-induced volatiles. Interestingly, hpl3-1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice-specific defense responses against different invaders. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  6. Kinetic studies of acid inactivation of alpha-amylase from Aspergillus oryzae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    The stability of alpha-amylase from Aspergillus oryzae has been studied at different pH. The enzyme is extremely stable at neutral pH (pH 5-8), whereas outside this pH-range a substantial loss of activity is observed. The acid-inactivation of alpha-amylase from A. oryzae was monitored on...... regains part of its activity, and the reactivation process also follows first-order kinetics. The irreversible loss of activity is found not to result from a protease contamination of the protein samples. A proposed model, where irreversibly inactivated a-amylase is formed both directly from the active...

  7. Post-irradiation inactivation, protection, and repair of the sulfhydryl enzyme malate synthase

    International Nuclear Information System (INIS)

    Durchschlag, H.; Zipper, P.

    1985-01-01

    Malate synthase from baker's yeast, a trimeric sulfhydryl enzyme with one essential sulfhydryl group per subunit, was inactivated by 2 kGy X-irradiation in air-saturated aqueous solution (enzyme concentration: 0.5 mg/ml). The radiation induced changes of enzymic activity were registered at about 0,30,60 h after irradiation. To elucidate the role of OH - , O 2 , and H 2 O 2 in the X-ray inactivation of the enzyme, experiments were performed in the absence of presence of different concentrations of specific additives (formate, superoxide dismutase, catalase). These additives were added to malate synthase solutions before or after X-irradiation. Moreover, repairs of inactivated malate synthase were initiated at about 0 or 30 h after irradiation by means of the sulfhydryl agent dithiothreitol. Experiments yielded the following results: 1. Irradiation of malate synthase in the absence of additives inactivated the enzyme immediately to a residual activity Asub(r)=3% (corresponding to a D 37 =0.6 kGy), and led to further slow inactivation in the post-irradiation phase. Repairs, initiated at different times after irradiation, restored enzymic activity considerably. The repair initiated at t=0 led to Asub(r)=21%; repairs started later on resulted in somewhat lower activities. The decay of reparability, however, was found to progress more slowly than post-irradiation inactivation itself. After completion of repair the activities of repaired samples did not decrease significantly. 2. The presence of specific additives during irradiation caused significant protective effects against primary inactivation. The protection by formate was very pronounced (e.g., Asub(r)=72% and D 37 =6 kGy for 100 mM formate). The presence of catalytic amounts of superoxide dismutase and/or catalase exhibited only minor effects, depending on the presence and concentration of formate. (orig.)

  8. Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy

    Directory of Open Access Journals (Sweden)

    Menezes Albert N

    2009-10-01

    Full Text Available Abstract Background Pentasomy X (49,XXXXX has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype. Results 5-bromodeoxyuridine (BrdU-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P, indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the HUMANDREC region of the androgen receptor (AR gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 AR allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT allowed for the identification of three maternal X haplotypes (M1, M2 and MR and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation. Conclusion Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype were likely to be functionally active in the

  9. ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation

    Directory of Open Access Journals (Sweden)

    Suman Das

    2017-12-01

    Full Text Available ATP citrate lyase (ACL plays a key role in regulating mitochondrial function, as well as glucose and lipid metabolism in skeletal muscle. We report here that ACL silencing impairs myoblast and satellite cell (SC differentiation, and it is accompanied by a decrease in fast myosin heavy chain isoforms and MYOD. Conversely, overexpression of ACL enhances MYOD levels and promotes myogenesis. Myogenesis is dependent on transcriptional but also other mechanisms. We show that ACL regulates the net amount of acetyl groups available, leading to alterations in acetylation of H3(K9/14 and H3(K27 at the MYOD locus, thus increasing MYOD expression. ACL overexpression in murine skeletal muscle leads to improved regeneration after cardiotoxin-mediated damage. Thus, our findings suggest a mechanism for regulating SC differentiation and enhancing regeneration, which might be exploited for devising therapeutic approaches for treating skeletal muscle disease.

  10. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    Science.gov (United States)

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  11. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  12. Inactivation of murine norovirus by chemical biocides on stainless steel

    Directory of Open Access Journals (Sweden)

    Steinmann Jörg

    2009-07-01

    Full Text Available Abstract Background Human norovirus (NoV causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA or glutaraldehyde (GDA for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v] and 1-propanol [30% (v/v] were able to inactivate MNV under clean conditions (0.03% BSA on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v. Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes. Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces.

  13. Laser flash photolysis and inactivation of carboxypeptidase A

    International Nuclear Information System (INIS)

    Lee, J.Y.; Grossweiner, L.I.

    1978-01-01

    Laser photolysis of CPA at 265 nm photoionizes 3 to 4 Trp residues per molecule inactivated, leading to e - sub(aq) and the disulfide bridge electron adduct. The electron adduct is formed by an internal process and is not involved in the activity loss. Based on this work and published photochemical and pulse radiolysis studies on CPA it is proposed that photolysis of a key Trp residue, possibly Trp 73 adjacent to zinc ligand Glu 72, mediates release of the zinc ion and consequent loss of peptidase activity (author)

  14. X-linked gene expression and X-chromosome inactivation: marsupials, mouse, and man compared.

    Science.gov (United States)

    VandeBerg, J L; Robinson, E S; Samollow, P B; Johnston, P G

    1987-01-01

    The existence of paternal X inactivation in Australian and American marsupial species suggests that this feature of X-chromosome dosage compensation is not a recent adaptation, but probably predates the evolutionary separation of the Australian and American marsupial lineages. Although it is theoretically possible that the marsupial system is one of random X inactivation with p greater than 0.99 and q less than 0.01 and dependent on parental source, no instance of random X inactivation (p = q or p not equal to q) has ever been verified in any tissue or cell type of any marsupial species. Therefore, we conclude that the most fundamental difference in X inactivation of marsupials and eutherians is whether the inactive X is the paternal one or is determined at random (with p = q in most but not all cases). The only other unequivocal difference between eutherians and marsupials is that both X chromosomes are active in mice and human oocytes, but not in kangaroo oocytes. Apparently, the inactive X is reactivated at a later meiotic stage or during early embryogenesis in kangaroos. X-chromosome inactivation takes place early in embryogenesis of eutherians and marsupials. Extraembryonic membranes of mice exhibit paternal X inactivation, whereas those of humans seem to exhibit random X inactivation with p greater than q (i.e., preferential paternal X inactivation). In general, extraembryonic membranes of marsupial exhibit paternal X inactivation, but the Gpd locus is active on both X chromosomes in at least some cells of kangaroo yolk sac. It is difficult to draw any general conclusion because of major differences in embryogeny of mice, humans, and marsupials, and uncertainties in interpreting the data from humans. Other differences between marsupials and eutherians in patterns of X-linked gene expression and X-chromosome inactivation seem to be quantitative rather than qualitative. Partial expression of some genes on the inactive X is characteristic of marsupials, with

  15. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  16. Reversible inactivation of vectorial phosphorylation by hydroxybutynoate in Escherichia coli membrane vesicles.

    Science.gov (United States)

    Kaczorowski, G; Kaback, H R; Walsh, C

    1975-08-26

    The acetylenic hydroxy acid 2-hydroxy-3-butynoate causes irreversible inactivation of the Escherichia coli membrane-bound flavoenzyme D-lactic dehyrogenase, and thus blocks D-lactate dependent active transport in isolated membrane vesicles [Walsh, C. T., Abeles, R. H., and Kaback H. R. (1972), J. Biol. Chem. 247, 7858]. The inactivator is a suicide substrate for the dehydrogenase, undergoing a small number of turnovers before partitioning between oxidation and inactiviation. It is now demonstrated that reactive product molecules of 2-keto-3-butynoate can diffuse in the membranes to a component of the phosphotransferase system and cause time-dependent and covalent inactivation of phosphoenolpyruvate-dependent hexose uptake. Membrane vesicles from double mutants with low levels of both D- and L-lactic dehydrogenase lose only 30 percent of their hexose uptake capacity on exposure to hydroxybutynoate under conditions sufficient to fully inactivate hexose transport in wild type vesicles. Transport of 1-[14C]hydroxybutynoate into vesicles is followed by rapid covalent labeling of membrane proteins by the reactive, enzymatically generating keto acid oxidation product. Incubation of hydroxybutynoate-inactivated vesicles (5% residual activity) for 20 min in buffer with 10 mM dithiothreitol results in reactivation of 63% of the hexose transport activity, a 12-fold increase in activity. No reactivation occurs if the vesicular phosphotransferase system is inactivated by keto acid derived from membrane oxidation of the olefinic congener 2-hydroxy-3-butenoate. In contrast to thiol reactivation of acetylenic-blocked glucose transport, blockage of D-lactate-stimulated proline uptake is not alleviated, stressing different modes of inactivation of the phosphotransferase system compared to the membranous lactate dehydrogenases.

  17. Caught in-between: System for in-flow inactivation of enzymes as an intermediary step in “plug-and-play” microfluidic platforms

    DEFF Research Database (Denmark)

    Fernandes, Ana C.; Petersen, Benjamin; Møller, Lars

    2018-01-01

    of reaction time by avoiding the continuation of the reaction in another module or connecting tubes. Such control is important when different modules of reactors and/ or sensing units are used and changed frequently. Here we describe the development, characterization and application of a module...... for rapidenzyme inactivation. The thermal inactivation platform developed is compared with a standard benchtop ThermoMixer in terms of inactivation efficiency for glucose oxidase and catalase. A higher activity loss was observed for enzyme inactivation under flow conditions (inactivation achieved at 120 s...... residence time at 338 K and 20 s residence time at 353 K) which indicated a high heat transfer to the fluid under dynamic conditions. Moreover, partial deactivation of the enzymes was observed for the continuous thermal inactivation module,when activity measurements were performed after 1 and 2 days...

  18. Inactivation strategy for pseudorabies virus in milk for production of biopharmaceuticals.

    Science.gov (United States)

    Chang, Jen-Ting; Chou, Yu-Chi; Lin, Meng-Shiue; Wang, Shih-Rong

    2010-11-01

    By selecting pseudorabies virus (PrV) as a model virus, this study assessed the feasibility of applying viral inactivation strategies to manufacturing medicinal products from the milk of transgenic sows. The efficacy of heat, acidic/alkaline and detergent treatments was also evaluated with respect to their ability to inactivate PrV in milk samples. Experimental results indicate that PrV was inactivated obviously at least 7.125 log10 for 30 min at 60 degrees C. At alkaline values of pH 10 and acidic value of pH 4, PrV infectivity was reduced to 3.625 log10 and exceeded 5 log10, respectively. Moreover, PrV virus was inactivated efficiently (> 3.875 log10) by using 0.25-1% of Triton X-100 treatment and without a loss of biological activity of the recombinant human coagulation factor IX (rhFIX). of this study demonstrate the effectiveness of the proposed detergent inactivation method for PrV inactivation of rhFIX production from transgenic products, especially in milk materials.

  19. Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris.

    Science.gov (United States)

    Fukuta, Yasuhisa; Nanda, Samik; Kato, Yasuo; Yurimoto, Hiroya; Sakai, Yasuyoshi; Komeda, Hidenobu; Asano, Yasuhisa

    2011-01-01

    PmHNL, a hydroxynitrile lyase from Japanese apricot ume (Prunus mume) seed was purified to homogeneity by ammonium sulfate fractionation and chromatographic steps. The purified enzyme was a monomer with molecular mass of 58 kDa. It was a flavoprotein similar to other hydroxynitrile lyases of the Rosaceae family. It was active over a broad temperature, and pH range. The N-terminal amino acid sequence (20 amino acids) was identical with that of the enzyme from almond (Prunus dulcis). Based on the N-terminal sequence of the purified enzyme and the conserved amino acid sequences of the enzymes from Pr. dulcis, inverse PCR method was used for cloning of a putative PmHNL (PmHNL2) gene from a Pr. mume seedling. Then the cDNA for the enzyme was cloned. The deduced amino acid sequence was found to be highly similar (95%) to that of an enzyme from Pr. serotina, isozyme 2. The recombinant Pichia pastoris transformed with the PmHNL2 gene secreted an active enzyme in glycosylated form.

  20. Modeling the inactivation of ascaris eggs as a function of ammonia concentration and temperature.

    Science.gov (United States)

    Fidjeland, J; Nordin, A; Pecson, B M; Nelson, K L; Vinnerås, B

    2015-10-15

    Ammonia sanitization is a promising technology for sanitizing human excreta intended for use as a fertilizer in agriculture. Ascaris eggs are the most persistent pathogens regarding ammonia inactivation and are commonly present in fecal sludge in low- and middle-income countries. In this study, a model for predicting ammonia inactivation of ascaris eggs was developed. Data from four previous studies were compiled and analyzed statistically, and a mathematical model for the treatment time required for inactivation was created. The inactivation rate increased with NH3 activity to the power of 0.7. The required treatment time was found to decrease 10-fold for each 16 °C temperature increase. Dry matter (DM) content and pH had no direct effect on inactivation, but had an indirect effect due to their impact on NH3 activity, which was estimated using the Pitzer approach. An additional model giving an approximation of Pitzer NH3 activity but based on the Emerson approach, DM content and total ammonia (NHTot) was also developed. The treatment time required for different log10 reductions of ascaris egg viability can thus easily be estimated by the model as a function of NH3 activity and temperature. The impact on treatment time by different treatment options can then be theoretically evaluated, promoting improvements of the treatment e.g. by adding urea or alkaline agents, or increasing the temperature by solar heating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    Science.gov (United States)

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  2. Local androgen inactivation in abdominal visceral adipose tissue.

    Science.gov (United States)

    Blouin, Karine; Richard, Christian; Bélanger, Chantal; Dupont, Pierre; Daris, Marleen; Laberge, Philippe; Luu-The, Van; Tchernof, André

    2003-12-01

    We examined the expression and activity of two enzymes from the aldoketoreductase (AKR) family 1C, namely type 5 17beta-hydroxysteroid dehydrogenase (17beta-HSD-5, AKR1C3) and type 3 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD-3, AKR1C2) in female sc and omental adipose tissue and in preadipocyte primary cultures. 17beta-HSD-5 preferentially synthesizes testosterone from the inactive adrenal precursor androstenedione, whereas 3alpha-HSD-3 inactivates dihydrotestosterone. mRNAs of both enzymes were detected in adipose tissue from the omental and sc compartments. Real-time PCR quantification indicated a 3-fold higher 3alpha-HSD-3 expression compared with 17beta-HSD-5, and the expression of both enzymes tended to be higher in the sc vs. the omental depot. Accordingly, dose-response and time-course experiments performed in preadipocyte primary cultures indicated that 3alpha-HSD activity was higher than 17beta-HSD activity (13-fold maximum velocity difference). We measured 3alpha-HSD activity in omental and sc adipose tissue samples of 32 women for whom body composition and body fat distribution were evaluated by dual-energy x-ray absorptiometry and CT, respectively. We found that androgen inactivation in omental adipose tissue through 3alpha-HSD activity was significantly higher in women with elevated vs. low visceral adipose tissue accumulation (1.7-fold difference; P < 0.05). Moreover, omental adipose tissue 3alpha-HSD activity was positively and significantly associated with CT-measured visceral adipose tissue (r = 0.43; P < 0.02) and omental adipocyte diameter (r = 0.42; P < 0.02). These results indicate that local androgen inactivation is a predominant reaction in female abdominal adipose tissue, with the greatest conversion rates observed in the presence of abdominal visceral obesity. Increased androgen inactivation in omental adipose tissue of abdominally obese women may impact locally on the regulation of adipocyte metabolism.

  3. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  4. Comparative expression of wild-type and highly soluble mutant His103Leu of hydroxynitrile lyase from Manihot esculenta in prokaryotic and eukaryotic expression systems.

    Science.gov (United States)

    Dadashipour, Mohammad; Fukuta, Yasuhisa; Asano, Yasuhisa

    2011-05-01

    Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Characterization of the tissue-specific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine (Pinus taeda) in Nicotiana tabacum.

    Science.gov (United States)

    Osakabe, Yuriko; Osakabe, Keishi; Chiang, Vincent L

    2009-09-01

    We isolated the 5' flanking region of a gene for phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) from Pinus taeda, PtaPAL. To investigate the tissue-specific expression of the PtaPAL promoter, histochemical assay of GUS activity was performed using the transgenic tobacco expressing the PtaPAL promoter-GUS. The region of -897 to -420 in PtaPAL promoter showed high activities in the secondary xylem and response to bending stress. To characterize the cis-regulatory functions of the promoters for enzymes in phenylpropanoid biosynthesis, we examined the activity of chimeric promoters of PtaPAL and a 4-coumarate CoA ligase, Pta4CL alpha. The chimeric promoter showed similar activity as the Pta4CL alpha promoter. Electrophoretic mobility shift assays implicated -897 to -674 of PtaPAL promoter containing cis-elements of the expression in xylem of Pinus taeda. The results suggested that AC elements of PtaPAL have multiple functions in the expression under the various developmental stages and stress conditions in the transgenic tobacco.

  6. Inactivation of yeast inorganic pyrophosphatase by organic solvents

    Directory of Open Access Journals (Sweden)

    Rodrigo Grazinoli-Garrido

    2004-12-01

    Full Text Available A number of application for enzymes in organic solvents have been developed in chemical processing, food related conversions and analyses. The only unsolved problem related to nonaqueous enzymology is the notion that enzymes in organic solvent are mostly far less active than in water. Therefore, studies concerning the mechanisms by which enzymes are inactivated by organic solvents would reveal a clear understanding of the structure-function relationship of this phenomenon. Here we analyzed the effects of a series of alcohols (methanol, ethanol, 1-propanol and 2-propanol and acetone on the activity of yeast inorganic pyrophosphatase. We observed that solvents inactivated the enzyme in a dose-dependent manner. This inactivation is also dependent on the hydrophobicity of the solvent, where the most hydrophobic solvent is also the most effective one. The I50 for inactivation by n-alcohols are 5.9±4, 2.7±1 and 2.5±1 M for methanol, ethanol and 1-propanol, respectively. Inactivation was less effective at 37C than at 5C, when the I50 for inactivation by methanol, ethanol and 1-propanol are 4.5±2, 2.1±2 and 1.7±1 M, respectively. Our proposal is that solvent binds to the enzyme structure promoting the inactivation by stabilizing an unfolded structure, and that this binding is through the hydrophobic regions of either the protein or the solvent.Várias aplicações para a catálise enzimática em solventes orgânicos têm sido desenvolvidas visando processos químicos, industria alimentícia e métodos analíticos. Entretanto, o único problema ainda não resolvido para estas aplicações é o fato que estes catalisadores são bem menos ativos nestas condições que em meio aquoso. Assim, estudos dos mecanismos pelos quais as enzimas são inativadas em solventes orgânicos podem facilitar a compreensão da interrelação estrutura/função da interação entre os catalisadores e o solvente. Neste trabalho, nós analisamos os efeitos de uma s

  7. Thermal and Carbon Dioxide Inactivation of Alkaline Phosphatase in Buffer and Milk

    Directory of Open Access Journals (Sweden)

    Osman Erkmen

    2004-01-01

    Full Text Available The effects of temperature and CO2 treatment on the inactivation of alkaline phosphatase (ALP were studied. The thermal stability of ALP was found to be significantly (P< 0.05 different in glycine/NaOH buffer, pasteurized milk and raw milk. ALP was completely inactivated in the buffer at 60, 70 and 80 °C but approximately 12 % of activity was present at 50 °C after 55 min of treatment. The time required for complete inactivation of the enzyme in the buffer was reduced from 50 to 4 min as temperature increased from 60 to 80 °C. Complete inactivation of the enzyme in pasteurized milk was achieved at 70 and 80 °C but 28 and 15 % of ALP activity was still present at 50 and 60 °C after 120 min of treatment. Inactivation time for raw milk was reduced nearly 18-fold by increasing temperature from 50 to 70 °C. ALP in the buffer exposed to CO2 (under atmospheric pressure treatment at different temperatures showed a decrease in enzyme activity. Inactivation was found to be higher as the temperature increased from 20 to 50 °C. At the end of a 30-min treatment, residual ALP activity was found to be 84 and 19 % at 20 and 50 °C, respectively. Faster drop in pH and enzyme activity occurred within 5 min. The change in pH and enzyme activity dependant on CO2 treatment was not observed in raw milk mainly due to strong buffering capacity of milk.

  8. Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding

    Science.gov (United States)

    Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2014-01-01

    The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives. PMID:24334409

  9. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid.

    Directory of Open Access Journals (Sweden)

    Andrew G Hughson

    2016-09-01

    Full Text Available Hypochlorous acid (HOCl is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12 sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion

  10. Structural insights into RipC, a putative citrate lyase β subunit from a Yersinia pestis virulence operon

    International Nuclear Information System (INIS)

    Torres, Rodrigo; Chim, Nicholas; Sankaran, Banumathi; Pujol, Céline; Bliska, James B.; Goulding, Celia W.

    2011-01-01

    Comparison of the 2.45 Å resolution crystal structure of homotrimeric RipC, a putative citrate lyase β subunit from Y. pestis, with structural homologs reveals conserved RipC residues that are implicated in CoA binding. Yersinia pestis remains a threat, with outbreaks of plague occurring in rural areas and its emergence as a weapon of bioterrorism; thus, an improved understanding of its various pathogenicity pathways is warranted. The rip (required for intracellular proliferation) virulence operon is required for Y. pestis survival in interferon-γ-treated macrophages and has been implicated in lowering macrophage-produced nitric oxide levels. RipC, one of three gene products from the rip operon, is annotated as a citrate lyase β subunit. Furthermore, the Y. pestis genome lacks genes that encode citrate lyase α and γ subunits, suggesting a unique functional role of RipC in the Y. pestisrip-mediated survival pathway. Here, the 2.45 Å resolution crystal structure of RipC revealed a homotrimer in which each monomer consists of a (β/α) 8 TIM-barrel fold. Furthermore, the trimeric state was confirmed in solution by size-exclusion chromatography. Through sequence and structure comparisons with homologous proteins, it is proposed that RipC is a putative CoA- or CoA-derivative binding protein

  11. Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening.

    Science.gov (United States)

    Santiago-Doménech, Nieves; Jiménez-Bemúdez, Silvia; Matas, Antonio J; Rose, Jocelyn K C; Muñoz-Blanco, Juan; Mercado, José A; Quesada, Miguel A

    2008-01-01

    Cell wall disassembly in softening fruits is a complex process involving the cumulative action of many families of wall-modifying proteins on interconnected polysaccharide matrices. One strategy to elucidate the in vivo substrates of specific enzymes and their relative importance and contribution to wall modification is to suppress their expression in transgenic fruit. It has been reported previously that inhibiting the expression of pectate lyase genes by antisense technology in strawberry (Fragaria x ananassa Duch.) fruit resulted in prolonged fruit firmness. This suggested that pectin depolymerization might make a more important contribution to strawberry fruit softening than is often stated. In this present study, three independent transgenic lines were identified exhibiting a greater than 90% reduction in pectate lyase transcript abundance. Analyses of sequential cell wall extracts from the transgenic and control fruit collectively showed clear quantitative and qualitative differences in the extractability and molecular masses of populations of pectin polymers. Wall extracts from transgenic fruits showed a reduction in pectin solubility and decreased depolymerization of more tightly bound polyuronides. Additional patterns of differential extraction of other wall-associated pectin subclasses were apparent, particularly in the sodium carbonate- and chelator-soluble polymers. In addition, microscopic studies revealed that the typical ripening-associated loss of cell-cell adhesion was substantially reduced in the transgenic fruits. These results indicate that pectate lyase plays an important degradative role in the primary wall and middle lamella in ripening strawberry fruit, and should be included in synergistic models of cell wall disassembly.

  12. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression

    Directory of Open Access Journals (Sweden)

    Liangping Zha

    2017-07-01

    Full Text Available The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ and L. japonica var. chinensis (rFLJ. Chlorogenic acid (CGAs were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5′-UTR of phenylalanine ammonia-lyase 2 (PAL2. We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5′-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica.

  13. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  14. Study on the inactivation of intracellular enzyme molecules by X-ray irradiation

    International Nuclear Information System (INIS)

    Lee, S.B.

    1977-01-01

    Inactivation of the glutamic acid dehydrogenase and glucose-6-phosphate dehydrogenase enzyme molecules in the Ehrlich ascites tumor cells of the mouse were studied. The above mentioned intracellular enzyme molecules were irradiated by the X-ray radiation under the condition of 65 kV, 1 Amp under the atmosphere of nitrogen gases and by 4 0 C. Thereby, irradiation doses were 580 KR/min(error: +-3%). After irradiation, the cell homogentes were prepared through liquid air techniques. There after, the activities of the enzymes were measured with photometric method given by O. Warburg and W. Christian. The dose effect curves of the activities of the two enzymes by the X-ray irradiation showed both exponential and the inactivation doses were 6.5x10 6 and 5.0x10 6 R respectively. These results showed one side that the inactivation process of the intracellular enzyme molecules was one hit reaction after target theory, and the other side that this inactivation process could not be the primary causes of the death through X-ray irradiation of the vertebrate animals, because of the high resistance of the intracellular protein molecules against X-ray irradiation. The one hit reaction by the inactivation process of the irradiated intracellular enzyme molecules was discussed. (author)

  15. Heat inactivation kinetics of Hypocrea orientalis β-glucosidase with enhanced thermal stability by glucose.

    Science.gov (United States)

    Xu, Xin-Qi; Shi, Yan; Wu, Xiao-Bing; Zhan, Xi-Lan; Zhou, Han-Tao; Chen, Qing-Xi

    2015-11-01

    Thermal inactivation kinetics of Hypocrea orientalis β-glucosidase and effect of glucose on thermostability of the enzyme have been determined in this paper. Kinetic studies showed that the thermal inactivation was irreversible and first-order reaction. The microscopic rate constants for inactivation of free enzyme and substrate-enzyme complex were both determined, which suggested that substrates can protect β-glucosidase against thermal deactivation effectively. On the other hand, glucose was found to protect β-glucosidase from heat inactivation to remain almost whole activity below 70°C at 20mM concentration, whereas the apparent inactivation rate of BG decreased to be 0.3×10(-3)s(-1) in the presence of 5mM glucose, smaller than that of sugar-free enzyme (1.91×10(-3)s(-1)). The intrinsic fluorescence spectra results showed that glucose also had stabilizing effect on the conformation of BG against thermal denaturation. Docking simulation depicted the interaction mode between glucose and active residues of the enzyme to produce stabilizing effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  17. Bioinactivation: Software for modelling dynamic microbial inactivation.

    Science.gov (United States)

    Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A

    2017-03-01

    This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  19. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  20. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  1. Low pH inactivation for xenotropic gamma retrovirus in recombinant human TNF-α receptor immunoglobulin G and mechanism of inactivation.

    Science.gov (United States)

    Ma, Rong; Cui, Xiaolan

    2014-01-01

    CHO-derived recombinant proteins for human therapeutic are used commonly. There are noninfectious endogenous retroviruses in CHO cells. Validation study for inactivation process is required. Murine xenotropic gamma retrovirus (X-MulV) is a model virus in validation study. In our previous study, optimum conditions for X-MulV inactivation were sifted. In this study, we performed a further research on low pH inactivation for evaluation of X-MulV clearance in manufacturing of recombinant human TNF-α receptor immunoglobulin G fusion proteins (rhTNF-α) for injection. Cell-based infectivity assay was used for the evaluation of X-MulV clearance. RhTNF-α were spiked with X-MulV and were inactivated at pH 3.60 ∼ 3.90, 25 ± 2 °C, and 0 ∼ 240 min, respectively. Samples incubated at the conditions for 15 ∼ 180 min were not inactivated effectively. For 4 h incubation, log10 reductions were achieved 5.0 log10. Biological activity of rhTNF-α incubated at pH 3.60, 25 °C for 4 h, which was assayed on murine L929 fibroblasts cells, was not affected by low pH. Env gene of X-MulV, which was detected by conventional PCR method for the first time, was not detected after incubation at pH 3.60, and it may be the mechanism of low pH inactivation. Copyright © 2013. Published by Elsevier Ltd.

  2. Functional Insights into Human HMG-CoA Lyase from Structures of Acyl-CoA-containing Ternary Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Zhuji; Runquist, Jennifer A.; Montgomery, Christa; Miziorko, Henry M.; Kim, Jung-Ja P. (MCW); (UMKC)

    2010-08-16

    HMG-CoA lyase (HMGCL) is crucial to ketogenesis, and inherited human mutations are potentially lethal. Detailed understanding of the HMGCL reaction mechanism and the molecular basis for correlating human mutations with enzyme deficiency have been limited by the lack of structural information for enzyme liganded to an acyl-CoA substrate or inhibitor. Crystal structures of ternary complexes of WT HMGCL with the competitive inhibitor 3-hydroxyglutaryl-CoA and of the catalytically deficient HMGCL R41M mutant with substrate HMG-CoA have been determined to 2.4 and 2.2 {angstrom}, respectively. Comparison of these {beta}/{alpha}-barrel structures with those of unliganded HMGCL and R41M reveals substantial differences for Mg{sup 2+} coordination and positioning of the flexible loop containing the conserved HMGCL 'signature' sequence. In the R41M-Mg{sup 2+}-substrate ternary complex, loop residue Cys{sup 266} (implicated in active-site function by mechanistic and mutagenesis observations) is more closely juxtaposed to the catalytic site than in the case of unliganded enzyme or the WT enzyme-Mg{sup 2+}-3-hydroxyglutaryl-CoA inhibitor complex. In both ternary complexes, the S-stereoisomer of substrate or inhibitor is specifically bound, in accord with the observed Mg{sup 2+} liganding of both C3 hydroxyl and C5 carboxyl oxygens. In addition to His{sup 233} and His{sup 235} imidazoles, other Mg{sup 2+} ligands are the Asp{sup 42} carboxyl oxygen and an ordered water molecule. This water, positioned between Asp{sup 42} and the C3 hydroxyl of bound substrate/inhibitor, may function as a proton shuttle. The observed interaction of Arg{sup 41} with the acyl-CoA C1 carbonyl oxygen explains the effects of Arg{sup 41} mutation on reaction product enolization and explains why human Arg{sup 41} mutations cause drastic enzyme deficiency.

  3. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  4. Osmolytes protect mitochondrial F(0)F(1)-ATPase complex against pressure inactivation.

    Science.gov (United States)

    Saad-Nehme, J; Silva, J L; Meyer-Fernandes, J R

    2001-03-09

    We have previously reported that carbohydrates and polyols protect different enzymes against thermal inactivation and deleterious effects promoted by guanidinium chloride and urea. Here, we show that these osmolytes (carbohydrates, polyols and methylamines) protect mitochondrial F(0)F(1)-ATPase against pressure inactivation. Pressure stability of mitochondrial F(0)F(1)-ATPase complex by osmolytes was studied using preparations of membrane-bound submitochondrial particles depleted or containing inhibitor protein (IP). Hydrostatic pressure in the range from 0.5 to 2.0 kbar causes inactivation of submitochondrial particles depleted of IP (AS particles). However, the osmolytes prevent pressure inactivation of the complex in a dose-dependent manner, remaining up to 80% of hydrolytic activity at the highest osmolyte concentration. Submitochondrial particles containing IP (MgATP-SMP) exhibit low ATPase activity and dissociation of IP increases the hydrolytic activity of the enzyme. MgATP-SMP subjected to pressure (2.2 kbar, for 1 h) and then preincubated at 42 degrees C to undergo activation did not have an increase in activity. However, particles pressurized in the presence of 1.5 M of sucrose or 3.0 M of glucose were protected and after preincubation at 42 degrees C, showed an activation very similarly to those kept at 1 bar. In accordance with the preferential hydration theory, we believe that osmolytes reduce to a minimum the surface of the macromolecule to be hydrated and oppose pressure-induced alterations of the native fold that are driven by hydration forces.

  5. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshiyuki; Matsuoka, Makoto; Yamanoto, Naoki; Ohashi, Yuko; Kano-Murakami, Yuriko; Ozeki, Yoshihiro (National Institute of Agro-Environmental Sciences, Ibaraki (Japan) Univ. of Tokyo (Japan))

    1989-08-01

    A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The M{sub r} of its subunit was 77,000. The cells converted ({sup 14}C)-L-phenylalanine into ({sup 14}C)-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2,121-base pair (bp) open-reading frame capable of coding for a polypeptide with 707 amino acids (M{sub r} 77,137), a 22-bp 5{prime}-noncoding region and a 207-bp 3{prime}-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology.

  6. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato

    International Nuclear Information System (INIS)

    Tanaka, Yoshiyuki; Matsuoka, Makoto; Yamanoto, Naoki; Ohashi, Yuko; Kano-Murakami, Yuriko; Ozeki, Yoshihiro

    1989-01-01

    A cDNA clone for phenylalanine ammonia-lyase (PAL) induced in wounded sweet potato (Ipomoea batatas Lam.) root was obtained by immunoscreening a cDNA library. The protein produced in Escherichia coli cells containing the plasmid pPAL02 was indistinguishable from sweet potato PAL as judged by Ouchterlony double diffusion assays. The M r of its subunit was 77,000. The cells converted [ 14 C]-L-phenylalanine into [ 14 C]-t-cinnamic acid and PAL activity was detected in the homogenate of the cells. The activity was dependent on the presence of the pPAL02 plasmid DNA. The nucleotide sequence of the cDNA contained a 2,121-base pair (bp) open-reading frame capable of coding for a polypeptide with 707 amino acids (M r 77,137), a 22-bp 5'-noncoding region and a 207-bp 3'-noncoding region. The results suggest that the insert DNA fully encoded the amino acid sequence for sweet potato PAL that is induced by wounding. Comparison of the deduced amino acid sequence with that of a PAL cDNA fragment from Phaseolus vulgaris revealed 78.9% homology. The sequence from amino acid residues 258 to 494 was highly conserved, showing 90.7% homology

  7. Mutation of a nuclear respiratory factor 2 binding site in the 5' untranslated region of the ADSL gene in three patients with adenylosuccinate lyase deficiency.

    Science.gov (United States)

    Marie, S; Race, V; Nassogne, M-C; Vincent, M-F; Van den Berghe, G

    2002-07-01

    Adenylosuccinate lyase (ADSL; also called "adenylosuccinase") catalyzes two steps in the synthesis of purine nucleotides: (1) the conversion of succinylaminoimidazolecarboxamide ribotide into aminoimidazolecarboxamide ribotide and (2) the conversion of adenylosuccinate into adenosine monophosphate. ADSL deficiency, a recessively inherited disorder, causes variable-but most often severe-mental retardation, frequently accompanied by epilepsy and/or autism. It is characterized by the accumulation, in body fluids, of succinylaminoimidazolecarboxamide riboside and succinyladenosine, the dephosphorylated derivatives of the two substrates of the enzyme. Analysis of the ADSL gene of three unrelated patients with ADSL deficiency, in whom one of the ADSL alleles displayed a normal coding sequence, revealed a -49T-->C mutation in the 5' untranslated region of this allele. Measurements of the amount of mRNA transcribed from the latter allele showed that it was reduced to approximately 33% of that transcribed from the alleles mutated in their coding sequence. Further investigations showed that the -49T-->C mutation provokes a reduction to 25% of wild-type control of promoter function, as evaluated by luciferase activity and mRNA level in transfection experiments. The mutation also affects the binding of nuclear respiratory factor 2 (NRF-2), a known activator of transcription, as assessed by gel-shift studies. Our findings indicate that a mutation of a regulatory region of the ADSL gene might be an unusually frequent cause of ADSL deficiency, and they suggest a role for NRF-2 in the gene regulation of the purine biosynthetic pathway.

  8. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    Directory of Open Access Journals (Sweden)

    Yie-Vern Lee

    2015-01-01

    Full Text Available Isocitrate lyase (ICL is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle, especially Mycobacterium tuberculosis (MTB. In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a MTB ICL with natural compounds; (b MTB ICL with synthetic compounds; (c non-MTB ICL with natural compounds; and (d non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.

  9. Probing reversible chemistry in coenzyme B12 -dependent ethanolamine ammonia lyase with kinetic isotope effects.

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-06-08

    Coenzyme B12 -dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5'-deoxyadenosyl moiety of the intrinsic coenzyme B12 , it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5'-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5'-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  10. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch

    Directory of Open Access Journals (Sweden)

    Steven Zhao

    2016-10-01

    Full Text Available Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY, cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histo