WorldWideScience

Sample records for inactivated bacillus anthracis

  1. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    Science.gov (United States)

    2014-10-30

    effect of SWNTs in combination with antimicrobial chemicals on inactivation of B. anthracis spores; 4) the effect of CNTs coated surfaces on the...2010 31-May-2014 Approved for Public Release; Distribution Unlimited Final Report: (Life Science Division/ Biochemistry ) Inactivation of Bacillus... Biochemistry ) Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes Report Title The Specific Aims of the project were to investigate: 1) the

  2. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  3. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  4. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores

    Science.gov (United States)

    2008-03-01

    gentlemen are approachable and extremely well versed in their fields. Dr. Burggraf’s passion for learning coupled with the patience necessary to allow...wide spread employment on civilian targets has increased. Indeed, the well known biological agent Anthrax, Bacillus anthracis (B.a.), was recently...reached at 0.5 seconds with the heat from the fireball lasting a total of 4 seconds ( Orson , J.A. 2003; 104). From this data, the short time-temperature

  5. Thermal Inactivation of Bacillus anthracis Spores Using Rapid Resistive Heating

    Science.gov (United States)

    2016-03-24

    persist in the environment over millennial time spans in a metabolically inactive state (Nicholson et al., 2000)." Once favorable conditions arise...for the prototyping/initial testing, the collection of 1586 data points, and to ensure quality agar plates were used for the thermal inactivation...removal process yielded some broken filament samples and required inspection for cracks of still intact filament samples to ensure quality samples

  6. Disinfection of Vegetative Cells of Bacillus anthracis

    Science.gov (United States)

    2016-03-01

    Society for Microbiology ; New Orleans, LA, 2004. American Public Health Association. Standard Methods for the Examination of Water and Wastewater...Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  7. Characterization of 21 Strains of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Kournikakis, B

    2000-01-01

    Twenty-one strains of Bacillus anthracis currently held in the culture collection at DRES were characterized by colonial morphology, antibiotic sensitivity and BiologTM metabolic identification profiles...

  8. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    Science.gov (United States)

    Wilson, Melissa K; Abergel, Rebecca J; Raymond, Kenneth N; Arceneaux, Jean E L; Byers, B Rowe

    2006-09-15

    Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.

  9. Inactivation of Vegetative Cells, but Not Spores, of Bacillus anthracis, B. cereus, and B. subtilis on Stainless Steel Surfaces Coated with an Antimicrobial Silver- and Zinc-Containing Zeolite Formulation

    Science.gov (United States)

    Galeano, Belinda; Korff, Emily; Nicholson, Wayne L.

    2003-01-01

    Stainless steel surfaces coated with paints containing a silver- and zinc-containing zeolite (AgION antimicrobial) were assayed in comparison to uncoated stainless steel for antimicrobial activity against vegetative cells and spores of three Bacillus species, namely, B. anthracis Sterne, B. cereus T, and B. subtilis 168. Under the test conditions (25°C and 80% relative humidity), the zeolite coating produced approximately 3 log10 inactivation of vegetative cells within a 5- to 24-h period, but viability of spores of the three species was not significantly affected. PMID:12839825

  10. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    Science.gov (United States)

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  11. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  12. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  13. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis.

    Science.gov (United States)

    Han, Cliff S; Xie, Gary; Challacombe, Jean F; Altherr, Michael R; Bhotika, Smriti S; Brown, Nancy; Bruce, David; Campbell, Connie S; Campbell, Mary L; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A; Fawcett, John J; Glavina, Tijana; Goodwin, Lynne A; Green, Lance D; Hill, Karen K; Hitchcock, Penny; Jackson, Paul J; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti, Stephanie; McMurry, Kim; Meincke, Linda J; Misra, Monica; Moseman, Bernice L; Mundt, Mark; Munk, A Christine; Okinaka, Richard T; Parson-Quintana, B; Reilly, Lee Philip; Richardson, Paul; Robinson, Donna L; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Ticknor, Lawrence O; Wills, Patti L; Brettin, Thomas S; Gilna, Paul

    2006-05-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.

  14. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  15. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    Science.gov (United States)

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  16. Interactions between Bacillus anthracis and plants may promote anthrax transmission.

    Directory of Open Access Journals (Sweden)

    Holly H Ganz

    2014-06-01

    Full Text Available Environmental reservoirs are essential in the maintenance and transmission of anthrax but are poorly characterized. The anthrax agent, Bacillus anthracis was long considered an obligate pathogen that is dormant and passively transmitted in the environment. However, a growing number of laboratory studies indicate that, like some of its close relatives, B. anthracis has some activity outside of its vertebrate hosts. Here we show in the field that B. anthracis has significant interactions with a grass that could promote anthrax spore transmission to grazing hosts. Using a local, virulent strain of B. anthracis, we performed a field experiment in an enclosure within a grassland savanna. We found that B. anthracis increased the rate of establishment of a native grass (Enneapogon desvauxii by 50% and that grass seeds exposed to blood reached heights that were 45% taller than controls. Further we detected significant effects of E. desvauxii, B. anthracis, and their interaction on soil bacterial taxa richness and community composition. We did not find any evidence for multiplication or increased longevity of B. anthracis in bulk soil associated with grass compared to controls. Instead interactions between B. anthracis and plants may result in increased host grazing and subsequently increased transmission to hosts.

  17. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics.

    Directory of Open Access Journals (Sweden)

    Holly H Ganz

    Full Text Available Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales, featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

  18. Novel giant siphovirus from Bacillus anthracis features unusual genome characteristics.

    Science.gov (United States)

    Ganz, Holly H; Law, Christina; Schmuki, Martina; Eichenseher, Fritz; Calendar, Richard; Loessner, Martin J; Getz, Wayne M; Korlach, Jonas; Beyer, Wolfgang; Klumpp, Jochen

    2014-01-01

    Here we present vB_BanS-Tsamsa, a novel temperate phage isolated from Bacillus anthracis, the agent responsible for anthrax infections in wildlife, livestock and humans. Tsamsa phage is a giant siphovirus (order Caudovirales), featuring a long, flexible and non-contractile tail of 440 nm (not including baseplate structure) and an isometric head of 82 nm in diameter. We induced Tsamsa phage in samples from two different carcass sites in Etosha National Park, Namibia. The Tsamsa phage genome is the largest sequenced Bacillus siphovirus, containing 168,876 bp and 272 ORFs. The genome features an integrase/recombinase enzyme, indicative of a temperate lifestyle. Among bacterial strains tested, the phage infected only certain members of the Bacillus cereus sensu lato group (B. anthracis, B. cereus and B. thuringiensis) and exhibited moderate specificity for B. anthracis. Tsamsa lysed seven out of 25 B. cereus strains, two out of five B. thuringiensis strains and six out of seven B. anthracis strains tested. It did not lyse B. anthracis PAK-1, an atypical strain that is also resistant to both gamma phage and cherry phage. The Tsamsa endolysin features a broader lytic spectrum than the phage host range, indicating possible use of the enzyme in Bacillus biocontrol.

  19. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    Science.gov (United States)

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  20. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile.

    Science.gov (United States)

    Oie, Shigeharu; Obayashi, Akiko; Yamasaki, Hirofumi; Furukawa, Hiroyuki; Kenri, Tsuyoshi; Takahashi, Motohide; Kawamoto, Keiko; Makino, Sou-ichi

    2011-01-01

    To evaluate disinfection methods for environments contaminated with bioterrorism-associated microorganism (Bacillus anthracis), we performed the following experiments. First, the sporicidal effects of sodium hypochlorite on spores of five bacterial species were evaluated. Bacillus atrophaeus was the most resistant to hypochlorite, followed in order by B. anthracis, Clostridium botulinum and Clostridium tetani, and Clostridium difficile. Subsequently, using B. atrophaeus spores that were the most resistant to hypochlorite, the sporicidal effects of hypochlorite at lower pH by adding vinegar were evaluated. Hypochlorite containing vinegar had far more marked sporicidal effects than hypochlorite alone. Cleaning with 0.5% (5000 ppm) hypochlorite containing vinegar inactivated B. atrophaeus spores attached to vinyl chloride and plywood plates within 15 s, while that not containing vinegar did not inactivate spores attached to cement or plywood plates even after 1 h. Therefore, the surfaces of cement or plywood plates were covered with gauze soaked in 0.5% hypochlorite containing vinegar, and the sporicidal effects were evaluated. B. atrophaeus spores attached to plywood plates were not inactivated even after 6 h, but those attached to cement plates were inactivated within 5 min. On the other hand, covering the surfaces of plywood plates with gauze soaked in 0.3% peracetic acid and gauze soaked in 2% glutaral inactivated B. atrophaeus spores within 5 min and 6 h, respectively. These results suggest that hypochlorite containing vinegar is effective for disinfecting vinyl chloride, tile, and cement plates contaminated with B. anthracis, and peracetic acid is effective for disinfecting plywood plates contaminated with such microorganism.

  1. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

    Science.gov (United States)

    Ivanova, Natalia; Sorokin, Alexei; Anderson, Iain; Galleron, Nathalie; Candelon, Benjamin; Kapatral, Vinayak; Bhattacharyya, Anamitra; Reznik, Gary; Mikhailova, Natalia; Lapidus, Alla; Chu, Lien; Mazur, Michael; Goltsman, Eugene; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Grechkin, Yuri; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Ehrlich, S Dusko; Overbeek, Ross; Kyrpides, Nikos

    2003-05-01

    Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

  2. Discerning Viable from Nonviable Yersinia pestis pgm- and Bacillus anthracis Sterne using Propidium Monoazide in the Presence of White Powders

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.; Wunschel, David S.; Bruckner-Lea, Cindy J.; Hutchison, Janine R.

    2015-12-23

    ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 for both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection

  3. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    National Research Council Canada - National Science Library

    Reiman, Robert W

    2007-01-01

    The need for a simple, specific, sensitive, inexpensive, accurate, and rapid method to identify Bacillus anthracis became apparent during the Fall 2001 anthrax attacks which caused widespread panic...

  4. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    .... Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM...

  5. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Science.gov (United States)

    Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  6. Identification of Bacillus anthracis by Using Monoclonal Antibody to Cell Wall Galactose-N-Acetylglucosamine Polysaccharide

    Science.gov (United States)

    1990-02-01

    Bacillus circulans ATCC 4513 b - - NR NT NT NT NT Bacillus coagulans ATCC 7050 b - - NR NT NT NT NT Bacillus eugilitis B-61 f - - NR NT NT NT NT...American Society for Microbiology W Identification of Bacillus anthracis by-U-sing Monoclonal Antibody CC to Cell Wall Galactose-N-Acetylglucosamine...Received 22 June 1989/Accepted 31 October 1989 ’ Guanidine extracts of crude Bacillus anthracis cell wall were used to vaccinate BALB/c mice and to

  7. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.

    Science.gov (United States)

    Bishop, A H

    2014-11-01

    Decontaminating large, outdoor spaces of Bacillus anthracis spores presents significant problems, particularly in soil. Proof was sought that the addition of germinant chemicals could cause spores of B. anthracis and Bacillus thuringiensis, a commonly used simulant of the threat agent, to convert to the less resistant vegetative form in a microcosm. Nonsterile plant/soil microcosms were inoculated with spores of B. thuringiensis and two nonpathogenic strains of B. anthracis. A combination of L-alanine (100 mmol l(-1)) and inosine (10 mmol l(-1)) resulted in a 6 log decrease in spore numbers in both strains of B. anthracis over 2 weeks at 22°C; a 3 log decrease in B. anthracis Sterne spore numbers was observed after incubation for 2 weeks at 10°C. Negligible germination nor a decrease in viable count occurred in either strain when the concentration of L-alanine was decreased to 5 mmol l(-1). Germinated spores of B. thuringiensis were able to persist in vegetative form in the microcosms, whereas those of B. anthracis rapidly disappeared. The pleiotropic regulator PlcR, which B. anthracis lacks, does not contribute to the persistence of B. thuringiensis in vegetative form in soil. The principle of adding germinants to soil to trigger the conversion of spores to vegetative form has been demonstrated. Bacillus anthracis failed to persist in vegetative form or resporulate in the microcosms after it had been induced to germinate. The large scale, outdoor decontamination of B. anthracis spores may be facilitated by the application of simple, defined combinations of germinants. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is Published with the permission of the Controller of HMSO and Queen's Printer for Scotland.

  8. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores.

    Directory of Open Access Journals (Sweden)

    Jason Edmonds

    Full Text Available The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening.

  9. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  10. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  11. The use of germinants to potentiate the sensitivity of Bacillus anthracis spores to peracetic acid

    Directory of Open Access Journals (Sweden)

    Ozgur eCelebi

    2016-01-01

    Full Text Available Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM and inosine (5 mM to reduce the concentration of peracetic acid (PAA required to inactivate B.anthracis spores. While L-alanine significantly enhanced (p=0.0085 the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p=0.0009. To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B.anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed one hour later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B.anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p<0.0001 in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B.anthracis spores contaminated sites.

  12. Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan.

    Science.gov (United States)

    Aikembayev, Alim M; Lukhnova, Larissa; Temiraliyeva, Gulnara; Meka-Mechenko, Tatyana; Pazylov, Yerlan; Zakaryan, Sarkis; Denissov, Georgiy; Easterday, W Ryan; Van Ert, Matthew N; Keim, Paul; Francesconi, Stephen C; Blackburn, Jason K; Hugh-Jones, Martin; Hadfield, Ted

    2010-05-01

    To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937-2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes. Cluster analysis comparing these genotypes with previously published genotypes indicated that most (n = 78) isolates belonged to the previously described A1.a genetic cluster, 6 isolates belonged to the A3.b cluster, and 2 belonged to the A4 cluster. Two genotypes in the collection appeared to represent novel genetic sublineages; 1 of these isolates was from Krygystan. Our data provide a description of the historical, geographic, and genetic diversity of B. anthracis in this Central Asian region.

  13. Genotype Analysis of Bacillus anthracis Strains Circulating in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Farzana Islam Rume

    Full Text Available In Bangladesh, anthrax, caused by the bacterium Bacillus anthracis, is considered an endemic disease affecting ruminants with sporadic zoonotic occurrences in humans. Due to the lack of knowledge about risks from an incorrect removal of infected carcasses, the disease is not properly monitored, and because of the socio-economic conditions, the situation is under-reported and under-diagnosed. For sensitive species, anthrax represents a fatal outcome with sudden death and sometimes bleeding from natural orifices. The most common source of infection for ruminants is ingestion of spores during grazing in contaminated pastures or through grass and water contaminated with anthrax spores. Domestic cattle, sheep and goats can also become infected through contaminated bone meal (used as feed originating from anthrax-infected carcasses. The present investigation was conducted to isolate B. anthracis organisms from 169 samples (73 soil, 1 tissue, 4 bone and 91 bone meal samples collected from 12 different districts of Bangladesh. The sampling was carried out from 2012 to 2015. Twelve samples resulted positive for B. anthracis. Biomolecular analyses were conducted starting from the Canonical Single Nucleotide Polymorphism (CanSNP to analyze the phylogenetic origin of strains. The analysis of genotype, obtained through the Multiple Locus Variable Number Tandem Repeat Analysis (MLVA with the analysis of 15 Variable Number Tandem Repeats (VNTR, demonstrated four different genotypes: two of them were previously identified in the district of Sirajganj. The sub-genotyping, conducted with Single Nucleotide Repeats analysis, revealed the presence of eight subgenotypes. The data of the present study concluded that there was no observed correlation between imported cattle feed and anthrax occurrence in Bangladesh and that the remarkable genetic variations of B. anthracis were found in the soil of numerous outbreaks in this country.

  14. Literature Review of DNA-Based Subspecies Analysis of Bacillus Anthracis Burkholderia Pseudomallel Burkholderia Mallei, and Yersinia Pestis

    National Research Council Canada - National Science Library

    Harvey, Steven

    1999-01-01

    ...; Bacillus anthracis, Burkholderia pseudomallei, Burkholderia mallei, and Yersinia pestis. Considerable research has been accomplished for the identification of polymorphisms from the strains B. anthracis and B. pseudomallei. The B...

  15. Identification and characterization of clinical Bacillus spp. isolates phenotypically similar to Bacillus anthracis.

    Science.gov (United States)

    Beesley, Cari A; Vanner, Cynthia L; Helsel, Leta O; Gee, Jay E; Hoffmaster, Alex R

    2010-12-01

    Bacillus anthracis, the etiological agent of anthrax, is a gram-positive, spore-forming rod, with colonies exhibiting a unique ground-glass appearance, and lacking hemolysis and motility. In addition to these phenotypes, several others traits are characteristic of B. anthracis such as susceptibility to gamma phage, the presence of two virulence plasmids (pX01 and pX02), and specific cell wall and capsular antigens that are commonly detected by direct fluorescent-antibody assays. We report on the identification and characterization of 14 Bacillus megaterium and four Bacillus sp. clinical isolates that are nonhemolytic, nonmotile, and produce a capsule antigenically similar to B. anthracis. This work furthers our understanding of Bacillus diversity and the limitations of the assays and phenotypes that are used to differentiate species in this genus. Further work is necessary to understand whether these strains are opportunistic pathogens or just contaminates. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  16. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    National Research Council Canada - National Science Library

    Reiman, Robert W

    2007-01-01

    ... and ultimately killed five individuals. The Centers for Disease Control and Prevention currently employs agar plate lysis by gamma phage and direct fluorescence assay to confirm the presence of Bacillus anthracis...

  17. Lethality of Bacillus Anthracis Spores Due to Short Duration Heating Measured Using Infrared Spectroscopy

    National Research Council Canada - National Science Library

    Goetz, Kristina M

    2005-01-01

    In this research, Bacillus anthracis spores were subjected to bursts of heat lasting on the order of one second in duration using a laser system to simulate the explosive environment from an agent defeat weapon...

  18. Pharmacokinetics-Pharmacodynamics of Gatifloxacin in a Lethal Murine Bacillus Anthracis Inhalation Infection Model

    National Research Council Canada - National Science Library

    Ambrose, Paul G; Forrest, Alan; Craig, William A; Rubino, Christopher M; Bhavnani, Sujata M; Drusano, George L; Heine, Henery S

    2007-01-01

    We determined the pharmacokinetic-pharmacodynamic (PK-PD) measure most predictive of gatifloxacin efficacy and the magnitude of this measure necessary for survival in a murine Bacillus anthracis inhalation infection model...

  19. Efficacy of Oritavancin in a Murine Model of Bacillus anthracis Spore Inhalation Anthrax

    National Research Council Canada - National Science Library

    Heine, H. S; Bassett, J; Miller, L; Bassett, A; Ivins, B. E; Lehous, D; Arhin, F. F; Parr, Jr., T. R; Moeck, G

    2008-01-01

    The inhaled form of Bacillus anthracis infection may be fatal to humans. The current standard of care for inhalational anthrax postexposure prophylaxis is ciprofloxacin therapy twice daily for 60 days...

  20. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  1. Monitoramento Tecnológico de Biossensores para Bacillus anthracis

    OpenAIRE

    Garcia, Rômulo Santiago de Lima

    2017-01-01

    O Exército Brasileiro, por meio da Seção de Defesa Biológica do Instituto de Defesa Química, Biológica, Radiológica e Nuclear, realizou o monitoramento tecnológico de biossensores para Bacillus anthracis em bancos de dados de patentes, para aperfeiçoar as atividades de pesquisa e desenvolvimento de produtos de defesa e analisar as tendências tecnológicas relativas a esta área, especialmente no que se refere aos biosensores ópticos baseados no principio de ressonância de plásmons de superfície...

  2. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis.

    Science.gov (United States)

    Bishop, A H; Robinson, C V

    2014-09-01

    A representative simulant for spores of Bacillus anthracis is needed for field testing. Bacillus thuringiensis is gaining recognition as a suitable organism. A strain that does not form the insecticidal, parasporal crystals that are characteristic of this species is a more accurate physical representative of B. anthracis spores. We developed noninsecticidal derivatives of two isolates of B. thuringiensis HD-1. Two plasmid-cured derivatives of B. thuringiensis HD-1, unable to make crystal toxins ('Cry(-) '), were isolated. These isolates and the existing Cry(-) strain, B. thuringiensis Al Hakam, were probed with PCR assays against the known insecticidal genes cry, vip and cyt. Their genomic DNA was sequenced to demonstrate a lack of insecticidal genes. This was confirmed by bioassays against a number of invertebrate species. Real-time PCR assays were developed to identify the B. thuringiensis HD-1 Cry(-) derivatives and an effective differential and selective medium was assessed. All three Cry(-) isolates are devoid of known insecticidal determinants. The B. thuringiensis HD-1 Cry(-) derivatives can easily be recovered from soil and identified by PCR with some selectivity. The B. thuringiensis HD-1 Cry(-) derivatives represent accurate, nongenetically manipulated simulants for B. anthracis with excellent human and environmental safety records. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  3. Identification of Bacillus anthracis specific chromosomal sequences by suppressive subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Redkar Rajendra

    2004-02-01

    Full Text Available Abstract Background Bacillus anthracis, Bacillus thuringiensis and Bacillus cereus are closely related members of the B. cereus-group of bacilli. Suppressive subtractive hybridization (SSH was used to identify specific chromosomal sequences unique to B. anthracis. Results Two SSH libraries were generated. Genomic DNA from plasmid-cured B. anthracis was used as the tester DNA in both libraries, while genomic DNA from either B. cereus or B. thuringiensis served as the driver DNA. Progressive screening of the libraries by colony filter and Southern blot analyses identified 29 different clones that were specific for the B. anthracis chromosome relative not only to the respective driver DNAs, but also to seven other different strains of B. cereus and B. thuringiensis included in the process. The nucleotide sequences of the clones were compared with those found in genomic databases, revealing that over half of the clones were located into 2 regions on the B. anthracis chromosome. Conclusions Genes encoding potential cell wall synthesis proteins dominated one region, while bacteriophage-related sequences dominated the other region. The latter supports the hypothesis that acquisition of these bacteriophage sequences occurred during or after speciation of B. anthracis relative to B. cereus and B. thuringiensis. This study provides insight into the chromosomal differences between B. anthracis and its closest phylogenetic relatives.

  4. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Directory of Open Access Journals (Sweden)

    Wolfgang Beyer

    Full Text Available The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA and, in part, by twelve single nucleotide polymorphism (SNP markers and four single nucleotide repeat (SNR markers. A total of 37 genotypes (GT were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate

  5. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    Science.gov (United States)

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  6. Identification of Bacillus anthracis by using matrix-assisted laser desorption ionization-time of flight mass spectrometry and artificial neural networks.

    Science.gov (United States)

    Lasch, Peter; Beyer, Wolfgang; Nattermann, Herbert; Stämmler, Maren; Siegbrecht, Enrico; Grunow, Roland; Naumann, Dieter

    2009-11-01

    This report demonstrates the applicability of a combination of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and chemometrics for rapid and reliable identification of vegetative cells of the causative agent of anthrax, Bacillus anthracis. Bacillus cultures were prepared under standardized conditions and inactivated according to a recently developed MS-compatible inactivation protocol for highly pathogenic microorganisms. MALDI-TOF MS was then employed to collect spectra from the microbial samples and to build up a database of bacterial reference spectra. This database comprised mass peak profiles of 374 strains from Bacillus and related genera, among them 102 strains of B. anthracis and 121 strains of B. cereus. The information contained in the database was investigated by means of visual inspection of gel view representations, univariate t tests for biomarker identification, unsupervised hierarchical clustering, and artificial neural networks (ANNs). Analysis of gel views and independent t tests suggested B. anthracis- and B. cereus group-specific signals. For example, mass spectra of B. anthracis exhibited discriminating biomarkers at 4,606, 5,413, and 6,679 Da. A systematic search in proteomic databases allowed tentative assignment of some of the biomarkers to ribosomal protein or small acid-soluble proteins. Multivariate pattern analysis by unsupervised hierarchical cluster analysis further revealed a subproteome-based taxonomy of the genus Bacillus. Superior classification accuracy was achieved when supervised ANNs were employed. For the identification of B. anthracis, independent validation of optimized ANN models yielded a diagnostic sensitivity of 100% and a specificity of 100%.

  7. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons.

    Science.gov (United States)

    Mott, T M; Shoe, J L; Hunter, M; Woodson, A M; Fritts, K A; Klimko, C P; Quirk, A V; Welkos, S L; Cote, C K

    2017-05-01

    In an attempt to devise decontamination methods that are both effective and minimally detrimental to the environment, we evaluated germination induction as an enhancement to strategies for Bacillus anthracis spore decontamination. To determine an optimal method for the recovery of germinating spores from different matrices, it was critical to ensure that the sampling procedures did not negatively impact the viability of the germinating spores possibly confounding the results and downstream analyses of field trial data. Therefore, the two main objectives of this study were the following: (i) development of an effective processing protocol capable of recovering the maximum number of viable germinating or germinated spores from different surface materials; and (ii) using a model system of spore contamination, employ this protocol to evaluate the potential applicability of germination induction to wide-area decontamination of B. anthracis spores. We examined parameters affecting the sampling efficiencies of B. anthracis and the surrogate species Bacillus thuringiensis on nonporous and porous materials. The most efficient extraction from all matrices was observed using PBS with 0·01% Tween 80 extraction buffer. The addition of a sonication and/or extended vortex treatment did not yield significant increases in spore or germinated spore recovery. Our data demonstrate that previous germination-induction experiments performed in suspension can be reproduced when Bacillus spores are deposited onto reference surfaces materials. Our proof of concept experiment illustrated that a germination pretreatment step significantly improves conventional secondary decontamination strategies and remediation plans. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium.

    Science.gov (United States)

    Todd, Sarah J; Moir, Arthur J G; Johnson, Matt J; Moir, Anne

    2003-06-01

    The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.

  9. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  10. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam.

    Science.gov (United States)

    Buhr, T L; Young, A A; Barnette, H K; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; DePaola, M; Cora-Laó, M; Page, M A

    2015-11-01

    To develop test methods and evaluate survival of Bacillus anthracis ∆Sterne or Bacillus thuringiensis Al Hakam on materials contaminated with dirty spore preparations after exposure to hot, humid air using response surface modelling. Spores (>7 log10 ) were mixed with humic acid + spent sporulation medium (organic debris) or kaolin (dirt debris). Spore samples were then dried on five different test materials (wiring insulation, aircraft performance coating, anti-skid, polypropylene, and nylon). Inoculated materials were tested with 19 test combinations of temperature (55, 65, 75°C), relative humidity (70, 80, 90%) and time (1, 2, 3 days). The slowest spore inactivation kinetics was on nylon webbing and/or after addition of organic debris. Hot, humid air effectively decontaminates materials contaminated with dirty Bacillus spore preparations; debris and material interactions create complex decontamination kinetic patterns; and B. thuringiensis Al Hakam is a realistic surrogate for B. anthracis. Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  11. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    Science.gov (United States)

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  12. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    Science.gov (United States)

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  13. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    International Nuclear Information System (INIS)

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A.; Wilson, Keith S.; Wilkinson, Anthony J.

    2005-01-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms

  14. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    OpenAIRE

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.; Case, Rebecca J.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B.?cereus E41 and B.?anthracis F34, were isolated from a salt lake in A?n M?lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins.

  15. The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages

    Directory of Open Access Journals (Sweden)

    Sozhamannan Shanmuga

    2006-04-01

    Full Text Available Abstract Background Bacillus anthracis is considered to be a recently emerged clone within the Bacillus cereus sensu lato group. The B. anthracis genome sequence contains four putative lambdoid prophages. We undertook this study in order to understand whether the four prophages are unique to B. anthracis and whether they produce active phages. Results More than 300 geographically and temporally divergent isolates of B. anthracis and its near neighbors were screened by PCR for the presence of specific DNA sequences from each prophage region. Every isolate of B. anthracis screened by PCR was found to produce all four phage-specific amplicons whereas none of the non-B. anthracis isolates, produced more than one phage-specific amplicon. Excision of prophages could be detected by a PCR based assay for attP sites on extra-chromosomal phage circles and for attB sites on phage-excised chromosomes. SYBR-green real-time PCR assays indicated that prophage excision occurs at very low frequencies (2 × 10-5 - 8 × 10-8/cell. Induction with mitomycin C increased the frequency of excision of one of the prophages by approximately 250 fold. All four prophages appear to be defective since, mitomycin C induced culture did not release any viable phage particle or lyse the cells or reveal any phage particle under electron microscopic examination. Conclusion The retention of all four putative prophage regions across all tested strains of B. anthracis is further evidence of the very recent emergence of this lineage and the prophage regions may be useful for differentiating the B. anthracis chromosome from that of its neighbors. All four prophages can excise at low frequencies, but are apparently defective in phage production.

  16. The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific.

    Science.gov (United States)

    Choudhury, Biswa; Leoff, Christine; Saile, Elke; Wilkins, Patricia; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2006-09-22

    In this report we describe the structure of the polysaccharide released from Bacillus anthracis vegetative cell walls by aqueous hydrogen fluoride (HF). This HF-released polysaccharide (HF-PS) was isolated and structurally characterized from the Ames, Sterne, and Pasteur strains of B. anthracis. The HF-PSs were also isolated from the closely related Bacillus cereus ATCC 10987 strain, and from the B. cereus ATCC 14579 type strain and compared with those of B. anthracis. The structure of the B. anthracis HF-PS was determined by glycosyl composition and linkage analyses, matrix-assisted laser desorption-time of flight mass spectrometry, and one- and two-dimensional nuclear magnetic resonance spectroscopy. The HF-PSs from all of the B. anthracis isolates had an identical structure consisting of an amino sugar backbone of -->6)-alpha-GlcNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1-->, in which the alpha-GlcNAc residue is substituted with alpha-Gal and beta-Gal at O-3 and O-4, respectively, and the beta-GlcNAc substituted with alpha-Gal at O-3. There is some variability in the presence of two of these three Gal substitutions. Comparison with the HF-PSs from B. cereus ATCC 10987 and B. cereus ATCC 14579 showed that the B. anthracis structure was clearly different from each of these HF-PSs and, furthermore, that the B. cereus ATCC 10987 HF-PS structure was different from that of B. cereus ATCC 14579. The presence of a B. anthracis-specific polysaccharide structure in its vegetative cell wall is discussed with regard to its relationship to those of other Bacillus species.

  17. Modeling Radiation Effectiveness for Inactivation of Bacillus Spores

    Science.gov (United States)

    2015-09-17

    MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES DISSERTATION Emily A. Knight, Major, USAF AFIT-ENC-DS-15-S-001 DEPARTMENT OF THE...not subject to copyright protection in the United States. AFIT-ENC-DS-15-S-001 MODELING RADIATION EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES...EFFECTIVENESS FOR INACTIVATION OF BACILLUS SPORES Emily A. Knight, B.A., M.S. Major, USAF Committee Membership: Dr. William P. Baker Chair Dr. Larry W

  18. Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis

    NARCIS (Netherlands)

    Au, K.; Folkers, G.E.; Kaptein, R.

    2006-01-01

    A collaborative project between two Structural Proteomics In Europe (SPINE) partner laboratories, York and Oxford, aimed at high-throughput (HTP) structure determination of proteins from Bacillus anthracis, the aetiological agent of anthrax and a biomedically important target, is described. Based

  19. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white using crossflow microfiltration

    Science.gov (United States)

    Current pasteurization technology used by the egg industry is ineffective for destruction of spores such as those of Bacillus anthracis (BA). The validity of a cross-flow microfiltration (MF) process for separation of the attenuated strain of BA (Sterne) spores from commercial unpasteurized liquid ...

  20. Isolation of Bacillus anthracis from dry cattle meat, skin and soil from ...

    African Journals Online (AJOL)

    Isolation of Bacillus anthracis from dry cattle meat, skin and soil from the Western Province of Zambia. LM Tuchili, JB Muma, T Fujikura, GS Pandey, MM Musonda, G Bbalo, W Ulaya. Abstract. No Abstract Available Journal of Science and Technology Vol.1(2) 1997: 56-58. Published 2004. Full Text: EMAIL FULL TEXT EMAIL ...

  1. Identification of Bacillus anthracis PurE inhibitors with antimicrobial activity.

    Science.gov (United States)

    Kim, Anna; Wolf, Nina M; Zhu, Tian; Johnson, Michael E; Deng, Jiangping; Cook, James L; Fung, Leslie W-M

    2015-04-01

    N(5)-carboxy-amino-imidazole ribonucleotide (N(5)-CAIR) mutase (PurE), a bacterial enzyme in the de novo purine biosynthetic pathway, has been suggested to be a target for antimicrobial agent development. We have optimized a thermal shift method for high-throughput screening of compounds binding to Bacillus anthracis PurE. We used a low ionic strength buffer condition to accentuate the thermal shift stabilization induced by compound binding to Bacillus anthracis PurE. The compounds identified were then subjected to computational docking to the active site to further select compounds likely to be inhibitors. A UV-based enzymatic activity assay was then used to select inhibitory compounds. Minimum inhibitory concentration (MIC) values were subsequently obtained for the inhibitory compounds against Bacillus anthracis (ΔANR strain), Escherichia coli (BW25113 strain, wild-type and ΔTolC), Francisella tularensis, Staphylococcus aureus (both methicillin susceptible and methicillin-resistant strains) and Yersinia pestis. Several compounds exhibited excellent (0.05-0.15μg/mL) MIC values against Bacillus anthracis. A common core structure was identified for the compounds exhibiting low MIC values. The difference in concentrations for inhibition and MIC suggest that another enzyme(s) is also targeted by the compounds that we identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Draft Genome Sequences of Two Bacillus anthracis Strains from Etosha National Park, Namibia.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils C; Haverkamp, Thomas H A

    2016-08-25

    Bacillus anthracis strains K1 and K2 were isolated from two plains zebra anthrax carcasses in Etosha National Park, Namibia. These are draft genomes obtained by Illumina MiSeq sequencing of isolates collected from culture of blood-soaked soil from each carcass. Copyright © 2016 Valseth et al.

  3. Identification of Proteins in the Exosporium of Bacillus Anthracis

    National Research Council Canada - National Science Library

    Redmond, Caroline; Baillie, Leslie W. J; Hibbs, Stephen; Moir, Arthur J. G; Moir, Anne

    2004-01-01

    .... The protein profiles of SDS-PAGE-separated exosporium extracts were similar for all three. This suggests that avirulent variants lacking either or both plasmids are realistic models for studying the exosporium from spores of B. anthracis...

  4. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  5. Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis.

    Science.gov (United States)

    Falcinelli, Shane D; Shi, Maggie C; Friedlander, Arthur M; Chua, Jennifer

    2017-07-03

    Bacillus anthracis, the etiological agent of anthrax, is listed as a category A biothreat agent by the United States Centers for Disease Control and Prevention. The virulence of the organism is due to expression of two exotoxins and capsule, which interfere with host cellular signaling, alter host water homeostasis and inhibit phagocytosis of the pathogen, respectively. Concerns regarding the past and possible future use of B. anthracis as a bioterrorism agent have resulted in an impetus to develop more effective protective measures and therapeutics. In this study, green tea was found to inhibit the in vitro growth of B. anthracis. Epigallocatechin-3-gallate (EGCG), a compound found abundantly in green tea, was shown to be responsible for this activity. EGCG was bactericidal against both the attenuated B. anthracis ANR and the virulent encapsulated B. anthracis Ames strain. This study highlights the antimicrobial activity of green tea and EGCG against anthrax and suggests the need for further investigation of EGCG as a therapeutic candidate against B. anthracis. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations.

    Directory of Open Access Journals (Sweden)

    Raymond Schuch

    2009-08-01

    Full Text Available Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.

  7. Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan.

    Science.gov (United States)

    Mullins, Jocelyn; Lukhnova, Larissa; Aikimbayev, Alim; Pazilov, Yerlan; Van Ert, Matthew; Blackburn, Jason K

    2011-12-12

    Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control.

  8. Ecological Niche Modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan

    Science.gov (United States)

    2011-01-01

    Background Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. Results The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Conclusions Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control. PMID:22152056

  9. In Vitro and In Vivo Activity of Omadacycline Against Two Biothreat Pathogens: Bacillus Anthracis and Yersinia Pestis

    Science.gov (United States)

    2013-02-27

    vivo efficacy of omadacycline ( OMC ) were evaluated against the causative pathogen of anthrax and plague, Bacillus anthracis and Yersinia pestis...respectively. Methods: Minimum inhibitory concentrations (MICs) of OMC were determined by microbroth dilution according to CLSI guidelines for 30

  10. Inactivation of Bacillus atrophaeus by OH radicals

    Science.gov (United States)

    Ono, Ryo; Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Yasuda, Hachiro; Mizuno, Akira

    2016-08-01

    The inactivation of Bacillus atrophaeus by OH radicals is measured. This study aims to evaluate the bactericidal effects of OH radicals produced by atmospheric-pressure nonthermal plasma widely used for plasma medicine; however, in this study, OH radicals are produced by vacuum ultraviolet (VUV) photolysis of water vapor instead of plasma to allow the production of OH radicals with almost no other reactive species. A 172 nm VUV light from a Xe2 excimer lamp irradiates a He-H2O mixture flowing in a quartz tube to photodissociate H2O to produce OH, H, O, HO2, H2O2, and O3. The produced reactive oxygen species (ROS) flow out of the quartz tube nozzle to the bacteria on an agar plate and cause inactivation. The inactivation by OH radicals among the six ROS is observed by properly setting the experimental conditions with the help of simulations calculating the ROS densities. A 30 s treatment with approximately 0.1 ppm OH radicals causes visible inactivation.

  11. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...display a currently valid OMB control number. 1. REPORT DATE 02 OCT 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inhibiting...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a

  12. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies.

    Science.gov (United States)

    Omotade, T O; Bernhards, R C; Klimko, C P; Matthews, M E; Hill, A J; Hunter, M S; Webster, W M; Bozue, J A; Welkos, S L; Cote, C K

    2014-12-01

    Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more

  13. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    International Nuclear Information System (INIS)

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A.; Wilkinson, Anthony J.; Wilson, Keith S.

    2005-01-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium

  14. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Rands, Anthony D.; Losee, Scott C. [Torion Technologies, American Fork, UT 84003 (United States); Holt, Brian C. [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Williams, John R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Lammert, Stephen A. [Torion Technologies, American Fork, UT 84003 (United States); Robison, Richard A. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 (United States); Tolley, H. Dennis [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Lee, Milton L., E-mail: milton_lee@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2013-05-02

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  15. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Li, Dan; Rands, Anthony D.; Losee, Scott C.; Holt, Brian C.; Williams, John R.; Lammert, Stephen A.; Robison, Richard A.; Tolley, H. Dennis; Lee, Milton L.

    2013-01-01

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  16. Application of in vivo induced antigen technology (IVIAT to Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Sean M Rollins

    Full Text Available In vivo induced antigen technology (IVIAT is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42; the bacteriophage holin gene BA4074; and pagA (pXO1-110. The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.

  17. Detection of Bacillus anthracis DNA in complex soil and air samples using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Nicholas A Be

    Full Text Available Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy.

  18. The search and identification of the new immunodiagnostic targets of bacillus anthracis spore

    International Nuclear Information System (INIS)

    Biketov, S.; Dunaytsev, I.; Baranova, E.; Marinin, L.; Dyatlov, I.

    2009-01-01

    Spores of Bacillus anthracis have been used as bio warfare agent to bio terrorize purposes. As efficiency of anti-epidemic measures included urgent prevention and treatment is determined by terms within which the bio agent is identified. Direct and rapid spore detection by antibodies based detection system is very attractive alternative to current PCR-based assays or routine phenotyping which are the most accurate but are also complex, time-consumption and expensive. The main difficulty with respect to such kind of anthrax spores detection is a cross-reaction with spores of closely related bacteria. For development of species-specific antibodies to anthrax spores recombinant scFvs or hybridoma technique were used. In both case surface spore antigens contained species-specific epitopes are need. Among exosporium proteins only ExsF(BxpB), ExsK and SoaA are specific to B.cereus group. On the surface of B. anthracis spores, a unique tetrasaccharides containing an novel monosaccharide - anthrose, was discovered. It was shown that anthrose can be serving as species-specific target for B. anthracis spores detection. We have revealed that EA1 isolated from spore of Russians strain STI-1 contain carbohydrate which formed species-specific epitopes and determine immunogenicity of this antigen. Antibodies to this antigen specifically recognized the surface target of B. anthracis spores and do not reacted with others Bacillus spore. Based on these antibodies we developed the test-systems in different formats for rapid direct detection and identification of B. anthracis spores. The results of trial these test-systems with using more than 50 different Bacillus strains were indicated that carbohydrate of EA1 isolated from spore is effective immunodiagnostic target for anthrax spores bio detection.(author)

  19. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    Science.gov (United States)

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B. cereus E41 and B. anthracis F34, were isolated from a salt lake in Aïn M’lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins. PMID:28522726

  20. Laboratory Studies on Surface Sampling of Bacillus anthracis Contamination: Summary, Gaps, and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Hu, Rebecca

    2011-11-28

    This report summarizes previous laboratory studies to characterize the performance of methods for collecting, storing/transporting, processing, and analyzing samples from surfaces contaminated by Bacillus anthracis or related surrogates. The focus is on plate culture and count estimates of surface contamination for swab, wipe, and vacuum samples of porous and nonporous surfaces. Summaries of the previous studies and their results were assessed to identify gaps in information needed as inputs to calculate key parameters critical to risk management in biothreat incidents. One key parameter is the number of samples needed to make characterization or clearance decisions with specified statistical confidence. Other key parameters include the ability to calculate, following contamination incidents, the (1) estimates of Bacillus anthracis contamination, as well as the bias and uncertainties in the estimates, and (2) confidence in characterization and clearance decisions for contaminated or decontaminated buildings. Gaps in knowledge and understanding identified during the summary of the studies are discussed and recommendations are given for future studies.

  1. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  2. Storage Effects on Sample Integrity of Environmental Surface Sampling Specimens with Bacillus anthracis Spores.

    Science.gov (United States)

    Perry, K Allison; O'Connell, Heather A; Rose, Laura J; Noble-Wang, Judith A; Arduino, Matthew J

    The effect of packaging, shipping temperatures and storage times on recovery of Bacillus anthracis . Sterne spores from swabs was investigated. Macrofoam swabs were pre-moistened, inoculated with Bacillus anthracis spores, and packaged in primary containment or secondary containment before storage at -15°C, 5°C, 21°C, or 35°C for 0-7 days. Swabs were processed according to validated Centers for Disease Control/Laboratory Response Network culture protocols, and the percent recovery relative to a reference sample (T 0 ) was determined for each variable. No differences were observed in recovery between swabs held at -15° and 5°C, (p ≥ 0.23). These two temperatures provided significantly better recovery than swabs held at 21°C or 35°C (all 7 days pooled, p ≤ 0.04). The percent recovery at 5°C was not significantly different if processed on days 1, 2 or 4, but was significantly lower on day 7 (day 2 vs. 7, 5°C, 10 2 , p=0.03). Secondary containment provided significantly better percent recovery than primary containment, regardless of storage time (5°C data, p ≤ 0.008). The integrity of environmental swab samples containing Bacillus anthracis spores shipped in secondary containment was maintained when stored at -15°C or 5°C and processed within 4 days to yield the optimum percent recovery of spores.

  3. New aspects of the infection mechanisms of Bacillus anthracis.

    Science.gov (United States)

    Zakowska, Dorota; Bartoszcze, Michał; Niemcewicz, Marcin; Bielawska-Drózd, Agata; Kocik, Janusz

    2012-01-01

    Articles concerning new aspects of B. anthracis mechanisms of infection were reviewed. It was found, that the hair follicle plays an important role in the spore germination process. The hair follicle represent an important portal of entry in the course of the cutaneous form of disease infections. After mouse exposition to aerosol of spores prepared from B. anthracis strains, an increase in the level of TNF-α cytokines was observed. The TNF-α cytokines were produced after intrusion into the host by the microorganism. This process may play a significant role in the induced migration of infected cells APCs (Antigen Presenting Cells) via chemotactic signals to the lymph nodes. It was explained that IgG, which binds to the spore surface, activates the adaptive immune system response. As a result, the release C3b opsonin from the spore surface, and mediating of C3 protein fragments of B. anthracis spores phagocytosis by human macrophages, was observed. The genes coding germination spores protein in mutant strains of B. anthracis MIGD was a crucial discovery. According to this, it could be assumed that the activity of B. anthracis spores germination process is dependent upon the sleB, cwlJ1 and cwlJ2 genes, which code the GSLEs lithic enzymes. It was also discovered that the specific antibody for PA20, which binds to the PA20 antigenic determinant, are able to block further PA83 proteolytic fission on the surface of cells. This process neutralized PA functions and weakened the activity of free PA20, which is produced during the PA83 enzyme fission process. Interaction between PA63 monomer and LF may be helpful in the PA63 oligomerization and grouping process, and the creation of LF/PA63 complexes may be a part of an alternative process of assembling the anthrax toxin on the surface of cells. It was found that actin-dependent endocytosis plays an important role in the PA heptamerisation process and leads to blocking the toxin activity. Chaperones, a protein derived from

  4. DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection.

    Science.gov (United States)

    Hao, Rong-Zhang; Song, Hong-Bin; Zuo, Guo-Min; Yang, Rui-Fu; Wei, Hong-Ping; Wang, Dian-Bing; Cui, Zong-Qiang; Zhang, ZhiPing; Cheng, Zhen-Xing; Zhang, Xian-En

    2011-04-15

    The rapid detection of Bacillus anthracis, the causative agent of anthrax disease, has gained much attention since the anthrax spore bioterrorism attacks in the United States in 2001. In this work, a DNA probe functionalized quartz crystal microbalance (QCM) biosensor was developed to detect B. anthracis based on the recognition of its specific DNA sequences, i.e., the 168 bp fragment of the Ba813 gene in chromosomes and the 340 bp fragment of the pag gene in plasmid pXO1. A thiol DNA probe was immobilized onto the QCM gold surface through self-assembly via Au-S bond formation to hybridize with the target ss-DNA sequence obtained by asymmetric PCR. Hybridization between the target DNA and the DNA probe resulted in an increase in mass and a decrease in the resonance frequency of the QCM biosensor. Moreover, to amplify the signal, a thiol-DNA fragment complementary to the other end of the target DNA was functionalized with gold nanoparticles. The results indicate that the DNA probe functionalized QCM biosensor could specifically recognize the target DNA fragment of B. anthracis from that of its closest species, such as Bacillus thuringiensis, and that the limit of detection (LOD) reached 3.5 × 10(2)CFU/ml of B. anthracis vegetative cells just after asymmetric PCR amplification, but without culture enrichment. The DNA probe functionalized QCM biosensor demonstrated stable, pollution-free, real-time sensing, and could find application in the rapid detection of B. anthracis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Evaluation of DNA extraction methods for Bacillus anthracis spores isolated from spiked food samples.

    Science.gov (United States)

    Thomas, M C; Shields, M J; Hahn, K R; Janzen, T W; Goji, N; Amoako, K K

    2013-07-01

    Nine commercial DNA extraction kits were evaluated for the isolation of DNA from 10-fold serial dilutions of Bacillus anthracis spores using quantitative real-time PCR (qPCR). The three kits determined by qPCR to yield the most sensitive and consistent detection (Epicenter MasterPure Gram Positive; MoBio PowerFood; ABI PrepSeq) were subsequently tested for their ability to isolate DNA from trace amounts of B. anthracis spores (approx. 6·5 × 10(1) and 1·3 × 10(2)  CFU in 25 ml or 50 g of food sample) spiked into complex food samples including apple juice, ham, whole milk and bagged salad and recovered with immunomagnetic separation (IMS). The MasterPure kit effectively and consistently isolated DNA from low amounts of B. anthracis spores captured from food samples. Detection was achieved from apple juice, ham, whole milk and bagged salad from as few as 65 ± 14, 68 ± 8, 66 ± 4 and 52 ± 16 CFU, respectively, and IMS samples were demonstrated to be free of PCR inhibitors. Detection of B. anthracis spores isolated from food by IMS differs substantially between commercial DNA extraction kits; however, sensitive results can be obtained with the MasterPure Gram Positive kit. The extraction protocol identified herein combined with IMS is novel for B. anthracis and allows detection of low levels of B. anthracis spores from contaminated food samples. © Her Majesty the Queen in Right of Canada [2013]. Reproduced with the permission of the Canadian Food Inspection Agency.

  6. Alveolar macrophages infected with Ames or Sterne strain of Bacillus anthracis elicit differential molecular expression patterns.

    Directory of Open Access Journals (Sweden)

    Felicia D Langel

    Full Text Available Alveolar macrophages (AMs phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.

  7. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Kempsell

    2015-08-01

    Full Text Available A commercial Bacillus anthracis (Anthrax whole genome protein microarray has been used to identify immunogenic Anthrax proteins using sera from groups of donors with (a confirmed B. anthracis naturally acquired cutaneous infection, (b confirmed B. anthracis intravenous drug use-acquired infection (c occupational exposure in a wool-sorters factory (d humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups.Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However a number of other chromosomally-located and plasmid encoded open reading frames were also recognised by infected or exposed groups in comparison to controls. Some of these antigens e.g. BA4182 are not recognised by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo and are not currently found in the UK licensed Anthrax Vaccine (AVP. These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis ‘infectome’. These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesised, tested in mouse immunogenicity studies and validated in parallel using human sera from the

  8. Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    Science.gov (United States)

    Kempsell, Karen E.; Kidd, Stephen P.; Lewandowski, Kuiama; Elmore, Michael J.; Charlton, Sue; Yeates, Annemarie; Cuthbertson, Hannah; Hallis, Bassam; Altmann, Daniel M.; Rogers, Mitch; Wattiau, Pierre; Ingram, Rebecca J.; Brooks, Tim; Vipond, Richard

    2015-01-01

    A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis “infectome.” These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from

  9. clpC operon regulates cell architecture and sporulation in Bacillus anthracis.

    Science.gov (United States)

    Singh, Lalit K; Dhasmana, Neha; Sajid, Andaleeb; Kumar, Prasun; Bhaduri, Asani; Bharadwaj, Mitasha; Gandotra, Sheetal; Kalia, Vipin C; Das, Taposh K; Goel, Ajay K; Pomerantsev, Andrei P; Misra, Richa; Gerth, Ulf; Leppla, Stephen H; Singh, Yogendra

    2015-03-01

    The clpC operon is known to regulate several processes such as genetic competence, protein degradation and stress survival in bacteria. Here, we describe the role of clpC operon in Bacillus anthracis. We generated knockout strains of the clpC operon genes to investigate the impact of CtsR, McsA, McsB and ClpC deletion on essential processes of B. anthracis. We observed that growth, cell division, sporulation and germination were severely affected in mcsB and clpC deleted strains, while none of deletions affected toxin secretion. Growth defect in these strains was pronounced at elevated temperature. The growth pattern gets restored on complementation of mcsB and clpC in respective mutants. Electron microscopic examination revealed that mcsB and clpC deletion also causes defect in septum formation leading to cell elongation. These vegetative cell deformities were accompanied by inability of mutant strains to generate morphologically intact spores. Higher levels of polyhydroxybutyrate granules accumulation were also observed in these deletion strains, indicating a defect in sporulation process. Our results demonstrate, for the first time, the vital role played by McsB and ClpC in physiology of B. anthracis and open up further interest on this operon, which might be of importance to success of B. anthracis as pathogen. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  11. Bacillus anthracis: una mirada molecular a un patógeno célebre Bacillus anthracis: a molecular look at a famous pathogen

    Directory of Open Access Journals (Sweden)

    María E Pavan

    2011-12-01

    Full Text Available Bacillus anthracis es un bacilo gram positivo del grupo Bacillus cereus, que posee un genoma extremadamente monomórfco y comparte gran similitud fsiológica y de estructura genética con B. cereus y Bacillus thuringiensis. En este artículo se describen nuevos métodos moleculares para la identifcación y tipifcación de B. anthracis, basados en repeticiones en tándem de número variable o en diferencias genéticas detectadas por secuenciación, desarrollados en los últimos años. Los aspectos moleculares de los factores de virulencia tradicionales, cápsula, antígeno protector, factor letal y factor edema se describen en profundidad, junto con factores de virulencia recientemente propuestos, como los sideróforos, petrobactina y bacilibactina, la adhesina de la capa S y la lipoproteína MntA. También se detalla la organización molecular de los megaplásmidos pXO1 y pXO2, incluyendo la isla de patogenicidad de pXO1. El esqueleto genético de estos plásmidos se ha encontrado en otras especies relacionadas, probablemente debido a eventos de transferencia lateral. Finalmente, se presentan los dos receptores celulares del antígeno protector, ANTXR1/TEM8 y ANTXR2/CMG2, esenciales en la interacción del patógeno con el hospedador. Los estudios moleculares realizados en los últimos años han permitido aumentar enormemente el conocimiento de los diferentes aspectos de este microorganismo y su relación con el hospedador, pero a la vez han abierto nuevos interrogantes sobre este notorio patógeno.Bacillus anthracis, a gram-positive rod belonging to the Bacillus cereus group, has an extremely monomorphic genome, and presents high structural and physiological similarity with B. cereus and Bacillus thuringiensis. In this work, the new molecular methods for the identifcation and typing of B. anthracis developed in the last years, based on variable number tandem repeats or on genetic differences detected through sequencing, are described. The

  12. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)

    2012-07-25

    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  13. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  14. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  15. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  16. Bacillus anthracis in China and its relationship to worldwide lineages

    Directory of Open Access Journals (Sweden)

    Schupp James M

    2009-04-01

    Full Text Available Abstract Background The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP. These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP and multiple locus VNTR analysis (MLVA typing has been used to examine this archival collection of isolates. Results The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. Conclusion B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads

  17. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA.

    Science.gov (United States)

    Vigonsky, Elena; Fish, Inbar; Livnat-Levanon, Nurit; Ovcharenko, Elena; Ben-Tal, Nir; Lewinson, Oded

    2015-10-01

    The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.

  18. Storage Effects on Sample Integrity of Environmental Surface Sampling Specimens with Bacillus anthracis Spores

    Science.gov (United States)

    Perry, K. Allison; O’Connell, Heather A.; Rose, Laura J.; Noble-Wang, Judith A.; Arduino, Matthew J.

    2016-01-01

    The effect of packaging, shipping temperatures and storage times on recovery of Bacillus anthracis. Sterne spores from swabs was investigated. Macrofoam swabs were pre-moistened, inoculated with Bacillus anthracis spores, and packaged in primary containment or secondary containment before storage at −15°C, 5°C, 21°C, or 35°C for 0–7 days. Swabs were processed according to validated Centers for Disease Control/Laboratory Response Network culture protocols, and the percent recovery relative to a reference sample (T0) was determined for each variable. No differences were observed in recovery between swabs held at −15° and 5°C, (p ≥ 0.23). These two temperatures provided significantly better recovery than swabs held at 21°C or 35°C (all 7 days pooled, p ≤ 0.04). The percent recovery at 5°C was not significantly different if processed on days 1, 2 or 4, but was significantly lower on day 7 (day 2 vs. 7, 5°C, 102, p=0.03). Secondary containment provided significantly better percent recovery than primary containment, regardless of storage time (5°C data, p ≤ 0.008). The integrity of environmental swab samples containing Bacillus anthracis spores shipped in secondary containment was maintained when stored at −15°C or 5°C and processed within 4 days to yield the optimum percent recovery of spores. PMID:27213119

  19. Protein profiles of field isolates ofBacillus anthracis from different endemic areas of Indonesia

    Directory of Open Access Journals (Sweden)

    M Bhakti Poerwadikarta

    1998-03-01

    Full Text Available Sonicated cell-free extract proteins of 14 field isolates ofBacillus anthracis from six different endemic areas of Indonesia were analyzed by the use of sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE methods . The protein profiles of each field isolate tested demonstrated slightly different at the protein bands with molecular weights of 18, 37, 52, 65 and 70 kDa, and varied between the field isolates and vaccine strains. The variation could provide clues to the source of anthrax transmission whether it was originated from similar strain or not.

  20. Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

    Directory of Open Access Journals (Sweden)

    Jocelyn C Mullins

    Full Text Available We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native models accurately predicted endemic areas within each country, but transferred models failed to predict known occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should be considered, results suggest differing ecological associations for the B. anthracis populations within each country and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of native and transferred models.

  1. Structural study and thermodynamic characterization of inhibitor binding to lumazine synthase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden); Illarionov, Boris; Saller, Sabine [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Popov, Aleksander [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX 09 (France); Sambaiah, Thota [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Bacher, Adelbert [Chemistry Department, Technical University of Munich, 85747 Garching (Germany); Cushman, Mark [Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University (United States); Fischer, Markus [Institut für Lebensmittelchemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg (Germany); Ladenstein, Rudolf, E-mail: rudolf.ladenstein@ki.se [Karolinska Institutet NOVUM, Center of Structural Biochemistry, Hälsovägen 7-9, 141 57 Huddinge (Sweden)

    2010-09-01

    Crystallographic studies of lumazine synthase, the penultimate enzyme of the riboflavin-biosynthetic pathway in B. anthracis, provide a structural framework for the design of antibiotic inhibitors, together with calorimetric and kinetic investigations of inhibitor binding. The crystal structure of lumazine synthase from Bacillus anthracis was solved by molecular replacement and refined to R{sub cryst} = 23.7% (R{sub free} = 28.4%) at a resolution of 3.5 Å. The structure reveals the icosahedral symmetry of the enzyme and specific features of the active site that are unique in comparison with previously determined orthologues. The application of isothermal titration calorimetry in combination with enzyme kinetics showed that three designed pyrimidine derivatives bind to lumazine synthase with micromolar dissociation constants and competitively inhibit the catalytic reaction. Structure-based modelling suggested the binding modes of the inhibitors in the active site and allowed an estimation of the possible contacts formed upon binding. The results provide a structural framework for the design of antibiotics active against B. anthracis.

  2. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil

    Science.gov (United States)

    Silvestri, Erin E.; Feldhake, David; Griffin, Dale; Lisle, John T.; Nichols, Tonya L.; Shah, Sanjiv; Pemberton, A; Schaefer III, Frank W

    2016-01-01

    Following a release of Bacillus anthracis spores into the environment, there is a potential for lasting environmental contamination in soils. There is a need for detection protocols for B. anthracis in environmental matrices. However, identification of B. anthracis within a soil is a difficult task. Processing soil samples helps to remove debris, chemical components, and biological impurities that can interfere with microbiological detection. This study aimed to optimize a previously used indirect processing protocol, which included a series of washing and centrifugation steps. Optimization of the protocol included: identifying an ideal extraction diluent, variation in the number of wash steps, variation in the initial centrifugation speed, sonication and shaking mechanisms. The optimized protocol was demonstrated at two laboratories in order to evaluate the recovery of spores from loamy and sandy soils. The new protocol demonstrated an improved limit of detection for loamy and sandy soils over the non-optimized protocol with an approximate matrix limit of detection at 14 spores/g of soil. There were no significant differences overall between the two laboratories for either soil type, suggesting that the processing protocol will be robust enough to use at multiple laboratories while achieving comparable recoveries.

  3. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Matthew D Dyer

    2010-08-01

    Full Text Available Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity.These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.

  4. Ecological niche modeling of Bacillus anthracis on three continents: evidence for genetic-ecological divergence?

    Science.gov (United States)

    Mullins, Jocelyn C; Garofolo, Giuliano; Van Ert, Matthew; Fasanella, Antonio; Lukhnova, Larisa; Hugh-Jones, Martin E; Blackburn, Jason K

    2013-01-01

    We modeled the ecological niche of a globally successful Bacillus anthracis sublineage in the United States, Italy and Kazakhstan to better understand the geographic distribution of anthrax and potential associations between regional populations and ecology. Country-specific ecological-niche models were developed and reciprocally transferred to the other countries to determine if pathogen presence could be accurately predicted on novel landscapes. Native models accurately predicted endemic areas within each country, but transferred models failed to predict known occurrences in the outside countries. While the effects of variable selection and limitations of the genetic data should be considered, results suggest differing ecological associations for the B. anthracis populations within each country and may reflect niche specialization within the sublineage. Our findings provide guidance for developing accurate ecological niche models for this pathogen; models should be developed regionally, on the native landscape, and with consideration to population genetics. Further genomic analysis will improve our understanding of the genetic-ecological dynamics of B. anthracis across these countries and may lead to more refined predictive models for surveillance and proactive vaccination programs. Further studies should evaluate the impact of variable selection of native and transferred models.

  5. Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR Analysis

    Directory of Open Access Journals (Sweden)

    Carattoli Alessandra

    2008-01-01

    Full Text Available Abstract Background Anthrax and plague are diseases caused by Bacillus anthracis and Yersinia pestis respectively. These bacteria are etiological agents for worldwide zoonotic diseases and are considered among the most feared potential bioterror agents. Strain differentiation is difficult for these microorganisms because of their high intraspecies genome homogeneity. Moreover, fast strain identification and comparison with known genotypes may be crucial for naturally occurring outbreaks versus bioterrorist events discrimination. Results Thirty-nine B. anthracis and ten Y. pestis strains, representative of the species genetic diversity, were genotyped by Agilent 2100 Bioanalyzer using previously described Multiple Locus VNTR Analysis assays (MLVA. Results were compared to previous data obtained by standard genotyping system (capillary electrophoresis on automatic sequencer and, when necessary, direct amplicon sequencing. A reference comparison table containing actual fragment sizes, sequencer sizes and Agilent sizes was produced. Conclusion In this report an automated DNA electrophoresis apparatus which provides a cheaper alternative compared to capillary electrophoresis approaches was applied for genotyping of B. anthracis and Y. pestis. This equipment, uses pre-cast gels and provides easy transportation, low maintenance and overall general logistic requirements and costs, is easy to set up and provides rapid analysis. This platform is a candidate for on-site MLVA genotyping of biothreat agents as well as other bacterial pathogens. It is an alternative to the more expensive and demanding capillary electrophoresis methods, and to the less expensive but more time-consuming classical gel electrophoresis approach.

  6. Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains.

    Science.gov (United States)

    Liang, Xudong; Zhang, Huijuan; Zhang, Enmin; Wei, Jianchun; Li, Wei; Wang, Bingxiang; Dong, Shulin; Zhu, Jin

    2016-07-03

    Anthrax toxins and capsule are the major virulence factors of Bacillus anthracis. They are encoded by genes located on the plasmids pXO1 and pXO2, respectively. The vaccine strain Pasteur II was produced from high temperature subcultures of B. anthracis, which resulted in virulence attenuation through the loss of the plasmid pXO1. However, it is unclear whether the high temperature culture completely abolishes the plasmid DNA or affects the replication of the plasmid pXO1. In this study, we tested 3 B. anthracis vaccine strains, including Pasteur II from France, Qiankefusiji II from Russia, and Rentian II from Japan, which were all generated from subcultures at high temperatures. Surprisingly, we detected the presence of pXO1 plasmid DNA using overlap PCR in all these vaccine strains. DNA sequencing analysis of overlap PCR products further confirmed the presence of pXO1. Moreover, the expression of the protective antigen (PA) encoded on pXO1 was determined by using SDS-PAGE and western blotting. In addition, we mimicked Pasteur's method and exposed the A16R vaccine strain, which lacks the pXO2 plasmid, to high temperature, and identified the pXO1 plasmid in the subcultures at high temperatures. This indicated that the high temperature treatment at 42.5°C was unable to eliminate pXO1 plasmid DNA from B. anthracis. Our results suggest that the attenuation of the Pasteur II vaccine strain is likely due to the impact of high temperature stress on plasmid replication, which in turn limits the copy number of pXO1. Our data provide new insights into the mechanisms of the remaining immunogenicity and toxicity of the vaccine strains.

  7. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  8. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  9. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1.

    Science.gov (United States)

    Rasko, David A; Ravel, Jacques; Økstad, Ole Andreas; Helgason, Erlendur; Cer, Regina Z; Jiang, Lingxia; Shores, Kelly A; Fouts, Derrick E; Tourasse, Nicolas J; Angiuoli, Samuel V; Kolonay, James; Nelson, William C; Kolstø, Anne-Brit; Fraser, Claire M; Read, Timothy D

    2004-01-01

    We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.

  10. In silico and in vitro evaluation of PCR-based assays for the detection of Bacillus anthracis chromosomal signature sequences

    DEFF Research Database (Denmark)

    Ågren, Joakim; Hamidjaja, Raditijo A.; Hansen, Trine

    2013-01-01

    -layer, and prophage-lambda. Following a review of the literature, an in silico analysis of all signature sequences reported for identification of B. anthracis was conducted. Published primer and probe sequences were compared for specificity against 134 available Bacillus spp. genomes. Although many of the chromosomal...

  11. Heat and desiccation are the predominant factors affecting inactivation of Bacillus licheniformis and Bacillus thuringiensis spores during simulated composting.

    Science.gov (United States)

    Stanford, K; Harvey, A; Barbieri, R; Xu, S; Reuter, T; Amoako, K K; Selinger, L B; McAllister, T A

    2016-01-01

    The suitability of composting for disposal of livestock mortalities due to Bacillus anthracis was assessed by measuring viability of surrogate spores from two strains each of Bacillus licheniformis and Bacillus thuringiensis after a heating cycle modelled on a cattle composting study. Sporulation was attempted from 10 to 37°C, but poor yields at lower temperatures resulted in 25, 30 and 37°C being selected to generate sufficient spores (8 log10  CFU ml(-1) ) for experiments. Spores were inoculated into 3 g autoclaved dried-ground compost rehydrated with 6 ml water or silica beads in a factorial design for each strain, sporulation temperature, matrix and sampling day (0, 25, 50, 100, 150). Maximum incubation temperature was 62°C, but spores were maintained at ≥55°C for 78 of 150 days. Although significant differences existed among Bacillus strains and sporulation temperatures, numbers of viable spores after 150 days averaged 1·3 log10  CFU g(-1) , a 5·2 log10 reduction from day 0. Spore inactivation was likely due to heat and desiccation as matrices were autoclaved prior to incubation, negating impacts of microflora. Results support composting for disposal of anthrax mortalities, provided long-term thermophillic heating is achieved. Due to limited sporulation at 10°C, livestock mortalities from anthrax at this or lower ambient temperatures would likely be of lower risk for disease transmission. © 2015 The Society for Applied Microbiology.

  12. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    Directory of Open Access Journals (Sweden)

    Kym S Antonation

    2016-09-01

    Full Text Available Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo. The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

  13. cis-Acting Elements That Control Expression of the Master Virulence Regulatory Gene atxA in Bacillus anthracis

    OpenAIRE

    Dale, Jennifer L.; Raynor, Malik J.; Dwivedi, Prabhat; Koehler, Theresa M.

    2012-01-01

    Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule is positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In culture, multiple signals impact atxA transcript levels, and the timing and steady-state level of atxA expression are critical for optimal toxin a...

  14. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group.

    Science.gov (United States)

    Ahmod, Nadia Z; Gupta, Radhey S; Shah, Haroun N

    2011-12-01

    Bacillus anthracis, the causative agent of anthrax, is a potential source of bioterrorism. The existing assays for its identification lack specificity due to the close genetic relationship it exhibits to other members of the B. cereus group. Our comparative analyses of protein sequences from Bacillus species have identified a 24 amino acid deletion in a conserved region of the YeaC protein that is uniquely present in B. anthracis. PCR primers based on conserved regions flanking this indel in the Bacillus cereus group of species (viz. Bacillus cereus, B. anthracis, B. thuringiensis, B. mycoides, B. weihenstephnensis and B. pseudomycoides) specifically amplified a 282 bp fragment from all six reference B. anthracis strains, whereas a 354 bp fragment was amplified from 15 other B. cereus group of species/strains. These fragments, due to large size difference, are readily distinguished by means of agarose gel electrophoresis. In contrast to the B. cereus group, no PCR amplification was observed with any of the non-B. cereus group of species/strains. This indel was also used for developing a rapid pyrosequencing assay for the identification of B. anthracis. Its performance was evaluated by examining the presence or absence of this indel in a panel of 81 B. cereus-like isolates from various sources that included 39 B. anthracis strains. Based upon the sequence data from the pyrograms, the yeaC indel was found to be a distinctive characteristic of various B. anthracis strains tested and not found in any other species/strains from these samples. Therefore, this B. anthracis specific indel provides a robust and highly-specific chromosomal marker for the identification of this high-risk pathogen from other members of the B. cereus group independent of a strain's virulence. The pyrosequencing platform also allows for the rapid and simultaneous screening of multiple samples for the presence of this B. anthracis-specific marker. Copyright © 2011. Published by Elsevier B.V.

  15. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    Full Text Available Abstract Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2- during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites, lipoprotein signal peptides (13 have SpII sites, and N-terminal membrane helices (9 have transmembrane helices. The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa of protective antigen (PA were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and

  16. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2009-04-01

    Full Text Available Abstract Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa. Reviewers This article was reviewed by Andrei Osterman and Lakshminarayan Iyer.

  17. Mechanisms of DNA binding and regulation of Bacillus anthracis DNA primase.

    Science.gov (United States)

    Biswas, Subhasis B; Wydra, Eric; Biswas, Esther E

    2009-08-11

    DNA primases are pivotal enzymes in chromosomal DNA replication in all organisms. In this article, we report unique mechanistic characteristics of recombinant DNA primase from Bacillus anthracis. The mechanism of action of B. anthracis DNA primase (DnaG(BA)) may be described in several distinct steps as follows. Its mechanism of action is initiated when it binds to single-stranded DNA (ssDNA) in the form of a trimer. Although DnaG(BA) binds to different DNA sequences with moderate affinity (as expected of a mobile DNA binding protein), we found that DnaG(BA) bound to the origin of bacteriophage G4 (G4ori) with approximately 8-fold higher affinity. DnaG(BA) was strongly stimulated (>or=75-fold) by its cognate helicase, DnaB(BA), during RNA primer synthesis. With the G4ori ssDNA template, DnaG(BA) formed short (primers in the absence of DnaB(BA). The presence of DnaB(BA) increased the rate of primer synthesis. The observed stimulation of primer synthesis by cognate DnaB(BA) is thus indicative of a positive effector role for DnaB(BA). By contrast, Escherichia coli DnaB helicase (DnaB(EC)) did not stimulate DnaG(BA) and inhibited primer synthesis to near completion. This observed effect of E. coli DnaB(EC) is indicative of a strong negative effector role for heterologous DnaB(EC). We conclude that DnaG(BA) is capable of interacting with DnaB proteins from both B. anthracis and E. coli; however, between DnaB proteins derived from these two organisms, only the homologous DNA helicase (DnaB(BA)) acted as a positive effector of primer synthesis.

  18. Forensic Application of Microbiological Culture Analysis To Identify Mail Intentionally Contaminated with Bacillus anthracis Spores†

    Science.gov (United States)

    Beecher, Douglas J.

    2006-01-01

    The discovery of a letter intentionally filled with dried Bacillus anthracis spores in the office of a United States senator prompted the collection and quarantine of all mail in congressional buildings. This mail was subsequently searched for additional intentionally contaminated letters. A microbiological sampling strategy was used to locate heavy contamination within the 642 separate plastic bags containing the mail. Swab sampling identified 20 bags for manual and visual examination. Air sampling within the 20 bags indicated that one bag was orders of magnitude more contaminated than all the others. This bag contained a letter addressed to Senator Patrick Leahy that had been loaded with dried B. anthracis spores. Microbiological sampling of compartmentalized batches of mail proved to be efficient and relatively safe. Efficiency was increased by inoculating culture media in the hot zone rather than transferring swab samples to a laboratory for inoculation. All mail sampling was complete within 4 days with minimal contamination of the sampling environment or personnel. However, physically handling the intentionally contaminated letter proved to be exceptionally hazardous, as did sorting of cross-contaminated mail, which resulted in generation of hazardous aerosol and extensive contamination of protective clothing. Nearly 8 × 106 CFU was removed from the most highly cross-contaminated piece of mail found. Tracking data indicated that this and other heavily contaminated envelopes had been processed through the same mail sorting equipment as, and within 1 s of, two intentionally contaminated letters. PMID:16885280

  19. Type II topoisomerase mutations in Bacillus anthracis associated with high-level fluoroquinolone resistance.

    Science.gov (United States)

    Bast, Darrin J; Athamna, Abed; Duncan, Carla L; de Azavedo, Joyce C S; Low, Donald E; Rahav, Galia; Farrell, David; Rubinstein, Ethan

    2004-07-01

    To identify and characterize the mechanisms of high-level fluoroquinolone resistance in two strains of Bacillus anthracis following serial passage in increasing concentrations of fluoroquinolones. Fluoroquinolone-resistant isolates of the Sterne and Russian Anthrax Vaccine STi strains were obtained following serial passage in the presence of increasing concentrations of four different fluoroquinolones. The quinolone-resistance-determining regions of the type II topoisomerase genes from the resistant strains were amplified by PCR and characterized by DNA sequence analysis. The MICs in the presence and absence of reserpine were determined using broth microdilution as a means of detecting active efflux. Single and double amino acid substitutions in the GyrA (Ser-85-Leu; Glu-89-Arg/Gly/Lys) and GrlA (Ser-81-Tyr; Val-96-Ala; Asn-70-Lys) were most common. A single amino acid substitution in GyrB (Asp-430-Asn) was also identified. Efflux only applied to isolates selected for by either levofloxacin or ofloxacin. Specific amino acid substitutions in the type II topoisomerase enzymes significantly contributed to the development of high-level fluoroquinolone resistance in B. anthracis. However, notable differences between the strains and the drugs tested were identified including the role of efflux and the numbers and types of mutations identified.

  20. Identification of the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R.

    Directory of Open Access Journals (Sweden)

    Xiankai Liu

    Full Text Available Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.

  1. A Study on molecular characterization of Razi Bacillus anthracis Sterne 34F2 substrain in Iran

    Directory of Open Access Journals (Sweden)

    Tadayon, K.

    2016-07-01

    Full Text Available Anthrax, a zoonotic disease caused by Bacillus anthracis, has affected humans since ancient times. For genomic characterization of Razi B. anthracis Sterne 34F2 substrain, single nucleotide polymorphism (SNP genotyping method developed by Van Erth, variable-number tandem-repeat (VNTR-8 analysis proposed by Keim, and multiple-locus VNTR analysis (MLVA-3 introduced by Levy were employed. In the SNPs typing system, where the nucleotide content of the genome at 13 evolutionary canonical loci was collectively analyzed, the originally South African 34F2 substrain was categorized in the A.Br.001/002 subgroup. In the VNTR-8 analysis, fragments with lengths of 314, 229, 162, 580, 532, 158, and 137 bp were identified at the following loci: vrrA, vrrB1, vrrB2, vrrC1, vrrC2, CG3, and pxO1, respectively. In addition, application of Levy's MLVA-3 genotyping method revealed that the genome of this strain carried 941, 451, and 864 bp fragments at AA03, AJ03, and AA07 loci, respectively. The present findings are undoubtedly helpful in meeting the requirements set by the World Organization for Animal Health (OIE and World Health Organization (WHO for anthrax vaccine manufacturers including Razi Institute. However, further similar studies are required to promote the current epidemiological knowledge of anthrax in Iran.

  2. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-06-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains.

  3. Amperometric Detection of Bacillus anthracis Spores: A Portable, Low-Cost Approach to the ELISA

    Directory of Open Access Journals (Sweden)

    Gabriel D. Peckham

    2013-01-01

    Full Text Available Antibody-based detection assays are generally robust, a desirable characteristic for in-the-field use. However, to quantify the colorimetric or fluorescent signal, these assays require expensive and fragile instruments which are ill-suited to in-the-field use. Lateral flow devices (LFDs circumvent these barriers to portability but suffer from poor sensitivity and subjective interpretation. Here, an antibody-based method for detecting Bacillus anthracis spores via amperometric signal generation is compared to ELISA and LFDs. This amperometric immunoassay uses antibody conjugated to magnetic beads and glucose oxidase (GOX along with the electron mediator 2, 6-dichlorophenolindophenol (DCPIP for production of a measurable current from a 0.4 V bias voltage. With similar sensitivity to ELISA, the assay can be completed in about 75 minutes while being completely powered and operated from a laptop computer. Immunoassay amperometry holds promise for bringing low-cost, quantitative detection of hazardous agents to the field.

  4. Esterase activity as a novel parameter of spore germination in Bacillus anthracis

    International Nuclear Information System (INIS)

    Ferencko, Linda; Cote, Mindy A.; Rotman, Boris

    2004-01-01

    Spores of Bacillus anthracis were shown to produce esterase activity about 4 min after exposure to conventional germinants such as combinations of amino acids and purine ribosides. Neither amino acids nor ribosides alone induce germination and esterase activity. Expression of esterase activity was chloramphenicol resistant, and correlated with loss of spore refractivity, a traditional parameter of early germination. Based on these observations, we hypothesized that esterase activity could be used as a novel parameter for quantifying early events during spore germination. To test this hypothesis, we measured expression of esterase activity under a variety of germinating conditions. Using diacetyl fluorescein as fluorogenic substrate of esterases, we demonstrated that esterase activity was invariably induced whenever spores were triggered by known germinants. Moreover, D-alanine, an inhibitor of L-alanine-mediated germination, was found to significantly inhibit expression of esterase activity. In terms of molecular mechanisms, esterase expression could represent activation of proteases at the onset of spore germination

  5. Bacillus anthracis Overcomes an Amino Acid Auxotrophy by Cleaving Host Serum Proteins

    Science.gov (United States)

    Terwilliger, Austen; Swick, Michelle C.; Pflughoeft, Kathryn J.; Pomerantsev, Andrei; Lyons, C. Rick; Koehler, Theresa M.

    2015-01-01

    ABSTRACT Bacteria sustain an infection by acquiring nutrients from the host to support replication. The host sequesters these nutrients as a growth-restricting strategy, a concept termed “nutritional immunity.” Historically, the study of nutritional immunity has centered on iron uptake because many bacteria target hemoglobin, an abundant circulating protein, as an iron source. Left unresolved are the mechanisms that bacteria use to attain other nutrients from host sources, including amino acids. We employed a novel medium designed to mimic the chemical composition of human serum, and we show here that Bacillus anthracis, the causative agent of anthrax disease, proteolyzes human hemoglobin to liberate essential amino acids which enhance its growth. This property can be traced to the actions of InhA1, a secreted metalloprotease, and extends to at least three other serum proteins, including serum albumin. The results suggest that we must also consider proteolysis of key host proteins to be a way for bacterial pathogens to attain essential nutrients, and we provide an experimental framework to determine the host and bacterial factors involved in this process. IMPORTANCE The mechanisms by which bacterial pathogens acquire nutrients during infection are poorly understood. Here we used a novel defined medium that approximates the chemical composition of human blood serum, blood serum mimic (BSM), to better model the nutritional environment that pathogens encounter during bacteremia. Removing essential amino acids from BSM revealed that two of the most abundant proteins in blood—hemoglobin and serum albumin—can satiate the amino acid requirement for Bacillus anthracis, the causative agent of anthrax. We further demonstrate that hemoglobin is proteolyzed by the secreted protease InhA1. These studies highlight that common blood proteins can be a nutrient source for bacteria. They also challenge the historical view that hemoglobin is solely an iron source for

  6. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  7. Rapid Detection of the Poly-γ-d-Glutamic Acid Capsular Antigen of Bacillus anthracis by Latex Agglutination

    Science.gov (United States)

    AuCoin, David P.; Sutherland, Marjorie D.; Percival, Ann L.; Lyons, C. Rick; Lovchik, Julie A.; Kozel, Thomas R.

    2009-01-01

    Latex agglutination has been used to detect capsular polysaccharides from a variety of bacteria in body fluids. A latex agglutination assay was constructed for detection of the poly-γ-d-glutamic acid (γdPGA) capsular polypeptide of Bacillus anthracis in serum from animal models of pulmonary anthrax. The assay was able to detect γdPGA in serum from infected animals at concentrations of 100–200 ng/ml. PMID:19345041

  8. Evaluation of PCR Systems for Field Screening of Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.; Colburn, Heather A.; Victry, Kristin D.; Bartholomew, Rachel A.; Arce, Jennifer S.; Heredia-Langner, Alejandro; Jarman, Kristin; Kreuzer, Helen W.; Bruckner-Lea, Cynthia J.

    2017-02-01

    There is little published data on the performance of hand-portable polymerase chain reaction (PCR) instruments that could be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated five commercially available hand-portable PCR instruments for detection of Bacillus anthracis (Ba). We designed a cost-effective, statistically-based test plan that allows instruments to be evaluated at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) on the probability of detection (POD) at confidence levels of 80-95%. We assessed specificity using purified genomic DNA from 13 Ba strains and 18 Bacillus near neighbors, interference with 22 common hoax powders encountered in the field, and PCR inhibition when Ba spores were spiked into these powders. Our results indicated that three of the five instruments achieved >0.95 LCB on the POD with 95% confidence at test concentrations of 2,000 genome equivalents/mL (comparable to 2,000 spores/mL), displaying more than sufficient sensitivity for screening suspicious powders. These instruments exhibited no false positive results or PCR inhibition with common hoax powders, and reliably detected Ba spores spiked into common hoax powders, though some issues with instrument controls were observed. Our testing approach enables efficient instrument performance testing to a statistically rigorous and cost-effective test plan to generate performance data that will allow users to make informed decisions regarding the purchase and use of biodetection equipment in the field.

  9. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    Science.gov (United States)

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  10. Bacillus anthracis Prolyl 4-Hydroxylase Interacts with and Modifies Elongation Factor Tu

    Energy Technology Data Exchange (ETDEWEB)

    Schnicker, Nicholas J. [Department; Razzaghi, Mortezaali [Department; Guha Thakurta, Sanjukta [Department; Chakravarthy, Srinivas [Biophysics; Dey, Mishtu [Department

    2017-10-17

    Prolyl hydroxylation is a very common post-translational modification and plays many roles in eukaryotes such as collagen stabilization, hypoxia sensing, and controlling protein transcription and translation. There is a growing body of evidence that suggests that prokaryotes contain prolyl 4-hydroxylases (P4Hs) homologous to the hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) enzymes that act on elongation factor Tu (EFTu) and are likely involved in the regulation of bacterial translation. Recent biochemical and structural studies with a PHD from Pseudomonas putida (PPHD) determined that it forms a complex with EFTu and hydroxylates a prolyl residue of EFTu. Moreover, while animal, plant, and viral P4Hs act on peptidyl proline, most prokaryotic P4Hs have been known to target free l-proline; the exceptions include PPHD and a P4H from Bacillus anthracis (BaP4H) that modifies collagen-like proline-rich peptides. Here we use biophysical and mass spectrometric methods to demonstrate that BaP4H recognizes full-length BaEFTu and a BaEFTu 9-mer peptide for site-specific proline hydroxylation. Using size-exclusion chromatography coupled small-angle X-ray scattering (SEC–SAXS) and binding studies, we determined that BaP4H forms a 1:1 heterodimeric complex with BaEFTu. The SEC–SAXS studies reveal dissociation of BaP4H dimeric subunits upon interaction with BaEFTu. While BaP4H is unusual within bacteria in that it is structurally and functionally similar to the animal PHDs and collagen P4Hs, respectively, this work provides further evidence of its promiscuous substrate recognition. It is possible that the enzyme might have evolved to hydroxylate a universally conserved protein in prokaryotes, similar to the PHDs, and implies a functional role in B. anthracis.

  11. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Recovery Efficiency and Limit of Detection of Aerosolized Bacillus anthracis Sterne from Environmental Surface Samples ▿

    Science.gov (United States)

    Estill, Cheryl Fairfield; Baron, Paul A.; Beard, Jeremy K.; Hein, Misty J.; Larsen, Lloyd D.; Rose, Laura; Schaefer, Frank W.; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H. D. Alan; Deye, Gregory J.; Arduino, Matthew J.

    2009-01-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm2). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm2) or wipe or vacuum (929 cm2) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm2) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm2 for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm2 for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans. PMID:19429546

  13. [Clustered regularly interspaced short palindromic repeats (CRISPR) site in Bacillus anthracis].

    Science.gov (United States)

    Gao, Zhiqi; Wang, Dongshu; Feng, Erling; Wang, Bingxiang; Hui, Yiming; Han, Shaobo; Jiao, Lei; Liu, Xiankai; Wang, Hengliang

    2014-11-04

    To investigate the polymorphism of clustered regularly interspaced short palindromic repeats (CRISPR) in Bacillu santhracis and the application to molecular typing based on the polymorphism of CRISPR in B. anthracis. We downloaded the whole genome sequence of 6 B. anthracis strains and extracted the CRISPR sites. We designed the primers of CRISPR sites and amplified the CRISPR fragments in 193 B. anthracis strains by PCR and sequenced these fragments. In order to reveal the polymorphism of CRISPR in B. anthracis, wealigned all the extracted sequences and sequenced results by local blasting. At the same time, we also analyzed the CRISPR sites in B. cereus and B. thuringiensis. We did not find any polymorphism of CRISPR in B. anthracis. The molecular typing approach based on CRISPR polymorphism is not suitable for B. anthracis, but it is possible for us to distinguish B. anthracis from B. cereus and B. thuringiensis.

  14. A Bivalent Anthrax–Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pan Tao

    2017-06-01

    Full Text Available Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.

  15. Bacillus anthracis Co-Opts Nitric Oxide and Host Serum Albumin for Pathogenicity in Hypoxic Conditions

    Directory of Open Access Journals (Sweden)

    Stephen eSt John

    2013-05-01

    Full Text Available Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO synthase (baNOS plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L-NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.

  16. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization

    Directory of Open Access Journals (Sweden)

    Hueman Jaimes-Díaz

    2015-02-01

    Full Text Available In this study we evaluate the capacity of Virtual Hybridization to identify between highly related bacterial strains. Eight genomic fingerprints were obtained by virtual hybridization for the Bacillus anthracis genome set, and a set of 15,264 13-nucleotide short probes designed to produce genomic fingerprints unique for each organism. The data obtained from each genomic fingerprint were used to obtain hybridization patterns simulating a DNA microarray. Two virtual hybridization methods were used: the Direct and the Extended method to identify the number of potential hybridization sites and thus determine the minimum sensitivity value to discriminate between genomes with 99.9% similarity. Genomic fingerprints were compared using both methods and phylogenomic trees were constructed to verify that the minimum detection value is 0.000017. Results obtained from the genomic fingerprints suggest that the distribution in the trees is correct, as compared to other taxonomic methods. Specific virtual hybridization sites for each of the genomes studied were also identified.

  17. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage.

    Science.gov (United States)

    Nguyen, C; Makkar, R; Sharp, N J; Page, M A; Molineux, I J; Schofield, D A

    2017-11-01

    We investigated the ability of a temperate Bacillus anthracis reporter phage (Wβ::luxAB-2), which transduces bioluminescence to infected cells, to detect viable spores from deliberately contaminated environmental water samples. Environmental water was inoculated with spores and assayed with Wβ::luxAB-2. Bioluminescent signals directly correlated with input phage and spore concentrations. A limit of detection of 10 1 and 10 2 CFU per ml within 8 h was achieved from pond and lake water, respectively. Detection was greatly simplified by minimizing sample processing steps without spore extraction. The complex endogenous microbial flora and salt content of brackish water challenged the assay, extending the detection time to 12 h for a sensitivity of 10 2 CFU per ml. Phage-mediated bioluminescence was strictly dependent on bacterial physiology, being significantly reduced in mid/late log phase cells. This was shown to be due to an inability of the phage to adsorb. The reporter phage Wβ::luxAB-2 displays potential for simplified detection of viable spores from contaminated water samples within 12 h. A deliberate aerosol release of spores could lead to widespread contamination, leaving large areas uninhabitable until remediation. An essential requirement of this restoration process is the development of simplified detection assays in different environmental matrices. © 2017 The Society for Applied Microbiology.

  18. Micropatterned Macrophage Analysis Reveals Global Cytoskeleton Constraints Induced by Bacillus anthracis Edema Toxin

    Science.gov (United States)

    Trescos, Yannick; Tessier, Emilie; Rougeaux, Clémence; Goossens, Pierre L.

    2015-01-01

    Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton. PMID:26015478

  19. Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available Significant efforts to develop both laboratory and field-based detection assays for an array of potential biological threats started well before the anthrax attacks of 2001 and have continued with renewed urgency following. While numerous assays and methods have been explored that are suitable for laboratory utilization, detection in the field is often complicated by requirements for functionality in austere environments, where limited cold-chain facilities exist. In an effort to overcome these assay limitations for Bacillus anthracis, one of the most recognizable threats, a series of single domain antibodies (sdAbs were isolated from a phage display library prepared from immunized llamas. Characterization of target specificity, affinity, and thermal stability was conducted for six sdAb families isolated from rounds of selection against the bacterial spore. The protein target for all six sdAb families was determined to be the S-layer protein EA1, which is present in both vegetative cells and bacterial spores. All of the sdAbs examined exhibited a high degree of specificity for the target bacterium and its spore, with affinities in the nanomolar range, and the ability to refold into functional antigen-binding molecules following several rounds of thermal denaturation and refolding. This research demonstrates the capabilities of these sdAbs and their potential for integration into current and developing assays and biosensors.

  20. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis.

    Science.gov (United States)

    Beierlein, J M; Anderson, A C

    2011-01-01

    Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.

  1. Activities of different fluoroquinolones against Bacillus anthracis mutants selected in vitro and harboring topoisomerase mutations.

    Science.gov (United States)

    Grohs, Patrick; Podglajen, Isabelle; Gutmann, Laurent

    2004-08-01

    Three sets of mutants of Bacillus anthracis resistant to fluoroquinolones were selected on ciprofloxacin and moxifloxacin in a stepwise manner from a nalidixic acid-resistant but fluoroquinolone-susceptible plasmidless strain harboring a Ser85Leu GyrA mutation. A high level of resistance to fluoroquinolones could be obtained in four or five selection steps. In each case, ParC was the secondary target. However, in addition to the GyrA mutation, expression of high-level resistance required (i) in the first set of mutants, active drug efflux associated with a mutation in the QRDR of ParC; (ii) in the second set, two mutations in the QRDR of ParC associated with a mutation in GyrB; and (iii) in the third set, two QRDR mutations, one in ParC and one in GyrA. Interestingly, several selection steps occurred without obvious mutations in the QRDR of any topoisomerase, thereby implying the existence of other resistance mechanisms. Among the fluoroquinolones tested, garenoxacin showed the best activity.

  2. Structural analysis and evidence for dynamic emergence of Bacillus anthracis S-layer networks.

    Science.gov (United States)

    Couture-Tosi, Evelyne; Delacroix, Hervé; Mignot, Tâm; Mesnage, Stéphane; Chami, Mohamed; Fouet, Agnès; Mosser, Gervaise

    2002-12-01

    Surface layers (S-layers), which form the outermost layers of many Bacteria and Archaea, consist of protein molecules arranged in two-dimensional crystalline arrays. Bacillus anthracis, a gram-positive, spore-forming bacterium, responsible for anthrax, synthesizes two abundant surface proteins: Sap and EA1. Regulatory studies showed that EA1 and Sap appear sequentially at the surface of the parental strain. Sap and EA1 can form arrays. The structural parameters of S-layers from mutant strains (EA1(-) and Sap(-)) were determined by computer image processing of electron micrographs of negatively stained regular S-layer fragments or deflated whole bacteria. Sap and EA1 projection maps were calculated on a p1 symmetry basis. The unit cell parameters of EA1 were a = 69 A, b = 83 A, and gamma = 106 degrees, while those of Sap were a = 184 A, b = 81 A, and gamma = 84 degrees. Freeze-etching experiments and the analysis of the peripheral regions of the cell suggested that the two S-layers have different settings. We characterized the settings of each network at different growth phases. Our data indicated that the scattered emergence of EA1 destabilizes the Sap S-layer.

  3. Most Probable Number Rapid Viability PCR Method to Detect Viable Spores of Bacillus anthracis in Swab Samples

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; Kane, S R; Murphy, G A; Alfaro, T M; Hodges, L; Rose, L; Raber, E

    2008-05-30

    This note presents a comparison of Most-Probable-Number Rapid Viability (MPN-RV) PCR and traditional culture methods for the quantification of Bacillus anthracis Sterne spores in macrofoam swabs generated by the Centers for Disease Control and Prevention (CDC) for a multi-center validation study aimed at testing environmental swab processing methods for recovery, detection, and quantification of viable B. anthracis spores from surfaces. Results show that spore numbers provided by the MPN RV-PCR method were in statistical agreement with the CDC conventional culture method for all three levels of spores tested (10{sup 4}, 10{sup 2}, and 10 spores) even in the presence of dirt. In addition to detecting low levels of spores in environmental conditions, the MPN RV-PCR method is specific, and compatible with automated high-throughput sample processing and analysis protocols.

  4. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture.

    Science.gov (United States)

    Hutchison, J R; Piepel, G F; Amidan, B G; Hess, B M; Sydor, M A; Deatherage Kaiser, B L

    2018-01-21

    We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials and assay methods on false-negative rate (FNR) and limit of detection (LOD 95 ) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2-500 per coupon) onto glass, stainless steel, vinyl tile and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD 95 results. Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD 95 was lowest for glass and highest for vinyl tile. LOD 95 values overall were lower for mRV-PCR than for the culture method. This study adds to the limited data on FNR and LOD 95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis. © 2018 The Society for Applied Microbiology.

  5. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R.; Piepel, Gregory F.; Amidan, Brett G.; Hess, Becky M.; Sydor, Michael A.; Kaiser, Brooke LD

    2018-03-13

    Aims: We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials, and assay methods on false-negative rate (FNR) and limit of detection (LOD95) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Methods and Results: Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2 – 500 coupon-1) onto glass, stainless steel, vinyl tile, and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD95 results. Conclusions: Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD95 was lowest for glass and highest for vinyl tile. LOD95 values overall were lower for mRV-PCR than for the culture method. Significance and Impact of Study: This study adds to the limited data on FNR and LOD95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis.

  6. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  7. MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides From a Range of Clinical and Environmental Sources as Determined by the Etest

    National Research Council Canada - National Science Library

    Turnbull, Peter C; Sirianni, Nicky M; LeBron, Carlos I; Samaan, Marian N; Sutton, Felicia N; Reyes, Anatalio E; Peruski , Jr, Leonard F

    2004-01-01

    ...; based on these breakpoints, the B. anthracis isolates were all fully susceptible to ciprofloxacin and tetracycline, and all except four cultures, three of which had a known history of penicillin resistance and were thought...

  8. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation.

    Science.gov (United States)

    Sadykov, Marat R; Ahn, Jong-Sam; Widhelm, Todd J; Eckrich, Valerie M; Endres, Jennifer L; Driks, Adam; Rutkowski, Gregory E; Wingerd, Kevin L; Bayles, Kenneth W

    2017-06-01

    Numerous bacteria accumulate poly(3-hydroxybutyrate) (PHB) as an intracellular reservoir of carbon and energy in response to imbalanced nutritional conditions. In Bacillus spp., where PHB biosynthesis precedes the formation of the dormant cell type called the spore (sporulation), the direct link between PHB accumulation and efficiency of sporulation was observed in multiple studies. Although the idea of PHB as an intracellular carbon and energy source fueling sporulation was proposed several decades ago, the mechanisms underlying PHB contribution to sporulation have not been defined. Here, we demonstrate that PHB deficiency impairs Bacillus anthracis sporulation through diminishing the energy status of the cells and by reducing carbon flux into the tricarboxylic acid (TCA) cycle and de novo lipid biosynthesis. Consequently, this metabolic imbalance decreased biosynthesis of the critical components required for spore integrity and resistance, such as dipicolinic acid (DPA) and the spore's inner membrane. Supplementation of the PHB deficient mutant with exogenous fatty acids overcame these sporulation defects, highlighting the importance of the TCA cycle and lipid biosynthesis during sporulation. Combined, the results of this work reveal the molecular mechanisms of PHB contribution to B. anthracis sporulation and provide valuable insight into the metabolic requirements for this developmental process in Bacillus species. © 2017 John Wiley & Sons Ltd.

  9. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  10. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Denoeud France

    2001-03-01

    Full Text Available Abstract Background Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. Results This report presents a database (http://minisatellites.u-psud.fr of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains. Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Conclusions Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for

  11. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Directory of Open Access Journals (Sweden)

    Marcellene A Gates-Hollingsworth

    Full Text Available Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA, the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation, whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  12. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Science.gov (United States)

    Gates-Hollingsworth, Marcellene A; Perry, Mark R; Chen, Hongjing; Needham, James; Houghton, Raymond L; Raychaudhuri, Syamal; Hubbard, Mark A; Kozel, Thomas R

    2015-01-01

    Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA), the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation), whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  13. Structural and functional characterization of microcin C resistance peptidase MccF from Bacillus anthracis.

    Science.gov (United States)

    Nocek, Boguslaw; Tikhonov, Anton; Babnigg, Gyorgy; Gu, Minyi; Zhou, Min; Makarova, Kira S; Vondenhoff, Gaston; Van Aerschot, Arthur; Kwon, Keehwan; Anderson, Wayne F; Severinov, Konstantin; Joachimiak, Andrzej

    2012-07-20

    Microcin C (McC) is heptapeptide adenylate antibiotic produced by Escherichia coli strains carrying the mccABCDEF gene cluster encoding enzymes, in addition to the heptapeptide structural gene mccA, necessary for McC biosynthesis and self-immunity of the producing cell. The heptapeptide facilitates McC transport into susceptible cells, where it is processed releasing a non-hydrolyzable aminoacyl adenylate that inhibits an essential aminoacyl-tRNA synthetase. The self-immunity gene mccF encodes a specialized serine peptidase that cleaves an amide bond connecting the peptidyl or aminoacyl moieties of, respectively, intact and processed McC with the nucleotidyl moiety. Most mccF orthologs from organisms other than E. coli are not linked to the McC biosynthesis gene cluster. Here, we show that a protein product of one such gene, MccF from Bacillus anthracis (BaMccF), is able to cleave intact and processed McC, and we present a series of structures of this protein. Structural analysis of apo-BaMccF and its adenosine monophosphate complex reveals specific features of MccF-like peptidases that allow them to interact with substrates containing nucleotidyl moieties. Sequence analyses and phylogenetic reconstructions suggest that several distinct subfamilies form the MccF clade of the large S66 family of bacterial serine peptidases. We show that various representatives of the MccF clade can specifically detoxify non-hydrolyzable aminoacyl adenylates differing in their aminoacyl moieties. We hypothesize that bacterial mccF genes serve as a source of bacterial antibiotic resistance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  15. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  16. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium

    Directory of Open Access Journals (Sweden)

    L. Rouli

    2014-11-01

    Full Text Available Bacillus anthracis is the causative agent of anthrax and is classified as a ‘Category A’ biological weapon. Six complete genomes of B. anthracis (A0248, Ames, Ames Ancestor, CDC684, H0491, and Sterne are currently available. In this report, we add three African strain genomes: Sen2Col2, Sen3 and Gmb1. To study the pan‐genome of B. anthracis, we used bioinformatics tools, such as Cluster of Orthologous Groups, and performed phylogenetic analysis. We found that the three African strains contained the pX01 and pX02 plasmids, the nonsense mutation in the plcR gene and the four known prophages. These strains are most similar to the CDC684 strain and belong to the A cluster. We estimated that the B. anthracis pan‐genome has 2893 core genes (99% of the genome size and 85 accessory genes. We validated the hypothesis that B. anthracis has a closed pan‐genome and found that the three African strains carry the two plasmids associated with bacterial virulence. The pan‐genome nature of B. anthracis confirms its lack of exchange (similar to Clostridium tetani and supports its exclusively pathogenic role, despite its survival in the environment. Moreover, thanks to the study of the core content single nucleotide polymorphisms, we can see that our three African strains diverged very recently from the other B. anthracis strains.

  17. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  18. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    Science.gov (United States)

    2008-03-01

    spores were grown in plastic petri dishes on Criterion Dehydrated Culture Media , which contained per liter of formula 15 grams agar , 5 grams gelatin...became reality in 2001 when terrorists sent spores in a powdered form in letters to two senators and several news media offices, killing five people...is the causative agent of the disease anthrax. B. thuringiensis is often used in pesticides and bioengineering pest resistant crops because of its

  19. Technical Note: Simple, scalable, and sensitive protocol for retrieving Bacillus anthracis (and other live bacteria) from heroin.

    Science.gov (United States)

    Grass, Gregor; Ahrens, Bjoern; Schleenbecker, Uwe; Dobrzykowski, Linda; Wagner, Matthias; Krüger, Christian; Wölfel, Roman

    2016-02-01

    We describe a culture-based method suitable for isolating Bacillus anthracis and other live bacteria from heroin. This protocol was developed as a consequence of the bioforensic need to retrieve bacteria from batches of the drug associated with cases of injectional anthrax among heroin-consumers in Europe. This uncommon manifestation of infection with the notorious pathogen B. anthracis has resulted in 26 deaths between the years 2000 to 2013. Thus far, no life disease agent has been isolated from heroin during forensic investigations surrounding these incidences. Because of the conjectured very small number of disease-causing endospores in the contaminated drug it is likely that too few target sequences are available for molecular genetic analysis. Therefore, a direct culture-based approach was chosen here. Endospores of attenuated B. anthracis artificially spiked into heroin were successfully retrieved at 84-98% recovery rates using a wash solution consisting of 0.5% Tween 20 in water. Using this approach, 82 samples of un-cut heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2000 and 2014 were tested and found to be surprisingly poor in retrievable bacteria. Notably, while no B. anthracis was isolated from the drug batches, other bacteria were successfully cultured. The resulting methodical protocol is therefore suitable for analyzing un-cut heroin which can be anticipated to comprise the original microbiota from the drug's original source without interference from contaminations introduced by cutting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.

    Science.gov (United States)

    Rahman, Anisur; Noore, Sanaullah; Hasan, Anayet; Ullah, Rakib; Rahman, Hafijur; Hossain, Amzad; Ali, Yeasmeen; Islam, Saiful

    2014-10-01

    Bacillus anthracis is a gram positive, spore forming, rod shaped bacteria which is the etiologic agent of anthrax - cutaneous, pulmonary and gastrointestinal. A recent outbreak of anthrax in a tropical region uncovered natural and in vitro resistance against penicillin, ciprofloxacin, quinolone due to over exposure of the pathogen to these antibiotics. This fact combined with the ongoing threat of using B. anthracis as a biological weapon proves that the identification of new therapeutic targets is urgently needed. In this computational approach various databases and online based servers were used to detect essential proteins of B. anthracis A0248. Protein sequences of B. anthracis A0248 strain were retrieved from the NCBI database which was then run in CD-hit suite for clustering. NCBI BlastP against the human proteome and similarity search against DEG were done to find out essential human non-homologous proteins. Proteins involved in unique pathways were analyzed using KEGG genome database and PSORTb, CELLO v.2.5, ngLOC - these three tools were used to deduce putative cell surface proteins. Successive analysis revealed 116 proteins to be essential human non-homologs among which 17 were involved in unique metabolic pathways and 28 were predicted as membrane associated proteins. Both types of proteins can be exploited as they are unlikely to have homologous counterparts in the human host. Being human non-homologous, these proteins can be targeted for potential therapeutic drug development in future. Targets on unique metabolic and membrane-bound proteins can block cell wall synthesis, bacterial replication and signal transduction respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure".

    Science.gov (United States)

    Wang, Dian-Bing; Tian, Bo; Zhang, Zhi-Ping; Wang, Xu-Ying; Fleming, Joy; Bi, Li-Jun; Yang, Rui-Fu; Zhang, Xian-En

    2015-05-15

    Detection of Bacillus anthracis in the field, whether as a natural infection or as a biothreat remains challenging. Here we have developed a new lateral-flow immunochromatographic assay (LFIA) for B. anthracis spore detection based on the fact that conjugates of B. anthracis spores and super-paramagnetic particles labeled with antibodies will block the pores of chromatographic strips and form retention lines on the strips, instead of the conventionally reported test lines and control lines in classic LFIA. As a result, this new LFIA can simultaneously realize optical, magnetic and naked-eye detection by analyzing signals from the retention lines. As few as 500-700 pure B. anthracis spores can be recognized with CV values less than 8.31% within 5 min of chromatography and a total time of 20 min. For powdery sample tests, this LFIA can endure interference from 25% (w/v) milk, 10% (w/v) baking soda and 10% (w/v) starch without any sample pre-treatment, and has a corresponding detection limit of 6×10(4) spores/g milk powder, 2×10(5) spores/g starch and 5×10(5) spores/g baking soda. Compared with existing methods, this new approach is very competitive in terms of sensitivity, specificity, cost and ease of operation. This proof-of-concept study can also be extended for detection of many other large-sized analytes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    Science.gov (United States)

    2009-12-01

    ligation of a DNA fragment bearing the green fluorescent protein ( GFP ) open reading frame (produced by digestion of pAS5 [28] with BamHI and HindIII...microscopy of B. anthracis (Sterne) sporangia. Phase-contrast (Phase) and fluorescence ( GFP , Hoechst, and Merge) images of B. anthracis exsK- gfp (A, C, E...visualized for GFP fluorescence and DNA staining with Hoechst 33352. VOL. 191, 2009 B. ANTHRACIS EXOSPORIUM MATURATION AND GERMINATION 7589 at U S A M R

  3. Possible Use of Bacteriophages Active against Bacillus anthracis and Other B. cereus Group Members in the Face of a Bioterrorism Threat

    Science.gov (United States)

    Weber-Dąbrowska, Beata; Borysowski, Jan; Górski, Andrzej

    2014-01-01

    Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat. PMID:25247187

  4. Molecular Basis for the Attachment of S-Layer Proteins to the Cell Wall of Bacillus anthracis.

    Science.gov (United States)

    Sychantha, David; Chapman, Robert N; Bamford, Natalie C; Boons, Geert-Jan; Howell, P Lynne; Clarke, Anthony J

    2018-04-03

    Bacterial surface (S) layers are paracrystalline arrays of protein assembled on the bacterial cell wall that serve as protective barriers and scaffolds for housekeeping enzymes and virulence factors. The attachment of S-layer proteins to the cell walls of the Bacillus cereus sensu lato, which includes the pathogen Bacillus anthracis, occurs through noncovalent interactions between their S-layer homology domains and secondary cell wall polysaccharides. To promote these interactions, it is presumed that the terminal N-acetylmannosamine (ManNAc) residues of the secondary cell wall polysaccharides must be ketal-pyruvylated. For a few specific S-layer proteins, the O-acetylation of the penultimate N-acetylglucosamine (GlcNAc) is also required. Herein, we present the X-ray crystal structure of the SLH domain of the major surface array protein Sap from B. anthracis in complex with 4,6- O-ketal-pyruvyl-β-ManNAc-(1,4)-β-GlcNAc-(1,6)-α-GlcN. This structure reveals for the first time that the conserved terminal SCWP unit is the direct ligand for the SLH domain. Furthermore, we identify key binding interactions that account for the requirement of 4,6- O-ketal-pyruvyl-ManNAc while revealing the insignificance of the O-acetylation on the GlcNAc residue for recognition by Sap.

  5. Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Dybwad, Marius; van der Laaken, Anton L; Blatny, Janet Martha; Paauw, Armand

    2013-09-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.

  6. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax

    NARCIS (Netherlands)

    Albrecht, Mark T.; Li, Han; Williamson, E. Diane; LeButt, Chris S.; Flick-Smith, Helen C.; Quinn, Conrad P.; Westra, Hans; Galloway, Darrell; Mateczun, Alfred; Goldman, Stanley; Groen, Herman; Baillie, Les W. J.

    2007-01-01

    The unpredictable nature of bioterrorism and the absence of real-time detection systems have highlighted the need for an efficient postexposure therapy for Bacillus anthracis infection. One approach is passive immunization through the administration of antibodies that mitigate the biological action

  7. Construction of a high-efficiency cloning system using the Golden Gate method and I-SceI endonuclease for targeted gene replacement in Bacillus anthracis.

    Science.gov (United States)

    Wang, Tiantian; Wang, Dongshu; Lyu, Yufei; Feng, Erling; Zhu, Li; Liu, Chunjie; Wang, Yanchun; Liu, Xiankai; Wang, Hengliang

    2018-02-10

    To investigate gene function in Bacillus anthracis, a high-efficiency cloning system is required with an increased rate of allelic exchange. Golden Gate cloning is a molecular cloning strategy allowing researchers to simultaneously and directionally assemble multiple DNA fragments to construct target plasmids using type IIs restriction enzymes and T4 DNA ligase in the same reaction system. Here, a B. anthracis S-layer protein EA1 allelic exchange vector was successfully constructed using the Golden Gate method. No new restriction sites were introduced into this knockout vector, and seamless assembly of the DNA fragments was achieved. To elevate the efficiency of homologous recombination between the allelic exchange vector and chromosomal DNA, we introduced an I-SceI site into the allelic exchange vector. The eag gene was successfully knocked out in B. anthracis using this vector. Simultaneously, the allelic exchange vector construction method was developed into a system for generating B. anthracis allelic exchange vectors. To verify the effectiveness of this system, some other allelic exchange vectors were constructed and gene replacements were performed in B. anthracis. It is speculated that this gene knockout vector construction system and high-efficiency targeted gene replacement using I-SceI endonuclease can be applied to other Bacillus spp. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  9. Naturally acquired antibodies to Bacillus anthracis protective antigen in vultures of southern Africa

    Directory of Open Access Journals (Sweden)

    P. C.B. Turnbull

    2008-08-01

    Full Text Available TURNBULLP, P.C.B. DIEKMANNM,M., KILIAN, J.W., VERSFELDW, W.,DE VOS, V., ARNTZENL, L.,WOLTER, K., BARTELS, P. & KOTZE, A. 2008.N aturally acquired antibodies to Bacillusa nthracisp rotective antigeni n vultureso f southern Africa. Onderstepoort Journal of Veterinary Research, T5:95-102 Sera from 19 wild caught vultures in northern Namibia and 15 (12 wild caught and three captive bred but with minimal histories in North West Province, South Africa, were examined by an enzyme-linked immunosorbenats say( ELISAf or antibodiesto the Bacillus anthracis toxin protective antigen (PA. As assessed from the baseline established with a control group of ten captive reared vultures with well-documented histories, elevated titres were found in 12 of the 19 (63% wild caught Namibian birds as compared with none of the 15 South African ones. There was a highly significant difference between the Namibian group as a hole and the other groups (P 0.05. Numbers in the Namibian group were too small to determine any significances in species-, sex- or age-related differences within the raw data showing elevated titres in four out of six Cape Vultures, Gyps coprotheress, six out of ten Whitebacked Vultures, Gyps africanus, and one out of three Lappet-faced Vultures, Aegypiust racheliotus, or in five of six males versus three of seven females, and ten of 15 adults versus one of four juveniles. The results are in line with the available data on the incidence of anthrax in northern Namibia and South Africa and the likely contact of the vultures tested with anthrax carcasses. lt is not known whether elevated titre indicates infection per se in vultures or absorption of incompletely digested epitopes of the toxin or both. The results are discussed in relation to distances travelled by vultures as determined by new tracking techniques, how serology can reveal anthrax activity in an area and the issue of the role of vultures in transmission of anthrax.

  10. Use of high-resolution melting and melting temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination.

    Science.gov (United States)

    Derzelle, Sylviane; Mendy, Christiane; Laroche, Séverine; Madani, Nora

    2011-11-01

    Single nucleotide polymorphisms (SNPs) are important diagnostic markers for the detection and differentiation of Bacillus anthracis. High-Resolution Melting (HRM) and Melting Temperature (Tm)-shift methods are two approaches that enable SNP detection without the need for expensive labeled probes. We evaluated the potential diagnostic capability of those methods to discriminate B. anthracis from the other members of the B. cereus group. Two assays targeting B. anthracis-specific SNPs in the plcR and gyrA genes were designed for each method and used to genotype a panel of 155 Bacilli strains. All B. anthracis isolates (n=65) were correctly and unambiguously identified. Assays also proved to be appropriate for the direct genotyping of biological samples. They could reliably detect B. anthracis in contaminated organs containing as little as 10(3)CFU/ml, corresponding to a few genome equivalents per reaction. The HRM and Tm-shift applications described here represent valuable tools for specific identification of B. anthracis at reduced cost. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats are generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.

  12. Gastric pH and Toxin Factors Modulate Infectivity and Disease Progression After Gastrointestinal Exposure to Bacillus anthracis.

    Science.gov (United States)

    Xie, Tao; Rotstein, David; Sun, Chen; Fang, Hui; Frucht, David M

    2017-12-12

    Gastrointestinal (GI) anthrax is the most prevalent form of naturally acquired Bacillus anthracis infection, which is associated with exposure to vegetative bacteria in infected meat (carnivores) or to fermented rumen contents (herbivores). We assessed whether key host and pathogen factors modulate infectivity and progression of infection using a mouse model of GI infection. Gastric acid neutralization increases infectivity, but 30%-40% of mice succumb to infection without neutralization. Mice either fed or fasted before exposure showed similar infectivity rates. Finally, the pathogen's anthrax lethal factor is required to establish lethal infection, whereas its edema factor modulates progression and dissemination of infection. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Evaluation of Immunoassays and General Biological Indicator Tests for Field Screening of Bacillus anthracis and Ricin

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Rachel A.; Ozanich, Richard M.; Arce, Jennifer S.; Engelmann, Heather E.; Heredia-Langner, Alejandro; Hofstad, Beth A.; Hutchison, Janine R.; Jarman, Kristin; Melville, Angela M.; Victry, Kristin D.; Bruckner-Lea, Cynthia J.

    2017-02-01

    The goal of this testing was to evaluate the ability of currently available commercial off-the-shelf (COTS) biological indicator tests and immunoassays to detect Bacillus anthracis (Ba) spores and ricin. In general, immunoassays provide more specific identification of biological threats as compared to indicator tests [3]. Many of these detection products are widely used by first responders and other end users. In most cases, performance data for these instruments are supplied directly from the manufacturer, but have not been verified by an external, independent assessment [1]. Our test plan modules included assessments of inclusivity (ability to generate true positive results), commonly encountered hoax powders (which can cause potential interferences or false positives), and estimation of limit of detection (LOD) (sensitivity) testing.

  14. Evaluation of New Dihydrophthalazine-Appended 2,4-Diaminopyrimidines against Bacillus anthracis: Improved Syntheses Using a New Pincer Complex

    Directory of Open Access Journals (Sweden)

    Nagendra Prasad Muddala

    2015-04-01

    Full Text Available The synthesis and evaluation of ten new dihydrophthalazine-appended 2,4-diaminopyrimidines as potential drugs to treat Bacillus anthracis is reported. An improved synthesis utilizing a new pincer catalyst, dichlorobis[1-(dicyclohexylphosphanyl-piperidine]palladium(II, allows the final Heck coupling to be performed at 90 °C using triethylamine as the base. These milder conditions have been used to achieve improved yields for new and previously reported substrates with functional groups that degrade or react at the normal 140 °C reaction temperature. An analytical protocol for separating the S and R enantiomers of two of the most active compounds is also disclosed. Finally, the X-ray structure for the most active enantiomer of the lead compound, (S-RAB1, is given.

  15. Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactose-deficient wall polysaccharide from avirulent B. anthracis CDC 684.

    Science.gov (United States)

    Forsberg, L Scott; Abshire, Teresa G; Friedlander, Arthur; Quinn, Conrad P; Kannenberg, Elmar L; Carlson, Russell W

    2012-08-01

    Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-β-d-ManpNAc-(1 → 4)-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-β-d-ManpNAc-(1 → 4)-[3-O-acetyl]-β-d-GlcpNAc-(1 → 6)-α-d-GlcpNH(2)-(1→.

  16. Pharmacokinetic-Pharmacodynamic Assessment of Faropenem in a Lethal Murine Bacillus anthracis Inhalation Postexposure Prophylaxis Model

    Science.gov (United States)

    2010-05-01

    penem against B. anthracis on the basis of the data presented herein is consistent with values determined against S. pneu - moniae by Craig and Andes...in the neutropenic murine thigh infection model (8). Against 13 strains of Streptococcus pneu - moniae (MIC values, 0.008 to 2 g/ml), the mean

  17. Impact of Inactivated Extracellular Proteases on the Modified Flagellin Type III Secretion Pathway of Bacillus halodurans▿

    OpenAIRE

    Berger, Eldie; du Plessis, Erika; Gerber, Isak; Crampton, Michael; Nxumalo, Nolwandle; Louw, Maureen

    2008-01-01

    The flagellin type III secretion pathway of Bacillus halodurans BhFC01 (Δhag) was modified by the inactivation of fliD. An in-frame flagellin gene fusion polypeptide construct was expressed, and the heterologous peptides were secreted as flagellin fusion monomers. The stability of the secreted monomers was significantly enhanced through gene-targeted inactivation of extracellular proteases.

  18. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2006-04-01

    Full Text Available Abstract Background The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary. Results Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats. Conclusion In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the

  19. Multiplex PCR for species-level identification of Bacillus anthracis and detection of pXO1, pXO2, and related plasmids.

    Science.gov (United States)

    Riojas, Marco A; Kiss, Katalin; McKee, Marian L; Hazbón, Manzour Hernando

    2015-01-01

    The Bacillus anthracis virulence plasmids pXO1 and pXO2 have critical implications for biosafety and select agent status. The proper identification and characterization of B. anthracis and its plasmid profile is important to the biodefense research community. Multiplex PCR was used to simultaneously detect a B. anthracis-specific chromosomal mutation, 4 targets distributed across pXO1, 3 targets distributed across pXO2, and highly conserved regions of the 16S gene, allowing an internal positive control for each sample. The multiplex PCR can produce as many as 9 easily separable and distinguishable amplicons, ranging in size from 188 to 555 bp. The PCR results were used to characterize DNA samples extracted from B. anthracis, other Bacillus species, and other bacterial species from many different genera. With the exception of 2 novel putative plasmids discovered, testing against inclusion and extensive exclusion panels showed 100% correlation to previously published and expected results. Upon testing 29 previously unpublished B. anthracis strains, 10 (34.5%) were pXO1(+)/pXO2(+), 9 (31.0%) were pXO1(+)/pXO2(-), 7 (24.1%) were pXO1(-)/pXO2(+), and 3 (10.3%) were pXO1(-)/pXO2(-). The present work presents a novel 9-target multiplex PCR assay capable of species-level identification of B. anthracis via a unique chromosomal marker and the detection of pXO1 and pXO2 via multiply redundant targets on each.

  20. Transcriptional profiling of Bacillus anthracis Sterne (34F2 during iron starvation.

    Directory of Open Access Journals (Sweden)

    Paul E Carlson

    2009-09-01

    Full Text Available Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F(2 to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340 resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study.

  1. Cloning and Expression of Fusion Genes of Domain A-1 Protective Antigen of Bacillus Anthracis and Shigella Enterotoxin B Subunit (Stxb In E. Coil

    Directory of Open Access Journals (Sweden)

    AH ahmadi

    2015-02-01

    Conclusion: The findings of the current study revealed that this antigen can be raised as an anti-cancer and recombinant vaccine candidate against types of Shigella, Escherichia coli and Bacillus anthracis which can be due to such factors as identification of antigen(PA by antibody PA20, its apoptosis induction properties, property of immunogenicity, adjuvant and delivery of STxB protein and high expression levels of Gb3 in human cancer cells.

  2. Matrix Assisted Laser Desorption Ionization Mass Spectrometric Analysis of Bacillus anthracis: From Fingerprint Analysis of the Bacterium to Quantification of its Toxins in Clinical Samples

    Science.gov (United States)

    Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.

    A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.

  3. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  4. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  5. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    Science.gov (United States)

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  6. Baulamycins A and B, broad-spectrum antibiotics identified as inhibitors of siderophore biosynthesis in Staphylococcus aureus and Bacillus anthracis.

    Science.gov (United States)

    Tripathi, Ashootosh; Schofield, Michael M; Chlipala, George E; Schultz, Pamela J; Yim, Isaiah; Newmister, Sean A; Nusca, Tyler D; Scaglione, Jamie B; Hanna, Philip C; Tamayo-Castillo, Giselle; Sherman, David H

    2014-01-29

    Siderophores are high-affinity iron chelators produced by microorganisms and frequently contribute to the virulence of human pathogens. Targeted inhibition of the biosynthesis of siderophores staphyloferrin B of Staphylococcus aureus and petrobactin of Bacillus anthracis hold considerable potential as a single or combined treatment for methicillin-resistant S. aureus (MRSA) and anthrax infection, respectively. The biosynthetic pathways for both siderophores involve a nonribosomal peptide synthetase independent siderophore (NIS) synthetase, including SbnE in staphyloferrin B and AsbA in petrobactin. In this study, we developed a biochemical assay specific for NIS synthetases to screen for inhibitors of SbnE and AsbA against a library of marine microbial-derived natural product extracts (NPEs). Analysis of the NPE derived from Streptomyces tempisquensis led to the isolation of the novel antibiotics baulamycins A (BmcA, 6) and B (BmcB, 7). BmcA and BmcB displayed in vitro activity with IC50 values of 4.8 μM and 19 μM against SbnE and 180 μM and 200 μM against AsbA, respectively. Kinetic analysis showed that the compounds function as reversible competitive enzyme inhibitors. Liquid culture studies with S. aureus , B. anthracis , E. coli , and several other bacterial pathogens demonstrated the capacity of these natural products to penetrate bacterial barriers and inhibit growth of both Gram-positive and Gram-negative species. These studies provide proof-of-concept that natural product inhibitors targeting siderophore virulence factors can provide access to novel broad-spectrum antibiotics, which may serve as important leads for the development of potent anti-infective agents.

  7. Biochip for the Detection of Bacillus anthracis Lethal Factor and Therapeutic Agents against Anthrax Toxins

    Directory of Open Access Journals (Sweden)

    Vitalii Silin

    2016-06-01

    Full Text Available Tethered lipid bilayer membranes (tBLMs have been used in many applications, including biosensing and membrane protein structure studies. This report describes a biosensor for anthrax toxins that was fabricated through the self-assembly of a tBLM with B. anthracis protective antigen ion channels that are both the recognition element and electrochemical transducer. We characterize the sensor and its properties with electrochemical impedance spectroscopy and surface plasmon resonance. The sensor shows a sensitivity similar to ELISA and can also be used to rapidly screen for molecules that bind to the toxins and potentially inhibit their lethal effects.

  8. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  9. The Poly-γ-D-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Rhie, Gi-Eun

    2017-05-28

    The poly-γ- D -glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis , provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis , a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

  10. Differential Binding of Co(II) and Zn(II) to Metallo-beta-Lactamase Bla2 from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, M.; Breece, R; Hajdin, C; Bender, K; Hu, Z; Costello, A; Bennett, B; Tierney, D; Crowder, M

    2009-01-01

    In an effort to probe the structure, mechanism, and biochemical properties of metallo-{beta}-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, 1H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.

  11. Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Green, Keith D.; Biswas, Tapan; Chang, Changsoo; Wu, Ruiying; Chen, Wenjing; Janes, Brian K.; Chalupska, Dominika; Gornicki, Piotr; Hanna, Philip C.; Tsodikov, Oleg V.; Joachimiak, Andrzej; Garneau-Tsodikova, Sylvie

    2015-05-26

    Proteins from the enhanced intracellular survival (Eis) family are versatile acetyltransferases that acetylate amines at multiple positions of several aminoglycosides (AGs). Their upregulation confers drug resistance. Homologues of Eis are present in diverse bacteria, including many pathogens. Eis from Mycobacterium tuberculosis (Eis_Mtb) has been well characterized. In this study, we explored the AG specificity and catalytic efficiency of the Eis family protein from Bacillus anthracis (Eis_Ban). Kinetic analysis of specificity and catalytic efficiency of acetylation of six AGs indicates that Eis_Ban displays significant differences from Eis_Mtb in both substrate binding and catalytic efficiency. The number of acetylated amines was also different for several AGs, indicating a distinct regiospecificity of Eis_Ban. Furthermore, most recently identified inhibitors of Eis_Mtb did not inhibit Eis_Ban, underscoring the differences between these two enzymes. To explain these differences, we determined an Eis_Ban crystal structure. The comparison of the crystal structures of Eis_Ban and Eis_Mtb demonstrates that critical residues lining their respective substrate binding pockets differ substantially, explaining their distinct specificities. Our results suggest that acetyltransferases of the Eis family evolved divergently to garner distinct specificities while conserving catalytic efficiency, possibly to counter distinct chemical challenges. The unique specificity features of these enzymes can be utilized as tools for developing AGs with novel modifications and help guide specific AG treatments to avoid Eis-mediated resistance.

  12. BLACK-BACKED JACKAL EXPOSURE TO RABIES VIRUS, CANINE DISTEMPER VIRUS, AND BACILLUS ANTHRACIS IN ETOSHA NATIONAL PARK, NAMIBIA

    Science.gov (United States)

    Bellan, Steve E.; Cizauskas, Carrie A.; Miyen, Jacobeth; Ebersohn, Karen; Küsters, Martina; Prager, Katie; Van Vuuren, Moritz; Sabeta, Claude; Getz, Wayne M.

    2017-01-01

    Canine distemper virus (CDV) and rabies virus (RABV) occur worldwide in wild carnivore and domestic dog populations and pose threats to wildlife conservation and public health. In Etosha National Park (ENP), Namibia, anthrax is endemic and generates carcasses frequently fed on by an unusually dense population of black-backed jackals (Canis mesomelas). Using serology and phylogenetic analyses (on samples obtained from February, 2009 to July, 2010), and historical mortality records (1975–2011), we assessed jackal exposure to Bacillus anthracis (BA; the causal bacterial agent of anthrax), CDV, and RABV. Seroprevalence to all three pathogens was relatively high with 95% (n = 86), 73% (n = 86), and 9% (n = 81) of jackals exhibiting antibodies to BA, CDV, and RABV, respectively. Exposure to BA, as assessed with an anti-Protective Antigen ELISA test, increased significantly with age and all animals >1 yr old tested positive. Seroprevalence of exposure to CDV also increased significantly with age, with similar age-specific trends during both years of the study. No significant effect of age was found on RABV seroprevalence. Three of the seven animals exhibiting immunity to RABV were monitored for more than one year after sampling and did not succumb to the disease. Mortality records revealed that rabid animals are destroyed nearly every year inside the ENP tourist camps. Phylogenetic analyses demonstrated that jackal RABV in ENP is part of the same transmission cycle as other dog-jackal RABV cycles in Namibia. PMID:22493112

  13. Effect of Phosphate Ion on the Structure of Lumazine Synthase, an Antigen Presentation System From Bacillus anthracis.

    Science.gov (United States)

    Wei, Yangjie; Wahome, Newton; Kumar, Prashant; Whitaker, Neal; Picking, Wendy L; Middaugh, C Russell

    2018-03-01

    Lumazine synthase (LS) is an oligomeric enzyme involved in the biosynthesis of riboflavin in microorganisms, fungi, and plants. LS has become of significant interest to biomedical science because of its critical biological role and attractive structural properties for antigen presentation in vaccines. LS derived from Bacillus anthracis (BaLS) consists of 60 identical subunits forming an icosahedron. Its crystal structure has been solved, but its dynamic conformational properties have not yet been studied. We investigated the conformation of BaLS in response to different stress conditions (e.g., chemical denaturants, pH, and temperature) using a variety of biophysical techniques. The physical basis for these thermal transitions was studied, indicating that a molten globular state was present during chemical unfolding by guanidine HCl. In addition, BaLS showed 2 distinct thermal transitions in phosphate-containing buffers. The first transition was due to the dissociation of phosphate ions from BaLS and the second one came from the dissociation and conformational alteration of its icosahedral structure. A small conformational alteration was induced by the binding/dissociation of phosphate ions to BaLS. This work provides a closer view of the conformational behavior of BaLS and provides important information for the formulation of vaccines which use this protein. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Black-backed jackal exposure to rabies virus, canine distemper virus, and Bacillus anthracis in Etosha National Park, Namibia.

    Science.gov (United States)

    Bellan, Steve E; Cizauskas, Carrie A; Miyen, Jacobeth; Ebersohn, Karen; Küsters, Martina; Prager, K C; Van Vuuren, Moritz; Sabeta, Claude; Getz, Wayne M

    2012-04-01

    Canine distemper virus (CDV) and rabies virus (RABV) occur worldwide in wild carnivore and domestic dog populations and pose threats to wildlife conservation and public health. In Etosha National Park (ENP), Namibia, anthrax is endemic and generates carcasses frequently fed on by an unusually dense population of black-backed jackals (Canis mesomelas). Using serology, phylogenetic analyses (on samples obtained from February 2009-July 2010), and historical mortality records (1975-2011), we assessed jackal exposure to Bacillus anthracis (BA; the causal bacterial agent of anthrax), CDV, and RABV. Prevalence of antibodies against BA (95%, n = 86) and CDV (71%, n = 80) was relatively high, while that of antibodies against RABV was low (9%, n = 81). Exposure to BA increased significantly with age, and all animals >6 mo old were antibody-positive. As with BA, prevalence of antibodies against CDV increased significantly with age, with similar age-specific trends during both years of the study. No significant effect of age was found on the prevalence of antibodies against RABV. Three of the seven animals with antibodies against RABV were monitored for more than 1 yr after sampling and showed no signs of active infection. Mortality records revealed that rabid animals are destroyed nearly every year inside the ENP tourist camps. Phylogenetic analyses demonstrated that jackal RABV in ENP is part of the same transmission cycle as other dog-jackal RABV cycles in Namibia.

  15. Constant domains influence binding of mouse–human chimeric antibodies to the capsular polypeptide of Bacillus anthracis

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-01-01

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct “rim” quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse–human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared “puffy” in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site. PMID:23863605

  16. Stereo-selective binding of monoclonal antibodies to the poly-γ-D-glutamic acid capsular antigen of Bacillus anthracis.

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Welch, William H; Kozel, Thomas R

    2013-10-01

    Bacillus anthracis is surrounded by an anti-phagocytic capsule that is entirely composed of γ-linked D-glutamic acid (γDPGA). γDPGA is required for virulence and is produced in large quantities following spore germination. We have previously described the isolation of several γDPGA-reactive mAbs. The reagents are effective in both immunoprotection and diagnostic applications. The current work was done to further investigate the specificity of γDPGA-reactive mAbs. The specificity of each mAb was characterized using surface plasmon resonance. Our results indicate that each mAb is stereoselective for binding to D-glutamic acid oligomers, but to varying degrees. In particular, mAb F26G3 is highly selective for γDPGA; alterations in stereochemistry disrupted recognition. These differences in mAb reactivity suggest that binding of γDPGA by mAb F26G3 is more specific than non-directional ionic interactions between a negatively charged antigen and a positively charged antibody. Published by Elsevier Ltd.

  17. Constant domains influence binding of mouse-human chimeric antibodies to the capsular polypeptide of Bacillus anthracis.

    Science.gov (United States)

    Hubbard, Mark A; Thorkildson, Peter; Kozel, Thomas R; AuCoin, David P

    2013-08-15

    Our laboratory previously described the binding characteristics of the murine IgG3 monoclonal antibody (MuAb) F26G3. This antibody binds the poly-glutamic acid capsule (PGA) of Bacillus anthracis, an essential virulence factor in the progression of anthrax. F26G3 IgG3 MuAb binds PGA with a relatively high functional affinity (10 nM), produces a distinct "rim" quellung reaction, and is protective in a murine model of pulmonary anthrax. This study engineered an IgG subclass family of F26G3 mouse-human chimeric antibodies (ChAb). The F26G3 ChAbs displayed 9- to 20-fold decreases in functional affinity, as compared with the parent IgG3 MuAb. Additionally, the quellung reactions that were produced by the ChAbs all differed from the parent IgG3 MuAb in that they appeared "puffy" in nature. This study demonstrates that human constant domains may influence multiple facets of antibody binding to microbial capsular antigens despite their spatial separation from the traditional antigen-binding site.

  18. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis

    Science.gov (United States)

    Braun, Peter; Grass, Gregor; Aceti, Angela; Serrecchia, Luigina; Affuso, Alessia; Marino, Leonardo; Grimaldi, Stefania; Pagano, Stefania; Hanczaruk, Matthias; Georgi, Enrico; Northoff, Bernd; Schöler, Anne; Schloter, Michael; Antwerpen, Markus; Fasanella, Antonio

    2015-01-01

    During an anthrax outbreak at the Pollino National Park (Basilicata, Italy) in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA) and next generation Whole Genome Sequencing (WGS). PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis. PMID:26266934

  19. Failure of Sterne- and Pasteur-like strains of Bacillus anthracis to replicate and survive in the urban bluebottle blow fly Calliphora vicina under laboratory conditions.

    Directory of Open Access Journals (Sweden)

    Britta von Terzi

    Full Text Available This study aimed to elucidate the bacteriological events occurring within the gut of Calliphora vicina, selected as the European representative of blow flies held responsible for the spread of anthrax during epidemics in certain parts of the world. Green-fluorescent-protein-carrying derivatives of Bacillus anthracis were used. These lacked either one of the virulence plasmids pXO1 and pXO2 and were infected, or not infected, with a worm intestine phage (Wip4 known to influence the phenotype and survival of the pathogen. Blood meals were prepared for the flies by inoculation of sheep blood with germinated and, in case of pXO2+ strains, encapsulated cells of the four B. anthracis strains. After being fed for 4 h an initial 10 flies were externally disinfected with peracetic acid to ensure subsequent quantitation representing ingested B. anthracis only. Following neutralization, they were crushed in sterile saline. Over each of the ensuing 7 to 10 days, 10 flies were removed and processed the same way. In the absence of Wip4, strains showed steady declines to undetectable in the total B. anthracis counts, within 7-9 days. With the phage infected strains, the falls in viable counts were significantly more rapid than in their uninfected counterparts. Spores were detectable in flies for longer periods than vegetative bacteria. In line with the findings in both biting and non-biting flies of early workers our results indicate that B. anthracis does not multiply in the guts of blow flies and survival is limited to a matter of days.

  20. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  1. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis.

    Science.gov (United States)

    Buhr, T L; Young, A A; Bensman, M; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; Borgers-Klonkowski, E; Osborn, E B; Avila, S D; Theys, A M G; Jackson, P J

    2016-04-01

    To develop test methods and evaluate survival of Bacillus thuringiensis kurstaki cry(-) HD-1 and B. thuringiensis Al Hakam spores after exposure to hot, humid air inside of a C-130 aircraft. Bacillus thuringiensis spores were either pre-inoculated on 1 × 2 or 2 × 2 cm substrates or aerosolized inside the cargo hold of a C-130 and allowed to dry. Dirty, complex surfaces (10 × 10 cm) swabbed after spore dispersal showed a deposition of 8-10 log10 m(-2) through the entire cargo hold. After hot, humid air decontamination at 75-80°C, 70-90% relative humidity for 7 days, 87 of 98 test swabs covering 0·98 m(2) , showed complete spore inactivation. There was a total of 1·67 log10 live CFU detected in 11 of the test swabs. Spore inactivation in the 98 test swabs was measured at 7·06 log10 m(-2) . Laboratory test methods for hot, humid air decontamination were scaled for a large-scale aircraft field test. The C-130 field test demonstrated that hot, humid air can be successfully used to decontaminate an aircraft. Transition of a new technology from research and development to acquisition at a Technology Readiness Level 7 is unprecedented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  2. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis.

    OpenAIRE

    Dai, Z; Koehler, T M

    1997-01-01

    Anthrax toxin gene expression in Bacillus anthracis is dependent on the presence of atxA, a trans-acting regulatory gene located on the resident 185-kb plasmid pXO1. In atxA+ strains, expression of the toxin genes (pag, lef, and cya) is enhanced by two physiologically significant signals: elevated CO2/bicarbonate and temperature. To determine whether increased toxin gene expression in response to these signals is associated with increased atxA expression, we monitored steady-state levels of a...

  3. Thermal Inactivation of Bacillus Anthracis using Laser Irradiation of Micro-Etched Platforms

    Science.gov (United States)

    2009-03-01

    Al-Alami & Kiefer , 1983). Note that the average bond enthalpy of a C-C bond is 348 kJ/mol and that these reactions generate radicals, (ie: methyl...phosphate backbone of the DNA molecule ( Barbara Setlow, 1995). Guanine sites are slightly more reactive than adenine. Depurination occurs...Tool (SERPENT). SERPENT Overview Presentation . 4. Al-Alami, M. Z., & Kiefer , J. H. (1983). Shock-tube study of propane pyrolysis. Rate of

  4. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples.

    Science.gov (United States)

    Ramage, Jason G; Prentice, Kristin W; DePalma, Lindsay; Venkateswaran, Kodumudi S; Chivukula, Sruti; Chapman, Carol; Bell, Melissa; Datta, Shomik; Singh, Ajay; Hoffmaster, Alex; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi; Thirunavkkarasu, Nagarajan; Krishnan, Viswanathan; Morse, Stephen; Avila, Julie R; Sharma, Shashi; Estacio, Peter L; Stanker, Larry; Hodge, David R; Pillai, Segaran P

    2016-01-01

    We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert(®) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5 × 10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores.

  5. Rapid detection method for Bacillus anthracis using a combination of multiplexed real-time PCR and pyrosequencing and its application for food biodefense.

    Science.gov (United States)

    Janzen, Timothy W; Thomas, Matthew C; Goji, Noriko; Shields, Michael J; Hahn, Kristen R; Amoako, Kingsley K

    2015-02-01

    Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml(-1), and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

  6. Structures of an alanine racemase from Bacillus anthracis (BA0252) in the presence and absence of (R)-1-aminoethylphosphonic acid (l-Ala-P)

    International Nuclear Information System (INIS)

    Au, Kinfai; Ren, Jingshan; Walter, Thomas S.; Harlos, Karl; Nettleship, Joanne E.; Owens, Raymond J.; Stuart, David I.; Esnouf, Robert M.

    2008-01-01

    Structures of BA0252, an alanine racemase from B. anthracis, in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) and determined by X-ray crystallography to resolutions of 2.1 and 1.47 Å, respectively, are described. Bacillus anthracis, the causative agent of anthrax, has been targeted by the Oxford Protein Production Facility to validate high-throughput protocols within the Structural Proteomics in Europe project. As part of this work, the structures of an alanine racemase (BA0252) in the presence and absence of the inhibitor (R)-1-aminoethylphosphonic acid (l-Ala-P) have determined by X-ray crystallo@@graphy to resolutions of 2.1 and 1.47 Å, respectively. Difficulties in crystallizing this protein were overcome by the use of reductive methylation. Alanine racemase has attracted much interest as a possible target for anti-anthrax drugs: not only is d-alanine a vital component of the bacterial cell wall, but recent studies also indicate that alanine racemase, which is accessible in the exosporium, plays a key role in inhibition of germination in B. anthracis. These structures confirm the binding mode of l-Ala-P but suggest an unexpected mechanism of inhibition of alanine racemase by this compound and could provide a basis for the design of improved alanine racemase inhibitors with potential as anti-anthrax therapies

  7. Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Peter E Chen

    Full Text Available BACKGROUND: The anthrax letter attacks of 2001 highlighted the need for rapid identification of biothreat agents not only for epidemiological surveillance of the intentional outbreak but also for implementing appropriate countermeasures, such as antibiotic treatment, in a timely manner to prevent further casualties. It is clear from the 2001 cases that survival may be markedly improved by administration of antimicrobial therapy during the early symptomatic phase of the illness; i.e., within 3 days of appearance of symptoms. Microbiological detection methods are feasible only for organisms that can be cultured in vitro and cannot detect all genetic modifications with the exception of antibiotic resistance. Currently available immuno or nucleic acid-based rapid detection assays utilize known, organism-specific proteins or genomic DNA signatures respectively. Hence, these assays lack the ability to detect novel natural variations or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic resistant or virulence enhanced Bacillus anthracis, to advise on therapeutic treatments. METHODOLOGY/PRINCIPAL FINDINGS: We show here that the Roche 454-based pyrosequencing can generate whole genome draft sequences of deep and broad enough coverage of a bacterial genome in less than 24 hours. Furthermore, using the unfinished draft sequences, we demonstrate that unbiased identification of known as well as heretofore-unreported genetic modifications that include indels and single nucleotide polymorphisms conferring antibiotic and phage resistances is feasible within the next 12 hours. CONCLUSIONS/SIGNIFICANCE: Second generation sequencing technologies have paved the way for sequence-based rapid identification of both known and previously undocumented genetic modifications in cultured, conventional and newly emerging biothreat agents. Our findings have significant implications in

  8. Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice.

    Directory of Open Access Journals (Sweden)

    Taissia G Popova

    Full Text Available Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissection. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the

  9. Reverse-Phase Microarray Analysis Reveals Novel Targets in Lymph Nodes of Bacillus anthracis Spore-Challenged Mice.

    Science.gov (United States)

    Popova, Taissia G; Espina, Virginia; Liotta, Lance A; Popov, Serguei G

    2015-01-01

    Anthrax is a frequently fatal infection of many animal species and men. The causative agent Bacillus anthracis propagates through the lymphatic system of the infected host; however, the specific interactions of the host and microbe within the lymphatics are incompletely understood. We report the first description of the phosphoprotein signaling in the lymph nodes of DBA/2 mice using a novel technique combining the reverse-phase microarray with the laser capture microdissection. Mice were challenged into foot pads with spores of toxinogenic, unencapsulated Sterne strain. The spores quickly migrated to the regional popliteal lymph nodes and spread to the bloodstream as early as 3 h post challenge. All mice died before 72 h post challenge from the systemic disease accompanied by a widespread LN tissue damage by bacteria, including the hemorrhagic necrotizing lymphadenitis, infiltration of CD11b+ and CD3+ cells, and massive proliferation of bacteria in lymph nodes. A macrophage scavenger receptor CD68/macrosialin was upregulated and found in association with vegetative bacteria likely as a marker of their prior interaction with macrophages. The major signaling findings among the 65 tested proteins included the reduced MAPK signaling, upregulation of STAT transcriptional factors, and altered abundance of a number of pro- and anti-apoptotic proteins with signaling properties opposing each other. Downregulation of ERK1/2 was associated with the response of CD11b+ macrophages/dendritic cells, while upregulation of the pro-apoptotic Puma indicated a targeting of CD3+ T-cells. A robust upregulation of the anti-apoptotic survivin was unexpected because generally it is not observed in adult tissues. Taken together with the activation of STATs it may reflect a new pathogenic mechanism aimed to delay the onset of apoptosis. Our data emphasize a notion that the net biological outcome of disease is determined by a cumulative impact of factors representing the microbial insult and

  10. Characterization of the N-Acetyl-[alpha]-d-glucosaminyl l-Malate Synthase and Deacetylase Functions for Bacillithiol Biosynthesis in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Parsonage, Derek; Newton, Gerald L.; Holder, Robert C.; Wallace, Bret D.; Paige, Carleitta; Hamilton, Chris J.; Dos Santos, Patricia C.; Redinbo, Matthew R.; Reid, Sean D.; Claiborne, Al (Wake Forest); (UNC); (East Anglia); (UCSD)

    2012-02-21

    Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce {alpha}-D-glucosaminyl L-malate (GlcN-malate) from UDP-GlcNAc and L-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase ({yields}GlcNAc-malate) and the BaBshB deacetylase ({yields}GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 {angstrom} resolution, identifies several active-site interactions important for the specific recognition of L-malate, but not other {alpha}-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-D-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

  11. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  12. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  13. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces.

    Science.gov (United States)

    Hodges, Lisa R; Rose, Laura J; O'Connell, Heather; Arduino, Matthew J

    2010-05-01

    Twelve Laboratory Response Network (LRN) affiliated laboratories participated in a validation study of a macrofoam swab protocol for the recovery, detection, and quantification of viable B. anthracis (BA) Sterne spores from steel surfaces. CDC personnel inoculated steel coupons (26cm(2)) with 1-4 log(10) BA spores and recovered them by sampling with pre-moistened macrofoam swabs. Phase 1 (P1) of the study evaluated swabs containing BA only, while dust and background organisms were added to swabs in Phase 2 (P2) to mimic environmental conditions. Laboratories processed swabs and enumerated spores by culturing eluted swab suspensions and counting colonies with morphology consistent with BA. Processed swabs were placed in enrichment broth, incubated 24h, and cultured by streaking for isolation. Real-time PCR was performed on selected colonies from P2 samples to confirm the identity of BA. Mean percent recovery (%R) of spores from the surface ranged from 15.8 to 31.0% (P1) and from 27.9 to 55.0% (P2). The highest mean percent recovery was 31.0% (sd 10.9%) for P1 (4 log(10) inoculum) and 55.0% (sd 27.6%) for P2 (1 log(10) inoculum). The overall %R was higher for P2 (44.6%) than P1 (24.1%), but the overall reproducibility (between-lab variability) was lower in P2 than in P1 (25.0 vs 16.5%CV, respectively). The overall precision (within-lab variability) was close to identical for P1 and P2 (44.0 and 44.1, respectively), but varied greatly between inoculum levels. The protocol demonstrated linearity in %R over the three inoculum levels and is able to detect between 26 and 5x10(6)spores/26cm(2). Sensitivity as determined by culture was >98.3% for both phases and all inocula, suggesting that the culture method maintains sensitivity in the presence of contaminants. The enrichment broth method alone was less sensitive for sampled swabs (66.4%) during P2, suggesting that the presence of background organisms inhibited growth or isolation of BA from the broth. The addition of

  14. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  15. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaiser, Brooke L.D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm2). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD95 was lowest for glass (0.429 CFU/cm2 with BAS and 0.341 CFU/cm2 with BG) and highest for vinyl tile (0.919 CFU/cm2 with BAS and 0.917 CFU/cm2 with BG). These mRV-PCR LOD95 values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm2 and BG: 0.820 to 1.489 CFU/cm2). The FNR and LOD95 values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  16. Detection of Bacillus anthracis spores and a model protein using PEMC sensors in a flow cell at 1 mL/min.

    Science.gov (United States)

    Campbell, Gossett A; Mutharasan, Raj

    2006-07-15

    Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors of 4mm(2) sensing area were immobilized with antibody specific to Bacillus anthracis (anti-BA) spores or bovine serum albumin (anti-BSA). Detection of pathogen (Bacillus anthracis (BA) at 300 spores/mL) and BSA (1 mg/mL) were investigated under both stagnant and flow conditions. Two flow cell designs were evaluated by characterizing flow-induced resonant frequency shifts. One of the flow cells labeled SFC-2 (hold-up volume of 0.3 mL), showed small fluctuations (+/-20 Hz) around a common resonant frequency response of 217 Hz in the flow rate range of 1-17 mL/min. The total resonant frequency change obtained for the binding of 300 spores/mL in 1h was 90+/-5 Hz (n=2), and 162+/-10 Hz (n=2) under stagnant and flow conditions, respectively. Binding of antibodies, anti-BA and anti-BSA, were more rapid under flow than under stagnant conditions. The sensor was repeatedly exposed to BSA with an intermediate release step. The first and second responses to BSA were nearly identical. The total resonant frequency response to BSA was 388+/-10 (n=2) Hz under flow conditions. Kinetic analysis is carried out to quantify the effect of flow rate on antibody immobilization and the two types of detection experiments.

  17. Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis-like plasmids are genetically and phenotypically diverse.

    Science.gov (United States)

    Bartoszewicz, Marek; Marjańska, Paulina Sylwia

    2017-10-01

    Bacillus cereus sensu lato is widely distributed in food products, including raw and processed milk. Plasmids often determine bacterial virulence and toxicity, but their role in the evolution of B. cereus sensu lato is only partly known. Here, we observed that nearly 8% of B. cereus sensu lato isolates were positive for pXO1-like plasmids and 12% for pXO2-like plasmids in raw and ultra-heat-treated (UHT) milk from one dairy plant. However, pXO1-like plasmids were significantly more frequent in raw milk, while pXO2-like plasmids were more frequent in processed milk. Strains from raw and UHT milk were enterotoxigenic, with up to one-fifth of the isolates being psychrotolerant. Phylogenetic assessment using multi-locus sequence typing revealed a polyphyletic structure for these bacilli, with distinct groups of cold-adapted isolates and pathogenic strains (including emetic B. cereus). Populations corresponding to both sampling sites exhibited significant linkage disequilibrium and the presence of purifying selection. The far-from-clonal population structure indicated the presence of sequence types or ecotypes adapted to specific conditions in the dairy industry. A high recombination-to-mutation ratio suggested an important role for horizontal gene transfer among B. cereus sensu lato isolates in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Structural elucidation of the nonclassical secondary cell wall polysaccharide from Bacillus cereus ATCC 10987. Comparison with the polysaccharides from Bacillus anthracis and B. cereus type strain ATCC 14579 reveals both unique and common structural features.

    Science.gov (United States)

    Leoff, Christine; Choudhury, Biswa; Saile, Elke; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2008-10-31

    Nonclassical secondary cell wall polysaccharides constitute a major cell wall structure in the Bacillus cereus group of bacteria. The structure of the secondary cell wall polysaccharide from Bacillus cereus ATCC 10987, a strain that is closely related to Bacillus anthracis, was determined. This polysaccharide was released from the cell wall with aqueous hydrogen fluoride (HF) and purified by gel filtration chromatography. The purified polysaccharide, HF-PS, was characterized by glycosyl composition and linkage analyses, mass spectrometry, and one- and two-dimensional NMR analysis. The results showed that the B. cereus ATCC 10987 HF-PS has a repeating oligosaccharide consisting of a -->6)-alpha-GalNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1--> trisaccharide that is substituted with beta-Gal at O3 of the alpha-GalNAc residue and nonstoichiometrically acetylated at O3 of the N-acetylmannosamine (ManNAc) residue. Comparison of this structure with that of the B. anthracis HF-PS and with structural data obtained for the HF-PS from B. cereus type strain ATCC 14579 revealed that each HF-PS had the same general structural theme consisting of three HexNAc and one Hex residues. A common structural feature in the HF-PSs from B. cereus ATCC 10987 and B. anthracis was the presence of a repeating unit consisting of a HexNAc(3) trisaccharide backbone in which two of the three HexNAc residues are GlcNAc and ManNAc and the third can be either GlcNAc or GalNAc. The implications of these results with regard to the possible functions of the HF-PSs are discussed.

  19. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  20. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.

    Science.gov (United States)

    Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F

    2014-05-01

    The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage

  1. [Development and comparative evaluation of up-converting phosphor technology based lateral flow assay for rapid detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp].

    Science.gov (United States)

    Li, Chunfeng; Zhang, Pingping; Wang, Xiaoying; Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Chengbin; Yang, Ruifu; Zhou, Lei

    2015-01-01

    To develop an up-converting phosphor technology based lateral flow (UPT-LF) assay for rapid and quantitative detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp.and make the comparison with BioThreat Alert (BTA) test strips (Tetracore Inc., USA). Using up-converting phosphor nano-particles (UCP-NPs) as the bio-marker, three double-antibody-sandwich model based UPT-LF strips including Plague-UPT-LF, Anthrax-UPT-LF, Brucella-UPT-LF were prepared and its sensitivity, accuracy, linearity and specificity were determined by detecting 10(10), 10(9), 10(8), 10(7), 10(6), 10(5) and 0 CFU/ml series of concentrations of Y.pestis, B.anthracis, Brucella standards and other 27 kinds of 10(9) CFU/ml series of contrations of bacteria strains.Furthermore, the speed, sensitivity and accuracy of bacteria standards and simulated sample detection were compared between UPT-LF and BTA system. The detection limit of Plague-UPT-LF, Anthrax-UPT-LF and Brucella-LF was 10(5) CFU/ml. The CV of series of bacteria concentrations was ≤ 15%, and the r between lg (T/C-cut-off) and lg (concentration) was 0.996,0.998 and 0.999 (F values were 1 647.57, 743.51 and 1 822.17. All the P values were Brucella-LF were excellent, while that of Anthrax-UPT-LF was a little bit regretful because of non-specific reaction with two isolates of B. subtilis and one B.cereus. On-site evaluation showed the detection time of UPT-LF for all Y.pestis, B.anthracis spore and Brucella spp.was 33, 36 and 37 min, while BTA was 115, 115 and 111 min, which revealed the higher detection speed and sensitivity of UPT-LF comparing with BTA. The negative rate of two methods for blank standard was both 5/5, the sensitivity of UPT-LF for Y.pestis,B.anthracis spore and Brucella spp. was all 10(5) CFU/ml, then BTA was 10(6), 10(6) and 10(5) CFU/ml, respectively. The detection rate of UPT-LF for all three bacteria analog positive samples was 16/16, while BTA for B.anthracis was 7/16 only. The good performance

  2. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution of Bacillus anthracis.

    Science.gov (United States)

    Barro, Alassane S; Fegan, Mark; Moloney, Barbara; Porter, Kelly; Muller, Janine; Warner, Simone; Blackburn, Jason K

    2016-06-01

    The ecology and distribution of B. anthracis in Australia is not well understood, despite the continued occurrence of anthrax outbreaks in the eastern states of the country. Efforts to estimate the spatial extent of the risk of disease have been limited to a qualitative definition of an anthrax belt extending from southeast Queensland through the centre of New South Wales and into northern Victoria. This definition of the anthrax belt does not consider the role of environmental conditions in the distribution of B. anthracis. Here, we used the genetic algorithm for rule-set prediction model system (GARP), historical anthrax outbreaks and environmental data to model the ecological niche of B. anthracis and predict its potential geographic distribution in Australia. Our models reveal the niche of B. anthracis in Australia is characterized by a narrow range of ecological conditions concentrated in two disjunct corridors. The most dominant corridor, used to redefine a new anthrax belt, parallels the Eastern Highlands and runs from north Victoria to central east Queensland through the centre of New South Wales. This study has redefined the anthrax belt in eastern Australia and provides insights about the ecological factors that limit the distribution of B. anthracis at the continental scale for Australia. The geographic distributions identified can help inform anthrax surveillance strategies by public and veterinary health agencies.

  3. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples.

    Science.gov (United States)

    Mertens, Katja; Freund, Lisa; Schmoock, Gernot; Hänsel, Christoph; Melzer, Falk; Elschner, Mandy C

    2014-01-17

    Spores of Bacillus anthracis are highly resistant and can survive conditions used for food preservation. Sample size and complexity represent the major hurdles for pathogen detection in food-related settings. Eleven commercial DNA extraction kits were evaluated for detection of B. anthracis spores by quantitative real-time PCR (qPCR) in dairy products. DNA was extracted from serial dilutions of B. anthracis spores in milk powder, cream cheese, whole milk and buttermilk. Three kits (QIAamp DNA mini kit, Invisorb Food kit I and II) were determined to produce the lowest limit of detections (LODs) with equally good performance. These kits employed lysozyme and proteinase K treatments or proteinase K in combination with cethyltrimethylamonium bromide-mediated (CTAB) precipitation of cell debris for cell disruption and DNA release. The LODs for these three kits were determined as 10(2) spores/ml of distilled water, 10(3)s pores/20 mg of powdered milk and 10(4) spores/100 mg of cream cheese, respectively. Performance testing of the QIAamp DNA mini kit demonstrated a good reproducibility and appropriate detection limits from 10(3)/ml for butter milk, 10(4)/ml for whole milk and 10(4)/100 mg for low fat cream cheese. However, DNA extraction efficiency was strongly inhibited by cream cheese with higher fat contents with an increased LOD of 10(6)/100 mg spores. This study demonstrated that qPCR detection depends directly on the appropriate DNA extraction method for an individual food matrix and bacterial agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Pyridine Nucleotide Complexes with Bacillus anthracis Coenzyme A-Disulfide Reductase: A Structural Analysis of Dual NAD(P)H Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wallen,J.; Paige, C.; Mallett, T.; Karplus, P.; Claiborne, A.

    2008-01-01

    We have recently reported that CoASH is the major low-molecular weight thiol in Bacillus anthracis, and we have now characterized the kinetic and redox properties of the B. anthracis coenzyme A-disulfide reductase (CoADR, BACoADR) and determined the crystal structure at 2.30 Angstroms resolution. While the Staphylococcus aureus and Borrelia burgdorferi CoADRs exhibit strong preferences for NADPH and NADH, respectively, B. anthracis CoADR can use either pyridine nucleotide equally well. Sequence elements within the respective NAD(P)H-binding motifs correctly reflect the preferences for S. aureus and Bo. burgdorferi CoADRs, but leave questions as to how BACoADR can interact with both pyridine nucleotides. The structures of the NADH and NADPH complexes at ca. 2.3 Angstroms resolution reveal that a loop consisting of residues Glu180-Thr187 becomes ordered and changes conformation on NAD(P)H binding. NADH and NADPH interact with nearly identical conformations of this loop; the latter interaction, however, involves a novel binding mode in which the 2'-phosphate of NADPH points out toward solvent. In addition, the NAD(P)H-reduced BACoADR structures provide the first view of the reduced form (Cys42-SH/CoASH) of the Cys42-SSCoA redox center. The Cys42-SH side chain adopts a new conformation in which the conserved Tyr367'-OH and Tyr425'-OH interact with the nascent thiol(ate) on the flavin si-face. Kinetic data with Y367F, Y425F, and Y367, 425F BACoADR mutants indicate that Tyr425' is the primary proton donor in catalysis, with Tyr367' functioning as a cryptic alternate donor in the absence of Tyr425'.

  5. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database.

    Directory of Open Access Journals (Sweden)

    Simon Thierry

    Full Text Available BACKGROUND: Bacillus anthracis is known to have low genetic variability. In spite of this lack of diversity, multiple-locus variable-number tandem repeat (VNTR analysis (MLVA and single nucleotide polymorphisms (SNPs including the canonical SNPs assay (canSNP have proved to be highly effective to differentiate strains. Five different MLVA schemes based on a collection of 31 VNTR loci (MLVA8, MLVA15, MLVA20, MLVA25 and MLVA31 with increased resolving power have been described. RESULTS: MLVA31 was applied to characterize the French National Reference Laboratory collection. The total collection of 130 strains is resolved in 35 genotypes. The 119 veterinary and environmental strains collection in France were resolved into 26 genotypes belonging to three canSNP lineages and four MLVA clonal complexes (CCs with particular geographical clustering. A subset of seven loci (MLVA7 is proposed to constitute a first line assay. The loci are compatible with moderate resolution equipment such as agarose gel electrophoresis and show a good congruence value with MLVA31. The associated MLVA and SNP data was imported together with published genotyping data by taking advantage of major enhancements to the MLVAbank software and web site. CONCLUSIONS: The present report provides a wide coverage of the genetic diversity of naturally occurring B. anthracis strains in France as can be revealed by MLVA. The data obtained suggests that once such coverage is achieved, it becomes possible to devise optimized first-line MLVA assays comprising a sufficiently low number of loci to be typed either in one multiplex PCR or on agarose gels. Such a selection of seven loci is proposed here, and future similar investigations in additional countries will indicate to which extend the same selection can be used worldwide as a common minimum set. It is hoped that this approach will contribute to an efficient and low-cost routine surveillance of important pathogens for biosecurity such as

  6. [Valuation for usefulness of selected chromosomal markers for Bacillus anthracis identification. II. Valuation for markers SSH and rpoB].

    Science.gov (United States)

    Zasada, Aleksandra Anna; Jagielski, Marek

    2006-01-01

    The article presents results of valuation for B. anthracis-specificity and usefulness for its identification obtained for different chromosomal markers. In the second part of the study markers SSH241, SSH196, SSH163, SSH133 as well as a fragment of the house-keeping gene rpoB were analyzed. For the investigation MSSCP and multiplex-PCR assays were used. There were also tested different techniques of electrophoresis. The results gave an information about specificity of tested markers and their usefulness for B. anthracis identification.

  7. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation.

    Science.gov (United States)

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril; Aspholm, Marina

    2017-07-15

    Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at 300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis , a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions that maintain the sensory and nutritional qualities of the food. High-pressure (HP) processing is a nonthermal

  8. The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage 8a revealed by cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaofeng [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Walter, Michael H. [Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Paredes, Angel [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States); Morais, Marc C., E-mail: mcmorais@utmb.edu [Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Liu, Jun, E-mail: Jun.Liu.1@uth.tmc.edu [Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030 (United States)

    2011-12-20

    The structure of the Bacillus anthracis spore-binding phage 8a was determined by cryo-electron tomography. The phage capsid forms a T = 16 icosahedron attached to a contractile tail via a head-tail connector protein. The tail consists of a six-start helical sheath surrounding a central tail tube, and a structurally novel baseplate at the distal end of the tail that recognizes and attaches to host cells. The parameters of the icosahedral capsid lattice and the helical tail sheath suggest protein folds for the capsid and tail-sheath proteins, respectively, and indicate evolutionary relationships to other dsDNA viruses. Analysis of 2518 intact phage particles show four distinct conformations that likely correspond to four sequential states of the DNA ejection process during infection. Comparison of the four observed conformations suggests a mechanism for DNA ejection, including the molecular basis underlying coordination of tail sheath contraction and genome release from the capsid.

  9. Characterization of AmiBA2446, a novel bacteriolytic enzyme active against Bacillus species.

    Science.gov (United States)

    Mehta, Krunal K; Paskaleva, Elena E; Azizi-Ghannad, Saba; Ley, Daniel J; Page, Martin A; Dordick, Jonathan S; Kane, Ravi S

    2013-10-01

    There continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls. In this work, we performed in silico analysis of the genome of Bacillus anthracis strain Ames, using a consensus binding domain amino acid sequence as a probe, and identified a novel lytic enzyme that we termed AmiBA2446. This enzyme exists as a homodimer, as determined by size exclusion studies. It possesses N-acetylmuramoyl-l-alanine amidase activity, as determined from liquid chromatography-mass spectrometry (LC-MS) analysis of muropeptides released due to the enzymatic digestion of peptidoglycan. Phylogenetic analysis suggested that AmiBA2446 was an autolysin of bacterial origin. We characterized the effects of enzyme concentration and phase of bacterial growth on bactericidal activity and observed close to a 5-log reduction in the viability of cells of Bacillus cereus 4342, a surrogate for B. anthracis. We further tested the bactericidal activity of AmiBA2446 against various Bacillus species and demonstrated significant activity against B. anthracis and B. cereus strains. We also demonstrated activity against B. anthracis spores after pretreatment with germinants. AmiBA2446 enzyme was also stable in solution, retaining its activity after 4 months of storage at room temperature.

  10. Multivalent Chromosomal Expression of the Clostridium botulinum Serotype A Neurotoxin Heavy-Chain Antigen and the Bacillus anthracis Protective Antigen in Lactobacillus acidophilus.

    Science.gov (United States)

    O'Flaherty, Sarah; Klaenhammer, Todd R

    2016-10-15

    Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid

  11. False Negative Rates of a Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates via Real-Time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deatherage Kaiser, Brooke L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-01

    Surface sampling for Bacillus anthracis spores has traditionally relied on detection via bacterial cultivation methods. Although effective, this approach does not provide the level of organism specificity that can be gained through molecular techniques. False negative rates (FNR) and limits of detection (LOD) were determined for two B. anthracis surrogates with modified rapid viability-polymerase chain reaction (mRV-PCR) following macrofoam-swab sampling. This study was conducted in parallel with a previously reported study that analyzed spores using a plate-culture method. B. anthracis Sterne (BAS) or B. atrophaeus Nakamura (BG) spores were deposited onto four surface materials (glass, stainless steel, vinyl tile, and plastic) at nine target concentrations (2 to 500 spores/coupon; 0.078 to 19.375 colony-forming units [CFU] per cm²). Mean FNR values for mRV-PCR analysis ranged from 0 to 0.917 for BAS and 0 to 0.875 for BG and increased as spore concentration decreased (over the concentrations investigated) for each surface material. FNRs based on mRV-PCR data were not statistically different for BAS and BG, but were significantly lower for glass than for vinyl tile. FNRs also tended to be lower for the mRV-PCR method compared to the culture method. The mRV-PCR LOD₉₅ was lowest for glass (0.429 CFU/cm² with BAS and 0.341 CFU/cm² with BG) and highest for vinyl tile (0.919 CFU/cm² with BAS and 0.917 CFU/cm² with BG). These mRV-PCR LOD₉₅ values were lower than the culture values (BAS: 0.678 to 1.023 CFU/cm² and BG: 0.820 to 1.489 CFU/cm²). The FNR and LOD₉₅ values reported in this work provide guidance for environmental sampling of Bacillus spores at low concentrations.

  12. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    Science.gov (United States)

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  13. The inactivation and removal of airborne Bacillus atrophaeus endospores from air circulation systems using UVC and HEPA filters.

    Science.gov (United States)

    Luna, V A; Cannons, A C; Amuso, P T; Cattani, J

    2008-02-01

    To (i) evaluate the UV radiation in the 'C' band/high efficient particulate air (UVC/HEPA) instrument's potential to inactivate spores of Bacillus atrophaeus and selected Bacillus species and (ii) test whether a titanium dioxide coating inside the cylindrical HEPA filter improves the system's efficacy. Known amounts of dried spore preparations of B. atrophaeus, Bacillus cereus, Bacillus megaterium, Bacillus stearothermophilus and Bacillus thuringiensis were exposed to the UVC lamp within a cylindrical HEPA filter for different time lengths (30 min to 48 h) and with different air flow speeds (0-235 l s(-1)). The log(10) reduction (range 5-16 logs) of colony forming units for spores exposed to the UVC compared with the unexposed spores was significant (P HEPA filter significantly increased the inactivation of spores (P HEPA unit could inactivate spores of B. atrophaeus, B. cereus, B. megaterium, B. stearothermophilus and B. thuringiensis. The UVC/HEPA unit represents an effective method of decontaminating circulating air within an air-duct system as found in a building.

  14. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging.

    Science.gov (United States)

    Luksiene, Z; Buchovec, I; Paskeviciute, E

    2010-11-01

    This study was focused on the possibility to inactivate food-borne pathogen Bacillus cereus by Na-chlorophyllin (Na-Chl)-based photosensitization in vitro and after attachment to the surface of packaging material. Bacillus cereus in vitro or attached to the packaging was incubated with Na-Chl (7·5×10(-8) to 7·5×10(-5) mol l(-1) ) for 2-60min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400nm and an energy density of 20mW cm(-2) . The illumination time varied 0-5min and subsequently the total energy dose was 0-6J cm(-2) . The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5×10(-7) mol l(-1) Na-Chl and following illumination were inactivated by 7log. The photoinactivation of B. cereus spores in vitro by 4log required higher (7·5×10(-6) mol l(-1) ) Na-Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5log at 7·5×10(-5) mol l(-1) Na-Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by packaging material. Spores are more resistant than vegetative cells to photosensitization-based inactivation. Comparison of different surface decontamination treatments indicates that Na-Chl-based photosensitization is much more effective antibacterial tool than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization has great potential for future application as an environment-friendly, nonthermal surface decontamination technique. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  15. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes.

    Science.gov (United States)

    Chitlaru, Theodor; Israeli, Ma'ayan; Rotem, Shahar; Elia, Uri; Bar-Haim, Erez; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2017-10-20

    We recently reported the development of a novel, next-generation, live attenuated anthrax spore vaccine based on disruption of the htrA (High Temperature Requirement A) gene in the Bacillus anthracis Sterne veterinary vaccine strain. This vaccine exhibited a highly significant decrease in virulence in murine, guinea pig and rabbit animal models yet preserved the protective value of the parental Sterne strain. Here, we report the evaluation of additional mutations in the lef and cya genes, encoding for the toxin components lethal factor (LF) and edema factor (EF), to further attenuate the SterneΔhtrA strain and improve its compatibility for human use. Accordingly, we constructed seven B. anthracis Sterne-derived strains exhibiting different combinations of mutations in the htrA, cya and lef genes. The various strains were indistinguishable in growth in vitro and in their ability to synthesise the protective antigen (PA, necessary for the elicitation of protection). In the sensitive murine model, we observed a gradual increase (ΔhtrAattenuation - up to 10 8 -fold relative to the parental Sterne vaccine strain. Most importantly, all various SterneΔhtrA derivative strains did not differ in their ability to elicit protective immunity in guinea pigs. Immunisation of guinea pigs with a single dose (10 9 spores) or double doses (>10 7 spores) of the most attenuated triple mutant strain SterneΔhtrAlef MUT Δcya induced a robust immune response, providing complete protection against a subsequent respiratory lethal challenge. Partial protection was observed in animals vaccinated with a double dose of as few as 10 5 spores. Furthermore, protective immune status was maintained in all vaccinated guinea pigs and rabbits for at least 40 and 30weeks, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei.

    Science.gov (United States)

    Su, Shengchang; Bangar, Hansraj; Saldanha, Roland; Pemberton, Adin; Aronow, Bruce; Dean, Gary E; Lamkin, Thomas J; Hassett, Daniel J

    2014-10-01

    Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Low-level detection of a bacillus anthracis simulant using Love-wave biosensors on 36 degrees YX LiTaO3.

    Science.gov (United States)

    Branch, Darren W; Brozik, Susan M

    2004-03-15

    We present an acoustic Love-wave biosensor for detection of the Bacillus anthracis simulant, Bacillus thuringiensis at or below inhalational infectious levels. The present work is an experimental study of 36 degrees YX cut LiTaO3 based Love-wave devices for detection of pathogenic spores in aqueous conditions. Given that the detection limit (D1) of Love-wave-based sensors is a strong function of the overlying waveguide, two waveguide materials have been investigated, which are polyimide and polystyrene. To determine the mass sensitivity of Love-wave sensor, bovine serum albumin (BSA) protein was injected into the Love-wave test cell while recording the magnitude and phase shift across each sensor. Polyimide had the lowest mass detection limit with an estimated value of 1.0-2.0 ng/cm2, as compared to polystyrene where D1 = 2.0 ng/cm2. Suitable chemistries were used to orient antibodies on the Love-wave sensor using protein G. The thickness of each biofilm was measured using ellipsometry from which the surface concentrations were calculated. The monoclonal antibody BD8 with a high degree of selectivity for anthrax spores was used to capture the non-pathogenic simulant B. thuringiensis B8 spores. Bacillus subtilis spores were used as a negative control to determine whether significant non-specific binding would occur. Spore aliquots were prepared using an optical counting method, which permitted removal of background particles for consistent sample preparation. This work demonstrates that Love-wave biosensors are promising for low-level detection for whole-cell biological pathogens.

  18. Comparative genomics of Bacillus anthracis from the wool industry highlights polymorphisms of lineage A.Br.Vollum.

    Science.gov (United States)

    Derzelle, Sylviane; Aguilar-Bultet, Lisandra; Frey, Joachim

    2016-12-01

    With the advent of affordable next-generation sequencing (NGS) technologies, major progress has been made in the understanding of the population structure and evolution of the B. anthracis species. Here we report the use of whole genome sequencing and computer-based comparative analyses to characterize six strains belonging to the A.Br.Vollum lineage. These strains were isolated in Switzerland, in 1981, during iterative cases of anthrax involving workers in a textile plant processing cashmere wool from the Indian subcontinent. We took advantage of the hundreds of currently available B. anthracis genomes in public databases, to investigate the genetic diversity existing within the A.Br.Vollum lineage and to position the six Swiss isolates into the worldwide B. anthracis phylogeny. Thirty additional genomes related to the A.Br.Vollum group were identified by whole-genome single nucleotide polymorphism (SNP) analysis, including two strains forming a new evolutionary branch at the basis of the A.Br.Vollum lineage. This new phylogenetic lineage (termed A.Br.H9401) splits off the branch leading to the A.Br.Vollum group soon after its divergence to the other lineages of the major A clade (i.e. 6 SNPs). The available dataset of A.Br.Vollum genomes were resolved into 2 distinct groups. Isolates from the Swiss wool processing facility clustered together with two strains from Pakistan and one strain of unknown origin isolated from yarn. They were clearly differentiated (69 SNPs) from the twenty-five other A.Br.Vollum strains located on the branch leading to the terminal reference strain A0488 of the lineage. Novel analytic assays specific to these new subgroups were developed for the purpose of rapid molecular epidemiology. Whole genome SNP surveys greatly expand upon our knowledge on the sub-structure of the A.Br.Vollum lineage. Possible origin and route of spread of this lineage worldwide are discussed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights

  19. Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments.

    Science.gov (United States)

    Artíguez, Mari Luz; Martínez de Marañón, Iñigo

    2015-12-02

    The combined effect of pulsed light (PL) and heat processing was evaluated on the inactivation of Bacillus subtilis spores. Those processes were applied separately and the time between both treatments was modified to evaluate whether the effect of the first treatment is maintained for a long time. B. subtilis spores subjected to sublethal pre-treatments were more sensitive to subsequent treatments (PL or thermal treatments) than untreated spores. Heating followed by PL was the most effective combination in reducing B. subtilis counts. Bacterial spores remained sensitized to subsequent treatment for at least 24 h of storage in water, whatever the temperature was (4 or 30°C). Sensitivity of B. subtilis cells to PL or heat processing increased after germination in a nutrient broth, being equally sensitive from 3 to 24 h. Vegetative cells maintained their enhanced sensitivity to subsequent processing after spore germination. The results of this work demonstrate that the combination of heating and PL treatment is a promising preservation method for microbial inactivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaiser, Brooke L. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barrett, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-16

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results are discussed in a separate report.

  1. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deatherage Kaiser, Brooke L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sydor, Michael A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barrett, Christopher A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.

  2. Structural and Functional Properties of Exopolysaccharide Excreted by a NovelBacillus anthracis(Strain PFAB2) of Hot Spring Origin.

    Science.gov (United States)

    Banerjee, Aparna; Rudra, Shalini Gaur; Mazumder, Koushik; Nigam, Vinod; Bandopadhyay, Rajib

    2018-03-01

    Exopolysaccharide produced by a unique avirulent Bacillus anthracis strain PFAB2 of hot spring origin has been characterized and its functional properties are investigated which is a first report. Maximum yield of EPS is 7.66 g/l with 2% glucose and 1% peptone as optimum carbon and nitrogen source respectively. The EPS is found to be a homopolymer consisting of only glucose as principle monosaccharide component. Through 1 H NMR study, different dextran-like proton peaks are observed. Molecular weight of the EPS resembles low molecular weight bacterial origin polysaccharides. Melting transition of the EPS has started after 276 °C which indicates good thermal stability. The EPS also shows potent antioxidant activity in terms of DPPH and ABTS mediated free radical scavenging property compared to standard ascorbic acid. Emulsifying property of the EPS is also observed and has shown good emulsification of vegetable oils. The polysaccharide forms a thermo resistant gel during the heating phase, with G' higher than G″ indicating excellent shear-thinning behaviour and viscoelastic nature of the EPS.

  3. Structure of the Bacillus anthracis dTDP- L -rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA)

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Jackson; Lee, Jesi; Halavaty, Andrei S.; Minasov, George; Anderson, Wayne F.; Kuhn, Misty L. (NWU); (SFSU)

    2017-10-30

    L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), fromBacillus anthraciswas determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs. However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.

  4. A multiplex bead-based suspension array assay for interrogation of phylogenetically informative single nucleotide polymorphisms for Bacillus anthracis

    DEFF Research Database (Denmark)

    Thierry, Simon; Hamidjaja, Raditijo A.; Girault, Guillaume

    2013-01-01

    Single nucleotide polymorphisms (SNPs) are abundant in genomes of all species and represent informative DNA markers extensively used to analyze phylogenetic relationships between strains. Medium to high throughput, open methodologies able to test many SNPs in a minimum time are therefore in great...... been modified and adapted for simultaneous interrogation of 13 biallelic canonical SNPs in a 13-plex assay. Changes made to the originally published method include the design of allele-specific dual-priming-oligonucleotides (DPOs) as competing detection probes (MOLigo probes) and use of asymmetric PCR...... laboratories. While cost-effective compared to other singleplex methods, the present MOL-PCR method offers a high degree of flexibility and scalability. It can easily accommodate newly identified SNPs to increase resolving power to the canSNP typing of B. anthracis....

  5. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  6. Non-Toxin-Producing Bacillus cereus Strains Belonging to the B. anthracis Clade Isolated from the International Space Station

    NARCIS (Netherlands)

    Venkateswaran, Kasthuri; Singh, Nitin K.; Sielaff, Aleksandra Checinska; Pope, Robert K.; Bergman, Nicholas H.; van Tongeren, Sandra P.; Patel, Nisha B.; Lawson, Paul A.; Satomi, Masataka; Williamson, Charles H. D.; Sahl, Jason W.; Keim, Paul; Pierson, Duane; Perry, Jay

    2017-01-01

    ABSTRACT: In an ongoing Microbial Observatory investigation of the International Space Station (ISS), 11 Bacillus strains (2 from the Kibo Japanese experimental module, 4 from the U.S. segment, and 5 from the Russian module) were isolated and their whole genomes were sequenced. A comparative

  7. Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit

    Directory of Open Access Journals (Sweden)

    Ceuppens Siele

    2012-10-01

    Full Text Available Abstract Background The foodborne pathogen Bacillus cereus can cause diarrhoeal food poisoning by production of enterotoxins in the small intestine. The prerequisite for diarrhoeal disease is thus survival during gastrointestinal passage. Methods Vegetative cells of 3 different B. cereus strains were cultivated in a real composite food matrix, lasagne verde, and their survival during subsequent simulation of gastrointestinal passage was assessed using in vitro experiments simulating transit through the human upper gastrointestinal tract (from mouth to small intestine. Results No survival of vegetative cells was observed, despite the high inoculum levels of 7.0 to 8.0 log CFU/g and the presence of various potentially protective food components. Significant fractions (approx. 10% of the consumed inoculum of B. cereus vegetative cells survived gastric passage, but they were subsequently inactivated by bile exposure in weakly acidic intestinal medium (pH 5.0. In contrast, the low numbers of spores present (up to 4.0 log spores/g showed excellent survival and remained viable spores throughout the gastrointestinal passage simulation. Conclusion Vegetative cells are inactivated by gastric acid and bile during gastrointestinal passage, while spores are resistant and survive. Therefore, the physiological form (vegetative cells or spores of the B. cereus consumed determines the subsequent gastrointestinal survival and thus the infective dose, which is expected to be much lower for spores than vegetative cells. No significant differences in gastrointestinal survival ability was found among the different strains. However, considerable strain variability was observed in sporulation tendency during growth in laboratory medium and food, which has important implications for the gastrointestinal survival potential of the different B. cereus strains.

  8. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  9. Decontamination Efficacy of Three Commercial-Off-The-Shelf (COTS) Sporicidal Disinfectants on Medium-Sized Panels Contaminated with Surrogate Spores of Bacillus anthracis

    Science.gov (United States)

    Sabol, Jonathan P.

    2014-01-01

    In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation’s remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types. PMID:24940605

  10. Evaluation of up-converting phosphor technology-based lateral flow strips for rapid detection of Bacillus anthracis Spore, Brucella spp., and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Pingping Zhang

    Full Text Available Bacillus anthracis, Brucella spp., and Yersinia pestis are zoonotic pathogens and biowarfare- or bioterrorism-associated agents that must be detected rapidly on-site from various samples (e.g., viscera and powders. An up-converting phosphor technology-based lateral flow (UPT-LF strip was developed as a point-of-care testing (POCT to satisfy the requirements of first-level emergency response. We developed UPT-LF POCT to quantitatively detect the three pathogens within 15 min. Sample and operation-error tolerances of the assay were comprehensively evaluated. The sensitivity of UPT-LF assay to bacterial detection reached 10(4 cfu · mL(-1 (100 cfu/test, with a linear quantitative range of 4 to 6 orders of magnitude. Results revealed that the UPT-LF assay exhibited a high specificity with the absence of false-positive results even at 10(9 cfu · mL(-1 of non-specific bacterial contamination. The assay could tolerate samples with a wide pH range (2 to 12, high ion strengths (≥ 4 mol · L(-1 of NaCl, high viscosities (≤ 25 mg · mL(-1 of PEG20000 or ≥ 20% of glycerol, and high concentrations of bio-macromolecule (≤ 200 mg · mL(-1 of bovine serum albumin or ≥ 80 mg · mL(-1 of casein. The influence of various types of powders and viscera (fresh and decomposed on the performance of UPT-LF assay was determined. The operational error of liquid measurement exhibited few effects on sensitivity and specificity. The developed UPT-LF POCT assay is applicable under field conditions with excellent tolerance to sample complexity and operational error.

  11. Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge.

    Science.gov (United States)

    Aldred, Katie J; Breland, Erin J; McPherson, Sylvia A; Turnbough, Charles L; Kerns, Robert J; Osheroff, Neil

    2014-12-01

    The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Decontamination efficacy of three commercial-off-the-shelf (COTS sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Jason M Edmonds

    Full Text Available In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation's remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm, resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2 panels of steel, pressure-treated (PT lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types.

  13. Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in Phage AP50c infection of Bacillus anthracis.

    Science.gov (United States)

    Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga

    2014-03-01

    In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.

  14. Response surface modeling for the inactivation of Bacillus subtilis subsp. niger spores by chlorine dioxide gas in an enclosed space.

    Science.gov (United States)

    Wang, Tao; Qi, Jiancheng; Wu, Jinhui; Hao, Limei; Yi, Ying; Lin, Song; Zhang, Zongxing

    2016-05-01

    Bacillus subtilis subsp. niger spores are a commonly used biological indicator to evaluate the disinfection of an enclosed space. In the present study, chlorine dioxide (ClO2) gas was applied to inactivate B. subtilis subsp. niger spores in an enclosed space. The effects of the ClO2 gas concentration (1-3 mg/l), relative humidity (RH, 30-70%) and exposure time (30-90 min) were investigated using a response surface methodology (RSM). A three-factor Box-Behnken experimental design was used. The obtained data were adequately fitted to a second-order polynomial model with an R2adj of 0.992. The ClO2 gas concentration, RH and exposure time all significantly (Pgas concentration and RH as well as that between the exposure time and RH indicated significant and synergistic effects (Pgas. The inactivation of indoor biological contaminants plays an important role in preventing the transmission of pathogens and ensuring human safety. The predictive model using response surface methodology indicates the influence and interaction of the main factors on the inactivation of Bacillus subtilis subsp. niger spores by ClO2 gas, and can predict a ClO2 gas treatment condition to achieve an effective sterilization of enclosed spaces. The results in this paper will provide a reference for the application of ClO2 gas treatments for indoor disinfection.

  15. ATR/TEM8 is highly expressed in epithelial cells lining Bacillus anthracis' three sites of entry: implications for the pathogenesis of anthrax infection.

    Science.gov (United States)

    Bonuccelli, Gloria; Sotgia, Federica; Frank, Philippe G; Williams, Terence M; de Almeida, Cecilia J; Tanowitz, Herbert B; Scherer, Philipp E; Hotchkiss, Kylie A; Terman, Bruce I; Rollman, Brent; Alileche, Abdelkrim; Brojatsch, Jürgen; Lisanti, Michael P

    2005-06-01

    Anthrax is a disease caused by infection with spores from the bacteria Bacillus anthracis. These spores enter the body, where they germinate into bacteria and secrete a tripartite toxin that causes local edema and, in systemic infections, death. Recent studies identified the cellular receptor for anthrax toxin (ATR), a type I membrane protein. ATR is one of the splice variants of the tumor endothelial marker 8 (TEM8) gene. ATR and TEM8 are identical throughout their extracellular and transmembrane sequence, and both proteins function as receptors for the toxin. ATR/TEM8 function and expression have been associated with development of the vascular system and with tumor angiogenesis. TEM8 is selectively upregulated in endothelial cells during blood vessel formation and tumorigenesis. However, selective expression of TEM8 in endothelial cells contradicts the presumably ubiquitous expression of the receptor. To resolve this controversial issue, we evaluated the distribution of ATR/TEM8 in a variety of tissues. For this purpose, we generated and characterized a novel anti-ATR/TEM8 polyclonal antibody. Here, we show that this novel antibody recognizes all three ATR/TEM8 isoforms, which are widely and differentially expressed in various tissue types. We found that ATR/TEM8 expression is not only associated with tumor endothelial cells, as previously described. Indeed, ATR/TEM8 is highly and selectively expressed in the epithelial cells lining those organs that constitute the anthrax toxin's sites of entry, i.e., the lung, the skin, and the intestine. In fact, we show that ATR/TEM8 is highly expressed in the respiratory epithelium of the bronchi of the lung and is particularly abundant in the ciliated epithelial cells coating the bronchi. Furthermore, immunostaining of skin biopsies revealed that ATR/TEM8 is highly expressed in the keratinocytes of the epidermis. Finally, we show that the epithelial cells lining the small intestine strongly express ATR/TEM8 isoforms. This

  16. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates.

    Science.gov (United States)

    Taha, Hesham; Dove, Stefan; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Seifert, Roland

    2012-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis

  17. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Science.gov (United States)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  18. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun-Hee [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Park, Ji-Yong [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jong-Hyun [Department of Food Science and Biotechnology, Kyungwon University, Sungnam 461-701 (Korea, Republic of); Chung, Myong-Soo [Department of Food Science, Ehwa Women' s University, Seoul 120-750 (Korea, Republic of); Kwon, Ki-Sung [Center for Food safety Evaluation, Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Chung, Kyungsook; Won, Misun [Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Song, Kyung-Bin [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)], E-mail: kbsong@cnu.ac.kr

    2008-09-15

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D{sub 10}-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  19. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    International Nuclear Information System (INIS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-01-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D 10 -vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities

  20. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Directory of Open Access Journals (Sweden)

    Jensen GS

    2017-08-01

    Full Text Available Gitte S Jensen,1 Howard A Cash,2 Sean Farmer,2 David Keller2 1NIS Labs, Esplanade, Klamath Falls, OR, USA, 2Ganeden Biotech Inc., Landerbrook Drive Suite, Mayfield Heights, OH, USA Objective: The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™ cells on human immune cells in vitro.Methods: In vitro cultures of human peripheral blood mononuclear cells (PBMC from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors.Results: Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response.Conclusion: The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that

  1. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  2. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce.

    Science.gov (United States)

    Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W

    2012-01-16

    Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this

  3. Inactivation of Bacillus cereus and Salmonella enterica serovar Typhimurium by aqueous ozone (O3): Modeling and Uv-Vis spectroscopic analysis

    Science.gov (United States)

    Ozone (O3) is a natural antimicrobial agent with potential applications in food industry. In this study, inactivation of Bacillus cereus and Salmonella enterica Typhimurium by aqueous ozone was evaluated. Ozone gas was generated using a domestic ozone generator with an output of 200 mg/hr (approx. 0...

  4. A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration

    NARCIS (Netherlands)

    Membre, J.M.; Amezquita, A.; Bassett, J.; Giavedoni, P.; Blackburn, W.; Gorris, L.G.M.

    2006-01-01

    The survival of spore-forming bacteria is linked to the safety and stability of refrigerated processed foods of extended durability (REPFEDs). A probabilistic modeling approach was used to assess the prevalence and concentration of Bacillus cereus spores surviving heat treatment for a semiliquid

  5. Effects of dietary inulin and heat-inactivated Bacillus subtilis on gilthead seabream (Sparus aurata L.) innate immune parameters.

    Science.gov (United States)

    Cerezuela, R; Cuesta, A; Meseguer, J; Esteban, M A

    2012-03-01

    In the present study, a feeding trial was conducted to evaluate the effect of inulin and heat-inactivated Bacillus subtilis, single or combined, on several innate immune activities of gilthead seabream (Sparus aurata). Forty-eight specimens were randomly assigned to four dietary treatments: 0 (control), inulin (10 g/kg, prebiotic group), B. subtilis (10(7) cfu/g, probiotic group), or B. subtilis + inulin (10(7) cfu/g + 10 g/kg, synbiotic group). After two and four weeks, six fish of each group were sampled, with the main innate immune parameters (natural haemolytic complement activity, serum and leucocyte peroxidase, phagocytosis, respiratory burst, and cytotoxic activities) being determined. Inulin or heat-inactivated B. subtilis failed to significantly stimulate the innate immune parameters assayed, although some activities showed no significant increase through these treatments. A combination of inulin and B. subtilis resulted in an increase of such parameters, with the haemolytic complement activity being the only one significantly stimulated. To conclude, inulin and B. subtilis, when administered as a synbiotic, have a synergistic effect and enhance some innate immune parameters of gilthead seabream.

  6. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls

  7. Inactivated probioticBacillus coagulansGBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    Science.gov (United States)

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086

  8. Characterization of Potential Antimicrobial Targets in Bacillus spp. II. Branched-Chain Aminotransferase and Methionine Regeneration in B. cereus and B. anthracis

    Science.gov (United States)

    2002-09-01

    canaline, un inhibiteur de transaminase, inhibait la croissance de B. cereus avec une C150 de 35 gM dans un milieu minimum et 760 pM dans un bouillon...Depuis quelques anndes, ii existe une croissance de la rdsistance naturelle du charbon A la pdnicilline et aux autres antibiotiques b~ta-lactamines...tabolisme du B. anthracis. L’inhibition de la croissance du B. cereus in vitro avec la transaminase inhibitrice de la canaline a montr6 que le compos6 a

  9. Kinetics of Inactivation of Bacillus subtilis subsp. niger Spores and Staphylococcus albus on Paper by Chlorine Dioxide Gas in an Enclosed Space.

    Science.gov (United States)

    Wang, Tao; Wu, Jinhui; Qi, Jiancheng; Hao, Limei; Yi, Ying; Zhang, Zongxing

    2016-05-15

    Bacillus subtilis subsp. niger spore and Staphylococcus albus are typical biological indicators for the inactivation of airborne pathogens. The present study characterized and compared the behaviors of B. subtilis subsp. niger spores and S. albus in regard to inactivation by chlorine dioxide (ClO2) gas under different gas concentrations and relative humidity (RH) conditions. The inactivation kinetics under different ClO2 gas concentrations (1 to 5 mg/liter) were determined by first-order and Weibull models. A new model (the Weibull-H model) was established to reveal the inactivation tendency and kinetics for ClO2 gas under different RH conditions (30 to 90%). The results showed that both the gas concentration and RH were significantly (P 70%). Compared with the first-order model, the Weibull and Weibull-H models demonstrated a better fit for the experimental data, indicating nonlinear inactivation behaviors of the vegetative bacteria and spores following exposure to ClO2 gas. The times to achieve a six-log reduction of B. subtilis subsp. niger spore and S. albus were calculated based on the established models. Clarifying the kinetics of inactivation of B. subtilis subsp. niger spores and S. albus by ClO2 gas will allow the development of ClO2 gas treatments that provide an effective disinfection method. Chlorine dioxide (ClO2) gas is a novel and effective fumigation agent with strong oxidization ability and a broad biocidal spectrum. The antimicrobial efficacy of ClO2 gas has been evaluated in many previous studies. However, there are presently no published models that can be used to describe the kinetics of inactivation of airborne pathogens by ClO2 gas under different gas concentrations and RH conditions. The first-order and Weibull (Weibull-H) models established in this study can characterize and compare the behaviors of Bacillus subtilis subsp. niger spores and Staphylococcus albus in regard to inactivation by ClO2 gas, determine the kinetics of inactivation of

  10. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    Science.gov (United States)

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  11. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  12. Effect of water-surface discharge on the inactivation of Bacillus subtilis due to protein lysis and DNA damage.

    Science.gov (United States)

    Kadowaki, Kazunori; Sone, Toshifumi; Kamikozawa, Takashi; Takasu, Hiroyuki; Suzuki, Satoru

    2009-09-01

    The effect of water-surface discharge on the inactivation of Bacillus subtilis ATCC6633 in water was examined by using a very short high-voltage pulse generator. The surviving number of spore cells at 10(4) CFU/ml in initial concentration exponentially decreased with increasing discharge-treatment time. The input energy into the water-surface discharge under an O(2) gas flow for reduction in the survival number to 10% was lower than that under an air flow because many oxidation agents such as ozone and OH radical were produced under the O(2) gas flow. The input energy density for the one-tenth reduction depended not only on the spore state but also on the initial cell concentration. The input energy for the high-concentration spore cells (10(7) CFU/ml) was much higher than that for the low-concentration spore cells (10(4) CFU/ml). Cellular proteins and DNA were degraded by a 30-min discharge treatment of vegetative cells, whereas DNA of the high-concentration spore cells was relatively resistant.

  13. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe0process for safe water production.

    Science.gov (United States)

    Yousefzadeh, Samira; Matin, Atiyeh Rajabi; Ahmadi, Ehsan; Sabeti, Zahra; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-01

    One of the most important aspects of environmental issues is the demand for clean and safe water. Meanwhile, disinfection process is one of the most important steps in safe water production. The present study aims at estimating the performance of UV, nano Zero-Valent Iron particles (nZVI, nano-Fe 0 ), and UV treatment with the addition of nZVI (combined process) for Bacillus subtilis spores inactivation. Effects of different factors on inactivation including contact time, initial nZVI concentration, UV irradiance and various aerations conditions were investigated. Response surface methodology, based on a five-level, two variable central composite design, was used to optimize target microorganism reduction and the experimental parameters. The results indicated that the disinfection time had the greatest positive impact on disinfection ability among the different selected independent variables. According to the results, it can be concluded that microbial reduction by UV alone was more effective than nZVI while the combined UV/nZVI process demonstrated the maximum log reduction. The optimum reduction of about 4 logs was observed at 491 mg/L of nZVI and 60 min of contact time when spores were exposed to UV radiation under deaerated condition. Therefore, UV/nZVI process can be suggested as a reliable method for Bacillus subtilis spores inactivation. Copyright © 2018. Published by Elsevier Ltd.

  14. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    Directory of Open Access Journals (Sweden)

    van Rotterdam Bart J

    2010-12-01

    Full Text Available Abstract Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum

  15. Analogies and surprising differences between recombinant nitric oxide synthase-like proteins from Staphylococcus aureus and Bacillus anthracis in their interactions with l-arginine analogs and iron ligands.

    Science.gov (United States)

    Salard, Isabelle; Mercey, Emilie; Rekka, Eleni; Boucher, Jean-Luc; Nioche, Pierre; Mikula, Ivan; Martasek, Pavel; Raman, C S; Mansuy, Daniel

    2006-12-01

    Genome sequencing has recently shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles of these proteins remain unclear. The interactions of a series of l-arginine (l-arg) analogs and iron ligands with two recombinant NOS-like proteins from Staphylococcus aureus (saNOS) and Bacillus anthracis (baNOS) have been studied by UV-visible spectroscopy. SaNOS and baNOS in their ferric native state, as well as their complexes with l-arg analogs and with various ligands, exhibit spectral characteristics highly similar to the corresponding complexes of heme-thiolate proteins such as cytochromes P450 and NOSs. However, saNOS greatly differs from baNOS at the level of three main properties: (i) native saNOS mainly exists under an hexacoordinated low-spin ferric state whereas native baNOS is mainly high-spin, (ii) the addition of tetrahydrobiopterin (H4B) or H4B analogs leads to an increase of the affinity of l-arg for saNOS but not for baNOS, and (iii) saNOS Fe(II), contrary to baNOS, binds relatively bulky ligands such as nitrosoalkanes and tert-butylisocyanide. Thus, saNOS exhibits properties very similar to those of the oxygenase domain of inducible NOS (iNOS(oxy)) not containing H4B, as expected for a NOSoxy-like protein that does not contain H4B. By contrast, the properties of baNOS which look like those of H4B-containing iNOS(oxy) are unexpected for a NOS-like protein not containing H4B. The origin of these surprising properties of baNOS remains to be determined.

  16. Ultra high pressure homogenization (UHPH inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS and milk

    Directory of Open Access Journals (Sweden)

    Peng eDong

    2015-07-01

    Full Text Available Ultra high pressure homogenization (UHPH opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0, low fat milk (1.5%, pH 6.7 and whole milk (3.5%, pH 6.7 at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300 and 350 MPa with an inlet temperature at ~80 °C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using mechanistic linear first order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125 °C caused no reduction of spores. A reduction of 3.5 log10 CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150 °C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation.

  17. Germination of Bacillus cereus spores : the role of germination receptors

    NARCIS (Netherlands)

    Hornstra, L.M.

    2007-01-01

    The Bacillus cereus sensu lato group forms a highly homogeneous subdivision of the genus Bacillus and comprises several species that are relevant for humans. Notorious is Bacillus anthracis, the cause of the often-lethal disease anthrax, while the insect pathogen Bacillus

  18. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces.

    Science.gov (United States)

    Bleichert, Pauline; Espírito Santo, Christophe; Hanczaruk, Matthias; Meyer, Hermann; Grass, Gregor

    2014-12-01

    In recent years several studies in laboratory settings and in hospital environments have demonstrated that surfaces of massive metallic copper have intrinsic antibacterial and antiviral properties. Microbes are rapidly inactivated by a quick, sharp shock known as contact killing. The underlying mechanism is not yet fully understood; however, in this process the cytoplasmic membrane is severely damaged. Pathogenic bacterial and viral high-consequence species able to evade the host immune system are among the most serious lethal microbial challenges to human health. Here, we investigated contact-killing mediated by copper surfaces of Gram-negative bacteria (Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis tularensis and Yersinia pestis) and of Gram-positive endospore-forming Bacillus anthracis. Additionally, we also tested inactivation of monkeypox virus and vaccinia virus on copper. This group of pathogens comprises biothreat species (or their close relatives) classified by the Center for Disease and Control and Prevention (CDC) as microbial select agents posing severe threats to public health and having the potential to be deliberately released. All agents were rapidly inactivated on copper between 30 s and 5 min with the exception of B. anthracis endospores. For vegetative bacterial cells prolonged contact to metallic copper resulted in the destruction of cell structure.

  19. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package.

    Science.gov (United States)

    Patil, S; Moiseev, T; Misra, N N; Cullen, P J; Mosnier, J P; Keener, K M; Bourke, P

    2014-11-01

    Non-thermal plasma has received much attention for elimination of microbial contamination from a range of surfaces. This study aimed to determine the effect of a range of dielectric barrier discharge high voltage atmospheric cold plasma (HVACP) parameters for inactivation of Bacillus atrophaeus spores inside a sealed package. A sterile polystyrene Petri dish containing B. atrophaeus spore strip (spore population 2.3 × 10(6)/strip i.e. 6.36 log10/strip) was placed in a sealed polypropylene container and was subjected to HVACP treatment. The HVACP discharge was generated between two aluminium plate electrodes using a high voltage of 70kVRMS. The effects of process parameters, including treatment time, mode of exposure (direct/indirect), and working gas types, were evaluated. The influence of relative humidity on HVACP inactivation efficacy was also assessed. The inactivation efficacy was evaluated using colony counts. Optical absorption spectroscopy (OAS) was used to assess gas composition following HVACP exposure. A strong effect of process parameters on inactivation was observed. Direct plasma exposure for 60s resulted in ≥6 log10 cycle reduction of spores in all gas types tested. However, indirect exposure for 60s resulted in either 2.1 or 6.3 log10 cycle reduction of spores depending on gas types used for HVACP generation. The relative humidity (RH) was a critical factor in bacterial spore inactivation by HVACP, where a major role of plasma-generated species other than ozone was noted. Direct and indirect HVACP exposure for 60s at 70% RH recorded 6.3 and 5.7 log10 cycle reduction of spores, respectively. In summary, a strong influence of process parameters on spore inactivation was noted. Rapid in-package HVACP inactivation of bacterial spores within 30-60s demonstrates the promising potential application for reduction of spores on medical devices and heat-sensitive materials. Copyright © 2014 The Healthcare Infection Society. All rights reserved.

  20. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis.

    Science.gov (United States)

    Hovenden, Maria; Hubbard, Mark A; Aucoin, David P; Thorkildson, Peter; Reed, Dana E; Welch, William H; Lyons, C Rick; Lovchik, Julie A; Kozel, Thomas R

    2013-01-01

    Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA). We previously generated murine IgG3 monoclonal antibodies (mAbs) to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3 → IgG1 → IgG2b → IgG2a) and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i) a loss of protective activity ii) a change in mAb binding to the capsular matrix, and iii) a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.

  1. IgG subclass and heavy chain domains contribute to binding and protection by mAbs to the poly γ-D-glutamic acid capsular antigen of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Maria Hovenden

    Full Text Available Bacterial capsules are common targets for antibody-mediated immunity. The capsule of Bacillus anthracis is unusual among capsules because it is composed of a polymer of poly-γ-d-glutamic acid (γdPGA. We previously generated murine IgG3 monoclonal antibodies (mAbs to γdPGA that were protective in a murine model of pulmonary anthrax. IgG3 antibodies are characteristic of the murine response to polysaccharide antigens. The goal of the present study was to produce subclass switch variants of the γdPGA mAbs (IgG3 → IgG1 → IgG2b → IgG2a and assess the contribution of subclass to antibody affinity and protection. Subclass switch antibodies had identical variable regions but differed in their heavy chains. The results showed that a switch from the protective IgG3 to IgG1, IgG2b or IgG2a was accompanied by i a loss of protective activity ii a change in mAb binding to the capsular matrix, and iii a loss of affinity. These results identify a role for the heavy chain constant region in mAb binding. Hybrid mAbs were constructed in which the CH1, CH2 or CH3 heavy chain constant domains from a non-protective, low binding IgG2b mAb were swapped into the protective IgG3 mAb. The IgG3 mAb that contained the CH1 domain from IgG2b showed no loss of affinity or protection. In contrast, swapping the CH2 or CH3 domains from IgG2b into IgG3 produced a reduction in affinity and a loss of protection. These studies identify a role for the constant region of IgG heavy chains in affinity and protection against an encapsulated bacterial pathogen.

  2. Immunomodulatory effect of non-viable components of probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus on holoxenic mice

    Directory of Open Access Journals (Sweden)

    L. M. Ditu

    2014-09-01

    Full Text Available Background: Competition of probiotic bacteria with other species from the intestinal microbiota involves different mechanisms that occur regardless of probiotics’ viability. The objective of this paper was to assess the cytokine serum levels in holoxenic mice after oral administration of non-viable components (NVC of Enterococcus faecium probiotic culture stimulated with heat-inactivated Escherichia coli and Bacillus cereus in comparison to NVC of unstimulated E. faecium probiotic culture. Methods: Probiotic E. faecium CMGb 16 culture, grown in the presence of heat-inactivated cultures of E. coli and B. cereus CMGB 102, was subsequently separated into supernatant (SN and heat-inactivated cellular sediment (CS fractions by centrifugation. Each NVC was orally administered to holoxenic mice (balb C mouse strain, in three doses, given at 24 hours. Blood samples were collected from the retinal artery, at 7, 14, and 21 days after the first administration of the NVC. The serum concentrations of IL-12 and tumor necrosis factor-alpha (TNF-α interleukins were assessed by ELISA method. Results: After the oral administration of SN component obtained from the probiotic culture stimulated with heat-inactivated cultures of B. cereus CMGB 102 and E. coli O28, the serum concentrations of IL-12 were maintained higher in the samples collected at 7 and 14 days post-administration. No specific TNF-α profile could be established, depending on stimulated or non-stimulated probiotic culture, NVC fraction, or harvesting time. Conclusion: The obtained results demonstrate that non-viable fractions of probiotic bacteria, stimulated by other bacterial species, could induce immunostimulatory effects mediated by cytokines and act, therefore, as immunological adjuvants.

  3. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krauter, Paula [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Einfeld, Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination

  4. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge

  5. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation

    NARCIS (Netherlands)

    Mols, J.M.; Kranenburg, van R.; Melis, van C.C.J.; Moezelaar, R.; Abee, T.

    2010-01-01

    Acid stress resistance of the food-borne human pathogen Bacillus cereus may contribute to its survival in acidic environments, such as encountered in soil, food and the human gastrointestinal tract. The acid stress responses of B. cereus strains ATCC 14579 and ATCC 10987 were analysed in aerobically

  6. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    Science.gov (United States)

    2013-02-01

    13/2011 22.00 Keren K. Griffiths, Jingqiao Zhang, Ann E. Cowan, Ji Yu, Peter Setlow. Germination proteins in the inner membrane of dormant Bacillus...that this technique can be used to rapidly identify single airborne particles or bacteria collected on a slide and to monitor germination dynamics of...the environment of dipicolinic acid in the core of superdormant spores is different from that in dormant spores [J. Bacteriol., 191, 5584 (2009

  7. Transponson Tn916 Mutagenesis in Bacillus anthracis,

    Science.gov (United States)

    1987-11-10

    this manuscript was submitted for publication that J. G. Naglich, R. E. Andrews, Jr., and P. A. Pattee , Iowa State University, have transferred Tnga1...faeai var. zymogenes. J. Bacteriol. 117:360-372. 19. Jones, J. M., S. C. Yost, and P. A. Pattee . 1987. Transfer of the tetracycline resistance

  8. Sensitivity of Dormant and Germinating B, Anthracis Spores to Polycationic Compound

    Science.gov (United States)

    2005-06-01

    practical problems such as food spoilage , degradation of industrial materials, and "sick building syndrome" resulting from colonization of ventilation systems...species of Clostridium and Bacillus are of concern to the food industry due to their potential for spoilage of or toxin production in improperly...1.2. While most spore-forming bacterial species are classified as non-pathogenic or opportunistically pathogenic, Bacillus anthracis is well-known a

  9. Rapid peptide based diagnosis: peptide-based Fluorescence Resonance Energy Transfer (FRET) protease substrates for the detection and diagnosis of bacillus spp

    NARCIS (Netherlands)

    Bikker, F.J.; Kaman, W.E.

    2014-01-01

    We describe the development of a highly specific protease-based Fluorescence Resonance Energy Transfer (FRET) assay for easy and rapid detection both in vitro and in vivo of Bacillus spp, including Bacillus anthracis. Synthetic substrates for B. anthracis proteases were designed and exposed to

  10. Mutagenesis and ultraviolet inactivation of transforming DNA of ''Haemophilus influenzae'' complexed with a ''Bacillus subtilis'' protein that alter DNA conformation

    International Nuclear Information System (INIS)

    Setlow, Jane K.; Setlow, Barbara C.; Setlow, Peter

    1996-01-01

    The wild-type ''Bacillus subtilis'' spore protein, SspC wt , binds to DNA ''in vitro'' and ''in vivo'' and changes the conformation of DNA from B to A. Synthesis of the cloned SspC wt gene in ''Escherichia coli'' also causes large increases in mutation frequency. Binding of SspC wt to transforming DNA from ''Haemophilus influenzae'' made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC ala , which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC wt complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ''H. influenzae'' excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC wt apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs

  11. Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol.

    Science.gov (United States)

    Pol, I E; Mastwujk, H C; Slump, R A; Popa, M E; Smid, E J

    2001-07-01

    Carvacrol was used as a third preservative factor to enhance further the synergy between nisin and pulsed electric field (PEF) treatment against vegetative cells of Bacillus cereus. When applied simultaneously with nisin (0.04 microg/ml), carvacrol (0.5 mM) enhanced the synergy found between nisin and PEF treatment (16.7 kV/cm, 30 pulses) in potassium-N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES) buffer. The influence of food ingredients on bactericidal activity was tested using skimmed milk that was diluted to 20% with sterile demineralized water. The efficacy of PEF treatment was not affected by the presence of proteins, and results found in HEPES buffer correlated well with results in milk (20%). Nisin showed less activity against B. cereus in milk. Carvacrol was not able to enhance the synergy between nisin and PEF treatment in milk, unless used in high concentrations (1.2 mM). This concentration in itself did not influence the viable count. Carvacrol did act synergistically with PEF treatment in milk, however not in HEPES buffer. This synergy was not influenced by proteins in milk, as 5% milk still allows synergy between carvacrol and PEF treatment to the same extent as 20% milk.

  12. Mutagenesis and ultraviolet inactivation of transforming DNA of ``Haemophilus influenzae`` complexed with a ``Bacillus subtilis`` protein that alter DNA conformation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, Jane K. [Brookhaven National Lab., Upton, NY (United States); Setlow, Barbara C.; Setlow, Peter [Connecticut Univ., Farmington, CT (United States)

    1996-12-31

    The wild-type ``Bacillus subtilis`` spore protein, SspC{sup wt}, binds to DNA ``in vitro`` and ``in vivo`` and changes the conformation of DNA from B to A. Synthesis of the cloned SspC{sup wt} gene in ``Escherichia coli`` also causes large increases in mutation frequency. Binding of SspC{sup wt} to transforming DNA from ``Haemophilus influenzae`` made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC{sup ala}, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC{sup wt} complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ``H. influenzae`` excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC{sup wt} apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs.

  13. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation.

    Science.gov (United States)

    Mols, Maarten; van Kranenburg, Richard; van Melis, Clint C J; Moezelaar, Roy; Abee, Tjakko

    2010-04-01

    Acid stress resistance of the food-borne human pathogen Bacillus cereus may contribute to its survival in acidic environments, such as encountered in soil, food and the human gastrointestinal tract. The acid stress responses of B. cereus strains ATCC 14579 and ATCC 10987 were analysed in aerobically grown cultures acidified to pH values ranging from pH 5.4 to pH 4.4 with HCl. Comparative phenotype and transcriptome analyses revealed three acid stress-induced responses in this pH range: growth rate reduction, growth arrest and loss of viability. These physiological responses showed to be associated with metabolic shifts and the induction of general stress response mechanisms with a major oxidative component, including upregulation of catalases and superoxide dismutases. Flow cytometry analysis in combination with the hydroxyl (OH.) and peroxynitrite (ONOO(-))-specific fluorescent probe 3'-(p-hydroxyphenyl) fluorescein (HPF) showed excessive radicals to be formed in both B. cereus strains in bactericidal conditions only. Our study shows that radicals can indicate acid-induced malfunctioning of cellular processes that lead to cell death.

  14. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization.

    Science.gov (United States)

    Matin, Atiyeh Rajabi; Yousefzadeh, Samira; Ahmadi, Ehsan; Mahvi, Amirhossein; Alimohammadi, Mahmood; Aslani, Hassan; Nabizadeh, Ramin

    2018-04-03

    Although chlorination can inactivate most of the microorganisms in water but protozoan parasites like C. parvum oocysts and Giardia cysts can resist against it. Therefore, many researches have been conducted to find a novel method for water disinfection. Present study evaluated the synergistic effect of H2O2 and ferrate followed by UV radiation to inactivate Bacillus subtilis spores as surrogate microorganisms. Response surface methodology(RSM) was employed for the optimization for UV/H2O2/ferrate and H2O2/ferrate processes. By using central composite design(CCD), the effect of three main parameters including time, hydrogen peroxide, and ferrate concentrations was examined on process performance. The results showed that the combination of UV, H2O2 and ferrate was the most effective disinfection process in compare with when H2O2 and ferrate were used. This study indicated that by UV/H2O2/ferrate, about 5.2 log reductions of B. subtilis spores was inactivated at 9299 mg/l of H2O2 and 0.4 mg/l of ferrate concentrations after 57 min of contact time which was the optimum condition, but H2O2/ferrate can inactivate B. subtilis spores about 4.7 logs compare to the other process. Therefore, the results of this research demonstrated that UV/H2O2 /ferrate process is a promising process for spore inactivation and water disinfection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples.

    Science.gov (United States)

    Mölsä, Markos; Kalin-Mänttäri, Laura; Tonteri, Elina; Hemmilä, Heidi; Nikkari, Simo

    2016-09-01

    Bacillus spp. include human pathogens such as Bacillus anthracis, the causative agent of anthrax and a biothreat agent. Bacillus spp. form spores that are physically highly resistant and may remain active over sample handling. We tested four commercial DNA extraction kits (QIAamp DNA Mini Kit, RTP Pathogen Kit, ZR Fungal/Bacterial DNA MiniPrep, and genesig Easy DNA/RNA Extraction kit) for sample inactivation and DNA recovery from two powders (icing sugar and potato flour) spiked with Bacillus thuringiensis spores. The DNA was analysed using a B. thuringiensis-specific real-time PCR assay. The detection limit was 3×10(1)CFU of spiked B. thuringiensis spores with the QIAamp DNA Mini, RTP Pathogen, and genesig Easy DNA/RNA Extraction kits, and 3×10(3)CFU with the ZR Fungal/Bacterial DNA MiniPrep kit. The results showed that manual extraction kits are effective and safe for fast and easy DNA extraction from powder samples even in field conditions. Adding a DNA filtration step to the extraction protocol ensures the removal of Bacillus spp. spores from DNA samples without affecting sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes.

    Science.gov (United States)

    Lindbäck, T; Okstad, O A; Rishovd, A L; Kolstø, A B

    1999-11-01

    Haemolysin BL (HBL) is a Bacillus cereus toxin composed of a binding component, B, and two lytic components, L1 and L2. HBL is also the enterotoxin responsible for the diarrhoeal food poisoning syndrome caused by several strains of B. cereus. The three genes encoding the HBL components constitute an operon and are transcribed from a promoter 608 bp upstream of the hblC translational start site. The first gene of the hbl operon, hblC, in the B. cereus type strain, ATCC 14579, was inactivated in this study. Inactivation of hblC strongly reduced both the enterotoxigenic activity of B. cereus ATCC 14579 and the haemolytic activity against sheep erythrocytes, while maintaining full haemolytic activity against human erythrocytes.

  17. The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Jensen, Lars Bogø; Givskov, Michael Christian

    2002-01-01

    In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure...

  18. Use of genetic algorithms for high hydrostatic pressure inactivation ...

    African Journals Online (AJOL)

    ) for high hydrostatic pressure (HHP) inactivation of Bacillus cereus spores, Bacillus subtilis spores and cells, Staphylococcus aureus and Listeria monocytogenes, all in milk buffer, were used to demonstrate the utility of genetic algorithms ...

  19. Synergistic effect of pulsed electric fields and CocoanOX 12% on the inactivation kinetics of Bacillus cereus in a mixed beverage of liquid whole egg and skim milk.

    Science.gov (United States)

    Pina-Pérez, M C; Silva-Angulo, A B; Rodrigo, D; Martínez-López, A

    2009-04-15

    With a view to extending the shelf-life and enhancing the safety of liquid whole egg/skim milk (LWE-SM) mixed beverages, a study was conducted with Bacillus cereus vegetative cells inoculated in skim milk (SM) and LWE-SM beverages, with or without antimicrobial cocoa powder. The beverages were treated with Pulsed Electric Field (PEF) technology and then stored at 5 degrees C for 15 days. The kinetic results were modeled with the Bigelow model, Weibull distribution function, modified Gompertz equation, and Log-logistic models. Maximum inactivation registered a reduction of around 3 log cycles at 40 kV/cm, 360 micros, 20 degrees C in both the SM and LWE-SM beverages. By contrast, in the beverages supplemented with the aforementioned antimicrobial compound, higher inactivation levels were obtained under the same treatment conditions, reaching a 3.30 log(10) cycle reduction. The model affording the best fit for all four beverages was the four-parameter Log-logistic model. After 15 days of storage, the antimicrobial compound lowered Bacillus cereus survival rates in the samples supplemented with CocoanOX 12% by a 4 log cycle reduction, as compared to the untreated samples without CocoanOX 12%. This could indicate that the PEF-antimicrobial combination has a synergistic effect on the bacterial cells under study, increasing their sensitivity to subsequent refrigerated storage.

  20. Applicability of UV resistant Bacillus pumilus spore as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming units. This dataset is associated with the following publication: Boczek , L.,...

  1. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    Science.gov (United States)

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  2. Essential Bacillus subtilis genes

    NARCIS (Netherlands)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.; Amati, G.; Andersen, K.K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; Boland, F.; Brignell, S.C.; Bron, S; Bunai, K.; Chapuis, J; Christiansen, L.C.; Danchin, A.; Debarbouille, M.; Dervyn, E.; Deuerling, E.; Devine, K.; Devine, S.K.; Dreesen, O.; Errington, J.; Fillinger, S.; Foster, S.J.; Fujita, Y.; Galizzi, A.; Gardan, R.; Eschevins, C.; Fukushima, T.; Haga, K.; Harwood, C.R; Hecker, M.; Hosoya, D.; Hullo, M.F.; Kakeshita, H.; Karamata, D.; Kasahara, Y.; Kawamura, F.; Koga, K.; Koski, P.; Kuwana, R.; Imamura, D.; Ishimaru, M.; Ishikawa, S.; Ishio, I.; Le Coq, D.; Masson, A.; Mauel, C.; Meima, Roelf; Mellado, R.P.; Moir, A.; Moriya, S.; Nagakawa, E.; Nanamiya, H.; Nakai, S.; Nygaard, P.; Ogura, M.; Ohanan, T.; O'Reilly, M.; O'Rourke, M.; Pragai, Z.; Pooley, H.M.; Rapoport, G.; Rawlins, J.P.; Rivas, L.A.; Rivolta, C.; Sadaie, A.; Sadaie, Y.; Sarvas, M; Sato, T.; Saxild, H.H.; Scanlan, E.; Schumann, W; Seegers, J.F. M. L.; Sekiguchi, J.; Sekowska, A.; Seror, S.J.; Simon, M.; Stragier, P.; Studer, R.; Takamatsu, H.; Tanaka, T.; Takeuchi, M.; Thomaides, H.B.; Vagner, V.; van Dijl, J.M.; Watabe, K.; Wipat, A; Yamamoto, H.; Yamamoto, M.; Yamamoto, Y.; Yamane, K.; Yata, K.; Yoshida, K.; Yoshikawa, H.; Zuber, U.; Ogasawara, N.; Ishio, [No Value

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were

  3. Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit

    OpenAIRE

    Ceuppens Siele; Uyttendaele Mieke; Hamelink Stefanie; Boon Nico; Van de Wiele Tom

    2012-01-01

    Abstract Background The foodborne pathogen Bacillus cereus can cause diarrhoeal food poisoning by production of enterotoxins in the small intestine. The prerequisite for diarrhoeal disease is thus survival during gastrointestinal passage. Methods Vegetative cells of 3 different B. cereus strains were cultivated in a real composite food matrix, lasagne verde, and their survival during subsequent simulation of gastrointestinal passage was assessed using in vitro experiments simulating transit t...

  4. Observations on the migration of bacillus spores outside a contaminated facility during a decontamination efficacy study

    Science.gov (United States)

    Silvestri, Erin E.; Perkins, Sarah; Lordo, Robert; Kovacik, William; Nichols, Tonya L.; Bowling, Charlena Yoder; Griffin, Dale W.; Schaefer, Frank W.

    2015-01-01

    The potential for an intentional wide-area or indoor release of Bacillus anthracis spores remains a concern, but the fate and transport of B. anthracis spores in indoor and outdoor environments are not well understood. Some studies have examined the possibility of spore transport within ventilation systems and in buildings and transport into a building following an outdoor release. Little research exists regarding the potential for spores to migrate to the outside of a building following an indoor release.

  5. Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Saman Khan

    2013-01-01

    Full Text Available Hard, nonporous environmental surfaces in daily life are now receiving due recognition for their role in reducing the spread of several nosocomial infections. In this work, we established the photokilling effects of 1% silver-doped titanium dioxide TiO2. The nanoparticles synthesized by liquid impregnation method were characterized using X-ray diffraction (XRD, energy dispersive spectroscopy (EDS, and scanning electron microscopy (SEM. The Ag-TiO2 nanoparticle coatings that have been applied on glass and venetian blind surfaces were effective in generating a loss of viability of two bacteria (Pseudomonas aeruginosa and Bacillus subtilis after two hours of illumination under normal light in the visible spectrum. Such surfaces can be applicable to medical and other facilities where the potential for infection should be controlled.

  6. Results and Recommendations from the First NATO International Training Exercise on Laboratory Identification of Biological Agents

    National Research Council Canada - National Science Library

    Hancock, J.R

    2001-01-01

    ...)-inactivated biological material and one blank containing phosphate buffered saline (PBS). The United States, as the host nation, distributed PBS, Bacillus anthracis, Coxiella burnetii, Venezuelan Equine Encephalitis (VEE...

  7. Nucleotide Sequence of the Protective Antigen Gene of Bacillus Anthracis

    Science.gov (United States)

    1988-02-02

    the bands excised, and the DNA extracted with phenol for cloning in M13. 6 Nuclotida sequence analysis. The two fragments were each cloned into phages ...E.c. ToxA a £scherichia coli heat-labile enterotoxin A gene (45) V.c. CTxA - Vibrio ctolerae cholera toxin alfa subunlt gene (28) atotal nurber of specific amino acid residues deduced from p’otective antigen gene.

  8. Bacillus Collagen Like Protein of Anthracis: Immunological and Functional Analyses

    Science.gov (United States)

    2007-09-21

    spectrum of anthrax disease. Cutaneous anthrax 14 The majority of naturally-acquired anthrax in humans is of the cutaneous form. Disease occurs...tetracycline, chloramphenicol, aminoglycosides, macrolides, imipenemlmeropenem, rifampicin, and vancomycin but resistant to cephalosporins , trimethoprim, and

  9. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Directory of Open Access Journals (Sweden)

    Brian France

    Full Text Available Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping and post-decon to determine that the site is free of contamination (clearance sampling. Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  10. Bacillus anthracis infections – new possibilities of treatment

    Directory of Open Access Journals (Sweden)

    Dorota Żakowska

    2015-05-01

    Recently, progress has been achieved in inhalation anthrax treatment. The most promising new possibilities include: new antibiotics, peptides and bacteriophages enzymes, monoclonal antibodies, antigen PA mutants, and inter alpha inhibitors applications. In the case of the possibility of bioterrorist attacks, the examination of inhalation anthrax treatment should be intensively continued.

  11. Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying▿†‡

    Science.gov (United States)

    Van Cuyk, Sheila; Deshpande, Alina; Hollander, Attelia; Duval, Nathan; Ticknor, Lawrence; Layshock, Julie; Gallegos-Graves, LaVerne; Omberg, Kristin M.

    2011-01-01

    Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments. PMID:21926205

  12. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    African Journals Online (AJOL)

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  13. Characterization of Bacillus strains and hoax agents by protein profiling using automated microfluidic capillary electrophoresis.

    Science.gov (United States)

    McLaughlin, Jessica; Nelson, Michelle; McNevin, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-09-01

    In recent times, but especially since 2001, bioterrorism has been of increasing concern. In addition to the use of biological agents, including Bacillus anthracis (anthrax), there have been numerous hoax white powder "scares." It is imperative to rapidly and accurately identify any suspicious powder as hazardous or hoax. Classical methods for identification typically rely on time-consuming cultivation or highly specific molecular tests which are limited if the agent is unknown. Faster and field portable methods for analysis of suspicious powders are urgently required. Potential hoax agents, including Bacillus species and household powders, were analyzed using automated microfluidic capillary electrophoresis to determine if protein profiling can distinguish between, and identify, samples. Distinctive protein profiles were produced for Bacillus species, with the presence and/or absence of certain bands, aiding identification. In particular B. anthracis Sterne strain contained a distinctive doublet band above 100 kDa which was not present in any other Bacillus species or hoax agents examined. The majority of powders produced distinctive banding that could enable the identification of the sample while simultaneously ruling out B. anthracis with a high degree of confidence. Results show automated microfluidic capillary electrophoresis can rapidly and reproducibly characterize Bacillus species and hoax agents based on protein profiles without the need for culture. Results were reproducible and there was enhanced resolution and rapidity compared to traditional protein profiling methods. Results show this technique is amenable to field use at a bioterrorism incident, thereby providing essential information to investigators regarding containment and treatment strategies.

  14. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  15. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Melanie F Kho

    Full Text Available The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry proteins, which are pore-forming toxins or pore-forming proteins (PFPs. Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1-2 days, leading to a "Bob" or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1-2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even "non-pathogenic" Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications.

  16. Multilocus sequence analysis of Bacillus thuringiensis serovars navarrensis, bolivia and vazensis and Bacillus weihenstephanensis reveals a common phylogeny.

    Science.gov (United States)

    Soufiane, Brahim; Baizet, Mathilde; Côté, Jean-Charles

    2013-01-01

    The Bacillus cereus group sensu lato includes six closely-related bacterial species: Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. B. thuringiensis is distinguished from the other species mainly by the appearance of an inclusion body upon sporulation. B. weihenstephanensis is distinguished based on its psychrotolerance and the presence of specific signature sequences in the 16S rRNA gene and cspA genes. A total of seven housekeeping genes (glpF, gmK, ilvD, pta, purH, pycA and tpi) from different B. thuringiensis serovars and B. weihenstephanensis strains were amplified and their nucleotide sequences determined. A maximum likelihood phylogenetic tree was inferred from comparisons of the concatenated sequences. B. thuringiensis serovars navarrensis, bolivia and vazensis clustered not with the other B. thuringiensis serovars but rather with the B. weihenstephanensis strains, indicative of a common phylogeny. In addition, specific signature sequences and single nucleotide polymorphisms common to B. thuringiensis serovars navarrensis, bolivia and vazensis and the B. weihenstephanensis strains, and absent in the other B. thuringiensis serovars, were identified.

  17. Influence of multi-year Bacillus thuringiensis subsp. israelensis on the abundance of B. cereus group populations in Swedish riparian wetland soils

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Schneider, Salome; Tajrin, Tania

    Bacillus thuringiensis subsp. israelensis (Bti) is a soil-born bacterium affiliated to the B. cereus group (Bcg, a group including the pathogens B. cereus, B. thuringiensis, and B. anthracis) and used in biocontrol products against nematoceran larvae. However, knowledge is limited on how long...

  18. Bacillus Coagulans

    Science.gov (United States)

    ... and, as a result, is often misclassified as lactic acid bacteria such as lactobacillus. In fact, some commercial products ... sporogenes or "spore-forming lactic acid bacterium." Unlike lactic acid bacteria such as lactobacillus or bifidobacteria, Bacillus coagulans forms ...

  19. Bacillus cucumis

    Science.gov (United States)

    Kämpfer, Peter; Busse, Hans-Jürgen; Glaeser, Stefanie P; Kloepper, Joseph W; Hu, Chia-Hui; McInroy, John A

    2016-02-01

    A facultative anaerobic, Gram-positive staining, endospore-forming bacterium, isolated from the rhizosphere of cucumber ( Cucumis sativus ), was taxonomically investigated. Based on 16S rRNA gene sequence similarity comparisons, strain AP-6 T clustered together with other species of the genus Bacillus and showed highest similarities with Bacillus drentensis LMG 21831 T (99.1 %), Bacillus vireti LMG 21834 T (98.7 %) and Bacillus soli LMG 21838 T (98.5 %). The 16S rRNA gene sequence similarity to the sequences of the type strains of other species of the genus Bacillus was 98.5 % or less. Chemotaxonomic features supported the grouping of the strain in the genus Bacillus ; for example, the major fatty acids were anteiso-C 15 : 0 , iso-C 15 : 0 and C 16 : 0 , the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, the major quinone was menaquinone MK-7 and the major compound in the polyamine pattern was spermidine. Additionally, DNA-DNA hybridization with B. drentensis LMG 21831 T , B. vireti LMG 21834 T and B. soli LMG 21838 T resulted in relatedness values that were clearly below 70 %. Physiological and biochemical test results were also different from those of the most closely related species. As a consequence, AP-6 T represents a novel species of the genus Bacillus , for which the name Bacillus cucumis sp. nov. is proposed, with AP-6 T ( = CIP 110974 T  = CCM 8651 T ) as the type strain.

  20. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  1. Cell Wall Carbohydrate Compositions of Strains from the Bacillus cereus Group of Species Correlate with Phylogenetic Relatedness▿

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P.; Carlson, Russell W.; Kannenberg, Elmar L.

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2− strain resulted in cell walls with an even greater level of Glc. PMID:17981984

  2. Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2- strain resulted in cell walls with an even greater level of Glc.

  3. Inactivation Data.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a spreadsheet that contains results of inactivation experiments that were conducted to to determine the effectiveness of chlorine in inactivating B....

  4. Alleged B. anthracis exposure claims in a workers' compensation setting.

    Science.gov (United States)

    Jewell, Gregory; Dunning, Kari; Lockey, James E

    2006-01-01

    Workers' compensation insurance in some states may not provide coverage for medical evaluation costs of workplace exposures related to potential bioterrorism acts if there is no diagnosed illness or disease. Personal insurance also may not provide coverage for these exposures occurring at the workplace. Governmental entities, insurers, and employers need to consider how to address such situations and the associated costs. The objective of this study was to examine characteristics of workers and total costs associated with workers' compensation claims alleging potential exposure to the bioterrorism organism B. anthracis. We examined 192 claims referred for review to the Ohio Bureau of Workers' Compensation (OBWC) from October 10, 2001, through December 20, 2004. Although some cases came from out-of-state areas where B. anthracis exposure was known to exist, no Ohio claim was associated with true B. anthracis exposure or B. anthracis-related illness. Of the 155 eligible claims, 126 included medical costs averaging dollar 219 and ranging from dollar 24 to dollar 3,126. There was no difference in mean cost for government and non-government employees (p = 0.202 Wilcoxon). The number of claims and associated medical costs for evaluation and treatment of potential workplace exposure to B. anthracis were relatively small. These results can be attributed to several factors, including no documented B. anthracis exposures and disease in Ohio and prompt transmission of recommended diagnostic and prophylactic treatment protocols to physicians. How employers, insurers, and jurisdictions address payment for evaluation and treatment of potential or documented exposures resulting from a potential terrorism-related event should be addressed proactively.

  5. Engineering of thermotolerant Bacillus coagulans for production of D(-)-lactic acid

    Science.gov (United States)

    Wang, Qingzhao; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2014-12-02

    Genetically modified microorganisms having the ability to produce D(-)-lactic acid at temperatures between 30.degree. C. and 55.degree. C. are provided. In various embodiments, the microorganisms may have the chromosomal lactate dehydrogenase (ldh) gene and/or the chromosomal acetolactate synthase (alsS) gene inactivated. Exemplary microorganisms for use in the disclosed methods are Bacillus spp., such as Bacillus coagulans.

  6. The Roles of AtxA Orthologs in Virulence of Anthrax-like Bacillus cereus G9241

    OpenAIRE

    Scarff, Jennifer M.; Raynor, Malik J.; Seldina, Yuliya I.; Ventura, Christy L.; Koehler, Theresa M.; O’Brien, Alison D.

    2016-01-01

    AtxA is a critical transcriptional regulator of plasmid-encoded virulence genes in Bacillus anthracis. Bacillus cereus G9241, which caused an anthrax-like infection, has two virulence plasmids, pBCXO1 and pBC210, that each harbor toxin genes and a capsule locus. G9241 also produces two orthologs of AtxA: AtxA1, encoded on pBCXO1, and AtxA2, encoded on pBC210. The amino acid sequence of AtxA1 is identical to that of AtxA from B. anthracis, while the sequences of AtxA1 and AtxA2 are 79% identic...

  7. Inactivation of Caliciviruses

    Directory of Open Access Journals (Sweden)

    Raymond Nims

    2013-03-01

    Full Text Available The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses.

  8. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  9. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were

  10. Bacillus thuringiensis

    Science.gov (United States)

    Hollensteiner, Jacqueline; Wemheuer, Franziska; Harting, Rebekka; Kolarzyk, Anna M; Diaz Valerio, Stefani M; Poehlein, Anja; Brzuszkiewicz, Elzbieta B; Nesemann, Kai; Braus-Stromeyer, Susanna A; Braus, Gerhard H; Daniel, Rolf; Liesegang, Heiko

    2016-01-01

    Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically diverse strains according to their antagonistic activity against the two phytopathogenic fungi Verticillium dahliae and Verticillium longisporum . In addition, the 20 strains were sequenced and phylogenetically characterized by multi-locus sequence typing (MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum 43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens. These strains had a rhizoid colony morphology, which has not been described for B. weihenstephanensis strains previously. Genome analysis of all isolates revealed putative genes encoding fungicidal substances and resulted in identification of 304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide synthetases and 203 ribosomal-synthesized and post-translationally modified peptides. All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin. In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth of the phytopathogens carried one or two genes encoding putative mycolitic chitinases, which might contribute to antifungal activities

  11. Bioinactivation: Software for modelling dynamic microbial inactivation.

    Science.gov (United States)

    Garre, Alberto; Fernández, Pablo S; Lindqvist, Roland; Egea, Jose A

    2017-03-01

    This contribution presents the bioinactivation software, which implements functions for the modelling of isothermal and non-isothermal microbial inactivation. This software offers features such as user-friendliness, modelling of dynamic conditions, possibility to choose the fitting algorithm and generation of prediction intervals. The software is offered in two different formats: Bioinactivation core and Bioinactivation SE. Bioinactivation core is a package for the R programming language, which includes features for the generation of predictions and for the fitting of models to inactivation experiments using non-linear regression or a Markov Chain Monte Carlo algorithm (MCMC). The calculations are based on inactivation models common in academia and industry (Bigelow, Peleg, Mafart and Geeraerd). Bioinactivation SE supplies a user-friendly interface to selected functions of Bioinactivation core, namely the model fitting of non-isothermal experiments and the generation of prediction intervals. The capabilities of bioinactivation are presented in this paper through a case study, modelling the non-isothermal inactivation of Bacillus sporothermodurans. This study has provided a full characterization of the response of the bacteria to dynamic temperature conditions, including confidence intervals for the model parameters and a prediction interval of the survivor curve. We conclude that the MCMC algorithm produces a better characterization of the biological uncertainty and variability than non-linear regression. The bioinactivation software can be relevant to the food and pharmaceutical industry, as well as to regulatory agencies, as part of a (quantitative) microbial risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-01-01

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1–3)]GlcNAc(β1–6)[Glc(β1-3)][ManNAc(α1–4)]GalNAc(α1–4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm. PMID:21784857

  13. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide.

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-09-09

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.

  14. ORF Sequence: NC_003995 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Bacillus anthracis str. A2012] MNGSTTNTSCVXPGFELLLNSEKRIRLLDNSEISIFGLDDILLGKPKIEKTLQRARQTTYNIVLVHEPDIAPQIANYPVNLQLSGHSHGGQVQIPFLGAVVTPSLAQNYVEGFYTIGDLALYVNRGLGRTRVPFRFMSKPEITIFTLQHS

  15. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  16. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    2015-10-01

    Full Text Available The probiotic yeast Saccharomyces boulardii (S. boulardii has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  17. Manipulating the autolytic pathway of a Bacillus protease

    NARCIS (Netherlands)

    VandenBurg, B; Eijsink, VGH; Vriend, G; Veltman, OR; Venema, G; HopsuHavu, VK; Jarvinen, M; Kirschke, H

    1997-01-01

    Autolytic degradation of Bacillus subtilis thermolysin-like proteinase (TLP-sub) is responsible for the irreversible inactivation of the enzyme at elevated temperatures. Previously, we reported five autolysis sites in B. subtilis neutral protease (Van den Burg et al., 1990, Biochem. J. 272:93-97).

  18. Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus in soil samples.

    Directory of Open Access Journals (Sweden)

    Delphine Plaire

    Full Text Available To evaluate the sensitivity of high-throughput DNA sequencing for monitoring biowarfare agents in the environment, we analysed soil samples inoculated with different amounts of Bacillus atrophaeus, a surrogate organism for Bacillus anthracis. The soil samples considered were a poorly carbonated soil of the silty sand class, and a highly carbonated soil of the silt class. Control soil samples and soil samples inoculated with 10, 103, or 105 cfu were processed for DNA extraction. About 1% of the DNA extracts was analysed through the sequencing of more than 108 reads. Similar amounts of extracts were also studied for Bacillus atrophaeus DNA content by real-time PCR. We demonstrate that, for both soils, high-throughput sequencing is at least equally sensitive than real-time PCR to detect Bacillus atrophaeus DNA. We conclude that metagenomics allows the detection of less than 10 ppm of DNA from a biowarfare simulant in complex environmental samples.

  19. Comparative analysis of the sensitivity of metagenomic sequencing and PCR to detect a biowarfare simulant (Bacillus atrophaeus) in soil samples.

    Science.gov (United States)

    Plaire, Delphine; Puaud, Simon; Marsolier-Kergoat, Marie-Claude; Elalouf, Jean-Marc

    2017-01-01

    To evaluate the sensitivity of high-throughput DNA sequencing for monitoring biowarfare agents in the environment, we analysed soil samples inoculated with different amounts of Bacillus atrophaeus, a surrogate organism for Bacillus anthracis. The soil samples considered were a poorly carbonated soil of the silty sand class, and a highly carbonated soil of the silt class. Control soil samples and soil samples inoculated with 10, 103, or 105 cfu were processed for DNA extraction. About 1% of the DNA extracts was analysed through the sequencing of more than 108 reads. Similar amounts of extracts were also studied for Bacillus atrophaeus DNA content by real-time PCR. We demonstrate that, for both soils, high-throughput sequencing is at least equally sensitive than real-time PCR to detect Bacillus atrophaeus DNA. We conclude that metagenomics allows the detection of less than 10 ppm of DNA from a biowarfare simulant in complex environmental samples.

  20. Inactivation of Aerosolized Biological Agents using Filled Nanocomposite Materials

    Science.gov (United States)

    2013-02-01

    Reviewing Environmental Risk Assessment Reports, CRC Press, Boca Raton, FL. Brock , T.D., Madigan, M.T., Markinko, J.M., and Parker, J. (1994). Biology of... microorganisms in combustion environments: development and evaluation 7 - 26 Chapter 2. Thermal inactivation of airborne viable Bacillus subtilis...Hoffmann, V., Trunov M. (2010) Method for Studying Survival of Airborne Viable Microorganisms in Combustion Environments: Development and Evaluation

  1. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Directory of Open Access Journals (Sweden)

    Francesco Celandroni

    Full Text Available The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  2. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  3. Bacillus amyloliquefaciens

    Science.gov (United States)

    Qin, Yuxuan; Shang, Qingmao; Zhang, Ying; Li, Pinglan; Chai, Yunrong

    2017-01-01

    Vegetable plug seedling has become the most important way to produce vegetable seedlings in China. This seedling method can significantly improve the quality and yield of vegetables compared to conventional methods. In the process of plug seedling, chemical fertilizers or pesticides are often used to improve the yield of the seedlings albeit with increasing concerns. Meanwhile, little is known about the impact of beneficial bacteria on the rhizosphere microbiota and the growth conditions of vegetables during plug seedling. In this study, we applied a culture-independent next-generation sequencing-based approach and investigated the impact of a plant beneficial bacterium, Bacillus amyloliquefaciens L-S60, on the composition and dynamics of rhizosphere microbiota and the growth conditions of cucumbers during plug seedling. Our results showed that application of L-S60 significantly altered the structure of the bacterial community associated with the cucumber seedling; presence of beneficial rhizosphere species such as Bacillus, Rhodanobacter, Paenibacillus, Pseudomonas, Nonomuraea , and Agrobacterium was higher upon L-S60 treatment than in the control group. We also measured the impact of L-S60 application on the physiological properties of the cucumber seedlings as well as the availability of main mineral elements in the seedling at different time points during the plug seedling. Results from those measurements indicated that L-S60 application promoted growth conditions of cucumber seedlings and that more available mineral elements were detected in the cucumber seedlings from the L-S60 treated group than from the control group. The findings in this study provided evidence for the beneficial effects of plant growth-promoting rhizosphere bacteria on the bacterial community composition and growth conditions of the vegetables during plug seedling.

  4. Inactivation of carbenicillin by some radioresistant mutant strains

    International Nuclear Information System (INIS)

    Zahiera, T.S.; Mahmoud, M.I.; Bashandy, A.A.

    1990-01-01

    Sensitivity test of five bacterial species to carbenicillin was performed microbiologically. The bacterial species were previously isolated from high level radiation environment. All the studied species could either highly decrease the antibiotic activity or even inactivate it completely. Detailed study of the inactivation of carbenicillin by the radioresistant mutant strains B. Laterosporus, B. firmus and M. roseus was performed, in the present study. Using high performace liquid chromatography technique. The gram-positive m. roseus mutant strain seemed to be the most active mutant in degrading the antibiotic. The left over of the antibiotic attained a value of 9% of the original amount after 14 day incubation of the antibiotic with this mutant strain, while the value of the left over reached 36% and 32% after the same period of incubation with the mutants B. laterosporus and B. firmus respectively. In the case of bacillus species, the degradation of the antibiotic started at the same moment when it was added to the bacterial cultures. This fact may indicate that the inactivation of the studied antibiotic by these bacillus species was due to extracellular enzymes extracted rapidly in the surrounding medium. In the case of M. roseus the inactivation process started later. after the addition of the antibiotic to the mutant culture

  5. Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Han, Hesong; Sullivan, Thomas; Wilson, Adam C

    2015-02-01

    Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores Data Set

    Data.gov (United States)

    U.S. Environmental Protection Agency — The two excel files contain all of the raw data that was modeled in the R code. The 6 word documents contain all of the R code that can be used in R to model the raw...

  7. Removal of Bacillus anthracis sterne spore from commercial unpasteurized liquid egg white

    Science.gov (United States)

    Thermal pasteurization used by the egg industry for controlling vegetative cells of pathogens is ineffective for destroying endospores. There is a strong need in the agri-industries to develop effective intervention strategies to eliminate the possible bioterrorism threat from spore forming bacteria...

  8. Anthrax, Toxins and Vaccines: A 125-Year Journey Targeting Bacillus anthracis

    Science.gov (United States)

    2009-01-01

    efforts today by many aca- demic, government and industrial groups to generate new anthrax vaccines incorporating PA with or without other pertinent...response. More promising, perhaps, is the use of probiotics generally regarded as safe, such as Lactobacillus spp. expressing PA fused to a peptide that...considered for human anthrax vaccines as a mixed, defined inocu lum. • New - generation vaccines for anthrax should elicit both humoral and T-cell

  9. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses...

  10. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    Science.gov (United States)

    2011-12-01

    Conceived and designed the experiments: JKT CKC SLW AJL RCD SML KAB. Performed the experiments: JKT BF CKC AJ JAB SLW RB CLH SML. Analyzed the data...JKT CKC SLW MM CP RCD SML KAB. Contributed reagents/materials/analysis tools: MM CP RCD AJL. Wrote the paper: JKT CKC SLW SML KAB. References 1. Brodsky

  11. Functional and Immunological Analyses of Superoxide Dismutases and Other Spore-Associated Proteins of Bacillus anthracis

    Science.gov (United States)

    2008-08-20

    Streptococcus agalactiae (177), Francisella tularensis (12), Neisseria meningitidis (236), Brucella abortus (79) and Enterococcus faecalis (225). A...Staphylococcus aureus (114), Streptococcus agalactiae (177), Bordatella pertussis (119), Shigella flexneri (73), Campylobacter jejuni (178), and Enterococcus... faecalis (225) only display maximum virulence in the presence of Mn- or Fe-SODs. Certain pathogens, such as Salmonella enterica serovar Typhimurium

  12. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    Science.gov (United States)

    2012-06-13

    generating , sizing, quan- tifying, and sampling aerosols of inert materials also hold true for bioaerosols , i.e., for aerosolizing materials of...characterization, traditional bioaerosol generation and collection techniques can be employed to achieve consistent and reproducible low-dose expo- sures... generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization

  13. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    Science.gov (United States)

    2007-11-01

    the four detection methods studied in this dissertation. Phage m 130 REFERENCES CITED 1. Madigan, M.T. and J.M. Martinko, Brock Biology of...INTRODUCTION 1.1 Background Bacteria are small free-living organisms called microorganisms or microbes that have been around for billions of...lack a membrane enclosed nucleus, which can usually be grown on solid and/or in liquid culture media. These prokaryotic microorganisms have

  14. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  15. Host-Pathogen Coupled Networks: Model for Bacillus Anthracis Interaction with Host Macrophages

    Science.gov (United States)

    2015-09-01

    eye to each study in Table 2 for which the concentrations of LF and PA in the bathing medium are available. Note, we do this for the extreme values...Frankel AE. 2005. BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma

  16. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    Science.gov (United States)

    2014-09-18

    contains an antibiotic resistance gene, which gives the cell an advantage when it keeps the plasmid. Studies will be conducted on Ba spores and...are extremely resistant to the environment and can survive in soil for decades [2]. Since the spore contains few energy compounds such as ATP and...glucose, and 10mM MgCl2. The solution was incubated for 1 hour so expression of the antibiotic resistance could occur prior to plating on selective

  17. Green-Tea and Epigallocatechin-3-Gallate are Bactericidal against Bacillus anthracis

    Science.gov (United States)

    2017-06-13

    1849-55. 280 8. Toda M, Okubo S, Hiyoshi R, Shimamura T. 1989. The Bactericidal activity of Tea and Coffee. 281 Letters in Applied Microbiology 8...cup of tea is the answer to everything - including the threat of 329 bioterrorism. Microbiologist (Magazine of the Society for Applied Microbiology ...of the Anthrax Letters , 58 has garnered the interest of the biomedical community and the public to improve current 59 prevention and therapeutic

  18. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna varivestis (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Peña, Guadalupe; Miranda-Rios, Juan; de la Riva, Gustavo; Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra

    2006-01-01

    The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest. PMID:16391064

  19. Bacillus subtilis

    Science.gov (United States)

    Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian

    2017-04-28

    Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention. © 2017 The Author(s).

  20. Nitric Oxide as a Regulator of B. anthracis Pathogenicity

    Directory of Open Access Journals (Sweden)

    Serguei G Popov

    2015-09-01

    Full Text Available Nitric oxide (NO is a key physiological regulator in eukaryotic and prokaryotic organisms. It can cause a variety of biological effects by reacting with its targets or/and indirectly inducing oxidative stress. NO can also be produced by bacteria including the pathogenic B. anthracis; however its role in the infectious process only begins to emerge. NO incapacitates macrophages by S-nitrosylating the intracellular proteins and protects B. anthracis from oxidative stress. It is also implicated in the formation of toxic peroxynitrite. In this study we further assessed the effects of B. anthracis NO produced by the NO synthase (bNOS on bacterial metabolism and host cells in experiments with the bNOS knockout Sterne strain. The mutation abrogated accumulation of nitrite and nitrate as tracer products of NO in the culture medium and markedly attenuated growth in both aerobic and microaerobic conditions. The regulatory role of NO was also suggested by the abnormally high rate of nitrate denitrification by the mutant in the presence of oxygen. Anaerobic regulation mediated by NO was reflected in reduced fermentation of glucose by the mutant correlating with the reduced toxicity of bacteria toward host cells in culture. The toxic effect of NO required permeabilization of the target cells as well as the activity of fermentation-derived metabolite in the conditions of reduced pH. The host cells demonstrated increased phosphorylation of major survivor protein kinase AKT correlating with reduced toxicity of the mutant in comparison with Sterne. Our global proteomic analysis of lymph from the lymph nodes of infected mice harboring bacteria revealed numerous changes in the pattern and levels of proteins associated with the activity of bNOS influencing key cell physiological processes relevant to energy metabolism, growth, signal transduction, stress response, septic shock and homeostasis. This is the first in vivo observation of the bacterial NO effect on the

  1. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  2. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  3. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  4. Bacillus coagulans

    Science.gov (United States)

    Aulitto, Martina; Fusco, Salvatore; Bartolucci, Simonetta; Franzén, Carl Johan; Contursi, Patrizia

    2017-01-01

    The transition from a petroleum-based economy towards more sustainable bioprocesses for the production of fuels and chemicals (circular economy) is necessary to alleviate the impact of anthropic activities on the global ecosystem. Lignocellulosic biomass-derived sugars are suitable alternative feedstocks that can be fermented or biochemically converted to value-added products. An example is lactic acid, which is an essential chemical for the production of polylactic acid, a biodegradable bioplastic. However, lactic acid is still mainly produced by Lactobacillus species via fermentation of starch-containing materials, the use of which competes with the supply of food and feed. A thermophilic and cellulolytic lactic acid producer was isolated from bean processing waste and was identified as a new strain of Bacillus coagulans , named MA-13. This bacterium fermented lignocellulose-derived sugars to lactic acid at 55 °C and pH 5.5. Moreover, it was found to be a robust strain able to tolerate high concentrations of hydrolysate obtained from wheat straw pre-treated by acid-catalysed (pre-)hydrolysis and steam explosion, especially when cultivated in controlled bioreactor conditions. Indeed, unlike what was observed in microscale cultivations (complete growth inhibition at hydrolysate concentrations above 50%), B. coagulans MA-13 was able to grow and ferment in 95% hydrolysate-containing bioreactor fermentations. This bacterium was also found to secrete soluble thermophilic cellulases, which could be produced at low temperature (37 °C), still retaining an optimal operational activity at 50 °C. The above-mentioned features make B. coagulans MA-13 an appealing starting point for future development of a consolidated bioprocess for production of lactic acid from lignocellulosic biomass, after further strain development by genetic and evolutionary engineering. Its optimal temperature and pH of growth match with the operational conditions of fungal enzymes hitherto

  5. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the Bacillus cereus Group.

    Science.gov (United States)

    Hakovirta, Janetta R; Prezioso, Samantha; Hodge, David; Pillai, Segaran P; Weigel, Linda M

    2016-11-01

    Analysis of 16S rRNA genes is important for phylogenetic classification of known and novel bacterial genera and species and for detection of uncultivable bacteria. PCR amplification of 16S rRNA genes with universal primers produces a mixture of amplicons from all rRNA operons in the genome, and the sequence data generally yield a consensus sequence. Here we describe valuable data that are missing from consensus sequences, variable effects on sequence data generated from nonidentical 16S rRNA amplicons, and the appearance of data displayed by different software programs. These effects are illustrated by analysis of 16S rRNA genes from 50 strains of the Bacillus cereus group, i.e., Bacillus anthracis, Bacillus cereus, Bacillus mycoides, and Bacillus thuringiensis These species have 11 to 14 rRNA operons, and sequence variability occurs among the multiple 16S rRNA genes. A single nucleotide polymorphism (SNP) previously reported to be specific to B. anthracis was detected in some B. cereus strains. However, a different SNP, at position 1139, was identified as being specific to B. anthracis, which is a biothreat agent with high mortality rates. Compared with visual analysis of the electropherograms, basecaller software frequently missed gene sequence variations or could not identify variant bases due to overlapping basecalls. Accurate detection of 16S rRNA gene sequences that include intragenomic variations can improve discrimination among closely related species, improve the utility of 16S rRNA databases, and facilitate rapid bacterial identification by targeted DNA sequence analysis or by whole-genome sequencing performed by clinical or reference laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Toxicity of Tolyltriazole to Bacillus Microorganisms.

    Science.gov (United States)

    2000-03-01

    Bacillus coagulans Microbacterium lacticum Jupiter Bacillus thuringiensis Bacillus thuringiensis Bacillus cereus Bacillus Bacillus thuringiensis...TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS THESIS Christopher J. Leonard, First Lieutenant, USAF AFIT/GEE/ENV/OOM-12 Approved for...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS 6. AUTHOR(S) Christopher J

  7. Thermal Inactivation of Viruses

    Science.gov (United States)

    1977-10-01

    production. Proc. Soc. Exptl. Biol. Med. 116:174-177. Mayer, V. 1965. Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity...inactivation of rabies and other rhabrtoviruses: stabilization of the chelating agent Ethylenediaminetetraacetic acid at physiological temperatures. Infec

  8. Monitoring the ecology of Bacillus during Daqu incubation, a fermentation starter, using culture-dependent and culture-independent methods.

    Science.gov (United States)

    Yan, Zheng; Zheng, Xiao-Wei; Han, Bei-Zhong; Han, Jian-Shu; Nout, M J Robert; Chen, Jing-Yu

    2013-05-01

    Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized.

  9. Inactivation of certain insect pathogens by ultraviolet radiation

    International Nuclear Information System (INIS)

    Krieg, A.; Groener, A.; Huber, J.; Zimmermann, G.

    1981-01-01

    The UV-sensitivity of two baculoviruses (granulosis virus, nuclear polyhedrosis virus) and two entomopathogenic microorganisms (Bacillus thuringiensis, Beauveria bassiana) was determined by radiation tests. In the far UV (254 nm) the stability, measured at an inactivation rate of 99%, was in declining order: nuclear polyhedra >= conidia of B. bassiana > granula > spores of B. thuringiensis >= vegetative cells of B. thuringiensis. In the near UV (285-380 nm) the following order could be found: conidia of B. bassiana >= nuclear polyhedra > spores of B. thuringiensis >= granula > vegetative cells of B. thuringiensis. Far UV had a much higher germicidal effect for all pathogens tested than near UV. (orig.) [de

  10. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres.

    Directory of Open Access Journals (Sweden)

    Karla D Passalacqua

    Full Text Available Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241, an attenuated strain of B. anthracis (Sterne 34F(2, and an avirulent B. cereus strain (10987--during exponential growth in two distinct atmospheric environments: 14% CO(2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and

  11. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Auger, Sandrine [Genetique Microbienne; Galleron, Nathalie [Genetique Microbienne; Segurens, Beatrice [Center National Sequencage, F-91057 Evry, France; Simon, Jorg [Johann Wolfgang Goethe University, Frankfurt am Main, Germany; Dossat, Carole [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Land, Miriam L [ORNL; Broussolle, Veronique [Securite et Qualite des Produits d' Origine Vegetale; Brillard, Julien [Securite et Qualite des Produits d' Origine Vegetale; Guinebretiere, Marie-Helene [Securite et Qualite des Produits d' Origine Vegetale; Sanchis, Vincent [Genetique Microbienne; Nguen-the, Christophe [Securite et Qualite des Produits d' Origine Vegetale; Lereclus, Didier [Genetique Microbienne; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Wincker, Patrick [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Weissenbach, Jean [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Ehrlich, Dusko [Genetique Microbienne; Sorokin, Alexei [Genetique Microbienne

    2008-01-01

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530 kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  12. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  13. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach

    NARCIS (Netherlands)

    Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Leusden, van F.M.

    2009-01-01

    Aims: Model the number of viable vegetative cells of B. cereus surviving the gastric passage after experiments in simulated gastric conditions. Materials and Methods: The inactivation of stationary and exponential phase vegetative cells of twelve different strains of Bacillus cereus, both mesophilic

  14. Rendering one autolysis site in Bacillus subtilis neutral protease resistant to cleavage reveals a new fission

    NARCIS (Netherlands)

    Van den Burg, B; Eijsink, VGH; Vriend, G; Veltman, OR; Venema, G

    Autolytic degradation of the thermolysin-like proteinase of Bacillus subtilis (TLP-sub) is responsible for the irreversible inactivation of the enzyme at elevated temperatures. Previously we have reported five cleavage sites in Tip-sub [Van den Burg et al, (1990) Biochem. J. 272, 93-97]. In an

  15. Characterization of a new Bacillus stearothermophilus isolate : a highly thermostable α-amylase-producing strain

    NARCIS (Netherlands)

    Wind, R.D.; Buitelaar, R.M.; Eggink, G.; Huizing, H.J.; Dijkhuizen, L.

    1994-01-01

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known α-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable α-amylase. The half-time of inactivation of this α-amylase was 5.1 h

  16. Noncontiguous finished genome sequences and description of Bacillus massiliglaciei, Bacillus mediterraneensis, Bacillus massilinigeriensis, Bacillus phocaeensis and Bacillus tuaregi, five new species identified by culturomics

    OpenAIRE

    Cadoret, F.; Alou, M.T.; Afouda, P.; Traore, I.S.; Br?chard, L.; Michelle, C.; Di Pinto, F.; Andrieu, C.; Delerce, J.; Levasseur, A.; Fournier, P.-E.; Raoult, D.

    2017-01-01

    Microbial culturomics, which investigates microbial diversity by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rDNA identification, allowed to identify five new species within the Bacillus genus. Bacillus massiliglaciei strain Marseille-P2600T, Bacillus mediterraneensis strain Marseille-P2384T, Bacillus massilinigeriensis strain Marseille-P2366T, Bacillus tuaregi strain Marseille-P2489T and Bacillus phocaeensis s...

  17. Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms.

    Science.gov (United States)

    Rattanakul, Surapong; Oguma, Kumiko

    2018-03-01

    To demonstrate the effectiveness of UV light-emitting diodes (UV-LEDs) to disinfect water, UV-LEDs at peak emission wavelengths of 265, 280, and 300 nm were adopted to inactivate pathogenic species, including Pseudomonas aeruginosa and Legionella pneumophila, and surrogate species, including Escherichia coli, Bacillus subtilis spores, and bacteriophage Qβ in water, compared to conventional low-pressure UV lamp emitting at 254 nm. The inactivation profiles of each species showed either a linear or sigmoidal survival curve, which both fit well with the Geeraerd's model. Based on the inactivation rate constant, the 265-nm UV-LED showed most effective fluence, except for with E. coli which showed similar inactivation rates at 265 and 254 nm. Electrical energy consumption required for 3-log 10 inactivation (E E,3 ) was lowest for the 280-nm UV-LED for all microbial species tested. Taken together, the findings of this study determined the inactivation profiles and kinetics of both pathogenic bacteria and surrogate species under UV-LED exposure at different wavelengths. We also demonstrated that not only inactivation rate constants, but also energy efficiency should be considered when selecting an emission wavelength for UV-LEDs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The putative drug efflux systems of the Bacillus cereus group.

    Science.gov (United States)

    Hassan, Karl A; Fagerlund, Annette; Elbourne, Liam D H; Vörös, Aniko; Kroeger, Jasmin K; Simm, Roger; Tourasse, Nicolas J; Finke, Sarah; Henderson, Peter J F; Økstad, Ole Andreas; Paulsen, Ian T; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  19. Phosphorescence In Bacillus Spores

    National Research Council Canada - National Science Library

    Reinisch, Lou; Swartz, Barry A; Bronk, Burt V

    2003-01-01

    .... Our present work attempts to build on this approach for environmental applications. We have measured a change in the fluorescence spectra of suspensions of Bacillus bacteria between the vegetative bacteria and their spores at room temperature...

  20. Screen for agents that induce autolysis in Bacillus subtilis.

    Science.gov (United States)

    Lacriola, Christopher J; Falk, Shaun P; Weisblum, Bernard

    2013-01-01

    The growing prevalence of antibiotic-resistant infections underscores the need to discover new antibiotics and to use them with maximum effectiveness. In response to these needs, we describe a screening protocol for the discovery of autolysis-inducing agents that uses two Bacillus subtilis reporter strains, SH-536 and BAU-102. To screen chemical libraries, autolysis-inducing agents were first identified with a BAU-102-based screen and then subdivided with SH-536 into two major groups: those that induce autolysis by their direct action on the cell membrane and those that induce autolysis secondary to inhibition of cell wall synthesis. SH-536 distinguishes between the two groups of autolysis-inducing agents by synthesizing and then releasing β-galactosidase (β-Gal) in late stationary phase at a time that cells have nearly stopped growing and are therefore tolerant of cell wall synthesis inhibitors. Four hits, named compound 2, compound 3, compound 5, and compound 24, obtained previously as inducers of autolysis by screening a 10,080-compound discovery library with BAU-102, were probed with SH-536 and found to release β-Gal, indicating that their mode of action was to permeabilize the B. subtilis cell membrane. The four primary hits inhibited growth in Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis, and Bacillus anthracis, with MICs in the 12.5- to 25-μg/ml (20 to 60 μM) range. The four primary hits were further used to probe B. subtilis, and their action was partially characterized with respect to the dependence of induced autolysis on specific autolysins.

  1. Identification of lysine 74 in the pyruvate binding site of alanine dehydrogenase from Bacillus subtilis - Chemical modification with 2,4,6-trinitrobenzenesulfonic acid, N-succinimidyl 3-(2-pyridyldithio)propionate, and 5'-(P-(fluorosulfonyl)benzoyl)adenosine

    NARCIS (Netherlands)

    Delforge, D; Devreese, B; Dieu, M; Delaive, E; VanBeeumen, J; Remacle, J

    1997-01-01

    L-Alanine dehydrogenase hom Bacillus subtilis was inactivated with two different lysine-directed chemical reagents, i.e. 2,4,6-trinitrobenzenesulfonic acid and N-succinimidyl 3-(2-pyridyldithio)propionate. In both cases, the inactivation followed pseudo first-order kinetics, with a 1:1

  2. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    Science.gov (United States)

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  3. Re-aerosolization of Bacillus thuringiensis spores from concrete and turf.

    Science.gov (United States)

    Bishop, A H; O'Sullivan, C M; Lane, A; Butler Ellis, M C; Sellors, W J

    2017-05-01

    Spores of Bacillus anthracis deposited on surfaces can become airborne again as a result of air currents and mechanical forces. As such, they are a potential source of infection by inhalation. Spores of Bacillus thuringiensis were used to quantify this phenomenon in a simulation of outdoor conditions. Concrete and turf surfaces were inoculated by aerosol to produce high spore densities (greater than 1 × 10 9  CFU per m 2 ) which were then subjected to the passage of air at 10 ms -1 with and without simulated walking. Re-aerosolized spores were sampled by wetted wall cyclone air samplers. The mean total re-aerosolization rate from concrete (m -2  min -1 ) was 1·16 × 10 -3 for wind alone and 3·2 × 10 -3 for wind and simulated walking while for turf the respective values were 2·7 × 10 -4 and 6·7 × 10 -4 . Following the malicious and/or accidental release of an aerosol of Bacillus anthracis spores, the immediate risk of human inhalation would decrease as the spores were deposited on surfaces or diluted by wind flow. There is, however, a concern that the deposited spores could become re-aerosolized and so present an ongoing hazard. Using an accurate simulant for B. anthracis spores a method is reported here that allowed the enumeration of re-aerosolized spores from concrete and turf by wind flow and footfall. Under the conditions used, the rates of re-aerosolization were low. These findings will need to be verified under real outdoor conditions before the true significance in terms of secondary exposure to pathogenic spores can be assessed. © 2017 Crown copyright. Letter of Applied Microbiology © 2017 The Society for Applied Microbiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  4. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  5. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2009-09-01

    Full Text Available Abstract Background Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. Methods In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. Results The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID analysis, the Promoter Analysis and Interaction Network Toolset (PAINT and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. Conclusion The

  6. Two distinct types of rRNA operons in the Bacillus cereus group.

    Science.gov (United States)

    Candelon, Benjamin; Guilloux, Kévin; Ehrlich, S Dusko; Sorokin, Alexei

    2004-03-01

    The Bacillus cereus group includes insecticidal bacteria (B. thuringiensis), food-borne pathogens (B. cereus and B. weihenstephanensis) and B. anthracis, the causative agent of anthrax. The precise number of rRNA operons in 12 strains of the B. cereus group was determined. Most of the tested strains possess 13 operons and the tested psychrotolerant strains contain 14 operons, the highest number ever found in bacteria. The separate clustering of the tested psychrotolerant strains was confirmed by partial sequencing of several genes distributed over the chromosomes. Analysis of regions downstream of the 23S rRNA genes in the type strain B. cereus ATCC 14579 indicates that the rRNA operons can be divided into two classes, I and II, consisting respectively of eight and five operons. Class II operons exhibit multiple tRNA genes downstream of the 5S rRNA gene and a putative promoter sequence in the 23S-5S intergenic region, suggesting that 5S rRNA and the downstream tRNA genes can be transcribed independently of the 16S and 23S genes. Similar observations were made in the recently sequenced genome of B. anthracis strain Ames. The existence of these distinct types of rRNA operons suggests an unknown mechanism for regulation of rRNA and tRNA synthesis potentially related to the pool of amino acids available for protein synthesis.

  7. Modeling the Ecological Niche ofBacillus anthracisto Map Anthrax Risk in Kyrgyzstan.

    Science.gov (United States)

    Blackburn, Jason K; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K; Kracalik, Ian T; Zhunushov, Asankadyr

    2017-03-01

    AbstractAnthrax, caused by the environmental bacterium Bacillus anthracis , is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.

  8. Rapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data

    Science.gov (United States)

    Carroll, Laura M.; Miller, Rachel A.; Wiedmann, Martin

    2017-01-01

    ABSTRACT The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-d-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner. IMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their

  9. Bacillus odysseyi isolate

    Science.gov (United States)

    Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  10. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    Science.gov (United States)

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  11. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  12. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Jones, D.R.; Karunakaran, V.; Hacking, A.J.

    1991-01-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  13. Tyrosinase inactivation in organic solvents.

    Science.gov (United States)

    Warrington, J C; Saville, B A

    1999-11-05

    The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction. Copyright 1999 John Wiley & Sons, Inc.

  14. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Science.gov (United States)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  15. Characterization of Bacillus cereus

    NARCIS (Netherlands)

    Wijnands LM; Dufrenne JB; Leusden FM; MGB

    2002-01-01

    Bacillus cereus is a ubiquitary microorganism that may cause food borne disease. Pathogenicity, however, depends on various characteristics such as the ability to form (entero)-toxin(s) that can not be detected by microbiological methods. Further characterization of pathogenic properties is not only

  16. Rates of mutant production in Bacillus subtilis by dry heat and gamma irradiation. A preliminary report

    International Nuclear Information System (INIS)

    Dillon, R.T.; Conley, M.B.

    1975-04-01

    Bacillus subtilis var. niger spores were inactivated by dry heat, gamma irradiation, and combination of the two. The percentage of auxotrophic mutants among the survivors was determined as a function of treatment time over seven decimal reductions of the initial population. For dry heat inactivation the percentage of mutants increased to a maximum and then decreased. In general, similar results were obtained with gamma irradiation although there were more peaks and valleys in the percentage of mutants as a function of irradiation. For some combinations of dry heat and simultaneous irradiation the percentage of mutants obtained was greatly reduced. (U.S.)

  17. Draft Genome Sequences of Three Alkaliphilic Bacillus Strains, Bacillus wakoensis JCM 9140T, Bacillus akibai JCM 9157T, and Bacillus hemicellulosilyticus JCM 9152T

    OpenAIRE

    Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; Oshida, Yumi; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira; Ohkuma, Moriya

    2014-01-01

    Here, we report the draft genome sequences of the type strains of three cellulolytic or hemicellulolytic alkaliphilic Bacillus species: Bacillus wakoensis, Bacillus akibai, and Bacillus hemicellulosilyticus. The genome information for these three strains will be useful for studies of alkaliphilic Bacillus species, their evolution, and biotechnological applications for their enzymes.

  18. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-10-13

    responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  19. Studies on ultraviolet inactivation of air-borne microorganisms, 1

    International Nuclear Information System (INIS)

    Adachi, Shin-ichi; Doi, Hitoshi; Yamayoshi, Takao; Nunoura, Masako; Tatsumi, Noriyuki.

    1989-01-01

    UV(254nm) inactivation of air-borne bacteria in an air-controlling apparatus was studied. The appratus was composed of a chamber for vaporizing a bacterial suspension and an irradiation duct equipped with an UV lamp(GL-30). The bacterial which passed through the irradiation duct impinged on a petri dish by an air slit sampler. Selected bacteria for the experiment were Serratia marcescens, Escherichia coli, Sarcina lutea and Bacillus subtilis(spores). The apparatus was useful for the study of the susceptibility of air-borne bacteria to UV radiation. UV dose necessary to inhibit colony formation in 90% of individual bacteria in the controlled air was as low as 27 to 35% of the dose required for the agar plate method. (author)

  20. Human PIEZO1: removing inactivation.

    Science.gov (United States)

    Bae, Chilman; Gottlieb, Philip A; Sachs, Frederick

    2013-08-20

    PIEZO1 is an inactivating eukaryotic cation-selective mechanosensitive ion channel. Two sites have been located in the channel that when individually mutated lead to xerocytotic anemia by slowing inactivation. By introducing mutations at two sites, one associated with xerocytosis and the other artificial, we were able to remove inactivation. The double mutant (DhPIEZO1) has a substitution of arginine for methionine (M2225R) and lysine for arginine (R2456K). The loss of inactivation was accompanied by ∼30-mmHg shift of the activation curve to lower pressures and slower rates of deactivation. The slope sensitivity of gating was the same for wild-type and mutants, indicating that the dimensional changes between the closed and open state are unaffected by the mutations. The unitary channel conductance was unchanged by mutations, so these sites are not associated with pore. DhPIEZO1 was reversibly inhibited by the peptide GsMTx4 that acted as a gating modifier. The channel kinetics were solved using complex stimulus waveforms and the data fit to a three-state loop in detailed balance. The reaction had two pressure-dependent rates, closed to open and inactivated to closed. Pressure sensitivity of the opening rate with no sensitivity of the closing rate means that the energy barrier between them is located near the open state. Mutant cycle analysis of inactivation showed that the two sites interacted strongly, even though they are postulated to be on opposite sides of the membrane. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Seasonal Inactivated Influenza Virus Vaccines

    OpenAIRE

    Couch, Robert B.

    2008-01-01

    Inactivated influenza virus vaccines are the primary modality used for prevention of influenza. A system of annual identification of new strains causing illnesses, selections for vaccines, chick embryo growth, inactivation, processing, packaging, distribution and usage has been in place for decades. Current vaccines contain 15 µg of the HA of an A/H1N1, A/H3N2 and B strain and are given parenterally to induce serum anti-HA antibody for prevention of subsequent infection and illness from natur...

  2. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  3. Use of Proteomics and the Secretome and Exosporium of Bacillus anthracis in the Development of Bacterial Ghost-Based Vaccines

    Science.gov (United States)

    2004-11-15

    Guy Patra, Tim Alefantis, Joseph Connolly, Alexander Waltz, Cesar Mujer , Akbar Khan1, and Werner Lubitz2 Vital Probes, Inc., 1Defense Threat Reduction...RNaseEF-G tRNA Synthetase Class IAconitase Hydratase 60 kDa Chaperonin DNA K Chaperone Protein Enolase FKBP-type peptidyl, prolyl cis- trans ...phosphate Isomerase PTS HPr Component Phosphorylation Site Ribosomal Protein S6 Nucleoside Diphosphate Kinase Cyclophilin-type Peptidyl Prolyl Cis- Trans

  4. A Reaction Path Study of the Catalysis and Inhibition of the Bacillus anthracis CapD gamma-Glutamyl Transpeptidase

    Science.gov (United States)

    2014-10-21

    For example, a glycogen phosphorylase enzyme has an activation energy of 21.2 kcal/mol,51 with a corresponding free energy barrier of 15.2 kcal/mol...bond. However, they also have the free N-terminal α-amine that pDGA does not have. The free α-amino group of typical GGT substrates can interfere...site that could stabilize the free α-amine. Therefore, the lack of CapD catalysis with regular GGT substrates could be due to either poor binding ( free

  5. Whole Genome Sequencing and Phylogenetic Analysis of a Historical Collection of Bacillus anthracis Strains from Danish Cattle

    DEFF Research Database (Denmark)

    Derzelle, Sylviane; Girault, Guillaume; Kokotovic, Branko

    2015-01-01

    of such lineage in Europe is demonstrated for the first time, filling an historical gap within the phylogeography of the lineage. Comparative genome analyses of these strains with 41 isolates from other parts of the world revealed that the two Danish A.Br.008/011 strains were related to the heroin...

  6. Structure analysis of free and bound states of an RNA aptamer against ribosomal protein S8 from Bacillus anthracis.

    Science.gov (United States)

    Davlieva, Milya; Donarski, James; Wang, Jiachen; Shamoo, Yousif; Nikonowicz, Edward P

    2014-01-01

    Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. DESTRUCTION OF FRANCISELLA TULARENSIS AND YERSINIA PESTIS PERSISTENCE OF BACILLUS ANTHRACIS SPORES AND CLOSTRIDIUM BOTULINUM IN MUNICIPAL SOLID LANDFILL LEACHATES

    Science.gov (United States)

    The United States Environmental Protection Agency Office of Research and Development National Homeland Security Research Center (NHSRC) in collaboration with the Department of Defense Edgewood Chemical Biological Center (ECBC) are evaluating the permanence of biological and chemi...

  8. Antimicrobial Effects of Gold/Copper Sulphide (Au/Cus) Core/Shell Nanoparticles on Bacillus Anthracis Spores and Cells

    Science.gov (United States)

    2013-01-01

    and DNA extrusion experiments revealed that nanoparticles damaged the cell membrane causing DNA and cytosolic content efflux and eventually cell...significant spore (x 105) killing after 24 h of pre-treatment. SEM imaging, EDS analysis, and DNA extrusion experiments revealed that nanoparticles...CO2. The spores have a highly ordered structure with a multilayered proteinaceous shell called the coat. The coat is responsible for resistance and

  9. A comparison of the immune response between early exposed and 1 year post exposure to Bacillus anthracis in Indonesia

    Science.gov (United States)

    Redhono, D.; Kusumawardani, A.; Dirgahayu, P.

    2018-03-01

    Anthrax is one of the zoonotic diseases that usually affects animals and can be transmitted to humans. Immune response of the body during an infection is the presence of antibodies as an effort to defend the body and it will survive for some time in the blood. The aim study is to find out how the initial response to the formation of antibodies and how these antibodies survive after one year. This study is cohort to people exposed to anthrax and found 130 people exposed to anthrax. The most risk factor was direct contact and consumed infected animal meat, which was 34.6%. Clinical manifestations of the skin were 12.3% and all respondents showed positive IgG. While 87.7% did not show any anthrax symptoms. IgG serum examination after 1 year of exposure to anthrax obtained 3.8% still detected antibodies in the body. The relationship between IgG titers with clinical manifestations of anthrax at one year post-outbreak is highly significant p 0.028. In conclusion a significant association between the clinical manifestation with antibody serum anthrax and it still detected after one-year post outbreaks of anthrax.

  10. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets containing data for recovery of spores from different materials. Data on the fumigation parameters are also included. This dataset is associated with...

  11. Development of a Cell-Based Fluorescence Resonance Energy Transfer Reporter for Bacillus anthracis Lethal Factor Protease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, R H; Steenblock, E R; Camarero, J A

    2007-03-22

    We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased 5 times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.

  12. Bacillus anthracis-derived edema toxin (ET counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway

    Directory of Open Access Journals (Sweden)

    Nguyen Chinh

    2012-01-01

    Full Text Available Abstract Background A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET, which is formed by the combination of two proteins produced by the organism, edema factor (EF, which is an adenyl cyclase, and protective antigen (PA. Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. Results Pretreatment of human microvascular endothelial cell(ECs of the lung (HMVEC-L with ET decreased interleukin (IL-8-driven transendothelial migration (TEM of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. Conclusions We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.

  13. Poly-gamma-Glutamate Capsule-Degrading Enzyme Treatment Enhances Phagocytosis and Killing of Encapsulated Bacillus Anthracis

    Science.gov (United States)

    2006-10-14

    involved in transporting inhaled spores to drain- ing lymph nodes, where the spores are thought to germinate (42). Macrophages (60) and neutrophils (23, 32...ACA GAC ACA TAT CCA AAT ATT GAA GCA-3; reverse primer, 5-GCG GCG GGA TCC TTA GCC ATA ATA CTC TGC CTC TGC TTC TTT AAT-3). Recombinant proteins were...groups at 2 h were tested using Tukey’s post hoc tests. P values for post hoc analysis are indicated in the text. RESULTS Hydrolysis of capsule with

  14. Purified Bacillus anthracis Lethal Toxin Complex Formed in Vitro and During Infection Exhibits Functional and Biological Activity

    National Research Council Canada - National Science Library

    Panchal, Rekha G; Halverson, Kelly M; Ribot, Wilson; Lane, Douglas; Kenny, Tara

    2005-01-01

    .... Purified LF complexed with PA63 heptamer was able to cleave both a synthetic peptide substrate and endogenous mitogen-activated protein kinase kinase substrates and kill susceptible macrophage...

  15. Microarray Analysis of Transposon Insertion Mutants in Bacillus Anthracis: Global Identification of Genes Required for Sporulation and Germination

    National Research Council Canada - National Science Library

    Day , Jr., William A; Rasmussen, Suzanne L; Carpenter, Beth M; Peterson, Scott N; Friedlander, Arthur M

    2007-01-01

    .... The system, used to identify genes required for generation of the infectious anthrax spore, spore germination and optimal growth on rich medium, was predictive of the contribution of two conserved...

  16. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    Directory of Open Access Journals (Sweden)

    Christian Andreas Lenz

    2015-07-01

    Full Text Available Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C. botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores.We investigated the inactivation of C. botulinum type E spores by (near isothermal HPT treatments at 300 – 1200 MPa at 30 – 75 °C for 1 s – 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone, large heat susceptible (HPT-induced germinated or lysozyme-dependently germinable (damaged coat layer spore fractions were not detected. Inactivation followed 1st order kinetics. DPA release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective physiologic-like (similar to nutrient-induced germination at ≤ 450 MPa/≤ 45 °C and non-physiological germination at >500 MPa/>60 – 70 °C.Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores than spores from other C. botulinum types, could allow for the implementation of milder processes without

  17. Ecology and thermal inactivation of microbes in and on interplanetary space vehicle components. [examined with a scanning electron microscope

    Science.gov (United States)

    Campbell, J. E.

    1974-01-01

    The uses of scanning electron microscopy in assessing changes that occur in spores exposed to wet and dry heat cycles at elevated temperatures were examined. Several species of Bacillus and other nonspore-forming species of organisms were used for the experiment. Surface morphology of viable and nonviable organisms was clearly detectable by this method, making it a potentially useful technique for investigating microbial inactivation on space vehicle surfaces and components. Micrographs of the spores and bacterial cells are provided.

  18. A four-gene operon inBacillus cereusproduces two rare spore-decorating sugars.

    Science.gov (United States)

    Li, Zi; Mukherjee, Thiya; Bowler, Kyle; Namdari, Sholeh; Snow, Zachary; Prestridge, Sarah; Carlton, Alexandra; Bar-Peled, Maor

    2017-05-05

    Bacterial glycan structures on cell surfaces are critical for cell-cell recognition and adhesion and in host-pathogen interactions. Accordingly, unraveling the sugar composition of bacterial cell surfaces can shed light on bacterial growth and pathogenesis. Here, we found that two rare sugars with a 3- C -methyl-6-deoxyhexose structure were linked to spore glycans in Bacillus cereus ATCC 14579 and ATCC 10876. Moreover, we identified a four-gene operon in B. cereus ATCC 14579 that encodes proteins with the following sequential enzyme activities as determined by mass spectrometry and one- and two-dimensional NMR methods: CTP:glucose-1-phosphate cytidylyltransferase, CDP-Glc 4,6-dehydratase, NADH-dependent SAM: C -methyltransferase, and NADPH-dependent CDP-3- C -methyl-6-deoxyhexose 4-reductase. The last enzyme predominantly yielded CDP-3- C -methyl-6-deoxygulose (CDP-cereose) and likely generated a 4-epimer CDP-3- C -methyl-6-deoxyallose (CDP-cillose). Some members of the B. cereus sensu lato group produce CDP-3- C -methyl-6-deoxy sugars for the formation of cereose-containing glycans on spores, whereas others such as Bacillus anthracis do not. Gene knockouts of the Bacillus C -methyltransferase and the 4-reductase confirmed their involvement in the formation of cereose-containing glycan on B. cereus spores. We also found that cereose represented 0.2-1% spore dry weight. Moreover, mutants lacking cereose germinated faster than the wild type, yet the mutants exhibited no changes in sporulation or spore resistance to heat. The findings reported here may provide new insights into the roles of the uncommon 3- C -methyl-6-deoxy sugars in cell-surface recognition and host-pathogen interactions of the genus Bacillus . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Microbial genotyping and differentiating between Bacillus mojavensis and Bacillus subtilis

    Science.gov (United States)

    Bacillus mojavensis, a specie recently distinguished from its previous Bacillus subtilis classification, was discovered in corn kernels and later determined to possess endophytic character. The bacterium was also determined to have biocontrol potential due to its growth inhibition of the maize mycot...

  20. Sample collection of virulent and non-virulent B. anthracis and Y. pestis for bioforensics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory; Valdez, Yolanda E [Los Alamos National Laboratory; Shou, Yulin [Los Alamos National Laboratory; Yoshida, Thomas M [Los Alamos National Laboratory; Marrone, Babetta L [Los Alamos National Laboratory; Dunbar, John [Los Alamos National Laboratory

    2009-01-01

    Validated sample collection methods are needed for recovery of microbial evidence in the event of accidental or intentional release of biological agents into the environment. To address this need, we evaluated the sample recovery efficiencies of two collection methods -- swabs and wipes -- for both non-virulent and virulent strains of B. anthracis and Y. pestis from four types of non-porous surfaces: two hydrophilic surfaces, stainless steel and glass, and two hydrophobic surfaces, vinyl and plastic. Sample recovery was quantified using Real-time qPCR to assay for intact DNA signatures. We found no consistent difference in collection efficiency between swabs or wipes. Furthermore, collection efficiency was more surface-dependent for virulent strains than non-virulent strains. For the two non-virulent strains, B. anthracis Sterne and Y. pestis A1122, collection efficiency was approximately 100% and 1 %, respectively, from all four surfaces. In contrast, recovery of B. anthracis Ames spores and Y. pestis C092 from vinyl and plastic was generally lower compared to collection from glass or stainless steel, suggesting that surface hydrophobicity may playa role in the strength of pathogen adhesion. The surface-dependent collection efficiencies observed with the virulent strains may arise from strain-specific expression of capsular material or other cell surface receptors that alter cell adhesion to specific surfaces. These findings contribute to validation of standard bioforensics procedures and emphasize the importance of specific strain and surface interactions in pathogen detection.

  1. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    Science.gov (United States)

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Crystal structure of B acillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity: AtxA multimerization, phosphorylation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Troy G.; Lori, Horton B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-12-30

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system-regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (HisAsp) and phosphoablative (HisAla) amino acid changes for activity in B.anthracis cultures and for protein-protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA-binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high-resolution full-length structure of a PRD-containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

  3. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus spores during livestock mortality composting.

    Science.gov (United States)

    Stanford, K; Reuter, T; Gilroyed, B H; McAllister, T A

    2015-04-01

    To investigate impact of sporulation and compost temperatures on feasibility of composting for disposal of carcasses contaminated with Bacillus anthracis. Two strains of B. cereus, 805 and 1391, were sporulated at either 20 or 37°C (Sporulation temperature, ST) and 7 Log10 CFU g(-1) spores added to autoclaved manure in nylon bags (pore size 50 μm) or in sealed vials. Vials and nylon bags were embedded into compost in either a sawdust or manure matrix each containing 16 bovine mortalities (average weight 617 ± 33 kg), retrieved from compost at intervals over 217 days and survival of B. cereus spores assessed. A ST of 20°C decreased spore survival by 1·4 log10 CFU g(-1) (P Compost temperatures >55°C reduced spore survival (P compost temperatures were key factors influencing survival of B. cereus spores in mortality compost. Composting may be most appropriate for the disposal of carcasses infected with B. anthracis at ambient temperatures ≤20°C under thermophillic composting conditions (>55°C). © 2015 The Society for Applied Microbiology.

  4. Heat activation and stability of amylases from Bacillus species

    African Journals Online (AJOL)

    Administrator

    2007-05-16

    May 16, 2007 ... as Bacillus macerans, Bacillus coagulans Bacillus licheniformis, Bacillus circulans, Bacillus megaterium, Bacillus polymyxa and Bacillus subtilis. Heat treatment at 70oC denatured the β-amylase component of the amylase source while α-amylase retained its potency at this temperature. Calcium.

  5. Inactivation of allergens and toxins.

    Science.gov (United States)

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Rapid filtration separation-based sample preparation method for Bacillus spores in powdery and environmental matrices.

    Science.gov (United States)

    Isabel, Sandra; Boissinot, Maurice; Charlebois, Isabelle; Fauvel, Chantal M; Shi, Lu-E; Lévesque, Julie-Christine; Paquin, Amélie T; Bastien, Martine; Stewart, Gale; Leblanc, Eric; Sato, Sachiko; Bergeron, Michel G

    2012-03-01

    Authorities frequently need to analyze suspicious powders and other samples for biothreat agents in order to assess environmental safety. Numerous nucleic acid detection technologies have been developed to detect and identify biowarfare agents in a timely fashion. The extraction of microbial nucleic acids from a wide variety of powdery and environmental samples to obtain a quality level adequate for these technologies still remains a technical challenge. We aimed to develop a rapid and versatile method of separating bacteria from these samples and then extracting their microbial DNA. Bacillus atrophaeus subsp. globigii was used as a simulant of Bacillus anthracis. We studied the effects of a broad variety of powdery and environmental samples on PCR detection and the steps required to alleviate their interference. With a benchmark DNA extraction procedure, 17 of the 23 samples investigated interfered with bacterial lysis and/or PCR-based detection. Therefore, we developed the dual-filter method for applied recovery of microbial particles from environmental and powdery samples (DARE). The DARE procedure allows the separation of bacteria from contaminating matrices that interfere with PCR detection. This procedure required only 2 min, while the DNA extraction process lasted 7 min, for a total of sample preparation procedure allowed the recovery of cleaned bacterial spores and relieved detection interference caused by a wide variety of samples. Our procedure was easily completed in a laboratory facility and is amenable to field application and automation.

  7. Inactivation of Microorganisms in Model Biofilms by an Atmospheric Pressure Pulsed Non-thermal Plasma

    Science.gov (United States)

    Akishev, Yuri; Trushkin, N.; Grushin, M.; Petryakov, A.; Karal'nik, V.; Kobzev, E.; Kholodenko, V.; Chugunov, V.; Kireev, G.; Rakitsky, Yu.; Irkhina, I.

    Non-thermal plasma jet formed by self-running pulsed-periodical high-current spark generator (PPSG) was used for atmospheric pressure inactivation of microorganisms including biofilms. A distinctive feature of the PPSG is a formation of transient hot plasma clouds (plasma bullets) periodically flying out to the target. We experimented with model biofilms of E. coli and Bacillus subtilis monocultures which were grown on agar and surfaces of steel and polypropylene coupons. High efficiency of plasma inactivation was demonstrated. This effect is associated primarily with an interaction of transient hot plasma clouds with biofilms. Besides complete or partial degradation of the cell membrane, weakening of the cell wall of E.coli culture by active plasma was found.

  8. Cell wall as a target for bacteria inactivation by pulsed electric fields

    Science.gov (United States)

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  9. Inactivation of bacteria via photosensitization of vitamin K3 by UV-A light.

    Science.gov (United States)

    Xu, Fei; Vostal, Jaroslav G

    2014-09-01

    This study investigated inactivation of bacteria with ultraviolet light A irradiation in combination with vitamin K3 as a photosensitizer. Six bacteria including Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and Escherichia coli suspended in vitamin K3 aqueous solution were exposed to ultraviolet light A. Five of six bacteria, with the exception of Pseudomonas aeruginosa, were reduced by eight logs with 1600 μM of vitamin K3 and 5.8 J cm(-2) UV-A irradiation. Pseudomonas aeruginosa was reduced by four logs under these conditions. Reactive oxygen species including singlet oxygen, hydroxyl radical and superoxide anion radical were generated in vitamin K3 aqueous solution under UV-A irradiation. These results suggest that vitamin K3 and UV-A irradiation may be effective for bacterial inactivation in environmental and medical applications. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Inactivation of food-borne pathogens by combined high hydrostatic pressure and irradiation- a model study

    International Nuclear Information System (INIS)

    Kamat, Anu; Thomas, Paul; Kesavan, P.C.; Fotedar, R.

    1997-01-01

    Application of radiation or high pressure as a food processing method is comparatively recent development in food industry. To investigate the response to hydrostatic pressure, cells of pathogens at logarithmic phase were exposed to 200 MPa for various time intervals in saline as model system. The cells of Salmonella were observed to be most sensitive whereas Listeria monocytogenes were most resistant as revealed by 7 and 2 log cycle inactivation respectively in 10 min. The cells of Bacillus cereus and Yersinia enterocolitica showed 3 long cycles reduction by the same treatment. Bacterial spores because of their resistant nature, are inactivated only at high radiation doses, which are technologically unfeasible. Studies carried out to examine the effectiveness of combination of pressure and radiation clearly suggested that combination treatment given in either sequence reduces the bacterial spore load more effectively than the individual treatment per se. (author)

  11. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance

    Directory of Open Access Journals (Sweden)

    Salme eTimmusk

    2015-05-01

    Full Text Available Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are nonribosomal peptide and polyketide derived metabolites (NRP/PK. Modular nonribosomal peptide synthetases catalyse main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 sfp-type phosphopantetheinyl transferase. The inactivation of the gene resulted in loss of NRP/PK production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. Its biofilm promotion is directly mediated by NRP/PK, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria that had lost their sfp-type PPTase gene resulted in two times higher plant survival and about three times increased biomass under severe drought stress compared to wild type.

  12. Noncontiguous finished genome sequences and description of Bacillus massiliglaciei, Bacillus mediterraneensis, Bacillus massilinigeriensis, Bacillus phocaeensis and Bacillus tuaregi, five new species identified by culturomics

    Directory of Open Access Journals (Sweden)

    F. Cadoret

    2017-09-01

    Full Text Available Microbial culturomics, which investigates microbial diversity by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rDNA identification, allowed to identify five new species within the Bacillus genus. Bacillus massiliglaciei strain Marseille-P2600T, Bacillus mediterraneensis strain Marseille-P2384T, Bacillus massilinigeriensis strain Marseille-P2366T, Bacillus tuaregi strain Marseille-P2489T and Bacillus phocaeensis strain SIT16T are each the type strain of the corresponding bacterial species. These strains, the genomes of which are described here, are facultative anaerobic Gram-positive bacilli. Here, we describe the main characteristics of each bacterium and present their complete genome sequence and annotation.

  13. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    Science.gov (United States)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  14. Vitamin K5 is an efficient photosensitizer for ultraviolet A light inactivation of bacteria.

    Science.gov (United States)

    Xu, Fei; Li, Ying; Ahmad, Justen; Wang, Yonggang; Scott, Dorothy E; Vostal, Jaroslav G

    2018-02-01

    Photodynamic treatment combining light and a photosensitizer molecule can be an effective method to inactivate pathogenic bacteria. This study identified vitamin K5 as an efficient photosensitizer for ultraviolet light A (UVA)-induced bacterial inactivation. Six bacterial species, Bacillus cereus (vegetative form), Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, and two species of antibiotic-resistant bacteria, Pseudomonas aeruginosa* and Staphylococcus aureus*, were suspended in aqueous solutions with or without vitamin K5 and exposed to UVA irradiation. UVA irradiation (5.8 J cm-2) with vitamin K5 (1600 μmol l-1) reduced the colony forming units (CFU) of these bacteria by three to seven logs. Antibiotic resistant bacteria were also susceptible to the bactericidal effects of UVA and vitamin K5 combination treatment. Inactivation of bacteria in human plasma required higher doses of UVA light and vitamin K5. UVA irradiation (30 J cm-2) with vitamin K5 (2000 μmol l-1) reduced E. coli and S. aureus spiked into human plasma by seven logs CFU/ml. Reactive oxygen species, such as superoxide anion radicals and hydroxyl radicals, were found to be generated in vitamin K5 aqueous solution after UVA irradiation, suggesting these oxygen species may mediate the inactivation of the bacteria. Published by Oxford University Press on behalf of FEMS 2018.

  15. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    Directory of Open Access Journals (Sweden)

    Kathleen eKilcullen

    2016-02-01

    Full Text Available Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1 and 14579 (BC2 in aerated and microaerobic (static cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO, and metabolic product(s such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.

  16. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions.

    Science.gov (United States)

    Kilcullen, Kathleen; Teunis, Allison; Popova, Taissia G; Popov, Serguei G

    2016-01-01

    Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1) and 14579 (BC2) in aerobic and microaerobic (static) cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO), and metabolic product(s) such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1 was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1 cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.

  17. The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics.

    Science.gov (United States)

    Økstad, Ole Andreas; Tourasse, Nicolas J; Stabell, Fredrik B; Sundfaer, Cathrine K; Egge-Jacobsen, Wolfgang; Risøen, Per Arne; Read, Timothy D; Kolstø, Anne-Brit

    2004-11-01

    Bacillus cereus strains ATCC 10987 and ATCC 14579 harbor an approximately 155-bp repeated element, bcr1, which is conserved in B. cereus, B. anthracis, B. thuringiensis, and B. mycoides but not in B. subtilis and B. licheniformis. In this study, we show by Southern blot hybridizations that bcr1 is present in all 54 B. cereus group strains tested but absent in 11 Bacillus strains outside the group, suggesting that bcr1 may be specific and ubiquitous to the B. cereus group. By comparative analysis of the complete genome sequences of B. cereus ATCC 10987, B. cereus ATCC 14579, and B. anthracis Ames, we show that bcr1 is exclusively present in the chromosome but absent from large plasmids carried by these strains and that the numbers of full-length bcr1 repeats for these strains are 79, 54, and 12, respectively. Numerous copies of partial bcr1 elements are also present in the three genomes (91, 128, and 53, respectively). Furthermore, the genomic localization of bcr1 is not conserved between strains with respect to chromosomal position or organization of gene neighbors, as only six full-length bcr1 loci are common to at least two of the three strains. However, the intergenic sequence surrounding a specific bcr1 repeat in one of the three strains is generally strongly conserved in the other two, even in loci where bcr1 is found exclusively in one strain. This finding indicates that bcr1 either has evolved by differential deletion from a very high number of repeats in a common ancestor to the B. cereus group or is moving around the chromosome. The identification of bcr1 repeats interrupting genes in B. cereus ATCC 10987 and ATCC 14579 and the presence of a flanking TTTAT motif in each end show that bcr1 exhibits features characteristic of a mobile element.

  18. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid.

    Directory of Open Access Journals (Sweden)

    Andrew G Hughson

    2016-09-01

    Full Text Available Hypochlorous acid (HOCl is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12 sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion

  19. Bacillus pumilus SAFR-032 isolate

    Science.gov (United States)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  20. ORF Sequence: NC_007530 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available [Bacillus anthracis str. 'Ames Ancestor'] MSNNNYSNGLNPDESLSASAFDPNLVGPTLPPIPPFTLPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGP...TGDTGTTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGP...TGPTGPTGDTGTTGPTGPTGPTGPTGPTGPTGPTGATGLTGPTGPTGPSGLGLPAGL

  1. ORF Sequence: NC_003995 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Bacillus anthracis str. A2012] MSNNNYSNGLNPDESLSASAFDPNLVGPTLPPIPPFTLPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGDTGTTGPTGP...TGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGP...TGDTGTTGPTGPTGPTGPTGPTGPTGPTGATGLTGPTGPTGPSGLGLPAGLYAFNSGGISLD

  2. ORF Sequence: NC_005945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Bacillus anthracis str. Sterne] MSNNNYSNGLNPDESLSASAFDPNLVGPTLPPIPPFTLPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGP...TGDTGTTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGP...TGDTGTTGPTGPTGPTGPTGPTGDTGTTGPTGPTGPTGPTGPTGPTGPTGATGLTGPTGPTGPS

  3. ORF Sequence: NC_003997 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available family protein [Bacillus anthracis str. Ames] MSLLGTGYLPDGTHMPGANPNLNIAAFLKENHIDLHTTVYPGGGLDPYTSVEFLNIVSKHCKTVFSNANEVLNTIPNSIYVPGIINT...EFYHYNQKVSTKPIQMIFAAHNAERKGFPLLAQAFNKLDDQFHLHIVGNWENSLHLLTNNNYTFWGMLDLEKLKQLYEQSHVF

  4. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  5. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  6. Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.

    Science.gov (United States)

    1982-09-01

    coli Hemophilus influenzae Bacillus anthracis Bacillus circulans Bacillus coagulans Bacillus cereus T Candida albicans Cryptococcus neoformans Legionel...reveree aide If neceeeary and Identify by block number) Lectins: Rapid Identification, Bacillus anthracisjCryptococcus " neoformans. Neisseria...field-type kit for the rapid identification of Bacillus anthracis. We have shown that certain lectins will selectively interact with B. anthracis

  7. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    Science.gov (United States)

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  8. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms.

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-10-09

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms ( Bacillus subtilis , B. cereus , B. pumilus , Escherichia coli , Pseudomonas fluorescens , Aspergillus niger , Eupenicillium cinnamopurpureum ) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  9. Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release.

    Science.gov (United States)

    Park, Sangjin; Kim, Changhwan; Lee, Daesang; Song, Dong Hyun; Cheon, Ki Cheol; Lee, Hong Suk; Kim, Seong Joo; Kim, Jee Cheon; Lee, Sang Yup

    2017-05-01

    , especially when genetically engineered strains are used. To solve these problems, we report here the development of B. thuringiensis simulant strains that are capable of forming yellow colonies for easy detection, incapable of forming spores more than once due to a genetic circuit, and lacking in two major SASP genes. The genetic circuit to produce a spore without sporulation capability, together with the deletion of SASP genes, ensures the environmental and human safety of the simulant strains developed in this study. All of these features will allow wider use of B. thuringiensis as a simulant for Bacillus anthracis in environmental release studies. Copyright © 2017 American Society for Microbiology.

  10. X-chromosome inactivation and escape

    Indian Academy of Sciences (India)

    2015-11-06

    Nov 6, 2015 ... Abstract. X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X ...

  11. Quorum Quenching Bacillus sonorensis Isolated from Soya Sauce Fermentation Brine

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available An N-acylhomoserine lactone (AHL-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v. L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation.

  12. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  13. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  14. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  15. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  16. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    Science.gov (United States)

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis. PMID:6172418

  17. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    such as Staphylococcus aureus (SaTrxR), Streptococcus pyogenes and Bacillus anthracis. A comparative photo-inactivation of TrxR from L. lactis, S. aureus and B. subtilis reveals that SaTrxR and BsTrxR are much less sensitive to light-inactivation than LlTrxR, though SaTrxR exhibited a similar rate of O2 reduction...

  18. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  19. Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin.

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L; Casadevall, Arturo

    2014-07-01

    Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harbouring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. © 2014 John Wiley & Sons Ltd.

  20. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    Science.gov (United States)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  1. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens.

    Science.gov (United States)

    Wang, Li-Ting; Lee, Fwu-Ling; Tai, Chun-Ju; Kuo, Hsiao-Ping

    2008-03-01

    Strain BCRC 14193, isolated from soil, shared more than 99 % 16S rRNA gene sequence similarity with Bacillus amyloliquefaciens BCRC 11601(T) and Bacillus velezensis BCRC 17467(T). This strain was previously identified as B. amyloliquefaciens, based on DNA-DNA hybridization, but its DNA relatedness value with B. velezensis BCRC 17467(T) was 89 %. To investigate the relatedness of strain BCRC 14193, B. amyloliquefaciens and B. velezensis, the partial sequence of the gene encoding the subunit B protein of DNA gyrase (gyrB) was determined. B. velezensis BCRC 17467(T) shared high gyrB gene sequence similarity with B. amyloliquefaciens BCRC 14193 (98.4 %) and all of the B. amyloliquefaciens strains available (95.5-95.6 %). DNA-DNA hybridization experiments revealed high relatedness values between B. velezensis BCRC 17467(T) and B. amyloliquefaciens BCRC 11601(T) (74 %) and the B. amyloliquefaciens reference strains (74-89 %). Based on these data and the lack of phenotypic distinctive characteristics, we propose Bacillus velezensis as a later heterotypic synonym of Bacillus amyloliquefaciens.

  2. Impacts of Bacillus thuringiensis var. israelensis and Bacillus ...

    African Journals Online (AJOL)

    The study assessed the impact of bio-larvicides- Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) on anopheline mosquito larval densities in four selected areas of Lusaka urban district. Larval densities were determined using a standard WHO protocol at each study area prior to and after larviciding.

  3. N'-formylkynurenine-photosensitized inactivation of bacteriophage

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Redpath, J.L.; Pileni, M.P.

    1976-01-01

    Measurements have been made of the sensitizing properties of N'-formylkynurenine (FK) on bacteriophages, as part of a wider study of FK photosensitization of systems which have both protein and DNA components. Suspensions of bacteriophages T 6 and T 7 were near-U.V. (lambda > 320 nm) irradiated in solutions saturated with either O 2 or He in the presence of 5 x 10 -4 M FK. The survival curves obtained demonstrated that FK can act as a photosensitizer for biological inactivation. The involvement of singlet oxygen as one factor in this FK sensitized inactivation was clearly demonstrated by the increased rate of inactivation when the phage were suspended in O 2 -saturated D 2 O, in place of water, during irradiation. The complex mechanism of phage inactivation must involve direct interaction between excited FK and substrate, as well as singlet oxygen. FK is therefore a new natural photosensitizer of significance in cell photochemistry induced by sunlight. (U.K.)

  4. Physical inactivation and stabilization of sludges

    International Nuclear Information System (INIS)

    Alexandre, D.

    1979-07-01

    High temperature conditioning of sludge is a stabilization process that insures sterilization. Both thermal pasteurization and irradiation are inactivation processes. Viruses and parasites are inactivated at 70-80 0 C. Total bacterial destruction requires higher temperatures and/or detention time. Radio sensitivity of pathogens and pertinent treatment parameters are examined. If sludge is to be land disposed, disinfection requires irradiation doses ranging 500 Krad; if cattle feeding is considered, the required dose is 1 Mrad

  5. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    Science.gov (United States)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  6. 76 FR 14289 - Bacillus thuringiensis

    Science.gov (United States)

    2011-03-16

    ... a plant- incorporated protectant in accordance with the terms of Experimental Use Permit (EUP) No... chemistry data for eCry3.1Ab were required for a human health effects assessment. Even so, preliminary... EPA granting registrations or experimental use permits of Bacillus thuringiensis-based pesticides or...

  7. Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts.

    Science.gov (United States)

    Zheng, Jinshui; Gao, Qiuling; Liu, Linlin; Liu, Hualin; Wang, Yueying; Peng, Donghai; Ruan, Lifang; Raymond, Ben; Sun, Ming

    2017-08-08

    Understanding the genetic basis of host shifts is a key genomic question for pathogen and parasite biology. The Bacillus cereus group, which encompasses Bacillus thuringiensis and Bacillus anthracis , contains pathogens that can infect insects, nematodes, and vertebrates. Since the target range of the essential virulence factors (Cry toxins) and many isolates is well known, this group presents a powerful system for investigating how pathogens can diversify and adapt to phylogenetically distant hosts. Specialization to exploit insects occurs at the level of the major clade and is associated with substantial changes in the core genome, and host switching between insect orders has occurred repeatedly within subclades. The transfer of plasmids with linked cry genes may account for much of the adaptation to particular insect orders, and network analysis implies that host specialization has produced strong associations between key toxin genes with similar targets. Analysis of the distribution of plasmid minireplicons shows that plasmids with orf156 and orf157 , which carry genes encoding toxins against Lepidoptera or Diptera, were contained only by B. thuringiensis in the specialized insect clade (clade 2), indicating that tight genome/plasmid associations have been important in adaptation to invertebrate hosts. Moreover, the accumulation of multiple virulence factors on transposable elements suggests that cotransfer of diverse virulence factors is advantageous in terms of expanding the insecticidal spectrum, overcoming insect resistance, or through gains in pathogenicity via synergistic interactions between toxins. IMPORTANCE Population genomics have provided many new insights into the formation, evolution, and dynamics of bacterial pathogens of humans and other higher animals, but these pathogens usually have very narrow host ranges. As a pathogen of insects and nematodes, Bacillus thuringiensis , which produces toxins showing toxicity to many orders of insects and

  8. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Díaz-Bao, M; Cepeda, A; Barros-Velázquez, J; Calo-Mata, P

    2013-04-01

    The Bacillus genus includes species such as Bacillus cereus, Bacillus licheniformis and Bacillus subtilis, some of which may be pathogenic or causative agents in the spoilage of food products. The main goal of this work was to apply matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass fingerprinting to the classification of these Bacillus species. Genetic analyses were also compared to phyloproteomic analyses. A collection of 57 Bacillus strains isolated from fresh and processed food and from culture collections were studied and their mass spectra compiled. The resulting mass fingerprints were compared and characteristic peaks at the strain and species levels were assigned. The results showed that MALDI-TOF was a good complementary approach to 16S rRNA sequencing and even a more powerful tool in the accurate classification of Bacillus species, especially for differentiating B. subtilis and B. cereus from Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. MALDI-TOF was also found to provide valuable information at both intra- and interspecies levels in the Bacillus species studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Updating a B. anthracis Risk Model with Field Data from a Bioterrorism Incident.

    Science.gov (United States)

    Hong, Tao; Gurian, Patrick L

    2015-06-02

    In this study, a Bayesian framework was applied to update a model of pathogen fate and transport in the indoor environment. Distributions for model parameters (e.g., release quantity of B. anthracis spores, risk of illness, spore setting velocity, resuspension rate, sample recovery efficiency, etc.) were updated by comparing model predictions with measurements of B. anthracis spores made after one of the 2001 anthrax letter attacks. The updating process, which was implemented by using Markov chain Monte Carlo (MCMC) methods, significantly reduced the uncertainties of inputs with uniformed prior estimates: total quantity of spores released, the amount of spores exiting the room, and risk to occupants. In contrast, uncertainties were not greatly reduced for inputs for which informed prior data were available: deposition rates, resuspension rates, and sample recovery efficiencies. This suggests that prior estimates of these quantities that were obtained from a review of the technical literature are consistent with the observed behavior of spores in an actual attack. Posterior estimates of mortality risk for people in the room, when the spores were released, are on the order of 0.01 to 0.1, which supports the decision to administer prophylactic antibiotics. Multivariate sensitivity analyses were conducted to assess how effective different measurements were at reducing uncertainty in the estimated risk for the prior scenario. This analysis revealed that if the size distribution of the released particulates is known, then environmental sampling can be limited to accurately characterizing floor concentrations; otherwise, samples from multiple locations, as well as particulate and building air circulation parameters, need to be measured.

  10. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Nik Ab Rahman, Nik Norulaini [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Balakrishnan, Venugopal [Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang (Malaysia); Alkarkhi, Abbas F.M. [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ahmad Rajion, Zainul [School of Dental Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ab Kadir, Mohd Omar, E-mail: akmomar@usm.my [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.

  11. A Simple Decontamination Approach Using Hydrogen ...

    Science.gov (United States)

    Journal article To evaluate the use of relatively low levels of hydrogen peroxide vapor (HPV) for the inactivation of Bacillus anthracis spores within an indoor environment. Methods and Results: Laboratory-scale decontamination tests were conducted using bacterial spores of both B. anthracis Ames and Bacillus atrophaeus inoculated onto several types of materials. Pilot-scale tests were also conducted using a larger chamber furnished as an indoor office. Commercial off-the-shelf (COTS) humidifiers filled with aqueous solutions of 3% or 8% hydrogen peroxide were used to generate the HPV inside the mock office. The spores were exposed to the HPV for periods ranging from 8 hours up to one week. Conclusions: Four to seven day exposures to low levels of HPV (average air concentrations of approximately 5-10 parts per million) were effective in inactivating B. anthracis spores on multiple materials. The HPV can be generated with COTS humidifiers and household H2O2 solutions. With the exception of one test/material, B. atrophaeus spores were equally or more resistant to HPV inactivation compared to those from B. anthracis Ames. Significance and Impact of Study: This simple and effective decontamination method is another option that could be widely applied in the event of a B. anthracis spore release.

  12. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    Science.gov (United States)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  13. Screening of Bacillus Species with Potentials of Antibiotics Production

    Directory of Open Access Journals (Sweden)

    Faruk Adamu KUTA

    2009-07-01

    Full Text Available Sixteen soil samples were collected from different refuse dump sites in Minna, the capital Niger State, and analysed for the presence of Bacillus species. Physical-chemical analysis of the soil samples revealed the followings: PH value 6.89-8.47; moisture content 1.58 – 21.21% and temperature 27-28ºC. Using both pour plate and streak method of inoculation, total bacterial count in the soil samples ranged from 3.8×104 cfu/g 16.0×104 cfu/g. The identified Bacillus species included: Bacillus cereus (30.8%, Bacillus brevis (1.9% Bacillus polymyxa (3.8%, Bacillus lichenifomis (13.5%, Bacillus spherericus (7.7%, Bacillus mycoides (13.5%, Bacillus pumilus (7.7%, Bacillus subtilis (3.8%, Bacillus alvei (1.9%, Bacillus laterosporous (1.9%, Bacillus firmus (9.6% and Bacillus circulars (3.8%. Antibiotic production tests indicated that nine Bacillus species out of twelve isolated in this study could be used to produce antibiotics that had effect on the test organisms. However, Bacillus polymyxa, Bacillus sphaericus and Bacillus laterosporous had little or no effect on the tested organisms. This study suggests that some Bacillus species have potential to produce high quality antibiotics that can be use to control microbial growth in future.

  14. Characterization of type II and III restriction-modification systems from Bacillus cereus strains ATCC 10987 and ATCC 14579.

    Science.gov (United States)

    Xu, Shuang-yong; Nugent, Rebecca L; Kasamkattil, Julie; Fomenkov, Alexey; Gupta, Yogesh; Aggarwal, Aneel; Wang, Xiaolong; Li, Zhiru; Zheng, Yu; Morgan, Richard

    2012-01-01

    The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.

  15. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  16. Characterization of microsatellite loci in the stick insects Bacillus rossius rossius, Bacillus rossius redtenbacheri and Bacillus whitei (Insecta : Phasmatodea)

    DEFF Research Database (Denmark)

    Andersen, DH; Pertoldi, C; Loeschcke, V

    2005-01-01

    Five microsatellite markers were obtained from a dinucleotide enriched genomic library of the stick insect Bacillus rossius rossius. The markers were tested in three species of Bacillus. All loci were polymorphic when tested across species. The number of alleles at each locus was low (maximum four...

  17. ORF Alignment: NC_005945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005945 gi|49185498 >1kwfA 3 362 53 435 1e-84 ... ref|YP_019314.1| chitosanase [Bac...illus anthracis str. 'Ames Ancestor'] ... ref|NP_845032.1| chitosanase [Bacillus anthracis str. ... ... ... Ames] ref|YP_028750.1| chitosanase [Bacillus anthracis ... str. Sterne] ref|NP_656550.1| Glyco_... ... gb|AAP26518.1| chitosanase [Bacillus anthracis str. ... Ames] gb|AAT31789.1| chitosanase [...Bacillus anthracis ... str. 'Ames Ancestor'] gb|AAT54801.1| chitosanase ... [Bacillus anthraci

  18. ORF Alignment: NC_003995 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_003995 gi|21400565 >1kwfA 3 362 53 435 1e-84 ... ref|YP_019314.1| chitosanase [Bac...illus anthracis str. 'Ames Ancestor'] ... ref|NP_845032.1| chitosanase [Bacillus anthracis str. ... ... ... Ames] ref|YP_028750.1| chitosanase [Bacillus anthracis ... str. Sterne] ref|NP_656550.1| Glyco_... ... gb|AAP26518.1| chitosanase [Bacillus anthracis str. ... Ames] gb|AAT31789.1| chitosanase [...Bacillus anthracis ... str. 'Ames Ancestor'] gb|AAT54801.1| chitosanase ... [Bacillus anthraci

  19. ORF Alignment: NC_007530 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_007530 gi|47527965 >1kwfA 3 362 53 435 1e-84 ... ref|YP_019314.1| chitosanase [Bac...illus anthracis str. 'Ames Ancestor'] ... ref|NP_845032.1| chitosanase [Bacillus anthracis str. ... ... ... Ames] ref|YP_028750.1| chitosanase [Bacillus anthracis ... str. Sterne] ref|NP_656550.1| Glyco_... ... gb|AAP26518.1| chitosanase [Bacillus anthracis str. ... Ames] gb|AAT31789.1| chitosanase [...Bacillus anthracis ... str. 'Ames Ancestor'] gb|AAT54801.1| chitosanase ... [Bacillus anthraci

  20. ORF Alignment: NC_003997 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_003997 gi|30262655 >1kwfA 3 362 53 435 1e-84 ... ref|YP_019314.1| chitosanase [Bac...illus anthracis str. 'Ames Ancestor'] ... ref|NP_845032.1| chitosanase [Bacillus anthracis str. ... ... ... Ames] ref|YP_028750.1| chitosanase [Bacillus anthracis ... str. Sterne] ref|NP_656550.1| Glyco_... ... gb|AAP26518.1| chitosanase [Bacillus anthracis str. ... Ames] gb|AAT31789.1| chitosanase [...Bacillus anthracis ... str. 'Ames Ancestor'] gb|AAT54801.1| chitosanase ... [Bacillus anthraci

  1. Isolation and characterization of cellulolytic Bacillus licheniformis ...

    African Journals Online (AJOL)

    Eight cellulose degrading bacteria were isolated from compost and were identified as Bacillus licheniformis by 16S rRNA sequencing. Among the eight isolates, Bacillus licheniformis B4, B7 and B8 showed the highest cellulase activity. B. licheniformis B4 and B8 showed the maximum cellulase activity during the stationary ...

  2. Isolat Bacillus Pelarut Fosfat dari Kalimas Surabaya

    OpenAIRE

    Zulaika, Enny; Ulfiyati, Nadia

    2015-01-01

    Ketersediaan fosfat terlarut di dalam tanah sangat terbatas karena kecenderungannya terikat dengan mineral tanah membentuk fosfat kompleks. Bakteri pelarut fosfat, salah satunya adalah Bacillus, dapat digunakan untuk membantu ketersediaan fosfat terlarut di dalam tanah sehingga dapat menggantikan pupuk fosfat. Tujuan penelitian adalah untuk mengetahui potensi isolat Bacillus spp. koleksi laboratorium Mikrobiologi dan Bioteknologi Biologi ITS Surabaya dalam melarutkan fosfat. Potensi pelarutan...

  3. Inactivation of prion infectivity by ionizing rays

    Energy Technology Data Exchange (ETDEWEB)

    Gominet, M. [Ionisos, ZI les Chatinieres, F01120 Dagneux (France); Vadrot, C.; Austruy, G. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France); Darbord, J.C. [Paris V University, Central Pharmacy of Hospitals, 4 avenue de l' Observatoire, F-75006, Paris (France)], E-mail: darbord@pharmacie.univ-paris5.fr

    2007-11-15

    Inactivation of prion deposits on medical devices or prion contamination in pharmaceutical raw materials is considered as impossible by using gamma irradiation. Early, the guideline WHO/CDS/CSR/APH/2000 has described irradiation as an ineffective process. But, in 2003, S. Miekka et al. noted radiation inactivation of prions in a particular application to purify human albumin, shown by the physical denaturation of the infectious protein (PrP). The aim of our study was to determine the inactivation of prions with a scrapie model (strain C506M3) by irradiating standardised preparations. Results: Gamma irradiation was partially effective, showing a 4-5 log reduction on exposure to 50 kGy. A characteristic effect-dose curve was not observed (25, 50 and 100 kGy), only an increase in the incubation period of the murine disease (229 days with 25 kGy to 290 days with 100 kGy) compared with 170 days without irradiation. Since the inactivation was not a total one, the observed effect is significant. It is proposed that further work be undertaken with the model to investigate the application of gamma radiation known levels of prion contamination.

  4. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  5. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  6. Epigenetic inactivation of CHFR in human tumors.

    Science.gov (United States)

    Toyota, Minoru; Sasaki, Yasushi; Satoh, Ayumi; Ogi, Kazuhiro; Kikuchi, Takefumi; Suzuki, Hiromu; Mita, Hiroaki; Tanaka, Nobuyuki; Itoh, Fumio; Issa, Jean-Pierre J; Jair, Kam-Wing; Schuebel, Kornel E; Imai, Kohzoh; Tokino, Takashi

    2003-06-24

    Cell-cycle checkpoints controlling the orderly progression through mitosis are frequently disrupted in human cancers. One such checkpoint, entry into metaphase, is regulated by the CHFR gene encoding a protein possessing forkhead-associated and RING finger domains as well as ubiquitin-ligase activity. Although defects in this checkpoint have been described, the molecular basis and prevalence of CHFR inactivation in human tumors are still not fully understood. To address this question, we analyzed the pattern of CHFR expression in a number of human cancer cell lines and primary tumors. We found CpG methylation-dependent silencing of CHFR expression in 45% of cancer cell lines, 40% of primary colorectal cancers, 53% of colorectal adenomas, and 30% of primary head and neck cancers. Expression of CHFR was precisely correlated with both CpG methylation and deacetylation of histones H3 and H4 in the CpG-rich regulatory region. Moreover, CpG methylation and thus silencing of CHFR depended on the activities of two DNA methyltransferases, DNMT1 and DNMT3b, as their genetic inactivation restored CHFR expression. Finally, cells with CHFR methylation had an intrinsically high mitotic index when treated with microtubule inhibitor. This means that cells in which CHFR was epigenetically inactivated constitute loss-of-function alleles for mitotic checkpoint control. Taken together, these findings shed light on a pathway by which mitotic checkpoint is bypassed in cancer cells and suggest that inactivation of checkpoint genes is much more widespread than previously suspected.

  7. Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.

    Science.gov (United States)

    Kwon, S Y; Kim, I S; Bae, J E; Kang, J W; Cho, Y J; Cho, N S; Lee, S W

    2014-10-01

    This study was conducted to evaluate the efficacy of pathogen inactivation (PI) in non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma using the Mirasol PRT System and the Intercept Blood System. Platelets were pooled using the Acrodose PL system and separated into two aliquots for Mirasol and Intercept treatment. Four replicates of each viral strain were used for the evaluation. For bacteria, both low-titre (45-152 CFU/unit) inoculation and high-titre (7·34-10·18 log CFU/unit) inoculation with two replicates for each bacterial strain were used. Platelets with non-detectable bacterial growth and platelets inoculated with a low titre were stored for 5 days, and culture was performed with the BacT/ALERT system. The inactivation efficacy expressed as log reduction for Mirasol and Intercept systems for viruses was as follows: human immunodeficiency virus 1, ≥4·19 vs. ≥4·23; bovine viral diarrhoea virus, 1·83 vs. ≥6·03; pseudorabies virus, 2·73 vs. ≥5·20; hepatitis A virus, 0·62 vs. 0·76; and porcine parvovirus, 0·28 vs. 0·38. The inactivation efficacy for bacteria was as follows: Escherichia coli, 5·45 vs. ≥9·22; Staphylococcus aureus, 4·26 vs. ≥10·11; and Bacillus subtilis, 5·09 vs. ≥7·74. Postinactivation bacterial growth in platelets inoculated with a low titre of S. aureus or B. subtilis was detected only with Mirasol. Pathogen inactivation efficacy of Intercept for enveloped viruses was found to be satisfactory. Mirasol showed satisfactory inactivation efficacy for HIV-1 only. The two selected non-enveloped viruses were not inactivated by both systems. Inactivation efficacy of Intercept was more robust for all bacteria tested at high or low titres. © 2014 International Society of Blood Transfusion.

  8. Inactivation of pathogenic microorganisms in freshwater using HSO5-/UV-A LED and HSO5-/Mn+/UV-A LED oxidation processes.

    Science.gov (United States)

    Rodríguez-Chueca, Jorge; Silva, Tatiana; Fernandes, José R; Lucas, Marco S; Puma, Gianluca Li; Peres, José A; Sampaio, Ana

    2017-10-15

    Freshwater disinfection using photolytic and catalytic activation of peroxymonosulphate (PMS) through PMS/UV-A LED and PMS/M n+ /UV-A LED [M n+  = Fe 2+ or Co 2+ ] processes was evaluated through the inactivation of three different bacteria: Escherichia coli (Gram-negative), Bacillus mycoides (sporulated Gram-positive), Staphylococcus aureus (non-sporulated Gram-positive), and the fungus Candida albicans. Photolytic and catalytic activation of PMS were effective in the total inactivation of the bacteria using 0.1 mM of PMS and M n+ at neutral pH (6.5), with E. coli reaching the highest and the fastest inactivation yield, followed by S. aureus and B. mycoides. With B. mycoides, the oxidative stress generated through the complexity of PMS/M n+ /UV-A LED combined treatments triggered the formation of endospores. The treatment processes were also effective in the total inactivation of C. albicans, although, due to the ultrastructure, biochemistry and physiology of this yeast, higher dosages of reagents (5 mM of PMS and 2.5 mM of M n+ ) were required. The rate of microbial inactivation markedly increased through catalytic activation of PMS particularly during the first 60 s of treatment. Co 2+ was more effective than Fe 2+ to catalyse PMS decomposition to sulphate radicals for the inactivation of S. aureus and C. albicans. The inactivation of the four microorganisms was well represented by the Hom model. The Biphasic and the Double Weibull models, which are based on the existence of two microbial sub-populations exhibiting different resistance to the treatments, also fitted the experimental results of photolytic activation of PMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance.

    Science.gov (United States)

    Timmusk, Salme; Kim, Seong-Bin; Nevo, Eviatar; Abd El Daim, Islam; Ek, Bo; Bergquist, Jonas; Behers, Lawrence

    2015-01-01

    Paenibacillus polymyxa is a common soil bacterium with broad range of practical applications. An important group of secondary metabolites in P. polymyxa are non-ribosomal peptide and polyketide derived metabolites (NRPs/PKs). Modular non-ribosomal peptide synthetases catalyze main steps in the biosynthesis of the complex secondary metabolites. Here we report on the inactivation of an A26 Sfp-type 4'-phosphopantetheinyl transferase (Sfp-type PPTase). The inactivation of the gene resulted in loss of NRPs/PKs production. In contrast to the former Bacillus spp. model the mutant strain compared to wild type showed greatly enhanced biofilm formation ability. A26Δsfp biofilm promotion is directly mediated by NRPs/PKs, as exogenous addition of the wild type metabolite extracts restores its biofilm formation level. Wheat inoculation with bacteria