WorldWideScience

Sample records for in-vessel components imaging

  1. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  2. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  3. Integration of ITER in-vessel diagnostic components in the vacuum vessel

    International Nuclear Information System (INIS)

    Encheva, A.; Bertalot, L.; Macklin, B.; Vayakis, G.; Walker, C.

    2009-01-01

    The integration of ITER in-vessel diagnostic components is an important engineering activity. The positioning of the diagnostic components must correlate not only with their functional specifications but also with the design of the major parts of ITER torus, in particular the vacuum vessel, blanket modules, blanket manifolds, divertor, and port plugs, some of which are not yet finally designed. Moreover, the recently introduced Edge Localised Mode (ELM)/Vertical Stability (VS) coils mounted on the vacuum vessel inner wall call for not only more than a simple review of the engineering design settled down for several years now, but also for a change in the in-vessel distribution of the diagnostic components and their full impact has yet to be determined. Meanwhile, the procurement arrangement (a document defining roles and responsibilities of ITER Organization and Domestic Agency(s) (DAs) for each in-kind procurement including technical scope of work, quality assurance requirements, schedule, administrative matters) for the vacuum vessel must be finalized. These make the interface process even more challenging in terms of meeting the vacuum vessel (VV) procurement arrangement's deadline. The process of planning the installation of all the ITER diagnostics and integrating their installation into the ITER Integrated Project Schedule (IPS) is now underway. This paper covers the progress made recently on updating and issuing the interfaces of the in-vessel diagnostic components with the vacuum vessel, outlines the requirements for their attachment and summarises the installation sequence.

  4. Improvement of retinal blood vessel detection using morphological component analysis.

    Science.gov (United States)

    Imani, Elaheh; Javidi, Malihe; Pourreza, Hamid-Reza

    2015-03-01

    Detection and quantitative measurement of variations in the retinal blood vessels can help diagnose several diseases including diabetic retinopathy. Intrinsic characteristics of abnormal retinal images make blood vessel detection difficult. The major problem with traditional vessel segmentation algorithms is producing false positive vessels in the presence of diabetic retinopathy lesions. To overcome this problem, a novel scheme for extracting retinal blood vessels based on morphological component analysis (MCA) algorithm is presented in this paper. MCA was developed based on sparse representation of signals. This algorithm assumes that each signal is a linear combination of several morphologically distinct components. In the proposed method, the MCA algorithm with appropriate transforms is adopted to separate vessels and lesions from each other. Afterwards, the Morlet Wavelet Transform is applied to enhance the retinal vessels. The final vessel map is obtained by adaptive thresholding. The performance of the proposed method is measured on the publicly available DRIVE and STARE datasets and compared with several state-of-the-art methods. An accuracy of 0.9523 and 0.9590 has been respectively achieved on the DRIVE and STARE datasets, which are not only greater than most methods, but are also superior to the second human observer's performance. The results show that the proposed method can achieve improved detection in abnormal retinal images and decrease false positive vessels in pathological regions compared to other methods. Also, the robustness of the method in the presence of noise is shown via experimental result. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. The TPX vacuum vessel and in-vessel components

    International Nuclear Information System (INIS)

    Heitzenroeder, P.; Bialek, J.; Ellis, R.; Kessel, C.; Liew, S.

    1994-01-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak with double-null diverters. TPX is designed for 1,000-second discharges with the capability of being upgraded to steady state operation. High neutron yields resulting from the long duration discharges require that special consideration be given to materials and maintainability. A unique feature of the TPX is the use of a low activation, titanium alloy vacuum vessel. Double-wall vessel construction is used since it offers an efficient solution for shielding, bakeout and cooling. Contained within the vacuum vessel are the passive coil system, Plasma Facing Components (PFCs), magnetic diagnostics, and the internal control coils. All PFCs utilize carbon-carbon composites for exposed surfaces

  6. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Garcia-Sanchez, P. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Patel, K. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sergienko, G. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Soler, D. [Winlight System, 135 rue Benjamin Franklin, ZA Saint Martin, F-84120 Pertuis (France); Stamp, M.F.; Williams, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► A new wide angle view camera system has been installed at JET. ► The system helps to protect the ITER-like wall plasma facing components from damage. ► The coverage of the vessel by camera observation systems was increased. ► The system comprises an in-vessel part with parabolic and flat mirrors. ► The required image quality for plasma monitoring and wall protection was delivered. -- Abstract: A new wide angle view camera system has been installed at JET in preparation for the ITER-like wall campaigns. It considerably increases the coverage of the vessel by camera observation systems and thereby helps to protect the – compared to carbon – more fragile plasma facing components from damage. The system comprises an in-vessel part with parabolic and flat mirrors and an ex-vessel part with beam splitters, lenses and cameras. The system delivered the image quality required for plasma monitoring and wall protection.

  7. ITER vacuum vessel design and electromagnetic analysis on in-vessel components

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.; Iizuka, T.

    1995-01-01

    Major functional requirements for the vacuum vessel are to provide the first safety barrier and to support electromagnetic loads due to plasma disruptions and vertical displacement events, and to withstand plausible accidents without losing confinement. A double wall structure concept has been developed for the vacuum vessel due to its beneficial characteristics from the viewpoints of structural integrity and electrical continuity. An electromagnetic analysis of the blanket modules and the vacuum vessel has been performed to investigate force distributions on in-vessel components. According to the vertical displacement events (VDE) scenario, which assumes a critical q-value of 1.5, the total downward vertical force, induced by coupling between the eddy current and external fields, is about 110 MN. We have performed a stress analysis for the vacuum vessel using the VDE disruption forces acting on the blankets, and a maximum stress intensity of 112 MPa was obtained in the vicinity of the lower support of the vessel. (orig.)

  8. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification ...

  9. Fatigue evaluation in reactor vessel components

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A. de J.

    1994-01-01

    This paper presents a sequence of increasing complexity forms of evaluating fatigue damage of nuclear pressure vessel components caused by cycling loadings. Examples are included in order to illustrate such procedures. (author)

  10. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  11. Roi Detection and Vessel Segmentation in Retinal Image

    Science.gov (United States)

    Sabaz, F.; Atila, U.

    2017-11-01

    Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  12. Automated image segmentation and registration of vessel wall MRI for quantitative assessment of carotid artery vessel wall dimensions and plaque composition

    NARCIS (Netherlands)

    Klooster, Ronald van 't

    2014-01-01

    The main goal of this thesis was to develop methods for automated segmentation, registration and classification of the carotid artery vessel wall and plaque components using multi-sequence MR vessel wall images to assess atherosclerosis. First, a general introduction into atherosclerosis and

  13. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  14. Design evolution and integration of the ITER in-vessel components

    International Nuclear Information System (INIS)

    Martin, A.; Calcagno, B.; Chappuis, Ph.; Daly, E.; Dellopoulos, G.; Furmanek, A.; Gicquel, S.; Heitzenroeder, P.; Jiming, Chen; Kalish, M.; Kim, D.-H.; Khomiakov, S.; Labusov, A.; Loarte, A.; Loughlin, M.; Merola, M.; Mitteau, R.; Polunovski, E.; Raffray, R.; Sadakov, S.

    2013-01-01

    Highlights: ► The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. ► A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. ► The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. ► The blanket manifold system has been redesigned to improve leak detection and localisation. ► The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. -- Abstract: The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. A set of in-vessel vertical stabilization (VS) coils and a set of in-vessel Edge Localized Mode (ELM) control coils have been implemented. The blanket system has been redesigned to include first wall (FW) shaping, to upgrade the FW heat removal capability and to allow for an “in situ” replacement. The blanket manifold system has been redesigned to improve leak detection and localisation. The introduction of a new set of in-vessel coils and the design evolution of the blanket system while the ITER project was entering the procurement phase have proven to be a major engineering challenge. This paper describes the status of the redesign of the in-vessel components and the associated integration issues

  15. Materials requirements for the ITER vacuum vessel and in-vessel components - approaching the construction phase

    International Nuclear Information System (INIS)

    Barabash, V.; Ioki, K.; Pick, M.; Girard, J.P.; Merola, M.

    2007-01-01

    Full text of publication follows: The ITER activities are fully devoted toward its construction. In accordance with the ITER integrated project schedule, the procurement specifications for the manufacturing of the Vacuum Vessel should be prepared by March 2008 and the procurement specifications for the in-vessel components (first wall/blanket, divertor) by 2009. To update the design, considering design and technology evolution, the ITER Design Review has been launched. Among the various topics being discussed are the important issues related to selection of materials, material procurement, and assessment of performance during operation. The main requirements related to materials for the vacuum vessel and the in-vessel components are summarized in the paper. The specific licensing requirements are to be followed for structural materials of pressure and nuclear pressure equipment components for construction of ITER. In addition, the procurements in ITER will be done mostly 'in-kind' and it is assumed that materials for these components will be produced by different Parties. However, in accordance with the regulatory requirements and quality requirements for operation, common specifications and the general rules to fulfill these requirements are to be adopted. For some ITER components (e.g. first wall, divertor high heat flux components), the ultimate qualification of the joining technologies (Be/Cu, SS/Cu, CFC/Cu, W/Cu) is under final evaluation. Successful accomplishment of the qualification program will allow to proceed with procurements of the components for ITER. The criteria for acceptance of these components and materials after manufacturing are described and the main results will be reported. Additional materials issues, which come from the on-going manufacturing R and D program, will be also described. Finally, further materials activity during the construction phase, needs for final qualification and acceptance of materials are discussed. (authors)

  16. ROI DETECTION AND VESSEL SEGMENTATION IN RETINAL IMAGE

    Directory of Open Access Journals (Sweden)

    F. Sabaz

    2017-11-01

    Full Text Available Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  17. A comparison between plaque-based and vessel-based measurement for plaque component using volumetric intravascular ultrasound radiofrequency data analysis.

    Science.gov (United States)

    Shin, Eun-Seok; Garcia-Garcia, Hector M; Garg, Scot; Serruys, Patrick W

    2011-04-01

    Although percent plaque components on plaque-based measurement have been used traditionally in previous studies, the impact of vessel-based measurement for percent plaque components have yet to be studied. The purpose of this study was therefore to correlate percent plaque components derived by plaque- and vessel-based measurement using intravascular ultrasound virtual histology (IVUS-VH). The patient cohort comprised of 206 patients with de novo coronary artery lesions who were imaged with IVUS-VH. Age ranged from 35 to 88 years old, and 124 patients were male. Whole pullback analysis was used to calculate plaque volume, vessel volume, and absolute and percent volumes of fibrous, fibrofatty, necrotic core, and dense calcium. The plaque and vessel volumes were well correlated (r = 0.893, P measurement was also highly correlated with vessel-based measurement. Therefore, the percent plaque component volume calculated by vessel volume could be used instead of the conventional percent plaque component volume calculated by plaque volume.

  18. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  19. Alignment of in-vessel components by metrology defined adaptive machining

    International Nuclear Information System (INIS)

    Wilson, David; Bernard, Nathanaël; Mariani, Antony

    2015-01-01

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  20. Alignment of in-vessel components by metrology defined adaptive machining

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David [ITER Organization, Route de Vinon sur Verdon, CS90 046, St Paul-lez-Durance (France); Bernard, Nathanaël [G2Métric, Launaguet 31140 (France); Mariani, Antony [Spatial Alignment Ltd., Witney (United Kingdom)

    2015-10-15

    Highlights: • Advanced metrology techniques developed for large volume high density in-vessel surveys. • Virtual alignment process employed to optimize the alignment of 440 blanket modules. • Auto-geometry construct, from survey data, using CAD proximity detection and orientation logic. • HMI developed to relocate blanket modules if customization limits on interfaces are exceeded. • Data export format derived for Catia parametric models, defining customization requirements. - Abstract: The assembly of ITER will involve the precise and accurate alignment of a large number of components and assemblies in areas where access will often be severely constrained and where process efficiency will be critical. One such area is the inside of the vacuum vessel where several thousand components shall be custom machined to provide the alignment references for in-vessel systems. The paper gives an overview of the process that will be employed; to survey the interfaces for approximately 3500 components then define and execute the customization process.

  1. A simple in-vessel/FW component viewing system for SST-1

    International Nuclear Information System (INIS)

    Santra, Prosenjit; Biswas, Prabal; Vasava, Kirit R.; Jaiswal, Snehal; Parekh, Tejas; Chauhan, Pradeep; Patel, Hiteshkumar; Pradhan, Subrata

    2015-01-01

    A simple compact system is being proposed for in-situ visual inspection of around 3800 First Wall (FW) graphite (armour) tiles in the vacuum vessel of SST-1 tokamak. The 2 DOF, manual driven system (permanently stationed inside vacuum vessel behind outer passive stabilizer) at top and bottom mid-plane locations consist of a rack and pinion mechanism operating a arm with a CCD camera/LED mounted on it, moving over a cam profile to cover approximately 1/8 th of the toroidal span of the vacuum vessel both at interior top/bottom locations with in the FW modules. The camera and LED light should withstand the ultrahigh vacuum conditions, prolonged baking temperatures of around 200°C along with high electromagnetic forces inside the vessel. This system can be operated remotely in-between shots from outside the VV through a linear motion feed through providing linear moment to a rack and pinion mechanism connected to the arm. This mechanism provides a better viewing of the inside FW components and vessel wall surface of tokamak with simple engineering and operational effort. Any information can be acquired from system regarding damages to FWC due to interaction with plasma as well as damage of other support structures inside VV. In comparison to more complicated and complex inspection system used in other tokamaks, this mechanism can be used for frequent in vessel visual inspection, which limits the system to be small, simple, occupying less space and custom made. This system is cheap with a minimum time for realization of the concept. The paper will present the conceptual and engineering design aspect of the in-viewing system, CAD images, its advantages and limitations, camera and LED details, data acquisition and the present status of realization of the project. (author)

  2. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  3. Automatic detection and segmentation of vascular structures in dermoscopy images using a novel vesselness measure based on pixel redness and tubularness

    Science.gov (United States)

    Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim

    2015-03-01

    Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.

  4. Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis

    International Nuclear Information System (INIS)

    Spuentrup, Elmar; Botnar, Rene M.

    2006-01-01

    Coronary magnetic resonance (MR) imaging has dramatically emerged over the last decade. Technical improvements have enabled reliable visualization of the proximal and midportion of the coronary artery tree for exclusion of significant coronary artery disease. However, current technical developments focus also on direct visualization of the diseased coronary vessel wall and imaging of coronary plaque because plaques without stenoses are typically more vulnerable with higher risk of plaque rupture. Plaque rupture with subsequent thrombosis and vessel occlusion is the main cause of myocardial infarction. Very recently, the first success of molecular imaging in the coronary arteries has been demonstrated using a fibrin-specific contrast agent for selective visualization of coronary thrombosis. This demonstrates in general the high potential of molecular MR imaging in the field of coronary artery disease. In this review, we will address recent technical advances in coronary MR imaging, including visualization of the lumen and the vessel wall and molecular imaging of coronary arteriothrombosis. First results of these new approaches will be discussed. (orig.)

  5. Distribution of normal superficial ocular vessels in digital images.

    Science.gov (United States)

    Banaee, Touka; Ehsaei, Asieh; Pourreza, Hamidreza; Khajedaluee, Mohammad; Abrishami, Mojtaba; Basiri, Mohsen; Daneshvar Kakhki, Ramin; Pourreza, Reza

    2014-02-01

    To investigate the distribution of different-sized vessels in the digital images of the ocular surface, an endeavor which may provide useful information for future studies. This study included 295 healthy individuals. From each participant, four digital photographs of the superior and inferior conjunctivae of both eyes, with a fixed succession of photography (right upper, right lower, left upper, left lower), were taken with a slit lamp mounted camera. Photographs were then analyzed by a previously described algorithm for vessel detection in the digital images. The area (of the image) occupied by vessels (AOV) of different sizes was measured. Height, weight, fasting blood sugar (FBS) and hemoglobin levels were also measured and the relationship between these parameters and the AOV was investigated. These findings indicated a statistically significant difference in the distribution of the AOV among the four conjunctival areas. No significant correlations were noted between the AOV of each conjunctival area and the different demographic and biometric factors. Medium-sized vessels were the most abundant vessels in the photographs of the four investigated conjunctival areas. The AOV of the different sizes of vessels follows a normal distribution curve in the four areas of the conjunctiva. The distribution of the vessels in successive photographs changes in a specific manner, with the mean AOV becoming larger as the photos were taken from the right upper to the left lower area. The AOV of vessel sizes has a normal distribution curve and medium-sized vessels occupy the largest area of the photograph. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  6. Molecular imaging of tumor blood vessels in prostate cancer.

    Science.gov (United States)

    Tilki, Derya; Seitz, Michael; Singer, Bernhard B; Irmak, Ster; Stief, Christian G; Reich, Oliver; Ergün, Süleyman

    2009-05-01

    In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of tumor vascular remodelling. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not necessarily result in the reduction of tumor diameter. The basis for the molecular imaging of tumor blood vessels is the remodelling of the tumor vessels under anti-angiogenic therapy which obviously occurs at an early stage and seems to be a convincing parameter. Beside the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodelling of the micro tumor vessels. New imaging approaches combining specific molecular markers for tumor vessels with the different imaging techniques are needed to overcome this issue as exemplarily discussed for prostate cancer in this review. Molecular contrast agents targeting the vasculature will allow clinicians the visualization of vascular remodelling processes taking place under anti-angiogenic therapy and improve tumor diagnosis and follow-up.

  7. Development of design Criteria for ITER In-vessel Components

    International Nuclear Information System (INIS)

    Sannazzaro, G.; Barabash, V.; Kang, S.C.; Fernandez, E.; Kalinin, G.; Obushev, A.; Martínez, V.J.; Vázquez, I.; Fernández, F.; Guirao, J.

    2013-01-01

    Absrtract: The components located inside the ITER vacuum chamber (in-vessel components – IC), due to their specific nature and the environments they are exposed to (neutron radiation, high heat fluxes, electromagnetic forces, etc.), have specific design criteria which are, in this paper, referred as Structural Design Criteria for In-vessel Components (SDC-IC). The development of these criteria started in the very early phase of the ITER design and followed closely the criteria of the RCC-MR code. Specific rules to include the effect of neutron irradiation were implemented. In 2008 the need of an update of the SDC-IC was identified to add missing specifications, to implement improvements, to modernise rules including recent evolutions in international codes and regulations (i.e. PED). Collaboration was set up between ITER Organization (IO), European (EUDA) and Russian Federation (RFDA) Domestic Agencies to generate a new version of SDC-IC. A Peer Review Group (PRG) composed by members of the ITER Organization and all ITER Domestic Agencies and code experts was set-up to review the proposed modifications, to provide comments, contributions and recommendations

  8. RAPID COMMUNICATION: Magnetic resonance imaging inside metallic vessels

    Science.gov (United States)

    Han, Hui; Balcom, Bruce J.

    2010-10-01

    We introduce magnetic resonance imaging (MRI) measurements inside metallic vessels. Until now, MRI has been unusable inside metallic vessels because of eddy currents in the walls. We have solved the problem and generated high quality images by employing a magnetic field gradient monitoring method. The ability to image within metal enclosures and structures means many new samples and systems are now amenable to MRI. Most importantly this study will form the basis of new MRI-compatible metallic pressure vessels, which will permit MRI of macroscopic systems at high pressure.

  9. Imaging of pediatric great vessel stents : Computed tomography or magnetic resonance imaging?

    NARCIS (Netherlands)

    den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T

    2017-01-01

    BACKGROUND: Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. PURPOSE: To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. MATERIAL AND METHODS: Five

  10. IMPROVING THE QUALITY OF NEAR-INFRARED IMAGING OF IN VIVOBLOOD VESSELS USING IMAGE FUSION METHODS

    DEFF Research Database (Denmark)

    Jensen, Andreas Kryger; Savarimuthu, Thiusius Rajeeth; Sørensen, Anders Stengaard

    2009-01-01

    We investigate methods for improving the visual quality of in vivo images of blood vessels in the human forearm. Using a near-infrared light source and a dual CCD chip camera system capable of capturing images at visual and nearinfrared spectra, we evaluate three fusion methods in terms...... of their capability of enhancing the blood vessels while preserving the spectral signature of the original color image. Furthermore, we investigate a possibility of removing hair in the images using a fusion rule based on the "a trous" stationary wavelet decomposition. The method with the best overall performance...... with both speed and quality in mind is the Intensity Injection method. Using the developed system and the methods presented in this article, it is possible to create images of high visual quality with highly emphasized blood vessels....

  11. Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

    Directory of Open Access Journals (Sweden)

    Reza Pourreza

    2010-09-01

    Full Text Available Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. Results: The algorithm’s performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. Discussion and Conclusion: Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.

  12. New algorithm for detecting smaller retinal blood vessels in fundus images

    Science.gov (United States)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  13. Automated retinal vessel type classification in color fundus images

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  14. Development of computational methods of design by analysis for pressure vessel components

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan; Wu Honglin

    2005-01-01

    Stress classification is not only one of key steps when pressure vessel component is designed by analysis, but also a difficulty which puzzles engineers and designers at all times. At present, for calculating and categorizing the stress field of pressure vessel components, there are several computation methods of design by analysis such as Stress Equivalent Linearization, Two-Step Approach, Primary Structure method, Elastic Compensation method, GLOSS R-Node method and so on, that are developed and applied. Moreover, ASME code also gives an inelastic method of design by analysis for limiting gross plastic deformation only. When pressure vessel components design by analysis, sometimes there are huge differences between the calculating results for using different calculating and analysis methods mentioned above. As consequence, this is the main reason that affects wide application of design by analysis approach. Recently, a new approach, presented in the new proposal of a European Standard, CEN's unfired pressure vessel standard EN 13445-3, tries to avoid problems of stress classification by analyzing pressure vessel structure's various failure mechanisms directly based on elastic-plastic theory. In this paper, some stress classification methods mentioned above, are described briefly. And the computational methods cited in the European pressure vessel standard, such as Deviatoric Map, and nonlinear analysis methods (plastic analysis and limit analysis), are depicted compendiously. Furthermore, the characteristics of computational methods of design by analysis are summarized for selecting the proper computational method when design pressure vessel component by analysis. (authors)

  15. Welding of structural components and vessels

    International Nuclear Information System (INIS)

    1989-01-01

    'Welding of structural components and vessels' was chosen as the guiding topic for the 17th special conference in Munich so that current problems of this important area of application for welding engineering could be discussed in detail. The following topics were in the focus of the discussions: developments in steel, steel production and steel processing, reports on the practical application of welding in the manufacture of containers and pipes, quality assurance, product liability, safety considerations regarding creep-stressed components, problems of welding in large structures. 7 of the total number of 12 contributions were recorded separately for the data base ENERGY. (orig./MM) [de

  16. NEAR REAL-TIME AUTOMATIC MARINE VESSEL DETECTION ON OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    G. Máttyus

    2013-05-01

    Full Text Available Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation. Optical satellite images (OSI can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  17. Near Real-Time Automatic Marine Vessel Detection on Optical Satellite Images

    Science.gov (United States)

    Máttyus, G.

    2013-05-01

    Vessel monitoring and surveillance is important for maritime safety and security, environment protection and border control. Ship monitoring systems based on Synthetic-aperture Radar (SAR) satellite images are operational. On SAR images the ships made of metal with sharp edges appear as bright dots and edges, therefore they can be well distinguished from the water. Since the radar is independent from the sun light and can acquire images also by cloudy weather and rain, it provides a reliable service. Vessel detection from spaceborne optical images (VDSOI) can extend the SAR based systems by providing more frequent revisit times and overcoming some drawbacks of the SAR images (e.g. lower spatial resolution, difficult human interpretation). Optical satellite images (OSI) can have a higher spatial resolution thus enabling the detection of smaller vessels and enhancing the vessel type classification. The human interpretation of an optical image is also easier than as of SAR image. In this paper I present a rapid automatic vessel detection method which uses pattern recognition methods, originally developed in the computer vision field. In the first step I train a binary classifier from image samples of vessels and background. The classifier uses simple features which can be calculated very fast. For the detection the classifier is slided along the image in various directions and scales. The detector has a cascade structure which rejects most of the background in the early stages which leads to faster execution. The detections are grouped together to avoid multiple detections. Finally the position, size(i.e. length and width) and heading of the vessels is extracted from the contours of the vessel. The presented method is parallelized, thus it runs fast (in minutes for 16000 × 16000 pixels image) on a multicore computer, enabling near real-time applications, e.g. one hour from image acquisition to end user.

  18. The Multiscale Bowler-Hat Transform for Vessel Enhancement in 3D Biomedical Images

    OpenAIRE

    Sazak, Cigdem; Nelson, Carl J.; Obara, Boguslaw

    2018-01-01

    Enhancement and detection of 3D vessel-like structures has long been an open problem as most existing image processing methods fail in many aspects, including a lack of uniform enhancement between vessels of different radii and a lack of enhancement at the junctions. Here, we propose a method based on mathematical morphology to enhance 3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat transform, combines sphere and line structuring elements to enhance vessel-l...

  19. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    Energy Technology Data Exchange (ETDEWEB)

    Urbonavičius, E., E-mail: Egidijus.Urbonavicius@lei.lt; Povilaitis, M., E-mail: Mantas.Povilaitis@lei.lt; Kontautas, A., E-mail: Aurimas.Kontautas@lei.lt

    2015-11-15

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  20. Assessment of W7-X plasma vessel pressurisation in case of LOCA taking into account in-vessel components

    International Nuclear Information System (INIS)

    Urbonavičius, E.; Povilaitis, M.; Kontautas, A.

    2015-01-01

    Highlights: • Analysis of the vacuum vessel response to the LOCA in W7-X was performed using lumped-parameter codes COCOSYS and ASTEC. • Benchmarking of the results received with two codes provides more confidence in results and helps in identification of possible important differences in the modelling. • The performed analysis answered the questions set in the installed plasma vessel venting system during overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. • Differences in time until opening the burst disk observed in ASTEC and COCOSYS results are caused by differences in heat transfer modelling. - Abstract: This paper presents the analysis of W7-X vacuum vessel response taking into account in-vessel components. A detailed analysis of the vacuum vessel response to the loss of coolant accident was performed using lumped-parameter codes COCOSYS and ASTEC. The performed analysis showed that the installed plasma vessel venting system prevents overpressure of PV in case of 40 mm diameter LOCA in “baking” mode. The performed analysis revealed differences in heat transfer modelling implemented in ASTEC and COCOSYS computer codes, which require further investigation to justify the correct approach for application to fusion facilities.

  1. Intracranial vessel wall imaging at 7.0 tesla MRI

    NARCIS (Netherlands)

    van der Kolk, A.G.

    2014-01-01

    Intracranial atherosclerosis is one of the main causes of ischemic stroke. Current conventional imaging techniques assessing intracranial arterial disease in vivo only visualize the vessel wall lumen instead of the pathological vessel wall itself. Therefore, not much is known about the imaging

  2. Large vessel imaging using cosmic-ray muons

    International Nuclear Information System (INIS)

    Jenneson, P.M.

    2004-01-01

    Cosmic-ray muons are assessed for their practical use in the tomographic imaging of the internal composition of large vessels over 2 m in diameter. The technique is based on the attenuation and scattering of cosmic-ray muons passing through a vessel and has advantages over photon-based methods of tomography that it is extendable to object containing high-density materials over many tens of metres. The main disadvantage is the length of time required to produce images of sufficient resolution and hence cosmic ray muon tomography will be most suited to the imaging of large structures whose internal composition is effectively static for the duration of the imaging period. Simulation and theoretical results are presented here which demonstrate the feasibility of cosmic ray muon tomography

  3. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  4. Assessment and selection of materials for ITER in-vessel components

    Science.gov (United States)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  5. Design, Analysis and R&D of the EAST In-Vessel Components

    Science.gov (United States)

    Yao, Damao; Bao, Liman; Li, Jiangang; Song, Yuntao; Chen, Wenge; Du, Shijun; Hu, Qingsheng; Wei, Jing; Xie, Han; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Chen, Junling; Mao, Xinqiao; Wang, Shengming; Zhu, Ning; Weng, Peide; Wan, Yuanxi

    2008-06-01

    In-vessel components are important parts of the EAST superconducting tokamak. They include the plasma facing components, passive plates, cryo-pumps, in-vessel coils, etc. The structural design, analysis and related R&D have been completed. The divertor is designed in an up-down symmetric configuration to accommodate both double null and single null plasma operation. Passive plates are used for plasma movement control. In-vessel coils are used for the active control of plasma vertical movements. Each cryo-pump can provide an approximately 45 m3/s pumping rate at a pressure of 10-1 Pa for particle exhaust. Analysis shows that, when a plasma current of 1 MA disrupts in 3 ms, the EM loads caused by the eddy current and the halo current in a vertical displacement event (VDE) will not generate an unacceptable stress on the divertor structure. The bolted divertor thermal structure with an active cooling system can sustain a load of 2 MW/m2 up to a 60 s operation if the plasma facing surface temperature is limited to 1500 °C. Thermal testing and structural optimization testing were conducted to demonstrate the analysis results.

  6. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    International Nuclear Information System (INIS)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met

  7. Structural materials for ITER in-vessel component design

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, G. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Gauster, W. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Matera, R. [Max-Planck-Inst. fur Plasmaphys., Garching (Germany). ITER Garching JWS; Tavassoli, A.-A.F. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France); Rowcliffe, A. [Oak Ridge National Lab., TN (United States); Fabritsiev, S. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Kawamura, H. [JAERI, IMTR Project, Ibaraki (Japan). Blanket Irradiation Lab.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m{sup 2} in the basic performance phase (BPP)) within a temperature range from 20 to 300 C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350 C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. (orig.).

  8. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  9. Motion correction for passive radiation imaging of small vessels in ship-to-ship inspections

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K.P., E-mail: ziockk@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Boehnen, C.B.; Ernst, J.M.; Fabris, L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hayward, J.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States); Karnowski, T.P.; Paquit, V.C.; Patlolla, D.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Trombino, D.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-01-01

    Passive radiation detection remains one of the most acceptable means of ascertaining the presence of illicit nuclear materials. In maritime applications it is most effective against small to moderately sized vessels, where attenuation in the target vessel is of less concern. Unfortunately, imaging methods that can remove source confusion, localize a source, and avoid other systematic detection issues cannot be easily applied in ship-to-ship inspections because relative motion of the vessels blurs the results over many pixels, significantly reducing system sensitivity. This is particularly true for the smaller watercraft, where passive inspections are most valuable. We have developed a combined gamma-ray, stereo visible-light imaging system that addresses this problem. Data from the stereo imager are used to track the relative location and orientation of the target vessel in the field of view of a coded-aperture gamma-ray imager. Using this information, short-exposure gamma-ray images are projected onto the target vessel using simple tomographic back-projection techniques, revealing the location of any sources within the target. The complex autonomous tracking and image reconstruction system runs in real time on a 48-core workstation that deploys with the system.

  10. An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.

    Directory of Open Access Journals (Sweden)

    Ronald van 't Klooster

    Full Text Available A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.

  11. Technical meeting on materials for in-vessel components of ITER

    International Nuclear Information System (INIS)

    Kalinin, G.; Barabash, V.

    2000-01-01

    The Technical meeting on materials for in-vessel components of ITER was held at the ITER Joint Work Site in Garching from 31 January to 4 February. The main objectives of the meetings were: 1. to summarize the requirements, 2. to review new data, 3. to discuss in detail the R and D program and to discuss the material assessment report

  12. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    Science.gov (United States)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  13. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    Science.gov (United States)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  14. Detecting culprit vessel of coronary artery disease with SPECT 99Tcm-MIBI myocardial imaging

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Zhou Wen; Peng Yong; Su Yuwen; Tian Jianhe; Gai lue; Sun Zhijun

    2002-01-01

    Objective: To assess the value of detecting culprit vessel of coronary artery disease (CAD) with SPECT 99 Tc m -MIBI myocardial imaging. Methods: Forty-six patients with CAD were studied. Every patients had multiple-vessel lesion showed by coronary arteriography and was treated by revascularization as percutaneous transluminal angioplasty (PTCA), coronary artery bypass graft (CABG) or laser holing. Exercise (EX), rest (RE) and intravenous infusion of nitroglycerine (NTG) SPECT 99 Tc m -MIBI myocardial imagings were performed before revascularization. Exercise and rest images revealed the myocardial ischemia. NTG images revealed myocardial viability. Culprit vessels were detected according to the defects showed by above mentioned images. The veracity of detected culprit vessels was tested with the outcome of the reperfusion therapy. Results: In this group, the coronary arteriography revealed 107 lesioned coronary arteries. Myocardial imaging detected 46 culprit vessels including 23 left anterior descending (LAD), 19 left circumflex coronary artery (LCX) and 4 right coronary artery (RCA). All 46 culprit vessels underwent revascularization and had nice outcome. The veracity of 99 Tc m -MIBI myocardial imaging detected culprit vessels was high according to patients' outcome. Conclusion: Exercise, rest and NTG 99 Tc m -MIBI myocardial imaging is a great method for detecting culprit vessels in multivessel coronary disease

  15. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    Science.gov (United States)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  16. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  17. VDE/disruption EM analysis for ITER in-vessel components

    International Nuclear Information System (INIS)

    Miki, N.; Ioki, K.; Ilio, F.; Kodama, T.; Chiocchio, S.; Williamson, D.; Roccella, M.; Barabaschi, P.; Sayer, R.S.

    1998-01-01

    This paper summarises the results of EM analyses for ITER in-vessel components, such as blanket modules, backplate and divertor modules. In the ITER design the following two disruption scenarios are taken into account: centered or radial disruption, and vertical displacement event (VDE). Eddy currents and forces due to plasma disruption were calculated using the 3D shell element code EDDYCUFF and the 3D solid element code EMAS. The plasma motion and current decay used in the EM analysis was supplied by 2-D axisymmetric plasma equilibrium codes, TSC and MAXFEA. (authors)

  18. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    International Nuclear Information System (INIS)

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  19. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    De Guio, F. (François); Jouvent, E. (Eric); G.J. Biessels (Geert Jan); S.E. Black (Sandra); C. Brayne (Carol); C. Chen (Christopher); C. Cordonnier (Charlotte); H.F. de Leeuw (Frank); C. Kubisch (Christian); Doubal, F. (Fergus); Duering, M. (Marco); C. Dufouil (Carole); Duzel, E. (Emrah); F. Fazekas (Franz); V. Hachinski (Vladimir); M.K. Ikram (Kamran); J. Linn (Jennifer); P.M. Matthews (P.); B. Mazoyer (Bernard); Mok, V. (Vincent); B. Norrving (Bo); O'Brien, J.T. (John T.); Pantoni, L. (Leonardo); S. Ropele (Stefan); P.S. Sachdev (Perminder); R. Schmidt (Reinhold); S. Seshadri (Sudha); E.E. Smith (Eric); L.A. Sposato (Luciano A); B.C.M. Stephan; Swartz, R.H. (Richard H.); C. Tzourio (Christophe); M.A. van Buchem (Mark); A. van der Lugt (Aad); R.J. van Oostenbrugge (Robert); M.W. Vernooij (Meike); Viswanathan, A. (Anand); D.J. Werring (David); Wollenweber, F. (Frank); J.M. Wardlaw (J.); Chabriat, H. (Hugues)

    2016-01-01

    textabstractBrain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility

  20. A thresholding based technique to extract retinal blood vessels from fundus images

    Directory of Open Access Journals (Sweden)

    Jyotiprava Dash

    2017-12-01

    Full Text Available Retinal imaging has become the significant tool among all the medical imaging technology, due to its capability to extract many data which is linked to various eye diseases. So, the accurate extraction of blood vessel is necessary that helps the eye care specialists and ophthalmologist to identify the diseases at the early stages. In this paper, we have proposed a computerized technique for extraction of blood vessels from fundus images. The process is conducted in three phases: (i pre-processing where the image is enhanced using contrast limited adaptive histogram equalization and median filter, (ii segmentation using mean-C thresholding to extract retinal blood vessels, (iii post-processing where morphological cleaning operation is used to remove isolated pixels. The performance of the proposed method is tested on and experimental results show that our method achieve an accuracies of 0.955 and 0.954 on Digital retinal images for vessel extraction (DRIVE and Child heart and health study in England (CHASE_DB1 databases respectively.

  1. Hybrid Segmentation of Vessels and Automated Flow Measures in In-Vivo Ultrasound Imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Martins, Bo; Hansen, Kristoffer Lindskov

    2016-01-01

    Vector Flow Imaging (VFI) has received an increasing attention in the scientific field of ultrasound, as it enables angle independent visualization of blood flow. VFI can be used in volume flow estimation, but a vessel segmentation is needed to make it fully automatic. A novel vessel segmentation...

  2. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease

    NARCIS (Netherlands)

    Guio, F. De; Jouvent, E.; Biessels, G.J.; Black, S.E.; Brayne, C.; Chen, C.; Cordonnier, C.; Leeuw, F.E. de; Dichgans, M.; Doubal, F.; Duering, M.; Dufouil, C.; Duzel, E.; Fazekas, F.; Hachinski, V.; Ikram, M.A.; Linn, J.; Matthews, P.M.; Mazoyer, B.; Mok, V.; Norrving, B.; O'Brien, J.T.; Pantoni, L.; Ropele, S.; Sachdev, P.; Schmidt, R.; Seshadri, S.; Smith, E.E.; Sposato, L.A.; Stephan, B.; Swartz, R.H.; Tzourio, C.; Buchem, M. van; Lugt, A. van der; Oostenbrugge, R.; Vernooij, M.W.; Viswanathan, A.; Werring, D.; Wollenweber, F.; Wardlaw, J.M.; Chabriat, H.

    2016-01-01

    Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these

  3. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, K. H.; Woo, H. K.; Im, K. H.; Cho, S. Y.; Kim, J. B.

    2000-01-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10 -6 ∼10 -7 Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses

  4. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Woo, H. K. [Chungnam National Univ., Taejon (Korea, Republic of); Im, K. H.; Cho, S. Y. [korea Basic Science Institute, Taejon (Korea, Republic of); Kim, J. B. [Hyundai Heavy Industries Co., Ltd., Ulsan (Korea, Republic of)

    2000-07-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6}{approx}10{sup -7}Pa, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 .deg. C, 350 .deg. C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  5. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.

    Science.gov (United States)

    Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita

    2014-04-01

    Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.

  6. Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?

    Directory of Open Access Journals (Sweden)

    A M den Harder

    Full Text Available Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted.To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children.Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1, placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100% in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis.Median stent lumen visibility was 88 (IQR 86-90% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84% stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm.Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.

  7. Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?

    Science.gov (United States)

    den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T

    2017-01-01

    Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Median stent lumen visibility was 88 (IQR 86-90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm). Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.

  8. 30 seismic analysis of FBR vessels: Coupling between components and vessels, fluid communications, imperfections

    International Nuclear Information System (INIS)

    Gantenbein, F.; Gibert, R.J.; Aita, S.; Durandet, E.

    1988-01-01

    The internal structures of a loop type breeder reactors such as SUPERPHENIX are composed of axisymmetrical shells separated by fluid volumes. Seismic analysis is usually performed by axisymmetric finite element model taking into account fluid structure interaction but the geometry is in fact 3D due to components, small communications between fluid volumes and imperfections in the vessels. The methods to take this 3D behaviour into account are based on Fourier decomposition of the motion and substructuration. They are briefly described in the following chapters. The influence of components and of small communications on a block reactor similar to SPX1 will also be presented. 15 refs, 20 figs

  9. Vessel network detection using contour evolution and color components

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge; Martins, Charles

    2011-06-22

    Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum number of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.

  10. The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Chungnam National University Graduate School, Taejeon (Korea); Im, K.H.; Cho, S.Y. [Korea Basic Science Institute, Taejeon (Korea); Kim, J.B. [Hyundai Heavy Industries Co., Ltd. (Korea); Woo, H.K. [Chungnam National University, Taejeon (Korea)

    2000-11-01

    The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, 10{sup -6} {approx} 10{sup -7} Pa, to produce clean plasma with low impurity containments. for this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least 250 deg.C, 350 deg.C respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses. (author). 9 refs., 11 figs., 1 tab.

  11. Image processing algorithm for robot tracking in reactor vessel

    International Nuclear Information System (INIS)

    Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun

    2011-01-01

    In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking

  12. Classification of Vessels in Single-Pol COSMO-SkyMed Images Based on Statistical and Structural Features

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2015-05-01

    Full Text Available Vessel monitoring is one of the most important maritime applications of Synthetic Aperture Radar (SAR data. Because of the dihedral reflections between the vessel hull and sea surface and the trihedral reflections among superstructures, vessels usually have strong backscattering in SAR images. Furthermore, in high-resolution SAR images, detailed information on vessel structures can be observed, allowing for vessel classification in high-resolution SAR images. This paper focuses on the feature analysis of merchant vessels, including bulk carriers, container ships and oil tankers, in 3 m resolution COSMO-SkyMed stripmap HIMAGE mode images and proposes a method for vessel classification. After preprocessing, a feature vector is estimated by calculating the average value of the kernel density estimation, three structural features and the mean backscattering coefficient. Support vector machine (SVM classifier is used for the vessel classification, and the results are compared with traditional methods, such as the K-nearest neighbor algorithm (K-NN and minimum distance classifier (MDC. In situ investigations are conducted during the SAR data acquisition. Corresponding Automatic Identification System (AIS reports are also obtained as ground truth to evaluate the effectiveness of the classifier. The preliminary results show that the combination of the average value of the kernel density estimation and mean backscattering coefficient has good ability for classifying the three types of vessels. When adding the three structural features, the results slightly improve. The result of the SVM classifier is better than that of K-NN and MDC. However, the SVM requires more time, when the parameters of the kernel are estimated.

  13. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  14. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

    Science.gov (United States)

    Phellan, Renzo; Forkert, Nils D

    2017-11-01

    Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM

  15. Adaptable three-dimensional Monte Carlo modeling of imaged blood vessels in skin

    Science.gov (United States)

    Pfefer, T. Joshua; Barton, Jennifer K.; Chan, Eric K.; Ducros, Mathieu G.; Sorg, Brian S.; Milner, Thomas E.; Nelson, J. Stuart; Welch, Ashley J.

    1997-06-01

    In order to reach a higher level of accuracy in simulation of port wine stain treatment, we propose to discard the typical layered geometry and cylindrical blood vessel assumptions made in optical models and use imaging techniques to define actual tissue geometry. Two main additions to the typical 3D, weighted photon, variable step size Monte Carlo routine were necessary to achieve this goal. First, optical low coherence reflectometry (OLCR) images of rat skin were used to specify a 3D material array, with each entry assigned a label to represent the type of tissue in that particular voxel. Second, the Monte Carlo algorithm was altered so that when a photon crosses into a new voxel, the remaining path length is recalculated using the new optical properties, as specified by the material array. The model has shown good agreement with data from the literature. Monte Carlo simulations using OLCR images of asymmetrically curved blood vessels show various effects such as shading, scattering-induced peaks at vessel surfaces, and directionality-induced gradients in energy deposition. In conclusion, this augmentation of the Monte Carlo method can accurately simulate light transport for a wide variety of nonhomogeneous tissue geometries.

  16. Design and issues of the ITER in-vessel components: ITER Joint central team and home teams

    International Nuclear Information System (INIS)

    Parker, R.R.

    1998-01-01

    This paper surveys the status of the design of the in-vessel components for ITER, in particular the major components, namely the vacuum vessel, blanket and first wall, and divertor, and the interface of selected ancillary systems such as those used for RF heating and current drive, and for diagnostics. The vacuum vessel is a double-walled structure constructed from two toroidal shells joined by ribs. The space between the skins is filled with shield plates directly cooled by water. The structural material is 316 LN IG (ITER grade). Toroidal supports joining the vessel midplane ports with the TF structure limit possible differential toroidal displacements, as might occur due to seismic or vertical displacement events (VDEs). A variety of load conditions corresponding to normal and off-normal loads have been considered and in all cases peak vessel stresses are within allowables. The blanket system consists of approximately 700 modules, each weighing ∝4 t. The integrated first wall consists of a beryllium-tiled copper mat bonded to the water-cooled SS shield block. The copper mat functions as a heat sink and has imbedded in it an array of SS tubes providing water cooling. The modules are mechanically attached to a toroidal backplate. Loads due to centered disruptions are reacted via hoop stress in the backplate, whereas net vertical and horizontal loads such as those arising from VDEs are transferred through the backplate and divertor supports to the vessel. (orig.)

  17. Imaging findings in the right aortic arch with mirror image branching of arch vessels: An unusual cause of dysphagia

    Directory of Open Access Journals (Sweden)

    Guneet Singh

    2015-01-01

    Full Text Available We report a case of a 72-year-old female with a right aortic arch with mirror-image branching of arch vessels presenting with dysphagia, and characteristic images on barium esophagogram, contrast-enhanced computed tomography scan, and magnetic resonance aortography. Right-sided thoracic aortic arch with mirror-image branching of the brachiocephalic vessels causing dysphagia without associated congenital cardiac anomalies is extremely uncommon. Right-sided aortic arch is a rare congenital abnormality with incidence of 0.05-0.1% in the normal population. Anomalies of great vessels are usually incidental findings, because they are asymptomatic. Right aortic arch infrequently presents with a vascular ring that can cause complete or partial obstruction of the trachea and/or esophagus. The understanding of this arch anomaly is based on Edward′s hypothesis about the double arch system during embryonic developmental.

  18. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    Energy Technology Data Exchange (ETDEWEB)

    Noerenberg, Dominik [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); University of Munich - Grosshadern, Department of Clinical Radiology, Munich (Germany); Ebersberger, Hans U. [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Diederichs, Gerd; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Botnar, Rene M. [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Makowski, Marcus R. [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2016-03-15

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  19. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

    International Nuclear Information System (INIS)

    Noerenberg, Dominik; Ebersberger, Hans U.; Diederichs, Gerd; Hamm, Bernd; Botnar, Rene M.; Makowski, Marcus R.

    2016-01-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. (orig.)

  20. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    Science.gov (United States)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  1. Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus

    Directory of Open Access Journals (Sweden)

    Koprowski Robert

    2012-06-01

    Full Text Available Abstract Background The available scientific literature contains descriptions of manual, semi-automated and automated methods for analysing angiographic images. The presented algorithms segment vessels calculating their tortuosity or number in a given area. We describe a statistical analysis of the inclination of the vessels in the fundus as related to their distance from the center of the optic disc. Methods The paper presents an automated method for analysing vessels which are found in angiographic images of the eye using a Matlab implemented algorithm. It performs filtration and convolution operations with suggested masks. The result is an image containing information on the location of vessels and their inclination angle in relation to the center of the optic disc. This is a new approach to the analysis of vessels whose usefulness has been confirmed in the diagnosis of hypertension. Results The proposed algorithm analyzed and processed the images of the eye fundus using a classifier in the form of decision trees. It enabled the proper classification of healthy patients and those with hypertension. The result is a very good separation of healthy subjects from the hypertensive ones: sensitivity - 83%, specificity - 100%, accuracy - 96%. This confirms a practical usefulness of the proposed method. Conclusions This paper presents an algorithm for the automatic analysis of morphological parameters of the fundus vessels. Such an analysis is performed during fluorescein angiography of the eye. The presented algorithm automatically calculates the global statistical features connected with both tortuosity of vessels and their total area or their number.

  2. Design concept of conducting shell and in-vessel components suitable for plasma vertical stability and remote maintenance scheme in DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utoh, Hiroyasu, E-mail: uto.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Takase, Haruhiko [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Sakamoto, Yoshiteru; Tobita, Kenji [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); Mori, Kazuo; Kudo, Tatsuya [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan); International Fusion Energy Research Centre, 2-166, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Someya, Youji; Asakura, Nobuyuki; Hoshino, Kazuo; Nakamura, Makoto; Tokunaga, Shinsuke [Japan Atomic Energy Agency, Obuchi, Rokkasho-mura, Aomori-ken 039-3212 (Japan)

    2016-02-15

    Highlights: • Conceptual design of in-vessel component including conducting shell has been investigated. • The conducting shell design for plasma vertical stability was clarified from the plasma vertical stability analysis. • The calculation results showed that the double-loop shell has the most effect on plasma vertical stability. - Abstract: In order to realize a feasible DEMO, we designed an in-vessel component including the conducting shell. The project is affiliated with the broader approach DEMO design activities and is conceptualized from a plasma vertical stability and engineering viewpoint. The dependence of the plasma vertical stability on the conducing shell parameters and the electromagnetic force at plasma disruption were investigated in numerical simulations (programmed in the 3D eddy current analysis code and a plasma position control code). The simulations assumed the actual shape and position of the vacuum vessel and in-vessel components. The plasma vertical stability was most effectively maintained by the double-loop shell.

  3. Comparative analysis of methods for extracting vessel network on breast MRI images

    Science.gov (United States)

    Gaizer, Bence T.; Vassiou, Katerina G.; Lavdas, Eleftherios; Arvanitis, Dimitrios L.; Fezoulidis, Ioannis V.; Glotsos, Dimitris T.

    2017-11-01

    Digital processing of MRI images aims to provide an automatized diagnostic evaluation of regular health screenings. Cancerous lesions are proven to cause an alteration in the vessel structure of the diseased organ. Currently there are several methods used for extraction of the vessel network in order to quantify its properties. In this work MRI images (Signa HDx 3.0T, GE Healthcare, courtesy of University Hospital of Larissa) of 30 female breasts were subjected to three different vessel extraction algorithms to determine the location of their vascular network. The first method is an experiment to build a graph over known points of the vessel network; the second algorithm aims to determine the direction and diameter of vessels at these points; the third approach is a seed growing algorithm, spreading selection to neighbors of the known vessel pixels. The possibilities shown by the different methods were analyzed, and quantitative measurements were performed. The data provided by these measurements showed no clear correlation with the presence or malignancy of tumors, based on the radiological diagnosis of skilled physicians.

  4. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10 6 R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  5. High gamma-rays irradiation tests of critical components for ITER (International Thermonuclear Experimental Reactor) in-vessel remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan)] [and others

    1999-02-01

    In ITER, the in-vessel remote handling is inevitably required to assemble and maintain the activated in-vessel components due to deuterium and tritium operation. Since the in-vessel remote handling system has to be operated under the intense of gamma ray irradiation, the components of the remote handling system are required to have radiation hardness so as to allow maintenance operation for a sufficient length of time under the ITER in-vessel environments. For this, the Japan, European and Russian Home Teams have extensively conducted gamma ray irradiation tests and quality improvements including optimization of material composition through ITER R and D program in order to develop radiation hard components which satisfy the doses from 10 MGy to 100 MGy at a dose rate of 1 x 10{sup 6} R/h (ITER R and D Task: T252). This report describes the latest status of radiation hard component development which has been conducted by the Japan Home Team in the ITER R and D program. The number of remote handling components tested is about seventy and these are categorized into robotics (Subtask 1), viewing system (Subtask 2) and common components (Subtask 3). The irradiation tests, including commercial base products for screening, modified products and newly developed products to improve the radiation hardness, were carried out using the gamma ray irradiation cells in Takasaki Establishment, JAERI. As a result, the development of the radiation hard components which can be tolerable for high temperature and gamma radiation has been well progressed, and many components, such as AC servo motor with ceramics insulated wire, optical periscope and CCD camera, have been newly developed. (author)

  6. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    Science.gov (United States)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  7. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Science.gov (United States)

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  8. Tumor Blood Vessel Dynamics

    Science.gov (United States)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  9. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  10. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    International Nuclear Information System (INIS)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  11. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.

    Science.gov (United States)

    Schuster, Alexander Karl-Georg; Fischer, Joachim Ernst; Vossmerbaeumer, Urs

    2014-02-01

    Funduscopic assessment of the retinal vessels may be used to assess the health status of microcirculation and as a component in the evaluation of cardiovascular risk factors. Typically, the evaluation is restricted to morphological appreciation without strict quantification. Our purpose was to develop and validate a software tool for semi-automated quantitative analysis of retinal vasculature in nonmydriatic fundus photography. matlab software was used to develop a semi-automated image recognition and analysis tool for the determination of the arterial-venous (A/V) ratio in the central vessel equivalent on 45° digital fundus photographs. Validity and reproducibility of the results were ascertained using nonmydriatic photographs of 50 eyes from 25 subjects recorded from a 3DOCT device (Topcon Corp.). Two hundred and thirty-three eyes of 121 healthy subjects were evaluated to define normative values. A software tool was developed using image thresholds for vessel recognition and vessel width calculation in a semi-automated three-step procedure: vessel recognition on the photograph and artery/vein designation, width measurement and calculation of central retinal vessel equivalents. Mean vessel recognition rate was 78%, vessel class designation rate 75% and reproducibility between 0.78 and 0.91. Mean A/V ratio was 0.84. Application on a healthy norm cohort showed high congruence with prior published manual methods. Processing time per image was one minute. Quantitative geometrical assessment of the retinal vasculature may be performed in a semi-automated manner using dedicated software tools. Yielding reproducible numerical data within a short time leap, this may contribute additional value to mere morphological estimates in the clinical evaluation of fundus photographs. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  13. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  14. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.

    Science.gov (United States)

    Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida

    2016-09-01

    Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  16. Finding an optimal method for imaging lymphatic vessels of the upper limb

    International Nuclear Information System (INIS)

    O'Mahony, Susan; Purushotham, Arnie D.; Rose, Sarah L.; Chilvers, Alison J.; Ballinger, James R.; Solanki, Chandra K.; Barber, Robert W.; Peters, A. Michael; Mortimer, Peter S.

    2004-01-01

    Lymphoscintigraphy involves interstitial injection of radiolabelled particulate materials or radioproteins. Although several variations in the technique have been described, their place in clinical practice remains controversial. Traditional diagnostic criteria are based primarily on lymph node appearances but in situations such as breast cancer, where lymph nodes may have been excised, these criteria are of limited use. In these circumstances, lymphatic vessel morphology takes on greater importance as a clinical endpoint, so a method that gives good definition of lymphatic vessels would be useful. In patients with breast cancer, for example, such a method, used before and after lymph node resection, may assist in predicting the development of breast cancer-related lymphoedema. The aim of this study was to optimise a method for the visualisation of lymphatic vessels. Subcutaneous (sc) and intradermal (id) injection sites were compared, and technetium-99m nanocolloid, a particulate material, was compared with 99m Tc-human immunoglobulin (HIG), which is a soluble macromolecule. Twelve normal volunteers were each studied on two occasions. In three subjects, id 99m Tc-HIG was compared with sc 99m Tc-HIG, in three id 99m Tc-nanocolloid was compared with sc 99m Tc-nanocolloid, in three id 99m Tc-HIG was compared with id 99m Tc-nanocolloid and in three sc 99m Tc-HIG was compared with sc 99m Tc-nanocolloid. Endpoints were quality of lymphatic vessel definition, the time after injection at which vessels were most clearly visualised, the rate constant of depot disappearance (k) and the systemic blood accumulation rate as measured by gamma camera imaging over the liver or cardiac blood pool. Excellent definition of lymphatic vessels was obtained following id injection of either radiopharmaceutical, an injection route that was clearly superior to sc. Differences between radiopharmaceuticals were less clear, although after id injection, 99m Tc-HIG gave images that were

  17. Feasibility of underwater welding of highly irradiated in-vessel components of boiling-water reactors: A literature review

    International Nuclear Information System (INIS)

    Lund, A.L.

    1997-11-01

    In February 1997, the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research (RES), initiated a literature review to assess the state of underwater welding technology. In particular, the objective of this literature review was to evaluate the viability of underwater welding in-vessel components of boiling water reactor (BWR) in-vessel components, especially those components fabricated from stainless steels that are subjected to high neutron fluences. This assessment was requested because of the recent increased level of activity in the commercial nuclear industry to address generic issues concerning the reactor vessel and internals, especially those issues related to repair options. This literature review revealed a preponderance of general information about underwater welding technology, as a result of the active research in this field sponsored by the U.S. Navy and offshore oil and gas industry concerns. However, the literature search yielded only a limited amount of information about underwater welding of components in low-fluence areas of BWR in-vessel environments, and no information at all concerning underwater welding experiences in high-fluence environments. Research reported by the staff of the U.S. Department of Energy (DOE) Savannah River Site and researchers from the DOE fusion reactor program proved more fruitful. This research documented relevant experience concerning welding of stainless steel materials in air environments exposed to high neutron fluences. It also addressed problems with welding highly irradiated materials, and primarily attributed those problems to helium-induced cracking in the material. (Helium is produced from the neutron irradiation of boron, an impurity, and nickel.) The researchers found that the amount of helium-induced cracking could be controlled, or even eliminated, by reducing the heat input into the weld and applying a compressive stress perpendicular to the weld path

  18. Evaluation of carotid vessel wall enhancement with image subtraction after gadobenate dimeglumine-enhanced MR angiography

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Di Leo, Giovanni; Aliprandi, Alberto; Flor, Nicola; Papini, Giacomo D.E.; Roccatagliata, Luca; Cotticelli, Biagio; Nano, Giovanni; Cornalba, Gianpaolo

    2009-01-01

    Objectives: This study was aimed at testing the value of image subtraction for evaluating carotid vessel wall enhancement in contrast-enhanced MR angiography (MRA). Materials and methods: IRB approval was obtained. The scans of 81 consecutive patients who underwent carotid MRA with 0.1 mmol/kg of gadobenate dimeglumine were reviewed. Axial carotid 3D T1-weighted fast low-angle shot sequence before and 3 min after contrast injection were acquired and subtracted (enhanced minus unenhanced). Vessel wall enhancement was assigned a four-point score using native or subtracted images from 0 (no enhancement) to 3 (strong enhancement). Stenosis degree was graded according to NASCET. Results: With native images, vessel wall enhancement was detected in 20/81 patients (25%) and in 20/161 carotids (12%), and scored 2.0 ± 0.6 (mean ± standard deviation); with subtracted images, in 21/81 (26%) and 22/161 (14%), and scored 2.5 ± 0.6, respectively (P < 0.001, Sign test). The overall stenosis degree distribution was: mild, 41/161 (25%); moderate, 77/161 (48%); severe, 43/161 (27%). Carotids with moderate stenosis showed vessel wall enhancement with a frequency (17/77, 22%) significantly higher than that observed in carotids with mild stenosis (1/41, 2%) (P = 0.005, Fisher exact test) and higher, even though with borderline significance (P = 0.078, Fisher exact test), than that observed in carotids with severe stenosis (4/43, 9%). Conclusion: Roughly a quarter of patients undergoing carotid MRA showed vessel wall enhancement. Image subtraction improved vessel wall enhancement conspicuity. Vessel wall enhancement seems to be an event relatively independent from the degree of stenosis. Further studies are warranted to define the relation between vessel wall enhancement and histopathology, inflammatory status, and instability.

  19. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shariat, Masoud; Schantz, Daryl; Yoo, Shi-Joon; Wintersperger, Bernd J.; Seed, Mike; Alnafisi, Bahiyah; Chu, Leysia; MacGowan, Christopher K.; Amerom, Joshua van; Grosse-Wortmann, Lars

    2014-01-01

    Background: Information about thoracic vascular sizes can crucially affect clinical decision-making in cardiovascular disease. A variety of imaging techniques such as catheter angiography, contrast enhanced computed tomography (CT) and cardiac magnetic resonance imaging (CMR) are routinely used to measure vascular diameters. Traditionally, CMR black blood sequences were the main anatomical tool for visualization of vascular anatomy and still are in many centers. More recently, the vessel diameters are measured on multiplanar reconstructions derived from static magnetic resonance angiography (MRA). This study was performed to investigate the variation of vessel diameter measurements on different CMR techniques with respect to their data acquisition scheme. Methods: We recruited two groups of patients for this prospective study. One group included patients with repaired tetralogy of Fallot (TOF), with at least moderate pulmonary insufficiency and another group of patients who underwent CMR as part of a diagnostic work-up for arrhythmogenic right ventricular cardiomyopathy (ARVC). Additional images of the right pulmonary artery (RPA) were acquired in the double inversion recovery (DIR) black blood, cine steady state free precession (SSFP) and MRA. All images were reviewed by two CMR trained readers using the electronic caliper provided within the picture archiving and communication system package. The maximum diameter of each artery was recorded in millimeters with up to one decimal point. Paired t-tests and Bland–Altman plots were used for comparison of measurements between different sequences. Results: A total of 52 patients were recruited for this study, 26 patients in the TOF group (15 males, age 12.55 ± 2.9) and 26 patients in the ARVC group (15 males, age 15.6 ± 2.3). In both groups, the RPA sizes were not significantly different between the DIR images and diastolic cine SSFP (p > 0.05). Measurements on DIR were significantly smaller than those made on

  20. Pulmonary artery pulsatility and effect on vessel diameter assessment in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shariat, Masoud, E-mail: masoudshariat@gmail.com [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Schantz, Daryl, E-mail: daryl.schantz@gmail.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Yoo, Shi-Joon, E-mail: shi-joon.yoo@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Wintersperger, Bernd J., E-mail: bernd.wintersperger@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Seed, Mike, E-mail: mike.seed@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada); Alnafisi, Bahiyah, E-mail: bahiyah.alnafisi@uhn.ca [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Chu, Leysia, E-mail: leysia_99@yahoo.com [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); MacGowan, Christopher K., E-mail: christopher.macgowan@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Amerom, Joshua van, E-mail: Joshu.vanamerom@sickkids.ca [Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Grosse-Wortmann, Lars, E-mail: lars.grosse-wortmann@sickkids.ca [Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Cardiology, Hospital for Sick Children, Toronto, Ontario (Canada)

    2014-02-15

    Background: Information about thoracic vascular sizes can crucially affect clinical decision-making in cardiovascular disease. A variety of imaging techniques such as catheter angiography, contrast enhanced computed tomography (CT) and cardiac magnetic resonance imaging (CMR) are routinely used to measure vascular diameters. Traditionally, CMR black blood sequences were the main anatomical tool for visualization of vascular anatomy and still are in many centers. More recently, the vessel diameters are measured on multiplanar reconstructions derived from static magnetic resonance angiography (MRA). This study was performed to investigate the variation of vessel diameter measurements on different CMR techniques with respect to their data acquisition scheme. Methods: We recruited two groups of patients for this prospective study. One group included patients with repaired tetralogy of Fallot (TOF), with at least moderate pulmonary insufficiency and another group of patients who underwent CMR as part of a diagnostic work-up for arrhythmogenic right ventricular cardiomyopathy (ARVC). Additional images of the right pulmonary artery (RPA) were acquired in the double inversion recovery (DIR) black blood, cine steady state free precession (SSFP) and MRA. All images were reviewed by two CMR trained readers using the electronic caliper provided within the picture archiving and communication system package. The maximum diameter of each artery was recorded in millimeters with up to one decimal point. Paired t-tests and Bland–Altman plots were used for comparison of measurements between different sequences. Results: A total of 52 patients were recruited for this study, 26 patients in the TOF group (15 males, age 12.55 ± 2.9) and 26 patients in the ARVC group (15 males, age 15.6 ± 2.3). In both groups, the RPA sizes were not significantly different between the DIR images and diastolic cine SSFP (p > 0.05). Measurements on DIR were significantly smaller than those made on

  1. Automated registration of multispectral MR vessel wall images of the carotid artery

    Energy Technology Data Exchange (ETDEWEB)

    Klooster, R. van ' t; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der, E-mail: rvdgeest@lumc.nl [Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Klein, S. [Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 GE (Netherlands); Kwee, R. M.; Kooi, M. E. [Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht 6202 AZ (Netherlands)

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  2. Automated registration of multispectral MR vessel wall images of the carotid artery

    International Nuclear Information System (INIS)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-01-01

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  3. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    Directory of Open Access Journals (Sweden)

    Nogol Memari

    Full Text Available The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE, Structured Analysis of the Retina (STARE and Child Heart and Health Study in England (CHASE_DB1 datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

  4. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  5. Extrinsic ureteropelvic junction obstruction from a crossing renal vessel: demography and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, V.J.; Lebowitz, R.L. [Children' s Hospital and Harvard Medical School, Dept. of Radiology, Boston, MA (United States)

    2001-02-01

    Background. The increase in the use of prenatal ultrasound has revolutionized the detection of hydronephrosis and has had an unanticipated consequence. Objective. To describe the new demographics of symptomatic ureteropelvic junction (UPJ) obstruction and the characteristic imaging findings, when the obstruction is extrinsic, from a crossing renal vessel. Materials and methods. From a uroradiology database (1994 through 1999) we identified children with surgically corrected UPJ obstruction from intrinsic and extrinsic causes. Results. One hundred children had symptomatic UPJ obstruction treated by surgery. In 51 (49 %), obstruction was due to a crossing vessel. One hundred and one had UPJ obstruction detected by prenatal sonography. Only 11 (11 %) were due to a vessel. Two clinical and imaging findings were strongly suggestive of obstruction from a vessel: (1) in 5 of the 100 children the symptoms (pain, nausea, and vomiting) were intermittent. Only when symptoms were present were there hydronephrosis and obstruction; (2) in 51 of the 100 children a short segment of ureter, just below the UPJ, was filled with contrast or urine (on renal sonography, intravenous urography, or retrograde/antegrade ureterography). Conclusions. Extrinsic UPJ obstruction caused by a vessel is an uncommon cause of obstruction when all patients are considered. However, in symptomatic older patients whose hydronephrosis was not first identified on prenatal sonography, a vessel was the cause of obstruction in one-half. (orig.)

  6. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels.

    Science.gov (United States)

    Margaris, Konstantinos N; Nepiyushchikh, Zhanna; Zawieja, David C; Moore, James; Black, Richard A

    2016-02-01

    We describe the development of an optical flow visualization method for resolving the flow velocity vector field in lymphatic vessels in vitro. The aim is to develop an experimental protocol for accurately estimating flow parameters, such as flow rate and shear stresses, with high spatial and temporal resolution. Previous studies in situ have relied on lymphocytes as tracers, but their low density resulted in a reduced spatial resolution whereas the assumption that the flow was fully developed in order to determine the flow parameters of interest may not be valid, especially in the vicinity of the valves, where the flow is undoubtedly more complex. To overcome these issues, we have applied the time-resolved microparticle image velocimetry (μ -PIV) technique, a well-established method that can provide increased spatial and temporal resolution that this transient flow demands. To that end, we have developed a custom light source, utilizing high-power light-emitting diodes, and associated control and image processing software. This paper reports the performance of the system and the results of a series of preliminary experiments performed on vessels isolated from rat mesenteries, demonstrating, for the first time, the successful application of the μ -PIV technique in these vessels.

  7. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  8. ITER vacuum vessel, in vessel components and plasma facing materials

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Enoeda, M.; Federici, G.

    2007-01-01

    Design of the NB ports including duct liners under heat loads of the neutral beams has been developed. Design of the in-wall shielding has been developed in more details considering the supporting structure and the assembly method. The ferromagnetic inserts have previously not been installed in the outboard midplane region due to irregularity caused by the tangential ports for NB injection. Due to this configuration, the maximum ripple is relatively large (∝1 %) in a limited region of the plasma and the toroidal field flux lines fluctuate ∝10 mm in the FW region. To avoid these problems, additional ferromagnetic inserts are to be installed in the equatorial port region. Detailed studies were carried out on the ITER vacuum vessel to define appropriate codes and standards in the context of the ITER licensing in France. A set of draft documents regarding the ITER vacuum vessel structural code were prepared including an RCC-MR Addendum for the ITER VV with justified exceptions or modifications. The main deviation from the base Code is the extensive use of UT in lieu of radiography for the volumetric examination of all one-side access welds of the outer shell and field joint. The procurement allocation of blanket modules among 6 parties was fixed and the blanket module design has progressed in cooperation with parties. Fabrication of mock-ups for prequalification testing is under way and the tests will be performed in 2007-2008. Development of new beryllium materials is progressing in China and Russia. The ITER limiters will be installed in equatorial ports at two toroidal locations. The limiter plasma-facing surface protrudes ∝8 cm from the FW during the start-up and shutdown phase. In the new limiter concept, the limiters are retracted by ∝8 cm during the plasma flat top phase. This concept gives important advantages; (i) mitigation of the particle and heat loads due to disruptions, ELMs and blobs, (ii) improvement of the power coupling with the ICRH antenna

  9. Locking mechanism for in-vessel components of tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, S.; Shimizu, K.; Koizumi, K.; Tada, E.

    1992-01-01

    The locking and unlocking mechanism for in-vessel replaceable components such as blanket modules, is one of the most critical issues of the tokamak fusion reactor, since the sufficient stiffness against the enormous electromagnetic loads and the easy replaceability are required. In this paper, the authors decide that a caulking cotter joint is worth initiating the R and D from veiwpoints of an effective use of space, a replaceability, a removability of nuclear heating, and a reliability. In this approach, the cotter driving (thrusting and plucking) mechanism is a critical technology. A flexible tube concept has been developed as the driving mechanism, where the stroke and driving force are obtained by a fat shape by the hydraulic pressure. The original normal tube is subjected to the working percentage of more than several hundreds percentage (from thickness of 1.2 mm to 0.2 mm) for plastically forming the flexible tube

  10. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.

    Science.gov (United States)

    O'Dell, Walter G; Gormaley, Anne K; Prida, David A

    2017-12-01

    Detailed characterization of changes in vessel size is crucial for the diagnosis and management of a variety of vascular diseases. Because clinical measurement of vessel size is typically dependent on the radiologist's subjective interpretation of the vessel borders, it is often prone to high inter- and intra-user variability. Automatic methods of vessel sizing have been developed for two-dimensional images but a fully three-dimensional (3D) method suitable for vessel sizing from volumetric X-ray computed tomography (CT) or magnetic resonance imaging has heretofore not been demonstrated and validated robustly. In this paper, we refined and objectively validated Gatortail, a method that creates a mathematical geometric 3D model of each branch in a vascular tree, simulates the appearance of the virtual vascular tree in a 3D CT image, and uses the similarity of the simulated image to a patient's CT scan to drive the optimization of the model parameters, including vessel size, to match that of the patient. The method was validated with a 2-dimensional virtual tree structure under deformation, and with a realistic 3D-printed vascular phantom in which the diameter of 64 branches were manually measured 3 times each. The phantom was then scanned on a conventional clinical CT imaging system and the images processed with the in-house software to automatically segment and mathematically model the vascular tree, label each branch, and perform the Gatortail optimization of branch size and trajectory. Previously proposed methods of vessel sizing using matched Gaussian filters and tubularity metrics were also tested. The Gatortail method was then demonstrated on the pulmonary arterial tree segmented from a human volunteer's CT scan. The standard deviation of the difference between the manually measured and Gatortail-based radii in the 3D physical phantom was 0.074 mm (0.087 in-plane pixel units for image voxels of dimension 0.85 × 0.85 × 1.0 mm) over the 64 branches

  11. Role of 3.0 T MR vessel wall imaging for identifying the activity of takayasu arteritis

    International Nuclear Information System (INIS)

    Liu Xiaosheng; Xu Jianrong; Zhao Huilin; Cheng Fang; Lu Qing; Yao Qiuying

    2010-01-01

    Objective: To analyze and explore the value of 3 T high resolution magnetic resonance vessel wall imaging for identifying the activity of Takayasu arteritis. Methods: Twenty-six consecutive patients with Takayasu arteritis underwent 3.0 T high resolution MR vessel wall imaging on supraortic vessels (according to the classification of Lupi-Herrea, type I and III were included). Sixteen patients were in active phase and 10 in inactive phase based on the Kerr criteria. The MR vessel wall imaging appearances of Takayasu arteritis were compared between the active phase and inactive phase cases. Results: Wall thickening was demonstrated in all involved arteries. There were statistically significant differences between active phase and inactive phase cases in MR appearances including multi-ring thickening of vessel wall (75/80 and 18/50), arterial inner wail enhancement (50/80 and 19/50), obscurity of perivascular fat (55/80 and 18/50, X 2 =50.39, 7.41, 13.40, P<0.01). There was also a statistically significant difference in the thickness of carotid artery wall between the two groups [ (3.8 ± 0.2) mm vs (2.5 ± 0.8) mm]. Conclusion: 3 T high resolution MR vessel wall imaging is valuable for identifying the activity of Takayasu arteritis. (authors)

  12. Three-dimensional imaging of the aortic vessel wall using an elastin-specific magnetic resonance contrast agent.

    Science.gov (United States)

    Makowski, Marcus R; Preissel, Anne; von Bary, Christian; Warley, Alice; Schachoff, Sylvia; Keithan, Alexandra; Cesati, Richard R; Onthank, David C; Schwaiger, Markus; Robinson, Simon P; Botnar, René M

    2012-07-01

    The aim of this study was to demonstrate the feasibility of high-resolution 3-dimensional aortic vessel wall imaging using a novel elastin-specific magnetic resonance contrast agent (ESMA) in a large animal model. The thoracic aortic vessel wall of 6 Landrace pigs was imaged using a novel ESMA and a nonspecific control agent. On day 1, imaging was performed before and after the administration of a nonspecific control agent, gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA; Bayer Schering AG, Berlin, Germany). On day 3, identical scans were repeated before and after the administration of a novel ESMA (Lantheus Medical Imaging, North Billerica, Massachusetts). Three-dimensional inversion recovery gradient echo delayed-enhancement imaging and magnetic resonance (MR) angiography of the thoracic aortic vessel wall were performed on a 1.5-T MR scanner (Achieva; Philips Medical Systems, the Netherlands). The signal-to-noise ratio and the contrast-to-noise ratio of arterial wall enhancement, including the time course of enhancement, were assessed for ESMA and Gd-DTPA. After the completion of imaging sessions, histology, electron microscopy, and inductively coupled plasma mass spectroscopy were performed to localize and quantify the gadolinium bound to the arterial vessel wall. Administration of ESMA resulted in a strong enhancement of the aortic vessel wall on delayed-enhancement imaging, whereas no significant enhancement could be measured with Gd-DTPA. Ninety to 100 minutes after the administration of ESMA, significantly higher signal-to-noise ratio and contrast-to-noise ratio could be measured compared with the administration of Gd-DTPA (45.7 ± 9.6 vs 13.2 ± 3.5, P wall imaging using a novel ESMA in a large animal model under conditions resembling a clinical setting. Such an approach could be useful for the fast 3-dimensional assessment of the arterial vessel wall in the context of atherosclerosis, aortic aneurysms, and hypertension.

  13. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo

    Science.gov (United States)

    BUSSAU, L. J.; VO, L. T.; DELANEY, P. M.; PAPWORTH, G. D.; BARKLA, D. H.; KING, R. G.

    1998-01-01

    Fibre optic confocal imaging (FOCI) enabled subsurface fluorescence microscopy of the skin of hairless mice in vivo. Application of acridine orange enabled imaging of the layers of the epidermis. The corneocytes of the stratum corneum, the keratinocytes in the basal layers and redundant hair follicles were visualised at depths greater than 100 μm. Cellular and nuclear membranes of keratinocytes of the skin were visualised by the use of acridine orange and DIOC5(3). Imaging of the skin after injection of FITC-dextran revealed an extensive network of blood vessels with a size range up to 20 μm. Blood cells could be seen moving through dermal vessels and the blood circulation through the dermal vascular bed was video-taped. The fluorescent dye 4-di-2-ASP showed the presence of nerves fibres around the hair follicles and subsurface blood vessels. Comparison was made between images obtained in vivo using FOCI and in vitro scanning electron microscopy and conventional histology. FOCI offers the potential to study dynamic events in vivo, such as blood flow, skin growth, nerve regeneration and many pathological processes, in ways which have not previously been possible. PMID:9643419

  14. Fine-grained visual marine vessel classification for coastal surveillance and defense applications

    Science.gov (United States)

    Solmaz, Berkan; Gundogdu, Erhan; Karaman, Kaan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    The need for capabilities of automated visual content analysis has substantially increased due to presence of large number of images captured by surveillance cameras. With a focus on development of practical methods for extracting effective visual data representations, deep neural network based representations have received great attention due to their success in visual categorization of generic images. For fine-grained image categorization, a closely related yet a more challenging research problem compared to generic image categorization due to high visual similarities within subgroups, diverse applications were developed such as classifying images of vehicles, birds, food and plants. Here, we propose the use of deep neural network based representations for categorizing and identifying marine vessels for defense and security applications. First, we gather a large number of marine vessel images via online sources grouping them into four coarse categories; naval, civil, commercial and service vessels. Next, we subgroup naval vessels into fine categories such as corvettes, frigates and submarines. For distinguishing images, we extract state-of-the-art deep visual representations and train support-vector-machines. Furthermore, we fine tune deep representations for marine vessel images. Experiments address two scenarios, classification and verification of naval marine vessels. Classification experiment aims coarse categorization, as well as learning models of fine categories. Verification experiment embroils identification of specific naval vessels by revealing if a pair of images belongs to identical marine vessels by the help of learnt deep representations. Obtaining promising performance, we believe these presented capabilities would be essential components of future coastal and on-board surveillance systems.

  15. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    Science.gov (United States)

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as

  16. Blood vessel classification into arteries and veins in retinal images

    Science.gov (United States)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  17. Real-time protection of in-vessel components in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Herrmann, A.; Drube, R.; Lunt, T.; Marne, P. de

    2011-01-01

    A video real time safety system (VRT) for protection of in-vessel components was fully implemented in the machine control system (CODAC) from the 2007 experimental campaign on. The VRT is based on video cameras in contrast to infrared systems. The visible wavelength range has a smaller measurement range but is a factor 5-10 less sensitive against changes of the transmission of the optical system and the target emissivity compared to infrared systems. Up to 12 analog video channels with multiple regions of interest (ROI) are processed and monitored on each video stream. At present two safety algorithms, to detect the fraction of overheating in a ROI and hot spot detection, respectively, are implemented. The integral algorithm is preferentially used for probe or limiter protection, the hot spot algorithm for divertor protection. The VRT system is realized with ReadHawk real time operating system on a multi core Linux computer.

  18. Real-time protection of in-vessel components in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A., E-mail: albrecht.herrmann@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Drube, R.; Lunt, T.; Marne, P. de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2011-10-15

    A video real time safety system (VRT) for protection of in-vessel components was fully implemented in the machine control system (CODAC) from the 2007 experimental campaign on. The VRT is based on video cameras in contrast to infrared systems. The visible wavelength range has a smaller measurement range but is a factor 5-10 less sensitive against changes of the transmission of the optical system and the target emissivity compared to infrared systems. Up to 12 analog video channels with multiple regions of interest (ROI) are processed and monitored on each video stream. At present two safety algorithms, to detect the fraction of overheating in a ROI and hot spot detection, respectively, are implemented. The integral algorithm is preferentially used for probe or limiter protection, the hot spot algorithm for divertor protection. The VRT system is realized with ReadHawk real time operating system on a multi core Linux computer.

  19. Issues and strategies for DEMO in-vessel component integration

    International Nuclear Information System (INIS)

    Bachmann, C.; Arbeiter, F.; Boccaccini, L.V.; Coleman, M.; Federici, G.; Fischer, U.; Kemp, R.; Maviglia, F.; Mazzone, G.; Pereslavtsev, P.; Roccella, R.; Taylor, N.; Villari, R.; Villone, F.; Wenninger, R.; You, J.-H.

    2016-01-01

    In the frame of the EUROfusion Consortium activities were launched in 2014 to develop a concept of a DEMO reactor including a large R&D program and the integrated design of the tokamak systems. The integration of the in-vessel components (IVCs) must accommodate numerous constraints imposed by their operating environment, the requirements for precise alignment, high performance, reliability, and remote maintainability. This makes the development of any feasible design a major challenge. Although DEMO is defined to be a one-of-a-kind device there needs to be in addition to the development of the IVC design solutions a remarkable emphasis on the optimization of these solutions already at the conceptual level. Their design has a significant impact on the machine layout, complexity, and performance. This paper identifies design and technology limitations of IVCs, their consequences on the integration principles, and introduces strategies currently considered in the DEMO tokamak design approach.

  20. Issues and strategies for DEMO in-vessel component integration

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, C., E-mail: christian.bachmann@euro-fusion.org [EUROfusion PMU, Garching (Germany); Arbeiter, F.; Boccaccini, L.V. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Coleman, M.; Federici, G. [EUROfusion PMU, Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kemp, R. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Maviglia, F. [EUROfusion PMU, Garching (Germany); Mazzone, G. [ENEA Dipartimento Fusione e Sicurezza Nucleare C. R. Frascati – via E. Fermi 45, 00044 Frascati, Roma (Italy); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Roccella, R. [ITER Organization, St. Paul Lez Durance (France); Taylor, N. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Villari, R. [ENEA Dipartimento Fusione e Sicurezza Nucleare C. R. Frascati – via E. Fermi 45, 00044 Frascati, Roma (Italy); Villone, F. [ENEA-CREATE Association, DIEI, Università di Cassino e del Lazio Meridiona (Italy); Wenninger, R. [EUROfusion PMU, Garching (Germany); You, J.-H. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany)

    2016-11-15

    In the frame of the EUROfusion Consortium activities were launched in 2014 to develop a concept of a DEMO reactor including a large R&D program and the integrated design of the tokamak systems. The integration of the in-vessel components (IVCs) must accommodate numerous constraints imposed by their operating environment, the requirements for precise alignment, high performance, reliability, and remote maintainability. This makes the development of any feasible design a major challenge. Although DEMO is defined to be a one-of-a-kind device there needs to be in addition to the development of the IVC design solutions a remarkable emphasis on the optimization of these solutions already at the conceptual level. Their design has a significant impact on the machine layout, complexity, and performance. This paper identifies design and technology limitations of IVCs, their consequences on the integration principles, and introduces strategies currently considered in the DEMO tokamak design approach.

  1. Manufacturing technology development for vacuum vessel and plasma facing components

    International Nuclear Information System (INIS)

    Laitinen, Arttu; Liimatainen, Jari; Hallila, Pentti

    2005-01-01

    Vacuum vessel and plasma facing components of the ITER construction including shield modules and primary first wall panels have great impact on the production costs and reliability of the installation. From the manufacturing technology point of view, accuracy of shape, properties of the various austenitic stainless steel/austenitic stainless steel interfaces or CuCrZr/austenitic stainless steel interfaces as well as those of the base materials are crucial for technical reliability of the construction. The current approach in plasma facing components has been utilisation of solid-HIP technology and solid-powder-HIP technology. Due to the large size of especially shield modules shape, control of the internal cavities and cooling channels is extremely demanding. This requires strict control of the raw materials and manufacturing parameters

  2. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    Directory of Open Access Journals (Sweden)

    Anna Borisovna Cherednyakova

    2015-08-01

    Full Text Available Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marketing techniques manager: object-communicative categorical component, subject-activity categorical component of image, personality-oriented categorical component, value-acmeological categorical component of image.The aim is to identify and justify the image categorical components as a component of image culture of the marketing techniques manager.Method and methodology of work – a general scientific research approach reflecting scientific apparatus of research.Results. Categorical components of the image, as an image culture component of manager of marketing techniques were defined.Practical implication of the results. The theoretical part of «Imageology» course, special course «Image culture of manager of marketing techniques», the theoretical and methodological study and the formation of image culture.

  3. MR angiography of the cerebral vessels with inflow-increased visualization by overcontiguous imaging and advanced processing

    International Nuclear Information System (INIS)

    McLachian, S.; Simon, H.E.; de Graaf, R.; Ho, A.M.; Ruccio, W.J.; Steidley, J.W.; Pradhan, R.B.

    1989-01-01

    The purpose of this study was to increase the visualization of cerebral vessels with MR angiography by using an inflow technique from transverse sections. Difficulties with visualization include the tortuous nature of the vessels and slow blood flow. The MR method is a transverse two-dimensional multiple single-section sequence with a velocity-compensated gradient echo and presaturation. A S15 imager with 10-mTm gradients and a prototype angiographic package is used. Overcontiguous acquisition yields smaller effective center-to-center sections. Interpolation is used to generate interleaved plane projections. A combination of image parameter swill reduce the level of the stationary tissue relative to the flowing blood. For vessels that are not perpendicular to the section, overlapping the sections by 25%--33% is shown to reduce the staircase appearance without affecting the apparent size of the vessels. Interpolation of the MR images will further reduce this artifact, giving the vessels a smooth structure. MR angiography of the brain performed with an inflow technique allows the visualization of vessels in the brain even if the vessels follow tortuous paths. Presaturation and user-defined regions of interest can be used for ease of interpretation

  4. Iter in vessel viewing system design and assessment activities

    Energy Technology Data Exchange (ETDEWEB)

    Neri, C., E-mail: carlo.neri@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Costa, P.; Ferri De Collibus, M.; Florean, M.; Mugnaini, G.; Pillon, M.; Pollastrone, F.; Rossi, P. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2011-10-15

    The In Vessel Viewing System (IVVS) is fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A prototype of a laser In Vessel Viewing and ranging System was developed and tested at ENEA laboratories in Frascati under EFDA task agreements, it is able to perform sub-millimetric bi-dimensional and three-dimensional images inside ITER during maintenance procedure allowing the evaluation of the state and damages of the in-vessel surface. The present prototype has been designed to operate under room conditions and starting from springtime 2009 a Grant with F4E is in progress for the design and the assessment of the IVVS system for ITER, keeping in account all the environmental conditions and constraints.

  5. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    Science.gov (United States)

    Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

    2009-02-01

    The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

  6. To the application of TV and optical equipment for in-service inspection of reactor vessel and primary circuit component materials

    International Nuclear Information System (INIS)

    Afonin, Eh.M.; Bachelis, I.M.; Tokarev, E.A.; Yastrebov, V.E.

    1985-01-01

    Some problems of application of TV and optical equipment for inspection of reactor vessel and primary circuit component materials are considered taking the most widespread WWER-440 type reactor as an example. The most advanrageous objects of the inspection and typical zones of equipment arrangement are shown. Methods and peculiarities of the inspection with the use of TV and optical equipment are presented. Recommendations on rational application of the equipment for the inspection of WWER-440 reactor vessel components are given

  7. Tempest in a vessel

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-01-01

    As the ASN made some statements about anomalies of carbon content in the EPR vessel bottom and top, the author recalls and comments some technical issues to better understand the information published on this topic. He notably addresses the role of the vessel, briefly indicates its operating conditions, shape and structure, and mechanical components for the top, its material and mechanical properties, and test samples used to assess mechanical properties. He also comments the phenomenon of radio-induced embrittlement, the vessel manufacturing process, and evokes the applicable regulations. He quotes and comments statements made by the ASN and Areva which evoke further assessments of the concerned components

  8. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    Science.gov (United States)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  9. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully

  10. Vessel bifurcation localization based on intraoperative three-dimensional ultrasound and catheter path for image-guided catheter intervention of oral cancers.

    Science.gov (United States)

    Luan, Kuan; Ohya, Takashi; Liao, Hongen; Kobayashi, Etsuko; Sakuma, Ichiro

    2013-03-01

    We present a method to localize intraoperative target vessel bifurcations under bones for ultrasound (US) image-guided catheter interventions. A catheter path is recorded to acquire skeletons for the target vessel bifurcations that cannot be imaged by intraoperative US. The catheter path is combined with the centerlines of the three-dimensional (3D) US image to construct a preliminary skeleton. Based on the preliminary skeleton, the orientations of target vessels are determined by registration with the preoperative image and the bifurcations were localized by computing the vessel length. An accurate intraoperative vessel skeleton is obtained for correcting the preoperative image to compensate for vessel deformation. A reality check of the proposed method was performed in a phantom experiment. Reasonable results were obtained. The in vivo experiment verified the clinical workflow of the proposed method in an in vivo environment. The accuracy of the centerline length of the vessel for localizing the target artery bifurcation was 2.4mm. These results suggest that the proposed method can allow the catheter tip to stop at the target artery bifurcations and enter into the target arteries. This method can be applied for virtual reality-enhanced image-guided catheter intervention of oral cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Gadolinium Enhanced MR Coronary Vessel Wall Imaging at 3.0 Tesla

    Directory of Open Access Journals (Sweden)

    Sebastian Kelle

    2010-01-01

    Full Text Available Purpose. We evaluated the influence of the time between low-dose gadolinium (Gd contrast administration and coronary vessel wall enhancement (LGE detected by 3T magnetic resonance imaging (MRI in healthy subjects and patients with coronary artery disease (CAD. Materials and Methods. Four healthy subjects (4 men, mean age 29  ±  3 years and eleven CAD patients (6 women, mean age 61±10 years were studied on a commercial 3.0 Tesla (T whole-body MR imaging system (Achieva 3.0 T; Philips, Best, The Netherlands. T1-weighted inversion-recovery coronary magnetic resonance imaging (MRI was repeated up to 75 minutes after administration of low-dose Gadolinium (Gd (0.1 mmol/kg Gd-DTPA. Results. LGE was seen in none of the healthy subjects, however in all of the CAD patients. In CAD patients, fifty-six of 62 (90.3% segments showed LGE of the coronary artery vessel wall at time-interval 1 after contrast. At time-interval 2, 34 of 42 (81.0% and at time-interval 3, 29 of 39 evaluable segments (74.4% were enhanced. Conclusion. In this work, we demonstrate LGE of the coronary artery vessel wall using 3.0 T MRI after a single, low-dose Gd contrast injection in CAD patients but not in healthy subjects. In the majority of the evaluated coronary segments in CAD patients, LGE of the coronary vessel wall was already detectable 30–45 minutes after administration of the contrast agent.

  12. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: chuanfei.li@ipp.mpg.de; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-10-15

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements.

  13. Production management and quality assurance for the fabrication of the In-Vessel Components of the stellarator Wendelstein 7-X

    International Nuclear Information System (INIS)

    Li, C.; Boscary, J.; Dekorsy, N.; Junghanns, P.; Mendelevitch, B.; Peacock, A.; Pirsch, H.; Sellmeier, O.; Springer, J.; Stadler, R.; Streibl, B.

    2014-01-01

    Highlights: • Thousand parts for the divertor, first wall, cooling supply and diagnostics as W7-X In-Vessel Components. • Database building including part and assembly data, work and capacity organization, quality assurance documents. • Production management system to organize the fabrication and the associated quality assurance. • Successful use of an efficient and flexible product planning and scheduling tool for W7-X In-Vessel Components. - Abstract: The In-Vessel Components (IVC) of the stellarator Wendelstein 7-X consist of the divertor components and the first wall (FW) with their internal water cooling supply and a set of diagnostics. Due to the significant amount of different components, including many variants, a tool called Production Managing System (PMS) has been developed to organize the fabrication and the associated quality assurance. The PMS works by building a database containing the basic parts and assembly data, manufacturing and quality control plans, and available machine capacity. The creation of this database is based mainly on the parts lists, the manufacturing drawings, and details of the working flow organization. As a consequence of the learning process and technical adjustments during the design and manufacturing phase, the database needed to be permanently updated. Therefore an interface tool to optimize the data preparation has been developed. PMS has been demonstrated to be an efficient tool to support the IVC production activities providing reliable planning estimates, easily adaptable to problems encountered during the fabrication and provided a basis for the integration of quality assurance requirements

  14. Vessel size measurements in angiograms: A comparison of techniques

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Nazareth, Daryl P.; Miskolczi, Laszlo; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2002-01-01

    As interventional procedures become more complicated, the need for accurate quantitative vascular information increases. In response to this need, many commercial vendors provide techniques for measurement of vessel sizes, usually based on derivative techniques. In this study, we investigate the accuracy of several techniques used in the measurement of vessel size. Simulated images of vessels having circular cross sections were generated and convolved with various focal spot distributions taking into account the magnification. These vessel images were then convolved with Gaussian image detector line spread functions (LSFs). Additionally, images of a phantom containing vessels with a range of diameters were acquired for the 4.5'', 6'', 9'', and 12'' modes of an image intensifier-TV (II-TV) system. Vessel sizes in the images were determined using a first-derivative technique, a second-derivative technique, a linear combination of these two measured sizes, a thresholding technique, a densitometric technique, and a model-based technique. For the same focal spot size, the shape of the focal spot distribution does not affect measured vessel sizes except at large magnifications. For vessels with diameters larger than the full-width-at-half-maximum (FWHM) of the LSF, accurate vessel sizes (errors ∼0.1 mm) could be obtained by using an average of sizes determined by the first and second derivatives. For vessels with diameters smaller than the FWHM of the LSF, the densitometric and model-based techniques can provide accurate vessel sizes when these techniques are properly calibrated

  15. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Xu, Lifei; Chen, Weidong

    2016-01-01

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  16. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  17. Frequency and Magnitude Analysis of the Macro-instability Related Component of the Tangential Force Affecting Radial Baffles in a Stirred Vessel

    Directory of Open Access Journals (Sweden)

    P. Hasal

    2002-01-01

    Full Text Available Experimental data obtained by measuring the tangential component of force affecting radial baffles in a flat-bottomed cylindrical mixing vessel stirred with pitched blade impellers is analysed. The maximum mean tangential force is detected at the vessel bottom. The mean force value increases somewhat with decreasing impeller off-bottom clearance and is noticeably affected by the number of impeller blades. Spectral analysis of the experimental data clearly demonstrated the presence of its macro-instability (MI related low-frequency component embedded in the total force at all values of impeller Reynolds number. The dimensionless frequency of the occurrence of the MI force component is independent of stirring speed, position along the baffle, number of impeller blades and liquid viscosity. Its mean value is about 0.074. The relative magnitude (QMI of the MI-related component of the total force is evaluated by a combination of proper orthogonal decomposition (POD and spectral analysis. Relative magnitude QMI was analysed in dependence on the frequency of the impeller revolution, the axial position of the measuring point in the vessel, the number of impeller blades, the impeller off-bottom clearance, and liquid viscosity. Higher values of QMI are observed at higher impeller off-bottom clearance height and (generally QMI decreases slightly with increasing impeller speed. The QMI value decreases in the direction from vessel bottom to liquid level. No evident difference was observed between 4 blade and 6 blade impellers. Liquid viscosity has only a marginal impact on the QMI value.

  18. Development of Ultrasonic Visual Inspection Program for In-Vessel Structures of SFR

    International Nuclear Information System (INIS)

    Joo, Y. S.; Park, C. G.; Lee, J. H.

    2009-02-01

    As the liquid sodium of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection is unavailable for the evaluation of the in-vessel structures under a sodium level. ASME Section XI Division 3 provides rules and guidelines for an in-service inspection (ISI) and testing of the components of SFR. For the ISI of in-vessel structures, the ASME code specifies visual examinations. An ultrasonic wave should be applied for an under-sodium visual inspection of the in-vessel structures. The plate-type waveguide sensor has been developed and the feasibility of the waveguide sensor technique has been successfully demonstrated for an ultrasonic visual inspection of the in-vessel structures of SFR. In this study, the C-scan image mapping program (Under-Sodium MultiView) is developed to apply this waveguide sensor technology to an under-sodium visual inspection of in-vessel structures in SFR by using a LabVIEW graphical programming language. The Under-Sodium MultiVIEW program has the functions of a double rotating scanner motion control, a high power pulser receiver control, a image mapping and a signal processing. The performance of Under-Sodium MultiVIEW program was verified by a C-scanning test

  19. Machine Learning for Quantification of Small Vessel Disease Imaging Biomarkers

    NARCIS (Netherlands)

    Ghafoorian, M.

    2018-01-01

    This thesis is devoted to developing fully automated methods for quantification of small vessel disease imaging bio-markers, namely WMHs and lacunes, using vari- ous machine learning/deep learning and computer vision techniques. The rest of the thesis is organized as follows: Chapter 2 describes

  20. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Directory of Open Access Journals (Sweden)

    Gesa Weise

    Full Text Available (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  1. Comparison of vessel contrast measured with a scanning-beam digital x-ray system and an image intensifier/television system

    International Nuclear Information System (INIS)

    Speidel, Michael A.; Wilfley, Brian P.; Heanue, Joseph A.; Betts, Timothy D.; Van Lysel, Michael S.

    2001-01-01

    Vessel contrast was measured in the fluoroscopic images produced by a scanning-beam digital x-ray (SBDX) system and an image intensifier/television (II/TV) based system. The SBDX system electronically scans a series of pencil x-ray beams across the patient, each of which is directed at a distant small-area detector array. The reduction in detected scatter achieved with this geometry was expected to provide an increase in image contrast. Vessel contrast was evaluated from images of a phantom containing iodinated tubes. The vessels were inserted into an acrylic stack to provide a patient-mimicking scattering medium. Vessel diameter ranged from 0.3 to 3.1 mm. Images were acquired at 100 kVp with the SBDX and II/TV systems and averaged to reduce x-ray noise. The II/TV system was operated in the 6-in. image intensifier mode with an anti-scatter grid. The increase in contrast in the SBDX images, expressed as a ratio of the measured SBDX and II/TV contrasts, ranged from 1.63 to 1.79 for individual vessels. This agreed well with a prediction of the contrast improvement ratio for this experiment, based on measurements of the scatter fraction, object-plane line spread functions, and consideration of the source spectrum and detector absorption properties. The predicted contrast improvement ratio for SBDX relative to II/TV images was 1.62 to 1.77

  2. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Directory of Open Access Journals (Sweden)

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  3. Influence of prolonged service of steam turbines on the properties of materials of rotor and vessel components

    International Nuclear Information System (INIS)

    Anfimov, V.M.; Artamonov, V.V.; Chizhik, T.A.

    1984-01-01

    The structure and mechanical properties of steam turbine elements of 25Kh1MF, 25Kh1M1FA (rotors), 15Kh1M1FL (vessel components) steels have been investigated both in initial state and after 200 000 h operation. The structure stability and phase composition of rotor steels providing conservation of heat resistance at a required level was established. Examination of vessel components showed a decrease in the yield strength by 15-20% and durability - by 10% as compared to initial ones. The conclusion on a possible prolongation of the steam turbine service life to 200 000 h is drawn. The nominal service life equals 100 000 h

  4. Lung vessel segmentation in CT images using graph-cuts

    Science.gov (United States)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  5. The diagnostic value of cine-MR imaging in diseases of great vessels

    International Nuclear Information System (INIS)

    Sasaki, Shigeyuki; Yoshida, Hideaki; Matsui, Yoshiro; Sakuma, Makoto; Yasuda, Keihide; Tanabe, Tatsuzo; Chouji, H.

    1990-01-01

    The diagnostic value of cine magnetic resonance imaging (cine-MRI) was evaluated in 10 patients with diseases of great vessels. The parameters necessary to decide the appropriate treatment, such as presence and extension of intimal flap, DeBakey type classification, identification of the entry, differentiation between true and false lumen, and between thrombosis and slow flow were demonstrated in all patients with dissecting aortic aneurysm. However, abdominal aortic branches could not be demonstrated enough by cine-MRI, therefore conventional AOG was necessary to choose the operative procedure in these cases. In patients with thoracic aortic aneurysm (TAA), cine-MRI was valuable in demonstrating both blood flow and thrombus in the lumen of aneurysm, and AOG was thought to be unnecessary in most cases. Cine-MRI is a promising new technique for the evaluation of diseases of great vessels. (author)

  6. Magnetic resonance imaging of the heart and great vessels

    International Nuclear Information System (INIS)

    Naitoh, Hiroaki; Nishimura, Tsunehiko; Takamiya, Makoto; Kozuka, Takahiro.

    1985-01-01

    About sixty subjects with normal heart or various cardiovascular diseases were examined with 0.35 or 1.5 T superconductive magnetic resonance imaging (MRI) system, and ECG-gated spin-echo multislice technique was used to evaluate cardiovascular anatomy. MRI accurately demonstrated ventricular wall thinning caused by myocardial infarction and asymmetric ventricular hypertrophy owing to cardiomyopathy. Rheumatic valvular thickening, congenital cardiac malformations, aortic aneurysm and dissection were also clearly demonstrated by gated MRI without the use of any contrast media. MRI was shown to be an excellent non-invasive imaging modality for evaluation of pathoanatomy of the heart and great vessels. (author)

  7. Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore; Sharma, Dilip Kumar

    2016-10-01

    Identification of fundus images during transmission and storage in database for tele-ophthalmology applications is an important issue in modern era. The proposed work presents a novel accurate method for generation of unique identification code for identification of fundus images for tele-ophthalmology applications and storage in databases. Unlike existing methods of steganography and watermarking, this method does not tamper the medical image as nothing is embedded in this approach and there is no loss of medical information. Strategic combination of unique blood vessel pattern and patient ID is considered for generation of unique identification code for the digital fundus images. Segmented blood vessel pattern near the optic disc is strategically combined with patient ID for generation of a unique identification code for the image. The proposed method of medical image identification is tested on the publically available DRIVE and MESSIDOR database of fundus image and results are encouraging. Experimental results indicate the uniqueness of identification code and lossless recovery of patient identity from unique identification code for integrity verification of fundus images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Assessment of the significance of coronary collateral vessel by using thallium-201 myocardial imaging

    International Nuclear Information System (INIS)

    Kanoh, Yasushi; Shiotani, Hideyuki; Fukuzaki, Hisashi; Maeda, Kazumi.

    1988-01-01

    For functional assessment of coronary collateral vessels, twenty-three patients with effort angina pectoris who had total coronary obstruction were studied. The patients were divided depending on the degree of development of collateral vessels into two groups, i.e. good collateral group I (n = 13) and poor collateral group II (n = 10). Thallium-201 scan was performed immediately (Ex-1 image), 20 minutes (Ex-2 image) after exercise and after nitroglycerin administration (NTG image) respectively. In all images, the relative percent activity of thallium-201 in the collateral-dependent ischemic area to the normal myocardium were calculated and were compaired between two groups. Relative percent activities in group I and II were as follows : Ex-1 image ; 75.8 ± 3.5 % vs. 77.2 ± 2.9 % (NS), Ex-2 images ; 85.3 ± 4.5 % vs. 79.3 ± 3.9 % (p < 0.005), NTG image ; 97.3 ± 3.1 % vs. 96.4 ± 5.2 % (NS). From these results, it was elucidated that good collateral induced early partial redistribution in its perfusion area, suggesting that good collateral circulation may provide rapid recovery from myocardial ischemia. (author)

  9. Direct bolus imaging of cervical blood vessels by means of MRI

    International Nuclear Information System (INIS)

    Satoh, Toshihiko; Fujioka, Mutsuhisa; Watari, Tsutomu; Nishimura, Gen; Matsumoto, Toshihiko; Washiya, Sumio; Inoue, Kiyoshi; Horita, Masatoshi; Shimizu, Kohji.

    1991-01-01

    Direct bolus imaging (DBI) is one of the non-invasive method for flow measurements which is based on the bolus tracking technique. DBI permits the direct visualization of flow velocity profiles and vessel band width. We performed screening for cervical vessel disease in patients with vertigo by means of DBI. MR system used here was 0.5 T superconducting imager-SMT-50A (Shimazu Co. Ltd). Pulse sequence parameters were TR= 60 ms, TE= 50 ms, NEX= 1, acquisition matrix; 128 x 256, slice thickness= 5 mm, with cardiac gating. Pulse sequence employed a slice selective RF pulse at the level of C5 vertebral body to tag a disk of fluid perpendicular to the direction of flow, followed by a gradient reforcussed echo. We evaluated each peak high and band width of the common-carotid arteries and the vertebral arteries. Seventy nine of 83 cases had optimal examinations. Abnormal findings of DBI were seen in 15 of 79 cases, (including 2 of subclavian steal syndrome, 1 of carotid obstruction, 5 of vertebral obstruction, 1 of basilar artery obstruction, and 6 of hypoplasia of vertebral artery). The abnormal findings of DBI were well correlated with those of angiographic examinations. We concluded that DBI was suitable to the screening for cervical vessel diseases in patients with vertigo, and should be added to the routine MR studies. (author)

  10. MR imaging of the cranial nerves and the intracranial vessels using 3D-SPGR

    International Nuclear Information System (INIS)

    Hosoya, Takaaki; Sato, Nami; Yamaguchi, Koichi; Sugai, Yukio; Ogushi, Masatoshi; Kubota, Hisashi

    1992-01-01

    MR angiography (MRA) has developed rapidly, but it is still insufficient to demonstrate the detail of the intracranial vascular anatomy. We found that original images of MRA render more information than MRA images about not only intracranial vessels but also cranial nerves. We have tried to demonstrate cranial nerves and intracranial vessels on 26 patients and evaluated using real time reformation of original images of MRA. MR images were obtained by SPGR (3DFT) after injection of Gd-DTPA. The optic nerve, the oculomotor nerve, the trigeminal nerve, the facial nerve and the vestibulocochlear nerve were visualized clearly on almost patients and detectabilities of these nerves were 100%, 98%, 100%, 94% and 100%, respectively. The abducent nerve was also detectable in 76%. The trochlear nerve, which could not be observed by any modality, was detected at prepontine cistern in 10%. Arteries around brain stem such as the superior cerebellar artery (SCA), the anterior inferior cerebellar artery (AICA), the posterior inferior cerebellar artery (PICA) and the posterior communicating artery (PcomA) were clearly visible, and branching of these arteries and anatomical detail were completely coincide with angiogram on 12 patients. The basal vein of Rosenthal and the petrosal vein were confirmed in 100% and their anastomose were demonstrated obviously. We concluded that this method was extremely useful to observe cranial nerves and intracranial small vessels. (author)

  11. Value of CT angiography in anterior circulation large vessel occlusive stroke: Imaging findings, pearls, and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Power, Sarah, E-mail: drsarahpower@gmail.com [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); McEvoy, Sinead H., E-mail: sineadmcevoy@beaumont.ie [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Cunningham, Jane, E-mail: janecunningham0708@gmail.com [Department of Radiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Ti, Joanna P., E-mail: joannapearlyti@gmail.com [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Looby, Seamus, E-mail: seamuslooby@beaumont.ie [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); O' Hare, Alan, E-mail: alanohare@beaumont.ie [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Williams, David, E-mail: davidwilliams@rcsi.ie [Department of Geriatrics and Stroke Medicine, Royal College of Surgeons in Ireland (RCSI) and Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Brennan, Paul, E-mail: paulbrennan@beaumont.ie [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland); Thornton, John, E-mail: johnthornton@beaumont.ie [Department of Neuroradiology, Beaumont Hospital, P.O. Box 1297, Beaumont Rd, Dublin 9 (Ireland)

    2015-07-15

    Highlights: • Site of occlusion determines potential collateralization routes and impacts outcome. • Multifocality of arterial occlusion is common, seen in approximately 20% of cases. • ICA false occlusion sign can be seen in setting of ICA stenosis or carotid T occlusion. • False patency sign: hyperdense thrombus/calcified occlusive plaque misinterpreted as patent vessel. • Additional abnormalities on CTA may infer stroke mechanism or alter decision making. - Abstract: Hyperacute stroke imaging is playing an increasingly important role in determining management decisions in acute stroke patients, particularly patients with large vessel occlusive stroke who may benefit from endovascular intervention. CT angiography (CTA) is an important tool in the work-up of the acute stroke patient. It reliably detects large occlusive thrombi in proximal cerebral arteries and is a quick and highly accurate method in identifying candidates for endovascular stroke treatment. In this article we review the imaging findings on CTA in acute large vessel occlusive stroke using a pictorial case based approach. We retrospectively reviewed CTA studies in 48 patients presenting with acute anterior circulation large vessel occlusive stroke who were brought for intra-arterial acute stroke intervention. We discuss and illustrate patterns of proximal intracranial arterial occlusion, collateralization to the occluded territory, as well as reviewing some important pearls, pitfalls and teaching points in CTA assessment of the acute stroke patient. Performed from the level of the aortic arch CTA also gives valuable information regarding the state of other vessels in the acute stroke patient, identifying additional significant vascular stenoses or occlusions, and as we illustrate, can demonstrate other clinically significant findings which may impact on patient management and outcome.

  12. Value of CT angiography in anterior circulation large vessel occlusive stroke: Imaging findings, pearls, and pitfalls

    International Nuclear Information System (INIS)

    Power, Sarah; McEvoy, Sinead H.; Cunningham, Jane; Ti, Joanna P.; Looby, Seamus; O'Hare, Alan; Williams, David; Brennan, Paul; Thornton, John

    2015-01-01

    Highlights: • Site of occlusion determines potential collateralization routes and impacts outcome. • Multifocality of arterial occlusion is common, seen in approximately 20% of cases. • ICA false occlusion sign can be seen in setting of ICA stenosis or carotid T occlusion. • False patency sign: hyperdense thrombus/calcified occlusive plaque misinterpreted as patent vessel. • Additional abnormalities on CTA may infer stroke mechanism or alter decision making. - Abstract: Hyperacute stroke imaging is playing an increasingly important role in determining management decisions in acute stroke patients, particularly patients with large vessel occlusive stroke who may benefit from endovascular intervention. CT angiography (CTA) is an important tool in the work-up of the acute stroke patient. It reliably detects large occlusive thrombi in proximal cerebral arteries and is a quick and highly accurate method in identifying candidates for endovascular stroke treatment. In this article we review the imaging findings on CTA in acute large vessel occlusive stroke using a pictorial case based approach. We retrospectively reviewed CTA studies in 48 patients presenting with acute anterior circulation large vessel occlusive stroke who were brought for intra-arterial acute stroke intervention. We discuss and illustrate patterns of proximal intracranial arterial occlusion, collateralization to the occluded territory, as well as reviewing some important pearls, pitfalls and teaching points in CTA assessment of the acute stroke patient. Performed from the level of the aortic arch CTA also gives valuable information regarding the state of other vessels in the acute stroke patient, identifying additional significant vascular stenoses or occlusions, and as we illustrate, can demonstrate other clinically significant findings which may impact on patient management and outcome

  13. AIS as key component in modern vessel traffic management and information systems

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, W. [DaimlerChrysler Aerospace AG (DASA), Ulm (Germany)

    1999-07-01

    The objective of this paper is to provide information in respect to universal shipborne identification system (UAIS) as main sensor in various vessel traffic applications. The presented paper will give general information concerning AIS functionality and the standardisation process. Based on experience from recent projects and various IALA working group activities, a typical future VTMIS architectures is also presented being based on AIS as key sensor. The required key performance of AIS associated with the HW components will be described. The results from European technology study Indris are presented and discussed. Finally, a summary and conclusion from the presented material will complete the technical paper. The elaboration of this presentation has been carried out as a joint task between Mr. Andre van Berg, MDS Suedafrika und Mr. Walter Lamers, DASA Ulm. (orig.)

  14. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 2. Comprehending the divertor structure

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Akiba, Masato; Saito, Masakatsu

    2006-01-01

    Divertor is given the largest heat load in the in-vessel components of fusion machine. The functions and conditions of divertor are stated from the point of view of thermal and structural dynamics. The way of thinking of structure design of divertor of JT-60 and the ITER (International Thermonuclear Experimental Reactor) is explained. As the conditions of divertor, the materials for large heat load, heat removal, pressure boundary, control of damage, and thermal stress/strain are considered. The divertor has to be changed periodically. The materials are required the heat removal function for high heat load. CuCrZr will be used to cooling tube and heat sink, and CFC materials for the surface. The cross section of ITER, a part of divertor, heat load of divertor and other components, the thermal conductivity of CFC and metal materials, conditions of cooling water for divertor of BWR, PWR and ITER, the thermal stress produced on rod, vertical target of ITER, structure of cooling tube, distribution of temperature and critical heart flux of inner wall of cooling tube, and fatigue clack of cooling tube are shown. (S.Y.)

  15. Investigation of vessel visibility of iterative reconstruction method in coronary computed tomography angiography using simulated vessel phantom

    International Nuclear Information System (INIS)

    Inoue, Takeshi; Uto, Fumiaki; Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Hoshino, Takashi; Miura, Youhei; Terakawa, Syouichi

    2012-01-01

    Iterative reconstruction methods can reduce the noise of computed tomography (CT) images, which are expected to contribute to the reduction of patient dose CT examinations. The purpose of this study was to investigate impact of an iterative reconstruction method (iDose 4 , Philips Healthcare) on vessel visibility in coronary CT angiography (CTA) by using phantom studies. A simulated phantom was scanned by a CT system (iCT, Philips Healthcare), and the axial images were reconstructed by filtered back projection (FBP) and given a level of 1 to 7 (L1-L7) of the iterative reconstruction (IR). The vessel visibility was evaluated by a quantitative analysis using profiles across a 1.5-mm diameter simulated vessel as well as visual evaluation for multi planar reformation (MPR) images and volume rendering (VR) images in terms of the normalized-rank method with analysis of variance. The peak CT value of the profiles decreased with IR level and full width at half maximum of the profile also decreased with the IR level. For normalized-rank method, there was no statistical difference between FBP and L1 (20% dose reduction) for both MPR and VR images. The IR levels higher than L1 sacrificed the spatial resolution for the 1.5-mm simulated vessel, and their visual vessel visibilities were significantly inferior to that of the FBP. (author)

  16. Imaging features of primary Sarcomas of the great vessels in CT, MRI and PET/CT: a single-center experience

    International Nuclear Information System (INIS)

    Falck, Christian von; Meyer, Bernhard; Fegbeutel, Christine; Länger, Florian; Bengel, Frank; Wacker, Frank; Rodt, Thomas

    2013-01-01

    To investigate the imaging features of primary sarcomas of the great vessels in CT, MRI and 18 F-FDG PET/CT. Thirteen patients with a primary sarcoma of the great vessels were retrospectively evaluated. All available images studies including F-18 FDG PET(/CT) (n = 4), MDCT (n = 12) and MRI (n = 6) were evaluated and indicative image features of this rare tumor entity were identified. The median interval between the first imaging study and the final diagnosis was 11 weeks (0–12 weeks). The most frequently observed imaging findings suggestive of malignant disease in patients with sarcomas of the pulmonary arteries were a large filling defect with vascular distension, unilaterality and a lack of improvement despite effective anticoagulation. In patients with aortic sarcomas we most frequently observed a pedunculated appearance and an atypical location of the filling defect. The F-18 FDG PET(/CT) examinations demonstrated an unequivocal hypermetabolism of the lesion in all cases (4/4). MRI proved lesion vascularization in 5/6 cases. Intravascular unilateral or atypically located filling defects of the great vessels with vascular distension, a pedunculated shape and lack of improvement despite effective anticoagulation are suspicious for primary sarcoma on MDCT or MRI. MR perfusion techniques can add information on the nature of the lesion but the findings may be subtle and equivocal. F-18 FDG PET/CT may have a potential role in these patients and may be considered as part of the imaging workup

  17. Development of a Versatile Ultrasonic Internal Pipe/Vessel Component Monitor for In-Service Inspection of Nuclear Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Searfass, Clifford T. [Structural Integrity Associates, Inc., State College, PA (United States); Malinowski, Owen M. [Structural Integrity Associates, Inc., State College, PA (United States); Van Velsor, Jason K. [Structural Integrity Associates, Inc., State College, PA (United States)

    2015-03-22

    The stated goal of this work was to develop a versatile system which could accurately measure vessel and valve internal vibrations and cavitation formation under in-service conditions in nuclear power plants, ultrasonically. The developed technology will benefit the nuclear power generation industry by allowing plant operators to monitor valve and vessel internals during operation. This will help reduce planned outages and plant component failures. During the course of this work, Structural Integrity Associates, Inc. gathered information from industry experts that target vibration amplitudes to be detected should be in the range of 0.001-in to 0.005-in (0.025-mm to 0.127-mm) and target vibration frequency ranges which should be detected were found to be between 0-Hz and 300-Hz. During the performed work, an ultrasonic measuring system was developed which utilized ultrasonic pulse-echo time-of-flight measurements to measure vibration frequency and amplitude. The developed system has been shown to be able to measure vibration amplitudes as low as 0.0008-in (0.020-mm) with vibration frequencies in the range of 17-Hz to 1000-Hz. Therefore, the developed system was able to meet the industry needs for vibration measurement. The developed ultrasonic system was also to be able to measure cavitation formation by monitoring the received ultrasonic time- and frequency-domain signals. This work also demonstrated the survivability of commercially available probes at temperatures up to 300-F for several weeks.

  18. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Jugold, Manfred; Woenne, Eva C.; Brix, Gunnar

    2007-01-01

    The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications. (orig.)

  19. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...

  20. CATEGORICAL IMAGE COMPONENTS IN THE FORMING SYSTEM OF A MARKETING TECHNIQUES MANAGER’S IMAGE CULTURE

    OpenAIRE

    Anna Borisovna Cherednyakova

    2015-01-01

    Based on the understanding of the image culture formation of managers of marketing techniques, as a representative of the social and communication interaction of public structures, categorical apparatus of image culture with an emphasis on the etymology of the image, as an integral component of image culture was analyzed. Categorical components of the image are presented from the standpoint of image culture, as personal new formation, an integral part of the professional activity of the marke...

  1. Design improvements and R and D achievements for VV and in-vessel components towards ITER construction and implications for the R and D programme

    International Nuclear Information System (INIS)

    Ioki, K.

    2002-01-01

    Procurement specifications are now being finalised for ITER components whose construction is lengthy, yet which are needed early, such as the vacuum vessel. Although the basic concept of the vacuum vessel (VV) and in-vessel components of the ITER design has stayed the same as reported at the last conference, there have been several detailed design improvements resulting from efforts to raise reliability, to improve better maintainability and to save money. One of the most important achievements in the VV R and D is demonstration of the necessary assembly tolerances. Further development of advanced methods of cutting, welding and NDT for the VV have been continued in order to refine manufacturing and improve cost and technical performance. With regard to the related FW/blanket and divertor designs, the R and D has resulted in the development of suitable technologies. Prototypes of the FW panel, the blanket shield block and the divertor components have been successfully fabricated. This paper reviews the recent progress in the design as procurement nears. (author)

  2. Analysis of the frequency components of X-ray images

    International Nuclear Information System (INIS)

    Matsuo, Satoru; Komizu, Mitsuru; Kida, Tetsuo; Noma, Kazuo; Hashimoto, Keiji; Onishi, Hideo; Masuda, Kazutaka

    1997-01-01

    We examined the relation between the frequency components of x-ray images of the chest and phalanges and their read sizes for digitizing. Images of the chest and phalanges were radiographed using three types of screens and films, and the noise images in background density were digitized with a drum scanner, changing the read sizes. The frequency components for these images were evaluated by converting them to the secondary Fourier to obtain the power spectrum and signal to noise ratio (SNR). After changing the cut-off frequency on the power spectrum to process a low pass filter, we also examined the frequency components of the images in relation to the normalized mean square error (NMSE) for the image converted to reverse Fourier and the original image. Results showed that the frequency components were 2.0 cycles/mm for the chest image and 6.0 cycles/mm for the phalanges. Therefore, it is necessary to collect data applying the read sizes of 200 μm and 50 μm for the chest and phalangeal images, respectively, in order to digitize these images without loss of their frequency components. (author)

  3. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers ”8L2 Linear” and ”10L2w Wide Linear” (BK Ultrasound, Herlev, Denmark). The algorithm...

  4. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    Directory of Open Access Journals (Sweden)

    Zafer Yavuz

    2017-01-01

    Full Text Available Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1 preprocessing stage in order to prepare dataset for segmentation; (2 an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3 a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM in order to get binary vessel map; and (4 a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems.

  5. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis.

    Science.gov (United States)

    Obusez, E C; Hui, F; Hajj-Ali, R A; Cerejo, R; Calabrese, L H; Hammad, T; Jones, S E

    2014-08-01

    High-resolution MR imaging is an emerging tool for evaluating intracranial artery disease. It has an advantage of defining vessel wall characteristics of intracranial vascular diseases. We investigated high-resolution MR imaging arterial wall characteristics of CNS vasculitis and reversible cerebral vasoconstriction syndrome to determine wall pattern changes during a follow-up period. We retrospectively reviewed 3T-high-resolution MR imaging vessel wall studies performed on 26 patients with a confirmed diagnosis of CNS vasculitis and reversible cerebral vasoconstriction syndrome during a follow-up period. Vessel wall imaging protocol included black-blood contrast-enhanced T1-weighted sequences with fat suppression and a saturation band, and time-of-flight MRA of the circle of Willis. Vessel wall characteristics including enhancement, wall thickening, and lumen narrowing were collected. Thirteen patients with CNS vasculitis and 13 patients with reversible cerebral vasoconstriction syndrome were included. In the CNS vasculitis group, 9 patients showed smooth, concentric wall enhancement and thickening; 3 patients had smooth, eccentric wall enhancement and thickening; and 1 patient was without wall enhancement and thickening. Six of 13 patients had follow-up imaging; 4 patients showed stable smooth, concentric enhancement and thickening; and 2 patients had resoluton of initial imaging findings. In the reversible cerebral vasoconstriction syndrome group, 10 patients showed diffuse, uniform wall thickening with negligible-to-mild enhancement. Nine patients had follow-up imaging, with 8 patients showing complete resolution of the initial findings. Postgadolinium 3T-high-resolution MR imaging appears to be a feasible tool in differentiating vessel wall patterns of CNS vasculitis and reversible cerebral vasoconstriction syndrome changes during a follow-up period. © 2014 by American Journal of Neuroradiology.

  6. Imaging Blood Vessel Morphology in Skin

    DEFF Research Database (Denmark)

    Schuh, Sandra; Holmes, Jon; Ulrich, Martina

    2017-01-01

    Conventional optical coherence tomography (OCT) enables the visualization of morphological changes of skin cancer. The use of OCT in the diagnostic investigation and in the therapy decision of non-melanoma skin cancer and other skin changes is already established, and has found its way into routine...... practice. With the development of speckle-variance OCT, also named dynamic OCT (D-OCT), the vascular architecture and the blood flow of the skin can be displayed in vivo and in 3D. This novel angiographic variant of OCT offers the ability to visualize and measure vessel morphology providing a new insight...... into healthy, inflammatory and neoplastic skin lesions such as malignant melanoma. This review focuses on the possibilities of using D-OCT on healthy and diseased skin. We suggest and illustrate key diagnostic characteristics by analyzing the initial publications and preliminary unpublished data on vessel...

  7. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  8. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5- and 3.0-T magnetic resonance imaging.

    Science.gov (United States)

    Shimizu, Masahiro; Imai, Hideaki; Kagoshima, Kaiei; Umezawa, Eriko; Shimizu, Tsuneo; Yoshimoto, Yuhei

    2013-01-01

    Surface-rendered three-dimensional (3D) 1.5-T magnetic resonance (MR) imaging is useful for presurgical simulation of microvascular decompression. This study compared the sensitivity and specificity of 1.5- and 3.0-T surface-rendered 3D MR imaging for preoperative identification of the compression vessels of trigeminal neuralgia. One hundred consecutive patients underwent microvascular decompression for trigeminal neuralgia. Forty and 60 patients were evaluated by 1.5- and 3.0-T MR imaging, respectively. Three-dimensional MR images were constructed on the basis of MR imaging, angiography, and venography data and evaluated to determine the compression vessel before surgery. MR imaging findings were compared with the microsurgical findings to compare the sensitivity and specificity of 1.5- and 3.0-T MR imaging. The agreement between MR imaging and surgical findings depended on the compression vessels. For superior cerebellar artery, 1.5- and 3.0-T MR imaging had 84.4% and 82.7% sensitivity and 100% and 100% specificity, respectively. For anterior inferior cerebellar artery, 1.5- and 3.0-T MR imaging had 33.3% and 50% sensitivity and 92.9% and 95% specificity, respectively. For the petrosal vein, 1.5- and 3.0-T MR imaging had 75% and 64.3% sensitivity and 79.2% and 78.1% specificity, respectively. Complete pain relief was obtained in 36 of 40 and 55 of 60 patients undergoing 1.5- and 3.0-T MR imaging, respectively. The present study showed that both 1.5- and 3.0-T MR imaging provided high sensitivity and specificity for preoperative assessment of the compression vessels of trigeminal neuralgia. Preoperative 3D imaging provided very high quality presurgical simulation, resulting in excellent clinical outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  10. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    International Nuclear Information System (INIS)

    Hernandez D, J.; Cordova F, T.; Cruz A, I.

    2015-10-01

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  11. Non-gated vessel wall imaging of the internal carotid artery using radial scanning and fast spin echo sequence. Evaluation of vessel signal intensity by flow rate at 3.0 tesla

    International Nuclear Information System (INIS)

    Nakamura, Manami; Makabe, Takeshi; Ichikawa, Masaki; Hatakeyama, Ryohei; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Vessel wall imaging using radial scanning does not use a blood flow suppression pulse with gated acquisition. It has been proposed that there may not be a flow void effect if the flow rate is slow; however, this has yet to be empirically tested. To clarify the relationship between the signal intensity of the vessel lumen and the blood flow rate in a flow phantom, we investigated the usefulness of vessel wall imaging at 3.0 tesla (T). We measured the signal intensity while changing the flow rate in the flow phantom. Radial scanning at 1.5 T showed sufficient flow voids at above medium flow rates. There was no significant difference in lumen signal intensity at the carotid artery flow rate. The signal intensity of the vessel lumen decreased sufficiently using the radial scan method at 3.0 T. We thus obtained sufficient flow void effects at the carotid artery flow rate. We conclude this technique to be useful for evaluating plaque if high contrast can be maintained for fixed tissue (such as plaque) and the vessel lumen. (author)

  12. Why choroid vessels appear dark in clinical OCT images

    Science.gov (United States)

    Kirby, Mitchell A.; Li, Chenxi; Choi, Woo June; Gregori, Giovanni; Rosenfeld, Philip; Wang, Ruikang

    2018-02-01

    With the onset of clinically available spectral domain (SD-OCT) and swept source (SS-OCT) systems, clinicians are now easily able to recognize sub retinal microstructure and vascularization in the choroidal and scleral regions. As the bloodrich choroid supplies nutrients to the upper retinal layers, the ability to monitor choroid function accurately is of vital importance for clinical assessment of retinal health. However, the physical appearance of the choroid blood vessels (darker under a healthy Retinal Pigmented Epithelium (RPE) compared to regions displaying an RPE atrophic lesion) has led to confusion within the OCT ophthalmic community. The differences in appearance between each region in the OCT image may be interpreted as different vascular patterns when the vascular networks are in fact very similar. To explain this circumstance, we simulate light scattering phenomena in the RPE and Choroid complexes using the finite difference time domain (FDTD) method. The simulation results are then used to describe and validate imaging features in a controlled multi-layered tissue phantom designed to replicate human RPE, choroid, and whole blood microstructure. Essentially, the results indicate that the strength of the OCT signal from choroidal vasculature is dependent on the health and function of the RPE, and may not necessarily directly reflect the health and function of the choroidal vasculature.

  13. Application of morphological bit planes in retinal blood vessel extraction.

    Science.gov (United States)

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  14. Comparison of exercise electrocardiography and quantitative thallium imaging for one-vessel coronary artery disease

    International Nuclear Information System (INIS)

    Kaul, S.; Kiess, M.; Liu, P.; Guiney, T.E.; Pohost, G.M.; Okada, R.D.; Boucher, C.A.

    1985-01-01

    The relative value of exercise electrocardiography and computer analyzed thallium-201 imaging was compared in 124 patients with 1-vessel coronary artery disease (CAD). Of these, 78 had left anterior descending (LAD), 32 right and 14 left circumflex (LC) CAD. In patients with no previous myocardial infarction (MI), thallium imaging was more sensitive than the electrocardiogram (78% vs 64%, p less than 0.01), but in patients with previous MI, sensitivity was similar. Further, thallium imaging was more sensitive only in LAD and LC disease. Redistribution was compared with ST-segment depression as a marker of ischemia. Only in patients with prior MI (76% vs 44%, p less than 0.01) and only in LC and right CAD did redistribution occur more often than ST depression. Thallium imaging was more accurate in localizing stenoses than the electrocardiogram (p less than 0.001), but did not always correctly predict coronary anatomy. Septal thallium defects were associated with LAD disease in 84%, inferior defects with right CAD in 40% and posterolateral lesion defects with LC CAD in 22%. The results indicate the overall superiority of thallium imaging in 1-vessel CAD compared with exercise electrocardiography; however, there is a wide spectrum of extent and location of perfusion defects associated with each coronary artery. Thallium imaging complements coronary angiography by demonstrating the functional impact of CAD on myocardial perfusion

  15. Personal identification based on blood vessels of retinal fundus images

    Science.gov (United States)

    Fukuta, Keisuke; Nakagawa, Toshiaki; Hayashi, Yoshinori; Hatanaka, Yuji; Hara, Takeshi; Fujita, Hiroshi

    2008-03-01

    Biometric technique has been implemented instead of conventional identification methods such as password in computer, automatic teller machine (ATM), and entrance and exit management system. We propose a personal identification (PI) system using color retinal fundus images which are unique to each individual. The proposed procedure for identification is based on comparison of an input fundus image with reference fundus images in the database. In the first step, registration between the input image and the reference image is performed. The step includes translational and rotational movement. The PI is based on the measure of similarity between blood vessel images generated from the input and reference images. The similarity measure is defined as the cross-correlation coefficient calculated from the pixel values. When the similarity is greater than a predetermined threshold, the input image is identified. This means both the input and the reference images are associated to the same person. Four hundred sixty-two fundus images including forty-one same-person's image pairs were used for the estimation of the proposed technique. The false rejection rate and the false acceptance rate were 9.9×10 -5% and 4.3×10 -5%, respectively. The results indicate that the proposed method has a higher performance than other biometrics except for DNA. To be used for practical application in the public, the device which can take retinal fundus images easily is needed. The proposed method is applied to not only the PI but also the system which warns about misfiling of fundus images in medical facilities.

  16. Anatomy-based automatic detection and segmentation of major vessels in thoracic CTA images

    International Nuclear Information System (INIS)

    Zou Xiaotao; Liang Jianming; Wolf, M.; Salganicoff, M.; Krishnan, A.; Nadich, D.P.

    2007-01-01

    Existing approaches for automated computerized detection of pulmonary embolism (PE) using computed tomography angiography (CTA) usually focus on segmental and sub-segmental emboli. The goal of our current research is to extend our existing approach to automated detection of central PE. In order to detect central emboli, the major vessels must be first identified and segmented automatically. This submission presents an anatomy-based method for automatic computerized detection and segmentation of aortas and main pulmonary arteries in CTA images. (orig.)

  17. Vessel discoloration detection in malarial retinopathy

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.

    2016-03-01

    Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.

  18. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Directory of Open Access Journals (Sweden)

    Wendeson S Oliveira

    Full Text Available Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  19. Infrared tomography for diagnostic imaging of port wine stain blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The objective of this work is the development of Infrared Tomography (IRT) for detecting and characterizing subsurface chromophores in human skin. Characterization of cutaneous chromophores is crucial for advances in the laser treatment of pigmented lesions (e.g., port wine stain birthmarks and tatoos). Infrared tomography (IRT) uses a fast infrared focal plane array (IR-FPA) to detect temperature rises in a substrate induced by pulsed radiation. A pulsed laser is used to produce transient heating of an object. The temperature rise, due to the optical absorption of the pulsed laser light, creates an increase in infrared emission which is measured by the IR-FPA. Although the application of IRT to image subsurface cracks due to metal fatigue is a topic of great interest in the aircraft industry, the application to image subsurface chromophores in biological materials is novel. We present an image recovery method based on a constrained conjugate gradient algorithm that has obtained the first ever high quality images of port wine blood vessels.

  20. Remote maintenance of in-vessel components in Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Loesser, G.D.; Heitzenroeder, P.; Kungl, D.; Dylla, H.F.; Cerdan, G.

    1990-01-01

    The Tokamak Fusion Test Reactor (TFTR) will generate a total of 3 x 10 21 neutrons during its planned D-T operational period. A maintenance manipulator has been designed and tested to minimize personnel radiation during in-vessel maintenance activities. Its functions include visual inspection, first-wall tile replacement, cleaning, diagnostics calibrations and leak detection. To meet these objectives, the TFTR maintenance manipulator is required to be operable in the TFTR high vacuum environment, typically -8 torr, ( -6 Pa). Geometrically, the manipulator must extend 180 0 in either direction around the torus to assure complete coverage of the vessel first-wall. The manipulator consists of a movable carriage, and movable articulated link sections which are driven by electrical actuators. The boom has vertical load capacity of 455 kg and lateral load capacity of 46 kg. The boom can either be fitted with a general inspection arm or dextrous slave arms. The general inspection arm is designed to hold the leak detector and an inspection camera; it is capable of rotation along two axes and has a linkage system which permits motion normal to the vacuum vessel wall. All systems except the dextrous slave arms are operable in a vacuum. (author)

  1. Sum of top-hat transform based algorithm for vessel enhancement in MRA images

    Science.gov (United States)

    Ouazaa, Hibet-Allah; Jlassi, Hajer; Hamrouni, Kamel

    2018-04-01

    The Magnetic Resonance Angiography (MRA) is rich with information's. But, they suffer from poor contrast, illumination and noise. Thus, it is required to enhance the images. But, these significant information can be lost if improper techniques are applied. Therefore, in this paper, we propose a new method of enhancement. We applied firstly the CLAHE method to increase the contrast of the image. Then, we applied the sum of Top-Hat Transform to increase the brightness of vessels. It is performed with the structuring element oriented in different angles. The methodology is tested and evaluated on the publicly available database BRAINIX. And, we used the measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio) for the evaluation. The results demonstrate that the proposed method could efficiently enhance the image details and is comparable with state of the art algorithms. Hence, the proposed method could be broadly used in various applications.

  2. Elliptical local vessel density: a fast and robust quality metric for retinal images

    OpenAIRE

    Giancardo, L.; Abramoff, M.D.; Chaum, E.; Karnowski, T.P.; Meriaudeau, F.; Tobin, K.W.

    2008-01-01

    A great effort of the research community is geared towards the creation of an automatic screening system able to promptly detect diabetic retinopathy with the use of fundus cameras. In addition, there are some documented approaches for automatically judging the image quality. We propose a new set of features independent of field of view or resolution to describe the morphology of the patient's vessels. Our initial results suggest that these features can be used to estimate the image quality i...

  3. Cognitive components of rural tourism destination images

    DEFF Research Database (Denmark)

    Kokkali, Panagiota; Koutsouris, Alex; Chrysochou, Polymeros

    This paper aims at exploring issues related to rural tourism destination image focusing on TDI cognitive components. By means of empirical research addressing tourists visiting the Lake Plastiras area, Central Greece, the cognitive components of the area's TDI were identified along with their eff......This paper aims at exploring issues related to rural tourism destination image focusing on TDI cognitive components. By means of empirical research addressing tourists visiting the Lake Plastiras area, Central Greece, the cognitive components of the area's TDI were identified along......; (3) visitors can be classified in four clusters according the cognitive factors; (4) tourists' clusters differ in terms of age, education and income as well as number of visits and perception of the area's attractiveness. Such findings point towards the need of both a new strategy for the area...

  4. Independent component analysis based filtering for penumbral imaging

    International Nuclear Information System (INIS)

    Chen Yenwei; Han Xianhua; Nozaki, Shinya

    2004-01-01

    We propose a filtering based on independent component analysis (ICA) for Poisson noise reduction. In the proposed filtering, the image is first transformed to ICA domain and then the noise components are removed by a soft thresholding (shrinkage). The proposed filter, which is used as a preprocessing of the reconstruction, has been successfully applied to penumbral imaging. Both simulation results and experimental results show that the reconstructed image is dramatically improved in comparison to that without the noise-removing filters

  5. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  6. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA

    DEFF Research Database (Denmark)

    Schaap, Michiel; van Walsum, Theo; Neefjes, Lisan

    2011-01-01

    This paper presents a vessel segmentation method which learns the geometry and appearance of vessels in medical images from annotated data and uses this knowledge to segment vessels in unseen images. Vessels are segmented in a coarse-to-fine fashion. First, the vessel boundaries are estimated...

  7. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo.

    Science.gov (United States)

    Fan, Zhaoyang; Yang, Qi; Deng, Zixin; Li, Yuxia; Bi, Xiaoming; Song, Shlee; Li, Debiao

    2017-03-01

    Although three-dimensional (3D) turbo spin echo (TSE) with variable flip angles has proven to be useful for intracranial vessel wall imaging, it is associated with inadequate suppression of cerebrospinal fluid (CSF) signals and limited spatial coverage at 3 Tesla (T). This work aimed to modify the sequence and develop a protocol to achieve whole-brain, CSF-attenuated T 1 -weighted vessel wall imaging. Nonselective excitation and a flip-down radiofrequency pulse module were incorporated into a commercial 3D TSE sequence. A protocol based on the sequence was designed to achieve T 1 -weighted vessel wall imaging with whole-brain spatial coverage, enhanced CSF-signal suppression, and isotropic 0.5-mm resolution. Human volunteer and pilot patient studies were performed to qualitatively and quantitatively demonstrate the advantages of the sequence. Compared with the original sequence, the modified sequence significantly improved the T 1 -weighted image contrast score (2.07 ± 0.19 versus 3.00 ± 0.00, P = 0.011), vessel wall-to-CSF contrast ratio (0.14 ± 0.16 versus 0.52 ± 0.30, P = 0.007) and contrast-to-noise ratio (1.69 ± 2.18 versus 4.26 ± 2.30, P = 0.022). Significant improvement in vessel wall outer boundary sharpness was observed in several major arterial segments. The new 3D TSE sequence allows for high-quality T 1 -weighted intracranial vessel wall imaging at 3 T. It may potentially aid in depicting small arteries and revealing T 1 -mediated high-signal wall abnormalities. Magn Reson Med 77:1142-1150, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. P1-14: Relationship between Colorfulness Adaptation and Spatial Frequency Components in Natural Image

    Directory of Open Access Journals (Sweden)

    Shun Sakaibara

    2012-10-01

    Full Text Available We previously found the effect of colorfulness-adaptation in natural images. It was observed to be stronger in natural images than unnatural images, suggesting the influence of naturalness on the adaptation. However, what characteristics of images and what levels of visual system were involved were not examined enough. This research investigates whether the effect of colorfulness-adaptation is associated with spatial frequency components in natural images. If adaptation was a mechanism in early cortical level, the effect would be strong for adaptation and test images sharing similar spatial frequency components. In the experiment, we examined how the colorfulness impression of a test image changed following adaptation images with different levels of saturation. We selected several types of natural image from a standard image database for test and adaptation images. We also processed them to make shuffled images with spatial frequency component differed from the originals and phase-scrambled images with the component similar to the originals, for both adaptation and test images. Observers evaluated whether a test image was colorful or faded. Results show that the colorfulness perception of the test images was influenced by the saturation of the adaptation images. The effect was the strongest for the combination of natural (original adaptation and natural test images regardless of image types. The effect for the combination of phase-scrambled images was weaker than those of original images and stronger than those of shuffled images. They suggest that not only the spatial frequency components of an image but also the recognition of images would contribute to colorfulness-adaptation.

  9. Multi-purpose deployer for ITER in-vessel maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang-Hwan, E-mail: Chang-Hwan.CHOI@iter.org [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Tesini, Alessandro; Subramanian, Rajendran [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul lez Durance (France); Rolfe, Alan; Mills, Simon; Scott, Robin; Froud, Tim; Haist, Bernhard; McCarron, Eddie [Oxford Technologies Ltd., 7 Nuffield Way, Abingdon, OXON (United Kingdom)

    2015-10-15

    Highlights: • ITER RH system called as the multi-purpose deployer (MPD) is introduced. • The MPD performs dust and tritium inventory control, in-service inspection. • The MPD performs leak localization, in-vessel diagnostics maintenance. • The MPD has nine degrees of freedom with a payload capacity up to 2 tons. - Abstract: The multi-purpose deployer (MPD) is a general purpose in-vessel remote handling (RH) system in the ITER RH system. The MPD provides the means for deployment and handling of in-vessel tools or components inside the vacuum vessel (VV) for dust and tritium inventory control, in-service inspection, leak localization, and in-vessel diagnostics. It also supports the operation of blanket first wall maintenance and neutral beam duct liner module maintenance operations. This paper describes the concept design of the MPD. The MPD is a cask based system, i.e. it stays in the hot cell building during the machine operation, and is deployed to the VV using the cask system for the in-vessel operations. The main part of the MPD is the articulated transporter which provides transportation and positioning of the in-vessel tools or components. The articulated transporter has nine degrees of freedom with a payload capacity up to 2 tons. The articulated transporter can cover the whole internal surface of the VV by switching between the four equatorial RH ports. Additionally it can use two non-RH equatorial ports to transfer large tools or components. A concept for in-cask tool exchange is developed which minimizes the cask transportation by allowing the MPD to stay in the VV during the tool exchange.

  10. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  11. Cerebral Small Vessel Disease: Cognition, Mood, Daily Functioning, and Imaging Findings from a Small Pilot Sample

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2012-04-01

    Full Text Available Cerebral small vessel disease, a leading cause of cognitive decline, is considered a relatively homogeneous disease process, and it can co-occur with Alzheimer’s disease. Clinical reports of magnetic resonance imaging (MRI/computed tomography and single photon emission computed tomography (SPECT imaging and neuropsychology testing for a small pilot sample of 14 patients are presented to illustrate disease characteristics through findings from structural and functional imaging and cognitive assessment. Participants showed some decreases in executive functioning, attention, processing speed, and memory retrieval, consistent with previous literature. An older subgroup showed lower age-corrected scores at a single time point compared to younger participants. Performance on a computer-administered cognitive measure showed a slight overall decline over a period of 8–28 months. For a case study with mild neuropsychology findings, the MRI report was normal while the SPECT report identified perfusion abnormalities. Future research can test whether advances in imaging analysis allow for identification of cerebral small vessel disease before changes are detected in cognition.

  12. General Description of the Mechanic Design of the Pressure Vessel and the Internal Mechanical Component of the CAREM Reactor

    International Nuclear Information System (INIS)

    Diez, F.; Horro, R.

    2000-01-01

    This paper presents a brief description of the CAREM reactor pressure vessel and its main internal mechanical components and summarizes the functional requirements and approaches applied for their design, together with a review of the normative applicable in each case

  13. Elliptical Local Vessel Density: a Fast and Robust Quality Metric for Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Chaum, Edward [ORNL; Karnowski, Thomas Paul [ORNL; Meriaudeau, Fabrice [ORNL; Tobin Jr, Kenneth William [ORNL; Abramoff, M.D. [University of Iowa

    2008-01-01

    A great effort of the research community is geared towards the creation of an automatic screening system able to promptly detect diabetic retinopathy with the use of fundus cameras. In addition, there are some documented approaches to the problem of automatically judging the image quality. We propose a new set of features independent of Field of View or resolution to describe the morphology of the patient's vessels. Our initial results suggest that they can be used to estimate the image quality in a time one order of magnitude shorter respect to previous techniques.

  14. Imaging of large vessel vasculitis with 18FDG PET: illusion or reality? A critical review of the literature data

    International Nuclear Information System (INIS)

    Belhocine, Tarik; Vandevivere, Johan; Blockmans, Daniel; Hustinx, Roland; Mortelmans, Luc

    2003-01-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography ( 18 FDG PET) plays a major role in the management of oncology patients. Owing to the singular properties of the glucose tracer, many patients suffering from non-malignant diseases such as inflammatory or infectious diseases may also derive clinical benefit from the appropriate use of metabolic imaging. Large vessel vasculitides such as giant cell arteritis and Takayasu arteritis are other examples that may potentially extend the field of 18 FDG PET indications. The purpose of the present article is to assess the feasibility of metabolic imaging in vasculitis on the basis of the current literature data. In particular, the clinical context and the 18 FDG imaging patterns seen in patients with large vessel vasculitis are analysed in order to identify potential indications for metabolic imaging. (orig.)

  15. Small-target leak detection for a closed vessel via infrared image sequences

    Science.gov (United States)

    Zhao, Ling; Yang, Hongjiu

    2017-03-01

    This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.

  16. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    Science.gov (United States)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  17. In-vessel remote maintenance of the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Tabor, M.A.; Hager, E.R.; Creedon, R.L.; Fisher, M.V.; Atkin, S.D.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is the first deuterium-tritium (D-T) fusion device that will study the physics of an ignited plasma. The ability of the tokamak vacuum vessel to be maintained remotely while under vacuum has not been fully demonstrated on previous machines, and this ability will be critical to the efficient and safe operation of ignition devices. Although manned entry into the CIT vacuum vessel will be possible during the nonactivated stages of operation, remotely automated equipment will be used to assist in initial assembly of the vessel as well as to maintain all in-vessel components once the D-T burn is achieved. Remote maintenance and operation will be routinely required for replacement of thermal protection tiles, inspection of components, leak detection, and repair welding activities. Conceptual design to support these remote maintenance activities has been integrated with the conceptual design of the in-vessel components to provide a complete and practical remote maintenance system for CIT. The primary remote assembly and maintenance operations on CIT will be accomplished through two dedicated 37- x 100-cm ports on the main toroidal vessel. Each port contains a single articulated boom manipulator (ABM), which is capable of accessing half of the torus. The proposed ABM consists of a movable carriage assembly, telescoping two-part mast, and articulated link sections. 1 ref

  18. Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments

    International Nuclear Information System (INIS)

    MacDonald, Matthew Ethan; Frayne, Richard

    2015-01-01

    Phase contrast (PC) magnetic resonance imaging was used to obtain velocity measurements in 30 healthy subjects to provide an assessment of hemodynamic parameters in cerebral vessels. We expect a lower coefficient-of-variation (COV) of the volume flow rate (VFR) compared to peak velocity (v_p_e_a_k) measurements and the COV to increase in smaller caliber arteries compared to large arteries.PC velocity maps were processed to calculate v_p_e_a_k and VFR in 26 vessel segments. The mean, standard deviation and COV, of v_p_e_a_k and VFR in each segment were calculated. A bootstrap-style analysis was used to determine the minimum number of subjects required to accurately represent the population. Significance of v_p_e_a_k and VFR asymmetry was assessed in 10 vessel pairs.The bootstrap analysis suggested that averaging more than 20 subjects would give consistent results. When averaged over the subjects, v_p_e_a_k and VFR ranged from 5.2 ± 7.1 cm s"−"1, 0.41 ± 0.58 ml s"−"1 (in the anterior communicating artery; mean ± standard deviation) to 73 ± 23 cm s"−"1, 7.6 ± 1.7 ml s"−"1 (in the left internal carotid artery), respectively. A tendency for VFR to be higher in the left hemisphere was observed in 88.8% of artery pairs, while the VFR in the right transverse sinus was larger. The VFR COV was larger than v_p_e_a_k COV in 57.7% of segments, while smaller vessels had higher COV.Significance and potential impact: VFR COV was not generally higher than v_p_e_a_k COV. COV was higher in smaller vessels as expected. These summarized values provide a base against which v_p_e_a_k and VFR in various disease states can be compared. (paper)

  19. Software components for medical image visualization and surgical planning

    Science.gov (United States)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been

  20. CT angiography of intracranial arterial vessels: impact of tube voltage and contrast media concentration on image quality

    International Nuclear Information System (INIS)

    Ramgren, Birgitta; Holtaas, Stig; Siemund, Roger; Dept. of Radiology, Lund Univ., Lund

    2012-01-01

    Background Computed tomography angiography (CTA) of intracranial arteries has high demands on image quality. Important parameters influencing vessel enhancement are injection rate, concentration of contrast media and tube voltage. Purpose To evaluate the impact of an increase of contrast media concentration from 300 to 400 mg iodine/mL (mgI/mL) and the effect of a decrease of tube voltage from 120 to 90 kVp on vessel attenuation and image quality in CT angiography of intracranial arteries. Material and Methods Sixty-three patients were included into three protocol groups: Group I, 300 mgI/mL 120 kVp; Group II, 400 mgI/mL 120 kVp; Group III, 400 mgI/mL 90 kVp. Hounsfield units (HU) were measured in the internal carotid artery (ICA) and the M1 and M2 segments of the middle cerebral artery. Image quality grading was performed regarding M1 and M2 segments, volume rendering and general image impression. Results The difference in mean HU in ICA concerning the effect of contrast media concentration was statistically significant (P = 0.03) in favor of higher concentration. The difference in ICA enhancement due to the effect of tube voltage was statistically significant (P < 0.01) in favor of lower tube voltage. The increase of contrast medium concentration raised the mean enhancement in ICA with 18% and the decrease of tube voltage raised the mean enhancement with 37%. Image quality grading showed a trend towards improved grading for higher contrast concentration and lower tube voltage. Statistically significant better grading was found for the combined effect of both measures except for general impression (P 0.01-0.05). Conclusion The uses of highly concentrated contrast media and low tube voltage are easily performed measures to improve image quality in CTA of intracranial vessel

  1. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    Science.gov (United States)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  2. The effect of image position on the Independent Components of natural binocular images.

    Science.gov (United States)

    Hunter, David W; Hibbard, Paul B

    2018-01-11

    Human visual performance degrades substantially as the angular distance from the fovea increases. This decrease in performance is found for both binocular and monocular vision. Although analysis of the statistics of natural images has provided significant insights into human visual processing, little research has focused on the statistical content of binocular images at eccentric angles. We applied Independent Component Analysis to rectangular image patches cut from locations within binocular images corresponding to different degrees of eccentricity. The distribution of components learned from the varying locations was examined to determine how these distributions varied across eccentricity. We found a general trend towards a broader spread of horizontal and vertical position disparity tunings in eccentric regions compared to the fovea, with the horizontal spread more pronounced than the vertical spread. Eccentric locations above the centroid show a strong bias towards far-tuned components, eccentric locations below the centroid show a strong bias towards near-tuned components. These distributions exhibit substantial similarities with physiological measurements in V1, however in common with previous research we also observe important differences, in particular distributions of binocular phase disparity which do not match physiology.

  3. Principal component analysis of psoriasis lesions images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A set of RGB images of psoriasis lesions is used. By visual examination of these images, there seem to be no common pattern that could be used to find and align the lesions within and between sessions. It is expected that the principal components of the original images could be useful during future...

  4. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  5. Imaging of large vessel vasculitis with {sup 18}FDG PET: illusion or reality? A critical review of the literature data

    Energy Technology Data Exchange (ETDEWEB)

    Belhocine, Tarik; Vandevivere, Johan [Department of Nuclear Medicine, A.Z. Middelheim Hospital, 2020, Antwerp (Belgium); Blockmans, Daniel [Department of Internal Medicine, Gasthuisberg University Hospital, Leuven (Belgium); Hustinx, Roland [Department of Nuclear Medicine, University Hospital of Liege, Liege (Belgium); Mortelmans, Luc [Department of Nuclear Medicine, Gasthuisberg University Hospital, Leuven (Belgium)

    2003-09-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography ({sup 18}FDG PET) plays a major role in the management of oncology patients. Owing to the singular properties of the glucose tracer, many patients suffering from non-malignant diseases such as inflammatory or infectious diseases may also derive clinical benefit from the appropriate use of metabolic imaging. Large vessel vasculitides such as giant cell arteritis and Takayasu arteritis are other examples that may potentially extend the field of {sup 18}FDG PET indications. The purpose of the present article is to assess the feasibility of metabolic imaging in vasculitis on the basis of the current literature data. In particular, the clinical context and the {sup 18}FDG imaging patterns seen in patients with large vessel vasculitis are analysed in order to identify potential indications for metabolic imaging. (orig.)

  6. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D. [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-07-15

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model

  7. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D.

    2014-01-01

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model

  8. Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Directory of Open Access Journals (Sweden)

    Jasem Almotiri

    2018-01-01

    Full Text Available Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR, glaucoma, hypertension, and Age-related Macular Degeneration (AMD. With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.

  9. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  10. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  11. A Linear Criterion to sort Color Components in Images

    Directory of Open Access Journals (Sweden)

    Leonardo Barriga Rodriguez

    2017-01-01

    Full Text Available The color and its representation play a basic role in Image Analysis process. Several methods can be beneficial whenever they have a correct representation of wave-length variations used to represent scenes with a camera. A wide variety of spaces and color representations is founded in specialized literature. Each one is useful in concrete circumstances and others may offer redundant color information (for instance, all RGB components are high correlated. This work deals with the task of identifying and sorting which component from several color representations offers the majority of information about the scene. This approach is based on analyzing linear dependences among each color component, by the implementation of a new sorting algorithm based on entropy. The proposal is tested in several outdoor/indoor scenes with different light conditions. Repeatability and stability are tested in order to guarantee its use in several image analysis applications. Finally, the results of this work have been used to enhance an external algorithm to compensate the camera random vibrations.

  12. Distribution of the In-Vessel Diagnostics in ITER Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    González, Jorge, E-mail: Jorge.Gonzalez@iter.org [Rüecker Lypsa, Carretera del Prat, 65, Cornellá de Llobregat (Spain); Clough, Matthew; Martin, Alex; Woods, Nick; Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon-CS 90 046 13067 Saint Paul Lez Durance (France); Martinez, Gonzalo [Technical University Of Catalonia (UPC), Barcelona-Tech, Barcelona (Spain); Stefan, Gicquel; Yunxing, Ma [ITER Organization, Route de Vinon sur Verdon-CS 90 046 13067 Saint Paul Lez Durance (France)

    2017-01-15

    The ITER In-Vessel Diagnostics have been distributed around the In-Vessel shell to understand burning plasma physics and assist in machine operation. Each diagnostics component has its own requirements, constraints, and even exclusion among them for the highly complex In-Vessel environment. The size of the plasma, the requirement to be able to align the blanket system to the magnetic centre of the machine, the cooling requirements of the blanket system and the size of the pressure vessel itself all add to the difficulties of integrating these systems into the remaining space available. The available space for the cables inside the special trays (in-Vessel looms) is another constraint to allocate In-Vessel electrical sensors. Besides this, there are issues with the Assembly sequences and surface & volumetric neutron heating considerations that have imposed several additional restrictions.

  13. Segmentation of vessels cluttered with cells using a physics based model.

    Science.gov (United States)

    Schmugge, Stephen J; Keller, Steve; Nguyen, Nhat; Souvenir, Richard; Huynh, Toan; Clemens, Mark; Shin, Min C

    2008-01-01

    Segmentation of vessels in biomedical images is important as it can provide insight into analysis of vascular morphology, topology and is required for kinetic analysis of flow velocity and vessel permeability. Intravital microscopy is a powerful tool as it enables in vivo imaging of both vasculature and circulating cells. However, the analysis of vasculature in those images is difficult due to the presence of cells and their image gradient. In this paper, we provide a novel method of segmenting vessels with a high level of cell related clutter. A set of virtual point pairs ("vessel probes") are moved reacting to forces including Vessel Vector Flow (VVF) and Vessel Boundary Vector Flow (VBVF) forces. Incorporating the cell detection, the VVF force attracts the probes toward the vessel, while the VBVF force attracts the virtual points of the probes to localize the vessel boundary without being distracted by the image features of the cells. The vessel probes are moved according to Newtonian Physics reacting to the net of forces applied on them. We demonstrate the results on a set of five real in vivo images of liver vasculature cluttered by white blood cells. When compared against the ground truth prepared by the technician, the Root Mean Squared Error (RMSE) of segmentation with VVF and VBVF was 55% lower than the method without VVF and VBVF.

  14. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    Science.gov (United States)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  15. Remote non-invasive stereoscopic imaging of blood vessels: first in-vivo results of a new multispectral contrast enhancement technology

    NARCIS (Netherlands)

    Wieringa, F.P.; Mastik, F.; Cate, F.J. ten; Neumann, H.A.M.; Steen, A.F.W. van der

    2006-01-01

    We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R)

  16. Extraction of Independent Structural Images for Principal Component Thermography

    Directory of Open Access Journals (Sweden)

    Dmitry Gavrilov

    2018-03-01

    Full Text Available Thermography is a powerful tool for non-destructive testing of a wide range of materials. Thermography has a number of approaches differing in both experiment setup and the way the collected data are processed. Among such approaches is the Principal Component Thermography (PCT method, which is based on the statistical processing of raw thermal images collected by thermal camera. The processed images (principal components or empirical orthogonal functions form an orthonormal basis, and often look like a superposition of all possible structural features found in the object under inspection—i.e., surface heating non-uniformity, internal defects and material structure. At the same time, from practical point of view it is desirable to have images representing independent structural features. The work presented in this paper proposes an approach for separation of independent image patterns (archetypes from a set of principal component images. The approach is demonstrated in the application of inspection of composite materials as well as the non-invasive analysis of works of art.

  17. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  18. Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Florian M.; Hunold, Peter; Barkhausen, Joerg [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Theysohn, Jens M.; Kinner, Sonja [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Michna, Dariusz [Elisabeth Hospital, Department of Neonatology, Essen (Germany); Neudorf, Ulrich [University Hospital Essen, Clinic for Pediatrics III, Essen (Germany); Quick, Harald H. [University of Erlangen-Nuernberg, Institute of Medical Physics, Erlangen (Germany)

    2013-09-15

    To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 {+-} 0.6 vs 3.4 {+-} 0.6, P < 0.05) and artefacts (3.8 {+-} 0.4 vs 3.3 {+-} 0.5, P < 0.05); no difference in diagnostic value was found (4.2 {+-} 0.4 vs 4.0 {+-} 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. (orig.)

  19. Method for the radiographic examination of the walls or components of an essentially closed vessel, and also the provision of means for the application of the method

    International Nuclear Information System (INIS)

    1978-01-01

    Method for the radiographic examination of the wall ports or supporting components of an essentially closed vessel, whereby one brings to the side of the vessel walls or supports under examination a radiation source and, to the opposite side, a radiation sensitive film, the film being irradiated by the source and thereafter developed, characterised in that one introduces into the inside of the vessel a hollow tube at a unique distance from the wall or support component, at least one end of the hollow tube being fed out and in which the hollow tube, during the period of the examination, the irradiation source or an irradiation sensitive film is introduced. (G.C.)

  20. Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke.

    Science.gov (United States)

    Talley Watts, Lora; Zheng, Wei; Garling, R Justin; Frohlich, Victoria C; Lechleiter, James Donald

    2015-06-23

    In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.

  1. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  2. Accuracy and initial clinical experience with measurement software (advanced vessel analysis) in three-dimensional imaging

    International Nuclear Information System (INIS)

    Abe, Toshi; Hirohata, Masaru; Tanigawa, Hitoshi

    2002-01-01

    Recently, the clinical benefits of three dimensional (3D) imaging, such as 3D-CTA and 3D-DSA, in cerebro-vascular disease have been widely recognized. Software for quantitative analysis of vascular structure in 3D imaging (advanced vessel analysis: AVA) has been developed. We evaluated AVA with both phantom studies and a few clinical cases. In spiral and curvy aluminum tube phantom studies, the accuracy of diameter measurements was good in 3D images produced from data set generated by multi-detector row CT or rotational angiography. The measurement error was less than 0.03 mm on aluminum tube phantoms that were 3 mm and 5 mm in diameter. In the clinical studies, the differences of carotid artery diameter measurements between 2D-DSA and 3D-DSA was less than 0.3 mm in. The measurement of length, diameter and angle by AVA should provide useful information for planning surgical and endovascular treatments of cerebro-vascular disease. (author)

  3. Dynamic loads on reactor vessel components by low pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-01-01

    Starting from the conservation theorems for mass and impulses the code DRUWE has been developed enabling the calculation of dynamic loads of the reactor shell on the basis of simplified assumptions for the first period shortly after rupture. According to the RSK-guidelines it can be assumed that the whole weld size is opened within 15 msec. This time-dependent opening of the fractured plane can be taken into account in the computer program. The calculation is composed in a way that for a reactor shell devided into cross and angle sections the local, chronological pressure and strength curves, the total dynamic load as well as the moments acting on the fastenings of the reactor shell can be calculated. As input data only geometrical details concerning the concept of the pressure vessel and its components as well as the effective subcooling of the fluid are needed. By means of several parameters the program can be operated in a way that the results are available in form of listings or diagrams, respectively, but also as card pile for further examinations, e.g. strength analysis. (orig./RW) [de

  4. Selecting suitable coherent processing time window lengths for ground-based ISAR imaging of cooperative sea vessels

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2009-09-01

    Full Text Available CPTWLs are needed for larger vessels in order to obtain ISAR images with the desired cross-range resolution. The effectiveness of the CPTWLs, suggested by the MACS algorithm, is shown using measured radar data. The suggested CPTWLs may also be used...

  5. Vessel size measurements in angiograms: Manual measurements

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Dmochowski, Jacek; Nazareth, Daryl P.; Miskolczi, Laszlo; Nemes, Balazs; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2003-01-01

    Vessel size measurement is perhaps the most often performed quantitative analysis in diagnostic and interventional angiography. Although automated vessel sizing techniques are generally considered to have good accuracy and precision, we have observed that clinicians rarely use these techniques in standard clinical practice, choosing to indicate the edges of vessels and catheters to determine sizes and calibrate magnifications, i.e., manual measurements. Thus, we undertook an investigation of the accuracy and precision of vessel sizes calculated from manually indicated edges of vessels. Manual measurements were performed by three neuroradiologists and three physicists. Vessel sizes ranged from 0.1-3.0 mm in simulation studies and 0.3-6.4 mm in phantom studies. Simulation resolution functions had full-widths-at-half-maximum (FWHM) ranging from 0.0 to 0.5 mm. Phantom studies were performed with 4.5 in., 6 in., 9 in., and 12 in. image intensifier modes, magnification factor = 1, with and without zooming. The accuracy and reproducibility of the measurements ranged from 0.1 to 0.2 mm, depending on vessel size, resolution, and pixel size, and zoom. These results indicate that manual measurements may have accuracies comparable to automated techniques for vessels with sizes greater than 1 mm, but that automated techniques which take into account the resolution function should be used for vessels with sizes smaller than 1 mm

  6. Vessel Wall Inflammation of Takayasu Arteritis Detected by Contrast-Enhanced Magnetic Resonance Imaging: Association with Disease Distribution and Activity.

    Directory of Open Access Journals (Sweden)

    Yoko Kato

    Full Text Available The assessment of the distribution and activity of vessel wall inflammation is clinically important in patients with Takayasu arteritis. Magnetic resonance imaging (MRI is a useful tool, but the clinical utility of late gadolinium enhancement (LGE in Takayasu arteritis has yet to be determined. The aim of the present study was to evaluate the utility of LGE in assessing vessel wall inflammation and disease activity in Takayasu arteritis.We enrolled 49 patients with Takayasu arteritis who had undergone 1.5 T MRI. Patients were divided into Active (n = 19 and Inactive disease (n = 30 groups. The distribution of vessel wall inflammation using angiography and LGE was assessed by qualitative analysis. In 79% and 63% of patients in Active and Inactive groups, respectively, greater distribution of vessel wall inflammation was observed with LGE than with conventional angiography. MRI values of pre- and post-contrast signal-to-noise ratios (SNR, SNR increment (post-SNR minus pre-SNR, pre- and post-contrast contrast-to-noise ratios (CNR, and CNR increment (post-CNR minus pre-CNR were evaluated at arterial wall sites with the highest signal intensity using quantitative analysis of post-contrast LGE images. No statistically significant differences in MRI parameters were observed between Active and Inactive groups. Contrast-enhanced MRI was unable to accurately detect active disease.Contrast-enhanced MRI has utility in detecting the distribution of vessel wall inflammation but has less utility in assessing disease activity in Takayasu arteritis.

  7. Aging of reactor vessels in LWR type reactors

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Serrano, M.

    2004-01-01

    Most of the degradation mechanisms of nuclear components were not included on the design so they have to be treated a posteriori, and that imply a loss of capacity. In this paper the state of the art on the reactor pressure vessel neutron embrittlement and on the irradiation assisted stress corrosion cracking that affects internal components, are explained. Special attention is devoted on the influence of the neutron fluence on IASCC process, on the material alterations promoted by irradiation and their consequences on the susceptibility to this phenomenon. Regarding the reactor pressure vessel degradation, this paper discuss the application of the Master Curve on the structural integrity evaluation of the vessel. Other aspects related to further developments are also mentioned and the importance of a good materials ageing management on the operation of the plant is pointed out. (Author) 12 refs

  8. A basic study on the ITER tritium storage vessel design and components

    International Nuclear Information System (INIS)

    Chung, H. S.; Ahn, D. H.; Kim, K. R.; Yim, S. P.; Paek, S. W.; Lee, M. S.; Lee, S. H.; Shim, M. H.

    2006-01-01

    The ZrCo getter beds are built of a primary vessel which contains the ZrCo powder mixed with Cu spheres of less than one mm diameter and of a secondary outer vessel. The purpose of the secondary outer vessel is to capture permeated or leaked tritium and to present a good thermal insulation when properly evacuated. A third volume, a helium filled loop, is installed in the primary volume to remove the decay heat and is used to perform tritium accountancy measurements

  9. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  10. Proton density differences in signal characteristics of multiple sclerosis plaques versus white matter lesions of small vessel disease and vasculitis on high-field strength MR images

    International Nuclear Information System (INIS)

    Peyster, R.G.; Siegal, T.L.

    1990-01-01

    This paper determines if variations in signal intensity characteristics on multi-spin-echo images obtained with a high-field-strength magnet can be useful in differentiating demyelinating plaques of multiple sclerosis from other pathologic white matter processes due to small vessel disease and vasculities. Using the first of two multi-spin-echo images obtained with a General Electric 1.5-T magnet, the investigators compared signal intensity characteristics in 30 patients with a firm clinical diagnosis of multiple sclerosis versus a control group of 30 patients with a known clinical history of small-vessel disease and vasculitis are isodense to gray matter on proton-density images

  11. Vessel Sampling and Blood Flow Velocity Distribution With Vessel Diameter for Characterizing the Human Bulbar Conjunctival Microvasculature.

    Science.gov (United States)

    Wang, Liang; Yuan, Jin; Jiang, Hong; Yan, Wentao; Cintrón-Colón, Hector R; Perez, Victor L; DeBuc, Delia C; Feuer, William J; Wang, Jianhua

    2016-03-01

    This study determined (1) how many vessels (i.e., the vessel sampling) are needed to reliably characterize the bulbar conjunctival microvasculature and (2) if characteristic information can be obtained from the distribution histogram of the blood flow velocity and vessel diameter. Functional slitlamp biomicroscope was used to image hundreds of venules per subject. The bulbar conjunctiva in five healthy human subjects was imaged on six different locations in the temporal bulbar conjunctiva. The histograms of the diameter and velocity were plotted to examine whether the distribution was normal. Standard errors were calculated from the standard deviation and vessel sample size. The ratio of the standard error of the mean over the population mean was used to determine the sample size cutoff. The velocity was plotted as a function of the vessel diameter to display the distribution of the diameter and velocity. The results showed that the sampling size was approximately 15 vessels, which generated a standard error equivalent to 15% of the population mean from the total vessel population. The distributions of the diameter and velocity were not only unimodal, but also somewhat positively skewed and not normal. The blood flow velocity was related to the vessel diameter (r=0.23, Psampling size of the vessels and the distribution histogram of the blood flow velocity and vessel diameter, which may lead to a better understanding of the human microvascular system of the bulbar conjunctiva.

  12. Mural cell associated VEGF is required for organotypic vessel formation.

    Directory of Open Access Journals (Sweden)

    Lasse Evensen

    Full Text Available BACKGROUND: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. METHODS AND FINDINGS: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. CONCLUSIONS: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.

  13. Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of in vivo MRI data.

    Science.gov (United States)

    Peres, Roxane; De Guio, François; Chabriat, Hugues; Jouvent, Eric

    2016-04-01

    Cerebral small vessel diseases of the brain are a major determinant of cognitive impairment in the elderly. In small vessel diseases, the most easily identifiable lesions, both at post-mortem evaluation and magnetic resonance imaging, lie in subcortical areas. However, recent results obtained post-mortem, particularly in severe cases, have highlighted the burden of cortex lesions such as microinfarcts and diffuse neuronal loss. The recent development of image post-processing methods allows now assessing in vivo multiple aspects of the cerebral cortex. This systematic review aimed to analyze in vivo magnetic resonance imaging studies evaluating cortex alterations at different stages of small vessel diseases. Studies assessing the relationships between small vessel disease magnetic resonance imaging markers obtained at the subcortical level and cortex estimates were reviewed both in community-dwelling elderly and in patients with symptomatic small vessel diseases. Thereafter, studies analyzing cortex estimates in small vessel disease patients compared with healthy subjects were evaluated. The results support that important cortex alterations develop along the course of small vessel diseases independently of concomitant neurodegenerative processes. Easy detection and quantification of cortex changes in small vessel diseases as well as understanding their underlying mechanisms are challenging tasks for better understanding cognitive decline in small vessel diseases. © The Author(s) 2016.

  14. Design criteria for high-temperature-affected, metallic and ceramic components, and for the prestressed concrete reactor pressure vessel of future HTR systems. Final report. Vol. 1-4

    International Nuclear Information System (INIS)

    1988-08-01

    This work in five separate volumes reports on the elaboration of basic data for the formulation of design criteria for HTR components and is arranged into the four following subject areas : (1) safety-specific limiting conditions; (2) metallic components; (3) prestressed concrete reactor pressure vessels; (4) graphitic reactor internals. Under item 2, the mechanical and physical characteristics of the materials X20CrMoV 12 1, X10NiCrAlTi 32 20, and NiCr23Co12Mo are examined up to temperatures of 950deg C. Stress-strain rate laws are elaborated for description of the inelastic deformation behavior. The representation of the subject area reactor pressure vessels deals with four main topics: Prestressed concrete support structure, liner, vessel closures, thermal protection system. Quality-assurance classes are defined under item 4 for graphitic components and load levels for load categories. The material evaluation is discussed in detail (e.g. manufacturing monitoring from the raw material to the graphitization and manufacturing testing up to the acceptance test). In addition, the corrosion behavior and irradiation behavior of graphite is examined and rules for computation of stresses in irradiated and unirradiated graphitic components are elaborated. (MM) [de

  15. Localization and proliferation of lymphatic vessels in the tympanic membrane in normal state and regeneration

    International Nuclear Information System (INIS)

    Miyashita, Takenori; Burford, James L.; Hong, Young-Kwon; Gevorgyan, Haykanush; Lam, Lisa; Mori, Nozomu; Peti-Peterdi, Janos

    2013-01-01

    Highlights: •We newly developed the whole-mount imaging method of the tympanic membrane. •Lymphatic vessel loops were localized around the malleus handle and annulus tympanicus. •In regeneration, abundant lymphatic vessels were observed in the pars tensa. •Site-specific lymphatic vessels may play an important role in the tympanic membrane. -- Abstract: We clarified the localization of lymphatic vessels in the tympanic membrane and proliferation of lymphatic vessels during regeneration after perforation of the tympanic membrane by using whole-mount imaging of the tympanic membrane of Prox1 GFP mice. In the pars tensa, lymphatic vessel loops surrounded the malleus handle and annulus tympanicus. Apart from these locations, lymphatic vessel loops were not observed in the pars tensa in the normal tympanic membrane. Lymphatic vessel loops surrounding the malleus handle were connected to the lymphatic vessel loops in the pars flaccida and around the tensor tympani muscle. Many lymphatic vessel loops were detected in the pars flaccida. After perforation of the tympanic membrane, abundant lymphatic regeneration was observed in the pars tensa, and these regenerated lymphatic vessels extended from the lymphatic vessels surrounding the malleus at day 7. These results suggest that site-specific lymphatic vessels play an important role in the tympanic membrane

  16. Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy

    Science.gov (United States)

    Rukundo, Olivier

    2018-04-01

    This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.

  17. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    Science.gov (United States)

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.

  18. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessel internals

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The report addresses the reactor pressure vessel internals in BWRs. Maintaining the structural integrity of these reactor pressure vessel internals throughout NPP service life, in spite of several ageing mechanisms, is essential for plant safety

  19. Discharge of Non-Reactive Fluids from Vessels

    Directory of Open Access Journals (Sweden)

    M. Castier

    Full Text Available Abstract This paper presents simulations of discharges from pressure vessels that consistently account for non-ideal fluid behavior in all the required thermodynamic properties and individually considers all the chemical components present. The underlying assumption is that phase equilibrium occurs instantaneously inside the vessel and, thus, the dynamics of the fluid in the vessel comprises a sequence of equilibrium states. The formulation leads to a system of differential-algebraic equations in which the component mass balances and the energy balance are ordinary differential equations. The algebraic equations account for the phase equilibrium conditions inside the vessel and at the discharge point, and for sound speed calculations. The simulator allows detailed predictions of the condition inside the vessel and at the discharge point as a function of time, including the flow rate and composition of the discharge. The paper presents conceptual applications of the simulator to predict the effect of leaks from vessels containing mixtures of light gases and/or hydrocarbons and comparisons to experimental data.

  20. Sub-component modeling for face image reconstruction in video communications

    Science.gov (United States)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  1. Vessel wall MRI of the thoracic aorta: correlation to histology and transesophageal ultrasound. Preliminary results

    International Nuclear Information System (INIS)

    Abolmaali, N.; Schick, C.; Thalhammer, A.; Schmitt, J.; Vogl, T.J.; Langenfeld, M.; Schaechinger, V.; Krahforst, R.; Schulze, T.

    2002-01-01

    Purpose: To visualise the vessel wall of the descending thoracic aorta using magnetic resonance imaging. To evaluate the diagnostic potential of tailored T 1 -weighted sequences with contrast enhancement to assess systemic atherosclerotic disease. Methods: This study was performed on a clinical 1.5 Tesla scanner using a gradient strength of 30 mT/m and the phased array spine coil. A cadaver was examined to optimise a magnetic resonance imaging (MRI) protocol to evaluate atherosclerotic aortic wall disease. The acquired MR images were compared to gross specimens and histology. Subsequently seven patients who had undergone transesophageal ultrasound (TEU) with detailed assessment of the descending thoracic aorta were examined with MRI. The optimised protocol included untriggered and fat suppressed T 2 -weighted turbo spin echo sequences and ECG-triggered and fat suppressed T 1 -weighted spin echo sequences before and after iv administration of Gd-DTPA. Findings of the MR images were compared to the results of TEU. Contrast enhancement measurements were performed in normal and thickened vessel wall segments. Results: For the cadaver study a good correlation of the degree of vessel wall thickening and the extent of plaque imaged with the applied MR protocol was found. Tissue characterisation was limited due to post mortem changes. In vivo ECG-triggered T 1 -weighted images showed good correlation to TEU in terms of vessel wall thickness and plaque extension as verified by means of consensus reading. Differentiation of the plaque components fat, calcium and fibrous tissue was possible. In thickened aortic wall segments and fibrous caps a mean contrast enhancement of 50.4%±23.5% was measurable while normal wall segments showed an enhancement of 6.7%±3.1%. (orig.) [de

  2. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  3. Conceptual design studies of in-vessel viewing equipment for ITER

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Oka, Kiyoshi; Taguchi, Hiroshi; Itoh, Akira; Tada, Eisuke; Shibanuma, Kiyoshi

    1996-03-01

    In-vessel viewing systems are essential to inspect all surface of in-vessel components so as to detect and locate damages, and to assist in-vessel maintenance operations. The in-vessel viewing operations are categorized into the three cases, which are 1) rapid inspection just after off-normal events such as disruption, 2) scheduled inspection, and 3) supplementary inspection during maintenance operations. In case of the rapid inspection, the viewing systems have to be operated in vacuum (ca. 10 -5 Pa) and high temperature (ca. 300degC) under a gamma ray dose rate of 10 7 R/h. On the other hand, the latter two cases are anticipated to be under atmospheric inert gas, 150degC and 3x10 6 R/h. Accordingly, the in-vessel viewing systems are required to have sufficient durability under those conditions of all cases as well as precision of the vision to all of in-vessel surface. Based on those requirements, scoping studies on various viewing concepts have been performed and the applicability to the ITER conditions have been assessed. As a result, two types of viewing systems have been chosen, which are a periscope type viewing system and a image fiber type viewing system with a multi-joint manipulator. Both systems are based on radiation hard optical elements which are being developed. In this report, the design features of both viewing systems are described, including technical issues for ITER application. Finally, a periscope type viewing system is recommended as a primary system and the following specifications/conditions are proposed for the further engineering design. (1) Unified type periscope with a movable mirror at the tip (2) Integrated lighting device into the periscope (3) Accessed from top vertical ports located at 7.3m from the machine center (4) Proposed configuration with a total length of around 27m and a diameter of 200mm. (author)

  4. An integrated 3-D image of cerebral blood vessels and CT view of tumor

    International Nuclear Information System (INIS)

    Suetens, P.; Baert, A.L.; Gybels, J.; Haegemans, S.; Jansen, P.; Oosterlinck, A.; Wilms, G.

    1984-01-01

    The authors developed a method that yields an integrated three-dimensional image of cerebral blood vessels and CT view of tumor. This method allows the neurosurgeon to choose any electrode trajectory that looks convenient to him, without imminent danger of causing a hemorrhage. Besides offering more safety to stereotactic interventions, this integrated 3-D image also has other applications. First, it gives a better characterization of most focal mass lesions seen by CT. Second, it allows high dose focal irradiation to be effected in such a way as to avoid arteries and veins. Third, it provides useful information for planning the strategy of open surgery

  5. [Decrease in N170 evoked potential component latency during repeated presentation of face images].

    Science.gov (United States)

    Verkhliutov, V M; Ushakov, V L; Strelets, V B

    2009-01-01

    The 15 healthy volunteers EEG from 28 channels was recorded during the presentation of visual stimuli in the form of face and building images. The stimuli were presented in two series. The first series consisted of 60 face and 60 building images presented in random order. The second series consisted of 30 face and 30 building images. The second series began 1.5-2 min after the end of the first ore. No instruction was given to the participants. P1, N170 and VPP EP components were identified for both stimuli categories. These components were located in the medial parietal area (Brodmann area 40). P1 and N170 components were recorded in the superior temporal fissure (Brodmann area 21, STS region), the first component had the latency 120 ms, the second one--155 ms. VPP was recorded with the latency 190 ms (Brodmann area 19). Dynamic mapping of EP components with the latency from 97 to 242 ms revealed the removal of positive maximums from occipital to frontal areas through temporal ones and their subsequent returning to occipital areas through the central ones. During the comparison of EP components to face and building images the amplitude differences were revealed in the following areas: P1--in frontal, central and anterior temporal areas, N170--in frontal, central, temporal and parietal areas, VPP--in all areas. It was also revealed that N170 latency was 12 ms shorter for face than for building images. It was proposed that the above mentioned N170 latency decrease for face in comparison with building images is connected with the different space location of the fusiform area responsible for face and building images recognition. Priming--the effect that is revealed during the repetitive face images presentation is interpreted as the manifestation of functional heterogeneity of the fusiform area responsible for the face images recognition. The hypothesis is put forward that the parts of extrastriate cortex which are located closer to the central retinotopical

  6. Development of in-vessel neutron flux monitor equipped with microfission chambers to withstand the extreme ITER environment

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masao, E-mail: ishikawa.masao@jaea.go.jp; Takeda, Keigo; Itami, Kiyoshi

    2016-11-01

    Highlights: • The in-vessel components of MFC system must withstand the extreme ITER environment. • To verify this, the thermal cycle test and the vibration tests were conducted. • Both tests were conducted under much severer conditions than ITER environment. • Soundness verification tests after the tests indicated that no problemswere found. • It is shown that the in-vessel component is sufficiently robust ITER environment. - Abstract: Via thermal cycling and vibration tests, this study aims to demonstrate that the in-vessel components of the microfission chamber (MFC) system can withstand the extreme International Thermonuclear Experimental Reactor (ITER) environment. In thermal cycle tests, the signal cable of the device was bent into a smaller radius and it was given more bends than those in its actual configuration within ITER. A faster rate of temperature change than that under the typical ITER baking scenario was then imposed on in-vessel components. For the vibration tests, strong 10 G vibrational accelerations with frequencies ranging from 30 Hz to 2000 Hz were imposed to the detector and the connector of the in-vessel components to simulate various types of electromagnetic events. Soundness verification tests of the in-vessel components conducted after thermal cycling and vibration testing indicated that problems related to the signal transmission cable functioning were not found. Thus, it was demonstrated that the in-vessel components of the MFC can withstand the extreme environment within ITER.

  7. APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO RELAXOGRAPHIC IMAGES

    International Nuclear Information System (INIS)

    STOYANOVA, R.S.; OCHS, M.F.; BROWN, T.R.; ROONEY, W.D.; LI, X.; LEE, J.H.; SPRINGER, C.S.

    1999-01-01

    Standard analysis methods for processing inversion recovery MR images traditionally have used single pixel techniques. In these techniques each pixel is independently fit to an exponential recovery, and spatial correlations in the data set are ignored. By analyzing the image as a complete dataset, improved error analysis and automatic segmentation can be achieved. Here, the authors apply principal component analysis (PCA) to a series of relaxographic images. This procedure decomposes the 3-dimensional data set into three separate images and corresponding recovery times. They attribute the 3 images to be spatial representations of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) content

  8. Design standard issues for ITER in-vessel components

    International Nuclear Information System (INIS)

    Majumdar, S.

    1994-01-01

    Unique requirements that must be addressed by a structural design code for the ITER have been summarized. Existing codes such as ASME Section III, or the French RCC-MR were developed primarily for fission reactor out-of-core components and are not directly applicable to the ITER. They may be used either as a guide for developing a design code for the ITER or as interim standards. However, new rules will be needed for handling the irradiation-induced embrittlement problems faced by the ITER blanket components. Design standards developed in the past for the design of fission reactor core components in the United States can be used as guides in this area

  9. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.

    Science.gov (United States)

    Raja, D Siva Sundhara; Vasuki, S

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of vision loss in diabetic patients. DR is mainly caused due to the damage of retinal blood vessels in the diabetic patients. It is essential to detect and segment the retinal blood vessels for DR detection and diagnosis, which prevents earlier vision loss in diabetic patients. The computer aided automatic detection and segmentation of blood vessels through the elimination of optic disc (OD) region in retina are proposed in this paper. The OD region is segmented using anisotropic diffusion filter and subsequentially the retinal blood vessels are detected using mathematical binary morphological operations. The proposed methodology is tested on two different publicly available datasets and achieved 93.99% sensitivity, 98.37% specificity, 98.08% accuracy in DRIVE dataset and 93.6% sensitivity, 98.96% specificity, and 95.94% accuracy in STARE dataset, respectively.

  10. Novel algorithm by low complexity filter on retinal vessel segmentation

    Science.gov (United States)

    Rostampour, Samad

    2011-10-01

    This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained

  11. Holistic and component plant phenotyping using temporal image sequence.

    Science.gov (United States)

    Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala

    2018-01-01

    Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for

  12. A contrast enhancement and scanning techniques for CT angiography of head and neck. One phase injection method for simultaneous imaging of vessels and tumor

    International Nuclear Information System (INIS)

    Morita, Yasuhiko; Indo, Hiroko; Noikura, Takenori

    1999-01-01

    We report on a method of CT-Angiography useful for examining lesion of the head and neck using three-dimensional images and measured CT value. This study focused on some of the important blood vessels in the head and neck. The aim of this method was to obtain high-contrast enhancement for both vessels and tumors at same time. A total amount of 100 ml nonionic contrast media (Omnipaque 240, 240 mg iodine per milliliter, Daiichi seiyaku, Tokyo, Japan) was injected intravenously with a flow of 1.5 ml/sec. Spiral scans, 24 rotations with 24 seconds, were started at a time when remaining amount of contrast media had become 30 to 20 ml. All CT scans were performed using double speed spiral scan technique with a slice thickness of 2 to 3 mm and table speeds from 3 to 5 mm/rotation. The patients populations consisted of 9 men and 6 women who ranged in age from 37 to 85 years. Sixteen CT-angiography were performed according to this method. Mean CT values of major blood vessels were measured in order to find out threshold at the level of submandibular gland in 13 examinations for 12 subjects. Important vessels like the common, internal, and the external artery, internal and external jugular vein were clearly visible in all subjects. Three dimensional images of these vessels could also be reconstructed for 15 of the subjects. Mean CT values were 211 Hounsfield units (HU) and 209 HU for the right and left internal carotid artery, respectively, and 204 HU and 206 HU for the right and left external carotid artery, respectively. Mean CT values for right and left internal jugular vein were 195 HU and 194 HU respectively. Measured CT values at each important blood vessels showed this method could yields acceptable enhancements. Good enhancement effect of tumor and blood vessels in the same scan seems to be mutually incompatible. One very important trade-off is the early enhancement effect at blood vessels versus the late enhancement effect at tumors. The other important trade

  13. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  14. Analysis of irradiation creep and the structural integrity of fusion in-vessel components

    International Nuclear Information System (INIS)

    Karditsas, Panayiotis J.

    2000-01-01

    This paper presents a brief review of the irradiation creep mechanism, analyses of the effect on the performance and behaviour of fusion in-vessel components, and discusses procedures for the estimation of in-service time (or lifetime) of components under combined creep-fatigue. The irradiation creep models and proposed theories are examined and analysed to produce a creep law relevant to fusion conditions. The necessary material data, constitutive equations and other parameters needed for estimation of in-service time from the combination of creep and fatigue damage are identified. Wherever possible, design curves are proposed for stress and strain. Time dependent non-linear elastoplastic example calculations are performed, for a typical first wall structure under power plant loading conditions, assuming austenitic and martensitic steel as structural materials, including material irradiation creep. The results of calculations for the stress and strain history of the first wall are used together with the proposed cumulative damage expressions derived in this study to estimate the in-service time, including the effects of stress relaxation due to creep, reduction of ductility (or fracture strain) and helium-to-displacement-damage ratio. The calculations give a displacement damage of ∼70 dpa for the 316 austenitic steel and ∼110-130 dpa for the martensitic steel. Provided there are no power transients, for a design strain of 0.5%, the in-service time is estimated to be ∼3 years for the 316 steel case (at 2.2 MW/m 2 wall load) and the high wall loading martensitic steel (5.0 MW/m 2 case), and ∼5.3 years for the martensitic steel at lower wall load (2.2 MW/m 2 case). The difficulty in defending these results lies in the uncertainty arising from the limited database and experience of the material properties, especially the creep constitutive law, when exposed to fusion environments

  15. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.

    Science.gov (United States)

    M, Soorya; Issac, Ashish; Dutta, Malay Kishore

    2018-02-01

    Glaucoma is an ocular disease which can cause irreversible blindness. The disease is currently identified using specialized equipment operated by optometrists manually. The proposed work aims to provide an efficient imaging solution which can help in automating the process of Glaucoma diagnosis using computer vision techniques from digital fundus images. The proposed method segments the optic disc using a geometrical feature based strategic framework which improves the detection accuracy and makes the algorithm invariant to illumination and noise. Corner thresholding and point contour joining based novel methods are proposed to construct smooth contours of Optic Disc. Based on a clinical approach as used by ophthalmologist, the proposed algorithm tracks blood vessels inside the disc region and identifies the points at which first vessel bend from the optic disc boundary and connects them to obtain the contours of Optic Cup. The proposed method has been compared with the ground truth marked by the medical experts and the similarity parameters, used to determine the performance of the proposed method, have yield a high similarity of segmentation. The proposed method has achieved a macro-averaged f-score of 0.9485 and accuracy of 97.01% in correctly classifying fundus images. The proposed method is clinically significant and can be used for Glaucoma screening over a large population which will work in a real time. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  17. Training Methods for Image Noise Level Estimation on Wavelet Components

    Directory of Open Access Journals (Sweden)

    A. De Stefano

    2004-12-01

    Full Text Available The estimation of the standard deviation of noise contaminating an image is a fundamental step in wavelet-based noise reduction techniques. The method widely used is based on the mean absolute deviation (MAD. This model-based method assumes specific characteristics of the noise-contaminated image component. Three novel and alternative methods for estimating the noise standard deviation are proposed in this work and compared with the MAD method. Two of these methods rely on a preliminary training stage in order to extract parameters which are then used in the application stage. The sets used for training and testing, 13 and 5 images, respectively, are fully disjoint. The third method assumes specific statistical distributions for image and noise components. Results showed the prevalence of the training-based methods for the images and the range of noise levels considered.

  18. Detection of small surface vessels in near, medium, and far infrared spectral bands

    Science.gov (United States)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  19. Ultrasonographic Examination of Some Vessels in Dogs and the Characteristics of Blood Flow in These Vessels

    Directory of Open Access Journals (Sweden)

    Figurová M.

    2017-12-01

    Full Text Available The examination by Doppler ultrasonography provides haemodynamic information about blood flow velocity in a respective vessel. It specifies high- and lowresistance flow patterns. The aim of our study was to record the flow in a. carotis communis, a. femoralis and aa. renales in 16 adult clinically healthy dogs of small and medium size; characterize the types of vessels and also determine the pulsatility index (PI and the resistive index (RI of these vessels. The a. femoralis is a high-resistance vessel with a pronounced three-peak waveform. The aa. renales gives a typical picture of a low-resistance flow pattern. The characteristics of a. carotis communis involves different images of its branches a. carotis interna and a. carotis externa. In the investigated groups we observed a medium degree of pulsatility (atypical highresistance flow pattern with an absence of reverse flow. The mean measured values of indices for a. carotis communis were: left side PI 1.824 and RI 0.742; right side PI 1.891 and RI 0.746, and for aa. renales: PI 1.366 ± 0.04 and RI 0.684 ± 0.05.

  20. Synthesis and characterization of Gadolinium-Lectin conjugates as selective blood-vessel contrast agents for magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pashkunova-Martic, I.

    2004-11-01

    Molecular imaging without use of ionizing radiation has recently been developed for both magnetic resonance and ultrasound imaging (MRI, US) and is expected to play a major future role in diagnosis and monitoring of tumours. In MRI, targeted nanoparticle contrast media (CM) with high relaxivities are required in order to obtain adequate signal-to-noise ratios, due to the low number of target sites. The size, charge and chemical constitution of the targeted nanoparticle CM are expected to influence nanoparticle interactions with cells and tissue elements significantly, and hence the targeting, the accumulation and dwell time at the targeted site, and the type and rate of clearance of the nanoparticles. The work reported here aims to characterise and optimise these parameters in mouse and human models, using nanoparticles targeted to a major carbohydrate determinant of the endothelial cell surface which is present in all blood vessels. Specific binding to the endothelium was demonstrated in both living and chemically fixed human vessels and in mice. Long-standing spin-echo and FLASH-3D images were obtained in the vasculature of living mice, in strong contrast to the rapid renal clearance of gadolinium-DTPA chelates which are widely used in the clinic. Nanoparticle size was found to be a major determinant of the biological response, and our data indicate that an optimal nanoparticle size lies between 50-100 nm diameter. We expect that hyperpermeable vessels present in tumours will permit targeting of optimised nanoparticles to the tumour cells, permitting MRI monitoring of the tumour. (author)

  1. Tomato sorting using independent component analysis on spectral images

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2003-01-01

    Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  2. Quantitative outcome measures for systemic sclerosis-related Microangiopathy - Reliability of image acquisition in Nailfold Capillaroscopy.

    Science.gov (United States)

    Dinsdale, Graham; Moore, Tonia; O'Leary, Neil; Berks, Michael; Roberts, Christopher; Manning, Joanne; Allen, John; Anderson, Marina; Cutolo, Maurizio; Hesselstrand, Roger; Howell, Kevin; Pizzorni, Carmen; Smith, Vanessa; Sulli, Alberto; Wildt, Marie; Taylor, Christopher; Murray, Andrea; Herrick, Ariane L

    2017-09-01

    Nailfold capillaroscopic parameters hold increasing promise as outcome measures for clinical trials in systemic sclerosis (SSc). Their inclusion as outcomes would often naturally require capillaroscopy images to be captured at several time points during any one study. Our objective was to assess repeatability of image acquisition (which has been little studied), as well as of measurement. 41 patients (26 with SSc, 15 with primary Raynaud's phenomenon) and 10 healthy controls returned for repeat high-magnification (300×) videocapillaroscopy mosaic imaging of 10 digits one week after initial imaging (as part of a larger study of reliability). Images were assessed in a random order by an expert blinded observer and 4 outcome measures extracted: (1) overall image grade and then (where possible) distal vessel locations were marked, allowing (2) vessel density (across the whole nailfold) to be calculated (3) apex width measurement and (4) giant vessel count. Intra-rater, intra-visit and intra-rater inter-visit (baseline vs. 1week) reliability were examined in 475 and 392 images respectively. A linear, mixed-effects model was used to estimate variance components, from which intra-class correlation coefficients (ICCs) were determined. Intra-visit and inter-visit reliability estimates (ICCs) were (respectively): overall image grade, 0.97 and 0.90; vessel density, 0.92 and 0.65; mean vessel width, 0.91 and 0.79; presence of giant capillary, 0.68 and 0.56. These estimates were conditional on each parameter being measurable. Within-operator image analysis and acquisition are reproducible. Quantitative nailfold capillaroscopy, at least with a single observer, provides reliable outcome measures for clinical studies including randomised controlled trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    Science.gov (United States)

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass

  4. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  5. Problems in manufacturing and transport of pressure vessels of integral reactors

    International Nuclear Information System (INIS)

    Kralovec, J.

    1997-01-01

    Integral water-cooled reactors are typical with eliminating large-diameter primary pipes and placing primary components, i.e. steam generators and pressurizers in reactor vessels. This arrangement leads to reactor pressure vessels of large dimensions: diameters, heights and thick walls and subsequently to great weights. Thus, even medium power units have pressure vessels which are on the very limit of present manufacturing capabilities. Principal manufacturing and inspection operations as well as pertinent equipment are concerned: welding, cladding, heat treatment, machining, shop-handling, non-destructive testing, hydraulic pressure tests etc. Tile transport of such a large and heavy component makes a problem which effects its design as well as the selection of the plant site. Railway, road and ship are possible ways of transport each of them having its advantages and limitations. Specific features and limits of the manufacture and transport of large pressure vessels are discussed in the paper. (author)

  6. Structural analysis of the KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    In, Sang Ryul; Yoon, Byeong Joo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    Structure analysis of the vacuum vessel for the KSTAR tokamak which, is in the end phase of the conceptual design have been performed. Mechanical stresses and deformations of the vessel produced by constant forces due to atmospheric pressure, dead weight, fluid pressure, etc and various transient electromagnetic forces induced during tokamak operations were calculated as well as modal characteristics and buckling properties were investigated. Influences of the temperature gradient and the constraint condition of the support on the thermal stress and deformation of the vessel were analyzed. The thermal stress due to the temperature distribution on the vessel as supplying the N{sub 2} gas of 400 deg C through poloidal channels according to the recent baking concept were calculated. No severe problem in the robustness of the vessel was found when applying the constant pressures on the vessel. However the mechanical stress due to the EM force induced by halo currents flowing on the vessel and the plasma facing components (PFCs) far exceeded the allowable limit. Some reinforcing components should be added on the boundary of the PFC support and the vessel, and that of the vessel support and the vessel. A steep temperature gradient in the vicinity of the inlet and oulet of the heating gas produced a thermal stress much higher than allowable. It is necessary to make the temperature of the vessel as uniform as possible and to develop a new support concept which is flexible enough to accommodate a thermal expansion of a few cm while sufficiently strong to resist mechanical impacts. (author). 5 refs., 41 figs., 9 tabs.

  7. In-service inspection robot for PFBR main vessel- concept

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Div. of Remote Handling and Robotics

    1994-12-31

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs.

  8. In-service inspection robot for PFBR main vessel- concept

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1994-01-01

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs

  9. An efficient modeling of fine air-gaps in tokamak in-vessel components for electromagnetic analyses

    International Nuclear Information System (INIS)

    Oh, Dong Keun; Pak, Sunil; Jhang, Hogun

    2012-01-01

    Highlights: ► A simple and efficient modeling technique is introduced to avoid undesirable massive air mesh which is usually encountered at the modeling of fine structures in tokamak in-vessel component. ► This modeling method is based on the decoupled nodes at the boundary element mocking the air gaps. ► We demonstrated the viability and efficacy, comparing this method with brute force modeling of air-gaps and effective resistivity approximation instead of detail modeling. ► Application of the method to the ITER machine was successfully carried out without sacrificing computational resources and speed. - Abstract: A simple and efficient modeling technique is presented for a proper analysis of complicated eddy current flows in conducting structures with fine air gaps. It is based on the idea of replacing a slit with the decoupled boundary of finite elements. The viability and efficacy of the technique is demonstrated in a simple problem. Application of the method to electromagnetic load analyses during plasma disruptions in ITER has been successfully carried out without sacrificing computational resources and speed. This shows the proposed method is applicable to a practical system with complicated geometrical structures.

  10. Distributed Component Forests : Hierarchical Image Representations Suitable for Tera-Scale Images

    NARCIS (Netherlands)

    Wilkinson, M.H.F.; Gazagnes, Simon; Suen, Ching Y.

    2018-01-01

    The standard representations know as component trees, used in morphological connected attribute filtering and multi-scale analysis, are unsuitable for cases in which either the image itself, or the tree do not fit in the memory of a single compute node. Recently, a new structure has been developed

  11. A modified Seeded Region Growing algorithm for vessel segmentation in breast MRI images for investigating the nature of potential lesions

    Science.gov (United States)

    Glotsos, D.; Vassiou, K.; Kostopoulos, S.; Lavdas, El; Kalatzis, I.; Asvestas, P.; Arvanitis, D. L.; Fezoulidis, I. V.; Cavouras, D.

    2014-03-01

    The role of Magnetic Resonance Imaging (MRI) as an alternative protocol for screening of breast cancer has been intensively investigated during the past decade. Preliminary research results have indicated that gadolinium-agent administrative MRI scans may reveal the nature of breast lesions by analyzing the contrast-agent's uptake time. In this study, we attempt to deduce the same conclusion, however, from a different perspective by investigating, using image processing, the vascular network of the breast at two different time intervals following the administration of gadolinium. Twenty cases obtained from a 3.0-T MRI system (SIGNA HDx; GE Healthcare) were included in the study. A new modification of the Seeded Region Growing (SRG) algorithm was used to segment vessels from surrounding background. Delineated vessels were investigated by means of their topology, morphology and texture. Results have shown that it is possible to estimate the nature of the lesions with approximately 94.4% accuracy, thus, it may be claimed that the breast vascular network does encodes useful, patterned, information, which can be used for characterizing breast lesions.

  12. Multifunctional Perceptual Mapping of the Various Components of the World Image in Students

    Directory of Open Access Journals (Sweden)

    Kostyuchenko E.V.,

    2015-08-01

    Full Text Available The article analyzes the products of artistic, graphic and verbal activity, objective measures of actualization of the world image in students of different majors and courses of Kiev National University of Culture and Arts on the basis of allocation of the dominant dichotomous signs, and criteria of interrelated components of the world image (physical, cognitive, psychosomatic, emotional and social. We compared the representation of these characteristics in all artworks (group 1: 1438 students and in a dedicated group of pictures of students, for whom the dominant channel of verbal representation of the world image is perceptual one (group 2: 145 students. We revealed the multifunctional indicators of perceptual representation, and composition category in the mapping of the various components of the world image: harmony, integrity and consistency of form, proportionality and flexibility, structuredness. The perceptual image of the world as a reference image is displayed in the form of compositional integrity, it corrects all the other images, affects the peculiarities of their manifestations in artistic activity; it has a personal meaning, which characterizes the attitude of the individual to the world

  13. Recognition-by-Components: A Theory of Human Image Understanding.

    Science.gov (United States)

    Biederman, Irving

    1987-01-01

    The theory proposed (recognition-by-components) hypothesizes the perceptual recognition of objects to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components. Experiments on the perception of briefly presented pictures support the theory. (Author/LMO)

  14. Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304

    International Nuclear Information System (INIS)

    Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.

    1995-01-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user's experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book

  15. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  16. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising.

    Directory of Open Access Journals (Sweden)

    Khan Bahadar Khan

    Full Text Available The exploration of retinal vessel structure is colossally important on account of numerous diseases including stroke, Diabetic Retinopathy (DR and coronary heart diseases, which can damage the retinal vessel structure. The retinal vascular network is very hard to be extracted due to its spreading and diminishing geometry and contrast variation in an image. The proposed technique consists of unique parallel processes for denoising and extraction of blood vessels in retinal images. In the preprocessing section, an adaptive histogram equalization enhances dissimilarity between the vessels and the background and morphological top-hat filters are employed to eliminate macula and optic disc, etc. To remove local noise, the difference of images is computed from the top-hat filtered image and the high-boost filtered image. Frangi filter is applied at multi scale for the enhancement of vessels possessing diverse widths. Segmentation is performed by using improved Otsu thresholding on the high-boost filtered image and Frangi's enhanced image, separately. In the postprocessing steps, a Vessel Location Map (VLM is extracted by using raster to vector transformation. Postprocessing steps are employed in a novel way to reject misclassified vessel pixels. The final segmented image is obtained by using pixel-by-pixel AND operation between VLM and Frangi output image. The method has been rigorously analyzed on the STARE, DRIVE and HRF datasets.

  17. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  18. Subclavian vein aneurysm secondary to a benign vessel wall hamartoma

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Patrick [Nationwide Children' s Hospital, Section of Pediatric Interventional Radiology, Columbus, OH (United States); Spaeth, Maya [Nationwide Children' s Hospital, Section of Plastic and Reconstructive Surgery, Columbus, OH (United States); Prasad, Vinay [Nationwide Children' s Hospital, Section of Pediatric Pathology, Columbus, OH (United States); McConnell, Patrick [Nationwide Children' s Hospital, Section of Cardiothoracic Surgery, Columbus, OH (United States)

    2013-11-15

    Venous aneurysms are rare clinical entities, particularly in children, and their presentation and natural history often depend on the anatomical location and underlying etiology. We present a single case of a 12-year-old girl who presented with a palpable right supraclavicular mass. Imaging evaluation with CT, conventional venography, MRI and sonography revealed a large fusiform subclavian vein aneurysm with an unusual, mass-like fibrofatty component incorporated into the vessel wall. The girl ultimately required complete resection of the right subclavian vein with placement of a synthetic interposition graft. This case provides a radiology/pathology correlation of an entity that has not previously been described as well as an example of the utility of multiple imaging modalities to aid diagnosis and preoperative planning. (orig.)

  19. Commissioning result of the KSTAR in-vessel cryo-pump

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. B.; Lee, H. J.; Park, Y.M. [National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2013-12-15

    KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to LN2 one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

  20. Depiction of blood vessels by x-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [School of Engineering, University of Tokyo, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki (Japan)

    2001-04-01

    Blood vessels in livers of a mouse and a rat were depicted by phase-contrast x-ray imaging with an x-ray interferometer without using contrast agents. X-ray interference patterns were converted to image mapping x-ray phase shift caused by the livers using the technique of phase-shifting x-ray interferometry. The arteries and veins to and from the livers were tied before excision in order to prevent blood from flowing out of the liver. The x-ray phase shift caused by blood was substantially different from that caused by other soft sues, and consequently trees of blood vessels were revealed in the images. Vessels of diameter smaller than 0.1 mm were detected. This result suggests new possibilities for investigating vascular systems. (author)

  1. Improvement of User's Accuracy Through Classification of Principal Component Images and Stacked Temporal Images

    Institute of Scientific and Technical Information of China (English)

    Nilanchal Patel; Brijesh Kumar Kaushal

    2010-01-01

    The classification accuracy of the various categories on the classified remotely sensed images are usually evaluated by two different measures of accuracy, namely, producer's accuracy (PA) and user's accuracy (UA). The PA of a category indicates to what extent the reference pixels of the category are correctly classified, whereas the UA ora category represents to what extent the other categories are less misclassified into the category in question. Therefore, the UA of the various categories determines the reliability of their interpretation on the classified image and is more important to the analyst than the PA. The present investigation has been performed in order to determine ifthere occurs improvement in the UA of the various categories on the classified image of the principal components of the original bands and on the classified image of the stacked image of two different years. We performed the analyses using the IRS LISS Ⅲ images of two different years, i.e., 1996 and 2009, that represent the different magnitude of urbanization and the stacked image of these two years pertaining to Ranchi area, Jharkhand, India, with a view to assessing the impacts of urbanization on the UA of the different categories. The results of the investigation demonstrated that there occurs significant improvement in the UA of the impervious categories in the classified image of the stacked image, which is attributable to the aggregation of the spectral information from twice the number of bands from two different years. On the other hand, the classified image of the principal components did not show any improvement in the UA as compared to the original images.

  2. NOVEL PRERETINAL HAIR PIN-LIKE VESSEL IN RETINAL ASTROCYTIC HAMARTOMA WITH VITREOUS HEMORRHAGE.

    Science.gov (United States)

    Soeta, Megumi; Arai, Yusuke; Takahashi, Hidenori; Fujino, Yujiro; Tanabe, Tatsuro; Inoue, Yuji; Kawashima, Hidetoshi

    2018-01-01

    To report a case of retinal astrocytic hamartoma with vitreous hemorrhage and a hair pin-like vessel adhering to a posterior vitreous membrane. A 33-year-old man with a retinal astrocytic hamartoma presented with vitreous hemorrhage 5 times. Multimodal imaging, including fundus photography, fluorescein angiography, optical coherence tomography, and B-mode ultrasonography. Multimodal imaging demonstrated a novel hair pin-like vessel that adhered to the posterior vitreous membrane. Some cases of retinal astrocytic hamartoma with vitreous hemorrhage may be related to structure abnormalities of tumor vessels.

  3. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes

    Science.gov (United States)

    Yarmohammadi, Adeleh; Zangwill, Linda M.; Diniz-Filho, Alberto; Suh, Min Hee; Manalastas, Patricia Isabel; Fatehee, Naeem; Yousefi, Siamak; Belghith, Akram; Saunders, Luke J.; Medeiros, Felipe A.; Huang, David; Weinreb, Robert N.

    2016-01-01

    Purpose The purpose of this study was to compare retinal nerve fiber layer (RNFL) thickness and optical coherence tomography angiography (OCT-A) retinal vasculature measurements in healthy, glaucoma suspect, and glaucoma patients. Methods Two hundred sixty-one eyes of 164 healthy, glaucoma suspect, and open-angle glaucoma (OAG) participants from the Diagnostic Innovations in Glaucoma Study with good quality OCT-A images were included. Retinal vasculature information was summarized as a vessel density map and as vessel density (%), which is the proportion of flowing vessel area over the total area evaluated. Two vessel density measurements extracted from the RNFL were analyzed: (1) circumpapillary vessel density (cpVD) measured in a 750-μm-wide elliptical annulus around the disc and (2) whole image vessel density (wiVD) measured over the entire image. Areas under the receiver operating characteristic curves (AUROC) were used to evaluate diagnostic accuracy. Results Age-adjusted mean vessel density was significantly lower in OAG eyes compared with glaucoma suspects and healthy eyes. (cpVD: 55.1 ± 7%, 60.3 ± 5%, and 64.2 ± 3%, respectively; P glaucoma and healthy eyes, the age-adjusted AUROC was highest for wiVD (0.94), followed by RNFL thickness (0.92) and cpVD (0.83). The AUROCs for differentiating between healthy and glaucoma suspect eyes were highest for wiVD (0.70), followed by cpVD (0.65) and RNFL thickness (0.65). Conclusions Optical coherence tomography angiography vessel density had similar diagnostic accuracy to RNFL thickness measurements for differentiating between healthy and glaucoma eyes. These results suggest that OCT-A measurements reflect damage to tissues relevant to the pathophysiology of OAG. PMID:27409505

  4. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity.

    Science.gov (United States)

    Wang, Yixin; Jin, Yi; Mäe, Maarja Andaloussi; Zhang, Yang; Ortsäter, Henrik; Betsholtz, Christer; Mäkinen, Taija; Jakobsson, Lars

    2017-10-01

    Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. © 2017. Published by The Company of Biologists Ltd.

  5. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach.

    Directory of Open Access Journals (Sweden)

    Pasquale Borrelli

    Full Text Available In susceptibility-weighted imaging (SWI, the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR. The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.

  6. Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience.

    Science.gov (United States)

    Qi, Haikun; Sun, Jie; Qiao, Huiyu; Chen, Shuo; Zhou, Zechen; Pan, Xinlei; Wang, Yishi; Zhao, Xihai; Li, Rui; Yuan, Chun; Chen, Huijun

    2018-04-01

    Purpose To develop a three-dimensional (3D) high-spatial-resolution time-efficient sequence for use in quantitative vessel wall T1 mapping. Materials and Methods A previously described sequence, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging, was extended by introducing 3D golden angle radial k-space sampling (GOAL-SNAP). Sliding window reconstruction was adopted to reconstruct images at different inversion delay times (different T1 contrasts) for voxelwise T1 fitting. Phantom studies were performed to test the accuracy of T1 mapping with GOAL-SNAP against a two-dimensional inversion recovery (IR) spin-echo (SE) sequence. In vivo studies were performed in six healthy volunteers (mean age, 27.8 years ± 3.0 [standard deviation]; age range, 24-32 years; five male) and five patients with atherosclerosis (mean age, 66.4 years ± 5.5; range, 60-73 years; five male) to compare T1 measurements between vessel wall sections (five per artery) with and without intraplaque hemorrhage (IPH). Statistical analyses included Pearson correlation coefficient, Bland-Altman analysis, and Wilcoxon rank-sum test with data permutation by subject. Results Phantom T1 measurements with GOAL-SNAP and IR SE sequences showed excellent correlation (R 2 = 0.99), with a mean bias of -25.8 msec ± 43.6 and a mean percentage error of 4.3% ± 2.5. Minimum T1 was significantly different between sections with IPH and those without it (mean, 371 msec ± 93 vs 944 msec ± 120; P = .01). Estimated T1 of normal vessel wall and muscle were 1195 msec ± 136 and 1117 msec ± 153, respectively. Conclusion High-spatial-resolution (0.8 mm isotropic) time-efficient (5 minutes) vessel wall T1 mapping is achieved by using the GOAL-SNAP sequence. This sequence may yield more quantitative reproducible biomarkers with which to characterize IPH and monitor its progression. © RSNA, 2017.

  7. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  8. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    1999-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  9. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2001-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  10. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  11. Estimation of compound distribution in spectral images of tomatoes using independent component analysis

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.

    2003-01-01

    Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  12. Proactive life extension of pressure vessels

    Science.gov (United States)

    Mager, Lloyd

    1998-03-01

    place while our vessels are in service. As the inspection takes place we are able to view a real time image of detected discontinuities on a video monitor. The B-scan ultrasonic technique is allowing us to perform fast accurate examinations covering up to 95% of the surface area of each pressure vessel. Receiving data on 95% of a pressure vessel provides us with a lot of useful information. We use this data to determine the condition of each pressure vessel. Once the condition is known the vessels are classed by risk. The risk level is then managed by making decisions related to repair, operating parameters, accepting and monitoring or replacement of the equipment. Inspection schedules are set at maximum intervals and reinspection is minimized for the vessels that are not at risk. The remaining life of each pressure vessel is determined, mechanical integrity is proven and regulatory requirements are met. Abbott Laboratories is taking this proactive approach because we understand that our process equipment is a critical element for successful operation. A run to failure practice would never allow Abbott Laboratories to achieve the corporation's objective of being the world's leading health care company. Nondestructive state of the art technology and the understanding of its capabilities and limitations are key components of a proactive program for life extension of pressure vessels. 26

  13. Application of blood-pool agents in visualization of peripheral vessels

    International Nuclear Information System (INIS)

    Giovagnoni, A.; Catalano, C.

    2007-01-01

    Effective arterial imaging is essential in patients with peripheral arterial disease (PAD) in whom a revascularization procedure is planned. Digital subtraction angiography (DSA) has traditionally been regarded as the gold standard for imaging in peripheral arterial disease, but this technique is subject to certain limitations, such as the risks of adverse reactions associated with arterial catheterization and iodinated contrast agents. Contrast-enhanced magnetic resonance angiography is now recommended as an effective and useful imaging technique in peripheral arterial disease, since it offers high enhanced contrast between blood and stationary tissue and fast acquisition times. However, extracellular gadolinium contrast agents rapidly diffuse into the interstitial spaces, and thus are suitable only for first-pass imaging. This limitation can be overcome by the use of blood-pool (intravascular) contrast agents, such as gadofosveset trisodium (Vasovist, Bayer Schering Pharma AG, Berlin, Germany), which are retained within the blood vessels and hence facilitate both first-pass and steady-state imaging with high spatial resolution. Blood-pool agents, therefore, offer improved imaging, particularly of distal vessels, compared with extracellular contrast agents. Examples of first-pass and steady-state imaging with gadofosveset are presented. (orig.)

  14. Comparison between 3D eddy current patterns in tokamak in-vessel components generated by disruptions

    International Nuclear Information System (INIS)

    Sakellaris, J.; Crutzen, Y.

    1996-01-01

    During plasma disruption events in Tokamaks, a large amount of magnetic energy is associated to the transfer of plasma current into eddy currents in the passive structures. In the ITER program two design concepts have been proposed. One approach (ITER CDA design) is based on copper stabilization loops (i.e., twin loops) attached to box-shaped blanket segments, electrically and mechanically separated along the toroidal direction. For another design concept (ITER EDA design) based on lower plasma elongation there is no need for specific stabilization loops. The passive stabilization is obtained by toroidally continuous components (i.e., the plasma facing wall of the blanket segments allows a continuity along the toroidal direction). Consequently, toroidal currents flow, when electromagnetic transients occur. Electromagnetic loads appear in the blanket structures in case of plasma disruptions and/or vertical displacement events either for the ITER CDA design concept or for the ITER EDA design concept. In this paper the influence of the in-vessel design configuration concepts--insulated segments or electrically continuous structures--in terms of magnetic shielding and electric insulation on the magnitude and the flow pattern of the eddy currents is investigated. This investigation will allow a performance evaluation of the two proposed design concepts

  15. Expanding plasma jet in a vacuum vessel

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Yakovetskij, V.S.

    1998-01-01

    The paper deals with numerical calculations of parameters of a supersonic quasi-neutral argon plasma jet expanding into a cylindrical vacuum vessel and interacting with its inner surface. A modified method of large particles was used, the complex set of hydrodynamic equations being broken into simpler components, each of which describes a separate physical process. Spatial distributions of the main parameters of the argon plasma jet were simulated at various times after the jet entering the vacuum vessel, the parameters being the jet velocity field, the full plasma pressure, the electron temperature, the temperature of heavy particles, and the degree of ionization. The results show a significant effect of plasma jet interaction on the plasma parameters. The jet interaction with the vessel walls may result e.g. in excitation of shock waves and rotational plasma motions. (J.U.)

  16. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain

    International Nuclear Information System (INIS)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob

    2006-01-01

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  17. [Key vessels assessment and operation highlights in laparoscopic extended right hemicolectomy].

    Science.gov (United States)

    Wang, Hao; Zhao, Quanquan

    2018-03-25

    Laparoscopic radical colectomies have been more widely used gradually, among which laparoscopic extended right hemicolectomy is considered as the most difficult procedure. The difficulty of extended right hemicolectomy lies in the need to dissect lymph nodes along the superior mesenteric vein (SMV) and disconnect numerous and possible aberrant vessels. To address this problem, we emphasize two points in key vessel assessment: getting familiar with the anatomy along the medial-to-lateral approach and having a good understanding about the preoperative imaging presentations. An accurately preoperative imaging assessment by abdominal enhanced CT can help the surgeon understand the relative position of the key vessels to be dealt with during operation and the situation of the possible aberrant vessels so as to guide the procedure more effectively and facilitate the prevention and management of the intraoperative complications. During operation, the operator should pay special attention to the management of the vessels in the ileocolic vessel region, Henle's trunk and middle colon vessels. The operation highlights of the key vessels are as follows: (1) The ileocolic vessels: identifying the Toldt's gap correctly and opening the vascular sheath of the SMV securely; making sure that the duodenum is well protected. (2) Henle's trunk: dissecting along the surface of the Henle's trunk; preserving the anterior superior pancreaticoduodenal vein (ASPDV) and main trunk of the Henle's trunk; disconnecting the roots of the right colic vein (RCV) and right gastroepiploic vein (RGEV), and then dissecting lymph nodes along the surface of the pancreas. (3) The middle colon vessels: identifying the root of the middle colon vessel along the lower edge of the pancreas; avoiding entering behind the pancreas; mobilizing the transverse mesocolon sufficiently along the surface of the pancreas. Finally, we discuss and analyze the disputes currently existing in laparoscopic extended right

  18. Adaptive ultrasonic imaging with the total focusing method for inspection of complex components immersed in water

    Science.gov (United States)

    Le Jeune, L.; Robert, S.; Dumas, P.; Membre, A.; Prada, C.

    2015-03-01

    In this paper, we propose an ultrasonic adaptive imaging method based on the phased-array technology and the synthetic focusing algorithm Total Focusing Method (TFM). The general principle is to image the surface by applying the TFM algorithm in a semi-infinite water medium. Then, the reconstructed surface is taken into account to make a second TFM image inside the component. In the surface reconstruction step, the TFM algorithm has been optimized to decrease computation time and to limit noise in water. In the second step, the ultrasonic paths through the reconstructed surface are calculated by the Fermat's principle and an iterative algorithm, and the classical TFM is applied to obtain an image inside the component. This paper presents several results of TFM imaging in components of different geometries, and a result obtained with a new technology of probes equipped with a flexible wedge filled with water (manufactured by Imasonic).

  19. Probability Density Components Analysis: A New Approach to Treatment and Classification of SAR Images

    Directory of Open Access Journals (Sweden)

    Osmar Abílio de Carvalho Júnior

    2014-04-01

    Full Text Available Speckle noise (salt and pepper is inherent to synthetic aperture radar (SAR, which causes a usual noise-like granular aspect and complicates the image classification. In SAR image analysis, the spatial information might be a particular benefit for denoising and mapping classes characterized by a statistical distribution of the pixel intensities from a complex and heterogeneous spectral response. This paper proposes the Probability Density Components Analysis (PDCA, a new alternative that combines filtering and frequency histogram to improve the classification procedure for the single-channel synthetic aperture radar (SAR images. This method was tested on L-band SAR data from the Advanced Land Observation System (ALOS Phased-Array Synthetic-Aperture Radar (PALSAR sensor. The study area is localized in the Brazilian Amazon rainforest, northern Rondônia State (municipality of Candeias do Jamari, containing forest and land use patterns. The proposed algorithm uses a moving window over the image, estimating the probability density curve in different image components. Therefore, a single input image generates an output with multi-components. Initially the multi-components should be treated by noise-reduction methods, such as maximum noise fraction (MNF or noise-adjusted principal components (NAPCs. Both methods enable reducing noise as well as the ordering of multi-component data in terms of the image quality. In this paper, the NAPC applied to multi-components provided large reductions in the noise levels, and the color composites considering the first NAPC enhance the classification of different surface features. In the spectral classification, the Spectral Correlation Mapper and Minimum Distance were used. The results obtained presented as similar to the visual interpretation of optical images from TM-Landsat and Google Maps.

  20. Nanoscale imaging and identification of four-component carbon sample

    Energy Technology Data Exchange (ETDEWEB)

    Sheremet, Evgeniya S [ORNL; Rodriguez, Raul [Chemnitz University of Technology, Germany; Agapov, Alexander L [ORNL; Sokolov, Alexei P [ORNL; Hietschold, Michael [Chemnitz University of Technology, Germany; Zahn, Dietrich [Chemnitz University of Technology, Germany

    2015-01-01

    We demonstrate the unprecedented chemical imaging of individual constituents in a four-component sample made of several carbon allotropes: single-wall carbon nanotubes, graphene oxide, C60 fullerene, and an organic residue. This represents a significant advance with respect to previous works that were mainly limited to systems with one or two components having very different chemical composition. Despite the spectral and spatial overlap from different components, plasmon-based nanospectroscopy allows the discrimination of all individual carbon nanomaterials here investigated. Among other physical insights such as doping observed in carbon nanotubes, the detailed chemical imaging of graphene oxide reveals higher defect concentration at the flake edges similarly to the case of graphene. We found that the organic residue has either low adsorption or lack of resonant enhancement on GO, in contrast to graphene, suggesting a decreased van der Waals interaction. Furthermore, this report paves the way for routine nanoscale analysis of complex carbon systems with spatial resolution of 15 nm and below.

  1. Long-term safety and feasibility of three-vessel multimodality intravascular imaging in patients with ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Taniwaki, Masanori; Radu, Maria D; Garcia-Garcia, Hector M

    2015-01-01

    We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI in the s......We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI...... in the setting of IBIS-4 study. IBIS4 (NCT00962416) is a prospective cohort study conducted at five European centers including 103 STEMI patients who underwent serial three-vessel coronary imaging during primary PCI and at 13 months. The feasibility parameter was successful imaging, defined as the number...... of pullbacks suitable for analysis. Safety parameters included the frequency of peri-procedural complications, and major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction (MI) and any clinically-indicated revascularization at 2 years. Clinical outcomes were compared...

  2. Histomorphological changes of vessel structure in head and neck vessels following preoperative or postoperative radiotherapy

    International Nuclear Information System (INIS)

    Schultze-Mosgau, S.; Wehrhan, F.; Wiltfang, J.; Grabenbauer, G.G.; Sauer, R.; Roedel, F.; Radespiel-Troeger, M.

    2002-01-01

    Patients and Methods: In 348 patients (October 1995-March 2002) receiving primarly or secondarily 356 microvascular hard- and soft tissue reconstruction, a total of 209 vessels were obtained from neck recipient vessels and transplant vessels during anastomosis. Three groups were analysed: group 1 (27 patients) treated with no radiotherapy or chemotherapy; group 2 (29 patients) treated with preoperative irradiation (40-50 Gy) and chemotherapy (800 mg/m 2 /day 5-FU and 20 mg/m 2 /day cisplatin) 1.5 months prior to surgery; group 3 (20 patients) treated with radiotherapy (60-70 Gy) (median interval 78.7 months; IQR: 31.3 months) prior to surgery. From each of the 209 vessel specimens, 3 sections were investigated histomorphometrically, qualitatively and quantitatively (ratio media area/total vessel area) by NIH-Image-digitized measurements. To evaluate these changes as a function of age, radiation dose and chemotherapy, a statistical analysis was performed using an analysis of covariance and χ 2 tests (p > 0.05, SPSS V10). Results: In group 3, qualitative changes (intima dehiscence, hyalinosis) were found in recipient arteries significantly more frequently than in groups 1 and 2. For group 3 recipient arteries, histomorphometry revealed a significant decrease in the ratio media area/total vessel area (median 0.51, IQR 0.10) in comparison with groups 1 (p = 0.02) (median 0.61, IQR 0.29) and 2 (p = 0.046) (median 0.58, IQR 0.19). No significant difference was found between the vessels of groups 1 and 2 (p = 0.48). There were no significant differences in transplant arteries and recipient or transplant veins between the groups. Age and chemotherapy did not appear to have a significant influence on vessel changes in this study (p > 0.05). Conclusions: Following irradiation with 60-70 Gy, significant qualitative and quantitative histological changes to the recipient arteries, but not to the recipient veins, could be observed. In contrast, irradiation at a dose of 40-50 Gy

  3. Electrical discharge machining for vessel sample removal

    International Nuclear Information System (INIS)

    Litka, T.J.

    1993-01-01

    Due to aging-related problems or essential metallurgy information (plant-life extension or decommissioning) of nuclear plants, sample removal from vessels may be required as part of an examination. Vessel or cladding samples with cracks may be removed to determine the cause of cracking. Vessel weld samples may be removed to determine the weld metallurgy. In all cases, an engineering analysis must be done prior to sample removal to determine the vessel's integrity upon sample removal. Electrical discharge machining (EDM) is being used for in-vessel nuclear power plant vessel sampling. Machining operations in reactor coolant system (RCS) components must be accomplished while collecting machining chips that could cause damage if they become part of the flow stream. The debris from EDM is a fine talclike particulate (no chips), which can be collected by flushing and filtration

  4. Large component regulatory relief in the United States

    International Nuclear Information System (INIS)

    Williams, J.L.; Boyle, R.W.

    2004-01-01

    The dismantling of retired nuclear power and test facilities required the transport of reactor vessels, reactor vessel heads, pressurizers, reactor coolant pumps, and steam generators; whereas the replacement of degraded components to continue operations has been generally limited to pressurized water reactor steam generators, and more recently, reactor heads. These components are quite large and massive, measuring up to 20 feet in diameter and 70 feet in length and weighing 50 to 600 tons. Issue Several issues arose, due to the implementation of the 1985 IAEA transportations regulations in the United States, on the practical matters of how to characterize the components and comply with the transportation regulations. The concept of a Surface Contaminated Object (SCO) was new to many in the U.S., and the large components were not readily amenable to transportation under the regulations. It was apparent that most of the components should be considered as SCO. However, it was not certain that the contamination limits for inaccessible areas could be met due to non-uniform contamination deposition; nor could the interior areas be readily surveyed without on-site dismantlement of the large component. Additionally, while the components were generally substantial in design and construction due to their use as pressure vessels under other codes, the current regulations required packages that met tests such as for stacking and free drop that would pose severe engineering challenges, prohibitive costs, or logistical difficulties during transport, due to the size and weight of the components being transport

  5. The research on x-ray nondestructive testing and image processing technology of explosive components

    International Nuclear Information System (INIS)

    Shi, C.; Zhai, X.; Liu, Z.; Lin, H.

    2004-01-01

    The explosive components will inevitably produce defects such as impurity, crack and degumming during production and storage, therefore the inside substance of the explosive components must be examined and the findings concerned must be identified and estimated in order to ensure the quality and service life of the explosive components. Firstly, some analyses are conducted on the usual X-ray NDT system theory, and the simulation explosive component is made with some pre-built defects such as debonding, cracks, blow holes, impurities, and non-uniform density. The image testing system most fit for the explosive components is established. Secondly, the ways of X-ray digital image processing are discussed; the obtained images are enhanced and restored through the self-accommodating build-up arithmetic and proper restoring methods. By means of the results of the overall comparison and analysis of the digital image processing technology, it is clearly indicated that it is feasible to use X-ray digital-imaging ways to carry out the NDT of explosive components and identify the inside defects. (author)

  6. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  7. Modified ITER In-Vessel Viewing System

    International Nuclear Information System (INIS)

    Ahola, H.; Heikkinen, V.; Keraenen, K.; Suomela, J.

    2001-01-01

    The original ITER In-Vessel Viewing System (IVVS) prototype (Proc. of the 20th SOFT, vol. 2 (1998) 1051), which demonstrates the feasibility of linear fibre arrays for ITER in-vessel viewing, has been modified. In order to reduce the viewing time and to improve the image quality the beam dispersing mirrors was replaced by a diffractive optics element (DOE), which enhanced the laser illumination considerably. The performance of the system was tested using various target surfaces: the results obtained clearly indicate its adequacy for in-vessel viewing. Mechanical damage on smooth metal surfaces (scratches etc.) can be easily distinguished and the viewing resolution at a distance of 2 m is better than 1 mm. The IVVS has been re-designed to be compatible with the new ITER-FEAT. A conceptual study which covers all the functions and subsystems required for viewing has been completed. These results will be used to further modify the prototype: items to be tested include horizontal probe operation and laser illumination with an optical fibre

  8. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  9. Development of ITER in-vessel viewing and metrology systems

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira

    1998-01-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation (∼30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  10. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  11. In vivo and in vitro methods to study platelet adhesion to the components of the vessel wall

    International Nuclear Information System (INIS)

    Cazenave, J.-P.

    1979-01-01

    The methods that are used to measure platelet adhesion can be divided in five groups: methods that use an aggregometer to measure platelet adhesion to collagen in the presence of EDTA; methods that use binding of radiolabeled collagen, affinity chromatography, or gel filtration; the morphometric method of Baumgartner that measures platelet interaction with the subendothelium of an aorta exposed to flow in an annular perfusion chamber; the quantitative isotopic measurement of platelet adhesion to collagen-coated surfaces and to subendothelium with the rotating probe device of Cazenave; and in vivo platelet adhesion to the subendothelium measured by the morphometric method or with platelets radiolabeled with 51 Cr or 111 In. With these methods it has been possible to study the factors (Ca 2+ ; VIII: von Willebrand factor; hemodynamic factors: red cells, shear rate; components of the vessel wall) governing platelet adhesion to subendothelium and to collagen. It has also been possible to screen and study drugs inhibiting platelet adhesion, which is the first step in the formation of a thrombus at the site of vascular injury [fr

  12. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    Science.gov (United States)

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using

  13. LECOTELO - conceptual design, testings and realisation of the main vessel

    International Nuclear Information System (INIS)

    Ioan, M.; Hororoi, M.

    2013-01-01

    Lead Corrosion Testing Loop (LECOTELO) facility was conceived to assure all conditions requested by corrosion/erosion tests in pure hot lead for different materials. The main vessel will receive at least 36 different material samples; each of them must be swept on both sides by a lead flow at a very well known speed. Taking into account that the inner system of this vessel is rather complex, it is very important to know the behavior of the vessel at different speeds of the lead flow around the samples. After many simulations of different configurations of the inner components, it was obtained the best inner geometry of the flow which provides the minimum pressure loss between inlet and outlet vessel. Consequently, the design of vessel components was changed in accordance with these new results of simulations and in this moment they are in the manufacturing process. (authors)

  14. Pediatric ureteropelvic junction obstruction: can magnetic resonance urography identify crossing vessels?

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Kushal R.; Kraft, Kate H.; Ivancic, Vesna; Smith, Ethan A.; Dillman, Jonathan R. [Section of Pediatric Radiology, Mott Children' s Hospital, Department of Radiology, University of Michigan Health System, Ann Arbor, MI (United States); Hammer, Matthew R. [University of Texas Southwestern, Department of Radiology, Dallas, TX (United States)

    2015-11-15

    MR Urography (MRU) is an increasingly used imaging modality for the evaluation of pediatric genitourinary obstruction. To determine whether pediatric MR urography (MRU) reliably detects crossing vessels in the setting of suspected ureteropelvic junction (UPJ) obstruction. The clinical significance of these vessels was also evaluated. We identified pediatric patients diagnosed with UPJ obstruction by MRU between May 2009 and June 2014. MRU studies were evaluated by two pediatric radiologists for the presence or absence of crossing vessels. Ancillary imaging findings such as laterality, parenchymal thinning/scarring, trapped fluid in the proximal ureter, and presence of renal parenchymal edema were also evaluated. Imaging findings were compared to surgical findings. We used the Mann-Whitney U test to compare continuous data and the Fisher exact test to compare proportions. Twenty-four of 25 (96%) UPJ obstructions identified by MRU were surgically confirmed. MRU identified crossing vessels in 10 of these cases, with 9 cases confirmed intraoperatively (κ = 0.92 [95% CI: 0.75, 1.0]). Crossing vessels were determined to be the primary cause of UPJ obstruction in 7/9 children intraoperatively, while in two children the vessels were deemed incidental and noncontributory to the urinary tract obstruction. There was no significant difference in age or the proportions of ancillary findings when comparing children without and with obstructing vessels. MRU allows detection of crossing vessels in pediatric UPJ obstruction. Although these vessels are the primary cause of obstruction in some children, they are incidental and non-contributory in others. Our study failed to convincingly identify any significant predictors (e.g., age or presence of renal parenchymal edema) that indicate when a crossing vessel is the primary cause of obstruction. (orig.)

  15. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  16. Vessel eddy current characteristics in SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Subrata; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Dhongde, Jasraj; Masand, Harish

    2016-11-15

    Highlights: • Eddy current distribution in the SST-1 vacuum vessel. • Circuit model analysis of eddy current. • A comparison of the field lines with and without the plasma column in identical conditions. • The influence of eddy current in magnetic NULL dynamics. - Abstract: Eddy current distribution in the vacuum vessel of the Steady state superconducting (SST-1) tokamak has been determined from the experimental data obtained using an array of internal voltage loops (flux loop) installed inside the vacuum vessel. A simple circuit model has been employed. The model takes into account the geometric and constructional features of SST-1 vacuum vessel. SST-1 vacuum vessel is a modified ‘D’ shaped vessel having major axis of 1.285 m and minor axis of 0.81 m and has been manufactured from non-magnetic stainless steel. The Plasma facing components installed inside the vacuum vessel are graphite blocks mounted on Copper Chromium Zirconium (CuCrZr) heat sink plates on inconel supports. During discharge of the central solenoid, eddy currents get generated in the vacuum vessel and passive supports on it. These eddy currents influence the early magnetic NULL dynamics and plasma break-down and start-up characteristics. The computed results obtained from the model have been benchmarked against experimental data obtained in large number of SST-1 plasma shots. The results are in good agreement. Once bench marked, the calculated eddy current based on flux loop signal and circuit equation model has been extended to the reconstruction of the overall B- field contours of SST-1 tokamak in the vessel region. A comparison of the field lines with and without the plasma column in identical conditions of the central solenoid and equilibrium field profiles has also been done with an aim to quantify the diagnostics responses in vacuum shots.

  17. Automated tracking and quantification of angiogenic vessel formation in 3D microfluidic devices.

    Science.gov (United States)

    Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry

    2017-01-01

    Angiogenesis, the growth of new blood vessels from pre-existing vessels, is a critical step in cancer invasion. Better understanding of the angiogenic mechanisms is required to develop effective antiangiogenic therapies for cancer treatment. We culture angiogenic vessels in 3D microfluidic devices under different Sphingosin-1-phosphate (S1P) conditions and develop an automated vessel formation tracking system (AVFTS) to track the angiogenic vessel formation and extract quantitative vessel information from the experimental time-lapse phase contrast images. The proposed AVFTS first preprocesses the experimental images, then applies a distance transform and an augmented fast marching method in skeletonization, and finally implements the Hungarian method in branch tracking. When applying the AVFTS to our experimental data, we achieve 97.3% precision and 93.9% recall by comparing with the ground truth obtained from manual tracking by visual inspection. This system enables biologists to quantitatively compare the influence of different growth factors. Specifically, we conclude that the positive S1P gradient increases cell migration and vessel elongation, leading to a higher probability for branching to occur. The AVFTS is also applicable to distinguish tip and stalk cells by considering the relative cell locations in a branch. Moreover, we generate a novel type of cell lineage plot, which not only provides cell migration and proliferation histories but also demonstrates cell phenotypic changes and branch information.

  18. ITER in-vessel system design and performance

    Science.gov (United States)

    Parker, R. R.

    2000-03-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.

  19. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2000-01-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events. (author)

  20. Development of radiation hardness components for ITER remote maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yagi, Toshiaki; Morita, Yousuke

    1998-04-01

    In the ITER, in-vessel remote handling is required to assemble and maintain in-vessel components in DT operations. Since in-vessel remote handling systems must operate under intense gamma ray radiation exceeding 30 kGy/h, their components must have sufficiently high radiation hardness to allow maintenance long enough in ITER in-vessel environments. Thus, extensive radiation tests and quality improvement, including optimization of material compositions, have been conducted through the ITER R and D program to develop radiation hardness components that meet radiation doses from 10 to 100 MGy at 10 kGy/h. This paper presents the latest on radiation hardness component development conducted by the Japan Home Team as a contribution to the ITER. The remote handling components tested are categorized for use in robotic or viewing systems, or as common components. Radiation tests have been conducted on commercially available products for screening, on modified products, and on new products to improve the radiation hardness. (author)

  1. Development of radiation hardness components for ITER remote maintenance

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Oka, Kiyoshi; Ito, Akira; Yagi, Toshiaki; Morita, Yousuke

    1998-01-01

    In the ITER, in-vessel remote handling is required to assemble and maintain in-vessel components in DT operations. Since in-vessel remote handling systems must operate under intense gamma ray radiation exceeding 30 kGy/h, their components must have sufficiently high radiation hardness to allow maintenance long enough in ITER in-vessel environments. Thus, extensive radiation tests and quality improvement, including optimization of material compositions, have been conducted through the ITER R and D program to develop radiation hardness components that meet radiation doses from 10 to 100 MGy at 10 kGy/h. This paper presents the latest on radiation hardness component development conducted by the Japan Home Team as a contribution to the ITER. The remote handling components tested are categorized for use in robotic or viewing systems, or as common components. Radiation tests have been conducted on commercially available products for screening, on modified products, and on new products to improve the radiation hardness. (author)

  2. Design improvements and R and D achievements for VV and In-vessel components towards ITER construction

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Barabaschi, P.; Barabash, V.

    2003-01-01

    There have been several detailed vacuum vessel (VV) design improvements, such as elimination of the inboard triangular support, separate interspace between inner and outer shells for independent leak detection of field joints and revised VV support system to gain a more comfortable margin in the structural performance. The blanket design has been updated; an inter-modular key instead of two prismatic keys and a co-axial inlet-outlet cooling connection instead of two parallel pipes. One of the most important achievements in the VV R and D has been demonstration of the necessary assembly tolerances. Further development of cutting, welding and non destructive tests (NDT) for the VV has been continued, and thermal and hydraulic tests have been performed to simulate the VV cooling conditions. With regard to the R and D for the FW/blanket and divertor, full-scale prototypical mock-ups of the FW panel, the blanket shield block and the divertor components have been successfully fabricated. These results make us confident in the validity of our design and give us possibilities of alternate fabrication methods. (author)

  3. Evaluation for In-Vessel Retention Capabilities with In-Vessel Injection and External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Ryu, In Chul; Moon, Young Tae

    2016-01-01

    If the accident has not progressed to the point of substantial changes in the core geometry, establishing adequate cooling is as straightforward as re-establishing flow through the reactor core. However, if the accident has progressed to the point where the core geometry is substantially altered as a result of material melting and relocation, as was the case in the TMI-2 accident, the means of cooling the debris are not as straightforward. From this time on, the reactor core was either completely or nearly covered by water, with high pressure injection flow initiated shortly after three hours into the accident. However, the core debris was not coolable in this configuration and a substantial quantity of molten core material drained into the bypass region, with approximately twenty metric tons of molten debris draining into the reactor pressure vessel (RPV) lower head. Hence, the core configuration developed at approximately three hours into the accident was not coolable, even submerged in water. The purpose of this paper is to evaluate in-vessel retention capabilities with in-vessel injection (IVI) and external reactor vessel cooling (ERVC) available in a reactor application by using the integrated severe accident analysis code. The MAAP5 models were improved to facilitate evaluation of the in-vessel retention capability of APR1400. In-vessel retention capabilities have been analyzed for the APR1400 using the MAAP5.03 code. The results show that in-vessel retention is feasible when in-vessel injection is initiated within a relatively short time frame under the simulation condition used in the present study

  4. Evaluation for In-Vessel Retention Capabilities with In-Vessel Injection and External Reactor Vessel Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Seong; Ryu, In Chul; Moon, Young Tae [KEPCO Engineering and Construction Co. Ltd., Deajeon (Korea, Republic of)

    2016-10-15

    If the accident has not progressed to the point of substantial changes in the core geometry, establishing adequate cooling is as straightforward as re-establishing flow through the reactor core. However, if the accident has progressed to the point where the core geometry is substantially altered as a result of material melting and relocation, as was the case in the TMI-2 accident, the means of cooling the debris are not as straightforward. From this time on, the reactor core was either completely or nearly covered by water, with high pressure injection flow initiated shortly after three hours into the accident. However, the core debris was not coolable in this configuration and a substantial quantity of molten core material drained into the bypass region, with approximately twenty metric tons of molten debris draining into the reactor pressure vessel (RPV) lower head. Hence, the core configuration developed at approximately three hours into the accident was not coolable, even submerged in water. The purpose of this paper is to evaluate in-vessel retention capabilities with in-vessel injection (IVI) and external reactor vessel cooling (ERVC) available in a reactor application by using the integrated severe accident analysis code. The MAAP5 models were improved to facilitate evaluation of the in-vessel retention capability of APR1400. In-vessel retention capabilities have been analyzed for the APR1400 using the MAAP5.03 code. The results show that in-vessel retention is feasible when in-vessel injection is initiated within a relatively short time frame under the simulation condition used in the present study.

  5. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  6. Irradiation effects on plasma diagnostic components

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Iida, Toshiyuki; Ikeda, Yujiro

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m 2 and 1 MWa/m 2 , respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  7. Irradiation effects on plasma diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Takeo [ed.] [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Iida, Toshiyuki; Ikeda, Yujiro [and others

    1998-10-01

    One of the most important issues to develop the diagnostics for the experimental thermonuclear reactor such as ITER is the irradiation effects on the diagnostics components. Typical neutron flux and fluence on the first wall are 1 MW/m{sup 2} and 1 MWa/m{sup 2}, respectively for ITER. In such radiation condition, most of the present diagnostics could not survive so that those will be planed to be installed far from the vacuum vessel. However, some diagnostics sensors such as bolometers and magnetic probes still have to be install inside vessel. And many transmission components for lights, wave and electric signals are inevitable even inside vessel. As a part of this R and D program of the ITER Engineering Design Activities (EDA), we carried out the irradiation tests on the basic materials of the transmission components and in-vessel diagnostics sensors in order to identify radiation hardened materials that can be used for diagnostic systems. (J.P.N.)

  8. Improvements in the Quantitative Assessment of Cerebral Blood Volume and Flow with the Removal of Vessel Voxels from MR Perfusion Images

    Directory of Open Access Journals (Sweden)

    Michael Mu Huo Teng

    2013-01-01

    Full Text Available Objective. To improve the quantitative assessment of cerebral blood volume (CBV and flow (CBF in the brain voxels from MR perfusion images. Materials and Methods. Normal brain parenchyma was automatically segmented with the time-to-peak criteria after cerebrospinal fluid removal and preliminary vessel voxel removal. Two scaling factors were calculated by comparing the relative CBV and CBF of the segmented normal brain parenchyma with the absolute values in the literature. Using the scaling factors, the relative values were converted to the absolute CBV and CBF. Voxels with either CBV > 8 mL/100 g or CBF > 100 mL/100 g/min were characterized as vessel voxels and were excluded from the quantitative measurements. Results. The segmented brain parenchyma with normal perfusion was consistent with the angiographic findings for each patient. We confirmed the necessity of dual thresholds including CBF and CBV for proper removal of vessel voxels. The scaling factors were 0.208 ± 0.041 for CBV, and 0.168 ± 0.037, 0.172 ± 0.037 for CBF calculated using standard and circulant singular value decomposition techniques, respectively. Conclusion. The automatic scaling and vessel removal techniques provide an alternative method for obtaining improved quantitative assessment of CBV and CBF in patients with thromboembolic cerebral arterial disease.

  9. The optimal monochromatic spectral computed tomographic imaging plus adaptive statistical iterative reconstruction algorithm can improve the superior mesenteric vessel image quality

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiao-Ping; Zuo, Zi-Wei; Xu, Ying-Jin; Wang, Jia-Ning [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Liu, Huai-Jun, E-mail: hebeiliu@outlook.com [Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000 (China); Liang, Guang-Lu [CT/MRI room, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000 (China); Gao, Bu-Lang, E-mail: browngao@163.com [Department of Medical Research, Shijiazhuang First Hospital, Shijiazhuang, Hebei, 050011 (China)

    2017-04-15

    Objective: To investigate the effect of the optimal monochromatic spectral computed tomography (CT) plus adaptive statistical iterative reconstruction on the improvement of the image quality of the superior mesenteric artery and vein. Materials and methods: The gemstone spectral CT angiographic data of 25 patients were reconstructed in the following three groups: 70 KeV, the optimal monochromatic imaging, and the optimal monochromatic plus 40%iterative reconstruction mode. The CT value, image noises (IN), background CT value and noises, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image scores of the vessels and surrounding tissues were analyzed. Results: In the 70 KeV, the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group, the mean scores of image quality were 3.86, 4.24 and 4.25 for the superior mesenteric artery and 3.46, 3.78 and 3.81 for the superior mesenteric vein, respectively. The image quality scores for the optimal monochromatic and the optimal monochromatic plus 40% iterative reconstruction groups were significantly greater than for the 70 KeV group (P < 0.05). The vascular CT value, image noise, background noise, CNR and SNR were significantly (P < 0.001) greater in the optimal monochromatic and the optimal monochromatic images plus 40% iterative reconstruction group than in the 70 KeV group. The optimal monochromatic plus 40% iterative reconstruction group had significantly (P < 0.05) lower image and background noise but higher CNR and SNR than the other two groups. Conclusion: The optimal monochromatic imaging combined with 40% iterative reconstruction using low-contrast agent dosage and low injection rate can significantly improve the image quality of the superior mesenteric artery and vein.

  10. Imaging Cytoskeleton Components by Electron Microscopy.

    Science.gov (United States)

    Svitkina, Tatyana

    2016-01-01

    The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton. This article describes application of rotary shadowing (or metal replica) EM for visualization of the cytoskeleton. The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction of cells to expose their cytoskeleton, chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved, and individual proteins can be identified by immunogold labeling. More importantly, replica EM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high resolution structural organization of the cytoskeleton in the same cell.

  11. The pressure vessel for the NSF tandem

    International Nuclear Information System (INIS)

    Jones, C.W.

    1979-04-01

    The pressure vessel is a major component of the 30 MV tandem Van de Graaff electrostatic accelerator to be used in nuclear structure research at Daresbury Laboratory. The accelerator will be capable of accelerating the full range of ions in the form of a beam. Acceleration takes place in a vertical evacuated tube (beam tube) by means of a high potential on a terminal at the central position, the terminal and beam tube assembly being supported by an insulated stack structure within the pressure vessel. Under operating conditions the vessel is filled with sulphur hexafluoride gas (SF 6 ) at high pressure which acts as an insulating medium between the centre terminal and the vessel wall. The vessel is situated inside a concrete tower which besides supporting the injector room above the vessel also acts as radiation shielding around the accelerator. The report covers: functional requirements; fundamental considerations with regard to the design and procurement; detail design; materials; manufacture; acceptance test; surface treatment; final leak test. (U.K.)

  12. What is cerebral small vessel disease?

    International Nuclear Information System (INIS)

    Onodera, Osamu

    2011-01-01

    An accumulating amount of evidence suggests that the white matter hyperintensities on T 2 weighted brain magnetic resonance imaging predict an increased risk of dementia and gait disturbance. This state has been proposed as cerebral small vessel disease, including leukoaraiosis, Binswanger's disease, lacunar stroke and cerebral microbleeds. However, the concept of cerebral small vessel disease is still obscure. To understand the cerebral small vessel disease, the precise structure and function of cerebral small vessels must be clarified. Cerebral small vessels include several different arteries which have different anatomical structures and functions. Important functions of the cerebral small vessels are blood-brain barrier and perivasucular drainage of interstitial fluid from the brain parenchyma. Cerebral capillaries and glial endfeet, take an important role for these functions. However, the previous pathological investigations on cerebral small vessels have focused on larger arteries than capillaries. Therefore little is known about the pathology of capillaries in small vessel disease. The recent discoveries of genes which cause the cerebral small vessel disease indicate that the cerebral small vessel diseases are caused by a distinct molecular mechanism. One of the pathological findings in hereditary cerebral small vessel disease is the loss of smooth muscle cells, which is an also well-recognized finding in sporadic cerebral small vessel disease. Since pericytes have similar character with the smooth muscle cells, the pericytes should be investigated in these disorders. In addition, the loss of smooth muscle cells may result in dysfunction of drainage of interstitial fluid from capillaries. The precise correlation between the loss of smooth muscle cells and white matter disease is still unknown. However, the function that is specific to cerebral small vessel may be associated with the pathogenesis of cerebral small vessel disease. (author)

  13. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    International Nuclear Information System (INIS)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10 -4 Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  14. ITER cryostat main chamber and vacuum vessel pressure suppression system design

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Akira; Nakahira, Masataka; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakashima, Yoshitane; Ueno, Osamu

    1999-03-01

    Design of Cryostat Main Chamber and Vacuum Vessel Pressure Suppression System (VVPS) of International Thermonuclear Experimental Reactor (ITER) has been conducted. The cryostat is a cylindrical vessel that includes in-vessel component such as vacuum vessel, superconducting toroidal coils and poloidal coils. This cryostat provides the adiabatic vacuum about 10{sup -4} Pa for the superconducting coils operating at 4 K and forms the second confinement barrier to tritium. The adiabatic vacuum is to reduce thermal loads applied to the superconducting coils and their supports so as to keep their temperature 4 K. The VVPS consists of a suppression tank located under the lower bio-shield and 4 relief pipes to connect the vacuum vessel and the suppression tank. The VVPS is to keep the maximum pressure rise of the vacuum vessel below the design value of 0.5 MPa in case of the in-vessel LOCA (water spillage from in-vessel component). The spilled water and steam are lead to the suppression tank through the relief pipes when the internal pressure of vacuum vessel is over 0.2 MPa, and then the internal pressure is kept below 0.5 MPa. This report summarizes the structural design of the cryostat main chamber and pressure suppression system, together with their fabrication and installation. (author)

  15. Principal component analysis of image gradient orientations for face recognition

    NARCIS (Netherlands)

    Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja

    We introduce the notion of Principal Component Analysis (PCA) of image gradient orientations. As image data is typically noisy, but noise is substantially different from Gaussian, traditional PCA of pixel intensities very often fails to estimate reliably the low-dimensional subspace of a given data

  16. Collateral vessels in moyamoya disease : comparison of MR and MRA with conventional angiography

    International Nuclear Information System (INIS)

    Shim, Joo Eun; Yoon, Dae Young; Yi, Jeong Geun; Kim, Ho Chul; Choi, Chul Sun; Bae, Sang Hoon

    1998-01-01

    To determine the value of magnetic resonance imaging (MR) and magnetic resonance angiography (MRA) in assessing collateral vessels of moyamoya disease. Twenty-four patients with moyamoya disease who underwent MR, 3D TOF MRA, and conventional angiography participated in this study. Two radiologists working independently and with no knowledge of the angiographic findings, interpreted the MR and MRA images. To determine the presence of parenchymal and leptomeningeal collaterals (48 hemispheres) and transdural collaterals (38 hemispheres in 19 patients were depicted by angiography of the external carotid), the findings were compared with those of angiography. Parenchymal, leptomeningeal, and transdural collaterals were depicted by conventional angiography in 34 (71%), 32 (67%), and 11 (29%) hemispheres respectively. The sensitivity and specificity of MR/MRA for collateral vessels were 79.1/88.1 % for parenchymal collaterals, 72.1/88.1 % for leptomeningeal collaterals, and 0.1/18.1 % for transdural collaterals, respectively. Respective sensitivity and specificity of MR/MRA were 88.94/94.1% for leptomeningeal collaterals, and 18.93/55.1 % for transdural collaterals, when the prominent posterior cerebral and external carotid artery were regarded as secondary signs of leptomeningeal and transdural collateral vessels. In moyamoya disease, MR and MRA are useful imaging modalities for the assessment of collateral vessels. The prominent posterior cerebral artery and external carotid artery can be useful secondary signs of leptomeningeal and transdural collateral vessels. (author). 18 refs., 2 figs

  17. Effect of a novel motion correction algorithm (SSF) on the image quality of coronary CTA with intermediate heart rates: Segment-based and vessel-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianwen, E-mail: qianwen18@126.com; Li, Pengyu, E-mail: lipyu818@gmail.com; Su, Zhuangzhi, E-mail: suzhuangzhi@xwh.ccmu.edu.cn; Yao, Xinyu, E-mail: 314985151@qq.com; Wang, Yan, E-mail: wy19851121@126.com; Wang, Chen, E-mail: fskwangchen@gmail.com; Du, Xiangying, E-mail: duxying_xw@163.com; Li, Kuncheng, E-mail: kuncheng.li@gmail.com

    2014-11-15

    Highlights: • SSF provided better image quality than single-sector and bi-sector reconstruction among the intermediate heart rates (65–75 bpm). • Evidence for the application of prospective ECG-triggered coronary CTA with SSF onto an expanded heart rate range. • Information about the inconsistent effectiveness of SSF among the segments of coronary artery. - Abstract: Purpose: To evaluate the effect of SnapShot Freeze (SSF) reconstruction at an intermediate heart-rate (HR) range (65–75 bpm) and compare this method with single-sector reconstruction and bi-sector reconstruction on segmental and vessel bases in retrospective coronary computed tomography angiography (CCTA). Materials and methods: Retrospective electrocardiogram-gated CCTA was performed on 37 consecutive patients with HR between 65 and 75 bpm using a 64-row CT scanner. Retrospective single-sector reconstruction, bi-sector reconstruction, and SSF were performed for each patient. Multi-phase single-sector reconstruction was performed to select the optimal phase. SSF and bi-sector images were also reconstructed at the optimal phase. The images were interpreted in an intent-to-diagnose fashion by two experienced readers using a 5-point scale, with 3 points as diagnostically acceptable. Image quality among the three reconstruction groups were compared on per-patient, per-vessel, and per-segment bases. Results: The average HR of the enrolled patients was 69.4 ± 2.7 bpm. A total of 111 vessels and 481 coronary segments were assessed. SSF provided significantly higher interpretability of the coronary segments than bi-sector reconstructions. The qualified and excellent rates of SSF (97.9% and 82.3%) were significantly higher than those of single-sector (92.9% and 66.3%) and bi-sector (90.9% and 64.7%) reconstructions. The image quality score (IQS) using SSF was also significantly higher than those of single-sector and bi-sector reconstructions both on per-patient and per-vessel bases. On per

  18. Float level switch for a nuclear power plant containment vessel

    International Nuclear Information System (INIS)

    Powell, J.G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures

  19. Float level switch for a nuclear power plant containment vessel

    Science.gov (United States)

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  20. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    Science.gov (United States)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  1. Seismic proving test of PWR reactor containment vessel

    International Nuclear Information System (INIS)

    Akiyama, H.; Yoshikawa, T.; Tokumaru, Y.

    1987-01-01

    The seismic reliability proving tests of nuclear power plant facilities are carried out by Nuclear Power Engineering Test Center (NUPEC), using the large-scale, high-performance vibration of Tadotsu Engineering Laboratory, and sponsored by the Ministry of International Trade and Industry (MITI). In 1982, the seismic reliability proving test of PWR containment vessel started using the test component of reduced scale 1/3.7 and the test component proved to have structural soundness against earthquakes. Subsequently, the detailed analysis and evaluation of these test results were carried out, and the analysis methods for evaluating strength against earthquakes were established. Whereupon, the seismic analysis and evaluation on the actual containment vessel were performed by these analysis methods, and the safety and reliability of the PWR reactor containment vessel were confirmed

  2. Completely integrated prestressed-concrete reactor pressure vessel, type 'Star'

    International Nuclear Information System (INIS)

    Neunert, B.; Jueptner, G.; Kumpf, H.

    1975-01-01

    The star support vessel is suitable for the connection to all primary circuit systems consisting of a main vessel and a number of satellite vessels around and connected to it, i.e. for LWR, HTR and process reactor. It must be made clear, however, that the PWR in particular with its components does not appear to be suited for the optimum incorporation in a prestressed-concrete pressure vessel system, no matter what kind. There are clear concepts about modifications which, however, require considerable development expenditure. (orig./LH) [de

  3. Evaluation of the robustness of estimating five components from a skin spectral image

    Science.gov (United States)

    Akaho, Rina; Hirose, Misa; Tsumura, Norimichi

    2018-04-01

    We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.

  4. Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T.

    Science.gov (United States)

    Kolb, Alexander; Robinson, Simon; Stelzeneder, David; Schreiner, Markus; Chiari, Catharina; Windhager, Reinhard; Trattnig, Siegfried; Bohndorf, Klaus

    2018-02-26

    To evaluate the clinical feasibility of ultrahigh field 7-T SWI to visualize vessels and assess their density in the immature epiphyseal cartilage of human knee joints. 7-T SWI of 12 knees (six healthy volunteers, six patients with osteochondral abnormalities; mean age 10.7 years; 3 female, 9 male) were analysed by two readers, classifying intracartilaginous vessel densities (IVD) in three grades (no vessels, low IVD and high IVD) in defined femoral, tibial and patellar zones. Differences between patients and volunteers, IVDs in different anatomic locations, differences between cartilage overlying osteochondral abnormalities and corresponding normal zones, and differences in age groups were analysed. Interrater reliability showed moderate agreement between the two readers (κ = 0.58, p < 0.001). The comparison of IVDs between patients and volunteers revealed no significant difference (p = 0.706). The difference between zones in the cartilage overlying osteochondral abnormalities to corresponding normal zones showed no significant difference (p = 0.564). IVDs were related to anatomic location, with decreased IVDs in loading areas (p = 0.003). IVD was age dependent, with more vessels present in the younger participants (p = 0.001). The use of SWI in conjunction with ultrahigh field MRI makes the in vivo visualization of vessels in the growing cartilage of humans feasible, providing insights into the role of the vessel network in acquired disturbances. • SWI facilitates in vivo visualization of vessels in the growing human cartilage. • Interrater reliability of the intracartilaginous vessel grading was moderate. • Intracartilaginous vessel densities are dependent on anatomical location and age.

  5. Advanced Approach of Reactor Pressure Vessel In-service Inspection

    International Nuclear Information System (INIS)

    Matokovic, A.; Picek, E.; Pajnic, M.

    2006-01-01

    The most important task of every utility operating a nuclear power plant is the continuously keeping of the desired safety and reliability level. This is achieved by the performance of numerous inspections of the components, equipment and system of the nuclear power plant in operation and in particular during the scheduled maintenance periods at re-fueling time. Periodic non-destructive in-service inspections provide most relevant criteria of the integrity of primary circuit pressure components. The task is to reliably detect defects and realistically size and characterize them. One of most important and the most extensive examination is a reactor pressure vessel in-service inspection. That inspection demand high standards of technology and quality and continual innovation in the field of non-destructive testing (NDT) advanced technology as well as regarding reactor pressure vessel tool and control systems. A remote underwater contact ultrasonic technique is employed for the examination of the defined sections (reactor welds), whence eddy current method is applied for clad surface examinations. Visual inspection is used for examination of the vessel inner surface. The movement of probes and data positioning are assured by using new reactor pressure vessel tool concept that is fully integrated with NDT systems. The successful performance is attributed thorough pre-outage planning, training and successful performance demonstration qualification of chosen NDT techniques on the specimens with artificial and/or real defects. Furthermore, use of advanced approach of inspection through implementation the state of the art examination equipment significantly reduced the inspection time, radiation exposure to examination personnel, shortening nuclear power plant outage and cutting the total inspection costs. The advanced approach as presented in this paper offer more flexibility of application (non-destructive tests, local grinding action as well as taking of boat samples

  6. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding.

    Directory of Open Access Journals (Sweden)

    Khan BahadarKhan

    Full Text Available Diabetic Retinopathy (DR harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases along with the ground truth data that has been precisely marked by the experts.

  7. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, F.J.; Prusova, A.; Fereidouni, F.; Amerongen, H.V.; As, H. Van; Scheenen, T.W.J.; Bader, A.N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  8. Improvement of retinal blood vessel detection by spur removal and Gaussian matched filtering compensation

    Science.gov (United States)

    Xiao, Di; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. In this paper, we proposed approaches for improving the quality of blood vessel detection based on our initial blood vessel detection methods. A blood vessel spur pruning method has been developed for removing the blood vessel spurs both on vessel medial lines and binary vessel masks, which are caused by artifacts and side-effect of Gaussian matched vessel enhancement. A Gaussian matched filtering compensation method has been developed for removing incorrect vessel branches in the areas of low illumination. The proposed approaches were applied and tested on the color fundus images from one publicly available database and our diabetic retinopathy screening dataset. A preliminary result has demonstrated the robustness and good performance of the proposed approaches and their potential application for improving retinal blood vessel detection.

  9. Utility of Vascular Enhancement Technique (ClarifyTM) in Ultrasonographic Evaluation of Abdominal Vessels

    International Nuclear Information System (INIS)

    Oh, Jong Young; Cho, Jin Han; Choi, Jong Cheol; Shin, Tae Beom; Lee, Jin Hwa; Yoon, Seong Kuk; Nam, Kyung Jin

    2006-01-01

    Vascular enhancement (VE) technology(ClarifyTM) is a new technique in vascular, B-mode imaging. The purpose of this study was to evaluate the value of VE technology in ultrasonographic diagnosis of abdominal vasculature. Seventy-one adult patients (39 men and 32 women: age range, 25-89 years: mean age, 56 years) who had undergone abdominal ultrasonography were included in this study. The imaging was performed with a 1.8-4.0 MHz convex array transducer (SONOLINE, Antares, Siemens Medical Solutions, WA) by an abdominal radiologist. The radiologist obtained images of the same vascular area with each of conventional ultrasonography imaging (CUS), tissue harmonic imaging (THI), CUS plus VE technique and THI plus VE technique. Images were divided into normal (56) and abnormal (15) groups. The vessel visibility, conspicuity of the vascular wall and contrast resolution with adjacent structures were evaluated in the normal group, and the lesion conspicuity and border sharpness were evaluated in the abnormal group. On the PACS monitor, the images were graded into four grades by two radiologists in consensus. Statistical analysis was performed using Wilcoxon signed rank test. In the normal group, all parameters of the ultrasonographic imaging which applied the VE technique were superior to those of the imaging without VE technique (p < 0.05). In the abnormal group, combined use of VE technique with CUS or THI provided better results than CUS or THI alone in terms of lesion conspicuity and border sharpness (p < 0.05). THI combined with VE technique provided the best image quality among the 4 ultrasonographic methods examined in this study for the evaluation of both normal and abnormal abdominal vessels (p < 0.05). VE technology was a helpful technique to evaluate the abdominal vasculature. Furthermore, VE technique combined with THI provided better image quality than other ultrasonographic methods in the evaluation of abdominal vessels

  10. Manipulator for testing a top-opened reactor pressure vessel

    International Nuclear Information System (INIS)

    Bauer, R.; Kastl, H.

    1991-01-01

    The design is described of a manipulator to be inserted into the inside of reactor pressure vessels opened at the top. The main components of the manipulator include a fixed column protruding into the pressure vessel and a support which is slidable on the column and carries the bearing component for the measuring, testing, inspection and repair instruments. The device includes a driving equipment for the support as well as the power supply for the sets accommodated on the support, with the aim to reduce the failure rate of the manipulator as a whole, shorten the time necessary for its assembling and thus the time of staying in the reactor pressure vessel and, at the same time, make its maintenance and operation easier. (Z.S.). 13 figs

  11. A study of reactor vessel integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hoon [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Kim, Jong Kyung; Shin, Chang Ho; Seo, Bo Kyun [Hanyang Univ., Seoul (Korea, Republic of)

    1999-02-15

    The fast neutron fluence at the Reactor Pressure Vessel(RPV) of KNGR designed for 60 years lifetime was calculated by full-scope Monte Carlo simulation for reactor vessel integrity assessment. KNGR core geometry was modeled on a three-dimensional representation of the one-sixteenth of the reactor in-vessel component. Each fuel assemblies were modeled explicitly, and each fuel pins were axially divided into 5 segments. The maximum flux of 4.3 x 10{sup 10} neutrons/cm{sup 2}. sec at the RPV was obtained by tallying neutrons crossing the beltline of inner surface of the RPV.

  12. Independent component analysis of dynamic contrast-enhanced computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Koh, T S [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Yang, X [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798 (Singapore); Bisdas, S [Department of Diagnostic and Interventional Radiology, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7, D-60590 Frankfurt (Germany); Lim, C C T [Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433 (Singapore)

    2006-10-07

    Independent component analysis (ICA) was applied on dynamic contrast-enhanced computed tomography images of cerebral tumours to extract spatial component maps of the underlying vascular structures, which correspond to different haemodynamic phases as depicted by the passage of the contrast medium. The locations of arteries, veins and tumours can be separately identified on these spatial component maps. As the contrast enhancement behaviour of the cerebral tumour differs from the normal tissues, ICA yields a tumour component map that reveals the location and extent of the tumour. Tumour outlines can be generated using the tumour component maps, with relatively simple segmentation methods. (note)

  13. Optimization of reactor pressure vessel internals segmentation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering

    2017-11-15

    One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.

  14. An approach to localize the retinal blood vessels using bit planes and centerline detection.

    Science.gov (United States)

    Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G

    2012-11-01

    The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Multi-component quantitative magnetic resonance imaging by phasor representation

    NARCIS (Netherlands)

    Vergeldt, Frank J.; Prusova, Alena; Fereidouni, Farzad; Amerongen, Van Herbert; As, Van Henk; Scheenen, Tom W.J.; Bader, Arjen N.

    2017-01-01

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic

  16. Preliminary structural assessment of DEMO vacuum vessel against a vertical displacement event

    International Nuclear Information System (INIS)

    Mozzillo, Rocco; Tarallo, Andrea; Marzullo, Domenico; Bachmann, Christian; Di Gironimo, Giuseppe; Mazzone, Giuseppe

    2016-01-01

    Highlights: • The paper focuses on a preliminary structural analysis of the current concept design of DEMO vacuum vessel. • The Vacuum Vessel was checked against the VDE in combinations with the weight force of all components that the vessel shall bear. • Different configurations for the vacuum vessel supports are considered, showing that the best solution is VV supported at the lower port. • The analyses evaluated the “P damage” according to RCC-MRx code. - Abstract: This paper focuses on a preliminary structural analysis of the current concept design of DEMO vacuum vessel (VV). The VV structure is checked against a vertical load due to a Vertical Displacement Event in combination with the weight force of all components that the main vessel shall bear. Different configurations for the supports are considered. Results show that the greatest safety margins are reached when the tokamak is supported through the lower ports rather than the equatorial ports, though all analyzed configurations are compliant with RCC-MRx design rules.

  17. Preliminary structural assessment of DEMO vacuum vessel against a vertical displacement event

    Energy Technology Data Exchange (ETDEWEB)

    Mozzillo, Rocco, E-mail: rocco.mozzillo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Tarallo, Andrea; Marzullo, Domenico [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Bachmann, Christian [EUROfusion PMU, Boltzmannstraße 2, 85748 Garching (Germany); Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio 80, 80125, Naples (Italy); Mazzone, Giuseppe [Unità Tecnica Fusione - ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2016-11-15

    Highlights: • The paper focuses on a preliminary structural analysis of the current concept design of DEMO vacuum vessel. • The Vacuum Vessel was checked against the VDE in combinations with the weight force of all components that the vessel shall bear. • Different configurations for the vacuum vessel supports are considered, showing that the best solution is VV supported at the lower port. • The analyses evaluated the “P damage” according to RCC-MRx code. - Abstract: This paper focuses on a preliminary structural analysis of the current concept design of DEMO vacuum vessel (VV). The VV structure is checked against a vertical load due to a Vertical Displacement Event in combination with the weight force of all components that the main vessel shall bear. Different configurations for the supports are considered. Results show that the greatest safety margins are reached when the tokamak is supported through the lower ports rather than the equatorial ports, though all analyzed configurations are compliant with RCC-MRx design rules.

  18. Conceptual design finalisation of the ITER In-Vessel Viewing and Metrology System (IVVS)

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, Gregory, E-mail: gregory.dubus@f4e.europa.eu [Fusion for Energy, c/ Josep Pla, n°2 - Torres Diagonal Litoral - Edificio B3, 08019 Barcelona (Spain); Puiu, Adrian; Damiani, Carlo; Van Uffelen, Marco; Lo Bue, Alessandro; Izquierdo, Jesus; Semeraro, Luigi [Fusion for Energy, c/ Josep Pla, n°2 - Torres Diagonal Litoral - Edificio B3, 08019 Barcelona (Spain); Martins, Jean-Pierre; Palmer, Jim [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    The In-Vessel Viewing and Metrology System (IVVS) is a fundamental tool for the ITER machine operations, aiming at performing inspections as well as providing information related to the erosion of in-vessel components. Periodically or on request, the IVVS probes will be deployed into the Vacuum Vessel from their storage positions (still within the ITER primary confinement) in order to perform both viewing and metrology on plasma facing components (blanket, divertor, heating/diagnostic plugs, test blanket modules) and, more generically, to provide information on the status of the in-vessel components. In 2011, the IO proposed to simplify and strengthen the six IVVS port extensions situated at the divertor level. Among other important consequences, such as the relocation of the Glow Discharge Cleaning (GDC) electrodes at other levels of the machine, this major design change implied the need for a substantial redesign of the IVVS plug, which took part to an on-going effort to bring the integrated IVVS concept – including the scanning probe and its deployment system – to the level of maturity suitable for the Conceptual Design Review. This paper gives an overview of the various design and R and D activities in progress: plug design integration, probe concept validation under environmental conditions, development of a metrology strategy, the whole supported by a nuclear analysis.

  19. Design improvements and R and D achievements for VV and in-vessel components towards ITER construction

    International Nuclear Information System (INIS)

    Ioki, K.; Barabaschi, P.; Barabash, V.

    2003-01-01

    During the preparation of the procurement specifications for long lead-time items, several detailed vacuum vessel (VV) design improvements are being pursued, such as elimination of the inboard triangular support, adding a separate interspace between inner and outer shells for independent leak detection of field joints, and revising the VV support system to gain a more comfortable structural performance margin. Improvements to the blanket design are also under investigation, an inter-modular key instead of two prismatic keys and a co-axial inlet outlet cooling connection instead of two parallel pipes. One of the most important achievements in the VV R and D has been demonstration of the necessary assembly tolerances. Further development of cutting, welding and nondestructive tests (NDT) for the VV has been continued, and thermal and hydraulic tests have been performed to simulate the VV cooling conditions. In FW/blanket and divertor, full-scale prototypical mock-ups of the FW panel, the blanket shield block, and the divertor components, have been successfully fabricated. These results make us confident in the validity of our design and give us possibilities of alternate fabrication methods. (author)

  20. Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals.

    Science.gov (United States)

    Banaee, Touka; Pourreza, Hamidreza; Doosti, Hassan; Abrishami, Mojtaba; Ehsaei, Asieh; Basiry, Mohsen; Pourreza, Reza

    2017-01-01

    To compare the distribution of different sized vessels using digital photographs of the ocular surface of diabetic and normal individuals. In this cross-sectional study, red-free conjunctival photographs of diabetic and normal individuals, aged 30-60 years, were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The image areas occupied by vessels (AOV) of different diameters were calculated. The main outcome measure was the distribution curve of mean AOV of different sized vessels. Secondary outcome measures included total AOV and standard deviation (SD) of AOV of different sized vessels. Two hundred and sixty-eight diabetic patients and 297 normal (control) individuals were included, differing in age (45.50 ± 5.19 vs. 40.38 ± 6.19 years, P distribution curves of mean AOV differed between patients and controls (smaller AOV for larger vessels in patients; P distribution curve of vessels compared to controls. Presence of diabetes mellitus is associated with contraction of larger vessels in the conjunctiva. Smaller vessels dilate with diabetic retinopathy. These findings may be useful in the photographic screening of diabetes mellitus and retinopathy.

  1. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  2. Effect of blood vessels on light distribution in optogenetic stimulation of cortex.

    Science.gov (United States)

    Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin

    2015-05-15

    In this Letter, the impact of blood vessels on light distribution during photostimulation of cortical tissue in small rodents is investigated. Brain optical properties were extracted using a double-integrating sphere setup, and optical coherence tomography was used to image cortical vessels and capillaries to generate a three-dimensional angiogram of the cortex. By combining these two datasets, a complete volumetric structure of the cortical tissue was developed and linked to a Monte Carlo code which simulates light propagation in this inhomogeneous structure and illustrates the effect of blood vessels on the penetration depth and pattern preservation in optogenetic stimulation.

  3. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    Science.gov (United States)

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  4. Infrared and visible image fusion based on robust principal component analysis and compressed sensing

    Science.gov (United States)

    Li, Jun; Song, Minghui; Peng, Yuanxi

    2018-03-01

    Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.

  5. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  6. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals

    International Nuclear Information System (INIS)

    1999-10-01

    components addressed in the reports. This report addresses the pressurized water reactor vessel internals (taken as a single component). The IAEA acknowledges the work of all contributors to drafting and review of this report

  7. Detection of vessel wall calcifications in vertebral arteries using susceptibility weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Lisa C.; Boeker, Sarah M.; Bender, Yvonne Y.; Fallenberg, Eva M.; Wagner, Moritz; Hamm, Bernd; Makowski, Marcus R. [Department of Radiology, Charite, Berlin (Germany); Liebig, Thomas [Department of Neuroradiology, Charite, Berlin (Germany)

    2017-09-15

    Calcification of the brain supplying arteries has been linked to an increased risk for cerebrovascular disease. The purpose of this study was to test the potential of susceptibility weighted MR imaging (SWMR) for the detection of vertebral artery calcifications, based on CT as a reference standard. Four hundred seventy-four patients, who had received head CT and 1.5 T MR scans with SWMR, including the distal vertebral artery, between January 2014 and December 2016, were retrospectively evaluated and 389 patients were included. Sensitivity and specificity for the detection of focal calcifications and intra- and interobserver agreement were calculated for SWMR and standard MRI, using CT as a standard of reference. The diameter of vertebral artery calcifications was used to assess correlations between imaging modalities. Furthermore, the degree of vessel stenosis was determined in 30 patients, who had received an additional angiography. On CT scans, 40 patients showed a total of 52 vertebral artery calcifications. While SWMR reached a sensitivity of 94% (95% CI 84-99%) and a specificity of 97% (95% CI 94-98%), standard MRI yielded a sensitivity of 33% (95% CI 20-46%), and a specificity of 93% (95% CI 90-96%). Linear regression analysis of size measurements confirmed a close correlation between SWMR and CT measurements (R {sup 2} = 0.74, p < 0.001). Compared to standard MRI (ICC = 0.52; CI 0.45-0.59), SWMR showed a higher interobserver agreement for calcification measurements (ICC = 0.84; CI 0.81-0.87). For detection of distal vertebral artery calcifications, SWMR demonstrates a performance comparable to CT and considerably higher than conventional MRI. (orig.)

  8. The BWR vessel and internals project - 2001 and beyond

    International Nuclear Information System (INIS)

    Wagoner, V.; Mulford, T.

    2001-01-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  9. The BWR vessel and internals project - 2001 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, V. [Carolina Power and Light, Progress Energy Building, NC (United States); Mulford, T. [Electric Power Research Institute, Palo Alto, CA (United States)

    2001-07-01

    The BWR Vessel and Internals Project (BWRVIP) is an international association of utilities owning boiling water reactors (BWRs). Figure 1 contains a list of current BWRVIP member utilities. The association was formed in 1994 with the following objectives: to lead the BWR industry toward generic resolution of reactor pressure vessel and internals material condition issues; to identify or develop generic, cost-effective strategies from which each operating plant will select the most appropriate alternative; to serve as the focal point for the regulatory interface with the industry on BWR vessel and internals issues; and to share information and promote communication and cooperation among participating utilities. The initial issue faced by the BWRVIP was core shroud cracking that had been observed in a number of BWRs. The BWRVIP reacted by quickly developing a set of industry guidelines to assist utilities in inspecting, evaluating, and, if necessary, repairing cracked shrouds. Subsequently, the BWRVIP pro-actively developed a comprehensive set of guidelines for managing degradation in other reactor internal components, including the reactor pressure vessel itself. The major components addressed by the BWRVIP are included. (author)

  10. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images

    OpenAIRE

    Dzyubak, Oleksandr P.; Ritman, Erik L.

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to ma...

  11. Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method.

    Science.gov (United States)

    Lee, Kyung Eun; Kwon, Soon-Sung; Ji, Yoon Cheol; Shin, Eun-Seok; Choi, Jin-Ho; Kim, Sung Joon; Shim, Eun Bo

    2016-08-01

    Flow resistances exerted in the coronary arteries are the key parameters for the image-based computer simulation of coronary hemodynamics. The resistances depend on the anatomical characteristics of the coronary system. A simple and reliable estimation of the resistances is a compulsory procedure to compute the fractional flow reserve (FFR) of stenosed coronary arteries, an important clinical index of coronary artery disease. The cardiac muscle volume reconstructed from computed tomography (CT) images has been used to assess the resistance of the feeding coronary artery (muscle volume-based method). In this study, we estimate the flow resistances exerted in coronary arteries by using a novel method. Based on a physiological observation that longer coronary arteries have more daughter branches feeding a larger mass of cardiac muscle, the method measures the vessel lengths from coronary angiogram or CT images (vessel length-based method) and predicts the coronary flow resistances. The underlying equations are derived from the physiological relation among flow rate, resistance, and vessel length. To validate the present estimation method, we calculate the coronary flow division over coronary major arteries for 50 patients using the vessel length-based method as well as the muscle volume-based one. These results are compared with the direct measurements in a clinical study. Further proving the usefulness of the present method, we compute the coronary FFR from the images of optical coherence tomography.

  12. Emergency venting of pressure vessels

    International Nuclear Information System (INIS)

    Steinkamp, H.

    1995-01-01

    With the numerical codes developed for safety analysis the venting of steam vessel can be simulated. ATHLET especially is able to predict the void fraction depending on the vessel height. Although these codes contain a one-dimensional model they allow the description of complex geometries due to the detailed nodalization of the considered apparatus. In chemical reactors, however, the venting process is not only influenced by the flashing behaviour but additionally by the running chemical reaction in the vessel. Therefore the codes used for modelling have to consider the kinetics of the chemical reaction. Further multi-component systems and dissolving processes have to be regarded. In order to preduct the fluid- and thermodynamic process it could be helpful to use 3-dimensional codes in combination with the one-dimensional codes as used in nuclear industry to get a more detailed describtion of the running processes. (orig./HP)

  13. Improved vessel morphology measurements in contrast-enhanced multi-detector computed tomography coronary angiography with non-linear post-processing

    International Nuclear Information System (INIS)

    Ferencik, Maros; Lisauskas, Jennifer B.; Cury, Ricardo C.; Hoffmann, Udo; Abbara, Suhny; Achenbach, Stephan; Karl, W. Clem; Brady, Thomas J.; Chan, Raymond C.

    2006-01-01

    Multi-detector computed tomography (MDCT) permits detection of coronary plaque. However, noise and blurring impair accuracy and precision of plaque measurements. The aim of the study was to evaluate MDCT post-processing based on non-linear image deblurring and edge-preserving noise suppression for measurements of plaque size. Contrast-enhanced MDCT coronary angiography was performed in four subjects (mean age 55 ± 5 years, mean heart rate 54 ± 5 bpm) using a 16-slice scanner (Siemens Sensation 16, collimation 16 x 0.75 mm, gantry rotation 420 ms, tube voltage 120 kV, tube current 550 mAs, 80 mL of contrast). Intravascular ultrasound (IVUS; 40 MHz probe) was performed in one vessel in each patient and served as a reference standard. MDCT vessel cross-sectional images (1 mm thickness) were created perpendicular to centerline and aligned with corresponding IVUS images. MDCT images were processed using a deblurring and edge-preserving noise suppression algorithm. Then, three independent blinded observers segmented lumen and outer vessel boundaries in each modality to obtain vessel cross-sectional area and wall area in the unprocessed MDCT cross-sections, post-processed MDCT cross-sections and corresponding IVUS. The wall area measurement difference for unprocessed and post-processed MDCT images relative to IVUS was 0.4 ± 3.8 mm 2 and -0.2 ± 2.2 mm 2 (p 2 , respectively. In conclusion, MDCT permitted accurate in vivo measurement of wall area and vessel cross-sectional area as compared to IVUS. Post-processing to reduce blurring and noise reduced variability of wall area measurements and reduced measurement bias for both wall area and vessel cross-sectional area

  14. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  15. Novel Computerized Method for Measurement of Retinal Vessel Diameters

    Directory of Open Access Journals (Sweden)

    Hichem Guedri

    2017-03-01

    Full Text Available Several clinical studies reveal the relationship between alterations in the topologies of the human retinal blood vessel, the outcrop and the disease evolution, such as diabetic retinopathy, hypertensive retinopathy, and macular degeneration. Indeed, the detection of these vascular changes always has gaps. In addition, the manual steps are slow, which may be subjected to a bias of the perceiver. However, we can overcome these troubles using computer algorithms that are quicker and more accurate. This paper presents and investigates a novel method for measuring the blood vessel diameter in the retinal image. The proposed method is based on a thresholding segmentation and thinning step, followed by the characteristic point determination step by the Douglas-Peucker algorithm. Thereafter, it uses the active contours to detect vessel contour. Finally, Heron’s Formula is applied to assure the calculation of vessel diameter. The obtained results for six sample images showed that the proposed method generated less errors compared to other techniques, which confirms the high performance of the proposed method.

  16. DSTAR: A comprehensive tokamak resistive disruption model for vacuum vessel components

    International Nuclear Information System (INIS)

    Merrill, B.J.; Jardin, S.C.

    1987-01-01

    A computer code, DSTAR, has recently been developed to quantify the surface erosion and induced forces than can occur during major tokamak plasma disruptions. A disruption analysis has been performed for the TFCX fusion device. The limiters and inboard first wall were assumed to be clad with beryllium. Disruption simulations were performed with and without these structures present, to determine their electromagnetic influence. The results with structure show that the ablated wall material is transported poloidally, as well as radially, in the plasma causing the outermost regions of the plasma to cool. The plasma moves downward and deforms while maintaining contact with the lower limiter. This motion maintains the peak impurity radiant source directly above the exposed surface. For the disruption simulation without the vacuum vessel included, the plasma moves radially along the lower limiter until it contacts the inboard wall, causing ablation of this surface as well. The conclusion is drawn that disruption simulations that do not include both the thermal and electromagnetic response of the vaccum vessel will not result in an accurate prediction. (orig.)

  17. Aging of metal components in US nuclear reactors

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Strosnider, J.R.

    1998-01-01

    This paper presents an overview of the aging of metal components in U.S. Light Water Reactors. The types of degradation being experienced in components such as the pressure vessel, piping, reactor internals, and steam generators, and the programs being implemented to manage the degradation are discussed. (author)

  18. Body image disturbance in binge eating disorder: a comparison of obese patients with and without binge eating disorder regarding the cognitive, behavioral and perceptual component of body image.

    Science.gov (United States)

    Lewer, Merle; Nasrawi, Nadia; Schroeder, Dorothea; Vocks, Silja

    2016-03-01

    Whereas the manifestation of body image disturbance in binge eating disorder (BED) has been intensively investigated concerning the cognitive-affective component, with regard to the behavioral and the perceptual components of body image disturbance in BED, research is limited and results are inconsistent. Therefore, the present study assessed body image disturbance in BED with respect to the different components of body image in a sample of obese females (n = 31) with BED compared to obese females without an eating disorder (n = 28). The Eating Disorder Inventory-2, the Eating Disorder Examination-Questionnaire, the Body Image Avoidance Questionnaire and the Body Checking Questionnaire as well as a Digital Photo Distortion Technique based on a picture of each participant taken under standardized conditions were employed. Using two-sample t tests, we found that the participants with BED displayed significantly greater impairments concerning the cognitive-affective component of body image than the control group. Concerning the behavioral component, participants with BED reported more body checking and avoidance behavior than the controls, but group differences failed to reach significance after the Bonferroni corrections. Regarding the perceptual component, a significant group difference was found for the perceived "ideal" figure, with the individuals suffering from BED displaying a greater wish for a slimmer ideal figure than the control group. These results support the assumption that body image disturbance is a relevant factor in BED, similar to other eating disorders.

  19. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    Science.gov (United States)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  20. Fast retinal vessel detection and measurement using wavelets and edge location refinement.

    Directory of Open Access Journals (Sweden)

    Peter Bankhead

    Full Text Available The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.

  1. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.

    Science.gov (United States)

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2011-08-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.

  2. Autonomous radiation monitoring of small vessels

    International Nuclear Information System (INIS)

    Ziock, K.P.; Cheriyadat, A.; Fabris, L.; Goddard, J.; Hornback, D.; Karnowski, T.; Kerekes, R.; Newby, J.

    2011-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the land-based approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. In contrast to roadways, where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. A unique solution to this problem is based on a portal-less portal monitor designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. This paper presents the results of a recent test of the system in a maritime setting.

  3. Examining multi-component DNA-templated nanostructures as imaging agents

    Science.gov (United States)

    Jaganathan, Hamsa

    2011-12-01

    Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation

  4. Assessment and Management of ageing of major nuclear power plant components important to safety: PWR pressure vessels

    International Nuclear Information System (INIS)

    1999-10-01

    ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The NPP component addressed in the present publication is the PWR pressure vessel

  5. Superficial vessel reconstruction with a multiview camera system

    Science.gov (United States)

    Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan

    2016-01-01

    Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1  mm. PMID:26759814

  6. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    Science.gov (United States)

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  7. Rotation invariant eigenvessels and auto-context for retinal vessel detection

    Science.gov (United States)

    Montuoro, Alessio; Simader, Christian; Langs, Georg; Schmidt-Erfurth, Ursula

    2015-03-01

    Retinal vessels are one of the few anatomical landmarks that are clearly visible in various imaging modalities of the eye. As they are also relatively invariant to disease progression, retinal vessel segmentation allows cross-modal and temporal registration enabling exact diagnosing for various eye diseases like diabetic retinopathy, hypertensive retinopathy or age-related macular degeneration (AMD). Due to the clinical significance of retinal vessels many different approaches for segmentation have been published in the literature. In contrast to other segmentation approaches our method is not specifically tailored to the task of retinal vessel segmentation. Instead we utilize a more general image classification approach and show that this can achieve comparable results. In the proposed method we utilize the concepts of eigenfaces and auto-context. Eigenfaces have been described quite extensively in the literature and their performance is well known. They are however quite sensitive to translation and rotation. The former was addressed by computing the eigenvessels in local image windows of different scales, the latter by estimating and correcting the local orientation. Auto-context aims to incorporate automatically generated context information into the training phase of classification approaches. It has been shown to improve the performance of spinal cord segmentation4 and 3D brain image segmentation. The proposed method achieves an area under the receiver operating characteristic (ROC) curve of Az = 0.941 on the DRIVE data set, being comparable to current state-of-the-art approaches.

  8. Confinement Vessel Assay System: Calibration and Certification Report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Gomez, Cipriano [Retired CMR-OPS: OPERATIONS; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  9. Confinement Vessel Assay System: Calibration and Certification Report

    International Nuclear Information System (INIS)

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-01-01

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of (le) 100-g 239 Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  10. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    Science.gov (United States)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  11. On the state of acoustic emission analysis in pressure vessel and model vessel testing

    International Nuclear Information System (INIS)

    Morgner, W.; Theis, K.; Henke, F.; Imhof, D.

    1985-01-01

    In the GDR acoustic emission analysis is being applied primarily in connection with hydraulic pressure testing of vessels in chemical industry. It is, however, also used for testing and monitoring of equipment and components in other branches of industry. The state-of-the-art is presented with regard to equipment needed, training of personnel, licensing of testing methods and appropriate testing procedures. In particular, the evaluation of the sum curves and amplitude distributions is explained, using rupture tests of two oxygen cylinders and a compressed-air bottle as examples. (author)

  12. Some aspects of reactor pressure vessel integrity

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic, G.J.

    1996-01-01

    Reactor pressure vessel of the pressurized water reactor nuclear power plant is the subject of extreme interest due to the fact that presents the pressure boundary of the reactor coolant system, which is under extreme thermal, mechanical and irradiation effects. Reactor pressure vessel by itself prevents the release of fission products to the environment. Design, construction and in-service inspection of such component is governed by strict ASME rules and other forms of administrative control. The reactor pressure vessel in nuclear power plant Kriko is designed and constructed in accordance with related ASME rules. The in-service inspection program includes all requests presented in ASME Code section XI. In the present article all major requests for the periodic inspections of reactor pressure vessel and fracture mechanics analysis are discussed. Detailed and strict fulfillment of all prescribed provisions guarantee the appropriate level of nuclear safety. (author)

  13. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    Science.gov (United States)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  14. Vessel encoded arterial spin labeling with cerebral perfusion: preliminary study

    International Nuclear Information System (INIS)

    Wu Bing; Xiao Jiangxi; Xie Cheng; Wang Xiaoying; Jiang Xuexiang; Wong, E.C.; Wang Jing; Guo Jia; Zhang Beiru; Zhang Jue; Fang Jing

    2008-01-01

    Objective: To evaluate a noninvasive vessel encoded imaging for selective mapping of the flow territories of the left and fight internal carotid arteries and vertebral-basilar arteries. Methods: Seven volunteers [(33.5 ± 4.1) years; 3 men, 4 women] and 6 patients [(55.2 ± 3.2) years; 2 men, 4 women] were given written informed consent approved by the institutional review board before participating in the study. A pseudo-continuous tagging pulse train is modified to encode all vessels of interest. The selectivity of this method was demonstrated. Regional perfusion imaging was developed on the same arterial spin labeling sequence. Perfusion-weighted images of the selectively labeled cerebral arteries were obtained by subtraction of the labeled from control images. The CBF values of hemisphere, white matter, and gray matter of volunteers were calculated. The vessel territories on patients were compared with DSA. The low perfusion areas were compared with high signal areas on T 2 -FLAIR. Results: High SNR maps of left carotid, right carotid, and basilar territories were generated in 8 minutes of scan time. Cerebral blood flow values measured with regional perfusion imaging in the complete hemisphere (32.6 ± 4.3) ml·min -1 · 100 g -1 , white matter (10.8 ± 0.9) ml·min -1 ·100 g -1 , and gray matter (55.6±2.9) ml·min -1 · 100 g -1 were in agreement with data in the literature. Vessel encoded imaging in patients had a good agreement with DSA. The low perfusion areas were larger than high signal areas on T 2 -FLAIR. Conclusion: We present a new method capable of evaluating both quantitatively and qualitatively the individual brain- feeding arteries in vivo. (authors)

  15. Carotid artery stenosis: Performance of advanced vessel analysis software in evaluating CTA

    International Nuclear Information System (INIS)

    Tsiflikas, Ilias; Biermann, Christina; Thomas, Christoph; Ketelsen, Dominik; Claussen, Claus D.; Heuschmid, Martin

    2012-01-01

    Objectives: The aim of this study was to evaluate time efficiency and diagnostic reproducibility of an advanced vessel analysis software for diagnosis of carotid artery stenosis. Material and methods: 40 patients with suspected carotid artery stenosis received head and neck DE-CTA as part of their pre-interventional workup. Acquired data were evaluated by 2 independent radiologists. Stenosis grading was performed by MPR eyeballing with freely adjustable MPRs and with a preliminary prototype of the meanwhile available client-server and advanced visualization software syngo.via CT Vascular (Siemens Healthcare, Erlangen, Germany). Stenoses were graded according to the following 5 categories: I: 0%, II: 1–50%, III: 51–69%, IV: 70–99% and V: total occlusion. Furthermore, time to diagnosis for each carotid artery was recorded. Results: Both readers achieved very good specificity values and good respectively very good sensitivity values without significant differences between both reading methods. Furthermore, there was a very good correlation between both readers for both reading methods without significant differences (kappa value: standard image interpretation k = 0.809; advanced vessel analysis software k = 0.863). Using advanced vessel analysis software resulted in a significant time saving (p < 0.0001) for both readers. Time to diagnosis could be decreased by approximately 55%. Conclusions: Advanced vessel analysis application CT Vascular of the new imaging software syngo.via (Siemens Healthcare, Forchheim, Germany) provides a high rate of reproducibility in assessment of carotid artery stenosis. Furthermore a significant time saving in comparison to standard image interpretation is achievable

  16. Carotid artery stenosis: Performance of advanced vessel analysis software in evaluating CTA

    Energy Technology Data Exchange (ETDEWEB)

    Tsiflikas, Ilias, E-mail: ilias.tsiflikas@med.uni-tuebingen.de [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Biermann, Christina, E-mail: christina.biermann@siemens.com [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Siemens AG, Siemens Healthcare Consulting, Allee am Röthelheimpark 3A, 91052 Erlangen (Germany); Thomas, Christoph, E-mail: christoph.thomas@med.uni-tuebingen.de [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Ketelsen, Dominik, E-mail: dominik.ketelsen@med.uni-tuebingen.de [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Claussen, Claus D., E-mail: claus.claussen@med.uni-tuebingen.de [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany); Heuschmid, Martin, E-mail: martin.heuschmid@med.uni-tuebingen.de [University Hospital of Tuebingen, Diagnostic and Interventional Radiology, Hoppe-Seyler-Str. 3, 72076 Tuebingen (Germany)

    2012-09-15

    Objectives: The aim of this study was to evaluate time efficiency and diagnostic reproducibility of an advanced vessel analysis software for diagnosis of carotid artery stenosis. Material and methods: 40 patients with suspected carotid artery stenosis received head and neck DE-CTA as part of their pre-interventional workup. Acquired data were evaluated by 2 independent radiologists. Stenosis grading was performed by MPR eyeballing with freely adjustable MPRs and with a preliminary prototype of the meanwhile available client-server and advanced visualization software syngo.via CT Vascular (Siemens Healthcare, Erlangen, Germany). Stenoses were graded according to the following 5 categories: I: 0%, II: 1–50%, III: 51–69%, IV: 70–99% and V: total occlusion. Furthermore, time to diagnosis for each carotid artery was recorded. Results: Both readers achieved very good specificity values and good respectively very good sensitivity values without significant differences between both reading methods. Furthermore, there was a very good correlation between both readers for both reading methods without significant differences (kappa value: standard image interpretation k = 0.809; advanced vessel analysis software k = 0.863). Using advanced vessel analysis software resulted in a significant time saving (p < 0.0001) for both readers. Time to diagnosis could be decreased by approximately 55%. Conclusions: Advanced vessel analysis application CT Vascular of the new imaging software syngo.via (Siemens Healthcare, Forchheim, Germany) provides a high rate of reproducibility in assessment of carotid artery stenosis. Furthermore a significant time saving in comparison to standard image interpretation is achievable.

  17. Radiosurgical treatment planning for intracranial AVM based on images generated by principal component analysis. A simulation study

    International Nuclear Information System (INIS)

    Kawaguchi, Osamu; Kunieda, Etsuo; Nyui, Yoshiyuki

    2009-01-01

    One of the most important factors in stereotactic radiosurgery (SRS) for intracranial arteriovenous malformation (AVM) is to determine accurate target delineation of the nidus. However, since intracranial AVMs are complicated in structure, it is often difficult to clearly determine the target delineation. The purpose of this study was to investigate the usefulness of principal component analysis (PCA) on intra-arterial contrast enhanced dynamic CT (IADCT) images as a tool for delineating accurate target volumes for stereotactic radiosurgery of AVMs. IADCT and intravenous contrast-enhanced CT (IVCT) were used to examine 4 randomly selected cases of AVM. PCA images were generated from the IADCT data. The first component images were considered feeding artery predominant, the second component images were considered draining vein predominant, and the third component images were considered background. Target delineations were first carried out from IVCT, and then again while referring to the first and second components of the PCA images. Dose calculation simulations for radiosurgical treatment plans with IVCT and PCA images were performed. Dose volume histograms of the vein areas as well as the target volumes were compared. In all cases, the calculated target volumes based on IVCT images were larger than those based on PCA images, and the irradiation doses for the vein areas were reduced. In this study, we simulated radiosurgical treatment planning for intracranial AVM based on PCA images. By using PCA images, the irradiation doses for the vein areas were substantially reduced. (author)

  18. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  19. Development of radiation hard components for remote maintenance

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Obara, Kenjiro; Kakudate, Satoshi; Tominaga, Ryuichiro; Akada, Tamio; Morita, Hirosuke.

    1997-01-01

    In International Thermonuclear Experimental Reactor (ITER), in-vessel remote-handling is inevitably required to assemble and maintain activated in-vessel components due to D-T operation. The components of the in-vessel remote-handling system must have sufficient radiation hardness to allow for operation under an intense gamma-ray radiation of over 30 kGy/h for periods up to more than 1,000 hours. To this end, extensive irradiation tests and quality improvements including the optimization of material composition have been conducted through the ITER R and D program in order to develop radiation hard components which satisfy radiation doses from 10 MGy to 100 MGy at the dose rate of 10 kGy/h. This paper outlines the latest status of the radiation hard component development that has been conducted as the Japan Home Team's contribution to ITER. The remote-handling components tested are categorized into either robotics, viewing systems or common components. The irradiation tests include commercial base products for screening both modified and newly developed products to improve their radiation hardness. (author)

  20. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update

    International Nuclear Information System (INIS)

    2007-06-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1119 documents ageing assessment and management practices for PWR Reactor Vessel Internals (RVIs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. irradiation assisted stress corrosion cracking (IASCC) of baffle-former bolts, which threatened the integrity of the vessel internals. In addition, concern of fretting wear of control rod guide tubes has been raised in Japan. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1119 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update relevant sections of the existing IAEA-TECDOC- 1119 in order to provide current ageing management guidance for PWR RVIs to all involved in the operation and regulation of PWRs and thus to help ensure PWR safety in IAEA Member States throughout their entire service life

  1. Quantitative measurement of changes in retinal vessel diameter in ocular fundus images

    DEFF Research Database (Denmark)

    Pedersen, Lars; Grunkin, Michael; Ersbøll, Bjarne Kjær

    2000-01-01

    The change in diameter of retinal vessels as a function of increasing distance to the optic disc is believed to be indicative of the risk level of various vascular diseases such as generalised arteriosclerosis and Diabetes Mellitus. In particular, focal arteriolar narrowing (FAN) is considered re...

  2. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  3. Conceptual design of EAST flexible in-vessel inspection system

    International Nuclear Information System (INIS)

    Peng, X.B.; Song, Y.T.; Li, C.C.; Lei, M.Z.; Li, G.

    2010-01-01

    Remote handling technology, especially the flexible in-vessel inspection system (FIVIS) without breaking the working condition of the vacuum vessel, has been identified as one major challenge on the maintenance for the future tokamak fusion reactor. The FIVIS introduced here is specially developed for EAST superconducting tokamak that has actively cooled plasma facing components (PFCs). It aims flexible close-up inspection of EAST PFCs to help the understanding of operation issues that could occur in the vacuum vessel. This paper resumes the preliminary work of the FIVIS project, including the requirement analysis and the development of the conceptual design. The FIVIS consists out of a long reach multi-articulated manipulator and a process tool. The manipulator has a modular design for its subsystems and can reach all areas of the first wall in the distance of 15 mm and in the range of ±90 o along toroidal direction. It will be folded and hidden in the designated horizontal port during plasma discharge period.

  4. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    Science.gov (United States)

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  5. Electro-mechanical connection system for ITER in-vessel magnetic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rizzolo, Andrea; Brombin, Matteo; Gonzalez, Winder [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Marconato, Nicolò, E-mail: nicolo.marconato@igi.cnr.it [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Peruzzo, Simone [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Arshad, Shakeib [Fusion for Energy, C/Josep Pla, 2, 08019 Barcelona (Spain); Ma, Yunxing; Vayakis, George [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); Williams, Adrian [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon, Oxon, OX14 1RL (United Kingdom)

    2016-11-01

    Highlights: • Latest status of the ITER “Generic In-Vessel Magnetic Platform” design activity. • Integration within the ITER In-Vessel configuration model. • Geometry optimization based on thermo-mechanical and magnetic field 3D calculation. • Assessment of the remote handling maintenance compatibility. - Abstract: This paper presents the preliminary design of the “In-Vessel Magnetic platform”, which is a subsystem of the magnetic diagnostics formed by all the components necessary for guaranteeing the thermo-mechanical interface of the actual magnetic sensors with the vacuum vessel (VV), their protection and the electrical connection to the in-vessel wiring for the transmission of the detected signal with a minimum level of noise. The design has been developed in order to comply with different functional requirements: the mechanical attachment to the VV; the electrical connection to the in-vessel wiring; efficient heat transfer to the VV; the compatibility with Remote Handling (RH) system for replacement; the integration of metrology features for post-installation control; the Electro Magnetic Interference (EMI) shielding from Electron Cyclotron Heating (ECH) stray radiation without compromising the sensor pass band (15 kHz). Significant effort has been dedicated to develop the CAD model, integrated within the ITER In-Vessel configuration model, taking care of the geometrical compliance with the Blanket modules (modified in order to accommodate the magnetic sensors in suitable grooves) and the RH compatibility. Thorough thermo-mechanical and electro-magnetic Finite Element Method (FEM) analyses have been performed to assess the reliability of the system in standard and off-normal operating conditions for the low frequency magnetic sensors.

  6. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structural assessment of aerospace components using image processing algorithms and Finite Element models

    DEFF Research Database (Denmark)

    Stamatelos, Dimtrios; Kappatos, Vassilios

    2017-01-01

    Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...

  8. Assessment and management of ageing of major nuclear power plant components important to safety: BWR pressure vessels

    International Nuclear Information System (INIS)

    2005-10-01

    . The guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. This report addresses the reactor pressure vessel (RPV) in BWRs. Maintaining the structural integrity of this RPV throughout NPP service life in spite of several ageing mechanisms is essential for plant safety

  9. Three-dimensional image reconstruction from stereo DSA

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Umehara, Takayoshi; Yamada, Eiji; Inaba, Tomohiro; Itou, Hiroshi

    1999-01-01

    The technique of interventional radiology has spread rapidly in recent years, and three-dimensional information from blood vessel images is being sought to enhance examinations. Stereo digital subtraction angiography (DSA) and rotational DSA were developed for that purpose. However, it is difficult with stereo DSA to observe the image pair during examination and to obtain positional information on blood vessels. Further, the exposure dose is increased in rotational DSA when many mask images need to be collected, and the patient is required to hold his or her breath for a long duration. We therefore devised a technique to construct three-dimensional blood vessel images by employing geometrical information extracted from stereo DSA images using the right and left images. We used a judgment method based on the correlation coefficient, although we had to extract an equal blood vessel from the right and left images to determine the three-dimensional coordinates of the blood vessel. The reconstructed three-dimensional blood vessels were projected from various angles, again by using a virtual focus, and new images were created. These image groups were displayed as rotational images by the animation display function incorporated in the DSA device. This system can observe blood vessel images of the same phase at a free angle, although the image quality is inferior to that of rotational DSA. In addition, because collection of the mask images is reduced, exposure dose can be decreased. Further, the system offers enhanced safety because no mechanical movement of the imaging system is involved. (author)

  10. Prevention of catastrophic failure in pressure vessels and pipings

    International Nuclear Information System (INIS)

    Rintamaa, R.; Wallin, K.; Ikonen, K.; Toerroenen, K.; Talja, H.; Keinaenen, H.; Saarenheimo, A.; Nilsson, F.; Sarkimo, M.; Waestberg, S.; Debel, C.

    1989-01-01

    The fracture resistance and integrity of pressure-loaded components have been assessed in a Nordic research programme. Experiments were performed to validate the computational fracture assessment analysis. Two tests were also conducted on a large decommissioned pressure vessel from an oil refinery plant. Different fracture assessment methods were developed and subsequently applied to the tested components. Interlaboratory round robin programmes with the participation of several laboratories were arranged to examine elastic-plastic finit element calculations and fracture mechanics testing. The transferability of material parameters derived from small specimens with simple crack geometries to more realistic crack geometries in real components has been verified. (author)

  11. High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T

    Energy Technology Data Exchange (ETDEWEB)

    Harteveld, Anita A.; Kolk, Anja G. van der; Dieleman, Nikki; Siero, Jeroen C.W.; Luijten, Peter R.; Zwanenburg, Jaco J.M.; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, Postbox 85500, Utrecht (Netherlands); Worp, H.B. van der; Frijns, Catharina J.M. [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Kuijf, Hugo J. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2017-04-15

    Several intracranial vessel wall sequences have been described in recent literature, with either 3-T or 7-T magnetic resonance imaging (MRI). In the current study, we compared 3-T and 7-T MRI in visualising both the intracranial arterial vessel wall and vessel wall lesions. Twenty-one elderly asymptomatic volunteers were scanned by 3-T and 7-T MRI with an intracranial vessel wall sequence, both before and after contrast administration. Two raters scored image quality, and presence and characteristics of vessel wall lesions. Vessel wall visibility was equal or significantly better at 7 T for the studied arterial segments, even though there were more artefacts hampering assessment. The better visualisation of the vessel wall at 7 T was most prominent in the proximal anterior cerebral circulation and the posterior cerebral artery. In the studied elderly asymptomatic population, 48 vessel-wall lesions were identified at 3 T, of which 7 showed enhancement. At 7 T, 79 lesions were identified, of which 29 showed enhancement. Seventy-one percent of all 3-T lesions and 59 % of all 7-T lesions were also seen at the other field strength. Despite the large variability in detected lesions at both field strengths, we believe 7-T MRI has the highest potential to identify the total burden of intracranial vessel wall lesions. (orig.)

  12. AN EFFICIENT TECHNIQUE FOR RETINAL VESSEL SEGMENTATION AND DENOISING USING MODIFIED ISODATA AND CLAHE

    Directory of Open Access Journals (Sweden)

    Khan Bahadar Khan

    2016-11-01

    Full Text Available Retinal damage caused due to complications of diabetes is known as Diabetic Retinopathy (DR. In this case, the vision is obscured due to the damage of retinal tinny blood vessels of the retina. These tinny blood vessels may cause leakage which affect the vision and can lead to complete blindness. Identification of these new retinal vessels and their structure is essential for analysis of DR. Automatic blood vessels segmentation plays a significant role to assist subsequent automatic methodologies that aid to such analysis. In literature most of the people have used computationally hungry a strong preprocessing steps followed by a simple thresholding and post processing, But in our proposed technique we utilize an arrangement of  light pre-processing which consists of Contrast Limited Adaptive Histogram Equalization (CLAHE for contrast enhancement, a difference image of green channel from its Gaussian blur filtered image to remove local noise or geometrical object, Modified Iterative Self Organizing Data Analysis Technique (MISODATA for segmentation of vessel and non-vessel pixels based on global and local thresholding, and a strong  post processing using region properties (area, eccentricity to eliminate the unwanted region/segment, non-vessel pixels and noise that never been used to reject misclassified foreground pixels. The strategy is tested on the publically accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases. The performance of proposed technique is assessed comprehensively and the acquired accuracy, robustness, low complexity and high efficiency and very less computational time that make the method an efficient tool for automatic retinal image analysis. Proposed technique perform well as compared to the existing strategies on the online available databases in term of accuracy, sensitivity, specificity, false positive rate, true positive rate and area under receiver

  13. Probabilistic atlas based labeling of the cerebral vessel tree

    Science.gov (United States)

    Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke

    2015-03-01

    Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.

  14. Conjugate heat transfer analysis for in-vessel retention with external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong-Woon; Bae, Jae-ho; Song, Hyuk-Jin

    2016-01-01

    Highlights: • A conjugate heat transfer analysis method is applied for in-vessel corium retention. • 3D heat diffusion has a formidable effect in alleviating focusing heat load from metallic layer. • The focusing heat load is decreased by about 2.5 times on the external surface. - Abstract: A conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue for in-vessel retention. The method calculates steady-state three-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel three-layered stratified corium (metallic pool, oxide pool and heavy metal and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel). The three-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method. For the ex-vessel boiling boundary conditions, nucleate, transition and film boiling are considered. The thermal integrity of a reactor vessel is addressed in terms of heat flux at the outer-most nodes of the vessel and remaining thickness profile. The vessel three-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate

  15. Analysis of toroidal vacuum vessels for use in demonstration sized tokamak reactors

    International Nuclear Information System (INIS)

    Culbert, M.E.

    1978-07-01

    The vacuum vessel component of the tokamak fusion reactor is the subject of this study. The main objective of this paper was to provide guidance for the structural design of a thin wall externally pressurized toroidal vacuum vessel. The analyses are based on the available state-of-the-art analytical methods. The shortcomings of these analytical methods necessitated approximations and assumptions to be made throughout the study. A principal result of the study has been the identification of a viable vacuum vessel design for the Demonstration Tokamak Hybrid Reactor (DTHR) and The Next Step (TNS) Reactor

  16. A Parallel Algorithm for Connected Component Labelling of Gray-scale Images on Homogeneous Multicore Architectures

    International Nuclear Information System (INIS)

    Niknam, Mehdi; Thulasiraman, Parimala; Camorlinga, Sergio

    2010-01-01

    Connected component labelling is an essential step in image processing. We provide a parallel version of Suzuki's sequential connected component algorithm in order to speed up the labelling process. Also, we modify the algorithm to enable labelling gray-scale images. Due to the data dependencies in the algorithm we used a method similar to pipeline to exploit parallelism. The parallel algorithm method achieved a speedup of 2.5 for image size of 256 x 256 pixels using 4 processing threads.

  17. High frequency transducer for vessel imaging based on lead-free Mn-doped (K0.44Na0.56)NbO3 single crystal

    Science.gov (United States)

    Ma, Jinpeng; Xue, Saidong; Zhao, Xiangyong; Wang, Feifei; Tang, Yanxue; Duan, Zhihua; Wang, Tao; Shi, Wangzhou; Yue, Qingwen; Zhou, Huifang; Luo, Haosu; Fang, Bijun

    2017-08-01

    We report a high frequency ultrasonic transducer up to 50 MHz for vessel imaging based on a lead-free (K0.44Na0.56)NbO3-0.5 mol. % Mn (Mn-KNN) single crystal, which has a high electromechanical coupling coefficient kt of 0.64 and a large thickness frequency constant Nt of 3210 kHz . mm. The Krimholtz, Leedom, and Mattaei (KLM) equivalent circuit model was utilized to simulate and optimize the pulse-echo response combined with PiezoCAD software. Theoretically, a high -6 dB bandwidth of 74.94% was obtained at a center frequency of 50.47 MHz and optimized matching conditions. The experimental results showed a center frequency of 51.8 MHz with a -6 dB bandwidth of 70.2%. The excellent global performance makes this lead-free single-crystal transducer quite potential in an environmentally friendly vessel imaging transducer.

  18. Short-term changes in affective, behavioral, and cognitive components of body image after bariatric surgery.

    Science.gov (United States)

    Williams, Gail A; Hudson, Danae L; Whisenhunt, Brooke L; Stone, Megan; Heinberg, Leslie J; Crowther, Janis H

    2018-04-01

    Many bariatric surgery candidates report body image concerns before surgery. Research has reported post-surgical improvements in body satisfaction, which may be associated with weight loss. However, research has failed to comprehensively examine changes in affective, behavioral, and cognitive body image. This research examined (1) short-term changes in affective, behavioral, and cognitive components of body image from pre-surgery to 1- and 6-months after bariatric surgery, and (2) the association between percent weight loss and these changes. Participants were recruited from a private hospital in the midwestern United States. Eighty-eight females (original N = 123; lost to follow-up: n = 15 at 1-month and n = 20 at 6-months post-surgery) completed a questionnaire battery, including the Body Attitudes Questionnaire, Body Checking Questionnaire, Body Image Avoidance Questionnaire, and Body Shape Questionnaire, and weights were obtained from patients' medical records before and at 1- and 6-months post-surgery. Results indicated significant decreases in body dissatisfaction, feelings of fatness, and body image avoidance at 1- and 6-months after bariatric surgery, with the greatest magnitude of change occurring for body image avoidance. Change in feelings of fatness was significantly correlated with percent weight loss at 6-months, but not 1-month, post-surgery. These findings highlight the importance of examining short-term changes in body image from a multidimensional perspective in the effort to improve postsurgical outcomes. Unique contributions include the findings regarding the behavioral component of body image, as body image avoidance emerges as a particularly salient concern that changes over time among bariatric surgery candidates. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  19. Platform image processing to study the structural properties of retinal vessel

    Directory of Open Access Journals (Sweden)

    Miguel Ángel MERCHÁN

    2013-05-01

    Full Text Available This paper presents a technological platform specialized in assessing retinal vessel caliber and describing the relationship of the results obtained to cardiovascular risk. Retinal circulation is an area of active research by numerous groups, and there is general experimental agreement on the analysis of the patterns of the retinal blood vessels in the normal human retina. The development of automated tools designed to improve performance and decrease interobserver variability, therefore, appears necessary. 

  20. Registration of dynamic dopamine D2receptor images using principal component analysis

    International Nuclear Information System (INIS)

    Acton, P.D.; Ell, P.J.; Pilowsky, L.S.; Brammer, M.J.; Suckling, J.

    1997-01-01

    This paper describes a novel technique for registering a dynamic sequence of single-photon emission tomography (SPET) dopamine D 2 receptor images, using principal component analysis (PCA). Conventional methods for registering images, such as count difference and correlation coefficient algorithms, fail to take into account the dynamic nature of the data, resulting in large systematic errors when registering time-varying images. However, by using principal component analysis to extract the temporal structure of the image sequence, misregistration can be quantified by examining the distribution of eigenvalues. The registration procedures were tested using a computer-generated dynamic phantom derived from a high-resolution magnetic resonance image of a realistic brain phantom. Each method was also applied to clinical SPET images of dopamine D 2 receptors, using the ligands iodine-123 iodobenzamide and iodine-123 epidepride, to investigate the influence of misregistration on kinetic modelling parameters and the binding potential. The PCA technique gave highly significant (P 123 I-epidepride scans. The PCA method produced data of much greater quality for subsequent kinetic modelling, with an improvement of nearly 50% in the χ 2 of the fit to the compartmental model, and provided superior quality registration of particularly difficult dynamic sequences. (orig.)

  1. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    Science.gov (United States)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  2. WE-E-18A-10: Comparison of Patient Dose and Vessel Visibility Between Antiscatter Grid Removal and Lower Angiographic Radiation Dose Settings for Pediatric Imaging: A Preclinical Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K; Nachabe, R; Racadio, J [Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2014-06-15

    Purpose: To define an alternative to antiscatter grid (ASG) removal in angiographic systems which achieves similar patient dose reduction as ASG removal without degrading image quality during pediatric imaging. Methods: This study was approved by the local institution animal care and use committee (IACUC). Six different digital subtraction angiography settings were evaluated that altered the mAs, (100, 70, 50, 35, 25, 17.5% of reference mAs) with and without ASG. Three pigs of 5, 15, and 20 kg (9, 15, and 17 cm abdominal thickness; smaller than a newborn, average 3 yr old, and average 10 year old human abdomen respectively) were imaged using the six dose settings with and without ASG. Image quality was defined as the order of vessel branch that is visible relative to the injected vessel. Five interventional radiologists evaluated all images. Image quality and patient dose were statistically compared using analysis of variance and receiver operating curve (ROC) analysis to define the preferred dose level and use of ASG for a minimum visibility of 2nd or 3rd order branches of vessel visibility. Results: ASG grid removal reduces dose by 26% with reduced image quality. Only with the ASG present can 3rd order branches be visualized; 100% mAs is required for 9 cm pig while 70% mAs is adequate for the larger pigs. 2nd order branches can be visualized with ASG at 17.5% mAs for all three pig sizes. Without the ASG, 50%, 35% and 35% mAs is required for smallest to largest pig. Conclusion: Removing ASG reduces patient dose and image quality. Image quality can be improved with the ASG present while further reducing patient dose if an optimized radiographic technique is used. Rami Nachabe is an employee of Philips Health Care; Keith Strauss is a paid consultant of Philips Health Care.

  3. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  4. Resolution of NMR chemical shift images into real and imaginary components

    International Nuclear Information System (INIS)

    Yamamoto, E.; Kohno, H.

    1986-01-01

    Fast chemical shift imaging of two-line materials is described using a modified spin-echo sequence. The method resolves the two chemical shift images into real and imaginary components representing the reconstructed image. The measuring time is reduced to half of that for the conventional method proposed by Dixon et al, and quantitative evaluation of the images becomes possible. Reference material with a single resonant line is used to eliminate the phase error caused by static field inhomogeneity and the inherent apparatus offset phase. Experiments are conducted using acetone and benzene with a medium-bore superconductive magnet operating at 0.5T. From these experiments, two chemical shift images are obtained. These images are then superimposed to produce a conventional density image. (author)

  5. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  6. UK regulatory aspects of prestressed concrete pressure vessels for gas-cooled reactor nuclear power stations

    International Nuclear Information System (INIS)

    Watson, P.S.

    1990-01-01

    Safety assessment principles for nuclear power plants and for nuclear chemical plants demand application of best proven techniques, recognised standards, adequacy margins, inspection and maintenance of all the components including prestressed concrete pressure vessels. In service inspection of prestressed concrete pressure vessels includes: concrete surface examination; anchorage inspection; tendon load check; tendon material examination; foundation settlement and tilt; log-term deformation; vessel temperature excursions; coolant loss; top cap deflection. Hartlepool and Heysham 1 power plants prestress shortfall problem is discussed. Main recommendations can be summarised as follows: at all pressure vessel stations prestress systems should be calibrated in a manner which results in all load bearing components being loaded in a representative manner; at all pressure vessel stations load measurements during calibration should be verified by a redundant and diverse system

  7. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  8. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy

    International Nuclear Information System (INIS)

    Jesse, Stephen; Kalinin, Sergei V

    2009-01-01

    An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.

  9. GOATS Image Projection Component

    Science.gov (United States)

    Haber, Benjamin M.; Green, Joseph J.

    2011-01-01

    When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.

  10. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Huber, V., E-mail: V.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich (Germany); Huber, A.; Mertens, Ph.; Sergienko, G. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Price, M.; Silburn, S.; Zastrow, K.-D. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Drewelow, P. [MPI für Plasmaphysik, Greifswald (Germany); Wynn, A. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-11-15

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  11. Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.

    Science.gov (United States)

    Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A

    2011-04-01

    Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Automated Measurement Of The Density Of Vessels On Whole Slide Images Of Paediatric Brain Tumours

    Directory of Open Access Journals (Sweden)

    Christophe Deroulers

    2016-06-01

    Only a few parameters have to be chosen, once and for all samples (e.g., the minimal acceptable size of a blood vessel fragment, which makes the method more robust than assessment by a (panel of human expert(s. The automatic calibration steps enable one to deal with a heterogeneous set of slides (e.g., slight differences in background colour and staining. The method uses only open-source software. It is easy to extend or improve and not tight to a single immunomarker. We applied the method to 129 paediatric brain tumours of 8 different types and 3 locations (posterior fossa, thalamus, hemispheres — 185 samples in total. For each patient, the density of microvessels in the sample is compared to the cerebral blood flow as assessed by preoperative perfusion-weighted-imaging using arterial-spin-labeling. We find a good correlation between microvascular density, MRI data and tumour grading. The microvascular density is broadly distributed among the samples. Visualisation in a web browser is slightly more fluid when images are uploaded in the DeepZoom format rather than as pyramidal TIFF images, but the former consumes roughly 20 times more disk space and needs the transfer of a very large number of files after each modification, which is less tractable.

  13. Usefulness of virtual endoscopy for evaluating the relationship between the neck of intracranial aneurysm and surrounding vessels

    International Nuclear Information System (INIS)

    Ikeda, Jota; Horie, Hitoshi; Ishikura, Reiichi; Ando, Kumiko; Morikawa, Tsutomu; Tominaga, Satoru; Nakao, Norio

    2000-01-01

    Application of three-dimensional CT virtual endoscopy for evaluation of the neck and surrounding vessels of intracranial aneurysms. 3D-CT virtual endoscopy (VE) is a reconstructed image using computer processing of 3D-CT images. We evaluated the usefulness of a virtual endoscopy to analyze the relationship between the neck of an intracranial aneurysm and the surrounding vessels. Eight cases with intracranial aneurysms underwent digital subtraction angiography (DSA) and enhanced CT with transarterial infusion of contrast media. 3D-CT angiogram (3D-CTA) and virtual endoscopic images were obtained from the CT image data sets using surface rendering method. The relationship between the neck of an intracranial aneurysm and the surrounding vessels was confirmed by operation or IVR. VE clearly visualized the neck and surrounding vessels in all cases. Operation/IVR findings agreed with the virtual endoscopic findings in all cases, but not with the DSA or 3D-CTA findings in 4 and 2 cases, respectively. 3D-CTA and virtual endoscopy clearly visualizes the relationship between cerebral aneurysms and surrounding vessels, which is useful for determining IVR procedures. (author)

  14. Nuclear reactor installation with outer shell enclosing a primary pressure vessel

    International Nuclear Information System (INIS)

    1975-01-01

    The high temperature nuclear reactor installation described includes a fluid cooled nuclear heat source, a primary pressure vessel containing the heat source, an outer shell enclosing the primary pressure vessel and acting as a secondary means of containment for this vessel against outside projectiles. Multiple auxiliary equipment points are arranged outside the outer shell which comprises a part of a lower wall around the primary pressure vessel, an annular part integrated in the lower wall and extending outwards as from this wall and an upper part integrated in the annular part and extending above this annular part and above the primary pressure vessel. The annular part and the primary pressure vessel are formed with vertical penetrations which can be closed communicating respectively with the auxiliary equipment points and with inside the pressure vessel whilst handling gear is provided in the upper part for vertically raising reactor components through these penetrations and for transporting them over the annular part and over the primary pressure vessel [fr

  15. Helium leak testing of large pressure vessels or subassemblies

    International Nuclear Information System (INIS)

    Hopkins, J.S.; Valania, J.J.

    1977-01-01

    Specifications for pressure-vessel components [such as the intermediate heat exchangers (IHX)] for service in the liquid metal fast breeder reactor facilities require helium leak testing of pressure boundaries to very exacting standards. The experience of Foster Wheeler Energy Corporation (FWEC) in successfully leak-testing the IHX shells and bundle assemblies now installed in the Fast Flux Test Facility at Richland, WA is described. Vessels of a somewhat smaller size for the closed loop heat exchanger system in the Fast Flux Test Facility have also been fabricated and helium leak tested for integrity of the pressure boundary by FWEC. Specifications on future components call for helium leak testing of the tube to tubesheet welds of the intermediate heat exchangers

  16. Intra-operative digital imaging: assuring the alignment of components when undertaking total hip arthroplasty.

    Science.gov (United States)

    Hambright, D; Hellman, M; Barrack, R

    2018-01-01

    The aims of this study were to examine the rate at which the positioning of the acetabular component, leg length discrepancy and femoral offset are outside an acceptable range in total hip arthroplasties (THAs) which either do or do not involve the use of intra-operative digital imaging. A retrospective case-control study was undertaken with 50 patients before and 50 patients after the integration of an intra-operative digital imaging system in THA. The demographics of the two groups were comparable for body mass index, age, laterality and the indication for surgery. The digital imaging group had more men than the group without. Surgical data and radiographic parameters, including the inclination and anteversion of the acetabular component, leg length discrepancy, and the difference in femoral offset compared with the contralateral hip were collected and compared, as well as the incidence of altering the position of a component based on the intra-operative image. Digital imaging took a mean of five minutes (2.3 to 14.6) to perform. Intra-operative changes with the use of digital imaging were made for 43 patients (86%), most commonly to adjust leg length and femoral offset. There was a decrease in the incidence of outliers when using intra-operative imaging compared with not using it in regard to leg length discrepancy (20% versus 52%, p = 0.001) and femoral offset inequality (18% versus 44%, p = 0.004). There was also a difference in the incidence of outliers in acetabular inclination (0% versus 7%, p = 0.023) and version (0% versus 4%, p = 0.114) compared with historical results of a high-volume surgeon at the same centre. The use of intra-operative digital imaging in THA improves the accuracy of the positioning of the components at THA without adding a substantial amount of time to the operation. Cite this article: Bone Joint J 2018;100B(1 Supple A):36-43. ©2018 The British Editorial Society of Bone & Joint Surgery.

  17. Multidetector CT portal venography in evaluation of portosystemic collateral vessels

    International Nuclear Information System (INIS)

    Agarwal, A.; Jain, M.

    2008-01-01

    This essay shows the usefulness of multidetector CT angiography for evaluation of the splenoportal venous system, which is essential in the management of patients with portal hypertension and its complications, such as portal vein thrombosis. By providing scanning with reconstruction of thin axial source images and reformatting into thicker multiplanar reformats, multidetector CT can help to determine the extent and location of portosystemic collateral vessels in patients with portal hypertension and is probably the optimal imaging technique in this setting.

  18. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  19. Automated identification of retinal vessels using a multiscale directional contrast quantification (MDCQ) strategy

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Yi; Zhang, Xinyuan; Wang, Ningli, E-mail: wningli@vip.163.com, E-mail: puj@upmc.edu [National Engineering Research Center for Ophthalmic Equipments, Beijing, 100730 (China); Gu, Suicheng; Meng, Xin [Imaging Research Center, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 (United States); Zheng, Bin [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Pu, Jiantao, E-mail: wningli@vip.163.com, E-mail: puj@upmc.edu [Imaging Research Center, Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 (United States)

    2014-09-15

    Purpose: A novel algorithm is presented to automatically identify the retinal vessels depicted in color fundus photographs. Methods: The proposed algorithm quantifies the contrast of each pixel in retinal images at multiple scales and fuses the resulting consequent contrast images in a progressive manner by leveraging their spatial difference and continuity. The multiscale strategy is to deal with the variety of retinal vessels in width, intensity, resolution, and orientation; and the progressive fusion is to combine consequent images and meanwhile avoid a sudden fusion of image noise and/or artifacts in space. To quantitatively assess the performance of the algorithm, we tested it on three publicly available databases, namely, DRIVE, STARE, and HRF. The agreement between the computer results and the manual delineation in these databases were quantified by computing their overlapping in both area and length (centerline). The measures include sensitivity, specificity, and accuracy. Results: For the DRIVE database, the sensitivities in identifying vessels in area and length were around 90% and 70%, respectively, the accuracy in pixel classification was around 99%, and the precisions in terms of both area and length were around 94%. For the STARE database, the sensitivities in identifying vessels were around 90% in area and 70% in length, and the accuracy in pixel classification was around 97%. For the HRF database, the sensitivities in identifying vessels were around 92% in area and 83% in length for the healthy subgroup, around 92% in area and 75% in length for the glaucomatous subgroup, around 91% in area and 73% in length for the diabetic retinopathy subgroup. For all three subgroups, the accuracy was around 98%. Conclusions: The experimental results demonstrate that the developed algorithm is capable of identifying retinal vessels depicted in color fundus photographs in a relatively reliable manner.

  20. Comparison of in vivo and ex vivo imaging of the microvasculature with 2-photon fluorescence microscopy

    Science.gov (United States)

    Steinman, Joe; Koletar, Margaret; Stefanovic, Bojana; Sled, John G.

    2016-03-01

    This study evaluates 2-Photon fluorescence microscopy of in vivo and ex vivo cleared samples for visualizing cortical vasculature. Four mice brains were imaged with in vivo 2PFM. Mice were then perfused with a FITC gel and cleared in fructose. The same regions imaged in vivo were imaged ex vivo. Vessels were segmented automatically in both images using an in-house developed algorithm that accounts for the anisotropic and spatially varying PSF ex vivo. Through non-linear warping, the ex vivo image and tracing were aligned to the in vivo image. The corresponding vessels were identified through a local search algorithm. This enabled comparison of identical vessels in vivo/ex vivo. A similar process was conducted on the in vivo tracing to determine the percentage of vessels perfused. Of all the vessels identified over the four brains in vivo, 98% were present ex vivo. There was a trend towards reduced vessel diameter ex vivo by 12.7%, and the shrinkage varied between specimens (0% to 26%). Large diameter surface vessels, through a process termed 'shadowing', attenuated in vivo signal from deeper cortical vessels by 40% at 300 μm below the cortical surface, which does not occur ex vivo. In summary, though there is a mean diameter shrinkage ex vivo, ex vivo imaging has a reduced shadowing artifact. Additionally, since imaging depths are only limited by the working distance of the microscope objective, ex vivo imaging is more suitable for imaging large portions of the brain.

  1. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 3. Numerical investigation for thermal stratification phenomena in the upper plenum

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2002-06-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. In-vessel thermohydraulic analyses were carried out using a multi-dimensional code AQUA to understand the thermal stratification characteristics in the upper plenum, and to investigate trade-off relations between gas entrainment and thermal stratification phenomena on in-vessel structures for the elimination of gas entrainment possibility. From the analysis, the following results were obtained. (1) Dummy plug insertion to a slit of the upper core structure is one of the effective measures to stabilize the in-vessel flow patterns and to mitigate in-vessel thermal shocks. (2) Though flow guide device such as a baffle ring attached to reactor vessel wall is an effective measure to eliminate impinging jet to dipped plate, rising characteristics of the thermal stratification interface are affected by the baffle ring devise. (3) Thermal stratification characteristics are not influenced very much by the installation of a partial inner barrel to the dipped plate, which is an effective measure to reduce the horizontal flow velocity components at free surface. (4) Labyrinth structures to the gap between the reactor vessel wall and the outer dipped plate have direct effects upon in-vessel thermal shock characteristics including thermal stratification phenomena due to the closing of flow path between the upper plenum and the free surface plenum. (author)

  2. Status of the ITER vacuum vessel construction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.H.; Sborchia, C.; Ioki, K.; Giraud, B.; Utin, Yu.; Sa, J.W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wang, X., E-mail: xiaoyuwww@gmail.com [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Teissier, P.; Martinez, J.M.; Le Barbier, R.; Jun, C.; Dani, S.; Barabash, V.; Vertongen, P.; Alekseev, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jucker, P.; Bayon, A. [F4E, c/ Josep Pla, n. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Pathak, H.; Raval, J. [ITER-India, IPR, A-29, Electronics Estate, GIDC, Sector-25, Gandhinagar 382025 (India); Ahn, H.J. [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); and others

    2014-10-15

    Highlights: • Final design of the ITER vacuum vessel (VV). • Procurement of the ITER VV. • Manufacturing results of real scale mock-ups. • Manufacturing status of the VV in domestic agencies. - Abstract: The ITER vacuum vessel (VV) is under manufacturing by four domestic agencies after completion of engineering designs that have been approved by the Agreed Notified Body (ANB). Manufacturing designs of the VV have been being completed, component by component, by accommodating requirements of the RCC-MR 2007 edition. Manufacturing of the VV first sector has been started in February 2012 in Korea and in-wall shielding in May 2013 in India. EU will start manufacturing of its first sector from September 2013 and Russia the upper port by the end of 2013. All DAs have manufactured several mock-ups including real-size ones to justify/qualify and establish manufacturing techniques and procedures.

  3. Vacuum vessels for the LHC magnets arrive at CERN

    CERN Multimedia

    2001-01-01

    The first batch of pre-series vacuum vessels for the LHC dipole magnets has just been delivered to CERN. The vessels are components of the cryostats and will provide the thermal insulation for the superconducting magnets. The first batch of vacuum vessels for the LHC dipole magnets with the team taking part at CERN in ordering and installing them. Left to right : Claude Hauviller, Monique Dupont, Lloyd Williams, Franck Gavin, Alain Jacob, Christophe Vuitton, Davide Bozzini, Laure Sandri, Mikael Sjoholm and André de Saever. In 2006 all that will be seen of the LHC superconducting dipoles in the LHC tunnel will be a line of over 1230 blue cylindrical vacuum vessels. Ten vessels, each weighing 4 tonnes, are already at CERN. On 6 July the first batch of pre-series vessels reached the Lab-oratory from the firm SIMIC Spa whose works are near Savona in north-western Italy. Despite appearances, these 15-metre long, 1-metre diameter blue tubes are much more sophisticated than sections of a run-of-the-mill...

  4. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in KSTAR

    International Nuclear Information System (INIS)

    Kim, Kyung-Rae; Hong, Suk-Ho; Nam, Yong-Un; Jung, Jinil; Kim, Woong-Chae

    2013-01-01

    Images of wide-angle visible standard CCD cameras contain information on in-vessel dusts such as dust creation events (DCEs) that occur during plasma operations, and their velocity. Analyzing the straight line-like dust traces in the shallow cylindrical shell-structured scrape-off layer along the vacuum vessel, a database on the short/long term temporal evolutions, spatial locations of DCEs caused by plasma–dust interaction, and the dust velocity distribution are built. We have studied DCEs of 2010 and 2011 KSTAR campaign

  5. CT and MR angiographic findings in dissection of cervical vessels

    International Nuclear Information System (INIS)

    Link, J.; Brinkmann, G.; Heuser, K.; Heller, M.

    1996-01-01

    Purpose: To determine the usefulness of CT angiography (CTA) and MR angiography (MRA) for evaluation of dissection in cervical vessels. Material and methods: Dissection of cervical vessels was revealed by conventional angiography in 4 patients (two female, two male) of 30-62 years of age. Dissection was located in the carotid artery (n=3) and in the vertebral artery (n=1). In two patients CTA and in two patients MRA was performed. Results: Diagnosis of dissection was possible by CTA (internal carotid artery: n=2) and by MRA (internal carotid artery and vertebral artery). Imaging of the dissection membrane of the vessel wall was possible in one case with MRA. Conclusion: CT and MR angiography was successful for detection of typical morphology of dissection in all cases. If results in a greater number can be obtained it seems to be conceivable that both methods can be used in primary diagnosis. (orig.) [de

  6. Progress in the design and R and D of the ITER In-Vessel Viewing and Metrology System (IVVS)

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, Gregory, E-mail: gregory.dubus@f4e.europa.eu [Fusion for Energy, c/ Josep Pla, n°2 – Torres Diagonal Litoral – Edificio B3, 08019 Barcelona (Spain); Puiu, Adrian; Bates, Philip; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, n°2 – Torres Diagonal Litoral – Edificio B3, 08019 Barcelona (Spain); Reichle, Roger; Palmer, Jim [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    The In-Vessel Viewing and Metrology System (IVVS) is a fundamental tool for the ITER machine operations, aiming at performing inspections as well as providing information related to the erosion of in-vessel components, which in turn is related to the amount of mobilised dust present in the Vacuum Vessel. Periodically or on request, the IVVS scanning probes will be deployed into the Vacuum Vessel in order to acquire both visual and metrological data on plasma facing components (blanket, divertor, heating/diagnostic plugs, and test blanket modules). Recent design changes made to the six IVVS port extensions implied the need for a substantial redesign of the IVVS integrated concept – including the scanning probe and its deployment system – in order to bring it to the level of maturity suitable for the Conceptual Design Review. This paper gives an overview of the concept design for IVVS as well as of the various engineering analyses and R and D activities carried out in support to this design: neutronic, seismic and electromagnetic analyses, probe actuation validation under environmental conditions.

  7. Imaging the Intracranial Atherosclerotic Vessel Wall Using 7T MRI : Initial Comparison with Histopathology

    NARCIS (Netherlands)

    van der Kolk, A. G.; Zwanenburg, J. J. M.; Denswil, N. P.; Vink, A.; Spliet, W. G. M.; Daemen, M. J. A. P.; Visser, F.; Klomp, D. W. J.; Luijten, P. R.; Hendrikse, J.

    In this preliminary study, 7T imaging was capable of identifying not only intracranial wall thickening but different plaque components such as foamy macrophages and collagen. Signal heterogeneity was typical of advanced atherosclerotic disease. BACKGROUND AND PURPOSE: Several studies have attempted

  8. Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

    Science.gov (United States)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee

    2016-04-01

    Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.

  9. LOCAL VELOCITY PROFILES MEASURED BY PIV IN AN VESSEL AGITATED BY RUSHTON TURBINE

    Directory of Open Access Journals (Sweden)

    Radek Šulc

    2014-12-01

    Full Text Available The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV. The experiments were carried out in a fully baffled cylindrical flat bottom vessel 300 mm in inner diameter. The tank was agitated by a Rushton turbine 100 mm in diameter. The velocity fields were measured for three impeller rotation speeds 300 rpm, 450 rpm and 600 rpm and the corresponding Reynolds numbers in the range 50 000 < Re < 100 000, which means that the fully-developed turbulent flow was reached. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller rotational speed. The velocity profiles were averaged, and were expressed by Chebyshev polynomials of the 1st order. Although the experimentally investigated area was relatively far from the impeller, and it was located in upward flow to the impeller, no state of local isotropy was found. The ratio of the axial rms fluctuation velocity to the radial component was found to be in the range from 0.523 to 0.768. The axial turbulence intensity was found to be in the range from 0.293 to 0.667, which corresponds to a high turbulence intensity.

  10. Combining endoscopes with PIV and digital holography for the study of vessel model mechanics

    International Nuclear Information System (INIS)

    Arévalo, Laura; Palero, Virginia; Andrés, Nieves; Arroyo, M P; Lobera, Julia

    2015-01-01

    In this work traditional fluid and solid mechanics measurement techniques have been combined with endoscopes for the study of blood vessel models’ mechanical properties. Endoscopes have been used as the imaging part of a high-speed PIV system to obtain the velocity field in a vessel model immersed in a container with a refractive index-matching liquid. In this way, we take advantage of the fact that the endoscope tip can be immersed in liquid. Endoscopes have also been used as the imaging and illuminating part of a digital holographic set-up for wall deformation measurement. The novelty of this work is that only one endoscope was used for illuminating and observing the vessel model, using the endoscope’s own illuminating system as the illumination source. The performance of endoscopes in different vessel models has been tested. The results of flow velocity and wall deformation in the different blood vessel models are presented. (paper)

  11. Firefighter's compressed air breathing system pressure vessel development program

    Science.gov (United States)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  12. Study of component distribution in pharmaceutical binary powder mixtures by near infrared chemical imaging

    Directory of Open Access Journals (Sweden)

    Manel Bautista

    2012-12-01

    Full Text Available Near infrared chemical imaging (NIR-CI has recently emerged as an effective technique for extracting spatial information from pharmaceutical products in an expeditious, non-destructive and non-invasive manner. These features have turned it into a useful tool for controlling various steps in drug production processes. Imaging techniques provide a vast amount of both spatial and spectral information that can be acquired in a very short time. Such a huge amount of data requires the use of efficient and fast methods to extract the relevant information. Chemometric methods have proved especially useful for this purpose. In this study, we assessed the usefulness of the correlation coefficient (CC between the spectra of samples, the pure spectra of the active pharmaceutical ingredient (API and we assessed the excipients to check for correct ingredient distribution in pharmaceutical binary preparations blended in the laboratory. Visual information about pharmaceutical component distribution can be obtained by using the CC. The performance of this model construction methodology for binary samples was compared with other various common multivariate methods including partial least squares, multivariate curve resolution and classical least squares. Based on the results, correlation coefficients are a powerful tool for the rapid assessment of correct component distribution and for quantitative analysis of pharmaceutical binary formulations. For samples of three or more components it has been shown that if the objective is only to determine uniformity of blending, then the CC image map is very good for this, and easy and fast to compute.

  13. Data combination of infrared thermography images and lock-in thermography images for NDE of plasma facing components

    International Nuclear Information System (INIS)

    Moysan, J.; Gueudre, C.; Corneloup, G.; Durocher, A.

    2006-01-01

    A pioneering activity has been developed by CEA and the European industry in the field of actively cooled high heat flux plasma facing components (PFC) from the very beginning of Tore Supra project. These components have been developed in order to enable a large power exhaust capability. The goal of this study is to improve the Non Destructive Evaluation (NDE) of these components. The difficulty encountered is the evaluation of the junction between a carbon and a metallic substrate. This was even more difficult when complex designs have to be implemented. A first NDE solution was based on the so called SATIR test. The method is based on infrared measurements of tile surface temperatures during a thermal transient produced by hot/cold water flowing in the heat sink cooling channel. In order to improve the definition of acceptance rules for the PFCs, a second NDE method based on Lock-in Thermography is developed. In this work we present how we can combine the two resulting images in order to accept or to reject a component. This prospective study allows improving the experimental setup and the definition of acceptance criteria. The experimental study was conducted on trial components for the Wendelstein 7X stellarator. The conclusions will also influence future non destructive projects dedicated to the ITER project. (orig.)

  14. Design and development of in-vessel viewing periscope for ITER (International Thermonuclear Experimental Reactor)

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Ito, Akira; Shibanuma, Kiyoshi; Tada, Eisuke

    1999-02-01

    An in-vessel viewing system is essential not only to detect and locate damage of components exposed to plasma, but also to monitor and assist in-vessel maintenance operation. In ITER, the in-vessel viewing system must be capable of operating at high temperature (200degC), under intense gamma radiation (30 kGy/h) and high vacuum or 1 bar inert gas. A periscope-type in-vessel viewing system has been chosen as a reference of the ITER in-vessel viewing system due to its wide viewing capability and durability for sever environments. According to the ITER research and development program, a full-scale radiation hard periscope with a length of 15 m has been successfully developed by the Japan Home Team. The performance tests have been shown sufficient capability at high temperature up to 250degC and radiation resistance over 100 MGy. This report describes the design and R and D results of the ITER in-vessel viewing periscope based on the development of 15-m-length radiation hard periscope. (author)

  15. High-resolution 3D Magnetic Resonance angiography in the evaluation of neck vessels and intracranial circulation

    International Nuclear Information System (INIS)

    Villa, A.; Di Guglielmo, L.; Campani, R.; Nicolato, A.; D'Amato, M.; Rodriguez y Balena, R.

    1991-01-01

    Magnetic Resonance Angiography (MRA) is a modern vascular imaging technique which allows the non-invasive and direct imaging of vessels. The authors aimed at evaluating the diagnostic accuracy of MRA in the study of pathologic conditions in the neck and intracranial vessels; spatial resolution of the technique was also investigated. Twenty-four healthy volunteers and 82 patients suffering from various diseases of the head and neck vessels were included in the study. First of all, MRA capabilities ware investigated in visualizing normal vessels of both neck and intracranial circle. The diagnostic accuracy of the method was then evaluated in the study of vascular diseases, and the results compared with conventional/digital angiographic findings. The comparison demonstrated how stenoses and atherosclerotic plaques tend to be overestimated by MRA because of technical artifacts inherent to the technique itself, whereas vascular ulcerations and aneurysms are frequently underestimated. However, this data was steady and therefore evaluable- the exact knowledge of the artifacts making diagnosis reliable. The diagnostic and technical problems relative to the various vascular diseases are discussed. Finally, several hypotheses of diagnostic iter are suggested

  16. Mock-up tests of rail-mounted vehicle type in-vessel transporter/manipulator

    International Nuclear Information System (INIS)

    Oka, K.; Kakaudate, S.; Fukatsu, S.

    1995-01-01

    A rail-mounted vehicle system has been developed for remote maintenance of in-vessel components for fusion experimental reactor. In this system, a rail deploying/storing system is installed at outside of the reactor core and used to deploy a rail transporter and vehicle/manipulator for the in-vessel maintenance. A prototype of the rail deploying/storing system has been fabricated for mockup tests. This paper describes structural design of the prototypical rail deploying/storing system and results of the performance tests such as payload capacity, position control and rail deployment/storage performance

  17. Engineering analysis of ITER In-Vessel Viewing System guide tube

    Energy Technology Data Exchange (ETDEWEB)

    Casal, Natalia, E-mail: natalia.casal@iter.org [ITER Organization, Route de Vinon sur Verdon, St Paul-lez-Durance (France); Bates, Philip [Fusion for Energy, Barcelona (Spain); Bede, Ottó [Oxford Technologies Ltd., Abingdon (United Kingdom); Damiani, Carlo; Dubus, Gregory [Fusion for Energy, Barcelona (Spain); Omran, Hassan [Oxford Technologies Ltd., Abingdon (United Kingdom); Palmer, Jim [ITER Organization, Route de Vinon sur Verdon, St Paul-lez-Durance (France); Puiu, Adrian [Fusion for Energy, Barcelona (Spain); Reichle, Roger; Suárez, Alejandro; Walker, Christopher; Walsh, Michael [ITER Organization, Route de Vinon sur Verdon, St Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Conceptual design of IVVS Loads action on IVVS Dominant loads. • Seismic and baking conditions. • No active cooling needed for IVVS. • IVVS requires additional support points to avoid excessive deformation. - Abstract: The In Vessel Viewing System (IVVS) will be one of the essential machine diagnostic systems at ITER to provide information about the status of in-vessel and plasma facing components and to evaluate the dust inside the Vacuum Vessel. The current design consists of six scanning probes and their deployment systems, which are placed in dedicated ports at the divertor level. These units are located in resident guiding tubes 10 m long, which allow the IVVS probes to go from their storage location to the scanning position by means of a simple straight translation. Moreover, each resident tube is supported inside the corresponding Vacuum Vessel and Cryostat port extensions, which are part of the primary confinement barrier. As the Vacuum Vessel and the Cryostat will move with respect to each other during operation (especially during baking) and during incidents and accidents (disruptions, vertical displacement events, seismic events), the structural integrity of the resident tube and the surrounding vacuum boundaries would be compromised if the required flexibility and supports are not appropriately assured. This paper focuses on the integration of the present design of the IVVS into the Vacuum Vessel and Cryostat environment. It presents the adopted strategy to withstand all the main interfacing loads without damaging the confinement barriers and the corresponding analysis supporting it.

  18. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  19. Thymic epithelial tumors: Comparison of CT and MR imaging findings of low-risk thymomas, high-risk thymomas, and thymic carcinomas

    International Nuclear Information System (INIS)

    Sadohara, Junko; Fujimoto, Kiminori; Mueller, Nestor L.; Kato, Seiya; Takamori, Shinzo; Ohkuma, Kazuaki; Terasaki, Hiroshi; Hayabuchi, Naofumi

    2006-01-01

    Objective: To assess the CT and magnetic resonance (MR) imaging findings of thymic epithelial tumors classified according to the current World Health Organization (WHO) histologic classification and to determine useful findings in differentiating the main subtypes. Materials and methods: Sixty patients with thymic epithelial tumor who underwent both CT and MR imaging were reviewed retrospectively. All cases were classified according to the 2004 WHO classification. The following findings were assessed in each case on both CT and MRI: size of tumor, contour, perimeter of capsule; homogeneity, presence of septum, hemorrhage, necrotic or cystic component within tumor; presence of mediastinal lymphadenopathy, pleural effusion, and great vessel invasion. These imaging characteristics of 30 low-risk thymomas (4 type A, 12 type AB, and 14 type B1), 18 high-risk thymomas (11 type B2 and seven type B3), and 12 thymic carcinomas on CT and MR imaging were compared using the chi-square test. Comparison between CT and MR findings was performed by using McNemar test. Results: On both CT and MR imaging, thymic carcinomas were more likely to have irregular contours (P < .001), necrotic or cystic component (P < .05), heterogeneous contrast-enhancement (P < .05), lymphadenopathy (P < .0001), and great vessel invasion (P < .001) than low-risk and high-risk thymomas. On MR imaging, the findings of almost complete capsule, septum, and homogenous enhancement were more commonly seen in low-risk thymomas than high-risk thymomas and thymic carcinomas (P < .05). MR imaging was superior to CT in the depiction of capsule, septum, or hemorrhage within tumor (all comparison, P < .05). Conclusion: The presence of irregular contour, necrotic or cystic component, heterogeneous enhancement, lymphadenopathy, and great vessel invasion on CT or MR imaging are strongly suggestive of thymic carcinomas. On MR imaging, the findings of contour, capsule, septum, and homogenous enhancement are helpful in

  20. Enhancement of optic cup detection through an improved vessel kink detection framework

    Science.gov (United States)

    Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.

  1. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  2. The renin-angiotensin-aldosterone system in cerebral small vessel disease

    NARCIS (Netherlands)

    Brenner, D.; Labreuche, J.; Pico, F.; Scheltens, P.; Poirier, O.; Cambien, F.; Amarenco, P.

    2008-01-01

    Introduction: Cerebral small vessel disease (SVD) appears on magnetic resonance imaging (MRI) as leukoaraiosis (LA), état criblé (EC), and multiple lacunar infarctions (MLI). Although the pathophysiology of SVD is poorly understood, there is evidence of a genetic contribution. We sought to analyze

  3. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  4. A model for structural analysis of nuclear reactor pressure vessel flanges

    International Nuclear Information System (INIS)

    Oliveira, C.A. de.

    1987-01-01

    Due to the recent Brazilian advances in the nuclear technology area, it has been necessary the development of design and analysis methods for pressurized water reactor components, also as other components of a nuclear plant. This work proposes a methodology for the structural analysis of large diameter nuclear reactor pressure vessel flanges. In the analysis the vessel is divided into shell-of-revolution elements, the flanges are represented by rigid rings, and the bolts are treated as beams. The flexibility method is used for solving the problem. A computer program is shown, and the given results (displacements and stresses) are compared with results obtained by the finite element method. Although developed for nuclear reactor pressure vessel calculations, the program is more general, being possible its use for the analysis of any structure composed by shells of revolution. (author)

  5. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  6. New aspects of MRI for diagnostics of large vessel vasculitis and primary angiitis of the central nervous system

    International Nuclear Information System (INIS)

    Saam, T.; Habs, M.; Cyran, C.C.; Grimm, J.; Reiser, M.F.; Nikolaou, K.; Pfefferkorn, T.; Schueller, U.

    2010-01-01

    Vasculitis is a rare disease and clinical symptoms are often unspecific. Accurate and early diagnosis is mandatory in order to prevent complications, such as loss of vision or stroke. Imaging techniques can contribute to establishing a definite diagnosis and to evaluate disease activity and the extent of the disease in various vascular regions. Conventional imaging methods, such as computed tomography (CT) and magnetic resonance (MR) angiography, as well as digital subtraction angiography allow the vessel lumen but not the vessel wall to be depicted. However, vasculitis is a disease which primarily affects the vessel wall, therefore conventional imaging modalities often fail to make a definite diagnosis. Recently black-blood high resolution MR in vivo imaging has been used to visualize cervical and intracranial vasculitis. This review article presents imaging protocols for intracranial and cervical black-blood MR imaging and clinical cases with large vessel vasculitis and vasculitis of the central nervous system. Furthermore the current literature, examples of the most common differential diagnoses of cervical and cranial arteriopathy and the potential of other imaging modalities, such as PET/CT and ultrasound will be discussed. (orig.) [de

  7. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.

    Directory of Open Access Journals (Sweden)

    Michele Cavallari

    2011-04-01

    Full Text Available The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D, a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD was lower than control (1.50±0.04; p = 0.002. Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients.

  8. Tracking blood vessels in human forearms using visual servoing

    DEFF Research Database (Denmark)

    Savarimuthu, Thiusius Rajeeth; Ellekilde, Lars-Peter; Hansen, Morten

    compensation. By using images taken with near-infrared light to locate the blood vessels in a human forearm and using the same images to detects movements of the arm, this paper shows that it is possible make a robot arm, potentially equipped with a needle for drawing the blood, compensate for the movements......Drawing an average of more than 2 blood sample per Danish citizen per year increases the demand for an automatic blood sampling method. This paper presents a proof of concept to one of the main challenges in making a fully automated blood sampling procedure, namely: the patient movement...

  9. High-Temperature Gas-cooled Reactor steam-cycle/cogeneration lead plant reactor vessel: system design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Reactor Vessel System contains the primary coolant inventory within a gas-tight pressure boundary, and provides the necessary flow paths and overpressure protection for this pressure boundary. The Reactor Vessel System also houses the components of the Reactor System, the Heat Transport System, and the Auxiliary Heat Removal System. The scope of the Reactor Vessel System includes the prestressed concrete reactor vessel (PCRV) structure with its reinforcing steel and prestressing components; liners, penetrations, closures, and cooling water tubes attached to the concrete side of the liner; the thermal barrier (insulation) on the primary coolant side of the liner; instrumentation for structural monitoring; and a pressure relief system. Specifications are presented

  10. Vessel classification method based on vessel behavior in the port of Rotterdam

    NARCIS (Netherlands)

    Zhou, Y.; Daamen, W.; Vellinga, T.; Hoogendoorn, S.P.

    2015-01-01

    AIS (Automatic Identification System) data have proven to be a valuable source to investigate vessel behavior. The analysis of AIS data provides a possibility to recognize vessel behavior patterns in a waterway area. Furthermore, AIS data can be used to classify vessel behavior into several

  11. Deformable 4DCT lung registration with vessel bifurcations

    International Nuclear Information System (INIS)

    Hilsmann, A.; Vik, T.; Kaus, M.; Franks, K.; Bissonette, J.P.; Purdie, T.; Beziak, A.; Aach, T.

    2007-01-01

    In radiotherapy planning of lung cancer, breathing motion causes uncertainty in the determination of the target volume. Image registration makes it possible to get information about the deformation of the lung and the tumor movement in the respiratory cycle from a few images. A dedicated, automatic, landmark-based technique was developed that finds corresponding vessel bifurcations. Hereby, we developed criteria to characterize pronounced bifurcations for which correspondence finding was more stable and accurate. The bifurcations were extracted from automatically segmented vessel trees in maximum inhale and maximum exhale CT thorax data sets. To find corresponding bifurcations in both data sets we used the shape context approach of Belongie et al. Finally, a volumetric lung deformation was obtained using thin-plate spline interpolation and affine registration. The method is evaluated on 10 4D-CT data sets of patients with lung cancer. (orig.)

  12. Phased Array Imaging of Complex-Geometry Composite Components.

    Science.gov (United States)

    Brath, Alex J; Simonetti, Francesco

    2017-10-01

    Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke

  13. Detection of hypertensive retinopathy using vessel measurements and textural features.

    Science.gov (United States)

    Agurto, Carla; Joshi, Vinayak; Nemeth, Sheila; Soliz, Peter; Barriga, Simon

    2014-01-01

    Features that indicate hypertensive retinopathy have been well described in the medical literature. This paper presents a new system to automatically classify subjects with hypertensive retinopathy (HR) using digital color fundus images. Our method consists of the following steps: 1) normalization and enhancement of the image; 2) determination of regions of interest based on automatic location of the optic disc; 3) segmentation of the retinal vasculature and measurement of vessel width and tortuosity; 4) extraction of color features; 5) classification of vessel segments as arteries or veins; 6) calculation of artery-vein ratios using the six widest (major) vessels for each category; 7) calculation of mean red intensity and saturation values for all arteries; 8) calculation of amplitude-modulation frequency-modulation (AM-FM) features for entire image; and 9) classification of features into HR and non-HR using linear regression. This approach was tested on 74 digital color fundus photographs taken with TOPCON and CANON retinal cameras using leave-one out cross validation. An area under the ROC curve (AUC) of 0.84 was achieved with sensitivity and specificity of 90% and 67%, respectively.

  14. Preliminary examples of 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2013-01-01

    This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental ult...... as opposed to magnetic resonance imaging (MRI). The results demonstrate that the 3D TO method is capable of performing 3D vector flow imaging.......This paper presents 3D vector flow images obtained using the 3D Transverse Oscillation (TO) method. The method employs a 2D transducer and estimates the three velocity components simultaneously, which is important for visualizing complex flow patterns. Data are acquired using the experimental...... ultrasound scanner SARUS on a flow rig system with steady flow. The vessel of the flow-rig is centered at a depth of 30 mm, and the flow has an expected 2D circular-symmetric parabolic prole with a peak velocity of 1 m/s. Ten frames of 3D vector flow images are acquired in a cross-sectional plane orthogonal...

  15. Determination of arterial input function in dynamic susceptibility contrast MRI using group independent component analysis technique

    International Nuclear Information System (INIS)

    Chen, S.; Liu, H.-L.; Yang Yihong; Hsu, Y.-Y.; Chuang, K.-S.

    2006-01-01

    Quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) requires the determination of the arterial input function (AIF). The segmentation of surrounding tissue by manual selection is error-prone due to the partial volume artifacts. Independent component analysis (ICA) has the advantage in automatically decomposing the signals into interpretable components. Recently group ICA technique has been applied to fMRI study and showed reduced variance caused by motion artifact and noise. In this work, we investigated the feasibility and efficacy of the use of group ICA technique to extract the AIF. Both simulated and in vivo data were analyzed in this study. The simulation data of eight phantoms were generated using randomized lesion locations and time activity curves. The clinical data were obtained from spin-echo EPI MR scans performed in seven normal subjects. Group ICA technique was applied to analyze data through concatenating across seven subjects. The AIFs were calculated from the weighted average of the signals in the region selected by ICA. Preliminary results of this study showed that group ICA technique could not extract accurate AIF information from regions around the vessel. The mismatched location of vessels within the group reduced the benefits of group study

  16. An experimental system for the study of ultrasound exposure of isolated blood vessels

    NARCIS (Netherlands)

    Tokarczyk, Anna; Rivens, Ian; van Bavel, E.; Symonds-Tayler, Richard; ter Haar, Gail

    2013-01-01

    An experimental system designed for the study of the effects of diagnostic or therapeutic ultrasound exposure on isolated blood vessels in the presence or absence of intraluminal contrast agent is described. The system comprised several components. A microscope was used to monitor vessel size (and

  17. Image edge detection based tool condition monitoring with morphological component analysis.

    Science.gov (United States)

    Yu, Xiaolong; Lin, Xin; Dai, Yiquan; Zhu, Kunpeng

    2017-07-01

    The measurement and monitoring of tool condition are keys to the product precision in the automated manufacturing. To meet the need, this study proposes a novel tool wear monitoring approach based on the monitored image edge detection. Image edge detection has been a fundamental tool to obtain features of images. This approach extracts the tool edge with morphological component analysis. Through the decomposition of original tool wear image, the approach reduces the influence of texture and noise for edge measurement. Based on the target image sparse representation and edge detection, the approach could accurately extract the tool wear edge with continuous and complete contour, and is convenient in charactering tool conditions. Compared to the celebrated algorithms developed in the literature, this approach improves the integrity and connectivity of edges, and the results have shown that it achieves better geometry accuracy and lower error rate in the estimation of tool conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study

    Science.gov (United States)

    Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine

    2014-01-01

    Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (pTesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327

  19. Photoacoustic imaging of lymphatic pumping

    Science.gov (United States)

    Forbrich, Alex; Heinmiller, Andrew; Zemp, Roger J.

    2017-10-01

    The lymphatic system is responsible for fluid homeostasis and immune cell trafficking and has been implicated in several diseases, including obesity, diabetes, and cancer metastasis. Despite its importance, the lack of suitable in vivo imaging techniques has hampered our understanding of the lymphatic system. This is, in part, due to the limited contrast of lymphatic fluids and structures. Photoacoustic imaging, in combination with optically absorbing dyes or nanoparticles, has great potential for noninvasively visualizing the lymphatic vessels deep in tissues. Multispectral photoacoustic imaging is capable of separating the components; however, the slow wavelength switching speed of most laser systems is inadequate for imaging lymphatic pumping without motion artifacts being introduced into the processed images. We investigate two approaches for visualizing lymphatic processes in vivo. First, single-wavelength differential photoacoustic imaging is used to visualize lymphatic pumping in the hindlimb of a mouse in real time. Second, a fast-switching multiwavelength photoacoustic imaging system was used to assess the propulsion profile of dyes through the lymphatics in real time. These approaches may have profound impacts in noninvasively characterizing and investigating the lymphatic system.

  20. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  1. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    International Nuclear Information System (INIS)

    Roberts, R.E.; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-01-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  2. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  3. Primo vessel inside a lymph vessel emerging from a cancer tissue.

    Science.gov (United States)

    Lee, Sungwoo; Ryu, Yeonhee; Cha, Jinmyung; Lee, Jin-Kyu; Soh, Kwang-Sup; Kim, Sungchul; Lim, Jaekwan

    2012-10-01

    Primo vessels were observed inside the lymph vessels near the caudal vena cava of a rabbit and a rat and in the thoracic lymph duct of a mouse. In the current work we found a primo vessel inside the lymph vessel that came out from the tumor tissue of a mouse. A cancer model of a nude mouse was made with human lung cancer cell line NCI-H460. We injected fluorescent nanoparticles into the xenografted tumor tissue and studied their flow in blood, lymph, and primo vessels. Fluorescent nanoparticles flowed through the blood vessels quickly in few minutes, and but slowly in the lymph vessels. The bright fluorescent signals of nanoparticles disappeared within one hour in the blood vessels but remained much longer up to several hours in the case of lymph vessels. We found an exceptional case of lymph vessels that remained bright with fluorescence up to 24 hours. After detailed examination we found that the bright fluorescence was due to a putative primo vessel inside the lymph vessel. This rare observation is consistent with Bong-Han Kim's claim on the presence of a primo vascular system in lymph vessels. It provides a significant suggestion on the cancer metastasis through primo vessels and lymph vessels. Copyright © 2012. Published by Elsevier B.V.

  4. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  5. Registration of dynamic dopamine D{sub 2}receptor images using principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acton, P.D.; Ell, P.J. [Institute of Nuclear Medicine, University College London Medical School, London (United Kingdom); Pilowsky, L.S.; Brammer, M.J. [Institute of Psychiatry, De Crespigny Park, London (United Kingdom); Suckling, J. [Clinical Age Research Unit, Kings College School of Medicine and Dentistry, London (United Kingdom)

    1997-11-01

    This paper describes a novel technique for registering a dynamic sequence of single-photon emission tomography (SPET) dopamine D{sub 2}receptor images, using principal component analysis (PCA). Conventional methods for registering images, such as count difference and correlation coefficient algorithms, fail to take into account the dynamic nature of the data, resulting in large systematic errors when registering time-varying images. However, by using principal component analysis to extract the temporal structure of the image sequence, misregistration can be quantified by examining the distribution of eigenvalues. The registration procedures were tested using a computer-generated dynamic phantom derived from a high-resolution magnetic resonance image of a realistic brain phantom. Each method was also applied to clinical SPET images of dopamine D {sub 2}receptors, using the ligands iodine-123 iodobenzamide and iodine-123 epidepride, to investigate the influence of misregistration on kinetic modelling parameters and the binding potential. The PCA technique gave highly significant (P <0.001) improvements in image registration, leading to alignment errors in x and y of about 25% of the alternative methods, with reductions in autocorrelations over time. It could also be applied to align image sequences which the other methods failed completely to register, particularly {sup 123}I-epidepride scans. The PCA method produced data of much greater quality for subsequent kinetic modelling, with an improvement of nearly 50% in the {chi}{sup 2}of the fit to the compartmental model, and provided superior quality registration of particularly difficult dynamic sequences. (orig.) With 4 figs., 2 tabs., 26 refs.

  6. Large intracranial vessel occlusive vasculopathy after radiation therapy in children: clinical features and usefulness of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Omura, Motoko; Aida, Noriko; Sekido, Kenichi; Kakehi, Masae; Matsubara, Sho

    1997-01-01

    Purpose: To assess the relationship between large intracranial vessel occlusive vasculopathy (vasculopathy) and radiation therapy, and to clarify the clinical efficacy of magnetic resonance (MR) imaging in the diagnosis and screening of the vasculopathy. Methods and Materials: We retrospectively evaluated the medical records and serial MR images for 32 pediatric patients, in whom radiation therapy had been given to fields including the circle of Willis and major cerebral arteries. All children had periodically undergone follow-up neurologic assessment and MR imaging examinations at Kanagawa Children's Medical Center for more than one year after radiation therapy (range 1.3-14 years). Patients who had not remained free of tumor progression up to the time of final evaluation were excluded. Results: Vasculopathy developed in 6 of 32 patients 2-13 years after radiation therapy. Three of them presented with transient ischemic attacks (TIA) and the other three showed infarctions without preceding TIA. Steno-occlusive changes of major cerebral arteries were identified by MR imaging in all six patients, but not obtained in the remaining 26 patients. In the patients with TIA, MR imaging demonstrated steno-occlusive changes at the time of TIA, before irreversible infarction. They have been doing well subsequent to encephaloduraoarteriosyn-angiosis. In the three patients who presented infarction without preceding TIA, MR imaging did not demonstrate the vascular change before the onset of infarction, and two of them developed neurologic deficits. The mean exposure dose for the circle of Willis and major cerebral arteries in these six patients was significantly higher than that in the remaining 26 patients without this sequela (61Gy vs. 50Gy, p < 0.05). The mean age at radiation therapy of the six patients was lower, but the difference was not significant. Conclusion: The incidence of vasculopathy after radiation therapy has a considerable correlation with radiation dose and

  7. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  8. Comparative Study of Retinal Vessel Segmentation Based on Global Thresholding Techniques

    Directory of Open Access Journals (Sweden)

    Temitope Mapayi

    2015-01-01

    Full Text Available Due to noise from uneven contrast and illumination during acquisition process of retinal fundus images, the use of efficient preprocessing techniques is highly desirable to produce good retinal vessel segmentation results. This paper develops and compares the performance of different vessel segmentation techniques based on global thresholding using phase congruency and contrast limited adaptive histogram equalization (CLAHE for the preprocessing of the retinal images. The results obtained show that the combination of preprocessing technique, global thresholding, and postprocessing techniques must be carefully chosen to achieve a good segmentation performance.

  9. LDA measurements and turbulence spectral analysis in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Chára Zdeněk

    2013-04-01

    Full Text Available During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique, methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  10. LDA measurements and turbulence spectral analysis in an agitated vessel

    Science.gov (United States)

    Kysela, Bohuš; Konfršt, Jiří; Chára, Zdeněk

    2013-04-01

    During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA) has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique), methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number) were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  11. A Review of Algorithms for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Monserrate Intriago Pazmiño

    2014-10-01

    Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.

  12. Assembly & Metrology of First Wall Components of SST-1

    Science.gov (United States)

    Parekh, Tejas; Santra, Prosenjit; Biswas, Prabal; Patel, Hiteshkumar; Paravastu, Yuvakiran; Jaiswal, Snehal; Chauhan, Pradeep; Babu, Gattu Ramesh; A, Arun Prakash; Bhavsar, Dhaval; Raval, Dilip C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a meticulous planning of assembly sequence, quality checks at every stage of the assembly process. This paper will present the metrology aspects & procedure of each FWC, both outside the vacuum vessel, and inside the vessel, assembly tolerances, tools, equipment and jig/fixtures, used at each stage of assembly, starting from location of support bases on vessel rings, fixing of copper modules on support structures, around 3800 graphite tile mounting on 136 copper modules with proper tightening torques, till final toroidal and poloidal geometry of the in-vessel components are obtained within acceptable limits, also ensuring electrical continuity of passive stabilizers to form a closed saddle loop, electrical isolation of passive stabilizers from vacuum vessel.

  13. Simulation of In-Vessel Corium Retention through External Reactor Vessel Cooling for SMART using SIMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin-Sung; Son, Donggun; Park, Rae-Joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Thermal load analysis from the corium pool to the outer reactor vessel in the lower plenum of the reactor vessel is necessary to evaluate the effect of the IVR-ERVC during a severe accident for SMART. A computational code called SIMPLE (Sever Invessel Melt Progression in Lower plenum Environment) has been developed for analyze transient behavior of molten corium in the lower plenum, interaction between corium and coolant, and heat-up and ablation of reactor vessel wall. In this study, heat load analysis of the reactor vessel for SMART has been conducted using the SIMPLE. Transient behavior of the molten corium in the lower plenum and IVR-ERVC for SMART has been simulated using SIMPLE. Heat flux from the corium pool to the outer reactor vessel is concentrated in metallic layer by the focusing effect. As a result, metallic layer shows higher temperature than the oxidic layer. Also, vessel wall of metallic layer has been ablated by the high in-vessel temperature. Ex-vessel temperature of the metallic layer was maintained 390 K and vessel thickness was maintained 14 cm. It means that the reactor vessel integrity is maintained by the IVR-ERVC.

  14. Development of a system for measuring wall shear stress in blood vessels using magnetic resonance imaging and computational fluid dynamics

    International Nuclear Information System (INIS)

    Yoshida, Keita; Nagao, Taisuke; Okada, Kouji; Miyazaki, Shohei; Yang, Xiaomei; Yamazaki, Youichi; Murase, Kenya

    2008-01-01

    We developed a system for measuring the wall shear stress (WSS) in blood vessels using magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). The time-dependent velocity at the center of the blood vessel was measured by phase-contrast MRI and was approximated by finite Fourier series, which was used for generating the velocity profile at the inlet for the boundary condition to the CFD method. To validate the CFD method, we compared the WSS obtained by the CFD method with the theoretical value in a straight cylinder with various radii for both steady and pulsatile flows. We also investigated the dependence of the WSS on the inlet velocity profile incorporated into the CFD method. For steady flow, there was a good agreement between the WSS obtained by the CFD method and the theoretical value. For pulsatile flow, there was a relatively good agreement between them when the radius of the cylinder was 2.5 mm and the inlet velocity profile was given by the Womersley solution for fully developed pulsatile flow in a straight circular cylinder. When the radius of the cylinder was 5 mm and/or the inlet velocity profile was assumed to be parabolic, large differences were observed between them, suggesting that the assumption of fully developed flow does not hold true in these cases. In human studies, the vortex due to the secondary blood flow in the carotid arterial sinus was clearly observed. The WSS in the bifurcation was the highest, while that in the carotid arterial sinus was the smallest. In conclusion, the system presented here appears to be useful for measuring the WSS in blood vessels and for analyzing the cause and/or extent of atherosclerosis, and our results suggest that the inlet velocity profile should be carefully considered. (author)

  15. A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.

    Science.gov (United States)

    Rosas-Romero, Roberto; Martínez-Carballido, Jorge; Hernández-Capistrán, Jonathan; Uribe-Valencia, Laura J

    2015-09-01

    Diabetes increases the risk of developing any deterioration in the blood vessels that supply the retina, an ailment known as Diabetic Retinopathy (DR). Since this disease is asymptomatic, it can only be diagnosed by an ophthalmologist. However, the growth of the number of ophthalmologists is lower than the growth of the population with diabetes so that preventive and early diagnosis is difficult due to the lack of opportunity in terms of time and cost. Preliminary, affordable and accessible ophthalmological diagnosis will give the opportunity to perform routine preventive examinations, indicating the need to consult an ophthalmologist during a stage of non proliferation. During this stage, there is a lesion on the retina known as microaneurysm (MA), which is one of the first clinically observable lesions that indicate the disease. In recent years, different image processing algorithms, which allow the detection of the DR, have been developed; however, the issue is still open since acceptable levels of sensitivity and specificity have not yet been reached, preventing its use as a pre-diagnostic tool. Consequently, this work proposes a new approach for MA detection based on (1) reduction of non-uniform illumination; (2) normalization of image grayscale content to improve dependence of images from different contexts; (3) application of the bottom-hat transform to leave reddish regions intact while suppressing bright objects; (4) binarization of the image of interest with the result that objects corresponding to MAs, blood vessels, and other reddish objects (Regions of Interest-ROIs) are completely separated from the background; (5) application of the hit-or-miss Transformation on the binary image to remove blood vessels from the ROIs; (6) two features are extracted from a candidate to distinguish real MAs from FPs, where one feature discriminates round shaped candidates (MAs) from elongated shaped ones (vessels) through application of Principal Component Analysis (PCA

  16. The best of a BAD situation: Optimising an algorithm to match course resolution SAR vessel detections to sparse AIS data

    CSIR Research Space (South Africa)

    Meyer, Rory GV

    2017-07-01

    Full Text Available The detection and classification of SAR imaged vessels at sea is a valuable ability for organisations interested in the marine environment or marine vessels. Matching the SAR detected vessels to their AIS messages allows vessels to be identified...

  17. Classification in hyperspectral images by independent component analysis, segmented cross-validation and uncertainty estimates

    Directory of Open Access Journals (Sweden)

    Beatriz Galindo-Prieto

    2018-02-01

    Full Text Available Independent component analysis combined with various strategies for cross-validation, uncertainty estimates by jack-knifing and critical Hotelling’s T2 limits estimation, proposed in this paper, is used for classification purposes in hyperspectral images. To the best of our knowledge, the combined approach of methods used in this paper has not been previously applied to hyperspectral imaging analysis for interpretation and classification in the literature. The data analysis performed here aims to distinguish between four different types of plastics, some of them containing brominated flame retardants, from their near infrared hyperspectral images. The results showed that the method approach used here can be successfully used for unsupervised classification. A comparison of validation approaches, especially leave-one-out cross-validation and regions of interest scheme validation is also evaluated.

  18. A Fovea Localization Scheme Using Vessel Origin-Based Parabolic Model

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Yu

    2014-09-01

    Full Text Available At the center of the macula, fovea plays an important role in computer-aided diagnosis. To locate the fovea, this paper proposes a vessel origin (VO-based parabolic model, which takes the VO as the vertex of the parabola-like vasculature. Image processing steps are applied to accurately locate the fovea on retinal images. Firstly, morphological gradient and the circular Hough transform are used to find the optic disc. The structure of the vessel is then segmented with the line detector. Based on the characteristics of the VO, four features of VO are extracted, following the Bayesian classification procedure. Once the VO is identified, the VO-based parabolic model will locate the fovea. To find the fittest parabola and the symmetry axis of the retinal vessel, an Shift and Rotation (SR-Hough transform that combines the Hough transform with the shift and rotation of coordinates is presented. Two public databases of retinal images, DRIVE and STARE, are used to evaluate the proposed method. The experiment results show that the average Euclidean distances between the located fovea and the fovea marked by experts in two databases are 9.8 pixels and 30.7 pixels, respectively. The results are stronger than other methods and thus provide a better macular detection for further disease discovery.

  19. Quality assurance experience in the manufacture of PFBR reactor vessel during technology development work

    International Nuclear Information System (INIS)

    Shanmugam, K.; Chandramohan, R.; Ramamurthy, M.K.

    1996-01-01

    An efficient and proper implementation of quality assurance in the technology development works of Prototype Fast Breeder Reactor (PFBR) main vessel was undertaken to achieve the desired quality and dimensional accuracy of main vessel. In this paper an attempt has been made to bring out the methods and procedures adopted to implement the quality assurance programme on important activities including approval of documents, material, general requirements for manufacture of SS components, inspection procedures, forming and welding of petals, non-destructive testing etc. (author)

  20. Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows

    Science.gov (United States)

    Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.

    2018-05-01

    Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.