WorldWideScience

Sample records for in-tank neutron probe

  1. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  2. Potential tank waste material anomalies located near the liquid observation wells: Model predicted responses of a neutron moisture detection system

    International Nuclear Information System (INIS)

    Finfrock, S.H.; Toffer, H.; Watson, W.T.

    1994-09-01

    Extensive analyses have been completed to demonstrate that a neutron moisture probe can be used to recognize anomalies in materials and geometry surrounding the liquid observation wells (LOWs). Furthermore, techniques can be developed that will permit the interpretation of detector readings, perturbed by the presence of anomalies, as more accurate moisture concentrations. This analysis effort extends the usefulness of a neutron moisture probe system significantly, especially in the complicated geometries and material conditions that may be encountered in the waste tanks. Both static-source and pulsed-source neutron probes were considered in the analyses. Four different detector configurations were investigated: Thermal and epithermal neutron detectors located in both the near and far field

  3. Conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer

    International Nuclear Information System (INIS)

    Kyle, K.R.

    1994-01-01

    Currently, tank wastes are to be characterized by drilling and physically removing core samples. The cores are analyzed in laboratories in a hot cell environment. The purpose of the cone penetrometer is to bring the interrogative methods to the sample in its native environment, providing faster, safer, and more cost effective tank characterization, both in terms of time and effort. Probes currently exist for the physical characterization of tank wastes in terms of porosity, density, temperature, and electrical conductivity. The main tool for chemical analysis in the in-tank cone penetrometer will be a fiber optic Raman spectroscopy probe, which will be used to collect information about the molecular chemical constituents of the tank wastes. This report addresses the design and implementation of a Raman probe with the in-tank cone penetrometer. The scope of this document includes design specifications and recommendations for the following aspects of the in-tank Raman cone penetrometer probe: cone penetrometer probe interface--an unit for the inclusion of a Raman probe in the in-tank cone penetrometer will be described; window materials--chemically resistant and mechanically stable materials for the cone penetrometer probe interface window will be considered; Raman probes--Raman probes for inclusion in the penetrometer will be discussed

  4. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  5. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  6. Performance evaluation of corrosion probes in simulated WVNS tank 8D-2 waste: WVNS tank farm process support

    International Nuclear Information System (INIS)

    Elmore, M.R.

    1994-07-01

    Five corrosion probes were received from West Valley Nuclear Services for evaluation in simulated tank 8D-2 3rd-stage sludge wash slurry. The same waste slurry simulated was also used in a series of ongoing corrosion studies assessing the effects of in-tank sludge washing on the integrity of tank 8D-2. Two of the corrosion probes were installed in the coupon corrosion test vessels operating at ∼150 degrees F to compare performance of the probes with that observed by coupon tests conducted in the same vessels. Corrosion rate data calculated from electrical resistance measurements of the corrosion probes were evaluated for this study using two slightly different approaches. One approach uses the total length of exposure of the probe to give a ''time-averaged'' value of the corrosion rate. The other approach uses a shorter period of time (relative to the length of the test) in the calculation of corrosion rate, and is referred to as the ''instantaneous'' rate. The interpretation of the probe data and the implications of corrosion rates calculated with either of these methods are discussed in this report

  7. Alternative technique to neutron probe calibration in situ

    International Nuclear Information System (INIS)

    Encarnacao, F.; Carneiro, C.; Dall'Olio, A.

    1990-01-01

    An alternative technique of neutron probe calibration in situ was applied for Podzolic soil. Under field condition, the neutron probe calibration was performed using a special arrangement that prevented the lateral movement of water around the access tube of the neutron probe. During the experiments, successive amounts of water were uniformly infiltrated through the soil profile. Two plots were set to study the effect of the plot dimension on the slope of the calibration curve. The results obtained shown that the amounts of water transferred to the soil profile were significantly correlated to the integrals of count ratio along the soil profile on both plots. In consequence, the slope of calibration curve in field condition was determined. (author)

  8. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  9. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  10. Quality of the neutron probe calibration curve

    International Nuclear Information System (INIS)

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira

    1997-01-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube

  11. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  12. Influence of density and chemical composition of soils in the neutrons probes answer

    International Nuclear Information System (INIS)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall'Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de; Carneiro, Clemente J. Gusmao

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil's chemical composition; soils physical parameters; neutrons' energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil

  13. Structural evaluation of thermocouple probes for 241-AZ-101 waste tank

    International Nuclear Information System (INIS)

    Kanjilal, S.K.

    1994-01-01

    This document reports on the structural analysis of the thermocouple probe to be installed in 241-AZ-101 waste tank. The thermocouple probe is analyzed for normal pump mixing operation and potential earthquake induced loads required by the Hanford Site Design Criteria SDC-4.1

  14. Structural evaluation of thermocouple probes for 241-AZ-101 waste tank

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, S.K.

    1994-12-06

    This document reports on the structural analysis of the thermocouple probe to be installed in 241-AZ-101 waste tank. The thermocouple probe is analyzed for normal pump mixing operation and potential earthquake induced loads required by the Hanford Site Design Criteria SDC-4.1.

  15. Techniques for sampling nuclear waste tank contents and in situ measurement of activity

    International Nuclear Information System (INIS)

    Lawrence, R.C.

    1978-04-01

    A study was conducted to develop suitable sampling equipment and techniques for characterizing the mechanical properties of nuclear wastes; identifying effective means of measuring radiation levels, temperatures, and neutron fluxes in situ in wastes; and developing a waste core sampler. A portable, stainless steel probe was developed which is placed in the tank through a riser. This probe is built for the insertion of instrumentation that can measure the contents of the tank at any level and take temperature, radiation, and neutron activation readings with reliable accuracy. A simple and reliable instrument for the in situ extraction of waste materials ranging from liquid to concrete-like substances was also developed. This portable, stainless steel waste core sampler can remove up to one liter of radioactive waste from tanks for transportation to hot cell laboratories for analysis of hardness, chemical form, and isotopic content. A cask for transporting the waste samples from the tanks to the laboratory under radiation-protected conditions was also fabricated. This cask was designed with a ''boot'' or inner-seal liner to contain any radioactive wastes that might remain on the outside of the waste core sampling device

  16. Development of Neutron Probes for Characterization of Hazardous Materials in the Sub-surface Medium

    International Nuclear Information System (INIS)

    Keegan, R.P.; McGrath, C.A.; Lopez, J.C.

    2002-01-01

    Neutron probes are being developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the detection, identification and quantification of hazardous materials in the ground. Such materials include plutonium, uranium, americium, chlorine and fluorine. Both a Neutron Gamma (NG) probe and a Prompt Fission Neutron (PFN) probe are being developed. The NG probe is used primarily for nuclide identification and quantification measurements. The PFN is used mostly for the detection and measurement of fissile material, but also for the determination of thermal neutron macroscopic absorption cross sections of the various elements comprising the ground matrix. Calibration of these probes will be carried out at the INEEL using an indoor facility that has been designed for this activity

  17. Mapping sediment deposite on tank FB-901 using neutron back scattering technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Zulkifli Lubis; Phyu Phyu Aung Myint; Thin Moe Hlaing

    2016-01-01

    Tank FB-901 is storage tank for temporary material production with a diameter 11 m and a high 12 m. This tank has been use about 10 years so it is suspected there is sediment in it. Neutron back scattering technique has been used to detected the level of sediment inside so it can be seen the volume of liquid properly and avoid problem in the nozzle outlet. AmBe neutron source with activity one Curie shoot into the tank to enable back scattering intensity from material. Measurement using He-3 detector, radiation counter Ludlum model 2200 scaler ratemeter and mechanical motor controlled by computer. Investigation were taken at around the tank from the bottom to the top on each step 50 mm height 8000 mm. Scan determined the distance between 500 mm and measurement time 3 seconds to each sample point. Investigation found the sediment level average 1000 mm by 1500 mm highest and lowest level 100 mm. Fluctuating liquid level observed maximum of 7800 mm and average of 7000 mm. Cleaning tank advised to avoid blockage of the nozzle and material volume is measured accurately. (author)

  18. Calibration technique for the neutron surface moisture measurement system

    International Nuclear Information System (INIS)

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined

  19. Influence of access hole parameters on neutron moisture probe readings

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1979-10-01

    Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner, as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051- to 0.102-m hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.35g . cm -3 and moisture content of 3.8 to 26.7% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate

  20. Influence of access hole parameters on neutron moisture probe readings

    International Nuclear Information System (INIS)

    Abeele, W.V.

    1978-04-01

    Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051 to 0.102-hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The relationship between hole diameter and count rate also was investigated. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.2 g . cm -3 and moisture content of 1.3 to 35.5% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate

  1. A new type of compensated neutron logging probe

    International Nuclear Information System (INIS)

    Ji Changsong; Shang Xiulan; Dai Zhude; Huang Heyi; Zhang Jianguo; Zu Shihuan; Zhao Jianqiang

    1988-01-01

    A new type of compensated neutron logging probe with glass scintillators has been designed. High sensitivity, long plateau and stability are the features of this probe which differs from the probes with 3 He or LiI(Eu) detector. From the results of field application the measured porosity is in good correspondence with the one obtained by rock core sampling method

  2. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  3. Magnetism and magnetic materials probed with neutron scattering

    International Nuclear Information System (INIS)

    Velthuis, S.G.E. te; Pappas, C.

    2014-01-01

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains

  4. Magnetism and magnetic materials probed with neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)

    2014-01-15

    Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.

  5. Radiation safety of soil moisture neutron probes

    International Nuclear Information System (INIS)

    Oresegun, M.O.

    2000-01-01

    The neutron probe measures sub-surface moisture in soil and other materials by means of high energy neutrons and a slow (thermal) neutron detector. Exposure to radiation, including neutrons, especially at high doses, can cause detrimental health effects. In order to achieve operational radiation safety, there must be compliance with protection and safety standards. The design and manufacture of commercially available neutron moisture gauges are such that risks to the health of the user have been greatly reduced. The major concern is radiation escape from the soil during measurement, especially under dry conditions and when the radius of influence is large. With appropriate work practices as well as good design and manufacture of gauges, recorded occupational doses have been well below recommended annual limits. It can be concluded that the use of neutron gauges poses not only acceptable health and safety risks but, in fact, the risks are negligible. Neutron gauges should not be classified as posing high potential health hazards. (author)

  6. Determination of neutron radiation source on components in the decy 13 cyclotron tank

    International Nuclear Information System (INIS)

    Sunardi; Silakhuddin

    2015-01-01

    In order to design the shielding on the Decy 13 cyclotron system, a study to identify the potency of neutron radiation at the cyclotron components in the vacuum tank has been carried out. The method used is to identify the kind of components material, analyzing significant nuclear reactions producing neutron, and determining the radial distribution of the formation probability of the nuclear reaction. The results of identification show that the nuclear reaction producing neutron are Cu 65 (p,n)Zn 65 , Cu 63 (p,n)Zn 63 and Fe 56 (p,n)Co 56 . The peaks of distribution curve of the formation probability of those reactions are located on the area between 37 cm and 39 cm. (author)

  7. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  8. Irrigation scheduling with the neutron probe

    International Nuclear Information System (INIS)

    Travers, P.

    1987-01-01

    The operational theory of the neutron probe is briefly outlined and its application and uses discussed in relation to determination of soil compaction and irrigation scheduling. Graphic examples are given of alluvial soil moisture profiles and how this information can be used to improve trickle irrigation in vineyards. 3 refs., 7 figs

  9. Neutron and gamma probes: Their use in agronomy. Second edition

    International Nuclear Information System (INIS)

    2003-01-01

    Water is an essential requirement for life on the planet. It is often the single most limiting factor in crop and livestock production. Water is a scarce resource in many urban and rural environments worldwide. According to the FAO, the global demand for fresh water is doubling every 21 years. The quality of the finite water supplies is also under threat from industrial, agricultural and domestic sources of pollution. The majority of crops are grown under rain-fed conditions and adequate water supply is the main factor limiting crop production in semi-arid and sub-humid regions. On the other hand, currently 20% of the world's arable land is under irrigation providing 35 to 40% of all agricultural production. Irrigation mismanagement poses a serious threat to the environment through groundwater pollution and salinization. It is therefore, essential that water resources be used efficiently by regular monitoring of soil-water status in the unsaturated zone. The neutron depth probe, a nuclear-based technique, is utilized worldwide for this purpose. The neutron moisture gauge, since its introduction some 40 years ago, can now be considered a routine method in soil water studies. Many developments have since been introduced, in particular electronic components, which have significantly improved performance and expanded applications. Although the neutron scattering method is routinely utilised in many developed countries, its use is still limited in developing countries due to several factors. Neutron depth probes contain radioactive sources, which will present health and environmental hazards if a probe is improperly used, stored or disposed of. National and international legislation and regulations must be complied with. The strategic objective of the sub-program Soil and Water Management and Crop Nutrition of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is to develop and promote the adoption of nuclear-based technologies for optimising soil

  10. Neutrons: The kinder, gentler probe of condensed matter

    International Nuclear Information System (INIS)

    Axe, J.D.

    1989-01-01

    Neutrons play an increasingly important role in the characterization of advanced modern materials. They provide information that complements rather than competes with that provided by other scattering probes. Although neutrons require heroic efforts to produce, the techniques for using them are not particularly difficult, and with the advent of sufficient user friendly facilities, are becoming a routine tool in the arsenal of expanding numbers of materials scientists. 10 refs., 5 figs

  11. Calibration of a neutron probe for determining the humidity in deep alluvial soils

    International Nuclear Information System (INIS)

    Ferrer, A.; Rivero, H.; Lopez, F.; Cantillo, O.

    1993-01-01

    Preliminary data for the calibration of a neutron probe in deep alluvial soils for determining the humidity are reported. Comparisons of Neutron flow behaviour with the depth of the land are established. A characteristic curve of amount of detected neutrons according to the humidity percentage (from 50 to 100 % of the field humidity) is obtained

  12. The performance and radiation exposure of some neutron probes in measuring the water content of the topsoil layer

    International Nuclear Information System (INIS)

    Arslan, A.; Razzouk, A.K.; Al-Ain, F.

    1997-01-01

    The use of neutron scattering technique for determining the soil surface water content is not popular due to the radiation escaping from the soil surface and the large errors in measurement. To compare the radiation exposure and the performance of different techniques statistically, 3 sites were selected. Five different neutron probe models and different adaptors were used with the depth probes. Exposure to neutrons and γ radiations, at various distances from the probes, were determined. In situ calibration curves were determined using different models of depth probes with a Solo surface reflector block, CPN surface adaptor, and different numbers of plastic Teflon parallelepiped, as well as surface Troxler 3401-B probes. Depth neutron probe readings increased with increasing number of Teflon plastic blocks deposited on the soil surface. The intercept of the straight line regression analysis of CR (count ratio, surface count over standard count) v. percentage water content on a volume basis decreased with increasing number of blocks deposited on the soil surface at all sites. The determination coefficient values of any depth probe with a Solo surface reflector or a block of 4-8 cm thickness were higher than those of a Troxler 3401-B surface probe or CPN 503 depth probe with its surface adaptor. The least exposure to radiation was with a depth probe with surface reflectors. This study proves the possibility of measuring the moisture content of the soil surface by using a depth neutron probe with a block laid on the surface, without danger of receiving the threshold dose of radiation. (authors)

  13. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    Science.gov (United States)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  14. Comparative experimental and theoretical investigations of the DM neutron moisture probe

    DEFF Research Database (Denmark)

    Ølgaard, Povl Lebeck; Haahr, Vagner

    1967-01-01

    Theoretical and experimental investigations of the Danish produced DM subsurface moisture probe have been carried out at the Research Establishment Risö, and the results obtained are presented in this paper. The DM probe contains an Am-Be fast neutron source and has a glass scintillator containing...

  15. The neutron probe and the detection of soil moisture

    International Nuclear Information System (INIS)

    Luft, G.; Morgenschweis, G.

    1981-01-01

    The authors present a brief outline of the direct and indirect field methods used at present in soil moisture measurement; particularly the advantages and disadvantages of neutron diffusion measurement are illustrated by means of various types of instruments available. The recently developed Wellingford Neutron Moisture Probe IH II, used for hydrological and pedohydrological fieldwork respectively, is presented and the first test results concerning the handling, measuring time, measured volume and layer thickness are discussed. (orig.) [de

  16. Profiling water content in soils with TDR: Comparison with the neutron probe technique

    International Nuclear Information System (INIS)

    Laurent, J.P.

    2000-01-01

    In November 1996, at a site on the Grenoble campus a 1.2-m-long neutron access tube, a 0.8-m fibreglass Trime access tube and three sets of 1-m twin-rod TDR probes were installed. Weekly measurements were made over a 9-month period. In addition, soil samples were taken from time to time with an auger, to determine gravimetric water-contents. The soil bulk density profile was initially characterised by gammametry using a Campbell TM probe. A Troxler TM 4300 was used for the neutron-probe measurements. The TDR signals, for further processing by TDR-SSI, were logged using a Trase 2000 from Soil Moisture Equipment Corporation TM . TDR methods were employed without any special calibration of the permittivity/water-content relationship: standard internal calibrations of the devices or Topp polynomial relation were always applied. The results of all these water-content profiling methods were compared in three ways: (i) the water-content profiles were plotted directly on the same graph for different dates; (ii) all the water contents measured at all dates and all depths were plotted against a corresponding 'reference', namely neutron probe or gravimetry; (iii) water balances were calculated for each method and their respective time-profiles analysed. There was fairly good agreement among the three profiling methods, indicating that TDR is now a viable alternative to nuclear techniques for soil water-content profiling. (author)

  17. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  18. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  19. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  20. Test Plan And Procedure For The Examination Of Tank 241-AY-101 Multi-Probe Corrosion Monitoring System

    International Nuclear Information System (INIS)

    Wyrwas, R.B.; Page, J.S.; Cooke, G.S.

    2012-01-01

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  1. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

    2014-02-18

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  2. Annual report of STACY operation in FY.2000. Experiments on neutron-interacting systems with two slab-shaped core tanks and 10% enriched uranyl nitrate solution. 2. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Hirose, Hideyuki; Izawa, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-09-01

    Criticality experiments on neutron-interacting systems have been performed since FY.1999 at STACY (Static Experiment Critical Facility) in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility). In the experiments two slab-shaped core tanks and 10% enriched uranyl nitrate solution were used. The dimension of the core tanks is 35 cm in thickness, 70 cm in width and 150 cm in height. In FY.2000, the reactivity effect of neutron-isolating materials, such as polyethylene and concrete, and neutron absorbers made of hafnium and cadmium, which were placed between those two core tanks, was determined by the experiments. This report summarizes the data on the operation and the fuel management for the 57 experiments conducted in FY.2000. (author)

  3. Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1997-01-01

    Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples. Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available

  4. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  5. Development of a probe by neutron activation for chemical analysis in drillings

    International Nuclear Information System (INIS)

    Baron, J.P.; Carriou, J.; Alexandre, J.; Pinault, J.L.; Dumas, A.; Huet, D.; Collins, V.

    1983-01-01

    Laboratory studies on simulated drillings have been made and compared to calculations on mathematical models. A probe design has been developed with the Laboratory of Ponts et Chaussees. The probe has been tested in-situ on polymetallic sulfide mineralization. The study of the activation gamma allowed to log copper, iron, silicon and potassium. A very feasibility of neutronic activation has been proved during these three years. At the end of this optimization phase, the mining operators will have a device able to give them in real time informations necessary to control their operations [fr

  6. RESULTS OF THE EXAMINATION OF ELECTROCHEMICAL NOISE PROBE SPECIMENS REMOVED FROM TANK 241-AN-107, JUNE, 2010

    International Nuclear Information System (INIS)

    Cooke, G.A.; Wyrwas, R.B.; Duncan, J.B.

    2010-01-01

    An Integrated Multi-function Corrosion Probe (IMCP) was installed in Tank 241-AN-107 on September 20, 2006. A portion of the probe was retrieved on June 8, 2010 and the sections holding the detectors were delivered to the 222-S Laboratory for analysis. The examination and disassembly of the probe sections encountered a number of challenges. However, disassembly and relevant analyses were successfully completed. The following summarizes our observations. Brittle failure of the fiberglass probe in the middle of detector 2 resulted in the recovery of only three vapor space C-rings and six supernatant bullet specimens. The design of the bullets and how they were attached to the probe made the recovery of the components more difficult. The use of glue/epoxy on the bullets and the attachment of the flat bottom of the bullets to the curved surface of the fiberglass probe body meant that weight loss on cleaning and surface area of the specimens could not be determined with acceptable accuracy. Macrophotography of all specimens reveals that corrosion was slight in the vapor space and extremely slight in the supernatant. The one pre-cracked C-ring recovered from the vapor space still had the stress bulge visible on the polished surface, indicating that crack propagation had not occurred in the tank. No photographs were taken of the C-ring before deployment. No further analysis was conducted on this specimen. A detailed discussion and photographic documentation are provided in this report.

  7. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  8. Neutron and gamma probes: Their use in agronomy. Second edition; Sondas de neutrones y gamma: Sus aplicaciones en agronomia. Segunda edicion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    Water is an essential requirement for life on the planet. It is often the single most limiting factor in crop and livestock production. Water is a scarce resource in many urban and rural environments worldwide. According to the FAO, the global demand for fresh water is doubling every 21 years. The quality of the finite water supplies is also under threat from industrial, agricultural and domestic sources of pollution. The majority of crops are grown under rain-fed conditions and adequate water supply is the main factor limiting crop production in semi-arid and sub-humid regions. On the other hand, currently 20% of the world's arable land is under irrigation providing 35 to 40% of all agricultural production. Irrigation mismanagement poses a serious threat to the environment through groundwater pollution and salinization. It is therefore, essential that water resources be used efficiently by regular monitoring of soil-water status in the unsaturated zone. The neutron depth probe, a nuclear-based technique, is utilized worldwide for this purpose. The neutron moisture gauge, since its introduction some 40 years ago, can now be considered a routine method in soil water studies. Many developments have since been introduced, in particular electronic components, which have significantly improved performance and expanded applications. Although the neutron scattering method is routinely utilised in many developed countries, its use is still limited in developing countries due to several factors. Neutron depth probes contain radioactive sources, which will present health and environmental hazards if a probe is improperly used, stored or disposed of. National and international legislation and regulations must be complied with. The strategic objective of the sub-program Soil and Water Management and Crop Nutrition of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is to develop and promote the adoption of nuclear-based technologies for optimising soil

  9. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  10. Correcting the error in neutron moisture probe measurements caused by a water density gradient

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1988-01-01

    If a neutron probe lies in or near a water density gradient, the probe may register a water density different to that at the measuring point. The effect of a thin stratum of soil containing an excess or depletion of water at various distances from a probe in an otherwise homogeneous system has been calculated, producing an 'importance' curve. The effect of these strata can be integrated over the soil region in close proximity to the probe resulting in the net effect of the presence of a water density gradient. In practice, the probe is scanned through the point of interest and the count rate at that point is corrected for the influence of the water density on each side of it. An example shows that the technique can reduce an error of 10 per cent to about 2 per cent

  11. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring Plan

    International Nuclear Information System (INIS)

    Zhang, Z.F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy's Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  12. Comparison of methods of calibration of a neutron probe by gravimetry or neutron-capture model

    International Nuclear Information System (INIS)

    Vachaud, G.; Royer, J.M.; Cooper, J.D.

    1977-01-01

    This paper presents a systematic analysis of two methods used for determining calibration curves of neutron probes. The uncertainties resulting from the use of the gravimetric method, with a linear correlation between count rates and water content of soil samples, are considered first. Particular care is given to the determination of errors in the values of water content and count rates, and to the difficulties arising from the choice of the correlation technique. The neutron-calibration curve of the soil was also obtained with a technique based on the determination of neutron thermal adsorption and diffusion constants. The importance of errors associated with this method is also analyzed. Different field examples are then presented. It appears that the neutron-capture technique should be particularly well suited for determining the calibration curve of clay soils or heterogeneous materials for which the gravimetric calibration technique cannot be applied with confidence. On the other hand, it is also shown that for a soil with a very well-defined gravimetric calibration curve, the neutron-capture technique gives results still at least as good as with the former method

  13. Annual report of STACY operation in FY.1999. Experiments on two unit neutron-interacting system with slab-shaped core tanks and 10% enriched uranyl nitrate solution (1). (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Seiji; Sono, Hiroki; Hirose, Hideyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2000-11-01

    A new series of experiments on two unit neutron-interacting system started in the last half of FY.1999 at STACY (Static Experiment Critical Facility) in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility). The experiments were conducted with two slab-shaped core tanks and 10% enriched uranyl nitrate solution. The dimensions of the core tanks are 35 cm in thickness, 70 cm in width and 150 cm in height. In the experiments, critical level heights were measured varying the distance between the two core tanks under the non-reflected condition in order to evaluate reactivity effects on the neutron interaction between the two core tanks. This report summarizes the data on the operation and the fuel management for the 25 experiments conducted in the last half of FY.1999. (author)

  14. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 6: Accurate in-tank determination of liquid density in accountancy tanks equipped with dip tubes

    International Nuclear Information System (INIS)

    2008-01-01

    ISO 18213 deals with the acquisition, standardization, analysis, and use of calibration data to determine liquid volumes in process tanks for accountability purposes. This part of ISO 18213 is complementary to the other parts, ISO 18213-1 (procedural overview), ISO 18213-2 (data standardization), ISO 18213-3 (statistical methods), ISO 18213-4 (slow bubbling rate), ISO 18213-5 (fast bubbling rate). The procedure described in this part of ISO 18213 is a two-step procedure. First, a liquid of known density is used to determine the vertical distance between the tips of the two probes (i.e. to calibrate their separation). The calibration step requires synchronous (or as nearly synchronous as possible) measurements of the pressure exerted at the tips of two probes by the calibration liquid in which they are submerged. The measurements obtained are used to make an accurate determination of probe separation. Second, the unknown density of the process liquid is determined with the aid of the probe separation calibration. The density-determination step also requires (nearly) synchronous measurements of the pressure exerted at the tips of two probes by the process liquid of unknown density. With careful technique, it is possible to make determinations of liquid density with in-tank measurements that approach the accuracy and precision of those made in the laboratory. Moreover, density determinations made with in-tank measurements are automatically made at the observed temperature of the tank liquid. Thus, no additional information about the liquid is required to infer its density at its tank temperature from determinations of its density at some other temperature. Except that the density of the process liquid is generally not well characterized, the steps involved in determining the height of process liquid in the tank are the same as those for determining the height of calibration liquid. Thus, the method of density determination given in this part of ISO 18213 is very

  15. The use of neutron probes to determine evapotranspiration

    International Nuclear Information System (INIS)

    Can, O.; Kurttas, Y. S. K.

    2009-01-01

    Water is an essential requirement for life on the planet. It is often the single most limiting factor in crop and livestock production. Water is a scarce resource in many urban and rural environments worldwide. According to the FAO, the global demand for fresh water is doubling every 21 years. The quality of the finite water supplies is also under threat from industrial, agricultural and domestic sources of pollution. The majority of crops are grown under rain-fed conditions and adequate water supply is the main factor limiting crop production in semi-arid and sub-humid regions. On the other hand, currently 20% of the world's arable land is under irrigation providing 35 to 40% of all agricultural production. Irrigation mismanagement poses a serious threat to the environment through groundwater pollution and salinization. It is therefore, essential that water resources be used efficiently by regular monitoring of soil-water status in the unsaturated zone. The neutron depth probe, a nuclear-based technique, is utilized worldwide for this purpose. For a given region, the water balance is given by I+P-(D+ET)-R=±ΔS where P is the rainfall integrated over Δt (mm), I is the irrigation integrated over Δt (mm), ET is the evapotranspiration integrated over Δt (mm), R is the runoff integrated over Δt (mm), D is the water draining from the soil at depth L integrated over Δt (mm), and ΔS is the change in soil-water storage in layer during the interval Δt (mm) The most commonly used values of Δt are a few days, a week, a month, and a year. The increase or decrease of soil moisture in a given soil depth, can easily monitor with neutron probes. When the neutron probe calibration is done, the amount of moisture in the soil at the desired frequency and depth can be learned quickly. In 2006 a study for the evapotranspiration of satsuma mandarin tree has been identified. In a irrigation period (01-31.08.2006) for four soil layer, ET : 78,04 mm. in 0-30 cm depth, ET: 50,01 mm

  16. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition

  17. T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D.; Sydnor, Harold A.

    2008-01-01

    CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight decrease. Soil-moisture contents at the depths of 1.3 m and

  18. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia

    Science.gov (United States)

    Hawdon, Aaron; McJannet, David; Wallace, Jim

    2014-06-01

    The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.

  19. Dual-Remote Raman Technology for In-Situ Identification of Tank Waste - 13549

    International Nuclear Information System (INIS)

    Bryan, Sam; Levitskaia, Tatiana; Lines, Amanda; Smith, Frannie; Josephson, Gary; Bello, Job

    2013-01-01

    A new Raman spectroscopic system for in-situ identification of the composition of solid nuclear tank waste is being developed by collaborative effort between Pacific Northwest National Laboratory (PNNL) and EIC Laboratories, Inc. The recent advancements in Raman technology allow probing the chemical composition of the tank waste without sample collection. In the newly tested configuration, the Raman probe is installed on the top of the tank riser and sends the incident laser beam to the bottom of the tank, 10 - 70 feet away. The returning light containing chemical information is collected by the Raman probe and is transmitted via fiber optic cable to the spectrometer located outside the tank farm area. This dual remote technology significantly expands currently limited options for the safe rapid in-situ identification of the solid tank waste needed for the retrieval decisions. The developed Raman system was extensively tested for acceptability prior to tank farm deployment. This testing included calibration of the system with respect of the distance between the Raman probe and the sample, incident laser beam angle, and presence of the optical interferences. The Raman system was successfully deployed on Tank C-111 at the US DOE Hanford site. As the result of this deployment, the composition of the hardpan at the bottom of C-111 tank was identified. Further development of the dual-remote Raman technology will provide a significant safety enhancement eliminating the potential of personnel radiation exposure associated with the grab sample collection and expands options of the rapid and cost-effective in-situ chemical analysis of the tank waste. (authors)

  20. Neutron and gamma probes: Their use in agronomy

    International Nuclear Information System (INIS)

    Bacchi, O.O.; Reichart, K.; Calvache, M.

    2002-01-01

    The concept of this training manual originated during a regional training workshop on the use of neutron probe in water and nutrient balance studies, organized in 1997 in the frame of an IAEA Regional Technical Co-operation Project for Latin America entitle Plant Nutrition, Water and Soil Management, for which the integrated approach was adopted. The original version (in Spanish) was a comprehensive manual covering theoretical and practical aspects required for the proper utilization of the equipment. The contributions of the peer reviewers, editors and technical translators of the three versions in English, French and Spanish have greatly enhanced the content and quality of the manual. It is hoped that this manual will be useful for future training events and serve as a key reference to soil/water scientists in the field of sustainable management of scarce water resources in both rain-fed and irrigated agricultural production systems

  1. A new technique for the calibration of neutron probes by volumetric method

    International Nuclear Information System (INIS)

    Encarnacao, F.A.F. da.

    1988-01-01

    Laboratory and field studies were performed for the determination of a calibration curve of a neutron probe in three different kinds of soils: Red Yellow PODZOLIC, LITOLIC and ALLUVIAL, in the last one laboratory studies were done to determine local humidity on the calibration curve parameters. (A.C.A.S.) [pt

  2. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  3. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  4. Background estimation of cosmic-ray induced neutrons in Chooz site water veto tank for possible future Ricochet Deployment

    Science.gov (United States)

    Silva, James

    2017-09-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.

  5. On the control of irrigation through soil moisture measurement using a neutron depth probe in horizontal subsurface measuring circuits

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1977-01-01

    An outline is given of the advantages inherent in soil moisture measurement by means of a neutron probe in horizontal subsurface measuring circuits for irrigation control. Preliminary experience for the setting up of a field calibration curve and for practical measurement are submitted. This technique includes the following advantages: almost complete covering of the upper soil range which is of interest to irrigation control; good measuring density; suitable distribution of measuring points per unit area; possibility of continuous probe passage; optimal repeatability of measurements; exploration of a unit area with but few measuring circuits; no obstacles to tillage, drilling, intercultivation and harvest operations; and complete conservation of crop and plot which is not reached with any other soil moisture measurement technique so far available. Making use of the above advantages, the new technique allows automatic irrigation control with only one neutron depth probe. (author)

  6. Sampling study in milk storage tanks by INAA

    International Nuclear Information System (INIS)

    Santos, L.G.C.; Nadai Fernandes de, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2008-01-01

    This study investigated the representativeness of samples for assessing chemical elements in milk bulk tanks. Milk samples were collected from a closed tank in a dairy plant and from an open top tank in a dairy farm. Samples were analyzed for chemical elements by instrumental neutron activation analysis (INAA). For both experiments, Br, Ca, Cs, K, Na, Rb and Zn did not present significant differences between samples thereby indicating the appropriateness of the sampling procedure adopted to evaluate the analytes of interest. (author)

  7. Specification for soil multisensor and soil sampling cone penetrometer probes

    International Nuclear Information System (INIS)

    Iwatate, D.F.

    1997-01-01

    Specification requirements for engineering, fabrication, and performance of cone penetrometer (CP) soil multisensor and sampling probes (CP-probes) which are required to support contract procurement for services are presented. The specification provides a documented technical basis of quality assurance that is required to use the probes in an operating Hanford tank farm. The documentation cited in this specification will be incorporated into an operational fielding plan that will address all activities associated with the use of the CP-probes. The probes discussed in this specification support the Hanford Tanks Initiative AX-104 Tank Plume Characterization Sub-task. The probes will be used to interrogate soils and vadose zone surrounding tank AX-104

  8. A safeguards verification technique for solution homogeneity and volume measurements in process tanks

    International Nuclear Information System (INIS)

    Suda, S.; Franssen, F.

    1987-01-01

    A safeguards verification technique is being developed for determining whether process-liquid homogeneity has been achieved in process tanks and for authenticating volume-measurement algorithms involving temperature corrections. It is proposed that, in new designs for bulk-handling plants employing automated process lines, bubbler probes and thermocouples be installed at several heights in key accountability tanks. High-accuracy measurements of density using an electromanometer can now be made which match or even exceed analytical-laboratory accuracies. Together with regional determination of tank temperatures, these measurements provide density, liquid-column weight and temperature gradients over the fill range of the tank that can be used to ascertain when the tank solution has reached equilibrium. Temperature-correction algorithms can be authenticated by comparing the volumes obtained from the several bubbler-probe liquid-height measurements, each based on different amounts of liquid above and below the probe. The verification technique is based on the automated electromanometer system developed by Brookhaven National Laboratory (BNL). The IAEA has recently approved the purchase of a stainless-steel tank equipped with multiple bubbler and thermocouple probes for installation in its Bulk Calibration Laboratory at IAEA Headquarters, Vienna. The verification technique is scheduled for preliminary trials in late 1987

  9. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  10. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  11. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  12. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  13. Minimum dimensions of rock models for calibration of radiometric probes for the neutron-gamma well logging

    International Nuclear Information System (INIS)

    Czubek, J.A.; Lenda, A.

    1979-01-01

    The minimum dimensions have been calculated assuring 91, 96 and 98 % of the probe response in respect to the infinite medium. The models are of cylindrical form, the probe (source-to-detector distance equal to 60 or 90 cm) being placed on the model axis, symmetrically with respect to the two end-faces. All the models are ''embedded'' in various media, such as: air, sand of 40% porosity and completely saturated with water, sand of 30 % porosity and of moisture content equal to 10 %, and water. The models are of three types of material: sandstone, limestone and dolomite, with various porosities, ranging from 0 to 100 %. The probe response is due to gamma rays arising from the radiativecapture of thermal neutrons. The calculations were carried out for the highest energy line of gamma rays arising in given litology. Gamma-ray flux from the neutron radiative capture has been calculated versus rock porosity and model dimensions and radiation migration lengths determined for given litologies. The minimum dimensions of cylindrical models are given as functions of: porosity, probe length (source-to-detector distance) lithology of model and type of medium surrounding our model. (author)

  14. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  15. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  16. Neutron reflectometry: A probe for materials surfaces. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2006-01-01

    Research reactors play an important role in delivering the benefits of nuclear science and technology. The IAEA, through its project on the effective utilization of research reactors, has been providing technical support to Member States and promotes activities related to specific applications. Neutron beam research is one of the main components in materials science studies. Neutron reflectometry is extremely useful for characterizing thin films and layered structures, polymers, oxide coatings on metals and biological membranes. The neutron has been a major probe for investigating magnetic materials. Development of magnetic multilayers is important for diverse applications in sensors, memory devices, etc. The special nature of the interaction of the neutron with matter makes it an important tool to locate low z elements in the presence of high z elements, which is useful in biology and polymer science. The role of neutron reflectometry in research and development in materials science and technology was discussed in a consultants meeting held in 2003. Following this, a technical meeting was organized from 16 to 20 August 2004 in Vienna to discuss the current status of neutron reflectometry, including the instrumentation, data acquisition, data analysis and applications. Experts in the field of neutron reflectometry presented their contributions, after which there was a brainstorming session on various aspects of the technique and its applications. This publication is the outcome of deliberations during the meeting and the presentations by the participants. This publication will be of use to scientists planning to develop a neutron reflectometer at research reactors. It will also help disseminate knowledge and information to material scientists, biologists and chemists working towards characterizing and developing new materials

  17. Assessment of the geometric coincidence of neutron and gamma probe measurements with solo 40 and CPN 501 B

    International Nuclear Information System (INIS)

    Valles, V.; Guiresse, M.; Tcherbakov, R.

    1989-01-01

    The distance between the gamma and neutron probe measurement centres was determined for the Nardeux Solo 40 and CPN 501 B probes. The centre of the spheres of influence was localized using a water-air interface constituted by a metal cylinder filled with 200 liters of water. For Solo 40, the discrepancy between the two measurement centres was 6 cm. This shift value, which is quite acceptable, does not require any correction for these measurements, even when the soil is heterogeneous. For CNP 501 B, the discrepancy between the neutron and gamma measurement was 11 cm, i.e. nearly twice the value observed with Solo 40. In soils with a marked vertical heterogeneity, it therefore seems preferable to operate a 11 cm shift of the probe between the moisture and density measurements [fr

  18. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  19. Tree tomato water requirements determined by neutron probe

    International Nuclear Information System (INIS)

    1994-01-01

    The dynamics of water was studied at ''La Tola'', experimental teaching center of the Central University of Ecuador, in a sandy-loan, typic durustoll soil in which trees tomato were growing. All the components of the crop water balance were determined. Real evapotranspiration (ETR) was estimated through the mass balance method, using every 5-10 days a neutron probe to access the volumetric humidity of the soil. The real evapotranspiration was in direct relation with the growth of the crop, reaching its maximum value of 3,8 mm day-1, at vegetative stage. The soil layer supplying most of the water for the consumptive use of the crop was between 0-40 cm being the root activity also greater in that layer

  20. Soil texture and depth influence on the neutron probe calibration

    International Nuclear Information System (INIS)

    Santos, Reginaldo Ferreira; Carlesso, Reimar

    1998-01-01

    The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisimeter group, protected from the rains with transparent plastic. There different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied form o,02 to 0,06 cm3/cm3 of the soil water content and the correlation coefficients were 0,86 0,95 and 0,89 for clayray, franc-silt-clayey and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. (author)

  1. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  2. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories

  3. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  4. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    International Nuclear Information System (INIS)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1986-12-01

    At the US Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assess the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species for carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 molar nitrite required for reactor fuel reprocessing wastes. Periodic agitation, to keep the organic phase suspended, or cathodic protection are possible alternatives to higher nitrite inhibitor concentrations

  5. Criticality Safety Evaluation of Hanford Tank Farms Facility

    Energy Technology Data Exchange (ETDEWEB)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  6. Criticality Safety Evaluation of Hanford Tank Farms Facility

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste

  7. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (E > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.

  8. Mathematical model and computer programme for theoretical calculation of calibration curves of neutron soil moisture probes with highly effective counters

    International Nuclear Information System (INIS)

    Kolev, N.A.

    1981-07-01

    A mathematical model based on the three group theory for theoretical calculation by means of computer of the calibration curves of neutron soil moisture probes with highly effective counters, is described. Methods for experimental correction of the mathematical model are discussed and proposed. The computer programme described allows the calibration of neutron probes with high or low effective counters, and central or end geometry, with or without linearizing of the calibration curve. The use of two calculation variants and printing of output data gives the possibility not only for calibration, but also for other researches. The separate data inputs for soil and probe temperature allow the temperature influence analysis. The computer programme and calculation examples are given. (author)

  9. Grain boundary segregation in neutron-irradiated 304 stainless steel studied by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK Bullet CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2012-06-15

    Radiation-induced segregation (RIS) of solute atoms at a grain boundary (GB) in 304 stainless steel (SS), neutron-irradiated to a dose of 24 dpa at 300 Degree-Sign C in the fuel wrapper plates of a commercial pressurized water reactor, was investigated using laser-assisted atom probe tomography (APT). Ni, Si, and P enrichment and Cr and Fe depletion at the GB were evident. The full-width at half-maximum of the RIS region was {approx}3 nm for the concentration profile peaks of Ni and Si. The atomic percentages of Ni, Si, and Cr at the GB were {approx}19%, {approx}7%, and {approx}14%, respectively, in agreement with previously-reported values for neutron-irradiated SS. A high number density of intra-granular Ni-Si rich precipitates formed in the matrix. A precipitate-denuded zone with a width of {approx}10 nm appeared on both sides of the GB.

  10. Polycrystalline semiconductor probes for monitoring the density distribution of an intense thermal neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Graul, J.; Mueller, R.G.; Wagner, E.

    1975-05-01

    The applicability of semiconductor detectors for high thermal neutron flux densities is theoretically estimated and experimentally examined. For good thermal stability and low radiation capture rate silicon carbide is used as semiconductor material, produced in polycristalline layers to achieve high radiation resistance. The relations between crystallinity, photoelectric sensitivity and radiation resistance are shown. The radiation resistance of polycrystalline SiC-probes is approximately 100 times greater than that of conventional single crystal radiation detectors. For thermal neutron measurement they can be used in the flux range of approx. 10 10 13 (cm -2 sec -1 ) with operation times of 1.6 a >= tsub(b,max) >= 30 d, resp. (orig.) [de

  11. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  12. Development of a neutron probe for soil humidity measurements using 6 LiI(Eu) detector

    International Nuclear Information System (INIS)

    Silva, Iran Jose Oliveira da; Khoury, Helen; Carneiro, Clemente J.G.

    2002-01-01

    A prototype of soil moisture probe was build using a crystal of 6 LiI(Eu) as a thermal neutron detector. Light pulses are produced by the exoergic nuclear reaction 6 Li (n,α) 3 He and transmitted through the light guide to a photomultiplier tube on the soil surface. Liquid light guides have several advantages when compared with bundle of glass fibers. First, liquid guides do not suffer from packing fraction losses spaces between fibers that cause reduced coupling efficiency. Second, repeated handling of liquid light guides does not result in the breakage typical of glass bundles, which reduces efficiency over time. Third, liquid guides have excellent UV transmission properties with a cut off the near infrared spectrum yielding an optimum transmission for visible applications. The major advantage of this prototype is the elimination of the electromagnetic interference inside of the soil. Tests were carried out aiming the improvement of electronic and technical viability aspects of neutrons probes. The soil moisture probe calibration curve was carried out in a drum of 60 cm diameter and 42 cm height. This drum was completely filled with an air dry soil. Counts in the center of the drum with the dry and saturated soils make possible to obtain the curves of the soil water content versus the normalized counts for two thermal neutron detectors. The medium value of the counts, the standard deviation and the number of counts were obtained for 6 LiI(Eu) and 3 He detectors, respectively for water, air dry, and saturated soil. From those measurements, a linear calibration curve was obtained for each of detectors. (author)

  13. Pulsed neutron uranium borehole logging with prompt fission neutrons

    International Nuclear Information System (INIS)

    Bivens, H.M.; Smith, G.W.; Jensen, D.H.

    1976-01-01

    The gross count natural gamma log normally used for uranium borehole logging is seriously affected by disequilibrium. Methods for the direct measurement of uranium, such as neutron logging, which are not affected by disequilibrium have been the object of considerable effort in recent years. This paper describes a logging system for uranium which uses a small accelerator to generate pulses of 14 MeV neutrons to detect and assay uranium by the measurement of prompt fission neutrons in the epithermal energy range. After an initial feasibility study, a prototype logging probe was built for field evaluation which began in January 1976. Physical and operational characteristics of the prototype probe, the neutron tube-transformer assembly, and the neutron tube are described. In logging operations, only the epithermal prompt fission neutrons detected between 250 microseconds to 2500 microseconds following the excitation neutron pulse are counted. Comparison of corrected neutron logs with the conventional gross count natural gamma logs and the chemical assays of cores from boreholes are shown. The results obtained with this neutron probe clearly demonstrate its advantages over the gross count natural gamma log, although at this time the accuracy of the neutron log assay is not satisfactory under some conditions. The necessary correction factors for various borehole and formation parameters are being determined and, when applied, should improve the assay accuracy

  14. Criticality safety calculations of 'poison tube tank' compared with annular tanks for storing fissile solutions

    International Nuclear Information System (INIS)

    Gopalakrishnan, C.R.; Joseph, G.

    1995-01-01

    A comparative study of the shielded area space required for storing fissile solution by the conventional annular tank and by poison tube tank is made. Poison tube tank is similar to commercial heat exchanger. The neutron poisons studied are gadolinium oxide and borax. Variation of multiplication factor for an array of annular tanks containing uranium nitrate or plutonium nitrate solutions are presented for annular widths of 10, 7.5 and 5 cm. It is concluded that for the given concentration, 5 cm annular width tanks are safe at a pitch distance of 120 and 90 cm for uranium and plutonium solutions respectively. Using these, as reference values, it is found that the shielded area saving for the poison tube tank is a factor of 12 and 8 for the given concentration of uranium and plutonium solutions respectively. (author)

  15. T Tank Farm Interim Cover Test - Design Plan

    International Nuclear Information System (INIS)

    Zhang, Z. F.; Keller, Jason M.

    2006-01-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim cover on the surface. Such a cover is expected to prevent infiltrating water from reaching the plume and moving it further. Pacific Northwest National Laboratory has prepared a design plan to monitor and determine the effectiveness of the interim cover. A three-dimensional numerical simulation of water movement beneath a cover was conducted to guide the design of the plan. Soil water content, water pressure, and temperature will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests will be installed, one inside and one outside of the proposed cover. In fiscal year 2007, two additional instrument nests, both inside the proposed cover, will be installed. Each instrument nest contains a neutron access tube and a capacitance probe (to measure water content), and four heat-dissipation units (to measure pressure head and temperature). A datalogger and a meteorological station will be installed outside of the fence. Two drain gauges will be installed in locations inside and outside the cover for the purpose of measuring soil water flux.

  16. Reactor cold neutron source facility, the first in Japan

    International Nuclear Information System (INIS)

    Utsuro, Masahiko; Maeda, Yutaka; Kawai, Takeshi; Tashiro, Tameyoshi; Sakakibara, Shoji; Katada, Minoru.

    1986-01-01

    In the Research Reactor Institute, Kyoto University, the first cold neutron source facility for the reactor in Japan was installed, and various tests are carried out outside the reactor. Nippon Sanso K.K. had manufactured it. After the prescribed tests outside the reactor, this facility will be installed soon in the reactor, and its outline is described on this occasion. Cold neutrons are those having very small energy by being cooled to about-250 deg C. Since the wavelength of the material waves of cold neutrons is long, and their energy is small, they are very advantageous as an experimental means for clarifying the structure of living body molecules and polymers, the atom configuration in alloys, and atomic and molecular movements by neutron scattering and neutron diffraction. The basic principle of the cold neutron source facility is to irradiate thermal neutrons on a cold moderator kept around 20 K, and to moderate and cool the neutrons by nuclear scattering to convert to cold neutrons. The preparatory research on cold neutrons and hydrogen liquefaction, the basic design to put the cold neutron source facility in the graphite moderator facility, the safety countermeasures, the manufacture and quality control, the operation outside the reactor and the performance are reported. The cold neutron source facility comprises a cold moderator tank and other main parts, a deuterium gas tank, a helium refrigerator and instrumentation. (Kako, I.)

  17. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  18. Modeling validation to structural flaws in the foundations of oil tanks

    International Nuclear Information System (INIS)

    Couto, Larissa Goncalves; Leite, Sandro Passos

    2014-01-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  19. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  20. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    Science.gov (United States)

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  1. Experimental critical parameters of enriched uranium solution in annular tank geometries

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant's Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all

  2. Experimental critical parameters of enriched uranium solution in annular tank geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-04-01

    A total of 61 critical configurations are reported for experiments involving various combinations of annular tanks into which enriched uranium solution was pumped. These experiments were performed at two widely separated times in the 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory. The uranyl nitrate solution contained about 370 g of uranium per liter, but this concentration varied a little over the duration of the studies. The uranium was enriched to about 93% [sup 235]U. All tanks were typical of sizes commonly found in nuclear production plants. They were about 2 m tall and ranged in diameter from 0.6 m to 1.5 m. Annular thicknesses and conditions of neutron reflection, moderation, and absorption were such that criticality would be achieved with these dimensions. Only 13 of the entire set of 74 experiments proved to be subcritical when tanks were completely filled with solution. Single tanks of several radial thicknesses were studied as well as small line arrays (1 x 2 and 1 x 3) of annular tanks. Many systems were reflected on four sides and the bottom by concrete, but none were reflected from above. Many experiments also contained materials within and outside the annular regions that contained strong neutron absorbers. One program had such a thick external moderator/absorber combination that no reflector was used at all.

  3. 252Cf-source-driven neutron noise measurements of subcriticality for a slab tank containing aqueous Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Kryter, R.C.; Robinson, R.C.; Seino, H.

    1987-08-01

    In order to study nuclear criticality safety related to the development of fast breeder technology, 252 Cf-source-driven neutron noise analysis measurements were performed with a Pu-U nitrate solution in a slab tank of various heights and thickness varying 11.43 cm to 19.05 cm. The results and conclusions of these experiments are (1) a capability to measure the subcriticality of a multiplying system of slab geometry to a k/sub eff/ as low as 0.7 was demonstrated, (2) calculated neutron multiplication factors agreed with those from the experiments within ∼0.02, and (3) the applicability of the method for plutonium solution systems was demonstrated. This paper describes measurements in which the height of the slab was varied for a fixed thickness and the thickness varied for a fixed height, which are the first applications of this measurement method to slab geometry

  4. Neutron-neutron-resonance logging of boron in boreholes with the use of the PRKS-2 radiometer

    International Nuclear Information System (INIS)

    Vakhtin, B.S.; Ivanov, V.S.; Filippov, E.M.; Novoselov, A.V.

    1973-01-01

    The well rig of the PRKS-2 logging radiometer is supplemented with a probe device for neutron measurements permitting to vary the probe size from 20 to 45 cm. To decrease the natural gamma radiation effect an external lead shield 7-mm thick having 50-mm outer diameter is fixed on the instrument sleeve. The instrument is provided with a NaI detector and a set of foils of Cd, Ag, Rh, Tu, In, Ta, and a Pu-Be source of 1x10 6 n/sec strength. The optimal size of the probe is assumed as 25 cm. From the results of well measurements a better differentiation of neutron resonance logging was noticed in comparison with neutron gamma logging. Comparing the data obtained with those of kern analysis a calibration curve was derived of neutron resonance logging versus B for wells of 59 mm dia

  5. Raman probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    The Raman probe is deployed in high-level waste tanks with the cone penetrometer (CPT). These technologies are engineered and optimized to work together. All of the hardware is radiation hardened, designed for and tested in the high-radiation, highly caustic chemical environment of US Department of Energy's (DOE's) waste storage tanks. When deployed in tanks, the system is useful for rapidly assessing the species and concentrations of organic-bearing tank wastes. The CPT was originally developed for geological and groundwater applications, with sensors that measure physical parameters such as soil moisture, temperature, and pH. When deployed, it is hydraulically forced directly into the ground rather than using boring techniques utilized by rotary drilling systems. There is a separate Innovative Technology Summary Report for the CPT, so this report will focus on the changes made specifically to support the Raman probe. The most significant changes involve adapting the Raman probe for in-tank and subsurface field use and developing meaningful real-time data analysis. Testing of the complete LLNL system was conducted in a hot cell in the 222-S Laboratory at the Hanford site in summer 1997. Both instruments were tested in situ on solvent-contaminated soils (TCE and PCE) at the Savannah River Site in February and June 1998. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned

  6. A comparison of different neutron probes calibration method for the soil surface and their radiation effect on the users

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, A; Razzouk, A K; Al-Ain, F [Atomic Energy commission , Damascus (Syrian Arab Republic). Dept of Radiation Agriculture

    1996-08-01

    In situ calibration curves were installed for the soil surface using different models of depth neutron probes and different adaptors. depth beutron probe readings increased with increasing the number of teflon plastic blocks deposited on the soil surface. The intercept of the straight line regression analysis decreased with increasing of teflon plastics blocks deposited on the soil surface in all sites. The least exposure was with depth probe with surface reflectors. This study proves the possibility of measuring the moisture content of the soil surface by using a depth probe with a block laid on the surface, without a danger of receiving the thresgold of radiation dose. (author). 10 Refs., 2 Figs., 8 Tabs.

  7. Neutron Brillouin scattering in dense fluids

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration

    1997-04-01

    Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).

  8. Neutronic density perturbation by probes

    International Nuclear Information System (INIS)

    Vigon, M. A.; Diez, L.

    1956-01-01

    The introduction of absorbent materials of neutrons in diffuser media, produces local disturbances of neutronic density. The disturbance depends especially on the nature and size of the absorbent. Approximated equations which relates te disturbance and the distance to the absorbent in the case of thin disks have been drawn. The experimental comprobation has been carried out in two especial cases. In both cases the experimental results are in agreement with the calculated values from these equations. (Author)

  9. Probe high-Tc Superconductors by neutron scattering

    International Nuclear Information System (INIS)

    Fauque, B.

    2007-10-01

    This research thesis explores two aspects of the phase diagram of high critical temperature superconductors: the evolution of AF correlations and the nature of the pseudo-gap phase. The author presents the problematic associated with these particular semiconductors, describes the neutron diffusion probe used in this study, and presents the three families of semiconductors investigated during this research: Bi 2 Sr 2 CaCu 2 O 8+x , YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 . He reports the results of the investigation of the spin dynamics in the Bi 2 Sr 2 CaCu 2 O 8+x . He reports a detailed investigation of the magnetic cross section associated with different types of non conventional magnetic orders proposed as candidates for the pseudo-gap phase. He reports and comments the results obtained for the pseudo-gap phase for the YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 families. Finally, the author discusses the consequences of the obtained results for the description of the diagram phase of high critical temperature semiconductors

  10. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    Science.gov (United States)

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  11. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  12. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  13. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  14. Definition of neutron multiplication in a reception capacity of radioactive waste shop

    International Nuclear Information System (INIS)

    Dulin, V.A.; Dulin, V.V.; Pavlova, O.N.

    2006-01-01

    To determine neutrons multiplication the measurements and calculations of spatial distributions of neutron counting and absolute fission rates in a reception capacity of IPPE radioactive waste shop have been carried out and analyzed. A content of fissionable medium was unknown. The approach developed has allowed implementing a calculation analysis of the experimental data on determination of the most probable spatial distributions of basic parameters of the fissionable medium of unknown content. It has allowed determining the neutrons multiplication factor in a reception capacity of a tank No. 17. It has been found that the value of neutrons multiplication factor in a tank is 1.07 ± 0.03. The developed measurement method and calculation analysis used for experimental data also can be applied in other cases when the multiplication medium content is unknown [ru

  15. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    International Nuclear Information System (INIS)

    Schaetzler, R.; Monkenbusch, M.

    1998-01-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  16. Measuring probe for a nuclear reactor

    International Nuclear Information System (INIS)

    Overhoff, T.

    1976-01-01

    A coaxial cable is helically wound into two concentric coils, forming the one end of the probe. At the other end of the probe, the inner conductor's ends are wired to the outer conducter's two extremities by a conductor made of a material with low neutron and gamma interaction cross-section. The direct current produced by this self-powered detector is frequency filtered in order to separate the contributions of the neutron induced secondary-electrons from the photo-electrons, and from the thermally excited conduction electrons. Neutron and gamma fluxes, as well as temperature are therefore determined by using a single probe. (RW) [de

  17. Prospects for neutron probes in the 21st century

    International Nuclear Information System (INIS)

    Lander, G.H.

    1993-01-01

    In this paper I use the economic concepts of supply and demand to attempt to analyze the future prospects for neutron research. The most severe problem is one of supply of neutrons. The question is whether the demand will be sufficient to overcome the considerable political and financial problems associated with providing the supply. A different mode of operation may be necessary in neutron research, especially with reactor-based sources. (author)

  18. Hydrogen dynamics in the low temperature phase of LiBH{sub 4} probed by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Remhof, Arndt, E-mail: arndt.remhof@empa.ch [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Züttel, Andreas [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, Timmy; García-Sakai, Victoria [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Frick, Bernhard [Institut Laue-Langevin, F-38002 Grenoble (France)

    2013-12-12

    Highlights: • Inelastic fixed window sans offer new possibilities in neutron backscattering spectrometers. • Two different kind of reorientational motion were identified in the low temperature phase of LiBH{sub 4}. • Thermally activated jump rotation. - Abstract: LiBH{sub 4} contains 18.5 wt% hydrogen and undergoes a structural phase transition (orthorhombic → hexagonal) at 381 K which is associated with a large increase in hydrogen and lithium solid-state mobility. We investigated the hydrogen dynamics in the low temperature phase of LiBH{sub 4} by quasielastic neutron scattering, including a new kind of inelastic fixed window scan (IFWS). In the temperature range from 175 to 380 K the H-dynamics is dominated by thermally activated rotational jumps of the [BH{sub 4}]{sup −} anion around the c3 axis with an activation energy of about 162 meV. In agreement with earlier NMR data, a second type of thermally activated motion with an activation energy of about 232 meV could be identified using the IFWS. The present study of hydrogen dynamics in LiBH{sub 4} illustrates the feasibility of using IFWS on neutron backscattering spectrometers as a probe of localised motion.

  19. Corrosion probe. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned

  20. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Xu, Hongwu [Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Zhu, Jinlong [High Pressure Science and Engineering Center, Department of Physics and Astronomy, The University of Nevada, Las Vegas, Nevada 89154, USA and National Lab for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Page, Katharine, E-mail: pagekl@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-12-15

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2} measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.

  1. Methods for Probing Magnetic Films with Neutrons

    Science.gov (United States)

    Kozhevnikov, S. V.; Ott, F.; Radu, F.

    2018-03-01

    We review various methods in the investigation of magnetic films with neutrons, including those based on the effects of Larmor precession, Zeeman spatial splitting of the beam, neutron spin resonance, and polarized neutron channeling. The underlying principles, examples of the investigated systems, specific features, applications, and perspectives of these methods are discussed.

  2. The orientation effect in the activities of neutronic probes

    International Nuclear Information System (INIS)

    Vigon, M. A.

    1956-01-01

    The formulae relating activity and position of a neutron irradiated Indium foil, have been verified experimentally. Measurements with both thin and thick foils for epithermal neutrons and with thick foils for thermal neutrons have been carried out. The experimental results agree qualitatively with the theoretical predictions. (Author)

  3. Procedure for the determination of gap and base ground surface configurations beneath the bottom plate of storage tanks using neutron gauging inspection techniques : including radiation safety procedure and emergency procedure

    International Nuclear Information System (INIS)

    Jaafar Abdullah

    1993-01-01

    The procedure is intended for the neutron gauging inspection of gap between the bottom plate and the foundation of bulk storage tanks, which potentially exhibit uneven sinking of the bottom plate and the foundation. Its describes the requirements for the performance of neutron back scattered inspection techniques (or radiometric non-destructive evaluation techniques), using an isotopic neutron source associated with neutron detecting systems, to detect and size the gap between the bottom plate and the foundations as well as to quantify the presence of hydrogenous materials (e.g. oil or water) underneath the bottom plate. This procedure is not only outline the requirements for the neutron gauging inspection, but also describes the requirements which shall be taken into account in formulating the radiation safety and emergency procedures for the neutron gauging inspection works

  4. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  5. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  6. Portable gamma and thermal neutron probe using a 6LiI(Eu) crystal

    International Nuclear Information System (INIS)

    Carneiro, Clemente J.G.; Araujo, Geraldo P.; Milian, Felix M.; Barbosa, Jurandir C.; Garcia, Fermin; Oliveira, Arno H.; Silva, Mario R.S.; Penna, Rodrigo

    2011-01-01

    Europium-activated lithium-6 iodide is a scintillator used for gamma and neutron counting. A portable detection system was built based on this scintillator. This system has three modules: the scintillator, a 10 m liquid light guide, and a Hamamatsu photon counting head H9319 used as a light pulse digitizer. Data transfer, measurement time and other necessary adjustment can be controlled by software from the PC through the RS-232C interface. The scintillator, a crystal of 6 LiI(Eu), is a small cylinder with 3 mm diameter and 40 mm length completely sealed in an aluminum tube coupled to the light guide. The small size of the scintillator increases the neutron/gamma count ratio, since 2 to 3 mm of thickness of this crystal absorbs all thermal neutrons. Intensities of X and gamma rays, and thermal neutrons can be recorded for time intervals of 10 ms to 1 s storing up to 10000 countings. The system was calibrated for measuring radiation doses for validating numerical models in dosimetry. Two characteristic reinforce this application, measurements can be done at several meters away from the radiation source and also inside of water. In addition, it was used to build nuclear probes based on Compton scattering or neutron moderation in porous media by attaching an AmBe source to the top of the aluminum tube. Tests were done to determine the reproducibility of counting rates. Background counting was measured at several temperatures to verify the influence of dark current of PMT. Sealed AmBe, low activity Am, and X rays sources were used for studies of radiation counting statistics. X rays apparatus was used to correlate counting rates measured with the 6 LiI(Eu) detection system and doses measured with an ionization chamber at several distances from the X ray source. (author)

  7. The stationary neutron radiography system

    International Nuclear Information System (INIS)

    Weeks, A.A.; Newell, D.L.; Heidel, C.C.

    1990-01-01

    To provide the high intensity neutron beam and support systems necessary for radiography, the Stationary Neutron Radiography System was constructed at McClellan Air Force Base. The Stationary Neutron Radiography System utilizes a one megawatt TRIGA reactor contained in an Aluminium tank surrounded by eight foot thick concrete walls. There are four neutron beam tubes at inclined angles from the reactor core to separate radiography bays. In three of the bays, robotic systems manipulate aircraft components in the neutron beam, while real-time imaging systems provide images concurrent with the irradiation. Film radiography of smaller components is performed in the remaining bay

  8. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Energy Technology Data Exchange (ETDEWEB)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  9. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    International Nuclear Information System (INIS)

    Vail, T.S.

    1997-01-01

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective

  10. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    Science.gov (United States)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  11. Volume measurement study for large scale input accountancy tank

    International Nuclear Information System (INIS)

    Uchikoshi, Seiji; Watanabe, Yuichi; Tsujino, Takeshi

    1999-01-01

    Large Scale Tank Calibration (LASTAC) facility, including an experimental tank which has the same volume and structure as the input accountancy tank of Rokkasho Reprocessing Plant (RRP) was constructed in Nuclear Material Control Center of Japan. Demonstration experiments have been carried out to evaluate a precision of solution volume measurement and to establish the procedure of highly accurate pressure measurement for a large scale tank with dip-tube bubbler probe system to be applied to the input accountancy tank of RRP. Solution volume in a tank is determined from substitution the solution level for the calibration function obtained in advance, which express a relation between the solution level and its volume in the tank. Therefore, precise solution volume measurement needs a precise calibration function that is determined carefully. The LASTAC calibration experiments using pure water showed good result in reproducibility. (J.P.N.)

  12. When beauty is only skin deep; optimizing the sensitivity of specular neutron reflectivity for probing structure beneath the surface of thin filmsa)

    Science.gov (United States)

    Majkrzak, Charles F.; Carpenter, Elisabeth; Heinrich, Frank; Berk, Norman F.

    2011-11-01

    Specular neutron reflectometry has become an established probe of the nanometer scale structure of materials in thin film and multilayered form. It has contributed especially to our understanding of soft condensed matter of interest in polymer science, organic chemistry, and biology and of magnetic hard condensed matter systems. In this paper we examine a number of key factors which have emerged that can limit the sensitivity of neutron reflection as such a probe. Among these is loss of phase information, and we discuss how knowledge about material surrounding a film of interest can be applied to help resolve the problem. In this context we also consider what role the quantum phenomenon of interaction-free measurement might play in enhancing the statistical efficiency for obtaining reflectivity or transmission data.

  13. Super Phenix 1: in Service inspection of main and safety tanks weldments

    International Nuclear Information System (INIS)

    Asty, Michel; Vertut, Jean; Argous, J.P.

    1980-05-01

    In service inspection of the main tank of the Super Phenix 1 reactor is a new demand as compared to Phenix: the authorities have asked that surface and internal defects could be detected and their evolution monitored in the future. The presence of thermal baffles inside the main tank precludes the access on that side: the distance between the main and safety tanks takes into account the room needed for an In Service Inspection module. An inspection vehicle is presently under development, which includes ultrasonic examination (focussed probes) and visual examination (TV cameras) capabilities. We briefly describe the techniques that have been selected for ultrasonic testing and also for the vehicle and its guidance between the tanks

  14. Super Phenix 1: In-service inspection of main and safety tanks weldments

    Energy Technology Data Exchange (ETDEWEB)

    Asty, M [DTech/STA, Centre d' Etudes Nucleaires de Saclay (France); Vertut, J [DPR/STEP, Centre d' Etudes Nucleaires de Saclay (France); Argous, J P [DRNR/STRS, Centre d' Etudes Nucleaires de Cadarache (France)

    1980-11-01

    In Service Inspection of the main tank of the Super Phenix 1 reactor is a new demand compared to Phenix: the authorities have asked that surface and internal defects be detected and their evolution monitored in the future. The presence of thermal baffles inside the main tank precludes the access on that side: the distance between the main and safety tanks takes into account the room needed for an In Service Inspection module. An inspection vehicle is presently under development, which includes ultrasonic examination (focussed probes) and visual examination (TV cameras) capabilities. We briefly describe the techniques that have been selected for ultrasonic testing and also for the vehicle and its guidance between the tanks. (author)

  15. Super Phenix 1: In-service inspection of main and safety tanks weldments

    International Nuclear Information System (INIS)

    Asty, M.; Vertut, J.; Argous, J.P.

    1980-01-01

    In Service Inspection of the main tank of the Super Phenix 1 reactor is a new demand compared to Phenix: the authorities have asked that surface and internal defects be detected and their evolution monitored in the future. The presence of thermal baffles inside the main tank precludes the access on that side: the distance between the main and safety tanks takes into account the room needed for an In Service Inspection module. An inspection vehicle is presently under development, which includes ultrasonic examination (focussed probes) and visual examination (TV cameras) capabilities. We briefly describe the techniques that have been selected for ultrasonic testing and also for the vehicle and its guidance between the tanks. (author)

  16. Probing Pb+Pb collisions at √sNN = 2.76 TeV with spectator neutrons in AMPT model

    International Nuclear Information System (INIS)

    Mohanty, Bedangadas; Bairathi, Vipul; Haque, Md. Rihan; Chatterjee, Sandeep

    2016-01-01

    In high energy heavy-ion collisions a precise knowledge of the initial state is required in order to describe properties of the strongly interacting medium. There is event by event geometric as well as quantum fluctuations in the initial condition of heavy-ion collisions. The standard technique of analyzing heavy-ion collisions in bins of centrality obtained from final state multiplicity averages out the various initial configurations and thus restricts the study to only a limited range of initial conditions. In this work, we propose an additional binning in terms of total spectator neutrons (L+R), which is sum of left (L) and right (R) going spectator neutrons in an event. This offers us a key control parameter to probe events with broader range of initial conditions providing us an opportunity to investigate events with rarer initial conditions which otherwise get masked when analyzed by centrality binning alone

  17. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Bernuzzi, Sebastiano [Department of Mathematical, Physical and Computer Sciences, University of Parma, I-43124 Parma (Italy); Pozzo, Walter Del [Dipartimento di Fisica “Enrico Fermi,” Università di Pisa, Pisa I-56127 (Italy); Roberts, Luke F. [NSCL/FRIB and Department of Physics and Astronomy, Michigan State University, 640 S Shaw Lane, East Lansing, MI 48824 (United States); Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States)

    2017-06-20

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.

  18. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    International Nuclear Information System (INIS)

    Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del; Roberts, Luke F.; Ott, Christian D.

    2017-01-01

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.

  19. Analytical results from Tank 38H criticality Sample HTF-093

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    2000-01-01

    Resumption of processing in the 242-16H Evaporator could cause salt dissolution in the Waste Concentration Receipt Tank (Tank 38H). Therefore, High Level Waste personnel sampled the tank at the salt surface. Results of elemental analysis of the dried sludge solids from this sample (HTF-093) show significant quantities of neutron poisons (i.e., sodium, iron, and manganese) present to mitigate the potential for nuclear criticality. Comparison of this sample with the previous chemical and radiometric analyses of H-Area Evaporator samples show high poison to actinide ratios

  20. Sampling and Analysis Plan for the Gunite and Associated Tanks Treatability Study, wall coring and scraping in Tanks W-3 and W-4 (North Tank Farm), Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This plan documents the procedures for collecting and analyzing wall core and wall scraping samples from Tanks W-3 and W-4 in the North Tank Farm. This is in support of the Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study of the Gunite and Associated Tanks at ORNL. The sampling and analysis will be in concert with sludge retrieval and sluicing of the tanks. Wall scraping and wall core samples will be collected from each quadrant in each tank by using a scraping sampler and a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory and analyzed for physical/radiological characteristics, including total activity, gross alpha, gross beta, radioactive Sr + Cs, and other alpha and gamma emitting radionuclides. The Data Quality Objectives process, based on US EPA guidance (EPA QA/G-4, Sept. 1994), was applied to identify the objectives of this sampling and analysis. Results of the analysis will be used to validate predictions of a Sr concrete diffusion model, estimate the amount of radioactivity remaining in the tank shells, provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and estimate the performance of the wall cleaning system

  1. Kartini reactor tank inspection using NDT method for safety improvement of the reactor operation

    International Nuclear Information System (INIS)

    Syarip; Sutondo, Tegas; Saleh, Chaerul; Nitiswati; Puradwi; Andryansah; Mudiharjo

    2002-01-01

    The inspection of Kartini reactor tank liner (TRK) by using Non Destructive Testing (NDT) methods to improve the reactor operation safety, have been done. The type of NDT used were: visual examination using an underwater camera and magnifier, replication survey using dental putty, hardness test using an Equotip D indentor, thickness test using ultrasonic probe, and dye penetrant test. The visual examination showed that the surface of TRK was in good condition. The hardness readings were considered to be consistent with the original condition of the tank and the slight hardness increase at the reactor core area consistent with the neutron fluence experienced -10 1 4 n/cm 2 . Results of ultrasonic thickness survey showed that in average the TRK thickness is between 5,0 mm - 6,5 mm, a low 2,1 mm thickness exists at the top of the TRK in the belt area (double layer aluminum plat, therefore do not influencing the safety ). The replica and dye penetrant test at the low thickness area and several suspected areas showed that it could be some defect from original manufacture. Therefore, it can be concluded that the TRK is still feasible for continued operation safely

  2. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  3. Portable gamma and thermal neutron probe using a {sup 6}LiI(Eu) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Clemente J.G.; Araujo, Geraldo P.; Milian, Felix M.; Barbosa, Jurandir C.; Garcia, Fermin [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Centro de Pesquisas em Ciencias e Tecnologias das Radiacoes (CPqCTR); Oliveira, Arno H.; Silva, Mario R.S.; Penna, Rodrigo [Universidade Federal de Minas Gerais (DEN-UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    Europium-activated lithium-6 iodide is a scintillator used for gamma and neutron counting. A portable detection system was built based on this scintillator. This system has three modules: the scintillator, a 10 m liquid light guide, and a Hamamatsu photon counting head H9319 used as a light pulse digitizer. Data transfer, measurement time and other necessary adjustment can be controlled by software from the PC through the RS-232C interface. The scintillator, a crystal of {sup 6}LiI(Eu), is a small cylinder with 3 mm diameter and 40 mm length completely sealed in an aluminum tube coupled to the light guide. The small size of the scintillator increases the neutron/gamma count ratio, since 2 to 3 mm of thickness of this crystal absorbs all thermal neutrons. Intensities of X and gamma rays, and thermal neutrons can be recorded for time intervals of 10 ms to 1 s storing up to 10000 countings. The system was calibrated for measuring radiation doses for validating numerical models in dosimetry. Two characteristic reinforce this application, measurements can be done at several meters away from the radiation source and also inside of water. In addition, it was used to build nuclear probes based on Compton scattering or neutron moderation in porous media by attaching an AmBe source to the top of the aluminum tube. Tests were done to determine the reproducibility of counting rates. Background counting was measured at several temperatures to verify the influence of dark current of PMT. Sealed AmBe, low activity Am, and X rays sources were used for studies of radiation counting statistics. X rays apparatus was used to correlate counting rates measured with the {sup 6}LiI(Eu) detection system and doses measured with an ionization chamber at several distances from the X ray source. (author)

  4. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  5. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  6. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    Science.gov (United States)

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Thermal neutron flux measurement using self-powered neutron detector (SPND) at out-core locations of TRIGA PUSPATI Reactor (RTP)

    Science.gov (United States)

    Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad

    2018-01-01

    The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.

  8. Nuclear borehole probes - theory and experiments

    International Nuclear Information System (INIS)

    Joergensen, J.L.; Korsbech, U.; Gynther Nielsen, K.; Oelgaard, P.L.

    1985-06-01

    The report gives a summary of the theoretical and expeimental work on borehole probes that has been performed since 1971 at The Department of Electrophysics, The Technical University of Denmark. The first part of the report concerns the use of a spectral natural gamma-ray probe (SNG-probe), which is used for measurements of the spectral distribution of the gamma-rays of the geological strata around a borehole. In general the spectrum is divided into three parts - the gamma-rays from potassium-40, from thorium-232 and daughters, and from uranium-238 and daughters. A set of curves showing the intensities of the gamm-radiation from K, Th, and U versus depth is called a SNG-log. If proper calibrated, the SNG-log gives the concentration of Th, U, and K in the formation surrounding the borehole. Initially the basis for an interpretation of SNG-logs is discussed. Then follows a description og some SNG-problems designed and built by The Department of Electrophysics, and a discussion of the calibration of SNG-probes. Some examples of SNG-logs are presented, and some general comments on the use of SNG-logs are given. The second part of the report concerns mainly the development of theoretical models for neutron-neutron probes, gamma-gamma probes, and pulsed-neutron probes. The purpose of this work has been to examine how well the models correlate with measured results and - where reasonable agreement is found - to use the models in studies of the factors that affect the probe responses in interpretation of experimental results and in probe design. (author)

  9. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  10. Profile measurement of a bent neutron mirror using an ultrahigh precision non-contact measurement system with an auto focus laser probe

    International Nuclear Information System (INIS)

    Morita, S; Guo, J; Yamagata, Y; Yamada, N L; Torikai, N; Takeda, S; Furusaka, M

    2016-01-01

    A bent neutron mirror has been considered as one of the best solutions for focusing neutron beams from the viewpoint of cost-benefit performance. Although the form deviation of the bent profile is expected because of the large spot size, it is difficult to measure due to its geometric limitation. Here, we propose a non-contact measurement system using an auto focus (AF) laser probe on an ultrahigh precision machine tool to precisely evaluate the form deviation of the bent mirror. The AF laser probe is composed of a diode laser, a position sensitive sensor, a charge-coupled device (CCD) camera and a microscope objective lens which is actuated by an electromagnetic motor with 1 nm resolution for position sensing and control. The sensor enables a non-contact profile measurement of a high precision surface without any surface damage in contrast with contact-type ultrahigh precision coordinate measurement machines with ruby styli. In the on-machine measurement system, a personal computer simultaneously acquires a displacement signal from the AF laser probe and 3-axis positional coordinates of the ultrahigh machine tool branched between the linear laser scales and the numerical controller. The acquisition rate of the 4-axis positional data in 1 nm resolution is more than 10 Hz and the simultaneity between the axes is negligible. The profile of a neutron bent mirror was measured from a transparent side using the developed system, and the result proves that the form deviation of the mirror enlarged the the spot size of focused neuron beam. (paper)

  11. In situ lake pollutant survey using prompt-gamma probe

    International Nuclear Information System (INIS)

    Jiunnhsing Chao; Chien Chung

    1991-01-01

    An aluminium-made neutron-gamma probe, consisting of a 1.5 μg 252 Cf neutron source and a high purity germanium detector, was mounted on a mobile floating platform to survey chlorine pollutant concentration in lake water in situ. Laboratory tests for determining the probe operating depth and in situ field trials of a polluted lake were conducted; evaluation of radiation exposure to workers on board was carried out. The polluted chlorine concentration in lake water was found to be 86 ppm, with minimal radiation exposure for the operating crew on board. (author)

  12. PREFACE: Fundamental Neutron Physics: Introduction and Overview Fundamental Neutron Physics: Introduction and Overview

    Science.gov (United States)

    Holstein, Barry R.

    2009-10-01

    In the 77 years since its discovery by Chadwick in 1932, the neutron has come to play an increasingly important role in contemporary physics. As the next to lightest baryon, it is, of course, one of the two primary components of the atomic nucleus and studies of isotopes (nuclei with varying numbers of neutrons but the same proton number) and of the neutron drip line are one of the important focuses of the recently approved radioactive beam machine to be built at Michigan State University. Precise knowledge of its ~900 second lifetime is crucial to determination of the time at which nucleosynthesis occurs in the early universe. Because it is electrically neutral, the neutron can penetrate the atomic cloud and neutron scattering has become a powerful tool in the study of the structure of materials in condensed matter and biophysics. These are all important issues, but will not be addressed in the articles presented below. Rather, in the set of manuscripts published herein, we show various ways in which the neutron has come to probe fundamental questions in physics. We present six such articles: Because of its simple structure, neutron beta decay has served as a laboratory for the study of possible symmetry violations, including search for possible Script T-violation via measurement of the D coefficient, search for second class currents and/or possible CVC violation via examination of recoil terms, search for right-handed currents via examination of correlations, search for S, T couplings via measurement of the b parameter, etc. The study of neutron decay is reviewed in the article by Jeff Nico. The use of the neutron as a probe of possible Script T-violation via the existence of a non-zero electric dipole moment is discussed in the article by Steve Lamoreaux. The neutron is a prime player in the experimental study of hadronic parity violation, via experiments involving radiative capture and spin rotation, as examined in the article by Barry Holstein. Because of its

  13. Neutron activation probe for measuring the presence of uranium in ore bodies

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Smith, R.C.

    1979-01-01

    A neutron activation proble comprises a pulsed neutron source in series with a plurality of delayed neutron detectors for measuring radioactivity in a well borehole together with a NaI (Tl) counter for measuring the high energy 2.62 MeV gamma line from thorium. The neutron source emits neutrons which produce fission in uranium and thorium in the ore body and the delayed neutron detectors measure the delayed neutrons produced from such fission while the NaI (Tl) counter measures the 2.62 MeV gamma line from the undisturbed thorium in the ore body. The signal from the NaI (Tl) counter is processed and subtracted from the signal from the delayed neutron detectors with the result being indicative of the amount of uranium present in the ore body

  14. Initial tank calibration at NUCEF critical facility. 2

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi

    1994-07-01

    Analyses on initial tank calibration data were carried out for the purpose of the nuclear material accountancy and control for critical facilities in NUCEF: Nuclear Fuel Cycle Safety Engineering Research Facility. Calibration functions to evaluate volume of nuclear material solution in accountancy tanks were determined by regression analysis on the data considering dimension and shape of the tank. The analyses on dip-tube separation (probe separation), which are necessary to evaluate solution density in the tanks, were also carried out. As a result, regression errors of volume calculated with the calibration functions were within 0.05 lit. (0.01%) at a nominal level of Pu accountancy tanks. Errors of the evaluated dip-tube separations were also small, e.g. within 0.2mm (0.11%). Therefore, it was estimated that systematic errors of bulk measurements would satisfy the target value of NUCEF critical facilities (0.3% for Pu accountancy tanks). This paper summarizes the data analysis methods, results of analysis and evaluated errors. (author)

  15. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.; Kazakov, L.E.; Roshchenko, V.A.

    2002-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of 235 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus. (author)

  16. Potential radiation damage: Storage tanks for liquid radioactive waste

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1992-01-01

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides

  17. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  18. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  19. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  20. Flammable Gas Safety Program: analysis of gas sampling probe locations in the SX-farm flammable gas watchlist tanks

    International Nuclear Information System (INIS)

    McLaren, J.M.; Claybrook, S.W.

    1995-09-01

    An analysis was performed to determine the optimum ventilation line up for the AN Tank Farm. The analysis used the postulated maximum historical GRE in tanks AN-103, -104, and -105. Tank AN-104 was found to be limiting. The results of the analysis show that an airflow of 250 cfm through tanks 241-AN-103, -104, and -105 with an airflow of 100 cfm through tanks 241-AN-101, -102, -106, and -107 would be the optimum ventilation lineup

  1. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  2. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  3. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  4. Irradiation-induced precipitates in a neutron irradiated 304 stainless steel studied by three-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, T., E-mail: ttoyama@imr.tohoku.ac.jp [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Nozawa, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Van Renterghem, W. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium); Matsukawa, Y.; Hatakeyama, M.; Nagai, Y. [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Narita-cho 2145-2, Oarai, Ibaraki 311-1313 (Japan); Al Mazouzi, A. [EDF R and D, Avenue des Renardieres Ecuelles, 77818 Moret sur Loing Cedex (France); Van Dyck, S. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, 2400 Mol (Belgium)

    2011-11-15

    Highlights: > Irradiation-induced precipitates in a 304 stainless steel were investigated by three-dimensional atom probe. > The precipitates were found to be {gamma}' precipitates (Ni{sub 3}Si). > Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening. - Abstract: Irradiation-induced precipitates in a 304 stainless steel, neutron-irradiated to a dose of 24 dpa at 300 deg. C in the fuel wrapper plates of a commercial pressurized water reactor, were investigated by laser-assisted three-dimensional atom probe. A high number density of 4 x 10{sup 23} m{sup -3} of Ni-Si rich precipitates was observed, which is one order of magnitude higher than that of Frank loops. The average diameter was {approx}10 nm and the average chemical composition was 40% Ni, 14% Si, 11% Cr and 32% Fe in atomic percent. Over a range of Si concentrations, the ratio of Ni to Si was {approx}3, close to that of {gamma}' precipitate (Ni{sub 3}Si). In some precipitates, Mn enrichment inside the precipitate and P segregation at the interface were observed. Post-irradiation annealing was performed to discuss the contribution of the precipitates to irradiation-hardening.

  5. Using Cosmic-Ray Neutron Probes to Monitor Landscape Scale Soil Water Content in Mixed Land Use Agricultural Systems

    International Nuclear Information System (INIS)

    Franz, Trenton E.; Wahbi, Ammar; Weltin, Georg; Heng, Lee; Dercon, Gerd; Vreugdenhi, Mariette; Oismueller, Markus; Strauss, Peter; Desilets, Darin

    2016-01-01

    With an ever-increasing demand for natural resources and the societal need to understand and predict natural disasters such as flood, soil water content (SWC) observations remain a critical variable to monitor in order to optimally allocate resources, establish early warning systems, and improve weather forecasts. However, routine agricultural production practices of soil cultivation, planting, and harvest make the operation and maintenance of direct contact point sensors for long-term monitoring a challenging task. In this work, we used Cosmic-Ray Neutron Probe (CRNP) to monitor landscape average SWC in a mixed agricultural land use system in northeast Austria since December 2013.

  6. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  7. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons...... contains antiferromagnetically coupled Cu2+ S = 1=2 ions forming truncated 24-spin cube clusters of linked triangles. The clusters in boleite afford a situation intermediate between molecular and bulk magnetism, accessible to both experiment and numerical theory, in which a spin liquid can be studied...... the impact of the time structure (pulse length and repetition frequency) choice for ESS are appended. McStas simulations of a low resolution cold powder diffractometer and high resolution thermal powder diffractometer with wavelength frame multiplication have been carried out for 20 different settings...

  8. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  9. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  10. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  11. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  12. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  13. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  14. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  15. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  16. Errors in the calculation of sub-soil moisture probe by equivalent moisture content technique

    International Nuclear Information System (INIS)

    Lakshmipathy, A.V.; Gangadharan, P.

    1982-01-01

    The size of the soil sample required to obtain the saturation response, with a neutron moisture probe is quite large and this poses practical problems of handling and mixing large amounts of samples for absolute laboratory calibration. Hydrogenous materials are used as a substitute for water in the equivalent moisture content technique, for calibration of soil moisture probes. In this it is assumed that only hydrogen of the bulk sample is responsible for the slowing down of fast neutrons and the slow neutron countrate is correlated to equivalent water content by considering the hydrogen density of sample. It is observed that the higher atomic number elements present in water equivalent media also affect the response of the soil moisture probe. Hence calculations, as well as experiments, were undertaken to know the order of error introduced by this technique. The thermal and slow neutron flux distribution around the BF 3 counter of a sub-soil moisture probe is calculated using three group diffusion theory. The response of the probe corresponding to different equivalent moisture content of hydrogenous media, is calculated taking into consideration the effective length of BF 3 counter. Soil with hydrogenous media such as polyethylene, sugar and water are considered for calculation, to verify the suitability of these materials as substitute for water during calibration of soil moisture probe. Experiments were conducted, to verify the theoretically calculated values. (author)

  17. Probing altered hematopoietic progenitors of preleukemic dogs with JANUS fission neutrons

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.

    1990-01-01

    Toward the goal of developing basic insights to mechanisms of radiation leukemogenesis, the authors have developed a canine model that responds to protracted courses of low-daily-dose gamma irradiation with high incidences of myeloproliferative disease (MPD), principally myeloid leukemia. Using this model system, the authors have identified and partially characterized a four-phase preclinical sequence in the induction of MPD, including (1) suppression, (2) recovery, (3) accommodation, and (4) preleukemic transition. Further, they have identified within this sequence, a critical early hematopoietic target cell event that appears to promote progression of the initial preclinical phase to the second preclinical phase. This key target cell event is characterized by the acquisition of increased radioresistance to low-LET gamma rays by granulocyte/monocyte-committed progenitors (CFU-GM). In order to gain further insight into the basis of this critical event, the acquired survival responses of preleukemic progenitors have been probed in vitro with high-LET fission neutrons. 23 refs., 4 figs., 1 tab

  18. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Document Server

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  19. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  20. neutron detector for in-beam studies

    International Nuclear Information System (INIS)

    Schmitt, R.P.; Nebbia, G.; Fabris, D.; Natowitz, J.B.; Utsunomiya, H.; Wada, R.

    1987-01-01

    Flexible, high-geometry detection systems are indispensable in unraveling the complexities of the contributing reaction mechanisms in medium energy heavy-ion collisions. In preparation for the K500 cyclotron, which will come on-line in 1987, they are constructing a 4π neutron ball. Like the fission neutron tanks first constructed more than three decades ago, the neutron ball consists of a large volume (approximately 1700 1) of Gd-doped liquid scintillator. However, the ball is distinguished from these systems in its relatively large scattering chamber and modular design. The design features and the expected performance of the ball will be described. They will also report on the current status of the project

  1. Inelastic neutron scattering for materials science and engineering

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1995-01-01

    The neutron is the ideal probe for studying the positions and motions of atoms in condensed matter. The main advantage of the neutron in inelastic scattering results from its heavy mass when compared to other particles which are used to probe materials such as the photon (light, x-rays, or γ-rays) or the electron. The author discusses the application of neutron scattering to study a number of different materials related problems, including, hard magnets, shape memory effects, and hydrogen distribution in metals

  2. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  3. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  4. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  5. Binary pulsars as probes of neutron star birth

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; van Paradijs, J.; van den Heuvel, E.P.J.

    1992-01-01

    We discuss two issues in the physics of neutron stars and their progenitors. The first is whether a neutron star receives a velocity kick when it is formed in the supernova-explosion of a massive star, and if it does, what is the characteristic magnitude, v(0), thereof? The second concerns the fate

  6. Neutron spin echo scattering angle measurement (SESAME)

    International Nuclear Information System (INIS)

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-01-01

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for

  7. Current status and future development of neutron scattering in CIAE

    International Nuclear Information System (INIS)

    Chen, D.F.; Gou, C.; Ye, C.T.; Guo, L.P.; Sun, K.

    2003-01-01

    Currently, the 15 MW Heavy Water Research Reactor (HWRR) at China Institute of Atomic Energy (CIAE) in Beijing is the only neutron source available for neutron scattering experiments in China. A 60 MW tank-in-pool inverse neutron trap-type research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. According to design, the maximum unperturbed thermal neutron flux would be expected to be 8x10 14 n/cm 2 .s in the reflector region. Seven out of nine tangential horizontal beam tubes will be dedicated for neutron scattering experiments. A cold source, a hot source and a 30x60 m 2 guide tube hall will also be constructed. In this paper, a brief introduction of HWRR, the existing neutron scattering facilities and research activities at HWRR, CARR, and the facilities to be built at CARR are presented. (author)

  8. Applying the universal neutron transport codes to the calculation of well-logging probe response at different rock porosities

    International Nuclear Information System (INIS)

    Bogacz, J.; Loskiewicz, J.; Zazula, J.M.

    1991-01-01

    The use of universal neutron transport codes in order to calculate the parameters of well-logging probes presents a new approach first tried in U.S.A. and UK in the eighties. This paper deals with first such an attempt in Poland. The work is based on the use of MORSE code developed in Oak Ridge National Laboratory in U.S.A.. Using CG MORSE code we calculated neutron detector response when surrounded with sandstone of porosities 19% and 38%. During the work it come out that it was necessary to investigate different methods of estimation of the neutron flux. The stochastic estimation method as used currently in the original MORSE code (next collision approximation) can not be used because of slow convergence of its variance. Using the analog type of estimation (calculation of the sum of track lengths inside detector) we obtained results of acceptable variance (∼ 20%) for source-detector spacing smaller than 40 cm. The influence of porosity on detector response is correctly described for detector positioned at 27 cm from the source. At the moment the variances are quite large. (author). 33 refs, 8 figs, 8 tabs

  9. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 2: Data standardization for tank calibration

    International Nuclear Information System (INIS)

    2007-01-01

    Measurements of the volume and height of liquid in a process accountancy tank are often made in order to estimate or verify the tank's calibration or volume measurement equation. The calibration equation relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. In this part of ISO 18213, it is assumed that the primary measurement-system response variable is liquid height and that the primary measure of liquid content is volume. This part of ISO 18213 presents procedures for standardizing a set of calibration data to a fixed set of reference conditions so as to minimize the effect of variations in ambient conditions that occur during the measurement process. The procedures presented herein apply generally to measurements of liquid height and volume obtained for the purpose of calibrating a tank (i.e. calibrating a tank's measurement system). When used in connection with other parts of ISO 18213, these procedures apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. The standardization algorithms presented herein can be profitably applied when only estimates of ambient conditions, such as temperature, are available. However, the most reliable results are obtained when relevant ambient conditions are measured for each measurement of volume and liquid height in a set of calibration data. Information is provided on scope, physical principles, data required, calibration data, dimensional changes in the tank, multiple calibration runs and results on standardized calibration data. Four annexes inform about density of water, buoyancy corrections for mass determination, determination of tank heel volume and statistical method for aligning data from several calibration runs. A bibliography is

  10. Structural evaluation of the Shippingport Reactor Pressure Vessel and Neutron Shield Tank package for impact and puncture loads

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Lo, T.; Schwartz, M.W.

    1988-06-01

    A structural evaluation of Shippingport Reactor Pressure Vessel and Neutron Shield Tank package for impact and puncture loads under the normal and hypothetical accident conditions of 10 CFR 71 was performed. Component performance criteria for the Shippingport package and the corresponding structural acceptance criteria for these components were developed based on a review of the package geometry, the planned transport environment, and the external radiation standards and dispersal limits of 10 CFR 71. The evaluation was performed using structural analysis methods. A demonstration combining simplified model tests and nonlinear finite element analyses was made to substantiate the structural analysis methods used to evaluate the Shippingport package. The package was analyzed and the results indicate that the package meets external radiation standards and release limits of 10 CFR 71. 13 refs., 50 figs., 19 tabs

  11. Effects of gypsum and bulk density on neutron probe calibration curves

    International Nuclear Information System (INIS)

    Arslan, Awadis; Razzouk, A.K.

    1993-10-01

    The effects of gypsum and bulk density on the neutron probe calibration curve were studied in the laboratory and in the field. The effect of bulk density was negligible for the soil studied in the laboratory, while it was significant for the field calibration. An increase in the slope of moisture content on a volume basis vs. count ratio with increasing gypsum content at the soil was observed in the laboratory calibration. A simple method for correction of the calibration curve for gypsum content was adopted to obtain a specific curve for each layer. The adapted method requires the gypsum fraction to be estimated for each layer and then incorporated in the calibration curve to improve the coefficient of determination. A field calibration showed an improvement of the determination coefficient by introducing bulk density and gypsum fraction, in addition to count ratio using moisture content on a volume basis as a dependent variable in multi linear regression analysis. The same procedure was successful with variable gravel fractions. (author). 18 refs., 3 figs., 2 tabs

  12. Personal and environmental dosimetry of neutrons in a storage facility and humidity probes soil density; Dosimetria personal y ambiental de neutrones en una instalacion de almacenamiento de sondas de densidad y humedad de suelos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fuste, M. J.; Amgarou, K.; Dan Pedro, M. de; Garcia-Orellana, J.; Domingo, C.

    2011-07-01

    The equipment operators are professionally exposed to radiation and the premises where stored are considered controlled areas. Although control of the personal doses of gamma radiation received by the operators during the operation, maintenance and storage of the probes is required and is performed by dosimetry services officially approved, the control of personal and environmental doses due to neutrons generally omitted, since they are small in comparison to the gamma dose.

  13. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  14. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  15. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  16. Comparison of two types of scintillation probe for moisture density gauge

    International Nuclear Information System (INIS)

    Machaj, B.

    1974-01-01

    Investigations of pulse shape discrimination scintillation probe, and amplitude discrimination probe as a detector for moisutre density gauge have been carried out. It was found that sandwich scintillator consisting of NE-421 + NE-102A was the best for pulse shape discrimination probe for thermal neutrons and gamma radiation detection. Similarly LiJ(Eu) crystal was the best for amplitude discrimination probe. The amplitude discrimination probe with LiJ(Eu) comparing to pulse shape discrimination probe with sandwich scintillator, provides approximately two times higher thermal neutron detection efficiency and higher count rate stability. It is considered therefore more suitable as the detector for moisture density gauge. (author)

  17. Exploration and grade control neutron logging

    International Nuclear Information System (INIS)

    Eisler, P.L.

    1982-01-01

    Techniques used in neutron logging in boreholes are discussed. They include the application of neutron probes to porosity measurements, to lithological determinations based on macroscopic cross-section measurements and measurements of the concentration of chemical constituents in rocks and ores

  18. Experimental investigation of thermal neutron analysis based landmine detection technology

    International Nuclear Information System (INIS)

    Zeng Jun; Chu Chengsheng; Ding Ge; Xiang Qingpei; Hao Fanhua; Luo Xiaobing

    2013-01-01

    Background: Recently, the prompt gamma-rays neutron activation analysis method is wildly used in coal analysis and explosive detection, however there were less application about landmine detection using neutron method especially in the domestic research. Purpose: In order to verify the feasibility of Thermal Neutron Analysis (TNA) method used in landmine detection, and explore the characteristic of this technology. Methods: An experimental system of TNA landmine detection was built based on LaBr 3 (Ce) fast scintillator detector and 252 Cf isotope neutron source. The system is comprised of the thermal neutron transition system, the shield system, and the detector system. Results: On the basis of the TNA, the wide energy area calibration method especially to the high energy area was investigated, and the least detection time for a typical mine was defined. In this study, the 72-type anti-tank mine, the 500 g TNT sample and several interferential objects are tested in loess, red soil, magnetic soil and sand respectively. Conclusions: The experimental results indicate that TNA is a reliable demining method, and it can be used to confirm the existence of Anti-Tank Mines (ATM) and large Anti-Personnel Mines (APM) in complicated condition. (authors)

  19. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  20. Probing the potential of neutron imaging for biomedical and biological applications

    International Nuclear Information System (INIS)

    Watkin, Kenneth L.; Bilheux, Hassina Z.; Ankner, John Francis

    2009-01-01

    Neutron imaging of biological specimens began soon after the discovery of the neutron by Chadwick in 1932. The first samples included tumors in tissues, internal organs in rats, and bones. These studies mainly employed thermal neutrons and were often compared with X-ray images of the same or equivalent samples. Although neutron scattering is widely used in biological studies, neutron imaging has yet to be exploited to its full capability in this area. This chapter summarizes past and current research efforts to apply neutron radiography to the study of biological specimens, in the expectation that clinical and medical research, as well as forensic science, may benefit from it.

  1. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  2. Numerical simulation of homogenization time measurement by probes with different volume size

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostek, M.; Jahoda, M.

    2004-01-01

    Results of continuous homogenization time measurement of liquid in a stirred tank depend on the scale of scrutiny. Experimental techniques use a probe, which is situated inside as a conductivity method, or outside of the tank as in the case of gamma-radiotracer methods. Expected value of homogenization time evaluated for a given degree of homogenization is higher when using the conductivity method because the conductivity probe measures relatively small volume in contrast to application of radiotracer, when the volume is much greater. Measurement through the wall of tank is a great advantage of radiotracer application but a comparison of the results with another method supposes a determination of measured volume, which is not easy. Simulation of measurement by CFD code can help to solve the problem. Methodology for CFD simulation of radiotracer experiments was suggested. Commercial software was used for simulation of liquid homogenization in mixed vessel with Rushton turbine. Numerical simulation of liquid homogenization time by CFD for different values of detected volume was confronted with measurement of homogenization time with conductivity probe and with different radioisotopes 198 Au, 82 Br and 24 Na. Detected size of the tank volume was affected by different energy of radioisotope used. (author)

  3. ATW neutron spectrum measurements at LAMPF

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Littleton, P.E.; Morgan, G.L. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Accelerator transmutation of waste (ATW) is a proposal to use a high flux of accelerator-produced thermalized neutrons to transmute both fission product and higher actinide commercial nuclear waste into stable or short-lived radioactive species in order to avoid long-term storage of nuclear waste. At LAMPF the authors recently performed experiments that were designed to measure the spectrum of neutrons produced per incident proton for full-scale proposed ATW targets of lead and lithium. The neutrons produced in such targets have a spectrum of energies that extends up to the energy of the incident proton beam, but the distribution peaks between 1 and 5 MeV. Transmutation reactions and fission of actinides are most efficient when the neutron energy is below a few eV, so the target must be surrounded by a non-absorbing material (blanket) to produce additional neutrons and reduce the energy of high energy neutrons without loss. The experiments with the lead target, 25 cm diameter by 40 cm long, were conducted with 800 MeV protons, while those with the lithium target, 25 cm diameter by 175 cm long, were conducted with 400 MeV protons. The blanket in both sets of experiments was a 60 cm diameter by 200 cm long annulus of lead that surrounded the target. Surrounding the blanket was a steel water tank with dimensions of 250 cm diameter by 300 cm long that simulated the transmutation region. A small sample pipe penetrated the length of the lead blanket and other sample pipes penetrated the length of the water tank at different radii from the beam axis so that the neutron spectra at different locations could be measured by foil activation. After irradiation the activated foil sets were extracted and counted with calibrated high resolution germanium gamma ray detectors at the Los Alamos nuclear chemistry counting facility.

  4. Associated-particle sealed-tube neutron probe for nonintrusive inspection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1997-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential for the associated-particle method to move out of the laboratory into field applications. This paper is a review of ANL investigations of this technology. Alpha particles associated with 14-MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha-detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-rays and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth electronics. When a compact sealed-tube neutron generator is used, a relatively small and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of-concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Efficient collection of maximum information from each detected neutron with low background rates can allow a much lower source intensity than pulsed accelerator methods and yield a preference for an APSTNG system, when it can provide adequate usable source intensity. Based on lessons learned with the present system, an advanced APSTNG system is being designed and built that will be transportable and yield substantial increases in neutron output and target lifetime. copyright 1997 American Institute of Physics

  5. Probing the crust of the neutron star in EXO 0748-676

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Medin, Z. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cumming, A. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Wijnands, R. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Wolff, M. T. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Jonker, P. G. [SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht (Netherlands); Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brown, E. F., E-mail: degenaar@umich.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-08-10

    X-ray observations of quiescent X-ray binaries have the potential to provide insight into the structure and the composition of neutron stars. EXO 0748-676 had been actively accreting for over 24 yr before its outburst ceased in late 2008. Subsequent X-ray monitoring revealed a gradual decay of the quiescent thermal emission that can be attributed to cooling of the accretion-heated neutron star crust. In this work, we report on new Chandra and Swift observations that extend the quiescent monitoring to ≅5 yr post-outburst. We find that the neutron star temperature remained at ≅117 eV between 2009 and 2011, but had decreased to ≅110 eV in 2013. This suggests that the crust has not fully cooled yet, which is supported by the lower temperature (≅95 eV) measured ≅4 yr prior to the accretion phase in 1980. Comparing the data to thermal evolution simulations reveals that the apparent lack of cooling between 2009 and 2011 could possibly be a signature of convection driven by phase separation of light and heavy nuclei in the outer layers of the neutron star.

  6. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible...... if the solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  7. Reactivity effect of a heavy water tank as reflector in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Fuga, Rinaldo

    2013-01-01

    This experiment comprises a set of experiments performed in the IPEN/MB-01 reactor and described in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, specifically the experiment aim to evaluate the reactivity due to the heavy water tank placed at reflector region of the IPEN/MB-01 reactor. An aluminum tank was designed to be filled with heavy water and positioned at the west face of the IPEN/MB-01, additionally the experiment was also designed to allow variable heavy water height inside of this tank providing different neutron leakage rate in the west face of the IPEN/MB-01, consequently providing a series of interesting combinations. The measured quantities in the experiment are reactivities and critical control bank positions for several combinations of the control banks and an excess of reactivity of the heavy water tank. The experiment will be simulated using a Monte Carlo code MCNP in order to compare the different critical control bank position. (author)

  8. Engineering task plan HTI [Hanford Tank Initiative] cone penetrometer

    International Nuclear Information System (INIS)

    Krieg, S.A.

    1998-01-01

    The Hanford Cone Penetrometer Platform (CPP) will be used to insert instrumented and soil sampling probes into the soil adjacent to Tank AX-104 to assist in characterizing the waste plume. The scope, deliverables, roles and responsibilities, safety, and environmental considerations are presented in the task plan

  9. Engineering evaluation of alternatives: Technologies for monitoring interstitial liquids in single-shell tanks

    International Nuclear Information System (INIS)

    Brevick, C.H.; Jenkins, C.E.

    1996-02-01

    A global search of mature, emerging, and conceptual tank liquid monitoring technologies, along with a historical review of Hanford tank farm waste monitoring instrumentation, was conducted to identify methods for gauging the quantity of interstitial waste liquids contained in Hanford SSTs. Upon completion of the search, an initial screening of alternatives was conducted to identify candidates which might be capable of monitoring interstitial tank liquids. The nine candidate technologies that were selected, evaluated, and ranked are summarized. Hydrostatic tank gauging (HTG) is the technology generally recommended for gauging the quantity of process materials contained in Hanford SSTs. HTG is a mass-based technique that has the capability for continuous remote monitoring. HTG has the advantages of no moving parts, intrinsic safety, and potentially gauging a one-million gal tank with a precision of approximately ±500 pounds (i.e., ±62 gal of water or ±0.02 in. of level in a 75 ft diameter tank). HTG is relatively inexpensive and probe design, construction, testing, installation, and operation should be straightforward. HTG should be configured as part of a hybrid tank gauging system. A hybrid system employs two or more independent measurement systems which function in concert to provide redundancy, improved accuracy, and maximum information at minimum cost. An excellent hybrid system choice for monitoring interstitial liquids in SSTs might be the combination of HTG with thermal differential technology

  10. Neutrons in nuclear physics from Billiard Balls to quark-gluon structure

    International Nuclear Information System (INIS)

    Annand, J. R. M.

    2002-01-01

    Neutrons and protons are the main building blocks of atomic nuclei and neutrons have been used to probe nuclear structure since the pioneering days of nuclear physics. As strongly interacting hadrons they have a high probability of reaction and, being uncharged, they are unaffected by the nuclear Coulomb field. Neutron scattering for example has been used to determine nuclear sizes and shapes. However the strong interaction inhibits the neutron from penetrating the surface skin of the nucleus and to gain information on the interior a relatively weakly interacting probe such as a photon or electron is superior.As the energies of electron accelerators have increased, shorter distances may be probed, until at a photon momentum of ∼200 MeV/c the reduced wavelength is 1 fm, roughly the dimension of the neutron or proton. From this point one starts to become sensitive to the internal structure. Until recently most experiments have concentrated on the proton as a hydrogen target is experimentally straightforward. There is of course no free neutron target, but with an improved understanding of how nuclear binding affects the neutron embedded in deuterium or helium-3, these materials may be considered as effective neutron targets. The extra information obtained from examining an up-down-down-quark neutron, as opposed to an up-up-down-quark proton, will be vital to achieve a full understanding of the ways in which elementary quarks and gluons interact to make composite hadrons. New results from the MAMI accelerator in Germany are presented and an extension of these measurements at Jefferson Laboratory in the USA is previewed.As well as being pivotal to the development of fundamental nuclear physics, neutrons have immense technological importance. Many of the early neutron scattering experiments were driven by a need to understand nuclear fission processes for power generation or weapons production, but neutron beams have also been widely used in medicine for the treatment

  11. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  12. Associated-particle sealed-tube neutron probe for nonintrusive inspection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle method to be moved out of the laboratory into field applications. Alpha particles associated with 14 MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha- detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles not only separate the prompt and delayed gamma-rays but can also yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth commercial electronics. This efficient collection of maximum information from each detected neutron by the associated-particle method can allow a much lower source intensity than pulsed accelerator methods, provided a sufficient usable signal rate is obtained. When this method is coupled with a compact sealed-tube neutron generator, a relatively small, inexpensive, reliable, and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of- concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Based on lessons learned with the present APSTNG system, an advanced APSTNG system is being designed and built that will be transportable, yield a substantial neutron output increase, and provide a substantially improved target lifetime

  13. Functional design criteria for the self-installing liquid observation well. Revision 2

    International Nuclear Information System (INIS)

    Parra, S.A.

    1995-01-01

    This document presents the functional design criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide or organic wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  14. Liquid Observation Well (LOW) Functional Design

    International Nuclear Information System (INIS)

    Paul, B.

    1995-01-01

    This document presents the Functional Design Criteria for installing Liquid Observation Wells (LOWS) into single-shell tanks containing either ferrocyanide or organic waste. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  15. Functional design criteria for the self-installing liquid observation well

    International Nuclear Information System (INIS)

    Parra, S.A.

    1996-01-01

    This document presents the functional Design Criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide and organic wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment

  16. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem

    Science.gov (United States)

    Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin

    2018-03-01

    Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.

  17. Contraband detection with fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, Andy E-mail: abuffler@science.uct.ac.za

    2004-11-01

    Recent terror events and the increase in the trade of illicit drugs have fuelled the exploration of the use of fast neutrons as probes for the detection of hidden contraband, especially explosives, in packages ranging in size from small mail items to cargo containers. The various approaches using fast neutrons for contraband detection, presently under development, are reviewed. The role that a neutron system might play in the non-intrusive interrogation of airline luggage is discussed.

  18. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  19. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  20. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  1. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  2. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  3. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  4. Neutron Imaging Developments at LANSCE

    Science.gov (United States)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  5. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  6. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Mezei, F.; Thompson, J.

    1998-01-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T c superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developments to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades

  7. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mezei, F.; Thompson, J.

    1998-12-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developments to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.

  8. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    Science.gov (United States)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  9. Novel Experimental Setups for In Situ Neutron Diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; H. Gjørup, Frederik; Mørch, Mathias

    Modern synchrotron and neutron sources provide the intensities needed for performing never-before-seen experiments. With the imminent launch of the scattering facilities MAX IV & ESS, it is interesting to explore novel setups that enable new experiments at these sites. X-ray and neutron technique...... also provide information on the magnetic structure and can probe large bulk samples, allowing the study of compacted powders for use in permanent magnets....

  10. Neutron star mergers as a probe of modifications of general relativity with finite-range scalar forces

    Science.gov (United States)

    Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David

    2018-03-01

    Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.

  11. Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Antoniak, Z.I.; Barton, W.B.; Conner, J.M.; Kirch, N.W.; Stewart, C.W.; Wells, B.E.

    2000-01-01

    This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed

  12. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  13. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  14. Tank 241-AZ-101 steam bumping and settling Process Test report

    International Nuclear Information System (INIS)

    Winkler, C.M.

    1995-01-01

    This report summarizes the process test in which the airlift circulators in Tank 241-AZ-101 were shutdown. The test was successful, in that no extreme temperature excursions occurred. Only general data was obtianed through the use of a gamma energy probe

  15. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  16. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  17. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  18. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  19. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  20. Optimization of in situ prompt gamma-ray analysis using a HPGe-252Cf probe

    International Nuclear Information System (INIS)

    Chien Chung; Jiunnhsing Chao

    1991-01-01

    Application of in situ measurements by the neutron-induced prompt gamma-ray activation analysis (PGAA) technique to geochemical analysis and mineral survey have been investigated. An in situ survey of water pollutants by PGAA techniques was first proposed in the authors' previous study, where a 2.7-μg 252 Cf neutron source used in connection with a gamma-ray detecting system to determine water pollutants was described. In this paper the authors describe a modified detection probe designed and constructed to look for the optimum conditions of various-intensity 252 Cf neutron sources in measurement of some elements in lake water. Detecting efficiencies at high-energy regions and detection limits for elements commonly found in polluted lakes were evaluated and predicted to investigate the potential application of the probe for in situ measurements

  1. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  2. The new high flux neutron source FRM-2 in Munich

    International Nuclear Information System (INIS)

    Roegler, H.J.; Wierheim, G.

    2002-01-01

    Quite some years ago in 1974 to be exact, the first consideration on a new neutron source started at the technical university of Munich (Germany). 27 years later the new high flux neutron source (FRM-2) was read for hot operation, now delayed by a refused approval for its third partial license by the federal government of Germany despite a wide support from the scientific community. FRM-2 is a tank-type research reactor cooled by water, moderated by heavy water and whose thermal power was limited to 20 MW maximum. The extreme compact core together with the applied inverse flux principle led to a neutron flux design value of 8.10 18 n/m 2 .s at the reflector peak. 10 beam tubes will allow an optimized use of the high neutron flux. A hot neutron source with graphite at about 2200 Celsius degrees and a cold neutron source with liquid D 2 at about 25 K will provide shifted energy spectra. The utilization of FRM-2 is many-fold: neutronography and tomography, medical irradiation, radio-nuclide production, doping of pure silicon, neutron activation analysis. (A.C.)

  3. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  4. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  5. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  6. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  7. Prompt-gamma spectrometry for the optimization of reactor neutron beams in biomedical research

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Leonov, V.F.

    1988-01-01

    In order to select the optimal spectral composition and size for the reactor neutron beams applied to in vivo analysis and therapy in biomedical research it is necessary to determine the spatial slow-neutron flux distributions produced by the beam in the irradiated object and to calculate or measure the neutron dose equivalents of both the original spectrum and the moderated neutrons. In this study the maximum neutron dose equivalents are found by spectrometry of the prompt-γ emission from the interaction of neutrons with atomic nuclei in the irradiated object. Different spectral distributions were produced by using an unfiltered beam together with filters of quartz, cadmium, 10 B, iron, aluminum, and sulfur. The phantom used was a tank filled with an aqueous solution of urea. Cadmium-containing organs were simulated. For in vivo neutron-activation analysis of human tissues at a depth of 2-5 cm it was found advisable to use neutrons of 20-40 keV mean energy with a beam area of at least 45 cm 2

  8. Neutrons at COSY

    International Nuclear Information System (INIS)

    Filges, D.; Freiesleben, H.

    1988-05-01

    For many years neutrons were considered important both as a useful probe in nuclear physics research and as an initiator and catalyst for fission, fusion and other applications. As a result knowledge about neutrons, especially below 20 MeV, received organized world-wide attention. Research with neutrons at medium energies, say 50 MeV to several GeV, has not consistently received attention and no systematic evaluations exist. But there is a large and considerable interest today because medium energy neutrons are very important in basic science and technology. The aim of this workshop was to provide an overview of the present status and the research which should be carried out in this field in future and which kind of experiments should be performed at the COSY facility: State-of-the-art about medium energy neutron experiments and existing facilities; planned experiments; needs for experiments doing research with neutrons at COSY (detectors, accelerator requirements, time structure etc.); what will be a first experiment to measure neutrons at COSY. The interest in this workshop is documented by a large number of participants. Copies of the viewgraphs of the talks are provided. (orig./HP)

  9. Determination of the rf leakage field in the vacuum tank of the TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Hohback; Dohan, D.; Dutto, G.; Enegren, T.A.; Fong, K.; Pacak, V.

    1983-01-01

    In the TRIUMF cyclotron the dees are partially defined by the two halves of the quasi-circular vacuum chamber, which completely contains the 1 MW resonating cavity. A stray electric field or ''RF leakage'' exists inside the dees and has occasionally caused problems to probes or other tank equipment. In order to understand the nature of this field a precise 1:10 scale metal model of the entire tank and resonator system has been built and is being investigated. Various resonances have been identified: the push-pull mode at 226 MHz and the push-push mode at 233 MHz; cross modes along the dee gap resonate at 243 MHz and 253 MHz. In the quasicircular tank region outside of the main resonating cavity the Tm 310 and Tm 410 modes are mainly responsible for the configuration of the leakage field since they are closer to the operating frequency. The measurements are in reasonable agreement with the results of numerical relaxation calculation and with measurements in the cyclotron tank

  10. Development of a hand-held fast neutron survey meter

    International Nuclear Information System (INIS)

    Yoshida, T.; Tsujimura, N.; Yamano, T.

    2011-01-01

    A neutron survey meter with a ZnS(Ag) scintillator to measure recoil protons was built. The detection probe weighs ∼2 kg, therefore providing us with true portability. Performance tests exhibited satisfactory neutron dosimetry characteristics in unmoderated or lightly moderated fission neutron fields and in particular work environments at a mixed oxide fuel facility. This new survey meter will augment a routine of neutron monitoring that is inconveniently being carried out by moderator-based neutron survey meters. (authors)

  11. 75 FR 9850 - Tank Level Probing Radars in the Frequency Band 77-81 GHz

    Science.gov (United States)

    2010-03-04

    ... measured (liquid or solid); thus, reflected signals should be contained within the tank. Finally, the..., GPS equipment, pagers, cellular phones, mobile communications equipment, and radio and television... ``Cellular and Other Wireless Telecommunications.'' Under both categories, the SBA deems a wireless business...

  12. In situ prompt gamma-ray activation analysis of water pollutants using a shallow 252Cf-HPGe probe

    International Nuclear Information System (INIS)

    Chung Chien; Tseng Tzucheng

    1988-01-01

    A shallow 252 Cf-HPGe probe used for in situ prompt γ-ray activation of water pollutants is described. A 2.7 μg 252 Cf neutron source and a 10% HPGe detector are inserted into a waterproof stainless steel probe, which is designed to be submerged and recovered in field operation. A laboratory test is performed to obtain the neutron flux distribution and prompt γ-ray contribution to the HPGe detector counts from around the submerged probe. The concentrations of toxic cadmium and chlorine in water are determined in the prompt γ-ray spectrum. The detection limit of industrial pollutants and some improvements of the current design are discussed. (orig.)

  13. Calculation code used in criticality analyses for the accident of JCO precipitation tank

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori

    2000-01-01

    In order to evaluate nuclear features on criticality accident formed at the nuclear fuel processing facility in Tokai Works of the JCO, Ltd. (JCO), in Tokai-mura, Ibaraki prefecture, dynamic analyses to calculate output change after occurring the accident as well as criticality analyses to calculate reactivity added to precipitation tank, were carried out according to scenario on accident formation. For the criticality analyses, a continuous energy Monte Carlo code MCNP was used to carry out calculation of reactivity fed into the precipitation tank as correctly as possible. And, SRAC code system was used for calculation on temperature and void reactivity coefficients, effective delayed neutron ratio beta eff , and instantaneous neutron generation time required for parameters controlling transition features at criticality accident. In addition, for the dynamic analyses, because of necessity of considering on volume expansion of solution fuels used as exothermic body and radiation decomposition gas forming into solution, output behavior, numbers of nuclear fission, and so forth at initial burst portion were calculated by using TRACE and quasi-regular code, at a center of AGNES-2 promoting on its development in JAERI. Here were reported on outlines and an analysis example on calculation code using for the nuclear features evaluation. (G.K.)

  14. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  15. Acoustic probe for solid-gas-liquid suspensions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Greenwood, M.S.; Sangani, A.S.; Tavlarides, L.L.

    1998-01-01

    'The proposed research will develop an acoustic probe for monitoring particle size and volume fraction in slurries in the absence and presence of gas. The goals are to commission and verify the probe components and system operation, develop theory for the forward and inverse problems for acoustic wave propagation through a three phase medium, and experimentally verify the theoretical analysis. The acoustic probe will permit measurement of solid content in gas-liquid-solid waste slurries in tanks across the DOE complex.'

  16. Thermal neutron converter for irradiations with fission neutrons

    International Nuclear Information System (INIS)

    Wagner, F.M.; Kampfer, S.; Kastenmuller, A.; Waschkowski, W.; Bucherl, Th.; Kampfer, S.

    2007-01-01

    The new research reactor FRM II at Garching started operation in March 2004. The compact core is cooled by light water, and moderated by heavy water. Two fuel plates mounted in the heavy water tank convert thermal to fast neutrons. The fast neutron flux in the connected beam tube is up to 7 centre dot 10 8 s -1 cm -2 (depending on filters and collimation); the mean neutron energy is about 1.6 MeV. There are two irradiation rooms along the beam. The first is mainly used for medical therapy (MEDAPP facility), the second for materials characterization (NECTAR facility). At the former therapy facility RENT at the old research reactor FRM, the same beam quality was available until July 2000. Therefore, only a small program is run for the determination of the biological effectiveness of the new beam. The neutron and gamma dose rates in the medical beam are 0.54 and 0.20 Gy/min, respectively. The therapy facility MEDAPP is still under examination according to European regulations for medical devices. Full medical operation will start in 2007. The radiography and tomography facility NECTAR is in operation and aims at non-destructive inspection of objects up to 400 kg mass and 80 centre dot 80 centre dot 80 cm 3 in size. As for fission neutrons the macroscopic cross section of hydrogen is much higher than for other materials (e. g. Fe and Pb), one special application is the detection of hydrogen-containing materials (e. g. oil) in dense materials

  17. New portable neutron generator for well logging

    International Nuclear Information System (INIS)

    Chicanov, A.E.; Gromov, E. V.; Gulko, V. M.; Izmailov, A. V.

    1994-01-01

    The information about the design, investigation and testing of new well neutron generator for the pulse neutron logging (PNL) is given in this paper. The main physical characteristics of new PNL apparatus are: Neutron flux 2.10 sup 8 n/s ; Pulse frequency>=400 Hz; Diameter= 90 mm; Logging velocity >200 m/h; Number of probes = 2; Resource > 300 h. The generator were provided by gas-filled neutron accelerative tube named NTF-2. The perspective of application and optimization shown PNL apparatus are considered. (author)

  18. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  19. Modeling validation to structural flaws in the foundations of oil tanks; Validacao de modelagem para estudo de alteracoes estruturais em fundacoes de tanques de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Larissa Goncalves; Leite, Sandro Passos, E-mail: leite_sp@ig.com.br [Fundacao Tecnico-Educacional Souza Marques, Rio de Janeiro, RJ (Brazil). Faculdade de Engenharia; Pereira, Walsan Wagner [Instituto de Radioprotecao e Dosimetria, (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  20. Experimental Determination and Thermodynamic Modeling of Electrical Conductivity of SRS Waste Tank Supernate

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-01

    SRS High Level Waste Tank Farm personnel rely on conductivity probes for detection of incipient overflow conditions in waste tanks. Minimal information is available concerning the sensitivity that must be achieved such that that liquid detection is assured. Overly sensitive electronics results in numerous nuisance alarms for these safety-related instruments. In order to determine the minimum sensitivity required of the probe, Tank Farm Engineering personnel need adequate conductivity data to improve the existing designs. Little or no measurements of liquid waste conductivity exist; however, the liquid phase of the waste consists of inorganic electrolytes for which the conductivity may be calculated. Savannah River Remediation (SRR) Tank Farm Facility Engineering requested SRNL to determine the conductivity of the supernate resident in SRS waste Tank 40 experimentally as well as computationally. In addition, SRNL was requested to develop a correlation, if possible, that would be generally applicable to liquid waste resident in SRS waste tanks. A waste sample from Tank 40 was analyzed for composition and electrical conductivity as shown in Table 4-6, Table 4-7, and Table 4-9. The conductivity for undiluted Tank 40 sample was 0.087 S/cm. The accuracy of OLI Analyzer™ was determined using available literature data. Overall, 95% of computed estimates of electrical conductivity are within ±15% of literature values for component concentrations from 0 to 15 M and temperatures from 0 to 125 °C. Though the computational results are generally in good agreement with the measured data, a small portion of literature data deviates as much as ±76%. A simplified model was created that can be used readily to estimate electrical conductivity of waste solution in computer spreadsheets. The variability of this simplified approach deviates up to 140% from measured values. Generally, this model can be applied to estimate the conductivity within a factor of two. The comparison of the

  1. Neutron Damage in Steels Containing Small Amounts of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Myers, H P

    1961-05-15

    Certain low alloy steels contain small amounts (0.003 to 0.007 w/o) of boron which element contributes to the development of the air hardening properties of these steels. Such steels appear attractive for reactor pressure vessel construction but the question arises whether they will, due to the (n,{alpha}) reaction in boron, be more susceptible to neutron radiation damage than other steels which do not contain boron. We have attempted to estimate the importance of damage arising through boron fission relative to that caused by fast neutrons by assuming that the two sources of damage will be proportional to the numbers of displaced atoms produced in the two processes when no annealing or re combination of defects occurs. Within the approximations used we conclude that in a neutron spectrum which may be represented by an equivalent thermal flux {phi}{sub t} and an equivalent fast flux at 1 MeV of {phi}{sub f}, then D, the ratio of damage to boron fission to that caused by fast neutrons, is D = 4.5 x 10{sup -2} {phi}{sub t}/{phi}{sub f} (for 0. 003 w/o B). For the conditions at the inside of the reactor tank to R3 this would imply D = 1.2 x 10{sup -2} , i.e. if the R3 tank were built with a steel containing 0.003 w/o B then damage due to boron fission would be only {approx} 1 % of that caused by fast neutrons. Further problems with such steels as here discussed are the probability of embrittlement due to the introduction of boron fission fragments lithium and helium and the possibility of a radiation enhanced diffusion of boron which might lead to accentuated slow strain rate embrittlement. We argue that none of these problems should arise. It is concluded that a constructional steel containing 0.003 to 0.007 w/o B should not on this account be more susceptible to radiation damage than other non boron containing steels.

  2. Phase transitions and neutron scattering

    International Nuclear Information System (INIS)

    Shirane, G.

    1993-01-01

    A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)

  3. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  4. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  5. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  6. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  7. Commercial applications of neutron scattering

    International Nuclear Information System (INIS)

    Hutchings, M.T.

    1993-01-01

    The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)

  8. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  9. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  10. Acquisition and reduction of data obtained from Tank 101-SY in-situ ball rheometer

    International Nuclear Information System (INIS)

    Shepard, C.L.; Chieda, M.A.; Kirihara, L.J.

    1994-12-01

    Development of the ball rheometer to measure rheological properties and density of the waste in Hanford Tank 241-SY-101 will be completed around September 1994. Since the ball rheometer project began, a mixer pump has been installed in this tank, and by all accounts this pump has been very successful at mitigating the flammable gas problem associated with Tank 101-SY. Present plans now call for the use of mixer pumps in several other tanks. The ball rheometer will serve as a diagnostic tool for judging the effectiveness of mixing in Tank 101-SY and others and will be one of few in-situ probes available for diagnostic measurements. The in-situ data collection strategy and the methods of data analysis and reduction are presented in this final report concerning this instrument. It is believed that a generalized Bingham fluid model (Herschel-Bulkley fluid model) may be useful for describing at least some of the waste contained in Tank 101-SY, and data obtained in the tank will initially be reduced using this fluid model. The single largest uncertainty in the determination of the drag force on the ball is the drag force which will be experienced by the cable attached to the ball. This drag can be a substantial fraction of the total drag when the ball is deep within the tank. Careful accounting of the cable drag will be important in the reduction of the data. The data collection strategy allows the determination of the waste fluid rheology both in the undisturbed state and after it has been disturbed by the ball. Fluid density will be measured at regular intervals

  11. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  12. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  13. Applications of TOF neutron diffraction in archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Kockelmann, W. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Siano, S.; Bartoli, L. [Istituto di Fisica Applicata - CNR, Sesto Fiorentino (Italy); Visser, D. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Netherlands Organisation for Scientific Research (NWO), Den Haag (Netherlands); Hallebeek, P. [Netherlands Institute for Cultural Heritage (ICN), Amsterdam (Netherlands); Traum, R. [Kunsthistorisches Museum Wien, Muenzkabinett, Vienna (Austria); Linke, R.; Schreiner, M. [Akademie der Bildenden Kuenste, Institut fuer Wissenschaften und Technologien in der Kunst, Vienna (Austria); Kirfel, A. [Universitaet Bonn, Mineralogisch-Petrologisches Institut, Bonn (Germany)

    2006-05-15

    Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins. (orig.)

  14. Theoretical description of the influence of neutron irradiation on viscoplastic properties of mild steel

    International Nuclear Information System (INIS)

    Pecherski, R.

    1978-01-01

    The physical bases of plastic deformation of mild steel are described. The influence of neutron irradiation on the change of mechanisms of plastic deformation is discussed in detail. Constitutive equations of viscoplasticity for irradiated mild steel are given. The problem of thickwalled viscoplastic spherical tank irradiated by neutrons is studied. (Z.R.)

  15. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  16. Neutrons and the new Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey-Musolf, M.J., E-mail: mjrm@physics.wisc.ed [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2009-12-11

    Fundamental symmetry tests with neutrons can provide unique information about whatever will be the new Standard Model of fundamental interactions. I review two aspects of this possibility: searches for the permanent electric dipole moment of the neutron and its relation to the origin of baryonic matter, and precision studies of neutron decay that can probe new symmetries. I discuss the complementarity of these experiments with other low-energy precision tests and high energy collider searches for new physics.

  17. The behavior of moisture content in Durian after harvesting by neutron reflection and transmission techniques

    International Nuclear Information System (INIS)

    Chimoye, T.; Fuangfoong, M.

    1998-01-01

    The study aimed at development of a neutron reflection and transmission technique to determine moisture content in Durian fruit as a function of time after harvesting. A system of a 3 mCi Am-Be neutron source with a BF 3 detector as a neutron probe was developed. The results obtained were validated using weighting method

  18. In-Tank Peroxide Oxidation Process for the Decomposition of Tetraphenylborate in Tank 48H

    International Nuclear Information System (INIS)

    DANIEL, LAMBERT

    2005-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at the Savannah River Site (SRS). Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. The TPB was added during an in-tank precipitation process to removed soluble cesium, but excessive benzene generation curtailed this treatment method. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to routine Tank Farm service. Tank 48H currently contains approximately 240,000 gallons of alkaline slurry with approximately 19,000 kg (42,000 lb) of potassium and cesium tetraphenylborate (KTPB and CsTPB). Out of Tank processing of the Tank 48H has some distinct advantages as aggressive processing conditions (e.g., high temperature, low pH) are required for fast destruction of the tetraphenylborate. Also, a new facility can be designed with the optimum materials of construction and other design features to allow the safe processing of the Tank 48H waste. However, it is very expensive to build a new facility. As a result, an in-tank process primarily using existing equipment and facilities is desirable. Development of an in-tank process would be economically attractive. Based on success with Fentons Chemistry (i.e., hydrogen peroxide with an iron or copper catalyst to produce hydroxyl radicals, strong oxidation agents), testing was initiated to develop a higher pH oxidation process that could be completed in-tank

  19. Prompt neutron emission from fragments in spontaneous fission of {sup 244,248}Cm and {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyev, A. S.; Shcherbakov, O. A. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Dushin, V. N.; Jakovlev, V. A.; Kalinin, V. A.; Petrov, B. F. [V.G. Khlopin Radium Institute, St. Petersburg, 194021 (Russian Federation); Hambsch, F.J [EC-JRC-Institute for Reference Materials and Measurements Retieseweg 111, B-2440 Geel (Belgium); Laptev, A. B. [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, 188300 (Russian Federation); Japan Nuclear Cycle Development Institute, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2005-07-01

    Neutrons emitted in fission were measured separately for each complementary fragment in correlation with fission fragment energies. Two high efficiency Gd-loaded liquid scintillator tanks were used for neutron registration. Fission fragment energies were measured using a twin Frisch gridded ionization chamber with a pin-hole collimator. The neutron multiplicity distributions were obtained for each value of the fission fragment mass and energy and corrected for neutron registration efficiency, background and pile-up. The dependencies of these distributions on fragment mass and energy for different energy and mass bins, as well as the mass and energy distribution of the fission fragments are presented and discussed. (authors)

  20. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    International Nuclear Information System (INIS)

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  1. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    Science.gov (United States)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  2. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  3. Neutrons probing the structure and dynamics of liquids

    International Nuclear Information System (INIS)

    Leclercq-Hugeux, F.; Coulet, M.V.; Gaspard, J.P.; Pouget, St.; Zanotti, J.M.

    2007-01-01

    This article illustrates the benefits of neutron techniques to the understanding of the liquid state. As opposed to the nearly complete order of crystals or the nearly complete disorder of gas, the disorder of a liquid is partial and results from dynamical events acting on a broad range of space and time scales. Consequently, no single, simple parameter can encompass the concept of order or disorder in the liquid state. The wide variety of neutron techniques (diffraction, quasi-elastic and inelastic scattering) is a key asset to solve the issue. Selected studies ranging over typical interactions and conditions relevant to liquids (metallic, covalent, molecular, liquids near a phase transition and confined fluids) are presented. In each case, both structural and dynamical aspects, along with the connections to complementary techniques (computer simulation, X-ray absorption and/or scattering) are highlighted. (authors)

  4. The analysis with the code TANK of a postulated reactivity-insertion transient in a 10-MW MAPLE research reactor

    International Nuclear Information System (INIS)

    Ellis, R.J.

    1990-10-01

    This report discusses the analysis of a postulated loss-of-regulation (LOR) accident in a metal-fuelled MAPLE Research Reactor. The selected transient scenario involves a slow LOR from low reactor power; the control rods are assumed to withdraw slowly until a trip at 12 MW halts the withdrawal. The simulation was performed using the space-time reactor kinetics computer code TANK, and modelling the reactor in detail in two dimensions and in two neutron-energy groups. Emphasis in this report is placed on the modelling techniques used in TANK and the physics considerations of the analysis

  5. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Kristensen, Nete Nørgaard

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......-politicization of Danish newspapers; but also that the news media as an arena of influence is only one part of the equation, since some of the corporatist political networks are still intact and working outside the media...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  6. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    Science.gov (United States)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  7. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  8. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A D [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  9. Status report on the development of a prompt fission neutron uranium borehole logging technique

    International Nuclear Information System (INIS)

    Smith, G.W.

    1977-05-01

    The prompt fission neutron (PFN) method of direct uranium measurement was studied. The PFN uranium logging technique measures the enhanced epithermal neutron population created by the prompt thermal fission of 235 U to assay uranium mineralization around a borehole. This neutron population exists for several hundred microseconds after a pulsed neutron source produces a burst of high energy (14 MeV) neutrons. A feasibility study established the basic relationship between the uranium concentration and the enhanced epithermal neutron count, and defined the major measurement perturbing factors. Following the feasibility study, development of a PFN prototype field probe was undertaken. A laboratory type neutron generator, the Controlatron, was modified for use in the probe. Field evaluation of the prototype system began in January 1976. Comparisons of neutron logs and natural gamma logs taken during this evaluation period clearly define many disequilibrium conditions as verified by ore grade estimates from core samples. The feasibility of the PFN logging technique to detect uranium in-situ has now been demonstrated

  10. Neutron scattering—The key characterization tool for nanostructured magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, M.R., E-mail: fitz@lanl.gov [Los Alamos National Laboratory (United States); Schuller, Ivan K. [University of California, San Diego (United States)

    2014-01-15

    The novel properties of materials produced using nanoscale manufacturing processes often arise from interactions across interfaces between dissimilar materials. Thus, to characterize the structure and magnetism of nanoscale materials demands tools with interface specificity. Neutron scattering has long been known to provide unique and quantitative information about nuclear and magnetic structures of bulk materials. Moreover, the specialty techniques of polarized neutron reflectometry and small angle neutron scattering (SANS) with polarized neutron beams and polarization analysis, are ideally and often uniquely suited to studies of nanostructured magnetic materials. Since neutron scattering is a weakly interacting probe, it gives quantifiable and easily-interpreted information on properties of statistically representative quantities of bulk, thin film and interfacial materials. In addition, neutron scattering can provide information to complement that obtained with bulk probes (magnetization, Kerr effect) or surface measurements obtained with scanning probe microscopy or resonant soft x-ray scattering. The straightforward interpretation and the simultaneous availability of structural information, make neutron scattering the technique of choice for the structural and physical characterization of many novel materials, especially those with buried interfaces, ones allowing for isotopic substitutions to decorate buried interfaces, or cases where the magnetic response to an external stimulus can be measured. We describe recent applications of neutron scattering to important thin film materials systems and future opportunities. Unquestionably, neutron scattering has played a decisive role in the development and study of new emergent phenomena. We argue with the advent of new techniques in neutron scattering and sample environment, neutron scattering's role in such studies will become even more dominant. In particular, neutron scattering will clarify and distinguish

  11. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    Science.gov (United States)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  12. Performace Of Multi-Probe Corrosion Monitoring Systems At The Hanford Site

    International Nuclear Information System (INIS)

    Carothers, K.D.; Boomer, K.D.; Anda, V.S.; Dahl, M.M.; Edgemon, G.L.

    2010-01-01

    Between 2007 and 2009, several different multi-probe corrosion monitoring systems were designed and installed in high-level nuclear waste tanks at the U.S. Department of Energy's Hanford Site in WaShington State. The probe systems are being monitored to ensure waste tanks operate in regions that minimize localized corrosion (i.e., pitting) and stress corrosion cracking. The corrosion monitoring systems have been installed in wastes with different chemistry types. An ongoing effort during the same time period has generated non-radioactive simulants that are tested in the laboratory to establish baseline corrosion monitoring system performance and characterize data to allow interpretation of readings from the multiple corrosion monitoring systems. Data collection from these monitoring systems has reached the point where the results allow comparison with the laboratory testing. This paper presents analytical results from the corrosion monitoring system development program.

  13. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  14. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte

  15. The Fifth International Symposium on Advanced Nuclear Energy Research - neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make. better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper

  16. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...

  17. Effect of a neutron skin on collective dipoles modes in nuclei

    International Nuclear Information System (INIS)

    Warner, D.D.; Van Isacker, P.; Nagarajan, M.A.

    1992-01-01

    One of the principal motivations for accelerated radioactive beams is to probe nuclear structure at the limits of nuclear stability. For neutron-rich nuclei, an indication of the new phenomena which may occur has already appeared, in the guise of the neutron halo discovered in very light nuclei. More generally, a steadily increasing neutron skin thickness is expected as the neutron excess increases. The presence of such a mantle of dominantly neutron matter will then particularly affect the properties of collective modes involving the out-of-phase motion of neutrons and protons. This paper explores the effect of the neutron skin thickness on the isovector M1 and E1 modes in medium and heavy mass nuclei. A simple model is used, couched in terms of classical oscillations of neutron and proton densities. The treatment includes the open-quotes pygmyclose quotes E1 mode, which corresponds to motion of the core against the loosely-bound neutrons in the mantle and predicts a significant lowering of this mode, even at relatively modest values of the skin thickness

  18. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  19. Design features of HANARO Neutron Flux Monitoring System and its operating experiences

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Ahn, Guk-Hoon

    1999-01-01

    The Neutron Flux Monitoring System for HANARO provides reliable neutron flux measurement from reactor shutdown to reactor full power level ranging 10 decades from 10 0 nv to 10 10 nv. The neutron flux monitoring system consists of a guarded fission chamber, amplifier and signal processor. The neutron flux as the measure of reactor power is continuously monitored by six(6) fission chambers mounted on the courtside wall of the reflector tank in the pool. Three(3) of the fission chambers are used for reactor power control, while the other three(3) are used for tripping the reactor in case of power excursion. Only the wide range fission chamber-based neutron monitoring system is employed for neutron power measurement thereby source range and intermediate range detectors are not necessary and the number of neutron monitoring channels are minimized at HANARO. (author)

  20. Traversing incore probe device

    International Nuclear Information System (INIS)

    Yoshioka, Michiko.

    1985-01-01

    Purpose: To measure the neutron flux distribution in the reactor core always at a high accuracy. Constitution: A nuclear fission ionizing chamber type detector is disposed at the end of a cable for sending a detection signal of a traversing incore probe device and, further, a gamma-ray ionizing chamber type detector is connected in adjacent therewith and a selection circuit for selecting both of the detection signals and inputting them to a display device is disposed. Then, compensation for the neutron monitors is conducted by the gamma-ray ionizing chamber type detector during normal operation in which control rods are not driven and the positioning is carried out by the nuclear fission ionizing chamber type detector. Furthermore, both of the compensation for the neutron detector and the positioning are carried out by the nuclear fission ionizing chamber type detector upon starting where the control rods are driven. (Sekiya, K.)

  1. Chemical characterization of SRP waste tank sludges and supernates

    International Nuclear Information System (INIS)

    Gray, L.W.; Donnan, M.Y.; Okamoto, B.Y.

    1979-08-01

    Most high-level liquid wastes at the Savannah River Plant (SRP) are byproducts from plutonium and enriched uranium recovery processes. The high-level liquid wastes generated by these separations processes are stored in large, underground, carbon-steel tanks. The liquid wastes consist of: supernate (an aqueous solution containing sodium, nitrate, nitrite, hydroxyl, and aluminate ions), sludge (a gelatinous material containing insoluble components of the waste, such as ferric and aluminum hydroxides, and mercuric and manganese oxides), and salt cake (crystals, such as sodium nitrate, formed by evaporation of water from supernate). Analyses of SRP wastes by laser-Raman spectrometry, atomic absorption spectrometry, spark-source mass spectrometry, neutron activation analysis, colorimetry, ion chromatography, and various other wet-chemical and radiochemical methods are discussed. These analyses are useful in studies of waste tank corrosion and of forms for long-term waste storage

  2. Density and water content measurement with two dual detector probes

    International Nuclear Information System (INIS)

    Cariou, J.; Menard, J.

    1980-01-01

    The ''Laboratoires des Ponts et Chaussees'' have developed an electronic device for geological prospections. This system includes gamma-gamma and neutron-neutron probes for continuous measurement in borehole down to one hundred meters. It is used, as well to measure the density and the water content in the field of soil mechanic engineering. When the diameter is not constant all along the borehole the two probes have to use a dual detector procedure. When constant, a simple detector procedure is sufficient to obtain density and water content. Two examples show the possibilities of this apparatus, particularly to control the borehole diameter and the soil chemical composition [fr

  3. Calibration of neutron moisture gauges and their ability to spatially determine soil water content in environmental studies

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Martinez, J.L.; Langhorst, G.J.

    1994-10-01

    Several neutron moisture gauges were calibrated, and their ability to spatially determine soil water content was evaluated. In 1982, the midpoint of sensitivity of each neutron probe to the detection of hydrogen was determined, as well as the radius of investigation of each probe in crushed Bandelier Tuff with varying water contents. After determining the response of one of the moisture gauges to changes in soil water at the soil-air interface, a neutron transport model was successfully calibrated to predict spatial variations in soil water content. The model was then used to predict various shapes and volumes of crushed Bandelier Tuff interrogated by the neutron moisture gauge. From 1991 through 1994, six neutron moisture gauges were calibrated for soil water determinations in a local topsoil and crushed Bandelier Tuff, as well as for a sample of fine sand and soils from a field experiment at Hill Air Force Base. Statistical analysis of the calibration results is presented and summarized, and a final summary of practical implications for future neutron moisture gauge studies at Los Alamos is included

  4. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  5. Design of emergency shutdown system for the Tehran Research Reactor; Part I: Neutronics investigation

    International Nuclear Information System (INIS)

    Safarinia, M.; Faghihi, F.; Mirvakili, S.M.; Fakhraei, A.

    2017-01-01

    Highlights: • An emergency shutdown system for the TRR is carried out based on a heavy water tank. • The performance of the heavy water tank are carried out based on “first and equilibrium cores”. • Heavy water discharging flow rate is also studied in the current research. • Thermal flux in the radioisotope channel with and without the heavy water tank are studied. • A core with and without the heavy water tank for the cases of 5 × 6, 5 × 5, 5 × 4, and 4 × 4 fuel assemblies are investigated (for two types of fuel loading—first and equilibrium cores). - Abstract: In this paper, a neutronics design of the secondary (i.e., emergency) shutdown system for the Tehran Research Reactor (TRR) is carried out based on a heavy water tank design. The heavy water tank in a cylindrical shape is around the core, and calculations for the optimized radius and height of the tank are performed. The performance of the heavy water tank calculations are carried out based on two types of fuel loading, which are called the “first and equilibrium cores” of the TRR. For both cases, neutronics and standard safety analysis are taken into account, benchmarked, and described herein. Heavy water discharging flow rate is also studied in the current research, and the results are compared with the IAEA criteria. Moreover, thermal flux in the radioisotope channel with and without the heavy water tank (as the reflector) are studied herein. Specifically, a core with and without the heavy water tank for the cases of 5 × 6, 5 × 5, 5 × 4, and 4 × 4 fuel assemblies are investigated (for two types of fuel loading—first and equilibrium cores). Based on our optimization, the 5 × 5 fuel assembly, which is called “B configuration,” has better performance and efficiency than that of the other described layouts.

  6. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  7. Tank characterization data report: Tank 241-C-112

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable

  8. Neutron Electric Dipole Moment on the Lattice

    Science.gov (United States)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  9. Neutron Electric Dipole Moment on the Lattice

    Directory of Open Access Journals (Sweden)

    Yoon Boram

    2018-01-01

    Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  10. Experimental facility and void fraction calibration methods for impedance probes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  11. Experimental facility and void fraction calibration methods for impedance probes

    International Nuclear Information System (INIS)

    Oliveira, Fernando L. de; Rocha, Marcelo S.

    2013-01-01

    An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)

  12. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  13. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  14. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  15. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...... by computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...

  16. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  17. The neutron Electric Dipole Moment experiment at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Hélaine V.

    2014-06-01

    Full Text Available The neutron Electric Dipole Moment (nEDM is a probe for physics beyond the Standard Model. A report on the nEDM measurement performed at the Paul Scherrer Institute (Switzerland is given. A neutron spin analyzer designed to simultaneously detect both neutron spin states is presented.

  18. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  19. Neutron physics and the theory of liquids 1956-1976

    International Nuclear Information System (INIS)

    Schofield, P.

    1980-01-01

    A review is given of work carried out in the Theoretical Division, Harwell from 1956-1976 on neutron thermalization and scattering, resulting from different fuel composition and temperatures within nuclear reactor cores, and the use of thermal neutron scattering as a probe of the structure and dynamics of condensed matter. (UK)

  20. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  1. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  2. Clustering and correlations at the neutron drip-line

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A.; Marques, F.M

    2003-03-01

    Some recent experimental studies of clustering and correlations within very neutron-rich light nuclei are reviewed. In particular, the development of the novel probes of neutron-neutron interferometry and Dalitz-plot analyses is presented through the example of the dissociation of the two-neutron halo system {sup 14}Be. The utility of high-energy proton radiative capture is illustrated using a study of the {sup 6}He(p,{gamma}) reaction. A new approach to the production and detection of bound neutron clusters is also described, and the observation of events with the characteristics expected for tetraneutrons ({sup 4}n) liberated in the breakup of {sup 14}Be is discussed. The prospects for future work, including systems beyond the neutron drip-line, are briefly outlined. (authors)

  3. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  4. Neutron based evaluation in support of NEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    The primary objective of the Advanced Non-Destructive fuel Examination (ANDE) work package is to develop capability that has the potential to accelerate insight and development of ceramic and metallic fuels. Establishing unique validation opportunities for new models is a key component of this effort. To explore opportunities a series of interactions were held with NEAMS modelers at LANL. The focus was to identify experiments that draw on the unique capabilities of neutron scattering and imaging for studies of nuclear fuel particularly in areas where experimental data can be valuable for of models validation. The neutron characterization techniques applied in the ANDE program span length scales from millimeter to micrometer to angstroms. Spatial heterogeneities of interest include cracks, pores and inclusions, crystal structure, phase composition, stoichiometry texture, chemistry and atomic thermal motion. Neutrons offer characterization opportunities that are distinct from other probes such as X-rays, electrons or protons. This report describes a variety of opportunities whereby neutron data can be related to models and lists some opportunities.

  5. X-rays as a probe of the Universe

    Indian Academy of Sciences (India)

    Table of contents. X-rays as a probe of the Universe · Probing the Universe ….. Flux = sT4 umax = 1011 T (in Kelvin) · History of x-ray astronomy · X-ray Production · X-ray spectra · Celestial sphere as seen by UHURU (1970) · Slide 8 · X-rays from accreting binary systems · Slide 10 · Neutron stars: Black Hole: · Primary X-ray ...

  6. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  7. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  8. A neutron scattering study on the antiferromagnet in an exchange biased systems

    Energy Technology Data Exchange (ETDEWEB)

    Solina, Danica; Lott, Dieter; Fenske, Jochen; Schreyer, Andreas [Institute of Materials Research, GKSS Research Centre, Geesthacht (Germany); Schmidt, Wolfgang [Institut-Laue-Langevin, Grenoble (France); Wu, Yu-Chang; Lai, Chih-Huang [Department of Materials Science and Engineering, National Tsing Hua University, HsinChu (China)

    2008-07-01

    The magnetic structure of single crystal antiferromagnetic PtMn that biases CoFe has been studied using neutron scattering. Polarized neutron reflection (PNR) was used to determine the switching behaviour of the ferromagnetic layer and polarized neutron diffraction (PND) to probe the magnetic configuration of the anti-ferromagnetic layer. PNR suggests a combination of rotation and domain formation. Changes were observed in the PND patterns taken at points around the hysteresis loop. The diffraction data has been simulated with a 'twisting' of part of the anti-ferromagnetic layer as the ferromagnetic layer changes.

  9. Characterization of duplex stainless steels by TEM [transmission electron microscopy], SANS [small-angle neutron scattering], and APFIM [atom-probe field ion microscopy] techniques

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1987-06-01

    Results are presented of complementary characterization of aged duplex stainless steels by advanced metallographic techniques, including transmission and high-voltage electron microscopies; small-angle neutron scattering; and atom-probe field ion microscopy. On the basis of the characterization, the mechanisms of aging embrittlement have been shown to be associated with the precipitation of Ni- and Si-rich G phase and Cr-rich α' in the ferrite, and M 23 C 6 carbides on the austenite-ferrite phase boundaries. 19 refs., 19 figs., 1 tab

  10. Burst Oscillations: A New Spin on Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  11. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  12. Cold neutron production and application

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Watanabe, Noboru.

    1976-01-01

    The first part gives general introduction to cold neutrons, namely the definition and the role as a probe in basic science and technology. The second part reviews various methods of cold neutron production. Some physical characteristics required for cold moderators are presented, and a list summarizes a number of cold moderators and their reactor physics constants. The definition of flux gain factor and the measured values for liquid light- and heavy-hydrogen are also given. The cold neutron spectra in methane and liquid hydrogen measured by LINAC time-of-flight method are presented to show the advantage of solid methane. The cold neutron sources using experimental reactors or linear accelerators are explained along with the examples of existing facilities. Two Japanese programs, the one is the use of a high flux reactor and the other is the use of a LINAC, are also presented. The third part of this report reviews the application areas of cold neutrons. (Aoki, K.)

  13. Research and Training of Using Neutron Scattering to Probe the Collective Phenomena in Doped Transition-Metal Oxides. Final report

    International Nuclear Information System (INIS)

    Zhang, Jiandi

    2008-01-01

    The objective of this funded research program include: explore and understand the microscopic origins of collective phenomena in doped transition-metal oxides (TMOs) using neutrons as one of the primary tools, and train new generation of neutron scatters and collaborate with Oak Ridge National Lab in both materials synthesis and characterization. The major physics issues focused on in this project consist of the microscopic correlations between lattice structure and magnetic ordering, the nature of elementary lattice and spin excitations, the origin of nanometer-scale phase separations, and the effects of dimensional confinement and broken symmetry. The main materials are doped TMOs grown as single crystals by a floating-zone technique at ORNL as well as multiplayer films grown with a laser-MBE facility at Florida International University (FIU). Our educational objective is the training of our graduate and undergraduate students, especially Hispanic and other minority students, to use neutrons as a probe for materials research by taking advantage of national neutron facilities and to grow novel materials by using the floating-zone and laser-MBE technique. The main achievements of the project include the systematic study of the spin dynamics, especially the spin wave excitations in ferromagnetic manganites; the discovery of the critical doping concentration for the magnetic phase separation of the charge-ordered state in Pr 1-x Ca x MnO 3 - ; the study of Σ 4 phonon softening associated with the lattice instability near the quantum critical point as well as the discovery of an anomalous mode in single-layered ruthenates. These results gain some important insights into the collective excitations in both spin and lattice degrees of freedom as well as their close coupling in these correlated TMO systems. Furthermore, this project also accomplished the synthesis and some characterization of the single crystals of a new material Ba 2-x Sr x CoO 4 , a compound in which

  14. The TRIUMF thermal neutron facility as planned for operation by 1978

    International Nuclear Information System (INIS)

    Arrott, A.S.; Templeton, T.L.; Thorson, I.M.; Blaby, R.E.; Burgerjon, J.J.

    1977-08-01

    The concepts of the thermal neutron facility have been considerably modified since they were first put forth in 1971. The move has been toward simplification. This report describes the basic vacuum tank structure, its surrounding steel shielding and the concrete structure. The vacuum tank contains a target, moderator and reflector and has ports for the extraction of thermal neutron beams. It also has capabilities for producing mesons and for irradiation of targets in the primary proton beam. The system has been designed with flexibility for modification to meet possible future demands for irradiation facilities, radiography, or pulsed operation. The targets can be easily changed, and it is planned to do this to meet the heat transfer problems as they arise on going to higher beam currents. Feasibility studies for Pb-Bi and Pb targets have been carried out. The Pb target was chosen because of safety considerations and simpler design. (author)

  15. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  16. Non-destructive in situ measurement of radiological distributions in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1996-01-01

    Measurement of radiological materials in defense nuclear waste stored in underground tanks at the Hanford Site is being used to indicate material distributions. Both safety assessment and future processing challenges are dependent on knowledge of the distribution kinds, and quantities of various key components. Data from CdTe and neutron detector measurements are shown and correlated with physical sampling and laboratory results. The multiple assay approach is shown to increase the confidence about the material distributions. As a result, costs of physical sampling and destructive analyses can be controlled while not severely limiting the uncertainty of results

  17. Response functions of superfluid neutron matter

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jochen; Sedrakian, Armen [Institut fuer Theoretische Physik, Goethe Universitaet, 60438 Frankfurt/Main (Germany)

    2011-07-01

    We investigate the response of pair-correlated neutron matter under conditions relevant to neutron stars to external weak probes and compute its neutrino emissivity in vector and axialvector channels. To derive the response functions we sum up an infinite chain of particle-hole ladder diagrams within finite-temperature Green's function theory. The polarization tensor of matter is evaluated in the limit of small momentum transfers. The calculated neutrino emission via the weak neutral current processes of pair-breaking and recombination of Cooper-pairs in neutron stars causes a cooling of their baryonic interior, and represents an important mechanism for the thermal evolution of the star within a certain time domain.

  18. Zeeman splitting of surface-scattered neutrons

    International Nuclear Information System (INIS)

    Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.

    1995-01-01

    If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)

  19. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...... computational fluid dynamics (CFD) models. The measured heat loss coefficient for the different parts of the tank is used as input to the CFD model. Parametric studies are carried out using the validated models to investigate the influence on thermal stratification of the tank by the downward flow...... the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The results show that 20–55% of the side heat loss drops to layers below in the part of the tank without the presence of thermal stratification. A heat loss removal factor is introduced...

  20. The Thermal Neutron Beam Option for NECTAR at MLZ

    Science.gov (United States)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  1. Calibration of a Neutron Hydroprobe for Moisture Measurements in Small-Diameter Steel-Cased Boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Wittman, Richard S.

    2009-08-01

    Computation of soil moisture content from thermalized neutron counts for the T-Farm Interim cover requires a calibration relationship but none exists for 2-in tubes. A number of calibration options are available for the neutron probe, including vendor calibration, field calibration, but none of these methods were deemed appropriate for the configuration of interest. The objective of this work was to develop a calibration relation for converting neutron counts measured in 2-in access tubes to soil water content. The calibration method chosen for this study was a computational approach using the Monte Carlo N-Particle Transport Code (MCNP). Model calibration was performed using field measurements in the Hanford calibration models with 6-in access tubes, in air and in the probe shield. The bet-fit model relating known water content to measured neutron counts was an exponential model that was essentially equivalent to that currently being used for 6-in steel cased wells. The MCNP simulations successfully predicted the neutron count rate for the neutron shield and the three calibration models for which data were collected in the field. However, predictions for air were about 65% lower than the measured counts . This discrepancy can be attributed to uncertainties in the configuration used for the air measurements. MCNP-simulated counts for the physical models were essentially equal to the measured counts with values. Accurate prediction of the response in 6-in casings in the three calibration models was motivation to predict the response in 2-in access tubes. Simulations were performed for six of the seven calibration models as well as 4 virtual models with the entire set covering a moisture range of 0 to 40%. Predicted counts for the calibration models with 2-in access tubes were 40 to 50% higher than in the 6-inch tubes. Predicted counts for water were about 60% higher in the 2-in tube than in the 6-in tube. The discrepancy between the 2-in and 6-in tube can be

  2. A new instrumental set-up for polarized neutron scattering experiments

    International Nuclear Information System (INIS)

    Schmidt, Wolfgang; Ohl, Michael

    2005-01-01

    Neutron scattering with polarization analysis is a powerful tool to determine magnetic structures and excitations. A common setup is to mount the sample at the center of a Helmholtz-type coil which can provide a magnetic field of any direction at the sample position and also a guide field along the neutron flight paths around the sample. Recent experiments showed quite a high demand for measurements at low momentum transfers. For the corresponding low scattering angles air scattering gives rise to a very large background. For this reason we have extended the standard setup to a combination of a large vacuum tank surrounded by electrical coils. The vacuum tank eliminates the air scattering and we can use the polarization analysis down to the lowest accessible momentum transfers. The coils themselves also show some new features: In contrary to the classic (symmetric) coil distribution we use an asymmetric setup which gives the advantage of a larger scattering window. Due to a more sophisticated current distribution this modified coil arrangement needs not to be rotated for different scattering conditions. The whole set-up will soon be available at IN12, a cold neutrons three-axis spectrometer operated by FZ Juelich in collaboration with CEA Grenoble as a CRG-B instrument at the Institut Laue Langevin in Grenoble

  3. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans

  4. Moisture monitoring of ferrocyanide tanks: An evaluation of methods and tools

    International Nuclear Information System (INIS)

    Meacham, J.E.; Babad, H.; Toffer, H.

    1993-04-01

    This report reviews the strengths and limitations of moisture monitoring technologies that could be used for determining moisture concentration in Hanford Site single-shell ferrocyanide waste tanks. Two technologies (neutron diffusion and near-infrared spectroscopy) are being pursued as part of the ferrocyanide program. A third technology, Raman spectroscopy, is in development as a speciation tool at the Westinghouse Hanford Company 222-S Laboratory. The potential application of Raman spectroscopy to moisture monitoring is discussed

  5. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  6. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  7. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roared tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  8. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roofed tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  9. Acquisition and reduction of data obtained from tank 101-SY in-situ ball rheometer

    International Nuclear Information System (INIS)

    Shepard, C.L.; Chieda, M.A.; Kirihara, L.J.; Phillips, J.R.; Shekarriz, A.; Terrones, G.; Abbott, J.; Unal, C.; Pasamehmetoglu, K.O.; Graham, A.

    1995-02-01

    Development of the ball rheometer to measure rheological properties and density of the waste in Hanford Tank 241-SY-101 will be completed around September 1994. This instrument is expected to provide the first-of-its-kind in-situ measurements of the fluid properties of the waste contained within this tank. A mixer pump has been installed in this tank, and this pump has been very successful at mitigating the flammable gas problem associated with Tank 101-SY. The ball rheometer will serve as a diagnostic tool for judging the effectiveness of mixing in Tank 101-SY and others and will be one of few in-situ probes available for diagnostic measurements. Based on experiments performed at Los Alamos National Laboratory and Pacific Northwest Laboratory, it is believed that a generalized Bingham fluid model (Herschel-Bulkley fluid model) may be useful for describing at least some of the waste contained in Tank 101-SY, and data obtained in the tank will initially be reduced using this fluid model. The single largest uncertainty in the determination of the drag force on the ball is the drag force which will be experienced by the cable attached to the ball. This drag can be a substantial fraction of the total drag when the ball is deep within the tank. It is expected that the fluid properties may be history dependent, thus rheological properties of the undisturbed fluid may be different from the same properties after the fluid has been disturbed by passage of the ball. The data collection strategy allows the determination of the waste fluid rheology both in the undisturbed state and after it has been disturbed by the ball. Unlike the rheological parameters, measurement of density requires no model for its interpretation; however, the effects of yield stress may need to be accounted for. This measurement can be made with fairly good accuracy and may provide the most useful data in determination of mixer pump effectiveness

  10. Probing Fundamental Symmetries: Questioning the Very Basics of Conservation Laws

    Science.gov (United States)

    Mohanmurthy, Prajwal

    2017-09-01

    Is the Lorentz-CPT symmetry, a core component of the standard model, valid? To what extent are the CP and T symmetries broken in the strong sector? What are we doing about the existing strong-CP problem? Do neutrons oscillate (like neutral kaons) or break the (Baryon - Lepton) number conservation? In this presentation, we will go over some of the experiments probing fundamental symmetries trying to answer the above questions. I will, very briefly, introduce the CompEx & nEx experiments probing the Lorentz symmetry in the electromagnetic (EM) sector, the nEDM experiment probing CP and T symmetries in the strong sector, NStar experiment searching for neutron oscillations, MASS & BDX experiments searching for axion like particles & dark matter. We will then briefly touch upon the highlights of these experiments and focus on the path we are taking towards answering those questions while also connecting the dots [experiments] with CEU. PM would like to acknowledge support from SERI SNSF Grant 2015.0594.

  11. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  12. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  13. Certification of contact probe measurement of surface wave of Li jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Takafumi, E-mail: okita@stu.nucl.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Hoashi, Eiji; Yoshihashi, Sachiko [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Kondo, Hiroo; Kanemura, Takuji [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki (Japan); Yamaoka, Nobuo; Horiike, Hiroshi [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan)

    2015-10-15

    Highlights: • We have conducted experiments of liquid lithium free-surface flow for IFMIF. • In the experiment using electro-contact probe apparatus, a droplet of liquid Li on the middle of measurement probe was observed. • Behavior of a droplet and false detections were observed by using HSV camera. • The error of the statistical result was roughly evaluated about 1%. • From results of numerical simulations, we obtained the detailed information about the behavior of a Li droplet. - Abstract: The international fusion material irradiation facility (IFMIF) is a neutron source for developing fusion reactor materials. A liquid lithium (Li) jet with free surface is planned as a target to generate intense neutron field. It is important to obtain information on the surface wave characteristic for safety of the facility and efficient neutron generation. Surface wave characteristics experiment using the liquid Li circulation facility is carried out at Osaka University. In our studies, measurement using an electro-contact probe apparatus is conducted and many data about surface wave height were taken. In this experiment, a liquid Li droplet was observed on the probe. To see effect due to droplets on the probe needle, images near the surface of the Li jet including the Li droplet were taken by HSV camera synchronized with probe contact signals, and correlation between the behavior of the Li droplet and signals was evaluated. From the results, when the droplet on the probe contacts of the droplet with the surface, signals obviously different from the regular signal were observed. The influence on the result of frequency was estimated and is approximately <1%. Accuracy of measurement using probe could be increased by carefully deleting false signals.

  14. Proceedings of the specialists' meeting on delayed neutron nuclear data

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1999-07-01

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  15. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  16. Analysis of the effects of corrosion probe on riser 241-AN-102-WST-16 during seismic event

    International Nuclear Information System (INIS)

    ZIADA, H.H.

    1998-01-01

    This analysis supports the installation activity of the corrosion probe in Tank 241-AN-102. The probe is scheduled to be installed in Riser 241-AN-102-WST-16 (formerly known as Riser 15B). The purpose of this analysis is to evaluate the potential effect of the corrosion probe on the riser during a credible seismic event. The previous analysis (HNF 1997a) considered only pump jet impingement loading

  17. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  18. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.

    1987-01-01

    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  19. Neutronic calculations for Angra-1 steam line break accident

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Sato, Sadakatu

    2000-01-01

    The reduction of boron concentration in the Boron Injection Tank (BIT), to the room temperature solubility level, makes necessary a reanalysis of the steam line break accident of Angra 1 NPP. This paper describes the neutronic calculation related to this reanalysis. The main steps of the work were: review of reactivity parameters used in the accident simulation; search of xenon profiles that cause the most severe core power distribution; calculation of hot channel factors and other neutronic parameters necessary for DNBR determination. The final conclusion, related to the steam line break accident, states the BIT concentration may be reduced to 2000 ppm. (author)

  20. Phase density of neutrons emitted by an atmosphereless planet

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Isakov, A.I.; Lin'kova, N.V.

    1986-01-01

    An approach to calculation of small planet neutron emission characteristics is developed. Using artificial satellites and space probes information on the planet surface may be obtained by analyzing neutron emission being the result of cosmic rays effect. Available calculation methods permit to calculate angular distribution and neutron flux F 0 from planet surface as a function of its surface layer chemical composition. Neutron flux measured by a sattelite and F 0 flux may be connected by a function describing neuton phase density near the planet

  1. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  2. Neutronic density perturbation by probes; Pertubacion de densidades neutronicas por sondas

    Energy Technology Data Exchange (ETDEWEB)

    Vigon, M A; Diez, L

    1956-07-01

    The introduction of absorbent materials of neutrons in diffuser media, produces local disturbances of neutronic density. The disturbance depends especially on the nature and size of the absorbent. Approximated equations which relates te disturbance and the distance to the absorbent in the case of thin disks have been drawn. The experimental comprobation has been carried out in two especial cases. In both cases the experimental results are in agreement with the calculated values from these equations. (Author)

  3. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  4. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  5. Tank 241-TX-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-105 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  6. Tank 241-BY-107 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issuesclose quotes. Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolutionclose quotes

  7. Tank 241-BY-111 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-111 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-111 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  8. Tank 241-C-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in Program Plan for the Resolution of Tank Vapor Issues (Osborne and Huckaby 1994). Tank 241-C-108 was vapor sampled in accordance with Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  9. Tank 241-TX-118 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-TX-118 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-TX-118 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  10. Tank 241-BY-112 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-112 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  11. Tank 241-C-104 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-104 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  12. Tank 241-BY-103 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-103 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  13. Tank 241-U-107 vapor sampling and analysis tank characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    Tank 241-U-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-U-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  14. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  15. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  16. Measurement of the lunar neutron density profile

    International Nuclear Information System (INIS)

    Woolum, D.S.; Burnett, D.S.; Furst, M.; Weiss, J.R.

    1975-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g cm -2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the 10 B (n,α) 7 Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative 149 Sm to 157 Gd capture rates reported previously (Russ et al., 1972) imply that the true lunar 157 Gd capture rate is about one half of that calculated theoretically. (Auth.)

  17. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  18. 27 CFR 24.229 - Tank car and tank truck requirements.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  19. A neutron spectrometer based on temperature variations in superheated drop compositions

    CERN Document Server

    Apfel, R E

    2002-01-01

    The response of superheated drop detectors (SDDs) to neutron radiation varies in a self-consistent manner with variations in temperature and pressure, making such compositions suitable for neutron spectrometry. The advantage of this approach is that the response functions of candidate materials versus energy as the temperature or pressure is varied are nested and have distinct thresholds, with no thermal neutron response. These characteristics permit unfolding without the uncertainties associated with other spectrometry techniques, where multiple solutions are possible, thus requiring an initial guess of the spectrum. A spectrometer was developed based on the well-established technology for acoustic sensing of bubble events interfaced with a proportional-integral-derivative temperature controller. The active monitor for neutrons, called REMbrandt sup T sup M , was used as the platform for controlling temperature on a SDD probe and for data acquisition, thereby automating the process of measuring the neutron e...

  20. Portable neutron moisture gage for the moisture determination of structure parts

    International Nuclear Information System (INIS)

    Harnisch, M.

    1985-01-01

    For determining the moisture of structure parts during building or before repairing a portable neutron moisture gage consisting of a neutron probe and pulse analyzer has been developed. The measuring process, calibration, and prerequisites of application are briefly discussed

  1. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  2. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  3. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  4. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  5. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  6. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  7. Localisation of a neutron source using measurements and calculation of the neutron flux and its gradient

    CERN Document Server

    Linden, P; Dahl, B; Pázsit, I; Por, G

    1999-01-01

    We have performed laboratory measurements of the neutron flux and its gradient in a static model experiment, similar to a model problem proposed in Pazsit (Ann. Nucl. Energy 24 (1997) 1257). The experimental system consists of a radioactive neutron source located in a water tank. The measurements are performed using a recently developed very small optical fibre detector. The measured values of the flux and its gradient are then used to test the possibility of localising the source. The results show that it is possible to measure the flux on the circumference of a circle and from this calculate the flux gradient vector. Then, by comparison of the measured quantities with corresponding MCNP calculations, both the direction and the distance to the source are found and thus the position of the source can be determined.

  8. Modernization of tank floor scanning system (TAFLOSS) software

    International Nuclear Information System (INIS)

    Mohd Fitri Abdul Rahman; Jaafar Abdullah; Susan Maria Sipaun

    2002-01-01

    Tank Floor Scanning System (TAFLOSS) is a portable nucleonic device based on the scattering and moderation phenomena of neutrons. TAFLOSS, which was developed by MINT, can precisely and non-destructively measure the gap and hydrogen content in the foundation of a gigantic industrial tank in a practical and cost-effective manner. In recording and analysing measured data, three different computer software were used. In analysing the initial data, a Disk Operating System (DOS) based software called MesTank 3.0 have been developed. The system also used commercial software such as Table Curve 2D and SURFER for graphics purposes. Table Curve 2D was used to plot and evaluate curve fitting, whereas SURFER software used to draw contours. It is not user friendly and time consuming to switch from a software to another software for different tasks of this system. Therefore, the main objective of the project is to develop new user-friendly software that combined the old and commercial software into a single package. The computer programming language that was used to develop the software is Microsoft Visual C++ ver. 6.0. The process of developing this software involved complex mathematical calculation, curve fitting and contour plot. This paper describes the initial development of a computer programme for analysing the initial data and plotting exponential curve fitting. (Author)

  9. Digital neutron moisture meter for moisture determination in the cokes and building materials

    International Nuclear Information System (INIS)

    Chibovski, R.; Igel'ski, A.; Kiyanya, K.; Kiyanya, S.; Mnikh, Eh.; Sledzevski, R.; Verba, V.

    1979-01-01

    Description is given of the digital neutron moisture gage for measuring water content in coke or in dry building materials. The device can work independently with indication of the results to personnel carrying out control operation and adjustment of the process or as a part of an automated control system with supplying the results of measurements in a form of analogous signals or electric pulses in the preselected code. The moisture gage described consists of two units: measuring probes with containers and the desk with power supply and the system for digital processing of a radiometric signal. The measuring probe consists of the asotopic fast neutrons source; helium proportional counter of slow neutrons and a pulse amplifier. The probe is mounted in the bunker with the material measured and is located inside the protective tube made of the weare-resistant material. To obtain high accuracy of measurements and to obtain the measuring instrument's reading immediately in the units of moisture measurement, the digizal converter circuit for radiometric signals processing is used. The The digital converter circuit cited, can be applied to any calibration dependence of linear type with initial value. The block diagram of the device is given. The device described permits to measure the moisture content in the metallurgy coks and in the building materials in one minute and with the error not more than 0.5% [ru

  10. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 1: Procedural overview

    International Nuclear Information System (INIS)

    2007-01-01

    Accurate determinations of volume are a fundamental component of any measurement-based system of control and accountability in a facility that processes or stores nuclear materials in liquid form. Volume determinations are typically made with the aid of a calibration or volume measurement equation that relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. The steps carried out to acquire data for estimating the tank's calibration or volume measurement equation are collectively described as the process of tank calibration. This part of ISO 18213 describes procedures for tank calibration and volume determination for nuclear process tanks equipped with pressure-measurement systems for determining liquid content. Specifically, overall guidance is provided for planning a calibration exercise undertaken to obtain the data required for the measurement equation to estimate a tank's volume. The key steps in the procedure are also presented for subsequently using the estimated volume-measurement equation to determine tank liquid volumes. The procedures presented apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. Moreover, these procedures produce reliable results only for clear (i.e. without suspended solids), homogeneous liquids that are at both thermal and static equilibrium. The paper elaborates on scope, physical principles involved, the calibration model, equipment required, a typical tank calibration procedure, calibration planning and pre-calibration activities, and volume determination. A bibliography is provided

  11. Neutron stars at the dark matter direct detection frontier

    Science.gov (United States)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  12. Independent verification of tank volume measurements by pressure-volume authentication

    International Nuclear Information System (INIS)

    Suda, S.C.; Keisch, B.

    1992-01-01

    Brookhaven National Laboratory has developed a portable pressure-volume authenticator** as a standard and means of checking the functionality and quality of bubbler-probe volumetric devices. The pressure-volume authenticator (PVA) consists of an automated electromanometer system that is controlled by a laptop computer, and a transportable volumetric artifact. A portable pressure gage is connected, via a scanivalve, to the operator's bubbler-probe system and independently measures all bubbler probes. The transportable volumetric artifact is a one-meter high vessel equipped with bubble-probes, computer controlled air-purge rotameters, and platinum resistance (RTD) thermometer. High quality measurements are obtained by use of a fast sampling technique and sophisticated software developed under this program. The computer software performs the following functions: (a) instrument control, (b) data acquisition, (c) on-line graphical and numerical display of measurement data, and (d) detailed data analysis. The device also may provide hands-on training for inspectors and plant operators in high quality volumetric data collection and analysis. A field demonstration of the automated electromanometer system was conducted on the PETRA input accountancy tank, JRC-Ispra in November 1991

  13. Optimization of a neutron ambient dose equivalent rate meter

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Fieg, G.; Piesch, E.; Klett, A.; Maushart, R.

    1994-01-01

    Co-operating in a technology transfer project, the Karlsruhe Nuclear Research Center and EG and G Berthold have developed a neutron equivalent doserate probe with high sensitivity and an energy dependent detection efficiency in accordance with the ICRP60 requirements. The special features of this probe were realized, on the one hand, by optimizing the moderator and absorber geometry through simulation calculations with the neutron transport code MCNP, and, on the other hand, by using a newly designed 3 He-methane proportional counter tube. The measurements were not yet completed when this paper went to press, however, it is to be expected that the response sensitivity will be more than 3 counts/nSv. (orig.) [de

  14. Neutron Scattering studies of magnetic molecular magnets

    International Nuclear Information System (INIS)

    Chaboussant, G.

    2009-01-01

    This work deals with inelastic neutron scattering studies of magnetic molecular magnets and focuses on their magnetic properties at low temperature and low energies. Several molecular magnets (Mn 12 , V 15 , Ni 12 , Mn 4 , etc.) are reviewed. Inelastic neutron scattering is shown to be a perfectly suited spectroscopy tool to -a) probe magnetic energy levels in such systems and -b) provide key information to understand the quantum tunnel effect of the magnetization in molecular spin clusters. (author)

  15. Spallation Neutron Sources For Science And Technology

    International Nuclear Information System (INIS)

    Comsan, M.N.H.

    2011-01-01

    Spallation Neutron Facilities Increasing interest has been noticed in spallation neutron sources (SNS) during the past 20 years. The system includes high current proton accelerator in the GeV region and spallation heavy metal target in the Hg-Bi region. Among high flux currently operating SNSs are: ISIS in UK (1985), SINQ in Switzerland (1996), JSNS in Japan (2008), and SNS in USA (2010). Under construction is the European spallation source (ESS) in Sweden (to be operational in 2020). The intense neutron beams provided by SNSs have the advantage of being of non-reactor origin, are of continuous (SINQ) or pulsed nature. Combined with state-of-the-art neutron instrumentation, they have a diverse potential for both scientific research and diverse applications. Why Neutrons? Neutrons have wavelengths comparable to interatomic spacings (1-5 A) Neutrons have energies comparable to structural and magnetic excitations (1-100 meV) Neutrons are deeply penetrating (bulk samples can be studied) Neutrons are scattered with a strength that varies from element to element (and isotope to isotope) Neutrons have a magnetic moment (study of magnetic materials) Neutrons interact only weakly with matter (theory is easy) Neutron scattering is therefore an ideal probe of magnetic and atomic structures and excitations Neutron Producing Reactions Several nuclear reactions are capable of producing neutrons. However the use of protons minimises the energetic cost of the neutrons produced solid state physics and astrophysics Inelastic neutron scattering

  16. Stabilization of in-tank residuals and external-tank soil contamination: FY 1997 interim report

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This interim report evaluates various ways to stabilize decommissioned waste tanks and contaminated soils at the AX Tank Farm as part of a preliminary evaluation of end-state options for the Hanford tanks. Five technical areas were considered: (1) emplacement of smart grouts and/or other materials, (2) injection of chemical-getters into contaminated soils surrounding tanks (soil mixing), (3) emplacement of grout barriers under and around the tanks, (4) the use of engineered barriers over the tanks, and (5) the explicit recognition that natural attenuation processes do occur. Research topics are identified in support of key areas of technical uncertainty, in each of the five technical areas. Detailed cost/benefit analyses of the recommended technologies are not provided in this evaluation, performed by Sandia National Laboratories, Albuquerque, New Mexico

  17. Radiotracer investigation in gold leaching tanks

    International Nuclear Information System (INIS)

    Dagadu, C.P.K.; Akaho, E.H.K.; Danso, K.A.; Stegowski, Z.; Furman, L.

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. - Highlights: ► I-131 radioactive tracer is suitable for tracing the aqueous phase in gold ore slurry. ► Online data collection is more convenient method for tracer monitoring in industrial process systems. ► The tanks-in-series model with exchange between active and stagnant zones is suitable to describe the flow behavior of leaching tanks. ► The radiotracer RTD technique could be used to validate design data after process intensification in gold leaching tanks.

  18. Radiotracer investigation in gold leaching tanks

    Energy Technology Data Exchange (ETDEWEB)

    Dagadu, C.P.K., E-mail: dagadukofi@yahoo.co.uk [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K.; Danso, K.A. [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Stegowski, Z.; Furman, L. [Faculty of Physics and Applied Computer Science, AGH-UST, 30-059 Krakow (Poland)

    2012-01-15

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. - Highlights: Black-Right-Pointing-Pointer I-131 radioactive tracer is suitable for tracing the aqueous phase in gold ore slurry. Black-Right-Pointing-Pointer Online data collection is more convenient method for tracer monitoring in industrial process systems. Black-Right-Pointing-Pointer The tanks-in-series model with exchange between active and stagnant zones is suitable to describe the flow behavior of leaching tanks. Black-Right-Pointing-Pointer The radiotracer RTD technique could be used to validate design data after process intensification in gold leaching tanks.

  19. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  20. Skin Dose Equivalent Measurement from Neutron-Deficient Isotopes

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hua; Costigan, Steve A.; Romero, Leonard L.; Whicker, Jeffrey J.

    1997-12-01

    Neutron-deficient-isotopes decay via positron emission and/or electron capture often followed by x-ray, gamma-ray, and 0.511 MeV photons from positron annihilation. For cases of significant area and/or personnel contamination with these isotopes, determination of skin dose equivalent (SDE) is required by 10CFR835. For assessment of SDE, we evaluated the MICROSPEC-2(TM) system manufactured by Bubble Technology Industries of Canada which uses three different probes for dose measurement. We used two probes: (1) the X-probe which measures lower energy (4 - 120 keV) photon energy distributions and determines deep dose equivalent, SDE and dose equivalent to eyes, and (2) the B-probe which measures electron (positron) energy distributions, and determines skin dose equivalent. Also, the measured photon and beta spectra can be used to identify radioactive isotopes in the contaminated area. Measurements with several neutron-deficient sources showed that this system provided reasonably accurate SDE rate measurements when compared with calculated benchmark SDE rates with an average percent difference of 40%. Variations were expected because of differences between the assumed geometries used by MlCROSPEC-2 and the calculations when compared to the measurement conditions

  1. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo

    1999-07-01

    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  2. Proceedings of the specialists' meeting on delayed neutron nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Jun-ichi [ed.] [Japanese Nuclear Data Committee, Tokai, Ibaraki (Japan)

    1999-07-01

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  3. In vivo measurements of nitrogen using a neutron activation technique

    International Nuclear Information System (INIS)

    Larsson, L.; Alpsten, M.; Toelli, J.; Drugge, N.; Mattsson, S.

    1986-01-01

    Knowledge of body composition is essential for understanding of many diseases such as obesity, anorexia, cancer, kidney and heart diseases. For many years, total body potassium (TBK) has been used as an estimate of the intracellular protein. In some diseases intracellular- and extracellular protein may vary significantly. Together with TBK, total body nitrogen (TBN) should in these cases be measured to estimate the total protein content. The nitrogen content can be measured by in vivo neutron activation. In this work the authors have used the prompt gamma technique: Thermalized neutrons from a Cf-252-source are captured in (n, δ)-reactions. Prompt 10.8 MeV photons are emitted and can be detected during irradiation. The source is contained in a polyethylene block which forms a collimator surrounded by a phi 1.40 m x 0.80 m water tank. The patient is irradiated from below by a 15 cm x 50 cm neutron field. It is possible to scan the whole patient or to measure a part of the body. A phi 15 cm x 15 cm NaI(T1)-detector is used for detection of the 10.8 MeV photons. The detector is mounted above the patient outside the neutron field

  4. Applications of neutron scattering to the study of magnetic materials

    International Nuclear Information System (INIS)

    Koehler, W.C.

    1976-01-01

    The types of interactions that neutrons undergo with condensed matter are reviewed and those properties of neutrons that make them an ideal probe for the study of magnetism on a microscopic scale are discussed. Following a very brief survey of experimental methods, a few illustrative examples of specific investigations are described in sufficient detail to illustrate the power of the techniques. Views as to the future directions that may be taken by neutron scattering are presented

  5. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  6. PELAN - a transportable, neutron-based UXO identification technique

    International Nuclear Information System (INIS)

    Vourvopoulos, G.

    1998-01-01

    An elemental characterization method is used to differentiate between inert projectiles and UXO's. This method identifies in a non-intrusive, nondestructive manner, the elemental composition of the projectile contents. Most major and minor chemical elements within the interrogated object (hydrogen, carbon, nitrogen, oxygen, fluorine, phosphorus, chlorine, arsenic, etc.) are identified and quantified. The method is based on PELAN - Pulsed Elemental Analysis with Neutrons. PELAN uses pulsed neutrons produced from a compact, sealed tube neutron generator. Using an automatic analysis computer program, the quantities of each major and minor chemical element are determined. A decision-making tree identifies the object by comparing its elemental composition with stored elemental composition libraries of substances that could be contained within the projectile. In a series of blind tests, PELAN was able to identify without failure, the contents of each shell placed in front of it. The PELAN probe does not need to be in contact with the interrogated projectile. If the object is buried, the interrogation can take place in situ provided the probe can be inserted a few centimeters from the object's surface. (author)

  7. Visualization study of molten metal-water interaction by using neutron radiography

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.

    1999-01-01

    The purpose of this study is to visualize the behavior of molten metal dropped into water during the premixing process by means of neutron radiography which makes use of the difference in the attenuation characteristics of materials. For this purpose, a high-sensitive, high-frame-rate imaging system using neutron radiography was constructed and was applied to visualization of the behavior of molten metal dropped into water. The test rig consisted of a furnace and a test section. The furnace could heat the molten metal up to 650 C. The test section was a rectangular tank made of aluminum alloy. The tank was filled with heavy water and molten Wood's metal was dropped into heavy water. Visualization study was carried out with use of the high-frame-rate neutron radiography to see the breakup of molten metal jet or lump dropped into heavy water pool. In the images obtained, water, steam or air bubbles, molten metal jets or droplets, cloud of small particles of molten metal after atomization could be distinguished. The debris of Wood's metal was collected after the experiment, and the relation between the break-up behavior and the size and the shape of the debris particles was investigated. (orig.)

  8. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    Science.gov (United States)

    Howell, C. R.; Tornow, W.; Witała, H.

    2016-03-01

    The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL) is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  9. Radiotracer investigation in gold leaching tanks.

    Science.gov (United States)

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld

    International Nuclear Information System (INIS)

    Miller, M.K.; Jayaram, R.; Russell, K.F.

    1995-01-01

    An atom probe field ion microscopy characterization of three Russian pressure vessel steels has been performed. Field ion micrographs of several lath boundaries have indicated that they are decorated with a semicontinuous film of discrete brightly-imaging precipitates that were identified as molybdenum carbonitrides. In addition, extremely high phosphorus levels were measured at the lath boundaries. The phosphorus was found to be confined to an extremely narrow region indicative of monolayer type segregation. The phosphorus coverage determined from the atom probe results of the unirradiated materials agree with predictions based on McLean's equilibrium model of grain boundary segregation. The boundary phosphorus coverage of a neutron-irradiated weld material was significantly higher than in the unirradiated material. Ultrafine darkly-imaging copper- and phosphorus-enriched precipitates were also observed in the matrix of the neutron-irradiated material. (orig.)

  11. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-01-01

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor

  12. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  13. Neutron production and thermal moderation at the PSI UCN source

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Blau, B.; Chowdhuri, Z.; Eikenberg, J.; Fertl, M. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Perret, G.; Reggiani, D.; Ries, D.; Schmidt-Wellenburg, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Talanov, V., E-mail: vadim.talanov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M.; Zsigmond, G. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2015-03-21

    We report on gold foil activation measurements performed along a vertical channel along the tank of the ultracold neutron source at the Paul Scherrer Institute. The activities obtained at various distances from the spallation target are in very good agreement with MCNPX simulations which take into account the detailed description of the source as built.

  14. Flow visualization through metal enclosures with neutron radiography

    International Nuclear Information System (INIS)

    Cimbala, J.M.; Sathianathan, D.; Cosgrove, S.A.

    1989-01-01

    Many practical fluid flow problems involve flow inside metal shrouds (valves, combustors, boilers, turbomachinery, etc.) where visual access is not available. For flows under extreme pressure or heat, glass or transparent plastic can not be used; a flow visualization technique which permits visualization through metal containers is needed in these cases. Since neutrons can penetrate metal casings, neutron radiography has been developed for application to fluid flow visualization. This technique involves imaging of neutron opaque tracer materials, such as solid or fluid particles or streaklines, as they convect in neutron transparent ambient fluids. Surface flow visualization is also possible by using neutron opaque tufts. An extension of the surface tuft technique has also been developed, enabling the visualization of flow a patterns away from solid surfaces. This paper presents a summary of the various flow visualization techniques developed in the authors' laboratory, along with examples which illustrate how these techniques may be applied to practical fluid flow problems. These include flow over a circular cylinder, the recirculation pattern formed by a jet exhausting into a tank, and the flow pattern inside a rotating automotive torque converter

  15. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  16. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much ...

  17. Method and apparatus for measuring the concentration of water, iron, and aluminum in iron ore by neutron radiation

    International Nuclear Information System (INIS)

    Holmes, R.J.; Wylie, A.W.; McCracken, K.G.

    1975-01-01

    Techniques and apparatus for measuring the concentration of water and specific components in materials are described. The techniques involve irradiating the material with neutrons and monitoring the neutron flux in the vicinity of the irradiated material and the gamma radiation from excited nuclei of the specific component. Examples of the use of the invention include on-stream monitoring of ores carried by conveyor belts and borehole logging using a probe which carries a neutron source, and neutron and gamma radiation detectors. (U.S.)

  18. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  19. 27 CFR 24.230 - Examination of tank car or tank truck.

    Science.gov (United States)

    2010-04-01

    ... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall... calibration chart is available at the bonded wine premises, the spirits may be gauged by volume in the tank...

  20. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V.

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur

  1. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  2. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials

  3. Tank 241-C-106 in-tank imaging system operational test report

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106

  4. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  5. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  6. Experimental measurement of nuclear heating in a graphite-cantered assembly in deuterium-tritium neutron environment for the validation of data and calculation

    International Nuclear Information System (INIS)

    Kumar, A.; Youssef, M.; Abdou, M.A.

    1998-01-01

    Within the framework of the ITER Task T-218 entitled 'Shielding Blanket Neutronics Experiments', nuclear heating measurements were conducted jointly by the USA and Japan using a micro calorimetric technique in a graphite-cantered assembly. An accelerator-based D-T neutron source at JAERI was used to provide a mixed neutron and photon field. The first measurements related to direct micro calorimetric measurements in individual graphite probes along the axis. In the second set, the first graphite probe was replaced, one by one, by single probes of beryllium, aluminum, silicon, silicon carbide, titanium, vanadium, chromium, iron, stainless steel 316, nickel, copper, zirconium, niobium, molybdenum, tungsten. Analysis of the measurements has been carried out using Monte Carlo code MCNP with FENDL-1, ENDF/B-VI and MCPLIB nuclear data libraries. A comparison of calculations (C) and experiments (E) shows a C/E ratio lying in a C/E band extending from 0.9 to 1.2 for beryllium, graphite, copper, chromium, iron, nickel, 316 stainless steel, titanium, vanadium, molybdenum, niobium and tungsten. However, larger deviations from unity are seen for C/E values for silicon, zirconium, and aluminum. Though FENDL-1 and ENDF/B-VI libraries provide very close nuclear heating rates for most of the probe materials, significant divergences are seen for silicon, silicon carbide, aluminum, titanium, zirconium, niobium, and molybdenum. The divergences are traceable to differences in neutron kerma factors as well as gamma production cross-sections of these materials. (orig.)

  7. Flow in sodium loop surge tank

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1977-01-01

    The alternate liquid flow, the condition of vortex formation, gas entrainment in the discharge and the liquid level characteristics are studied using the models of the vertical and horizontal surge tanks of a sodium circuit with pump and heat exchangers. The conditions for vortex formation are more favourable in the vertical cylindrical tank than in the horizontal tank. The size of the vortex produced in the tank is affected by the initial speed circulation, due as a rule to an unsuitable inlet design. The proposed design considers an inlet below the sodium level using capped perforated pipes. Vortex formation, gas transport to the discharge pipe and turbulences of the liquid in the tank may be prevented by dividing the tank to the discharge and the inlet areas using perforated partitions, and by inserting the discharge cylinder above the discharge pipe outflow. The liquid level in the tank may be calmed by screens or by perforated plates. The adaptation of the surge tank of the sodium circuit will probably eliminate vortex formation and the entrainment of cover gas into the discharge piping and the sodium circuit under nominal conditions. (J.B.)

  8. Experimental measurements and theoretical simulations for neutron flux in self-serve facility of Dhruva reactor

    International Nuclear Information System (INIS)

    Rana, Y.S.; Mishra, Abhishek; Singh, Tej

    2016-06-01

    Dhruva is a 100 MW th tank type research reactor with natural metallic uranium as fuel and heavy water as coolant, moderator and reflector. The reactor is utilized for production of a large variety of radioisotopes for fulfilling growing demands of various applications in industrial, agricultural and medicinal sectors, and neutron beam research in condensed matter physics. The core consists of two on-power tray rods for radioisotope production and fifteen experimental beam holes for neutron beam research. Recently, a self-serve facility has also been commissioned in one of the through tubes in the reactor for carrying out short term irradiations. To get accurate information about neutron flux spectrum, measurements have been carried out in self-serve facility of Dhruva reactor. The present report describes measurement method, analysis technique and results. Theoretical estimations for neutron flux were also carried out and a comparison between theoretical and experimental results is made. (author)

  9. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  10. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  11. Some neutron measurements with simulated ING targets

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J

    1966-07-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF{sub 3} detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H{sub 2}O or D{sub 2}O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D{sub 2}O and H{sub 2}O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  12. Some neutron measurements with simulated ING targets

    International Nuclear Information System (INIS)

    Walker, J.

    1966-01-01

    Thermal neutron fluxes in the vicinity of a simulated Intense Neutron Generator target have been measured using Mn and Au foils, and a small BF 3 detector. The target was a Pb cylinder either 4-inch or 8-inch in diameter with a 1.2 g Ra-Be neutron source at its centre. This was centrally mounted in a 5' diam. x 5' high tank which was filled with either H 2 O or D 2 O moderator. Various gaps and absorbing annuli were placed around the target, and air-filled aluminum 'beam tubes' were mounted radially or tangentially from the target to simulate typical ING conditions. The measured thermal neutron fluxes were less than calculated at all radii. The single-age computation clearly gives large errors at large radii, but the multi-energy approach seems to give a useful indication of the thermal flux distribution in spite of the extreme simplicity of the model. The fall in measured fluxes at small radii in both D 2 O and H 2 O is most likely caused by absorption in the target material which is not allowed for in the computational model. (author)

  13. Supporting document for the historical tank content estimate for S tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  14. Supporting document for the historical tank content estimate for A Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  15. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  16. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  17. Supporting document for the historical tank content estimate for B Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  18. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Directory of Open Access Journals (Sweden)

    Ersez Tunay

    2017-01-01

    Full Text Available The shielding for the neutron high-resolution backscattering spectrometer (EMU located at the OPAL reactor (ANSTO was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  19. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  20. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  1. Few-Nucleon Research at TUNL: Probing Two- and Three-Nucleon Interactions with Neutrons

    Directory of Open Access Journals (Sweden)

    Howell C.R.

    2016-01-01

    Full Text Available The central goal of few-nucleon research at the Triangle Universities Nuclear Laboratory (TUNL is to perform measurements that contribute to advancing ab-initio calculations of nuclear structure and reactions. The program aims include evaluating theoretical treatments of few-nucleon reaction dynamics through strategically comparing theory predictions to data, determining properties of the neutron-neutron interaction that are not accessible in two-nucleon reactions, and searching for evidence of longrange features of three-nucleon interactions, e.g., spin and isospin dependence. This paper will review studies of three- and four-nucleon systems at TUNL conducted using unpolarized and polarized neutron beams. Measurements of neutron-induced reactions performed by groups at TUNL over the last six years are described in comparison with theory predictions. The results are discussed in the context of the program goals stated above. Measurements of vector analyzing powers for elastic scattering in A=3 and A=4 systems, differential cross sections for neutron-deuteron elastic scattering and neutrondeuteron breakup in several final-state configurations are described. The findings from these studies and plans for the coming three years are presented in the context of worldwide activities in this front, in particular, research presented in this session.

  2. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  3. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  4. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  5. Comparison of soil water measurement using neutron scattering and non-nuclear methods under tomato crops

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2004-01-01

    The effective use of soil water requires frequent and accurate measurements; the technique should be rapid, reliable, simple, cost effective and non-destructive. In this study, the soil moisture neutron probe , Diviner 2000, a capacitance probe and time domain reflectometry were compared in a field tomato experiment carried out at the FAO/IAEA Agriculture and Biotechnology laboratory at Seibersdorf, Austria. The experiment consists of two irrigation treatment furrow versus drip and two nitrogen levels(100,200 Kg N/ha), with each treatment replicated three times, giving a total of twelve plots. The size of the plot was (3.4 x 5 m ). One Soil Moisture Neutron Probe aluminium access tube, one Diviner PVC access tube and one EnviroSCAN access tube were installed in each plot using the slurry method, 30 cm on each side of the tomato plants. In addition, Time Domain Reflectometry probe were installed vertically to monitor over the growth season from June to September. To analyze the results of this experiment, we compared directly The e soil moisture 0-60 cm obtained by different methods. The soil water deficit was calculated for furrow and drip treatment. There was generally good agreement between the changes in soil water deficit as measured and the simulated ones for soil moisture neutron probe

  6. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  7. New Class of Quasinormal Modes of Neutron Stars in Scalar-Tensor Gravity

    Science.gov (United States)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2018-05-01

    Detection of the characteristic spectrum of pulsating neutron stars can be a powerful tool not only to probe the nuclear equation of state but also to test modifications to general relativity. However, the shift in the oscillation spectrum induced by modified theories of gravity is often small and degenerate with our ignorance of the equation of state. In this Letter, we show that the coupling to additional degrees of freedom present in modified theories of gravity can give rise to new families of modes, with no counterpart in general relativity, which could be sufficiently well resolved in frequency space to allow for clear detection. We present a realization of this idea by performing a thorough study of radial oscillations of neutron stars in massless scalar-tensor theories of gravity. We anticipate astrophysical scenarios where the presence of this class of quasinormal modes could be probed with electromagnetic and gravitational wave measurements.

  8. The Politics of Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    consequences in the United Kingdom, Germany, Denmark and at the EU-level. A Continental think tank tradition in which the state plays a pivotal role and an Anglo-American tradition which facilitates interaction in public policy on market-like terms have shaped the development of think tanks. On the basis......In the 21st century, think tanks have become more than a buzzword in European public discourse. They now play important roles in the policy-making process by providing applied research, building networks and advocating policies. The book studies the development of think tanks and contemporary...... of a typology of think tanks, quantitative data and interviews with think tank practitioners, the interplay between state and market dynamics and the development of different types of think tanks is analysed. Although think tanks develop along different institutional trajectories, it is concluded that the Anglo...

  9. Preliminary engineering assessment of the HCLL and HCPB Neutron Activation System

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, Pattrick; Leichtle, Dieter [Fusion for Energy, Barcelona, (Spain); Angelone, Maurizio [ENEA, Unita Tecnica Fusione, Frascati, (Italy); Klix, Axel [KIT, Eggenstein-Leopoldshafen, (Germany)

    2015-07-01

    The Neutron Activation System (NAS) is one of the four types of neutronics sensors considered for the testing of the HCLL and HCPB Test Blanket Module (TBM) in ITER. It measures the absolute neutron flux intensity with information on the neutron spectrum in selected positions of the TBM. The working principle of the NAS is as follows: the system moves small activation probes (capsules) into selected positions in the TBM (irradiation ends) by means of pneumatic transport with pressurized helium gas; the capsules are irradiated for a selected period, depending on their materials composition (several tens of seconds up to the full plasma pulse length); immediately after the irradiation they are extracted and transported to a gamma spectrometer by means of the same pneumatic transport system; the gamma spectrometer determines the induced gamma activity; the neutron flux and neutron fluence is calculated from the measured gamma activity and the known activation cross section of the materials in the activation probe; after the measurement the capsule is sent either to a disposal or storage (for later measurement). This paper summarizes the results of the feasibility assessment of the TBM NAS in the conceptual design phase, including design justification, identification of requirements based on the expected operating conditions in ITER and preliminary engineering assessment of the activation materials, irradiation ends integration in the modules design and the counting station. (authors)

  10. Neutron stars as probes of extreme energy density matter

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... and the orbital period decay due to the emission of gravitational radiation. ˙P = −. 192π ... masses severely restrict the EoS of neutron star matter. Masses ..... (9) Is unstable burning of carbon (C) the real cause of superbursts?

  11. Probing the collectivity in neutron-rich Cd isotopes via γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, Farheen

    2011-01-01

    The spin and configurational structure of excited states of 127 Cd, 125 Cd and 129 Cd, having two proton and three, five and one neutron holes, respectively in the doubly magic 132 Sn core have been studied. The isomeric states in Cd isotopes were populated in the fragmentation of a 136 Xe beam at an energy of 750 MeV/u on a 9 Be target of 4 g/cm 2 . The experiment was performed at GSI Darmstadt. The neutron-rich Cd isotopes were selected using the Bρ - ΔE - Bρ method at the FRagment Separator (FRS). Event by event identification of fragments in terms of their A (mass) and Z (charge) was provided by the standard FRS detectors. The reaction residues were implanted in a plastic stopper surrounded by 15 Ge cluster detectors from the RISING array to detect the γ decays. In 127 Cd, an isomeric state with a half-life of 17.5(3) μs has been detected. This yrast (19/2) + isomer is proposed to have mixed proton-neutron configurations and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone 129 Sn. In 125 Cd, apart from the previously observed (19/2) + isomer, two new metastable states at 3896 keV and 2141 keV have been detected. A half-life of 13.6(2) μs was measured for the (19/2) + isomer, having a decay structure similar to the corresponding isomeric state in 127 Cd. The higher lying isomers have a half-life of 3.1(1) μs and 2.5(15) ns, respectively. Time distributions of delayed γ transitions and γγ-coincidence relations were exploited to construct decay schemes for the two nuclei. Comparison of the experimental data with shell-model calculations is also discussed. The new information provides input for the proton-neutron interaction in nuclei around the doubly magic 132 Sn core. The γ decays of the isomeric states in 129 Cd were not observed experimentally. The reasons for the non-observation of delayed γ rays for 129 Cd are either an isomeric half-life of less than 93 ns based on the experimentally

  12. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs

  13. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  14. Cooling of Accretion-Heated Neutron Stars

    Science.gov (United States)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  15. Polymer research by neutron scattering

    International Nuclear Information System (INIS)

    Richter, D.

    1993-01-01

    Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)

  16. Effect of large neutron excess in the region of the Giant Dipole and Quadrupole Resonance

    CERN Document Server

    Lanza, E G

    1999-01-01

    We study the dipole and quadrupole modes of neutron rich nuclei within the selfconsistent HF + RPA. The presence of neutron skin enhances the mixing of isoscalar and isovector modes. Then it is possible to excite modes of isovector character by an isoscalar probe. In particular we analize the excitation of dipole modes by alpha scattering. The excitation of compressional isoscalar mode is also studied.

  17. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  18. German neutron scattering conference. Programme and abstracts

    International Nuclear Information System (INIS)

    Brueckel, Thomas

    2012-01-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  19. Studies of the neutron single-particle structure of exotic nuclei at the HRIBF

    International Nuclear Information System (INIS)

    Thomas, J.S.; Bardayan, D.W.; Blackmon, J.C.; Cizewski, J.A.; Greife, U.; Gross, C.J.; Johnson, M.S.; Jones, K.L.; Kozub, R.L.; Liang, J.F.; Livesay, R.J.; Ma, Z.; Moazen, B.H.; Nesaraja, C.D.; Shapira, D.; Smith, M.S.

    2004-01-01

    The study of neutron single-particle strengths in neutron-rich nuclei is of interest for nuclear structure and nuclear astrophysics. The distribution of single-particle strengths constrains the effective Hamiltonian and pairing interactions and determines neutron interaction rates that are crucial for understanding the synthesis of heavy nuclei in supernovae via the rapid neutron capture process. Particularly important are the neutron single-particle levels in nuclei near closed neutron shells. Radioactive ion beams from the Holifield Radioactive Ion Beam Facility have been used to study (d,p) reactions in inverse kinematics in order to probe neutron single-particle states in exotic nuclei. The results of a measurement with a 82 Ge beam will be presented

  20. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  1. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented

  2. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  3. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  4. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  5. Tank 241-C-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-C-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-C-108 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  6. Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-107 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  7. Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ''Program Plan for the Resolution of Tank Vapor Issues'' (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ''Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994)

  8. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in open-quotes Program Plan for the Resolution of Tank Vapor Issues.close quotes Tank 241-BY-106 was vapor sampled in accordance with open-quotes Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.close quotes

  9. Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture

    Science.gov (United States)

    Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik

    2013-11-01

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.

  10. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  11. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  12. Mechanical design control and implementation of a new movable diagnostic probe for the TRIUMF cyclotron

    International Nuclear Information System (INIS)

    Ries, T.C.

    1993-11-01

    A new movable probe has been installed into the TRIUMF H - cyclotron. It is intended to measure the distribution of betatron amplitudes, in the vertical plane, of the circulating beam and to scrape halo. The probe, however, may also be scanned in the radial direction. The head may be positioned vertically and horizontally to an accuracy of .002 in. The device is mechanically modular to facilitate fast and easy handling for maintenance in a radioactive area. The beam sensor on the probe head is a 1.25 in. x 3 in. x 0.003 in. tantalum foil and its overall coverage is 3.00 in. X 7.25 in. in a vertical plane orthogonal to, and crossing through the beam orbit plane. Presently its radial centre line location corresponds to a proton beam energy of about 430 MeV at radius 296 in., however, the probe device may be easily relocated to operate from any 4 in. port, and, with an adaptor port flange, may be installed into any port in the cyclotron vacuum tank. A stationary catcher below the probe path collects those electrons stripped from the H - beam and scattered out from the probe head. The probe axis is vertical and the tank aperture is narrow so a worm gear arrangement combined with a modified 'Evans' - parallel linkage mechanism is used to transform vertical rotary motion into horizontal linear motion. The actuators are dc servo motors with tachometers driven by pulse width modulated servo amplifiers. Position sensing is done by variable reluctance type absolute rotary encoders and the higher level positioning is performed by TRIMAC based control software. The precision of movement and jitter was measured in the laboratory. Examples will be given of the probe use with beam. (author). 5 refs., 3 figs

  13. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-01

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load

  14. Hydrogen-Oxygen Reaction Assessment in the HANARO Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Woon; Kim, Hark Rho; Lee, Kye Hong; Han, Young Soo; Kim, Young Ki; Kim, Seok Hoon; Jeong, Jong Tae

    2006-04-15

    Liquid hydrogen, filled in the moderator cell of the in-pool assembly (IPA), is selected as a moderator to moderate thermal neutrons into cold neutrons for the HANARO Cold Neutron Source. Since the IPA will be installed in the vertical CN hole of the reflector tank at HANARO, the vacuum chamber (VC), the pressure boundary against the reactor, should withstand the detonation pressure so as to avoid any physical damage on the reactor under the hydrogen-oxygen chemical reaction. Accordingly, not only will the vacuum chamber be designed to keep its integrity against the hydrogen accident, but also the hydrogen and vacuum system will be designed with the leak-tight concept and also designed to be surrounded by the inert gas blanket system to prevent any air intrusion into the system. Also, in order to confirm the design concept of the CNS as well as VC integrity against the hydrogen accident, the hydrogen-oxygen chemical reaction is evaluated in this report by several methodologies: AICC methodology, Equivalent TNT detonation methodology, Explosion test result, and Calculation of VC strain under the maximum reflected explosion load.

  15. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    Science.gov (United States)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  16. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  17. High resolution neutron tomography applied to tooth fillings on real teeth by use of neutron lens

    International Nuclear Information System (INIS)

    Masschaele, B.; Cauwels, P.; Mondelaers, W.; Baechler, S.; Jolie, J.; Materna, T.

    2000-01-01

    Today tomography is a well known technique for nondestructive analysis of samples. By taking several X-ray pictures from an object, it is possible to make a 3D reconstruction. The same thing can be done with neutrons. Since very recent it is possible to produce a high-flux neutron beam. By looking at the attenuation of the neutron beam in the sample from different angles, it is possible to make a neutron tomography. The properties of neutrons are so much different from X-rays that a new era in tomography has started. Where X-rays have a hard time penetrating samples containing heavy elements (Pb, Bi, U, Hg, Au), neutrons just seem to walk through. But when the neutrons encounter samples containing light compounds like water, oil, paper, B, Li,... they are easily absorbed. This makes the use of neutrons for imaging complementary to the well known X-ray imaging. The most used tooth filling material nowadays is amalgam. Amalgam is a mixture of different metals, like silver, tin, copper, mercury. Mercury is dangerous for the human body when it enters the blood stream. These fillings are very dense and X-rays have a very hard time penetrating it. Neutrons are the ideal probe for investigation of these high density regions. The result of the tomography reveals information on the long term stability of amalgam fillings and could help the still ongoing debate on the safety of the fillings. (author)

  18. Data processing in neutron protein crystallography using position-sensitive detectors

    International Nuclear Information System (INIS)

    Schoenborn, B.P.

    1982-01-01

    Neutrons provide a unique probe for localizing hydrogen atoms and for distinguishing hydrogen from deuterons. Hydrogen atoms largely determine the three-dimensional structure of proteins and are responsible for many catalytic reactions. The study of hydrogen bonding and hydrogen exchange will therefore give insight into reaction mechanisms and conformational fluctuations. In addition, neutrons provide the ability to distinguish N from C and O and to allow correct orientation of groups such as histidine and glutamine. To take advantage of these unique features of neutron crystallography, one needs accurate Fourier maps depicting atomic structure to a high precision. In this paper, techniques are described for minimizing error in the observed structure factors by optimizing data collection and analysis procedures. Special attention is given to subtraction of the high background associated with hydrogen-containing molecules, which produces a disproportionately large statistical error

  19. Probing the Evolution of the Shell Structures in Exotic Nuclei

    International Nuclear Information System (INIS)

    De Angelis, Giacomo

    2008-01-01

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  20. Application of the multisphere technique. Calibration and use of a modified Multiple Probe Detector

    International Nuclear Information System (INIS)

    Lalande, R.

    1966-11-01

    The study concerns the search for a portable, compact device with a great autonomy of operation, able to carry out precise measurements of fast neutrons in exclusion zones. A DSM-type multi-probe detector, which is self-contained and fully transistorized, have been studied; it includes a storage battery with a 30 hour autonomy and a buffering capability, a pulse amplifier, an integrator (sensitivity 4 c / s - 200 c / s - 2000 c / s), a totalizer to carry out counting on 5 mm, and a SNR fast neutron probe equipped with its preamplifier. Slightly modified, this device perfectly fulfills the operating conditions. Designed to precisely define the relationship between the flow and the dose intensity, it allows to calibrate any type of fast neutrons detector (e.g. BF 3 or unmodified DSM) that will respond correctly and will provide routine monitoring at a facility

  1. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ''electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs

  2. Constraints on the symmetry energy from observational probes of the neutron star crust

    International Nuclear Information System (INIS)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An; Murphy, Kyleah; Wen, De-Hua

    2014-01-01

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  3. Constraints on the symmetry energy from observational probes of the neutron star crust

    Energy Technology Data Exchange (ETDEWEB)

    Newton, William G.; Hooker, Joshua; Gearheart, Michael; Fattoyev, Farrukh J.; Li, Bao-An [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Murphy, Kyleah [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); Umpqua Community College, Roseburg, Oregon (United States); Wen, De-Hua [Texas A and M University-Commerce, Department of Physics and Astronomy, Commerce (United States); South China University of Technology, Department of Physics, Guangzhou (China)

    2014-02-15

    A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy L of such models, and constraints extracted on L from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust; (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer; (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden recoupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning; (iv) the frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations; (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary; and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger. (orig.)

  4. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Thompson; Adam Slifko

    1997-02-12

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini{trademark}. Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini{trademark} represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini{trademark} is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini{trademark} utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini{trademark} system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini{trademark} system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks.

  5. HOUDINI: RECONFIGURABEL IN-TANK ROBOT

    International Nuclear Information System (INIS)

    Bruce Thompson; Adam Slifko

    1997-01-01

    This report details the development of a reconfigurable in-tank robotic cleanup systems called Houdini(trademark). Driven by the general need to develop equipment for the removal of radioactive waste from hundreds of DOE waste storage tanks and the specific needs of DOE sites such as Oak Ridge National Laboratory and Fernald, Houdini(trademark) represents one of the possible tools that can be used to mobilize and retrieve this waste material for complete remediation. Houdini(trademark) is a hydraulically powered, track driven, mobile work vehicle with a collapsible frame designed to enter underground or above ground waste tanks through existing 24 inch riser openings. After the vehicle has entered the waste tank, it unfolds and lands on the waste surface or tank floor to become a remotely operated mini-bulldozer. Houdini(trademark) utilizes a vehicle mounted plow blade and 6-DOF manipulator to mobile waste and carry other tooling such as sluicing pumps, excavation buckets, and hydraulic shears. The complete Houdini(trademark) system consists of the tracked vehicle and other support equipment (e.g., control console, deployment system, hydraulic power supply, and controller) necessary to deploy and remotely operate this system at any DOE site. Inside the storage tanks, the system is capable of performing heel removal, waste mobilization, waste size reduction, and other tank waste retrieval and decommissioning tasks. The first Houdini(trademark) system was delivered on September 24, 1996 to Oak Ridge National Laboratory (ORNL). The system acceptance test was successfully performed at a cold test facility at ORNL. After completion of the cold test program and the training of site personnel, ORNL will deploy the system for clean-up and remediation of the Gunite storage tanks

  6. Tank 241-A-104 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-A-104. This Tank Characterization Plan will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in addition to reporting the current contents and status of the tank as projected from historical information

  7. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-01-01

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report

  8. Utilization of the MPI Process for in-tank solidification of heel material in large-diameter cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kauschinger, J.L.; Lewis, B.E.

    2000-01-01

    A major problem faced by the US Department of Energy is remediation of sludge and supernatant waste in underground storage tanks. Exhumation of the waste is currently the preferred remediation method. However, exhumation cannot completely remove all of the contaminated materials from the tanks. For large-diameter tanks, amounts of highly contaminated ``heel'' material approaching 20,000 gal can remain. Often sludge containing zeolite particles leaves ``sand bars'' of locally contaminated material across the floor of the tank. The best management practices for in-tank treatment (stabilization and immobilization) of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and mixed uniformly with sludge. Ground Environmental Services has developed and demonstrated a remotely controlled, high-velocity jet delivery system termed, Multi-Point-Injection (MPI). This robust jet delivery system has been field-deployed to create homogeneous monoliths containing shallow buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in cylindrical (FY 1998) and long, horizontal tanks (FY 1999). During the FY 1998 demonstration, the MPI process successfully formed a 32-ton uniform monolith of grout and waste surrogates in about 8 min. Analytical data indicated that 10 tons of zeolite-type physical surrogate were uniformly mixed within a 40-in.-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies similar to Gunite and Associated Tank (GAAT) TH-4 and Hanford tank sludges, were easily intermixed into the monolith without exceeding a core temperature of 100 F during curing.

  9. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  10. Neutron measurement by transportable spectrometer

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Two levels of neutron spectrometry are in regular use at nuclear power plants: some techniques used in the laboratory produce detailed spectra but require specialist operators, while simple instruments used by non-specialists to measure the neutron dose-rate to operators provide little spectral information. The standard portable instruments are therefore of no use when anomalous readings are obtained which require further investigation. AEA Technology at Winfrith has developed a Transportable Neutron Spectrometer (TNS) which is designed to produce reasonable spectra in routine use by staff with no specialist skill in spectroscopy, and high-quality spectra in the hands of skilled staff. The TNS provides a level of information intermediate between those currently available, and is also designed to solve the problem of imperfect dose response which is common in portable dosimeters. The TNS system consists of a power supply, a probe and a signal processing and data acquisition unit. (author)

  11. Dose rate analysis for Tank 101 AZ (Project W151)

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP 2 ) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A

  12. Tank 241-U-106 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    This report presents the details of the Hanford waste tank characterization study for tank 241-U-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected to determine the potential risks to tank farm workers due to fugitive emissions from the tank

  13. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  14. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  15. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  16. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  17. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  18. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  19. Static and quasi-elastic small angle neutron scattering on biocompatible ionic ferrofluids: magnetic and hydrodynamic interactions

    CERN Document Server

    Gazeau, F; Dubois, E; Perzynski, R

    2003-01-01

    We investigate the structure and dynamics of ionic magnetic fluids (MFs), based on ferrite nanoparticles, dispersed at pH approx 7 either in H sub 2 O or in D sub 2 O. Polarized and non-polarized static small angle neutron scattering (SANS) experiments in zero magnetic field allow us to study both the magnetic and the nuclear contributions to the neutron scattering. The magnetic interparticle attraction is probed separately from the global thermodynamic repulsion and compares well to direct magnetic susceptibility measurements. The magnetic interparticle correlation is in these fluid samples independent of the probed spatial scale. In contrast, a spatial dependence of the interparticle correlation is evidenced at large PHI by the nuclear structure factor. A model of magnetic interaction quantitatively explains the under-field anisotropy of the SANS nuclear contribution. In a quasi-elastic neutron spin-echo experiment, we probe the Brownian dynamics of translation of the nanoparticles in the range 1.3 sup<=...

  20. Effect of some soil physical properties on water holding capacity, neutron probe calibration and salt movement

    International Nuclear Information System (INIS)

    Razzouk, A. K.

    2010-04-01

    This study was conducted in tow areas representing in silty soil in Southern Syria (Draa), loamy and sandy soil in Eastern Syria (Deir Al zour) to compare the soil effect on the calibration of the neutron probe, correlation coefficient, soil characteristics curve, soil solution content of nitrates, potassium and sodium for the estimation of the optimum sampling time of soil solution by porous ceramic cups. Regression analysis results showed that the three soils curves, in which the soil contained the lowest content of clay had a high correlation coefficient and decreased with increasing the clay content. Whereas, the correlation coefficient in sandy soil was 0.96 while decreased to 0.79 in silty soil. The hydraulic head increased with decreasing the water content, which was obvious in the three soils characteristic curves. The NO - 3 content decreased due to the plants roots absorption and leaching to deeper layers, while the NO - 3 content in the surfaces layer significantly decreased in the sandy soil. Results showed that equilibrium between the soil solution and the NO - 3 content in the solution in porous cups occurred within 8 days. (author)